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Abstract. Although the dynamic behavior of rectangular plates has been the
subject of much research for many decades, it remains of a crucial importance in
various engineering fields and some edge conditions have not yet been treated,
especially those involving edges connected to distributed rotational springs and
non-linear vibrations. Also, in the practice of Modal Testing, theoretical models
are needed for quantitatively estimating the flexibility of the real plate supports.
A complementary work is presented here corresponding to plates connected to a
distribution of rotational springs at two opposite edges vibrating in the geo-
metrically non-linear regime occurring at large vibration amplitudes. To build
the plate trial functions, defined as products of beam functions in the x and y
directions, the mode shapes of simply supported beams connected to rotational
springs are first calculated. Then, after exposing the general formulation of the
non-linear problem, based on Hamilton’s principle and spectral analysis, the
plate case is examined. Using the single mode approach, the backbone curves
are determined, giving the non-linear frequency-amplitude dependence for
plates having different combinations of stiffness and aspect ratios. It is noticed,
as may be expected, that the obtained hardening non-linearity effect becomes
more accentuated with increasing the rotational spring stiffness.

Keywords: Rectangular plates � Nonlinear vibration � Elastically restrained
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1 Introduction

In spite of the amount of works performed on plate vibrations for many decades, only
few papers deal with simply supported rectangular plates connected to two distributions
of rotational springs at two opposite edges. Furthermore, to the knowledge of the
authors, the geometrically nonlinear vibration of such elastically restrained plates has
not been investigated, in spite of its theoretical and practical importance. On one hand,
such edge conditions may be really encountered in practical situations. On the other
hand, it should not be forgotten that the classical boundary conditions, i.e. simply
supported and clamped, are practically impossible to achieve perfectly in real structures
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since the supports have always some flexibility. Consequently, it is of a crucial
importance for designers to be able and quantitatively estimate how far do the plate real
dynamic characteristics deviate from the theoretical ones, corresponding to rigid ver-
tical supports and completely free rotations (simply supported case, denoted in what
follows as SS), and to rigid vertical supports and completely prevented rotations
(clamped case, denoted as C). From the point of view of modal analysis and testing, the
availability of theoretical results corresponding to flexible supports with various stiff-
ness values may be very useful in interpreting experimental data provided by modal
testing and also for an accurate identification process.

The purpose of this paper is to present the formulation of the problem of non-linear
vibrations of simply supported rectangular plates connected to two distributions of
rotational springs at two opposite edges, in both the linear and non-linear cases. The
Rayleigh-Ritz method is used in the linear case, with plate functions defined as
products of beam functions, with appropriate end supports, in each direction. The
extension of the Rayleigh-Ritz method to the nonlinear case, developed and applied to
various non-linear problems by Benamar and his co-authors [1–4] is used here to
investigate the large vibration amplitudes of the plates examined.

Consider the plate shown in Fig. 1. It is supposed to be simply supported at the four
edges and to be in addition connected to distributed rotational springs at the edges
y = 0 and y = b. As mentioned above, the Rayleigh-Ritz method is used to investigate
the linear vibration case, with plate functions defined as products of appropriate beam
functions in each direction. The next section is concerned with a brief presentation of
how to determine the mode shapes of the beam shown in Fig. 2.

Fig. 1 SS Plate connected to distributed rotational springs at y = 0 and y = b
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2 Mode Shapes of a SS Beam Connected at the Ends
to Rotational Springs

2.1 Theoretical Formulation

Consider the SS beam shown in Fig. 2, connected at the ends to two rotational springs
of stiffness K1Rot and K2Rot. The beam has the characteristics indicated in the figure. The
governing equation of the beam transverse vibration is governed by the well known
differential equation [5]:

d4w

dx4
þ b4:w ¼ 0 with b4 ¼ x2:

q:S
E:I

ð1Þ

The general solution of Eq. (1) can be written as:

wi xð Þ ¼ C1sin bi:xð ÞþC2cos bi:xð ÞþC3sinh bi:xð ÞþC4cosh bi:xð Þ ð2Þ

The bi’s are the beam mode shape parameters. C1, C2, C3 and C4 are determined by the
end conditions:

at x ¼ 0 : w ¼ 0 and Mx ¼ E:I:w00 ¼ þK1Rot:
@w
@x

ð3–4Þ

at x ¼ l : w ¼ 0 and Mx ¼ E:I:w000 ¼ �K2Rot:
@w
@x

ð5–6Þ

Mx is the bending moment. Equations 3–6 give a linear system with 4 equations and 4
unknowns. To avoid having only the trivial zero solution, the determinant of the system
must vanish, which gives the frequency equation, leading to the frequencies and mode
shapes of the vibrating beam connected to the rotational springs. The Newton–Raphson
algorithm was used to find the roots b1:l of the transcendental frequency equation,
corresponding to the first mode and to various values of the rotational spring stiffness
C*. The solutions are summarized in Table 1 and compared to previous results.

Fig. 2 SS beam, connected at the ends to rotational springs
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3 Linear Vibration of SS Rectangular Plates Connected
to Two Distributions of Rotational Springs at Two Opposite
Edges

To examine the vibration of the plate shown in Fig. 1, the transverse displacement is
assumed to be:

W x; y; tð Þ ¼ w x; yð Þ:sin xtð Þ ¼ ai:wi x; yð Þsin xtð Þ ð7Þ

In which the usual summation convention is used. The kinetic energy and the plate total
strain energy VT, which is the sum of the strain energy due to the bending Vb [6], plus
the membrane strain energy due to the axial load induced by large deflections Vm [6],
and the strain energy stored by the elastic edge restraints Vspring (VT = Vb + Vm +
Vspring) are given by Li [7]:

T ¼ 1
2
qH
Z
S

@W
@t

� �2

:dS,

Vb ¼ D
2

Z
S

@2W
@2x

þ @2W
@2y

� �2

þ 2: 1� mð Þ: @2W
@x@y

� �2

� @2W
@2x

:
@2W
@2y

 !" #
dS

ð8–9Þ

Vm ¼ 3:D
2:H2

Z
S

@W
@x

� �2

þ @W
@y

� �2
" #2

:dS

VSpring ¼ 1
2
Za

0

ðK1Rot:
@w x; 0ð Þ

@y

� �2

þK2Rot:
@w x; bð Þ

@y

� �2

dx

ð10–11Þ

The basic spatial plate functions (Eq. 7), are defined as [2] wi x; yð Þ ¼ PI xð Þ:QJ yð Þ,
in which PI xð Þ and QJ yð Þ are beam functions with appropriate end conditions in each
direction. The plate function index i is related to the indices I and J of the corre-
sponding beam functions by: i ¼ N: I� 1ð Þþ J, where N is the number of beam
functions used. One obtains after discretization of the energy expressions [2]:

Table 1 Beam fundamental frequency parameters b1:l for different values of the rotational

stiffness C� ¼ K2Rot:l
E:I

C* 0 1 10 100 1000

(a) 3.9237 4.0381 4.4229 4.6754 4.7151 4.7193
(b) 3.9237 4.0381 4.4229 4.6754 4.7151 4.7193

(a) Linear results obtained here (b) linear results obtained in Ref. [5]
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T ¼ 1
2
x2ai:aj:Mij:cos2 xtð Þ; Vb ¼ 1

2
ai:aj:Kij b

:sin2 xtð Þ; ð11–12Þ

Vm ¼ 1
2
ai:aj:ak:al:Bijkl:sin4 xtð Þ; Vspring ¼ 1

2
aiajKijspring :sin

2 xtð Þ: ð13–14Þ

In which Mij, Kij_b, Bijkl and Kij_spring are the mass, linear and non-linear rigidity
tensors, defined by:

Mij ¼ qH
Z
S

wi:wj:dS ð15Þ

Kij b ¼ D
Z
S

@2wi

@x2
þ @2wi

@y2

� �
@2wj

@x2
þ @2wj

@y2

� ��
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2
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:
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� @2wi

@x2
:
@2wj

@y2

 !#
:dS

ð16Þ

Bijkl ¼ 3D
2:H2

Z
S

@wi

@x
:
@wj

@x
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:
@wj
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Kij Spring ¼
Za

0

K1Rot:
@wi x; 0ð Þ

@y
:
@wj x; 0ð Þ

@y
þK2Rot:

@wi x; bð Þ
@y

:
@wj x; bð Þ

@y

� �
:dx ð18Þ

The indices i and j are summed over 1, 2 … n, n being the number of the plate
functions used (n = N2).

A computer program has been written to calculate numerically the above param-
eters and solve the eigen value problem, corresponding to linear vibrations. To validate
the program, a limit case, corresponding to C–SS–C–SS rectangular plates, for which
the rotational spring stiffness tend to infinity, has been treated, for various plate aspect
ratios a. The results obtained are summarized in Table 2 and compared to previously
published results. Also, a comparison is made in Table 3 between the results obtained
here and those given in [6], corresponding to the plate with elastic restraints shown in
Fig. 1 (a = 0.4, 0.8, 1). 36 plate functions have been used in the Rayleigh-Ritz for-
mulation for various values of the spring stiffness. It appears that the percentage
difference remains reasonably small for small and high values of the stiffness, corre-
sponding to the SS and C edge conditions, and does not exceed 6.65% in all cases.
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4 Nonlinear Vibration of SS Rectangular Plates Connected
to Two Distributions of Rotational Springs at Two Opposite
Edges

To examine now the non-linear vibration of the rectangular plate examined, the
membrane strain energy Vm induced by the large vibration amplitudes has to be taken
into account in the application of Hamilton’s principle as follows:

d
Z2xp
0

T � ðVb þVspring þVm
� �

:dt ¼ 0 ð19Þ

After the integration of the time functions over the range 0; 2:px
� �

, one gets a non-linear
eigen value problem, written in a matrix form as [8]:

Table 2 Non-dimensional frequency parameters, of a C–SS–C–SS rectangular plate, for various
plate aspect ratios a (a) results obtained here (b) results obtained in Ref. [4] (c) results obtained in
Ref. [10]

Plate non-dimensional frequency parameters

a 0.2 0.33 0.4 0.5 0.6 0.66 0.7 0.8 0.9 1

(a) 10.358 11.372 12.149 13.698 15.74 17.2008 18.289 21.346 24.905 28.957
(b) 10.35 11.33 12.21 13.69 15.8 17.2 18.35 21.4 24.95 28.95
(c) – – 12.3 13.71 15.69 – 18.25 20.82 24.08 –

Table 3 Comparison of the frequency parameters x2:a2:b2:q
p4:D (b) calculated here with (a) results

given in [8] for different values of aspect ratio and different values of stiffness

C� ¼ KiRot :b
D

First frequency parameters

a = 0.4 a = 0.6 a = 0.8 a = 1
(a) (b) (a) (b) (a) (b) (a) (b)

0 8.41 8.41 5.138 5.1388 4.203 4.2035 4.000 4.000
0.5 8.438 8.4415 5.206 5.2081 4.326 4.3271 4.194 4.1941
1 8.468 8.4713 5.271 5.2736 4.441 4.4423 4.373 4.373
2 8.525 8.5261 5.387 5.3919 4.646 4.6483 4.691 4.691
3 8.572 8.5754 5.491 5.4958 4.825 4.8271 4.965 4.966
4 8.611 8.6199 5.584 5.5877 4.982 4.9837 5.205 5.2052
5 8.649 8.6604 5.666 5.6696 5.120 5.1219 5.415 5.4152
10 8.801 8.8169 5.974 5.9744 5.625 5.6252 6.169 6.1693
20 9.204 9.2167 6.671 6.672 6.719 6.723 7.777 7.7833
100 9.312 9.327 6.845 6.8452 6.981 6.9835 8.137 8.144
500 - 9.4382 6.974 7.0168 7.234 7.2382 8.494 8.505
1 9.448 9.47 7.059 7.065 7.304 7.3091 8.593 8.605
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2:K:~Aþ 3:B ~A
	 


:~A ¼ x2:M:~A ð20Þ

~A is the column vector of the basic function contribution coefficients. K and M are the

classical rigidity and mass matrices, well known in linear vibration theory, and B ~A
	 


is the nonlinear geometrical rigidity tensor. Equation (20) is the Benamar’s adaptation
of the Rayleigh-Ritz method to the nonlinear vibration problem, to be solved numer-
ically, or explicitly. From Eq. (20), it is possible to calculate the frequency x by pre-

multiplying the two hand sides of the equation by ~A
T
which gives:

x2 ¼
~A

T
:K:~Aþ 3

2 :A
T:B ~A
	 


:~A

~A
T
M:~A

ð21Þ

The single mode approach (SMA), consists of neglecting all the basic functions except
a single ‘‘resonant’’ mode. Thus, it reduces the multi-degree-of-freedom problem to a
single dof. The single mode approach is often used in the literature [4] due to the great
simplification it introduces in the theory on one hand, and on the other hand because
the error it introduces in the estimation of the amplitude dependent nonlinear fre-
quencies remains very small. Applying the SMA to Eq. (21) gives:

x2 ¼ K11

M11
þ 3

2
a2:B1111

M11
ð22Þ

In which K11, M11 and B1111 are the parameters related to the single mode examined,
which is in the present case the fundamental mode of the plate shown in Fig. 1.
Figure 3 shows, for a validation purpose, a satisfactory comparison between the results
obtained here and those given in [4], corresponding to CSSCSS plate. Figure 4 gives
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Fig. 3 Comparison between the present backbone curve and that of Ref. [4]. Aspect ratio = 0.66
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the backbone curves corresponding to various values of the stiffness of the rotational
springs distributed at the edges y = 0 and y = b of the rectangular plate. A hardening
type non-linearity, indicating an increase in the frequency with the vibration amplitude
is noticed and appears to become, as may be expected, more pronounced with
increasing the spring stiffness.

5 Conclusion

To investigate the vibration of the plate shown in Fig. 1, the Rayleigh-Ritz method has
been used in the linear case, with plate functions defined as products of x and y beam
functions, with appropriate end supports in each direction. The extension of the
Rayleigh-Ritz method to the nonlinear case, developed and applied to various non-
linear problems by Benamar and his co-authors, has been used here to investigate the
plate large vibration amplitudes. The basic functions used are obtained as product of
beam functions in the x and y directions corresponding respectively to SS and ER
(elastically restrained) beam end conditions, the last case being first analytically treated
and numerically validated. Analytical details have been given and the numerical results
were compared to those available in literature. The backbone curves are given for plates
having different combinations of stiffness and aspect ratios.
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Fig. 4 Backbone curves for the four plates: (1) a CC plate in the x direction and SS in the y
direction (2) a CC plate in the x direction and SS in the y direction with distributed rotational
springs of stiffness C� ¼ 50 C� ¼ KiRota:b

D

� �
; (3) a CC plate in the x direction and SS in the y

direction with distributed rotational springs of stiffness C* = 500; (4) a CC plate in the x
direction and SS in the y direction
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