
Towards Edge Computing
Based Distributed Data Analytics

Framework in Smart Grids

Chunhe Song1,2(B), Tong Li3, Xu Huang4, Zhongfeng Wang1,2,
and Peng Zeng1,2

1 Chinese Academy of Sciences, Shenyang Institute of automation,
Shenyang 110016, People’s Republic of China

songchunhe@sia.cn
2 Institutes for Robotics and Intelligent Manufacturing,
Chinese Academy of Sciences, Shenyang 110016, China

3 Liaoning Electric Power Research Institute, State Grid Liaoning Electric
Power Co., Ltd., Shenyang 110000, People’s Republic of China

4 Shenyang Power Supply Company, State Grid Liaoning Electric Power Co., Ltd.,
Shenyang 110000, People’s Republic of China

Abstract. Edge computing, as an emerging paradigm empower the
network edge devices with intelligence, has become a prominent and
promising future for Internet of things. Meanwhile, machine learning
method, especially deep learning method has experience tremendous
success recently in many application scenario. Recently, deep learning
method applied in IoT scenario is also explored in many literatures.
However, how to combine edge computing and deep learning method to
advance the data analytics in smart grids has not been fully studied.
To this end, in this paper, we propose ECNN (Edge-deployed Convolu-
tion Neural Network) in edge computing assisted smart grids to greatly
enhance the ability in data aggregation and analytics. We also discuss
how to train such network in edge computing distributively. Experiments
shows the advantage of our paradigm.

1 Introduction

Although the prevalent of Internet of Things (IoT) is inevitable, it is also envi-
sioned that IoT will be limited by the network bandwidth, and the IoT will
become both provider and consumer of the data, which analyze, process, and
store the data at the edge of Internet [1]. Thus, the conventional centralized cloud
computing model has reveal its inherent problems. For example, the conventional
paradigm could not process the multi-sources massive data at the edge of net-
work in realtime; Both the delay and bandwidth has also come to a bottleneck
to satisfy the requirements. Due to above reasons, the traditional cloud com-
puting cannot efficiently support the IoT-based application services and thus,
trigger to born of the new computing paradigm edge computing by moving the
computation to the data producer side.
c© Springer Nature Switzerland AG 2019
X. Sun et al. (Eds.): ICAIS 2019, LNCS 11632, pp. 283–292, 2019.
https://doi.org/10.1007/978-3-030-24274-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24274-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-24274-9_25

284 C. Song et al.

Output Layer

Registra�on Distribu�on Coupled Layer

Agility Layer

Rule Engine Agility Gateway Others

Core Service Layer

Core Data
Storage Meta Data Others

Edge Devices

REST OPC-UA ZIGBEE BLUETOOTH SNMP

CLOUD

Distribu�on network

Ac�ve Control

Distribute
d Power

Elas�c
Load

Distributed
Storage

Physical Device Interac�on

Device Device DeviceDevice Device

Micro Grid

Access System

Device Access Logic Control Data
Collec�on

Data
Aggrega�on

Edge Compu�ng Structure Ac�ve Distribu�on network

Mul�ple Level Distributed Control

Area N-1 Area N+1Area N

Fig. 1. Edge computing and smart grid system

Meanwhile, as the largest IoT system in real implementation, smart grids
also come to the cross that how to improve the sensing ability with the power of
artificial intelligence. Among also so called smart functions of smart grids, the
data aggregation and analytics is of the most important and fundamental ones.
However, the dumb end system has greatly limit the smart grids growing to real
“Smart”, as the AI algorithms require rather higher computation and sensing
capacity of the end devices [2–4]. As such, we argue that, the edge computing
paradigm could greatly solve such dilemma by deploying edge computing device
close to the smart grids end system and also enable the high sensing and data
aggregation functions. In fact, as shown in Fig. 1, edge computing paradigm is
a very promising scheme to realized the so called Active Distribution Network
of the smart grids, which proactively distributed and balance the power and
actively collect the power from different kinds of power station, including not
only the traditional ones but also the new power like wind, solar power and etc.

To realize such vision, in this paper, we design a new edge computing based
distributed data analytics framework in Smart Grids. As is known to all that, the
smart grids is a large scale distributed system with computing and data trans-
mission ability. The framework of a large-scale distributed computing hierarchy
provide new significance in the emerging era of IoT. We expected that most
of data generated by the IoT devices must be processed locally at the devices
or at the edge. Otherwise the amount of smart grid data would overwhelm the
network bandwidth and lead to unacceptable processing delay. In comparison,

Towards Edge Computing Based Distributed Data Analytics Framework 285

the distributed computing paradigm offers opportunities for system scalability,
data security and privacy, as well as less processing delay [5–7].

On the other hand, deep learning and CNN has illustrate its potential and
tremendous advantage in machine learning tasks, especially like image process
and etc. Recently, it also shows the effectiveness in sensor analytics. Thus, we are
motivated to combine the deep learning and the edge computing to enhance the
ability of smart grids. In this paper, we show that Edge-deployed Convolutional
Neural Networks (ECNN) can systematically exploit the inherent advantages
of a distributed computing hierarchy for CNN applications and achieve similar
benefits.

In this paper, we mainly make following contributions:

– We design and propose a new edge computing based framework for smart
grids.

– We have utilized the edge-deployed CNN (ECNN) as the core computing
technique for our framework.

– We have analysis the advantage of our framework both quantitatively and
qualitatively.

2 Related Work

2.1 Deep Learning

Deep learning [8] is firstly proposed as an extension of neural network [9] and
with the flourish of the computing paradigm and resources, thus make the tradi-
tionally unrealized deep models feasible. Recent research has been paid on how
to explore different structure to make such realization more accurate [10,11].
Recent proposed BNN has been shown to achieve good accuracy in MNIST and
CIFAR-10 [12] by using less memory and small computation resources infer-
ence [13]. These models are especially promising in end devices. The researchers
also use deep learning approaches to perform reinforce learning. In ECNN, we
inspired by the federate learning [14] techniques and applied them in both the
end devices, edge cloud and the central cloud, so that the inference and the
training of the model could be performed.

2.2 Distributed Deep Learning

Current research on distributing deep learning is focused on the structure and
the training efficiency. DistBelief [15] distribute large NNs over thousands of
CPU cores during the training in 2012. Recently, several methods have been
proposed to scale up deep NNs training over GPUs [16,17]. In 2017, Surat et al.
[18] proposed an distributed deep neural networks structure to fit to embedded
devices. It proposes the training and inference deployed over a distributed com-
puting hierarchy, rather than processed in parallel over CPUs or GPUs in the
cloud. Most recent proposed concept in follows the federated learning paradigm,
which was proposed by Google [14]. Federated Learning is aiming at train a
high-quality centralized model while training data remains distributed over the
edge, which have unreliable and relatively slow network connections.

286 C. Song et al.

3 Edge-Deployed Convolutional Neural Networks

In this section we give an overview of the proposed edge-deployed deep neural
network (ECNN) architecture and describe how is the training and inference in
ECNN performed.

3.1 ECNN Architecture

Basically, the ECNN is a distributed CNN, where the first several layer of the
CNN, which composed with a series of convolution layers with filters (kernels),
Pooling, fully connected layers (FC) and apply Softmax function to classify an
object. The edge cloud, and edge devices both own several layers of convolution
layers and pooling layers. Meanwhile the local device could make the classifica-
tion with the FC layers. Meanwhile, the cloud and edge also own their FC layers
and the pooling layers.

CNN

Cloud
Aggregator

Cloud
Output

Local
Aggregator

CNN

Fully
Connector

Fully
Connector

Fully
Connector

Fully
Connector

Local
Output

CNNCNN CNN

Cloud
Local

Devices
End

Devices

Exit
Condition

Fig. 2. ECNN structure for smart grid system

ECNN construct a CNN onto distributed smart-grid devices, edge-cloud, and
the centralized cloud. Since ECNN relies on a combined CNN framework at all
tiers in the neural network, the training and inference are greatly eased. Figure 2
is an overview of the ECNN architecture, which can be viewed as the standard
CNN running in the edge and the cloud. In this case, sensor input captured on
end devices will be sent to the cloud in form the features, the gradients or the
original data.

This structure and the model could be performed in a single end device, by
using first several layers of the CNN inference on the device. Then, using an exit
condition, the local data could be used to perform local inference while the more

Towards Edge Computing Based Distributed Data Analytics Framework 287

data-intensive inference in a broad area will require the edge cloud or the central
could to perform. In this case, the intermediate CNN output, e.g. the features
or even the gradients, is sent to the cloud, where further inference is performed
using additional layers and a final classification. Note that the features can are
much smaller than the sensor input, and therefore drastically reduce the network
communication cost.

3.2 Data Aggregation in ECNN

The data aggregation is the essential feature of ECNN, which render our frame-
work fitting into the distributed smart grids. This feature could be used to per-
form cross area data inference and decision making. Basically, in this subsection,
we mainly answer following question, how could we efficiently use the ECNN to
aggregate the output from the each end device with balanced computation and
communication cost to perform classification? We mainly answer this question
by proposing several different schemes for aggregation. We basically utilize dif-
ferent pooling skill in the method to aggregate different features, which are as
follows:

– Max Pooling. This method mainly ensemble the input by taking the max of
each row. Formally, max pooling can be expressed as

êmax = max
1≤i,j≤n

eij , (1)

where n is the number of inputs and eij is the element in i-th column and
j-th row of the input matrix and êmax is the result of the max element.

– Average pooling (AP). AP aggregates the input vectors by taking the average
of each component. This is written as

êavg =
n∑

i,j=1

eij
n

, (2)

where n is the number of inputs and eij is the element in i-th column and j-th
row of the input matrix and êmax is the result of the max element. Averaging
may reduce noisy input presented in some end devices.

3.3 ECNN Training

Although our structure pose a well constructed structure for edge-assisted deep
learning, how to train them with the distributed big data is still unsolved. Thus,
in this section, we propose a primary method to solve this problem.

Basically, the ECNN system can be trained centralized in a powerful the
cloud. But one question is that how to determine the multiple exit points as
shown in Fig. 2. At training stage, the loss function and the gradients of each
exit is combined so that the entire NN could be jointly trained, and each exit
determine the accuracy relative to its depth. In this work, we inspired by the

288 C. Song et al.

work in [19,20] and proposed a federated learning [14] alike method. We now
describe formally how we train ECNNs.

Let y be a label vector, x be a sample and C be the set of all possible labels.
In every exit point, we design a specific softmax objective function which can be
written as

L(ŷ, y; θ) = ||ŷ − y||2 (3)

ŷ = softmax(z) = − ez∑
c∈C

ezc
, (4)

z = fexitn(x; θ). (5)

Here, fexitn is a function representing the computation of the neural network
layers from an entry point to the n-th exit branch and θ represents the network
parameters such as weights and biases of those layers.

Then the training could be performed wit the optimization problem as min-
imizing a weighted sum of the loss functions of each exit:

L(ŷ, y; θ) =
N∑

n=1

βnL(ŷexitn , y; θ)

where N is the total number of exit points and βn is the associated weight of
each exit. Usually, we define the weight of higher layer will be larger.

Note that each edge devices could jointly train the network with gradients
exchange in the backward stage. The communication cost relies on the network
size.

3.4 Inference of ECNN

Inference in ECNN is performed in several stages with exit thresholds Ti (where
the Ti at each exit point i) which is a quantitative measure of how well is
the prediction. Our basic idea is to construct the Ti by using a threshold as
the confidence measure that determines whether to classify a sample at a exit
point. This is enabled by searching the possible labeled set and while the max
prediction value of the softmax is smaller the confidence level is also lower. The
formal defined is as

η(x) = max[softmax(ci)],∀ci ∈ C (6)

where C is the set of all possible labels and ci is the elements. Note that the
softmax out put is the probability between 0 and 1. Thus, the η has values
between 0 and 1, when η close to 1 means that the ECNN is confident about
the prediction; Meanwhile, η close to 0 implies not suitable. At each exit point,
η is compared against Ti in order to determine if the sample should exit at that
point.

Towards Edge Computing Based Distributed Data Analytics Framework 289

At a given exit point, if the predictor is not confident in the result (i.e.,
η > T), the inference task will be transferred to the higher layer along with the
features extracted in the edge until the cloud layer.

4 Analysis

In this section, we evaluate our method both theoretically and experimentally.
In the theoretical part, we mainly analyze the most important part of the com-
munication cost of ECNN inference. While the experiment part evaluate our
method in terms of the prediction performance.

4.1 Communication Cost of ECNN

The total communication cost for an end device with the edge cloud and central
cloud is formalized as follows

c = s × z × L + (1 − s)f × t, (7)

where s is the portion of samples exited locally, L is number of possible labels,
f is the number of pooling and FC filters, and t is the output size of a single
filter for the final NN layer on the end-device. The constant z corresponds to
the size of the data represent the feature extracted. The first term implies the
probability that the sample to be transmitted from the end device to the edge
cloud belongs.

The second term is the communication cost between edge cloud and the
central cloud.

4.2 Numerical Results

We evaluate the combined ECNN with recognition accuracy and the training
cost in trained environment with the samples we have collected. The data set
using to running our framework is the CSI data collected using to identify the
behavior and activity consist with 3 data sets, named fixed, semi, open. Such
network are using to recognize 8 kinds of activities. We just simplify such task
into 8 kind classification task (Fig. 3).

4.3 Accuracy Performance

We take the 80% of samples in each class as the training set, the rest as the test
set. For the training set, we use 10-fold cross validation. From Fig. 4, we get that
the average accuracy of activity model is 89.14%.

4.4 Training Cost

As is illustrated in Fig. 4, our model converge in different data set no greater
than 10000 round of iteration. In data set fixed our model perform the best with
only 3000 iteration to converge and the Loss is smaller than 0.6.

290 C. Song et al.

0 10000 20000
Iteration

30000

Lo
ss

0.5

1

1.5

2
Dataset-1
Dataset-2
Dataset-2

Fig. 3. The loss curve of ECNN

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.87

0.00

0.03

0.06

0.00

0.00

0.00

0.00

0.00

0.92

0.07

0.00

0.01

0.00

0.00

0.00

0.02

0.04

0.89

0.00

0.01

0.01

0.00

0.00

0.07

0.00

0.00

0.93

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.88

0.07

0.04

0.00

0.01

0.03

0.00

0.00

0.08

0.87

0.08

0.00

0.03

0.00

0.00

0.01

0.02

0.05

0.88

E W S F R O L A

E

W

S

F

R

O

L

A

Fig. 4. The recognition accuracy of our method

Towards Edge Computing Based Distributed Data Analytics Framework 291

set-1 set-2 set-3

A
cc

ur
ac

y

50

60

70

80

90

100
size=200
size=500
size=1000

Fig. 5. The accuracy vs. the size of data set

4.5 Size of Data

According to the result illustrated in the Fig. 4 in different data set, we use dif-
ferent data size to train the model then use 10 folds to examine the accuracy. We
find that, with only 1000 samples our model could achieve almost 90% accuracy.
Plus, with no surprise, less data size lead to low prediction accuracy (Fig. 5).

5 Conclusions

In this paper we design and propose ECNN (edge-deployed Convolution Neural
Network) in edge computing assisted smart grids to greatly enhance the ability in
data aggregation and analytics. We also discuss how to train such network in edge
computing distributively. Our method owning the advantage in communication
cost and the prediction accuracy which fully utilized the distribution nature of
the smart grid and the data compression and feature extraction ability of the
CNN. We expect that our framework could greatly enhance the “smart” feature
of the smart grids by providing low cost and high accuracy data analytics ability.

Acknowledgment. This work was supported by the State Grid Corporation Science
and Technology Project (Contract No.: SG2NK00DWJS1800123).

References

1. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: Hot
Topics in Web Systems and Technologies, pp. 73–78 (2016)

292 C. Song et al.

2. Chang, X., Wang, J., Wang, J., Lu, K., Zhuang, Y.: On the optimal design of
secure network coding against wiretapping attack. Comput. Netw. 99(C), 82–98
(2016)

3. Chang, X., et al.: Accuracy-aware interference modeling and measurement in wire-
less sensor networks. IEEE Trans. Mob. Comput. 15(2), 278–291 (2016)

4. Wan, M., Zhao, J., Yuan, W., Zeng, P., Cui, J., Shang, W.: Intrusion detection of
industrial control based on semi-supervised clustering strategy. Inf. Control 46(4),
462–468 (2017)

5. Skala, K., Davidovic, D., Afgan, E., SoviC, I.: Scalable distributed computing hier-
archy: cloud, fog and dew computing. Open J. Cloud Comput. 2(1), 16–24 (2015)

6. Song, C., Jing, W., Zeng, P., Rosenberg, C.: An analysis on the energy consumption
of circulating pumps of residential swimming pools for peak load management.
Appl. Energy 195, 1–12 (2017)

7. Song, C., Wei, J., Peng, Z., Haibin, Y., Rosenberg, C.: Energy consumption analysis
of residential swimming pools for peak load shaving. Appl. Energy 220, 176–191
(2018)

8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
9. Song, C., Zeng, P., Wang, Z., Zhao, H., Yu, H.: Wearable continuous body temper-

ature measurement using multiple artificial neural networks. IEEE Trans. Industr.
Inf. 14(10), 4395–4406 (2018)

10. Wang, J., Meng, R., Rice, S.G., Sun, X.: A fusion steganographic algorithm based
on faster R-CNN. CMC Comput. Mater. Continua 55(1), 001–016 (2018)

11. Li, F., Sherratt, R.S., Zeng, D., Dai, Y., Wang, J.: Adversarial learning for distant
supervised relation extraction. CMC Comput. Mater. Continua 55(1), 121–136
(2018)

12. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

13. Mcdanel, B., Teerapittayanon, S., Kung, H.T.: Embedded binarized neural net-
works (2017)

14. KoneČný, J., McMahan, H.B., Yu, F.X., Richtrik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency (2016)

15. Dean, J., et al.: Large scale distributed deep networks. In: International Conference
on Neural Information Processing Systems, pp. 1223–1231 (2012)

16. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Keutzer, K.: Firecaffe: near-linear
acceleration of deep neural network training on compute clusters, vol. 37, pp. 2592–
2600 (2015)

17. Dean, J.: Large scale deep learning (2014)
18. Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks

over the cloud, the edge and end devices. In: 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pp. 328–339. IEEE (2017)

19. Szegedy, C., et al.: Going deeper with convolutions, pp. 1–9 (2014)
20. Teerapittayanon, S., Mcdanel, B., Kung, H.T.: BranchyNet: fast inference via early

exiting from deep neural networks, pp. 2464–2469 (2017)

https://doi.org/10.1007/978-3-319-46493-0_32

	Towards Edge Computing Based Distributed Data Analytics Framework in Smart Grids
	1 Introduction
	2 Related Work
	2.1 Deep Learning
	2.2 Distributed Deep Learning

	3 Edge-Deployed Convolutional Neural Networks
	3.1 ECNN Architecture
	3.2 Data Aggregation in ECNN
	3.3 ECNN Training
	3.4 Inference of ECNN

	4 Analysis
	4.1 Communication Cost of ECNN
	4.2 Numerical Results
	4.3 Accuracy Performance
	4.4 Training Cost
	4.5 Size of Data

	5 Conclusions
	References

