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Abstract. TWM -Traffic Weighted Multi-maps- is presented as a novel
traffic route guidance model to reduce urban traffic congestion, focusing
on individual trip and collective objectives considering citizens, individ-
ual multi-modal mobility, and heterogeneous traffic groups. They have
different interests, goals and regulation, so new multi-objective cost func-
tions and control systems are required. TWM is structured around a
novel control paradigm, based on the generation and distribution of com-
plementary cost maps for traffic collectives (fleets), oriented towards the
application of differentiated traffic planning and control policies. Agents
receive a customized view TWM of the network that is used to calculate
individual route using standard means and tools. The research describes
the TWM theoretical model and microscopic simulations over standard
reference traffic network grids, different traffic congestion scenarios, and
several driver’s adherences to the mechanism. Travel-time results show
that TWM can have a high impact on the network performance, leading
to enhancements from 20% to 50%. TWM is conceived to be compatible
with existing traffic routing systems. The research has promising future
evolution applying new algorithms, policies and network profiles.

Keywords: Dynamic traffic assignment · Traffic control ·
Traffic simulation · Vehicle routing · Traffic big data ·
Decision making · Multi-agent systems

1 Introduction

One of the main challenges in the modeling and design of traffic management sys-
tems and services is the difficulty of controlling driver’s decision making regard-
ing the choice of their routes, in order to match resources and demand in an
optimal and automated way. Currently, Traffic Control System (TCS) coordinate
demand through direct intervention in the network, online information systems,
panels, regulatory policies or restrictions [21]. Drivers, for their part, are increas-
ingly using advanced agent-based navigation systems that adapt and react in real
time to the state of traffic [20]. Thus, the majority of vehicles receive very similar
recommendations and stimuli, which make it difficult to optimize demand and
transfer situations of congestion [16].
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There are many proposals and commercial systems that generate individual
route recommendations from data sent by users to a TCS [16]. However, these
solutions raise multiple deployment questions due to computational resource
demands, complexity, and privacy implications. The active participation of vehi-
cles in the generation of data, and the use of Big Data as an element of mobility
management, allow the design of alternative demand control models [13].

Smart-Cities require global perspectives that focus not only on traffic indi-
viduals (agents) and their contribution to traffic, but also on collective objec-
tives considering citizens, individual multi-modal mobility, and conflicting group
interests, leading to the concept of Urban Computing as described in [28]. This
fact involve designing new multi-objective cost functions and the corresponding
control models that optimize them.

Our goal is to reduce average travel time of all the vehicles in the traffic
network, fulfilling individual, collective and regulatory goals and constraints,
reducing congestion times in the network. It describes a novel route guidance
model called TWM -Traffic Weighted Multi-maps-, that is shown to be scalable,
technically and economically viable, easy to deploy, compatible with existing
platforms, and has a low impact on privacy. TWM is structured around a new
control paradigm, based on the generation and distribution of complementary
cost maps. Every individual agent receives a customized view of the traffic net-
work. Vehicles are grouped in classes (fleets) that share the same network view.
The aggregation of individual decision making tends to satisfy the predefined
control policy.

TWM proposal takes into account the individual traffic agent ability to take
its own decisions (a) for using any of the known algorithms for K-shortest path
(Dijkstra, A, A*, or any variant [7,8,15]) in case of individual route calculation,
or (b) having received a TWM-based route calculation, follow it (that will diverge
in many occasions from the standard ones). Compatibility with existing routing
frameworks based on route-queries for origin/destination (O/D) is direct, as
TWM is then applied at the TCS back-end. TWM model is also of application
with hyperpaths calculations.

Research main contributions include: (1) a novel traffic route guidance model
based on multimap distribution that enable differentiated route selection for indi-
viduals and collectives; (2) a microscopic simulation framework for TWM eval-
uation and algorithm comparisons, and (3) macroscopic and microscopic perfor-
mance analysis based on the simulations performed for the most basic algorithm
and network model. The research has promising future evolution applying new
algorithms, policies and network profiles.

1.1 Literature Review

MuTraff deals with the development of an intelligent traffic control system,
made up of the design of congestion management mechanisms, from which many
parameters susceptible to optimization and control are derived, such as pollu-
tion level, noise footprint, prioritization of vehicle type, contingency plans, etc.
[2], combined with a hybrid approach of individual vehicle agents that take into
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account the routing recommendations based on intention-aware policies [5,25].
There are numerous proposals aimed at control and optimization of distributed
and centralized type that are data driven [14,24]. [1,20] show a review of this
type of multi-agent systems that address the problem using different approaches:
automatic negotiation, distributed optimization, predictive routing, predictive
control models, and others.

Among the centralized approaches, the proposals for signaling control stand
out, proposing the application of predictive control models (MPC) combined
with multi-agent models in the urban management of traffic lights at intersec-
tions or dynamic control in the incorporation of traffic flows [17,18]. More spe-
cific proposals deal for example with the differential criteria applied to electric
vehicles and charging stations [24,26].

[4,12] and others have proposed and evolved the hyperpaths formulation
and evaluation where not a single route is received by the vehicle agents, but
a tree of alternative routes for each origin and destination. Hyperpaths route
calculus focuses on the uncertainty and variability of traffic dynamics, and is
evaluated based on historical data and applying different analysis techniques
[9,19]. Our proposal is complementary to this approach as it focus on the network
view that every individual receives and used at hyperpaths calculus. Hyper-path
is conceived for individual risk-averse policies design (minimizing travel-time
variance), in contrast with TWM that is multi-purpose and combines individual,
group and global policies.

MuTraff is a centralized architecture that implements a distributed control for
TWM in closed loop of routes of the vehicles [16], with capacities of re-planning.
MuTraff feedback is not given explicitly at the microscopic level (of individual
routes), and both performance and signaling are given at the mesoscopic level.

Standard navigation system offer shortest routes, derived from real-time den-
sity information and historical traffic. Agents (vehicles) make decisions individ-
ually, taking as a reference the same source of information, which transfers sit-
uations of congestion. This is the so-called “common resource distribution prob-
lem”, from which the so-called “Minority Game” or “Farol Bar Problem” derives
[23]. It is therefore clear that there is a need for more precise control of vehi-
cle routes, that requires precise individuals feedback and/or highly distributed
sensor networks [22,27]. This control could be exercised through individualised
management at the microscopic level of each route. However, microscopic control
entails problems of scalability, deployment and privacy, so MuTraff proposes an
alternative, scalable, non-disruptive control and management methodology with
fewer implications for users’ privacy. Agent routing decisions may change during
the travel, mainly based on the dynamic information received [6] not affecting
the aggregated information available at the TCS.

Similar strategies are used in other routing problems such as IP traffic routing
strategies (MSTP, SDN) [11] by using distribution of maps with differentiated
link weights (link-costs) and shortest-path routing strategies.
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2 TWM - Traffic Weighted Multi-maps

Current vehicle traffic agents share the same traffic network maps (roads, paths)
whose main path attributes are their physical conditions (number of lanes,
length) and also their logical constraints (max speed, traffic allowance, direc-
tional senses and others). When we consider the path cost function we cannot
modify physical attributes, but we can definitively modify logical ones. If we
replace the max speed concept with a cost function that is different for each
traffic group of agents, we could generate differentiated network maps for them.
Even more, we could have time-dependent maps for them.

The main feature of our proposal, is to generate a traffic management frame-
work (named MuTraff) that can provide differentiated traffic maps (called Traffic
Weighted Maps, TWM) for the same area that can fulfill the specific needs of
every traffic class. These maps are delivered to the vehicles, depending on mul-
tiple factors that are evaluated in a central-station back-end based on multiple
criteria. These maps are to be composed in dynamic way combining several
sources: historical data, real-time traffic data, real-time events affecting mobility
(non-traffic data, but affecting the demand. For instance, a sport event, or a
critical incident), and of course, synthetic data extracted from big-data sources.
Figure 1 illustrates the basics for TWM generation.

Fig. 1. TWM generation model.

Traffic classes recognize the fact that every type of traffic has specific (a)
traffic goals, (b) network constraints, (c) regulations, (d) traffic indicators and (e)
individual behaviors, so having a single traffic network map that considers only
road descriptions, real-time conditions and traffic density is not enough to cover
these specific features. Moreover, though some traffic classes have specific paths
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(such as bikes), most of the traffic classes share the same paths; management
of these specific paths is accomplished by regulation and signaling. But, it can
also be covered by specific maps. Multi-map routing strategy shows that this
approach is a valid tool to get a better, easy and dynamic traffic management
model. Instead of having a heavy set of regulation, signaling, time and geo-
fenced constraints that every individual should process, evaluate, and execute,
it is easier to have them collected into traffic map collections that are used by
the individuals for route selection.

Route selection is the ultimate decision to be taken by traffic individuals and
all the preceding issues mentioned can be seen as just factors that influence on
it. Traffic individuals behave as agents that take routing decisions based on the
available information, their own experience, habits, beliefs, desires and inten-
tions. Available information is formed by the routes proposed by the routing
engines, the map information, traffic and road status both real-time and histori-
cal data. Multi-maps skew this available information for every fleet, considering
the best resource allocation (paths) to conform pseudo-optimal routers that are
offered to every fleet. These multi-maps provide a different traffic routing weight
for each fleet at each path. For instance, a city center will have different network
maps for the fleets taxi, electric vehicles, logistic distributions, and conventional
cars. The path weights will be different for each fleet, promoting or penaliz-
ing traffic for each path. Of course, these maps can be static or time-dynamic,
depending on multiple strategies.

Traffic routes can be generated by the individuals using the network maps and
the computing application [16], but also can be generated by a TCS that receives
the origin-destination requests for route and delivers a set of possible routes.
TWM approach is valid for them as it considers optimal route evaluation against
a weighted map. This weighted map can be processed both at the individual and
the central station. It is always the individual who decides which route/path to
use, but usage of MuTraff will always use a weighted network map.

Individual privacy and data protection is also a main concern in routing
systems [10]. No individual route tracking is made as MuTraff is just publishing
weighted maps for vehicles groups at certain areas, and then routes and multi-
path graphs recommendations contains no individual data. Privacy is preserved.
Real-time data is obtained from city sensors and is used to calculated traffic
density and congestion.

2.1 Model Formulation

A TWM multimap Πn is a collection of network maps [μn
i ] referring to the same

urban area Θn and traffic vehicle groups [Ωn
k ] (called fleets) as denoted in 1.

Each urban area should have its own set of multimaps. This area could cover a
whole city or just sectors.

Πn = {[μn
i ]} (Θn, [Ωn

k ]) (1)
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Each map instance μn
i that belongs to a multimap Πn is a version Θn

i of the
traffic network Θn, affected by a time constraint set Γn

i and applicable for some
traffic vehicle groups [Ωn

k ]i that are a subset of [Ωn
k ].

Each urban area Θn has a standard traffic network representation formed
by a graph of geographical nodes ηn

k connected by edges, being each edge εnk,j
the traffic link with lnk,j lanes that connects nodes ηn

k and ηn
j with a weight βn

k,j .
MuTraff multimaps use multiple weight distribution functions Fn for assigning
geographical values to the βn

k,j factor for each edge. With this formulation, stan-
dard traffic maps use the function Fn

std that just consider lane-speed Sk,j for
providing the edge weight βn

k,j .

βn
k,j = Fn

std(ε
n
k,j) = α ∗ Sk,j (2)

In our initial experiments, we have tried statistical distributions such as
normal-N 3 to create weight distributions in the maps that allow traffic disper-
sion in the network, enabling vehicles to use route alternatives recommendations
for each fleet [Ωn

k ]. We scale weights with factor δ (δnormal.a.b = normal(a, b)).

Fn
normal.a.b(ε

n
k,j) = α ∗ Sk,j ∗ (1 + δnormal.a.b) (3)

There will be a population of
[
υk
i

]
vehicles grouped by [Ωn

k ] fleets. Those
vehicles that do not belong explicitly to a fleet, will be assigned to the standard
Ωn

0 fleet. The percent of vehicles that use MuTraff at any time is called the
adherence factor ψn and is calculated as the percent of vehicles not using Ωn

0 .
Vehicles will generate

[
Tk

j

]
trips during observations times. Each trip in gen-

eral is composed by the vehicle identification, the starting timestamp, the start-
ing point (origin node) Oj , the final destination point (node) Dj and tuple with
possible intermediate stops Pj.

For the map-distribution approach, depending on each concrete time epoch,
each fleet has a specific map μn

i that belongs to a multimap Πn.This map is
distributed to its individuals (on-demand or by publication to subscriptions).
Vehicles not classified or in general belonging to standard Ωn

0 fleet will use the
standard map Θn. The vehicle’s agent calculate for each trip the shortest-path
r(T k

j ) route or hyper-path using the corresponding map (standard or ad-hoc
received multimap) valid for this time-interval. This calculation will use some of
the available routing algorithms

#
(Dijkstra, A*, etc).

The agent confidence factor ϕj is a utility function that evolves in time based
on previous experiences or available road and traffic information. Agent’s route
recommendation usage will vary for every individual based on the confidence
factor ϕj that should overpass certain subjective threshold Ki.

3 Experiments and Results

Though Traffic Weighted Maps (TWM Πn) effects on traffic are suitable to be
integrated with current macro, meso and microscopic traffic simulators [21], they
all use Θn maps as urban network representation. We have developed MuTraff
simulator MTS over SUMO [3] that implements a car-following microscopic sim-
ulation environment.
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3.1 Experiments Design

GRID16 network is composed of a matrix of horizontal and vertical roads of 16
horizontal × 16 vertical paths, with uniform edges of 50 m and single or double
lanes. The maximum speed is limited to 50 km/h (13,9 m/s). It uses 5 traffic
assignment zones (TAZ [3]): TAZ 1 to 4 are located in the external sides of the
grid, TAZ 5 covers the whole grid Fig. 2.

Fig. 2. GRID16 network and TAZ configuration for experiments.

The traffic demand we will use in the experiments is composed by 4 differ-
ent fleets: cars (44%), taxis (33%), buses (11%) and motorbikes (11%). Zones
1–4 generate directional crossing traffic from side to side, originating from one
edge TAZ to an opposite edge TAZ (directional), zone 5 generates random inter-
nal traffic. As a reference value we will use the XS and M-size for standard
traffic demand. TWM parameters used are: 8 maps per TWM, static weights
with Fn

std(ε
n
k,j) and Fn

normal.0.5,0.5(ε
n
k,j) (random distribution centered on 0.5 and

amplitude of 0.5, named as random05). Route selection algorithm
#

= Dijkstra.
Current experiments consider global traffic network enhancement. They are

checked for the whole network at the end of the simulation and also for each
edge in the network at every time-step of the simulation: Routed traffic demand,
as number of vehicles successfully routed against the total traffic demand (global
and per fleet). Mean and median travel time, as a measure of global travel dura-
tions. Mean and median route distance, as a measure of global travel distances.
Travel time dispersion, as an histogram of travel durations, to check how many
vehicles have been affected during the experiments. Variance would provide us
a single measure but a dispersion measure will give us a better insight into how
this variance is occurring inside the population.
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3.2 Non-TWM Routing in Congested GRID16 Network

This simulation provides the reference for network traffic performance using a
full traffic scenario combining internal random and directional traffics without
applying the multimap algorithm. Agents use shortest-path algorithm to select
the route without predictive routing. Those agents traveling the same trip will
use the same route. Figure 3 shows how traffic congestion starts at the edges
as traffic is trying to enter the network and progressively the network gets con-
gested. and due to the fact that traffic is fully internal, congestion gets stationary.
Getting deeper inside the initial congestion scenario, we can appreciate how pre-
ferred edges selected for the trip routes are being blocked (number of halted
vehicles).

Fig. 3. Grid16. Full traffic not using multimaps, evolution and details.

3.3 TWM Routing Applied to Non-congested GRID16 Network

In order to analyze the effects of TWM on the congested network, we will use
several drivers confidence factors to reflect TWM adoption (ψn 5%, 10%, 20%,
50% and 100%). Simulation uses XS-size full traffic formed by 1300 vehicles
(internal and directional trips). Multi-maps use random05 distribution (normal
distributed random) with 8 TWM maps.

Figure 4 shows the histograms corresponding to the different ψn mentioned.
Each histogram compares no-TWM and 8 maps TWM application scenarios.
We can see that even in a low adoption schema as ψn

0.05, travel time starts to
enhance. When ψn increases over 50% enhancements in mean travel-time are
really relevant (23% travel time) growing to 48% for a 100% adoption of TWM.
Last histogram shows perfectly how congested trips (green graph) have been
reduced or even disappeared (blue graph). Mean route lengths have not changed
significantly.

3.4 TWM Routing Applied to Congested GRID16 Network

Now we check the impact of TWM distribution on traffic performance using a
congested full traffic scenario (M size, 2800 vehicles). In order to approach a
more realistic scenario we use 2 lane paths for the whole network. We use the
same random05 maps (uniformly distributed random) with 8 maps distribution.
We study just adherence factor ψn

0.5 = 50% and ψn
1 = 100% values, as they show

how much multi-maps can enhance congestion.
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Fig. 4. GRID16 routing XS traffic with ψn
0.05, ψn

0.2, ψn
0.5, ψn

1 (Color figure online)

As we can see from Fig. 5 histogram, applying multimaps to the near-
congested network with ψn

0.5 enhances mean travel-time 19,65% and median over
13%. ψn

1 raises up to 42% and 28% respectively. As shown, when ψn increases,
the whole network gets enhanced. Drivers that were having good traffic perfor-
mance are not affected by the multi-maps, but congested drivers acquire better
routers to get to their destination. Specific congestions are cleared and overall
travel-time increases. And, moreover, no mean router length is affected. Global
metrics for gas emissions and noise are dramatically reduced.

Fig. 5. Grid16-2lanes. Congested network with ψn
0.5and ψn

1 .
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4 Conclusions and Future Works

Studies in reduced scenarios and with a random map generation, oriented to
traffic balancing, have obtained satisfactory results leading to traffic indicators
enhancements between 20% and 50%. Experiments conducted with ideal canon-
ical traffic network show that multimap approach improves highly global traffic
travel-time, starting at low adoption scenarios, and providing best performance
in high-adoption and highly congested situations.

The benefits of the multimap approach include the following: (1) the possi-
bility of automating early and real-time decision making; (2) generation of an
integral model for the application of management and control policies; (3) can
be offered as a service (SaaS model); (4) it is conceived as a evolutionary plan-
ning model, based in traffic feed back and learning cycles; (5) is non-intrusive
and compatible with existing traffic management frameworks and traffic agents;
(6) reuses existing data (Smart-Cities, OpenData) adding value over them; (7)
is compatible with other existing algorithms and techniques; (8) drivers’ agents
autonomy and privacy is preserved as the multimap model takes into account
individual freedom of route choice; (9) it allows for the articulation of contin-
gency plans and the integration of traffic prognosis models.

MuTraff stands out from an innovative perspective in the following: (a) it
offers an integrated planning and re-planning model, extensible and open; (b) it
enables traffic categorization for application to very different groups and situa-
tions; (c) it is replenished and self-learning.

Future work will cover: (a) adding user-perspective for evaluation of TWM
impact that will condition the adherence factor; (b) simulation on real cities
scenarios; (c) generation of hyper-paths based on TWM; (d) design of a platform
architecture for MuTraff real deployment and (e) adding new simulation engines:
microscopic and mesoscopic for fast TWM generation responding to real-time
incidents.
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