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Abstract. We present a demonstration of two coordination methods for
the application of multiagent reinforcement learning to the problem of
traffic light signal control to decrease travel time. The first approach that
we tested exploits the fact that the reward function can be splitted into
contributions per agent. The second method computes the best response
for a two player game with each member of its neighborhood. We apply
both learning methods through SUMO traffic simulator, using data from
the Transit Department of Bogotá, Colombia.
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1 Introduction

In this work, we test solutions to decrease travel times based on multiagent
reinforcement learning, modeling the problem as a multiagent Markov Decision
Process (MDP). A collection of agents learns to minimize vehicle queuing delays
and queue lengths at all junctions. Coordination between agents is done in two
different ways. In the first approach (Q-VE) agents are modeled as vertices in
a coordination graph and the joint action is found with the variable elimination
algorithm. The second method (Q-BR) computes the action for an agent as the
best response of a two player game with each member of its neighborhood.

2 Main Purpose

Multiagent RL for traffic light control allows to split the global function Q into
a linear combination for each agent. However, decisions made at the individual
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level must be optimal for the group. Hence, the problem of coordination is to
find at each step the joint action:

a∗ = argmax
a′∈A

Q(sk,a′) (1)

2.1 Coordination Graphs - (Q-VE)

In a coordination graph, G = (V, E) agent i ∈ V needs to coordinate its actions
with its neighbors Γ (i) = {j : (i, j) ∈ E}. Given the action a∗ and joint state
sk

ij , we update the factors Qij for each edge (i, j) ∈ E with:

Qij(s
k−1
ij , ak−1

ij ) := (1 − α)Qij(s
k−1
ij , ak−1

ij )

+ α

[
rki

|Γ (i)| +
rkj

|Γ (j)| + γQij(sij
k, aij

∗)

]

To find the optimal joint action a∗ in (1), we use the variable elimination algo-
rithm (VE) proposed by Gaustrin et al. [3].

2.2 Best Response from Game Theory - (Q-BR)

We follow the work done by El-Tantawy et al. in [2], in which each agent par-
ticipates in a two player game with its neighborhood Γ (i). Agent i creates and
updates a model θ that estimates the likelihood of action selection for each
neighbor j ∈ Γ (i).

To find the best joint action, a∗, each agents computes its best response,
which is the action that maximizes the Q factor at their neighborhood level,
regardless of the policies of other members:

a∗
i = argmax

ai∈Ai

⎡
⎣ ∑

j∈Γ (i)

∑
aj∈Aj

Qij

(
sk

ij , aij

) × θij

(
sk

ij , aj

)
⎤
⎦ (2)

2.3 Learning Parameters

The state vector for each agent has the hour to include temporal dynamic; the
maximum queue length (in vehicles) in all edges, and the queuing delay (in
minutes) of stopped vehicles in every edge. Regarding the actions, all agents
have two phases. Finally, the reward function encourages short queue lengths
and waiting time experienced by the vehicles throughout the road.

ri = −
edges∑
k=1

βq(qk)θq + βw(wk)θw ∀i ∈ N (3)

Where, edges is the number of approaches of agent i. qk and wk are the max-
imum queue length and queuing delay in edge k. βq and βw are coefficients to set
priority. θq and θw balance queue lengths and waiting times across approaches.
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3 Demonstration

Both methods were simulated in a network of Bogotá, as shown in Fig. 1 through
the SUMO simulator [4] and the TraCI environment. To compare Q-VE and
Q-BR methods, we implement independent Q-learning as proposed by Cam-
ponogara et al. in [1] and, the coordination method proposed by Xu et al. in
[5].

1
5

Fig. 1. Test framework for multiagent traffic control

Q-VE and Q-BR achieve reductions of at least 14% and at most 48% with
respect to Fixed Time. The largest reductions are obtained with Q-BR. We note
that Q-BR policy generates green waves along arterials, as show in Fig. 2.

Fig. 2. Space-time diagram for route 1, Ak7 north to south, with Q-BR policy. At
some intervals, agents 4, 5 and 6 coordinate their actions to generate a platoon.

In Fig. 3 we found that the reward evolution with independent learning is
very similar to the one obtained by the coordinated method Q-BR. Nonetheless,
the policy learned by Q-BR positively influence other variables that are not
included in the reward function.
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Fig. 3. Agents learning curves. With Q-VE and Q-BR it was achieved a better reward
in comparison with FT control.

4 Conclusions

Distributing the reward function into contribution per agent simplifies the prob-
lem, since the Q factors can be splitted into dependencies between agents. This is
represented by the coordination graphs, which are favorable for the application
of the VE algorithm. This method allows an exact solution to the joint action
selection problem. However, as the algorithm eliminates agents, neighborhoods
change and may include ones that are not adjacent, thus, may not have direct
communication. The method would require an estimation of the Q factors for
nonadjacent agents.

On the other hand, the coordination strategy based on BR presents good
scalability, due to communication between agents is known a priori. However,
policies in the neighborhood are not shared knowledge, so a greater transmission
of information is required to estimate and model the behavior of neighbors.
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