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Abstract. Based on the Euler quotient modulo 2p (p is an odd prime),
we extend the binary sequence with period 2p2 to r-ary sequence where
r is an odd prime divisor of (p − 1). We determine exact values of the
linear complexity of the new sequences under the assumption rp−1 �≡ 1
(mod p2), which are larger than half of the period. For cryptographic
purpose, the linear complexities of the sequences in this paper are of
desired values.
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1 Introduction

With the explosion of multimedia data, more and more data owners would out-
source their personal multimedia data on the cloud [17,18]. Secure message trans-
mission plays an main role in the information-based society. Pseudo-random
sequences used for stream ciphers are required to have the properties of unpre-
dictability. Linear complexity is one of the main components that indicates this
feature. The linear complexity of a sequence is defined as the length of the
shortest linear feedback shift register that can generate the sequence [14]. Due
to the Berlekamp-Massey algorithm, it is reasonable to suggest that the lin-
ear complexity of a good sequence should be at least a half of the period. In
the recent years, the sequence derived from the Euler quotients modulo an odd
prime power, which is an extension of the Fermat quotients, are a hot spot and
much of the sequences possess sound linear complexity, see [1–9,11,12,15,20]
and the references therein. While for the study of the sequences derived from
the Euler quotients modulo an even number are very rare. For the binary thresh-
old sequence, the linear complexity is derived from Carmichael quotients with
even numbers modulus in [16]. In [19], Zhang et al. promoted a class of binary
sequences derived from Euler quotients with period 2p2 and p is an odd prime
and determined the linear complexity and trace function representation of the
sequences.
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For an odd prime p and integer u ≥ 0 with gcd(u, 2p) = 1, the Euler quotient
q2p(u) modulo 2p can be defined as unique integer with

q2p(u) ≡ up−1 − 1
2p

(mod 2p), 0 ≤ q2p(u) ≤ 2p − 1,

and q2p(u) = 0 for u ∈ R = Z2p2 \Z∗
2p2 , where Z2p2 denote by the ring of the all

the integers modulo 2p2 and Z
∗
2p2 of the multiplicative group of all the unit in

Z2p2 respectively.
The binary threshold sequence (eu) defined in [19] as

eu =

{
0, if 0 ≤ q2p(u)

2p < 1
2 ,

1, if 1
2 ≤ q2p(u)

2p < 1,
u ≥ 0. (1)

Motivated by the previous work in [15,19], we extend the binary threshold
sequence to r-ary sequence as the following

fu =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 0 ≤ q2p(u)
2 ≤ s,

1, if s + 1 ≤ q2p(u)
2 ≤ 2s,

...
...

r − 1, if (r − 1)s + 1 ≤ q2p(u)
2 ≤ p − 1,

(2)

where r is a prime, r|(p − 1) and s = (p − 1)/r. In fact, if r = 2, then (fu) is
the binary threshold sequence defined in (1). We note that (fu) is 2p2-periodical
since q2p(u) is a 2p2-periodic sequence modulo 2p by the fact

q2p(u + 2kp) ≡ q2p(u) + k(p − 1)u−1 (mod 2p), gcd(u, 2p) = 1.

The linear complexity is considered as a primary quality measure for periodic
sequences and play an important role in applications of sequences in cryptog-
raphy. The main aims of this article is to determine the linear complexity of
(fu). We recall that the linear complexity L((su)) of a T-periodic sequence (su)
with terms in finite field Fq with q elements is the least order of L of a linear
recurrence relation over Fq

su+L + cL−1su+L−1 + · · · + c1su+1 + c0su = 0 for u ≥ 0

which is satisfied by (su) and where c0 �= 0, c1, . . . , cL−1 ∈ Fq. The polynomial

M(x) = xL + cL−1x
L−1 + · · · + c0 ∈ Fq[x]

is called the minimal polynomial of (su). The generating polynomial of (su) is
defined by

S(x) = s0 + s1x + s2x
2 + · · · + sT−1x

T−1 ∈ Fq[x].

It is easy to show that

M(x) = (xT − 1)/ gcd(xT − 1, S(x)),

hence
L((su)) = T − deg(gcd(xT − 1, S(x))), (3)

which is the degree of minimal polynomial, see [13] for more details.
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2 Preliminary

The main aims of this article are to determine the linear complexity of (fu)
under the assumption rp−1 �≡ 1 (mod p2). To achieve our goals we need to
describe (fu) in an equivalent way. For any subset D ⊂ ZN , define aD = {a · b
(mod N) : b ∈ N} for any integer a.

If gcd(u, 2p) = 1, it is easy to verify that

q2p(uv) ≡ q2p(u) + q2p(v) (mod 2p), gcd(uv, 2p) = 1. (4)

By [19], note that q2p(u) is always even since it can be rewritten as

q2p(u) ≡ (u
p−1
2 − 1)(u

p−1
2 + 1)

2p
(mod 2p),

and two numbers u
p−1
2 ± 1 are even. Thus we define

Dl = {u : q2p(u) = 2l (mod 2p) for u ∈ Z
∗
2p2}

for l = 0, 1, . . . , p−1. We always assume that g be a fixed primitive root modulo
2p2 such that q2p(g) = 2, we declare such g exists. Otherwise, if q2p(g) = 2a �= 2.
It is easy to prove that gcd(a, p) = 1. By (4) we get q2p(ga

−1
) = 2, where a−1 is

the inverse of a modulo p. Furtherly, we have

q2p(ga
−1+kp) ≡ 2 (mod 2p)

for all 0 ≤ k < p − 1, then we have

D0 = {gkp (mod 2p2) : 0 ≤ k ≤ p − 2}
is a subgroup of the multiplicative group Z

∗
2p2 and for all 0 ≤ l ≤ p − 1, there

exists 0 ≤ l0 ≤ p − 1, such that

Dl = gl0D0 = {gl0 · a (mod 2p) : a ∈ D0}

and each Dl has the cardinality #Dl = p − 1 and Z
∗
2p2 =

p−1⋃
l=0

Dl.

Now the sequence (fu) can be written equivalently as

fu =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if u ∈ D0 ∪ D1 ∪ · · · ∪ Ds ∪ R,

1, if u ∈ Ds+1 ∪ Ds+2 ∪ · · · ∪ D2s,
...

...
r − 1, if u ∈ D(r−1)s+1 ∪ D(r−1)s+2 ∪ · · · ∪ Dp−1.

(5)

Below, we are devoted to determining the linear complexity of the sequences.
The rest of paper is organized as follows. In Sect. 3, we present some Auxil-
iary lemmas. In Sect. 4, We prove the main results of the paper and give some
examples. Finally we conclude the paper.
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3 Auxiliary Lemmas

Let Fr = {0, 1, . . . , r − 1} be the finite field of order r and Fr be the algebraic
closure of Fr. Below we always let β ∈ Fr be a primitive 2p2-th root of unity
and the subscripts of D are calculated modulo p.

The following two lemmas are given in [19].

Lemma 1. For any 0 ≤ l < p, if a (mod 2p2) ∈ Dl′ , for some 0 ≤ l′ < p we
have

Dl (mod p) = {1, 2, . . . , p − 1} and aDl = Dl+l′ ,

where Dl (mod p) = {a (mod p) : a ∈ Dl}
Lemma 2. Let n be a positive integer. Then

{u (mod pn) : u ∈ Z
∗
2pn} = Z

∗
pn .

From now we define

Dl(x) =
∑
u∈Dl

xu ∈ Fr[x], for 0 ≤ l ≤ p − 1.

From the definition of (fu) we obtain that the generating polynomial of (fu) is

E(x) =
2p2−1∑
u=0

fuxu =
r−1∑
j=1

j

(j+1)s∑
i=js+1

Di(x) ∈ Fr[x].

Lemma 3. Let β ∈ Fr be a primitive 2p2-th root of unity. Then we have

(1) Dl(βv) = Dl+l′(β),
(2) Dl(βu) = Dl(βv) and E(βu) = E(βv),

where u, v ∈ Dl for some 0 ≤ l ≤ p − 1.

Proof. From Lemma 1 and the definitions of Dl(x) and E(x), we can obtain the
results.

Lemma 4. Let β ∈ Fr be a primitive 2p2-th root of unity.

(1) For all v ∈ Z
∗
2p2 ∪ 2Z∗

p2 , we have

p−1∑
l=0

Dl(βv) = 0.

(2) For 0 ≤ l < p, we have

Dl(βkp) =

{
0, if k ≡ 0 (mod p),
−1, if k ≡ 0 (mod 2), (k, p) = 1.
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Proof. (1) From the definition of β, we have

0 = β2p2 − 1 = (β − 1)
∑

j∈Z2p2

βj = (β2 − 1)
∑

j∈2Zp2

βj

= (βp − 1)
∑

j∈pZ2p

βj = (β2p − 1)
∑

j∈2pZp

βj

= (βp2 − 1)(βp2
+ 1)

(1) of the Lemma is proved by the fact that

Z2p2 = Z
∗
2p2 ∪ 2Z∗

p2 ∪ pZ2p

= Z
∗
2p2 ∪ 2Z∗

p2 ∪ 2pZp ∪ pZ∗
2p ∪ {p2}.

(2) If k ≡ 0 (mod p), then k = 0 or p. It can be easy to see that

Dl(βkp) = Dl(β0p) = Dl(1) =
∑
u∈Dl

1u = p − 1 ≡ 0 (mod r)

if k = 0, and

Dl(βkp) = Dl(βp2
) = Dl(−1) =

∑
u∈Dl

(−1)u = 0

if k = p from the proof of (1).
If k ≡ 0 (mod 2) with (k, p) = 1, we have β2 is a primitive p2-th root of

unity, so
{k : k is an even, with (k,p) = 1},

then by Lemma 1 and (1) of this lemma, we have

Dl(βkp) = β2p + β4p + . . . + β2(p−1)

=
β2p − β2p2

1 − β2p

=
β2p − 1
1 − β2p

= −1 (mod r).

	

Lemma 5. If rp−1 �≡ 1 (mod p2), then

Dl(βu) �= 0

for all 0 ≤ l ≤ p − 1 and all u ∈ Z
∗
2p2 ∪ 2Z∗

p2 .
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Proof. Denote by d := ord2p2(r) the multiplicative order of r modulo 2p2. Thus,
d | p(p−1) and d ≥ p and ri �≡ rj (mod 2p2) for 0 ≤ i < j ≤ p−1. Suppose that
r ∈ Dl0 (mod p), using Lemma 1 we have ri (mod 2p2) ∈ Dl0 for all 0 ≤ i ≤ p− 1
and

D0 ∪ rD0(= Dl0) ∪ · · · ∪ rp−1D0 = D0 ∪ D1 ∪ · · · ∪ Dp−1 = Z
∗
2p2 .

Meanwhile the minimal polynomial of βa over Fr is given by

M(x) =
d−1∏
k=0

(x − βark).

Consequently, if there are some 0 ≤ l′ ≤ p − 1 and some a ∈ Dk such that
Dl′(βa) = 0, then Dl′(βart) = 0 for 0 ≤ t ≤ d − 1.

Note that
Dk ∪ rDk ∪ · · · ∪ rp−1Dk = Z

∗
2p2

then by Lemma 3(2) we have

Dl′(βu) = 0 for all u ∈ Z
∗
2p2 .

Furthermore, Lemma 3(1) leads to that Dl′(βa) = Dl′+1(βa′
) for some

a′ ∈ Dk−1, we also have Dl′+1(βu) = 0 for all u ∈ Z
∗
2p2 . Seeking this process

continually, we will get that

Dl(βu) = 0 for all 0 ≤ l ≤ p − 1 and u ∈ Z
∗
2p2 .

By Lemma 2 and notice the fact that βp2
= −1, we have that for any l =

0, 1, . . . , p − 1, the polynomial Dl(x) (mod xp2
+ 1) has at least p(p − 1) many

roots.
However, in the set {u : 0 ≤ u ≤ p2 − 1, gcd(u, p) = 1} there are only

p − 1 many elements, which appear in Dl(x) (mod xp2
+ 1) as exponents for all

0 ≤ l ≤ p − 1, larger than p2 − p. (Notice that xp2−p never appears.) So by the
pigeonhole principle, there exists at least one 0 ≤ l′ ≤ p−1, such that deg(Dl′(x)
(mod xp2

+ 1)) < p2 − p. This is a contradiction to the fact that the polynomial
Dl′(x) has at least p2 − p many different roots. Therefore, for all u ∈ Z

∗
2p2 , we

always have Dl(βu) �= 0.
For the case of u ∈ 2Zp2 , by Lemmas 1 and 2, with the fact that d = ordp2(r)

and (β2)p
2

= 1, following the above approach, we can get desired result. Thus
we have finish the proof of the lemma. 	


4 Linear Complexity

In this section, we determine the linear complexity of r-ary sequence (fu) defined
in (2) under the assumption rp−1 �≡ 1 (mod p2).
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Theorem 1. Let (fu) be the 2p2-periodic r-ary sequence defined as in (2). If
rp−1 �≡ 1 (mod p2), then the linear complexity L((fu)) and the minimal polyno-
mial M(x) of (fu) are given by

L((fu)) = 2p2 − 2p

and
M(x) = (x2p2 − 1)/(x2p − 1)

respectively.

Proof. We prove this theorem by the following two facts.

(1) E(βu) �= 0 if u ∈ Z
∗
2p2 ∪ 2Z∗

p2 .
Suppose that there is some a ∈ Dk for some 0 ≤ k ≤ p − 1 such that
E(βa) = 0, similar to the proof of Lemma 5, we have E(βu) = 0 holds for
all u ∈ Z

∗
2p2 . Then we get E(βa′

) = E(β) = 0 where a′ ∈ Dl. It follows from
Lemma 3 and after simple calculation that

E(βa′
) =

r−1∑
j=0

(j − 1)
(j+1)l∑
i=jl+1

Di(β) − D0(β) + Dl(β).

Then by Lemma 4, we have

0 = −Dl(β) = E(β) − E(βa′
) =

p−1∑
j=0

Dj(β) − Dl(β).

This contradiction with Lemma 5. Then for all u ∈ Z
∗
2p2 , we always have

E(βu) �= 0.
For all u ∈ 2Z∗

p2 , the results follows directly from Lemma 3.4 in [10].
(2) E(βu) = 0 if u = kp, k ∈ Z2p. Note that each Dl has p − 1 many elements

for 0 ≤ l < p and Dl (mod p) = {1, 2, . . . , p − 1}. Then we have two cases.
If k = 0, p, by Lemma 4 we have

E(βkp) = E(±1) =
r−1∑
j=1

j

(j+1)l∑
i=jl+1

Di(±1) ≡ 0,

and if u = kp for k ∈ Z
∗
2p ∪ 2Z∗

p, we have

E(βu) =
r−1∑
j=1

j

(j+1)l∑
i=jl+1

Di(βkp)

=
r−1∑
j=1

j

(j+1)l∑
i=jl+1

(βpk + β2pk + · · · + β(p−1)pk)

= (βpk + β2pk + · · · + β(p−1)pk)
r−1∑
j=1

j

(j+1)l∑
i=jl+1

1
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= l(βpk + β2pk + · · · + β(p−1)pk)
r−1∑
j=1

j

≡ 0 (mod r).

Putting every thing together, we have E(βu) = 0 if and only if u ∈ {kp : k ∈
Z2p}, that is, the number of common roots of E(x) and x2p2 − 1 is 2p, so the
linear complexity of (fu) is 2p2 − 2p by (3). Meanwhile, it is easy to see that the
minimial polynomial M(x) of (fu) satisfies M(x) = (x2p2 − 1)/(x2p − 1). 	


Now we provide some examples of 2p2-periodic r-ary sequences (fu) to show
the applicability of Theorem1:

p r L((fu)) L((fu)) satisfying

7 3 84 2p2 − 2p

11 5 220 2p2 − 2p

13 3 312 2p2 − 2p

19 3 684 2p2 − 2p

23 11 1012 2p2 − 2p

29 7 1624 2p2 − 2p

31 3 or 5 1860 2p2 − 2p

43 3 or 7 3612 2p2 − 2p

5 Conclusion

For cryptographic purpose, one should construct pseudorandom sequences with
high linear complexity according to the Berlekamp-Massey algorithm [14], which
tells us that the complete sequences can be deduced from a knowledge of just
2L (here L is the linear complexity) consecutive terms from the sequences. So it
is desired that the linear complexity should be at least half of the period.

In this article, under the assumption rp−1 �≡ 1 (mod p2), we give the linear
complexity of r-ary sequence derived from Euler quotients modulo 2p with p an
odd prime. The results show that the linear complexity is equal to 2p2−2p, which
is larger enough to resist the attack from the Berlekamp-Massey algorithm. For
the case of rp−1 ≡ 1 (mod p2), we leave an open problem since such primes pair
are rare.
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