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Abstract. As an essential building block in cryptosystem, linear secret sharing
is widely used to safeguard the confidentiality and reliability of outsourced data.
Though addition and constant multiplication are extremely easy thanks to the
linear operation over shared secrets, how to efficiently multiply multiple shares
remains an open problem. In this paper, we devised a non-interactive multi-
plication scheme based on Shamir’s secret sharing without parameter constrain.
It is proved that our scheme is unconditionally secure if no more than k par-
ticipants are compromised, meaning that both the security and access structure
of Shamir’s scheme are immensely retained.
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1 Introduction

With the advent of big data era, massive information is collected, accessed and
operated all the way. Nevertheless, large amounts of privacies relevant to these data are
confronted with the peril of revelation since the communication channels are open and
the storages are always consigned [1]. On the other hand, the reliability of stocked data
is also prone to damages due to system failure, interference or tampering, which may
severely jeopardize the availability of important data [2]. Though functionality and
security seem like two contrary goals for information system, lots of cryptographic
techs can be used to balance the requirements between them. Oriented to different
applications such as secure multi-parity computation) [3], Byzantine agreement [4] and
oblivious transfer [5], secret sharing schemes are extensively used as their building
block to narrow the gaps of system performance and security [6].

Based on Lagrange polynomial and Chinese remainder theorem, Shamir [7] and
Blakley [8] brought about the schemes of secret sharing for the first time. Following their
work, a series of secret sharing schemes [9–14] are proposed focusing on specific access
structures. Though Ito et al. [15] have devised an universal framework to realize secret
sharing on general access structure, it is deemed as impractical since the share size is
extraordinary large. However, once the access structure is equivalent to a small mono-
tone span program, efficient secret sharing schemes can easily be achieved [16, 17].
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Another research attraction is related to the communication burden and rounds of
secret sharing. As proved by Csirmaz [18], to share a ‘-bits secret within a n-party
network, the lower bound of share size is X ‘n=log2nð Þ. Though the share sizes of best
known schemes [19, 20] are far more larger than such benchmark, the size of shared
data can practically approach nX log2nð Þ by linear secret sharing. In order to conserve the
confidentiality of shared secrets when compounded with each other, homomorphic
computability is also considered as an important requirement for secret sharing [21].
Aiming at minimizing the traffic overhead, linear secret sharing schemes are always
exploited in virtue of non-interactive addition and constant multiplication [22, 23].
However, when two shared secrets are multiplied, how to reduce or even eliminate
unnecessary communications still remains an open problem [24]. The original homo-
morphic multiplication for linear secret sharing is presented by Gennaro et al. with
‘ 2k � 1ð Þ2-bits1-round communication [25], which may incur a severe delay when
arithmetic circuits are deep. In fact, as proved by Ishai et al. [26, 27], once more that
third of the participants are honest, any circuit can be cryptically evaluated via a 2-
round secret sharing protocol. That is to say, refraining the communication from
homomorphic multiplication is possible. In [28], Barkol et al. presented a multiplica-
tion scheme which enables all participants to secretly convert d distinct secrets into an
additive sharing of their product. And its verifiable version was then proposed by
Yoshida et al. [29]. However, since the circuit depth is strictly limited by the number of
participants and security level, their schemes are incapable of fulfilling the property of
fully homomorphism. In order to address such defect, Watanabe et al. [30] devised a
FHE (Fully Homomorphic Encryption) scheme at the expense of 2n extra shares for
each secret. Based on the recursive construction, Blackburn et al. [31] presented an
efficient multiplicative sharing scheme where the share size will slightly expand along
with the increasing of network scales. Thereafter, Wang et al. [32] pointed out that the
forementioned scheme is infeasible within MTA (Mutually Trusted Authority)-free
environment [33] and disposed the problem of redundantly operating on the same
secret. Moreover, numerous secret sharing schemes are successively proposed utilizing
different algebraic structures such as discrete logarithm [34], lattice [35] and Abelian
codes [36].

Due to the linear nature and Q2 access structure of Shamir’s secret sharing, it is
widely used as a building block for privacy-preserving implementation. Moreover,
since Shamir’s scheme is ideal [9], the size of a shared secret is only ‘n-bits uniformly
distributed on n participants, which is commendably close to its lower bound. For the
sake of homomorphic computation, the trait of its linearity refrained the operations of
addition and constant multiplication from interactions. Nevertheless, even if the best
multiplicative secret sharing scheme is exploited, non-negligible delay occurs due to a
series of communications.

Considering that the multiplicative circuits are inevitable for most practical appli-
cations and the characteristics of low communication along with computation over-
heads must be conserved for real-time implementation, a non-interactive multiplication
scheme is proposed for Shamir’s secret sharing in this paper. The main idea is, once the
identities of all participants are reasonably regulated, polynomial convolution can play
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a part in reducing the overflowed orders incurred by trivial multiplication. The rest of
this paper is organized as below.

In Sect. 2, a formal definition regarding Shamir’s secret sharing is given, together
with the defect analysis of some previous multiplicative secret sharing scheme. Then, a
non-interactive multiplicative method and its correctness proof will be depicted in
Sect. 3. Section 4 testified that our method is unconditionally secure and its perfor-
mance is more preferable compared to related schemes. Finally, the paper will be
concluded in Sect. 5.

2 Preliminary of Shamir’s Secret Sharing

Based on Q2 access structure, Shamir’s secret sharing is always recognized as a k; nð Þ-
threshold scheme, where at least k shares amongst n pieces of a secret s should be
gather to for information revealing. Since the essential idea of this threshold scheme is
that any polynomial of degree k � 1 can be exclusively determined by k points in virtue
of Lagrange interpolation [7], a secret s can be divided into a series of shares xi; f xið Þð Þ,
i ¼ 1; 2; � � � ; n, according to a stochastic polynomial

fs xð Þ ¼ sþ a1xþ a2x
2þ � � � ak�1xk�1: ð1Þ

Without loss of generality, we assume that the coefficients aj, j ¼ 1; 2; � � � ; k � 1,
are independently and uniformly sampled from a finite field Fp, where p is an odd
prime. For any secret s 2 Fp, the scheme can be formally defined as follows.

Definition 1. The Shamir’s secret sharing scheme is a triple function set
Q ¼

DIT;EVL;RECð Þ works on Q2 access structure, where

a. The secret holder computes xi; fs xið Þð Þf g $ DIT sð Þ in terms of formula (1) and
distributes them to their correspondent receivers via authenticated and private
channels. Denoting A as the set of all adversary structures, if TnC 62 A for any
C 2 A where T ¼ 1; 2; � � � ; nf g, then

Pr A s½ �C
� � ¼ s

� � ¼ 1=p; ð2Þ

where s½ �C represents the set of shares corrupted by adversary A.
b. For any constants c1; c2 and a pair of shares s1½ �T; s2½ �T, it is easy to non-
interactively compute c1s1þ c2s2½ �T EVL s1½ �T; s2½ �T; c1; c2

� �
in terms of trivial

addition and multiplication. In order to calculate s1s2½ �T EVL s1½ �T; s2½ �T
� �

,
interactive fully homomorphic schemes do also exist [25]. When executing the
function of EVL �ð Þ, it is obvious that the requirements

Pr A �½ �C;ComT
� � ¼ s; s 2 S

� � ¼ 1=p ð3Þ
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and

Pr A �½ �C;ComT
� � ¼ REC EVL S½ �T

� �� �� � ¼ 1=p ð4Þ

must hold, where S stands for the set of original secrets and �½ �C;ComT are all
corrupted shares along with intercepted communications.
c. Within the Q2 structure, the recovery function REC �ð Þ is capable of revealing the
shared secret by

Pr REC s½ ��c
� � ¼ s

� � ¼ 1 ð5Þ

where �C is the complementary set of C.

It is worth noting that the multiplicative secret sharing presented in [25] is feasible
only if n� 2k � 1 with non-negligible communications. Though Barkol et al. [28]
achieved a non-interactive scheme which can locally multiply d shared secrets, an
auxiliary condition where n[ dk should also be satisfied. As for Watanabe’s method
[30], it is capable of performing multiplication even only k share holders are involved,
the share size for each secret are 3 times than that of the primitive scheme and 4‘k-bits
messages must be collected for each participant to achieve a share of multiplication
result. To sum up, no existing multiplicative secret sharing scheme is in a position to
avoid both interaction and parameter limitation, and that is why our research cut in.

3 Multiplicative Secret Sharing Without Interaction

The main reason that two shares should not be trivially multiplied can be attributed to
the remarkable increment of polynomial order. For instance, when two shares
xi; fa xið Þð Þ and xi; fb xið Þð Þ are directly multiplied by participant i, the result is
xi; fa xið Þfb xið Þð Þ, where fa xið Þfb xið Þ can be written as

fa xið Þfb xið Þ ¼ abþ r1xiþ r2x
2
i þ � � � r2k�2x2k�2i ð6Þ

which turns the original scheme into a 2k � 1; nð Þ-threshold secret sharing. With the
help of polynomial convolution, we caught a sight of how to reduce the multiplicative
result back to a k � 1 order polynomial and maintain its raw threshold without
interaction.

Assuming that the polynomials fa xið Þ and fb xið Þ is represented as

fa xið Þ ¼ a; a1; a2; � � � ; ak�1ð Þ x0i ; x1i ; x2i ; � � � ; xk�1i

� �T ð7Þ

and

fb xið Þ ¼ b; b1; b2; � � � ; bk�1ð Þ x0i ; x1i ; x2i ; � � � ; xk�1i

� �T ð8Þ
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respectively. Then fa xið Þfb xið Þ in formula (6) is equivalent to aþ b, where

a ¼ ab; ab1þ ba1; � � � ;
P

rþ s¼l arbs; � � � ;
P

rþ s¼k�1 arbs
� �

mod p
� �

�
x0i ; x

1
i ; � � � ; xli ; � � � ; xk�1i

� �T ð9Þ

and

b ¼
X

rþ s¼k arbs; � � � ;
X

rþ s¼x arbs; � � � ; ak�2bk�1þ ak�1bk�2; ak�1bk�1
� �

mod p
� �

�
xk�1i x1i ; � � � ; xx¼kþ 1

i ; � � � xk�2i ; xk�1i

� �� �T
;

ð10Þ

where a0 ¼ a and b0 ¼ b. Noting that the order of polynomial a is k � 1 whose leading
coefficient is exactly ab, so if we can figure out b then the share of ab for participant i
can be trivially achieved by subtract b from fa xið Þfb xið Þ. Based on forementioned
observation, we construct a multiplicative secret sharing scheme as below.

Distribution xi; fs xið Þð Þf g $ DIT sð Þ:
Define p\xi\q as the identity of participate i, where q[ pþ n is a positive

integer and gcd xi; pð Þ ¼ gcd x�ki � 1
� ��1

; p
� �

¼ 1. Then calculate fs xið Þ according to

formula (1) modulo xki � 1
� �

, which will be distributed to i as her share of secret s.
Multiplication ab½ �T EVL a½ �T; b½ �T

� �
:

Participant i locally computes

fab xið Þ ¼ fa xið Þfb xið Þ � x�ki � 1
� ��1

fa xið Þfb xið Þ mod xki � 1
� �� �� fa xið Þfb xið Þ

� � ð11Þ

modulo xki � 1
� �

as her share of ab.
Since participant i is provided with all information about fa xið Þ; fb xið Þ and xi, no

interaction is necessary for her to calculate formula (11). In order to testify the cor-
rectness of our protocol, a Lemma is given in advance.

Lemma 1. For 8 h 2 0; 1; � � � ; k � 1f g, if P
rþ s¼hmod k arbs

�� ��
1\xi � 1 then

aþ x�ki b\xki � 1: ð12Þ

Proof. Since aþ x�ki b is a k � 1 order polynomial, which can be written asPk�1
h¼0

P
rþ s¼hmod k arbs

� �
xhi , we have

0� aþ x�ki b�
X

rþ s¼hmod k
arbs

���
���
1

x0i þ x1i þ � � � þ xhi þ � � � þ xk�1i

� �
: ð13Þ

Once
P

rþ s¼hmod k arbs
�� ��

1\xi � 1, then
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aþ x�ki b\ xi � 1ð Þ x0i þ x1i þ � � � þ xhi þ � � � þ xk�1i

� � ð14Þ

and the formula (12) holds.
Now, we are ready to claim the validity of our multiplicative secret sharing scheme

in the following theorem.

Theorem 1. If xi [ p, any participant i is able to non-interactively multiply the shares
of two secrets retaining the property of k; nð Þ-threshold.
Proof. According to polynomial convolution, the formula fa xið Þfb xið Þ mod xki � 1

� �
can be represented as aþ x�ki bþ t xki � 1

� �
for some non-positive integer t. Once the

condition
P

rþ s¼hmod k arbs
�� ��

1\xi � 1 stands, then

fa xið Þfb xið Þ mod xki � 1
� � ¼ aþ x�ki b ð15Þ

in terms of Lemma 1. Denoting u xið Þ as

u xið Þ ¼ fa xið Þfb xið Þmod xki � 1
� �� fa xið Þfb xið Þ

¼ r
0
0; r

0
1; � � � ; r

0
k�2; 0;�r

0
0;�r

0
1; � � � ;�r

0
k�2

� ��
x0i ; x

1
i ; � � � ; xk�2i ; xk�1i ; xki ; x

kþ 1
i ; � � � ; x2k�2i

� �T
;

ð16Þ

where r
0
d ¼

Pk�1
r¼dþ 1 arbs¼k�rþ d for d ¼ 0; 1; � � � ; k � 2f g, it can be easily seem that

b ¼ x�ki � 1
� ��1

u xið Þ ð17Þ

which is exactly the second term of aþ b. Noting that
P

rþ s¼hmod k arbs
�� ��

1�
p� 1 mod p, thus our protocol is correct if xi [ p.

4 Security and Performance Analysis

Since the coefficients of polynomial fs xð Þ is independently and uniformly sampled from
a finite field Fp, the secret s is unconditionally secure if less than k shares are com-
promised [7]. For clarity, we interpret this property as a formal description.

Lemma 2. The Shamir’s secret sharing scheme is unconditionally secure, where the
secret recovery advantage of any adversary A is

Advsrfs Að Þ ¼ Pr A s½ �C
� � ¼ s; s 2 Fp

� �
¼ 1=p;

ð18Þ

if TnC 62 A for any C 2 A where T ¼ 1; 2; � � � ; nf g.
It is obvious that because no information is exchanged when multiplying two shares

fa xið Þ and fb xið Þ in our scheme, the secrets a and b are still unconditionally secure
according to Lemma 2.
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In order to prove the information-theory security of ab½ �C, we consider an experi-
ment where the adversary runs A as a subroutine to recover ab.

Experiment Expsrfab Bð Þ
a½ �T 

$
DIT að Þ; b½ �T 

$
DIT bð Þ

ab½ �T EVL a½ �T; b½ �T
� �

b REC b½ ��c
� �

a0  A a½ �C
� �

s ¼ a0b
If s ¼ ab return 1; else return 0

By contrary, our scheme is also unconditionally secure as below.

Theorem 2. The proposed multiplicative scheme is information-theoretically secure,
where the advantage of any adversary B who expect to reveal ab is

Advsrfab Bð Þ ¼ Pr B ab½ �C
� � ¼ ab; ab 2 Fp

� �
¼ 1=p;

ð19Þ

if TnC 62 A for any C 2 A where T ¼ 1; 2; � � � ; nf g.
Proof. The proof is straight-forward that if Advsrfab Bð Þ[ 1=p, the probability that B
recovers s where s ¼ ab is greater than 1=p. Since b is plain for him, it implies that A
can reveal a with an advantage Advsrfs Að Þ[ 1=p as well, which is a contradiction
against Lemma 2.

The multiplicative secret sharing scheme in Sect. 3 also suggests that it achieves
preferable performance with regard to parameter constrain, share size and communi-
cation burden. Three linear secret sharing protocols [25, 28, 30] are investigated for
comparison as illustrated in Table 1.

As we can see from the above table, each piece of share is k log2qd e-bits in our
scheme to retain all information within a. Fortunately, the threshold parameters k and
n are relatively inappreciable compared with p and q is only bounded with q[ pþ n,
meaning that the share size of our scheme, which is sub-linearly proportional to that of
[25, 28, 30], is reasonable for practical application. Concerning the number of

Table 1. Comparison amongst multiplicative secret sharing of [25, 28, 30] and the proposed

Benchmarks Multiplicative schemes
In [25] In [28] In [30] The proposed

Share size (bits) n log2pd e 2n log2pd e 3n log2pd e kn log2qd e
Parameter constrain n[ 2k � 2 n[ dk \ \
Multiplication traffic load (bits) 2k � 1ð Þ2 log2pd e 0 4k2 log2pd e 0

Multiplication round 1 0 1 0
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participants who are engaged in secret multiplication, at least 2k � 1 and dk members
are necessary for the schemes of [25] and [28] to multiply d shares correctly. Though
the scheme of [30] is capable of multiplying shared secrets only if k participants are
involved, massive communications are inevitable since every participant has to collect
4k log2pd e pieces of information for correct operation. As for our scheme, although the
condition of n� k must be fulfilled to actualize Q2 access structure, no interaction will
be necessary due to the locality of multiplication and the constrain on threshold
parameters can be eliminate because each secret is only attached to one piece of shares
for each participant.

The computational performance of our scheme is also commendable since the
operation of formula (11) is trivial. Noting that, because every participant is provided

with her unique identity xi, she can initially compute xki � 1
� �

and x�ki � 1
� ��1 once

for all. That is to say, when securely multiplying two pieces of shares, only two integer
multiplications and subtractions along with one modular operation need to be executed.

5 Conclusion

In order to privately multiply shared secrets without interaction, a novel multiplicative
scheme is presented based on k; nð Þ-threshold Shamir’s secret sharing. The main idea
behind the proposed scheme is that we can subtly eliminate the overflowed terms of
two plainly multiplied polynomials with the help of convolution. It is proved that our
method is capable of correctly retaining the product of secrets as the first coefficient of
a k � 1 order polynomial with unconditional security. Compared with relevant
schemes, our method is preferable since no communication and system parameter
constrain are necessary.
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