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Abstract. Nowadays, the study of vulnerability discovery has been attracted
the widespread attention and the experts have proposed many different
approaches in the past decades. To optimize the efficiency of the method,
machine learning techniques are introduced into this area. In this paper, we
provide an extensive review of the work in the field of software vulnerability
discovery that utilize machine learning techniques. For the three key tech-
nologies of static analysis, symbolic execution and fuzzing in vulnerability
discovery field, we first explain the basic principles respectively. Afterward, we
review the research situation of software vulnerability discovery using machine
learning techniques. Finally, we discuss both advantages and limitations of the
approaches reviewed in the paper, and point out challenges and some uncharted
territories in the three categories. In this paper, a brief study of the software
vulnerability discovery using machine learning techniques is given, which is
helpful to carry out the follow-up research work.
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1 Introduction

In the current cyberspace, the number of serious vulnerabilities discovered in software
is on the rise. The severity of these vulnerabilities has varying degrees, depending on
factors such as exploitation complexity and attack-surface [1]. Numerous vulnerabili-
ties seriously undermine the security of computer systems and IT infrastructure of
companies and individuals. For instance, a vulnerability in the server message block
(SMB) protocol exploited by the WannaCry ransomware have affected a wide range of
systems and millions of users worldwide [2].

There are many software vulnerability discovery techniques, and the classification
methods are also various. It can be divided into manual, automatic and semi-automatic
depending on the degree of automation. From the point of view of code execution, it
can be divided into dynamic analysis, static analysis and hybrid analysis. It also can be
divided into black box test, white box test and gray box test depending on whether the
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software is open source. There are crossovers between the various categories [12].
Now, the main vulnerability discovery techniques that the paper mentioned is static
analysis, symbolic execution and fuzzing. Symbolic execution both belong to the
software dynamic analysis under the operating angle and can also be White box test
divided by code openness, fuzzing is both dynamic analysis and black box test.

No matter what kind of the vulnerability discovery techniques, machine learning
provides a new opportunity for intelligent, effective, and efficient approach. In this
paper, we present an extensive review about static analysis, symbolic execution and
fuzzing that utilize machine learning techniques. First, we explain the basic principles
of static analysis. Afterward, we particularly review the research using machine
learning techniques. In the end, we discuss their advantages and limitations of the
approaches the reviewed papers proposed, point out the challenges in the field and
some uncharted domains to inspire future work in this emerging research area.

2 Static Analysis Using Machine Learning Techniques

2.1 Principles of Static Analysis

Static analysis is the process of evaluating a system or component based on its form,
structure, content, or documentation, which does not require program execution [3].
Based on targets’ type, static analysis can be classified as source code analysis and
binary analysis. In practice, their methods are the same, but the latter is more difficult
[12].

Static analysis techniques include rule matching, data-flow analysis, control-flow
analysis, program dependence analysis, information-flow analysis, static slice, abstract
interpretation, model checking and theorem provers [3]. Nowadays, many research
work on the static analysis using machine learning techniques have been done, and the
result is inspiring.

2.2 Summary of Recent Works

Scandariato et al. [4] treated a programming language as a native language and ana-
lyzed the source code by means of text mining techniques. The proposed method is
mainly based on the Bag-of-Words technique, where software component is seen as a
series of terms with associated frequencies. The paper analyzed 20 “apps” include 182
releases for the Android OS platform using five well known machine learning algo-
rithm: Decision Trees, k-Nearest Neighbor, Naive Bayes, Random Forest and Support
Vector Machine (SVM). The best results are obtained by Naive Bayes and Random
Forest. The paper used a commercial program vulnerability analysis solution to provide
the labels of training dataset and performed three experiments. In the first experiment,
the authors built both Naive Bayes model and Random Forest model based on the first
version of each application. The other two experiments built a prediction model with
subsequent-version and cross-project applications. According to the reported results,
the first and second experiment’s prediction is acceptable, yet the prediction of the last
experiment is not.
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Shin et al. [5] first apply artificial neural networks to binary analysis and tackle the
problem of function identification. The central challenge is the lack of high-level
semantic structure within binaries, as compilers discard it from the source code.
Therefore, to recognize functions is the most important step in binary analysis. The
paper use “one-hot encoding” to convert a byte into a vector, push it as the input of the
neural network and used bidirectional models with RNN hidden units. Besides that, the
paper also optimize the result with stochastic gradient descent and “rmsprop” method.
The paper shows that recurrent neural networks can solve recognizing functions more
efficiently than the previous state-of-the-art method in binaries analysis.

Perl et al. [6] presented a new method to identify vulnerability contributing com-
mits. The authors combine code-metric analysis with metadata contained in code
repositories. To evaluate the effectiveness, the authors first conduct a dataset containing
66 C/C++ GitHub projects with 170860 commits including 640 vulnerability con-
tributing commits mapped to relevant CVE IDs. The paper selected project, author,
commit, file as GitHub rich meta-data, and extracted the code-churn and developer-
activity as the code-metrics. Afterward, the paper created a generalized Bag-of-Words
model using the above features and trained a classifier of vulnerability contributing
commits using linear SVM. The authors trained the classifier on data up until 2010 and
test it against data from 2011 to 2014, the result of precision is 60% while the Flaw-
finder static analysis tool reaches only 1% at the same level of recall.

Grieco et al. [7] proposed an approach that utilize lightweight static and dynamic
features to predict whether a binary program is likely to contain a software vulnera-
bility. Both static features and dynamic features try to abstracted the use patterns of the
C standard library, the difference is static features are the set of potential subsequences
of function calls, while dynamic features are obtained by analyzing program execution
traces containing concrete function calls augmented with its arguments. In the exper-
iments the paper covered, the authors used Bag-of-Words and word2vec to process the
different sets of features. To addressed the class imbalance issue, the paper used a well
tested solution called random oversampling [13]. The authors trained several machine
learning classifiers: logistic regression, MLP of single hidden layer and random forest.
The result of this paper showed that the best performing model is a random forest
trained with dynamic features, vectorized with 2- or 3- grams, achieving an average test
error of 31%.

Li et al. [8] designed Vulnerability Deep Pecker, a deep learning-based vulnera-
bility detection system. To address the problem that existing vulnerability detection
system rely on human experts to define features and often incur high false negative, the
paper first defined code gadgets which is a number of lines of code that are semanti-
cally related to each other, and used it to represent programs. The authors select
Recurrent Neural Networks (RNN) model and use Long Short-Term Memory (LSTM)
to address the Vanishing Gradient problem. Then the authors find Bidirectional LSTM
is more suitable for the reason that the argument(s) of a program function call may be
affected by earlier statements or the later statements. Vulnerability Deep Pecker has two
phase: the learning phase and detection phase. In the learning phase, the system extract
the library or API functions and the corresponding program slices, generate code
gadgets and their corresponding labels, transform code gadgets to vector representation
and train a BLSTM neural network. In the detection phase, the system first transform
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target programs into code gadgets and vectors, and then detected in the trained model.
The authors collect 10791 programs related to vulnerabilities, and shows that Vul-
nerability Deep Pecker can achieve much lower false negative rate than other vul-
nerability detection system.

Lin et al. [9] proposed a data-driven method to address the shortage of high-quality
training data and relying on the hand-crafted features in vulnerability discovery using
machine learning [10]. First, the authors labeled 457 vulnerable functions and collected
32531 non vulnerable functions from six projects, and extracted the abstract syntax
trees (ASTs) from source code using “CodeSensor”, which is a robust parser imple-
mented by [11]. Afterward, the authors converted the serialized ASTs to equal-length
sequences while preserving the structural and semantic features. The paper proposed a
BLSTM neural network, which takes the sequences above mentioned as input. The first
layer of the network is word2vec embedding layer which maps each element of the
sequence to a vector, and the second layer is an LSTM layer which contains 64 LSTM
units in a bidirectional form. To accommodate large ASTs for extracting the latent
sequential features in ASTs, the third layer of the network is a global max pooling
layer. According to the reported results, the method of the paper proposed are more
effective for predicting vulnerable functions, both within a project and across multiple
projects compared with the traditional code metrics.

The following Table 1 gives a summary of recent works on static analysis using
machine learning techniques.

Table 1. Summary of recent works on static analysis using machine learning techniques.

Paper Approach summary Advantages Limitations Future
work

Scandariato
et al. [4]

Bag-of-Words + Naive
Bayes/Random Forest

Within-project Cross-project Expend to
cross-
project

Shin et al.
[5]

Bidirectional models with RNN
hidden units

Recognize functions of
binaries code

Rely on training
data

Explain
the
internal
mechanics

Perl et al.
[6]

Bag-of-Words + SVM Precision and recall Rely on the manual
analysis before train

Minimize
the
likelihood

Grieco et al.
[7]

Utilize static and dynamic
features + Bag-of-Words/
Word2Vec + logistic
regression/random forest

Accuracy Test cases is small Introduce
1D
version of
a CNN

Li et al. [8] Code gadget + BLSTM of
RNN

Lower false negative
rate + not rely on
hand-crafted features

Only contains buffer
error and resource
management error
et al.

Solve the
limitations

Lin et al. [9] CodeSensor + BLSTM of RNN More effective + not
rely on training data
and the hand-crafted
features

Not apply to
vulnerabilities
involve multiple
functions or files

Solve the
limitations
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2.3 Discussion

In the previous subsection, we reviewed and summarized several recent studies in the
field of static analysis using machine learning techniques. A glance summary of all the
articles reviewed in this section is also presented in Table 1. Some concluding points,
challenges and possible future work could be drawn from the review of previous
studies.

A statistical conclusion in the field of static analysis using machine learning
techniques is the fact that Random Forest model can achieve the best result among the
common used machine learning algorithm. However, as deep learning grow more and
more mature, the technique has been used widely in this area and the results of the
experiments using deep learning are more inspiring, especially the Bidirectional LSTM
model of RNN algorithm. The features extracted from training data have to be pro-
cessed before joined to the learning model, and the most widely used techniques are
Bag-of-Words and word2vec.

Static analysis using machine learning techniques can find technical software
vulnerabilities as well as logic vulnerabilities. In our opinion, this is a promising area,
and more and more serious vulnerabilities will be discovered by this means. However,
there are many limitations to static analysis using machine learning techniques. First,
the approaches proposed by the papers reviewed earlier are not full-automatic and the
results are unstable, because it rely on the quality of training data collected manual and
the hand-crafted features selected by experts in a varying degrees. Second, all the
methods the reviewed paper mentioned have to face the fact that the collected dataset
suffers from a severe class imbalance. Last but not least, the experiments the reviewed
paper implemented mostly aimed at source code, and the results to the binary code is
not reasonable. However, the program we encountered in reality mostly have no source
code.

It is clear that there is still room for much further progress in the field of static
analysis using machine learning techniques. Some possible future works drawn from
review of previous studies is as follows: introduce reinforcement learning to guide the
learning of the training model and use transfer learning to address the problem of
training data and test case vary significantly; combine static analysis with other vul-
nerability discover techniques, for instance, symbolic execution and fuzzing; conduct a
learning model can achieve more reasonable result to binary code.

3 Symbolic Execution Using Machine Learning Techniques

3.1 Principles of Symbolic Execution

Symbolic execution [14] is a method for program reasoning that uses symbolic values
as inputs instead of actual data, and it represents the values of program variables as
symbolic expressions on the input symbolic values. No matter when a judgment and
jump statement is encountered, the method will put the path constraints of the current
execution path into the constraint set of the path. The path constraint refers to the value
of the branch condition related to the input symbol and the path constraint set is used to
store the constraints collected on each program path. We can obtain the accessibility of
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the path by constraint solver. If the result of the constraint solving has a solution, it
means that the path is reachable, otherwise it means that the path is unreachable. In the
ideal case of sufficient time and computing resources, the symbol execution can tra-
verse all the paths of the target program and judge its accessibility.

3.2 Summary of Recent Works

Li et al. [15] utilize machine learning to address the major obstacle in applying sym-
bolic execution to real world programs. The problem is the capability of constraint
solving, which is closely related with the optimization problem: finding solutions to
minimize the dissatisfaction degree. Unlike concolic testing and heuristic search, the
authors proposed MLB, a new symbolic execution tool, driven by Machine Learning
Based constraint solving. MLB encodes all the difficult operations as symbolic con-
straints and transforms the feasibility problems of the path conditions into optimization
problems. Here, the paper adopt a machine learning based optimization method named
RACOS (randomized coordinate shrinking) classification algorithm [16], which learns
to discriminate good and bad solutions while trying to keep the error-target dependence
and the shrinking rate small. According to the reported results, the method of the paper
proposed are more effective and efficient with the instruction coverage reach to 89%
and the instruction efficiency reach to 0.44%/s.

Meng et al. [17] proposed a new method combined symbolic execution with
machine learning technique to discover vulnerability. Firstly, the authors collect vul-
nerable functions from CVE and NVD. Then they dig similar function set which have
the most features in common in code base with the defined cosine distance. Secondly,
vulnerable function call graphs can be extracted from source code base and it can be
used to guide the symbolic execution engine to reach the target function. Finally, path
constraint can be calculate through the constraint solver and then estimate the sink
point according to vulnerability checking rules. The result of this paper showed that
symbolic execution utilize machine learning can reach the vulnerable function of
FFmpeg within 36 s while symbolic execution only need 8 h.

3.3 Discussion

In the previous subsection, we reviewed and summarized recent work in the field of
symbolic execution using machine learning techniques. Symbolic execution is a
promising approach to be used in vulnerability discovery, but previous works in this
area suffer from some important limitations. In our opinion, path explosion and con-
strain solve are the two main challenges and machine learning techniques are intro-
duced to address them in recent years. Researchers always concentrate on getting more
valuable paths or optimizing constraint solver using machine learning techniques. The
result is not inspiring and more efforts are needed in the future.
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4 Fuzzing Using Machine Learning Techniques

4.1 Principles of Fuzzing

Fuzzing [18] is a highly automated testing technique that covers numerous boundary
cases using invalid data (from files, network protocols, API calls, and other targets) as
application input to better ensure the absence of exploitable vulnerabilities. It contains
three aspects [19]: firstly, it generates semi-valid or random data; secondly, it sends the
generated data into the target application; finally, it observes the application to see if it
fails as it consumes the data. Semi-valid data is data that is correct enough to pass input
examinations, but still invalid enough to cause problems.

The quality of the Semi-valid data is one of the most important factors that
influence the effectiveness and efficiency of fuzzers. There are two main methods of
data generation, including data-generation technique and data-mutation technique.
Data-generation technique is usually based on specifications, such as file format
specifications and network protocol specifications, to generate data. Data-mutation
technique generates data by modifying some fields of valid inputs. When specifications
are very complex, data-mutation is more appropriate, but the code coverage rate may be
very low. So researchers introduced machine learning techniques to address the
problems in this area.

4.2 Summary of Recent Works

Böhme et al. [20] model the American Fuzzy Lop (AFL) as a systematic exploration of
the state space of a Markov chain and take the probability that fuzzing a seed which
exercises program path i generates a seed which exercises path j as transition proba-
bility pij. The paper also improve the power schedules by assigning energy that is
inversely proportional to the density of the stationary distribution. To fuzz the best
seeds early on, the authors introduce a different search strategy that chooses seeds
earlier exercise lower frequency paths and have been chosen less often. As evidenced
by the experiments the paper mentioned, the method can exposes an order of magni-
tude more unique crashes than AFL in the same time budget.

Godefroid et al. [21] introduced neural-network-based learning techniques to
fuzzing field and proposed Samplefuzz algorithm which leverages a learnt input
probability distribution in order to intelligently guide where to fuzz well-formed inputs.
The paper first presents an overview of the PDF format and pick up the “Objects” as the
mutate element. To learn a generative model of PDF objects, the authors consider PDF
objects as a sequence of characters and use a recurrent neural network based character-
level language model (char-rnn). After the learnt char-rnn model has been created, the
paper adopted SampleSpace as the sampling strategy. At last, the paper use Samplefuzz
algorithm to create new PDF object instances, but at the same time introduce anomalies
to exercise error-handling code.

Wang et al. [22] propose Skyfire, a novel data-driven seed generation approach, to
improve the performance of the American Fuzzy Lop (AFL) fuzz testing framework.
Firstly, the authors collect a vast amount of samples and abstract syntax trees (ASTs)
based on the grammar. Secondly, Skyfire learns a probabilistic context-sensitive
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grammar (PCSG), which describes both syntax features and semantic rules for highly-
structured inputs. Then, Skyfire leverage PCSG to generate seed inputs by iteratively
selecting and applying a production rule on a non-terminal symbol until there is no
non-terminal symbol in the resulting string. Finally, Skyfire randomly replace a leaf-
level node in the AST with the same type of nodes to mutates the remaining seed
inputs. According to the reported results, the method of the paper proposed can
effectively improve the code coverage of fuzzers can significantly improve the capa-
bility of fuzzers to find bugs.

Nichols et al. [23] propose to use Generative Adversarial Network (GAN) models
and Long Short Term Memory (LSTM) to increase the rate of unique code path
discovery of AFL. Firstly, the authors run AFL on a target program for a fixed amount
of time to produce the training data. As for the LSTM model, the authors use a 128
wide initial layer, an internal dense layer, a final softmax activation layer and a cate-
gorical cross-entropy loss function. The model takes in a seed sequence sampled from
the training corpus and predicts the next character in the sequence. Then, the GAN [24]
architecture the paper mentioned has two models. The generative model G is a fully
connected 2 layer DNN with a ReLU non-linearity to generate realistic output and the
discriminative model D is a 3 layer DNN to predict if the data is true or fake. The result
of this paper showed that GAN was faster and more effective than the LSTM, and GAN
helps AFL discover 14.23% more code paths, finds 6.16% more unique code paths, and
finds paths that are on average 13.84% longer.

The following Table 2 gives a summary of recent works on fuzzing using machine
learning techniques.

4.3 Discussion

In the previous subsection, we reviewed and summarized several recent studies in the
field of fuzzing using machine learning techniques. A glance summary of all the articles
reviewed in this section is also presented in Table 2, where we have specified the key
differentiating factors of each work.

In the field of fuzzing, machine learning techniques are introduced to guide the
process of the input tests generating and mutating. Many researchers tend to extend
AFL, the state-of-the-art coverage-based fuzzers, and adopted RNN, Markov, GAN
and some algorithms of NLP to improve the performance of AFL. According to the
papers, the result is inspiring, but there is still room for much further progress. Some
possible future works drawn from review of previous studies is reinforcement learning.

Table 2. Summary of recent works on fuzzing using machine learning techniques.

Paper Approach summary Use AFL Future work

Böhme et. al. [20] Markov chain Yes
Godefroid et al. [21] char-rnn No Reinforcement learning
Wang et al. [22] PCSG Yes Extend the method to more languages

and complier
Nichols et al. [23] GAN+LSTM Yes Reinforcement learning
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5 Conclusion

Machine learning techniques have been successfully used in the domain of software
vulnerability discovery. In this paper, we extensively reviewed previous work and
organized the studies in three main categories. For each category, we provided a short
yet sufficiently detailed summary of each work and discussed the concluding points,
challenges and possible future work.
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