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Learning Objectives
 5 Main causes and pathophysiological keypoints of diaphragmatic dysfunction in the ICU
 5 To diagnose the diaphragmatic dysfunction
 5 To list the available countermeasures to limit the extent of diaphragmatic dysfunction

7.1   Introduction

Reduced mortality and the increasing prevalence of critical illness have resulted in a large 
and increasing numbers of survivors. However, survivors of critical illness can undergo 
profound changes in their lives as a result of their intensive care unit (ICU) stay. These 
changes, regrouped under the term postintensive care syndrome (PICS), are the conse-
quences of physical [1], cognitive [2], and psychological [3] sequelae of the acute illness 
and the pre-ICU comorbidities. Among these changes, pulmonary function has been 
studied, mostly following acute respiratory distress syndrome (ARDS) [4, 5] as well as 
other organs and functions, but the literature about the impact of critical illness on spe-
cifically the respiratory muscles and the diaphragm is lacking.

The purpose of this review is to describe the impact of critical illness on the respiratory 
muscles’ function in both the acute and the long-term periods as piece of the PICS puzzle.

7.2   Respiratory Muscles’ Dysfunction in the ICU: Causes

Respiratory muscles’ dysfunction in the ICU is multifactorial. In 1892, Osler already 
described a “rapid loss of flesh” in prolonged sepsis. Years after, Hussain et al. showed that 
ventilator failure in Escherichia Coli septic shock in dogs was the consequence of the 
fatigue of the respiratory muscles highlighting the strong deleterious impact of sepsis on 
respiratory muscles’ contractility assessed by electromyogram [6]. The link between sepsis 
and respiratory muscles’ dysfunction has been confirmed in multiple animal and human 
studies [7–9]. Mechanical ventilation (MV) by itself has been reported to be associated 
with diaphragm atrophy, and the first report was published in 1988  in 39 neonates or 
infants [10]. This condition was secondary named “Ventilator Induced Diaphragmatic 
Dysfunction” (VIDD) by Vassilakopoulos and Petrof [11]. Again, numerous animal stud-
ies have explored the cellular mechanisms linking controlled mechanical ventilation and 

Take Home Messages

 5 Diaphragmatic dysfunction occurs rapidly and often in the critically ill
 5 It results from a myriad of phenomena and implicates both a rapid loss of force 

without loss of muscle mass and a delayed imbalance between an exaggerate 
proteolysis and an impaired protein synthesis generating further loss of muscle 
mass and force generation

 5 Maintaining spontaneous ventilation, avoiding neuromyotoxic drugs, and 
maintaining electrolytes and glucose control are the most usual ways to limit the 
generation of diaphragmatic dysfunction in the critically ill

 5 Temporary diaphragmatic pacing represents an interesting way of research
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VIDD, and human studies confirmed the animal findings [7, 9, 12–15] using human dia-
phragmatic biopsies mostly in organ donors.

Eccentric contractions (contraction when the muscle lengthens) for instance when 
patients and ventilator are not synchronized may also generate diaphragm injuries, 
although the clinical evidence for this phenomenon is poor. Spontaneous breathing can 
also be associated with diaphragmatic dysfunction. Excessive loading or prolonged and 
intense resistive loading during acute respiratory failure may indeed be associated with 
self-inflicted respiratory muscles’ injuries [6, 16].

Besides these two major causes (sepsis and mechanical ventilation) of respiratory 
muscles’ dysfunction, several other acute cofactors contribute. Abdominal or thoracic sur-
gery, neuromyotoxic drugs (myorelaxants, high dose of steroids, aminoglycosides, line-
zolid), hypophosphoremia, hypokalemia, prolonged hyperglycemia, malnutrition, and 
renal failure have been associated with respiratory muscles’ dysfunction [9, 17–19].

7.3   Respiratory Muscles’ Dysfunction in the ICU: Pathophysiology

Systemic and local muscular inflammation especially during sepsis, sympathetic nervous 
system activation [20], muscle inactivity [21], metabolic oversupply (diaphragm is 
exposed to excessive supply of energetic substrates relative to its metabolic needs which is 
very low when inactive) [15], and insulin resistance [22] are observed in the respiratory 
muscles during the acute phase of critical illness.

Consequently, several cellular pathways are activated or suppressed. Initial conse-
quences involve contraction/relaxation homeostasis impairment and type 1 ryanodine 
receptor posttransductional oxidation and nitrosylation. Such modifications of the ryano-
dine receptor lead to calcium leak from the sarcoplasmic reticulum to the cytosol [20] 
activating calcium-dependent proteases. Mitochondrial dysfunction secondary to meta-
bolic oversupply leading to reactive oxygen species release, mitochondria dynamics 
impairment, and further proteolysis activation has also been reported as an early phenom-
enon in VIDD [15]. Downstream of these early phenomena, not only excessive proteolysis 
(through the calpains, caspase 3, and the ubiquitin proteasome system) but also protein 
synthesis impairment (because of Insulin Growth Factor, AKT, and FOXO pathway inhibi-
tion) has been demonstrated [17, 18]. Autophagy, a self-degradative process important in 
response to nutrient stress and cell homeostasis impairment is then activated and is per-
ceived as a physiologic response helping the cell for clearing damages organelles [23].

At the end of the road, all of these modifications lead to muscle atrophy, fibrosis, and 
loss of force.

7.4   Respiratory Muscles’ Dysfunction in the ICU: Diagnosis

Although the purpose of the chapter is to describe the diaphragm involvement in the 
PICS, tools that can be used to diagnose inspiratory muscles’ dysfunction may be useful to 
evaluate the diaphragm function after ICU discharge.

Inspiratory muscles’ dysfunction can be diagnosed by performing pulmonary function 
tests sometimes at the bedside or more often in a pulmonary lab (e.g. sniff test) [24]. Surface 
electromyography has been suggested to evaluate diaphragm function although not being 
used in routine practice. Recently, ultrasonography of the diaphragm has been developed 
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and several measures can be performed. Thickness of the diaphragm, using a 10  MHz 
probe in the zone of apposition of the diaphragm to the rib cage, can be measured and is a 
surrogate of the diaphragm atrophy [25]. It decreases with the duration of mechanical ven-
tilation [26], although reports suggest that it may increase [27] in some patients potentially 
because of muscle swelling and injury. Diaphragm excursion can be measured using a 
3.5–5 MHz phased array probe. The probe is placed immediately below the right or left 
costal margin in the mid-clavicular line or in the right or left anterior axillary line and is 
directed medially and dorsally, so that the ultrasound beam reaches perpendicularly the 
posterior third of the corresponding hemi-diaphragm [25]. Diaphragm excursion has been 
suggested to be a surrogate of vital capacity but depends on the patient’s motivation. Using 
the same window, thickening fraction can be evaluated as a surrogate of force production 
during quiet or forced breathing. Again, this measurement depends on the patient’s moti-
vation. No study has described the diaphragm recovery following critical illness using the 
ultrasound technique. The usual threshold values to define diaphragmatic atrophy are:

 5 End expiratory thickness below 2 mm or a drop of more than 20% compared to 
baseline thickness [26, 27]

 5 Diaphragmatic excursion during calm and spontaneous breathing lower than 
10–15 mm [28]

 5 Diaphragmatic thickening fraction during calm and spontaneous breathing lower 
than 20–30% [29–31]

The gold-standard measurement in the intubated patient requires the use of bilateral ante-
rior magnetic stimulation of the phrenic nerves and the measurement of transdiaphrag-
matic pressure using a double balloon (esophagus and gastric) probe [7, 13, 32]. This 
technique allows a measurement without the patient’s participation, and a threshold of 11 
cmH2O has been suggested to diagnose diaphragmatic dysfunction [7, 13, 33]. This tech-
nique in the non-intubated patient is much more difficult because of the necessity to avoid 
any leak (one should then use both a nasal clip and a mouth piece) during stimulation.

7.5   Respiratory Muscles’ Dysfunction in the ICU: Management

Besides the causal treatment (e.g. sepsis), the intensivist can minimize the impact of the 
critical illness on the diaphragm function.

By promoting spontaneous breathing during MV, one can both limit the risk of meta-
bolic oversupply and limit the risk of inactivity-associated atrophy [34]. Muscle contrac-
tile activity may also increase the diaphragm antioxidant capacity’s release, limiting in 
theory the risk of the ryanodine receptor oxidation and the activation of the proteolysis 
cascade [35]. Eccentric contraction and excessive loading during spontaneous breathing 
should however be taken into account, and to date it is not completely sure whether main-
taining spontaneous breathing in extreme situations such as acute respiratory distress 
syndrome is beneficial or deleterious for the diaphragm.

Inspiratory muscle training during the weaning period has been sparsely evaluated, 
and to date there is a lack of evidence to promote such initiative in the routine care 
 (martin).
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Although several drugs that inhibit the proteolysis cascade and/or promote the protein 
synthesis pathway have been tested in animal models, a few drugs have been evaluated in 
humans. To date, no drug has been approved to prevent or to treat diaphragmatic dys-
function in the critically ill. Theophylline and levosimendan [36] have demonstrated ben-
eficial effects on diaphragm contractile activity, but these results are still preliminary.

Temporary diaphragmatic pacing has been recently evaluated as a method to limit the 
extent of diaphragmatic loss of force production. Diaphragmatic pacing can be achieved 
by direct implantation of electrodes in the diaphragm [37], by hooking the phrenic nerves 
during a surgical procedure [38, 39], or more recently by a transvenous (superior vena 
cava) stimulator [40, 41]. In animals, diaphragmatic pacing has been associated with the 
restoration of the proteolysis/protein synthesis balance [38] and less fiber atrophy [40] in 
a VIDD model. In humans, diaphragm electrodes can be surgically placed in the dia-
phragm [42, 43] during a laparoscopy or during a thoracic surgery [44]. Phrenic nerves 
can be hooked during cardiac surgery, and diaphragm pacing has been associated with an 
improvement in mitochondrial physiology and with less oxidative stress in the diaphragm 
[39, 45]. Diaphragmatic stimulation can also be achieved by transvenous stimulation 
using a central venous catheter [40]. Diaphragm capture was evaluated in 23 patients and 
could reduce the pressure time product from 10% to 48% without any serious adverse 
event [41].

7.6   Respiratory Muscles’ Dysfunction in the ICU and PICS

Six- and 12-month limb muscle weakness and functional impairment have been described 
following critical illness [1, 46] as well as altered pulmonary function tests, persistent 
hypoxemia, and incapacity to exercise [5]. Despite strong evidence showing that respira-
tory muscles do also show persistent weakness and ultrastructural alterations months 
after ICU discharge, it is very likely that respiratory muscles’ weakness plays a role in the 
PICS picture. The involvement of the diaphragm should be investigated specifically in the 
next few years.
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