
Massive Multi-agent Data-Driven
Simulations of the GitHub Ecosystem

Jim Blythe1(B), John Bollenbacher2, Di Huang1, Pik-Mai Hui2,
Rachel Krohn3, Diogo Pacheco2, Goran Muric1, Anna Sapienza1,

Alexey Tregubov1, Yong-Yeol Ahn2, Alessandro Flammini2,
Kristina Lerman1, Filippo Menczer2, Tim Weninger3, and Emilio Ferrara1

1 USC Information Sciences Institute, Marina del Rey, CA, USA
{blythe,dihuang,gmuric,annas,tregubov,lerman,ferrarae}@isi.edu

2 Indiana University, Bloomington, IN, USA
{jmbollen,huip,pacheco,yyahn,aflammin,fil}@iu.edu

3 University of Notre Dame, Notre Dame, IN, USA
{rkrohn,tweninger}@nd.edu

Abstract. Simulating and predicting planetary-scale techno-social sys-
tems poses heavy computational and modeling challenges. The DARPA
SocialSim program set the challenge to model the evolution of GitHub, a
large collaborative software-development ecosystem, using massive multi-
agent simulations. We describe our best performing models and our
agent-based simulation framework, which we are currently extending to
allow simulating other planetary-scale techno-social systems. The chal-
lenge problem measured participant’s ability, given 30 months of meta-
data on user activity on GitHub, to predict the next months’ activity
as measured by a broad range of metrics applied to ground truth, using
agent-based simulation. The challenge required scaling to a simulation of
roughly 3 million agents producing a combined 30 million actions, acting
on 6 million repositories with commodity hardware. It was also impor-
tant to use the data optimally to predict the agent’s next moves. We
describe the agent framework and the data analysis employed by one of
the winning teams in the challenge. Six different agent models were tested
based on a variety of machine learning and statistical methods. While
no single method proved the most accurate on every metric, the broadly
most successful sampled from a stationary probability distribution of
actions and repositories for each agent. Two reasons for the success of
these agents were their use of a distinct characterization of each agent,
and that GitHub users change their behavior relatively slowly.

Keywords: Massive scale simulations · Collaborative platforms ·
GitHub

1 Introduction

Two significant challenges on the way to realizing the promise of agent-based
social simulation for policy evaluation and social science are making effective
c© Springer Nature Switzerland AG 2019
Y. Demazeau et al. (Eds.): PAAMS 2019, LNAI 11523, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-24209-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24209-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-24209-1_1

4 J. Blythe et al.

use of available data and scaling to planetary-sized cognitive agent simulations.
As a first step, the DARPA SocialSim challenge problem measured participant’s
ability, given 30 months of meta-data on user activity on GitHub, to predict
the next months’ activity as measured by a broad range of metrics applied to
ground truth, using agent-based simulation. The challenge involved making pre-
dictions about roughly 3 million individuals taking a combined 30 million actions
on 6 million repositories. We found that simulations of small subsamples of the
population, on the order of tens or hundreds of thousands of agents, led to incon-
sistent and often misleading results, so a full-scale simulation was developed. It
was also important to use the data optimally to predict the agent’s next moves.
We describe the agent framework and the data analysis employed by one of the
top performers in the challenge. The team used a variety of learning methods
contributing to six different kinds of agents that were tested against a wide range
of metrics. While no single method proved the most accurate on every evalua-
tion metric, the broadly most successful of those tried sampled from a stationary
probability distribution of actions and target repositories for each agent. Two
reasons for the success of this agent were that individuals on GitHub change
their behavior relatively slowly and that distinct information was maintained
for each agent without generalizing across agents. Our work that improves the
performance achieved during the timeline of the challenge builds on these agents
to incorporate novel behavior through further data analysis.

This paper makes the following contributions: First, we describe the agent-
based simulator we developed to carry out massive-scale simulations of techno-
social systems, which provides support for simulations of cognitive behavior and
shared state across multiple compute nodes. Second, we present the inference
methods that we employed to implement different agent-based models, based
on statistical modeling of historical activity, graph embedding to infer future
interactions, Bayesian models to capture activity processes, and methods to
predict the emergence of new users and repositories that did not exist in the
historical data. These are novel applications of existing analytical tools to derive
agent models from available data. Third, we provide a rigorous evaluation of the
performance of six different models, as measured by a wide range of metrics, in
simulating different scenarios concerned with user and repository popularity and
evolution, as well as multi-resolution accuracy at the level of individual agents,
groups of agents (e.g., communities, or teams), and the whole system. We also
describe the DARPA SocialSim GitHub Challenge, provide a characterization of
its rules, and describe how our team tackled it. Our platform and models are
general in scope, and have also been applied to large-scale agent simulations of
behavior on the Twitter and Reddit social media platforms.

2 Challenge Problem Description

GitHub is a software social network where users interact with each other by con-
tributing to repositories, following or becoming a member of specific projects,
and interact with repositories through actions such as forking, committing, etc.

Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem 5

It is interesting to simulate since it combines aspects of social networks and col-
laborative work, and simulation may provide insights into team formation and
productivity as well as aspects of widely-used code including the spread of vul-
nerabilities. The DARPA SocialSim Challenge aims at simulating specific types
of interactions between users and repositories on GitHub over time. In particu-
lar, it focuses on the simulation of social structure and temporal dynamics of the
system, as well as looking at individual, community and population behaviors.

There are ten event types in the model: create or delete either a repository,
a tag, or a branch (respectively Create and Delete), create or comment a pull
request (respectively PullRequest and PullRequestReviewComment), create an
issue (Issues, IssueComment), and push (Push, CommitComment). Moreover, a
user can watch and fork existing repositories. Note that in the GitHub API a
watch event corresponds to starring a repository.

Given as an input the temporal information of users’ actions on specific repos-
itories, we aim at predicting future events of GitHub providing our simulation
output in the following format: time, eventType, userID, repoID. Furthermore,
the simulation aims at modeling not only the future events of existing users and
repositories but also the creation/deletion of new repositories and users.

The training set we used for our simulation comprises all events of public
users and repositories in the period spanning from 8/1/17–8/31/17 and 1/17/18–
1/31/18, as well as metadata such as repository languages, user types etc. This
includes a total of about 2.0M users and 3.3M repositories. For the challenge,
we were asked to simulate the events, users, and repositories of GitHub from
2/1/18–2/28/18. As the training set included a gap of 4.5 months, additional
information about the state of the system was provided, including all the profiles
from users and repositories that were created during the gap.

3 Agent Framework and Domain Implementation

In this section we describe the simulation framework and the model of GitHub
that was shared by all agents developed for the challenge. We also describe steps
to scale the simulation efficiently to millions of agents and repositories.

To implement our agent models we used FARM—an agent-based simulation
framework implemented in Python that supports large-scale distributed simula-
tions [5]. FARM also keeps track of the repeated and systematic experimentation
required to validate the results from multi-agent simulations. FARM supports
agents developed with the DASH framework [4], although it may be used with
any agent through an API. The DASH agent framework supports simulations
of cognitive behavior, and includes support for dual-process models, reactive
planning and spreading activation.

In our experiments, DASH agents represent GitHub users and implement
GitHub events. Agents in FARM can communicate either directly or by taking
actions that are sent to a shared state object, called a hub, that can be observed
by other agents. In the GitHub simulation model, every action taken by a user
acts on a repository, so communication is modeled indirectly by sending actions

6 J. Blythe et al.

to a hub that maintains the state of a set of repositories and provides information
to agents about their repositories of interest.

When all the agents and state relevant to a simulation reside in a single
image, communication and action are efficiently implemented as method calls.
However as we scale to millions of agents and repositories, some hardware cannot
accommodate all the relevant state on a single host. FARM provides a multi-
process infrastructure to divide agents and their state across multiple hosts as
needed in a way that is transparent to the agent developer [5]. One hub is present
on each image and shared state is managed with Apache ZooKeeper. Frequently
interacting users and repositories can be allocated on the same compute node
to minimize cross-host communications. Using a multi-level graph partitioning
algorithm to minimize the amount of communication across partitions based on
the user-repository links found in the training data, simulation time was reduced
by 67% [5]. We further improved performance with demand-driven shared state,
so that repositories were only synchronized between compute nodes when agents
on different nodes began to interact with them. Finally, we modified DASH to
reduce the space requirements of each agent so that the required simulations,
with around 3 million agents taking a combined 30 million actions on 6 million
repositories, run on a single host with 64 GB of memory in around 20 min.

4 Agent Models

4.1 Stationary Probabilistic Models

A stationary probabilistic model is a simple way to describe user behavior with
a finite number of available actions. In the following models, each user’s actions
are determined by a stationary probability distribution built from the past his-
tory of events the user has initiated. Two aspects of each user’s behavior are
determined: their overall event rate and the probability of each action. Both of
these parameters are computed individually for each user.

We implemented three variations of probabilistic simulation models. The first
model selects an event type and independently selects the repository on which
the selected action is to be applied. We refer to this as be baseline model.

The second model, called the ground-event model, selects an event type and
repository simultaneously. As in the baseline model, in the ground-event model
frequencies are computed from historical data but in this case the frequency is
computed for each event and repository pair.

The third model, called the preferential attachment model, extends the base-
line model by redefining user behaviour for watch and fork events. When a user
agent decides to watch a new repository, it first selects a neighboring user, who
also worked on a repository this user interacted with, and then selects a repos-
itory with which the selected neighbor previously interacted. The neighboring
user and repository are selected based on their popularity.

In all models, the frequency of users’ actions is determined by the event rate
observed in the past for each user. The event rate remains constant for each user
throughout the simulation. In all three models, the probabilities of choosing each

Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem 7

event type, of selecting a repository, and of selecting a repository and an event
as a pair are determined by frequencies computed from historical training data.

These stationary probabilistic agent-based simulation models compute prob-
abilities for each user agent individually and thus capture individual charac-
teristics of each user, creating a high resolution simulation. The approach is
computationally simple enough to be scalable to millions of agents and repos-
itories. Generally, this modeling approach is justified if users’ future behavior
tends to be similar to their past behavior. A limitation of these models is that
they only predict users’ interactions with repositories they have interacted in
the past. That means that these models should be augmented with additional
behavior rules to introduce previously unobserved user-repository interactions.
The preferential attachment model is an example where such rules were intro-
duced.

4.2 Link Prediction Through Embedding

One way of simulating user-repository interactions in GitHub is by predicting the
likelihood that a user will perform an event of a certain type on a repository. We
can formulate this problem as a link prediction task, by describing our system as
a bipartite network in which each node is either a user or a repository and links
in each network are specific events. By predicting such links, we can measure
the probability of specific events between any given user-repository pair. Each
network is built as follows. Nodes belong to either the group of users U or the
group of repositories R, and a node u ∈ U is linked to a node r ∈ R if the user u
performed an event on the repository r. We weight each link by computing the
number of times the user performs that event. As a result, we generate a total of
12 bipartite networks, one for each event type with the exception of create and
delete events. We can then represent each of the built networks as a weighted
adjacency matrix Ae ∈ R

|U |×|R|, where e is an event type. However, this link
prediction problem does not take into account new users and repositories that
have been added (or removed) by the system.

Table 1. Average MAP for links and weights prediction on GitHub event networks.

Push PullRequest IssueComment Fork Watch

Random 0.01 0.03 0.02 0.03 0.03

LE 0.13 0.30 0.33 0.14 0.07

HOPE 0.13 0.25 0.26 0.17 0.10

GF 0.25 0.42 0.48 0.16 0.06

Given the matrix Ae for each event type e, we compare embedding meth-
ods against a random baseline: Graph Factorization (GF), Laplacian Eigenmaps

8 J. Blythe et al.

(LE), and Hybrid Orthogonal Projection and Estimation (HOPE). We test per-
formance using the MeanAveragePrecision (MAP), which estimates a model pre-
cision for each node and computes the average over all nodes, as follows:

MAP =
1

|U | + |R|
|U |+|R|∑

i

∑
k Pr@kI {Epred,i(k) ∈ Eobs,i}

|{k : Epred,i ∈ Eobs,i}| , (1)

where, Pr@k = |Epred,i(1:k)∩Eobs,i|
k is the precision at k, and Epred,i and Eobs,i

are respectively the predicted and observed edges for node i.
The results are shown in Table 1, where we consider the 5 main actions that

users can perform on GitHub: contributions (push and pull), issues, and popu-
larity (fork and watch). Here, we highlighted the highest performance obtained
among the methods in each case. All the methods outperform our random base-
line, which predicts links in a random fashion. Moreover, GF performs better
than the non-linear models in the majority of cases. This is not true for popular-
ity related events, where we find that HOPE is the best predictor. As discussed
in Sect. 7, forks are more stable than watches. Thus, HOPE is able to capture
non-linearity in the watch events better then GF. However, GF is comparable
to HOPE in predicting forks, and it is also much more scalable. Thus, we decide
to select GF and its link prediction to inform our agents.

4.3 Bayesian Model

The GitHub Challenge can be seen as finding relationships between the three
governing entities: users, repositories, and events. We empirically measured the
probabilities of these relationships to adjust the posterior probabilities of a gen-
erative model. In this section, we present exploratory findings and how they
shaped the overall flow of our Bayesian model. Figure 1 shows one iteration of
the Bayesian model, i.e., creating a tuple with a user, a repository, and an event
type. In general terms, the model first chooses between to create a new user or
to select an existing one. Then, it decides between a category of events. Finally,
it selects a repository and an action to perform.

Fig. 1. Bayesian model from data inferred frequencies.

Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem 9

We investigated the trade-off between recency and history as driving forces
to popularity [2]. The results showed that less is more in terms of the amount
of data needed to predict users’ activity level. For instance, the top-200 most
active user rank of a particular month will intersect less with the rank from
previous months as we aggregate more data; e.g., while +75% of the users in the
rank remains when the rank is computed only from one month, the intersection
drops to 72%, 59% and 56% if we aggregate data from the previous 3, 5, and
7 months, respectively. Recent users, i.e., the ones active in the previous month,
represent more than 50% of the active users in the following month, and they are
responsible for 4 out of 5 events being generated. The user selection implements
a rank model [11] based on user’s activity level, with past activity being less
weighted using a 30-day half-life decay. From repository perspective, however,
new ones are more likely to be active in the following month than old ones, in
absolute numbers (68% vs. 10%) and in volume of events (38% vs. 5%). Yet,
recent repositories account for almost 3 out of 5 events.

To address this imbalanced scenario, of increasing newcomers receiving lit-
tle attention, the model splits between one-time or multiple-time events before
choosing the repository. For instance, the same repository cannot be created
twice and it is unlikely to be watched or forked more than once by the same
user; conversely, users push and create issues multiple times on the same repos-
itory. The analysis of the event-specific bipartite networks of users and reposito-
ries reveals different mechanisms underling them. For instance, in the network
formed by watch events, the degree distribution of repositories (i.e., the distri-
bution of number of watches per repository), fits a steep power law (γ = 1.81
and xmin = 3); the pull request distribution, however, fits a longer tailed power
law (γ = 2.54 and xmin = 291). There are two independent rank models [11] to
select which repository to watch or to fork.

Users work more on their repositories (owners) than on other’s (contrib-
utors). Moreover, they usually behave different depending on these roles. A
owned-repository is selected with probability proportional to the amount of
previous activity. Other’s repositories are selected using a random walk with
small length given by a geometric distribution (mean 2) capturing user’s social
vicinity. This mechanism assumes a user is more likely to work on repositories
he/she already worked with or from previous collaborators. Nevertheless, 88%
of the first action of users to a repository (repository discovery) is a one-time
event: watch (64%), fork (20%), or create (4%). Hence, for multiple-time events
the model first decides between working on a user’s own repositories or not.
Although pushes are the most prevalent action regardless repository’s owner-
ship, some events seemed to be over/under represented depending on ownership.
For instance, issue comment, commit comment, and watch are more likely to be
performed by contributors on others’ repositories.

4.4 Modeling New Users and Repositories

GitHub grows quickly. Almost 50% of all user accounts that were active in 2017
were created in the same year and a significant fraction of repositories are also

10 J. Blythe et al.

new, as mentioned in Sect. 4.3. Such a growth rate yields a system with high num-
ber of new active agents. Previously described stationary probabilistic models
do not fully address the behaviour of the new agents, since they have no history
of interactions. Here, we describe an extension of the models that focuses on
predicting the actions of the new agents and newly created relations. Without
a historical record of events between user and a repository, the most informa-
tive piece of data is missing. Still, both of the entities can be described by a
set of their native features, such as: age or number of followers. We compiled a
total list of 124 features extracted for a sample of user-repository pairs. Features
include various statistics on user and repository activities for all event types.

0 0.1 0.2 0.3 0.4 0.5 0.6

Repo. description

repos owned

User age

followers

forks

watchers

Same lang.

User is owner

R2

Step 1 Step 2 Step 3 Step 4 Step 5

Target variable, #e 1st feature 2nd feature R2

Watch # watchers # repos owned 0.306
Push User is owner User age 0.199
Fork # followers # repos owned 0.181
Create User is owner Repo. age 0.142
PullRequest Same lang. # forks 0.109
Delete Same lang. User age 0.090

Fig. 2. On the left, the variation in the target variable #PushEvents, explained by
each feature in each consecutive step of the S3D algorithm. On the right, the two
most important features to predict the number of events for a new user-repository
interaction. The R2 column shows the total gain of the two features.

The aim is to build a parsimonious model, able to predict the frequency of
a particular event type e performed by user u on a repository r, conditioned by
non-existing history of interaction between u and r. The critical part of model
creation is feature selection, as we are interested in minimizing the set of features
by selecting only the most informative ones. For that purpose, we use Structured
Sum of Squares Decomposition (S3D) algorithm [10]. The importance of features
is quantified by a measure of variability R2 of outcome variable Y the feature
explains. A high value of R2 suggests the strong predictive power. To prevent
overfitting, we optimize an inter-model parameter λ.

For each event type e from the set of event types E we build the predictive
model that for a given pair of user and repository [u, r] estimates the number
of events #e performed by the user u on the repository r. This way we create
14 different models, one for each event type. With each iteration we select the
most informative feature which explains the largest amount of variation in the
target variable #e. Each successive feature explains the most of the remaining
variation, conditioned on the previous one. The S3D algorithm allows the visual
inspection of the selected important features. The iterative process of feature
selection is illustrated in Fig. 2. To predict the number of PushEvents, a user u
is going to perform on repository r, the most important feature is the information
of the repository ownership. Other features such as user age, # watchers or #
user followers become important in the following steps.

Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem 11

The rank of features differ among the models. Still, the most informative
features for predicting the actions of a user to a repository, are derived from
their mutual relation. Furthermore, many actions depend on the information of
the repository ownership (Fig. 2). User is owner is a boolean variable indicating
if the user is the owner of the repository. For some other events, the Same lang.
variable becomes important. It indicates if the programming language assigned
to a repository is the same as the programming language mostly used by a user.
Even though the R2 can not inform on a model accuracy, it can suggest the
potential of a model’s prediction performance.

5 Candidate Agents and Results

We developed GitHub user agents that implemented the following models
described in the previous section: (1) the null model, (2) the probabilistic baseline
model, (3) the probabilistic ground-event model, (4) the preferential attachment
model, (5) link prediction via embedding (LPE), and (6) the Bayesian model.

The null model is just a shift of the past data to the future. In this case we
used two weeks immediately preceding the test period and returned it, with dates
adjusted, as the new prediction. Both baseline model and null model were used
to compare relative performance of other agents. The LPE model was the best
performing of a number of machine learning-based models that were explored.

The DARPA SocialSim Challenge design had multiple research questions in
mind. There were five groups of research questions that covered user engagement,
contributions, reputation, influence and popularity. To evaluate fidelity of the
simulation a set of metrics was developed by PNNL. These metrics evaluate
simulation fidelity on three levels: node-level, community-level and population-
level. Although it is not feasible to discuss all metrics in the context of this
paper, we selected the following five to discuss in detail, which cover user and
repository metrics on individual, community and population levels.

User popularity - top 500 most popular users, measured as the total number of
watch and fork events on repositories owned by user. Calculated as Rank-Biased
Overlap (RBO) [21].

Repository popularity - top 500 popular repositories. Calculated as RBO.

Repository event count issues - the number of issue events by repository.
Calculated as R2.

Repository contributors - the number of daily unique contributors to a repos-
itory as a function of time. Calculated as Root Mean Square Error (RMSE).

Community contributing users - percentage of users who perform any con-
tributing (e.g. push, pull request events) actions within the community.

To answer various research questions of the DARPA SocialSim Challenge
more than a dozen metrics were used to evaluate our simulation results. Figure 3
on the left shows evaluation results for two bounded metrics: repository popular-
ity, user popularity. All metrics are scaled to the [0, 1] interval, higher is better.

12 J. Blythe et al.

All simulation models except the link prediction via embedding model showed
comparable results. Note that the popularity metric is not calculated for users
and repositories that were created during the test period.

Predicting the 500 most popular users and repositories is difficult with a
constant rate of events, due to high month to month turn out. On average about
30% of repositories in the top 500 change every month. Therefore, we can see that
even the null model works better with respect to repository popularity metric.

The LPE model uses generalized rules to predict the user’s action, which
some cases leads to long-tail distributions of probabilities of repository selec-
tion. That process introduces noise and the model was also computationally
intensive because it requires reconstruction of the complete user × repository
matrix. To optimize memory usage when repository selection probabilities were
computed we truncated long tails (repositories with small probabilities). We used
a threshold of 100 repositories per user. The ground-event model showed slightly
better results on popularity metrics than the baseline model and the preferential
attachment model. All three models use the same approach to compute rate of
users’ activity but different ways to choose repositories. The preferential attach-
ment model did not leverage much from explicitly modeling fork events and
selecting repositories that also popular across user’s neighbors.

Repository popularity User popularity Community contributing users
0.0

0.2

0.4

0.6

0.8

1.0
Null model
Bayesian model

Preferential attachment
Baseline model
Ground-event model
Repository contributors

10.08
12.26

10.11

15.41 16.11
13.9

Repository event count issues

0.03 0.05

0.58

0.74 0.74 0.75
Null model
Bayesian model
Link prediction via embedding
Preferential attachment
Baseline model
Ground-event model

Fig. 3. Left: popularity metrics, RBO, and community contributing users, higher is
better. Center: Repository contributors, RMSE, lower is better and right: event issue
count, R2, higher is better.

The LPE model generally showed poor results on repository-centered met-
rics. All models except the null model had a high percentage (more than 0.75) of
community contributing users. The only two models that performed better than
the baseline were the preferential attachment model and ground-event model.
Figure 3 shows repository contributors - the number of daily unique contributors
to a repository as a function of time. It is calculated as RMSE, lower is better.
The null model and the link prediction model showed the lowest values here.
Figure 3 also shows repository event count issues - the number of issue events by
repository. It is calculated as R2, higher is better. Both the null model and the
bayesian model show much lower value compare to all other values. The station-
ary models capture user-repository interactions with better precision because
they rely only on training data specific to that user-repository pair.

Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem 13

6 Related Work

Many groups have addressed large-scale agent simulations over the years. Tumer
et al. consider simulations for air traffic flow management, handling more than
60,000 flights [20]. Distributed simulations have been developed [7,8,17], with
agents typically partitioned by geographic location and migrated between com-
pute hosts as they move in the simulated space. Noda describes a social sim-
ulation of tens of thousands of agents to help explore policies for urban traffic
and disaster response [16]. Repast has been used to simulate up to 109 agents
in a cascade simulation on supercomputers [7]. To our knowledge, the simula-
tions in response to the SocialSim challenge are the first systematic experiments
involving millions to tens of millions of agents with individual complex behavior.

Researchers have given an overview of the GitHub platform and
user/repository statistics [9,12,13]. The amount of available data on GitHub
allows observing group behaviour through the collaboration network structure
[19] and studying the interaction patterns inside teams on public GitHub repos-
itories [14,15,18]. Another line of research focuses on the success and popularity
of open-source projects. Successful and popular repositories usually have consis-
tent documentation [1,22], various growth patterns [6], and popular program-
ming languages [3].

7 Discussion

We demonstrated novel agents built using six different learning principles to
predict the future behavior of GitHub based on training data. The agents were
tested in the same simulation environment with the same implementation of
GitHub actions. Across a broad array of prediction metrics, no single approach
dominated the others. The Bayesian model performed well on user popularity
while the stationary per-agent action distributions performed better on predict-
ing contributors and event counts. One interesting constant across all the models
was that, since overall behavior is constantly changing, it was detrimental to use
all available training data in building the agents. Instead, one month of data
proved optimal across most of the agents, although this precise number is no
doubt dependent on the social network in question.

The main contribution of this work is to develop a framework for massive-
scale simulations in which agents embodying very different ideas about decision
making and data use can be directly compared. Our approach is general, and has
recently been applied to the Reddit and Twitter social networks. We are also
considering ways to combine these agent models, both intra-agent, combining
some of the best features of different approaches in a single agent, and inter-
agent, with simulations with more than one type of agent.

Predicting new user-repository pairs requires the development of more gen-
eral models that will be used to predict new pairings among different types of
entities. While developing the probabilistic models, we were constantly faced
with a particular chicken-egg problem: which pair to choose the first from the

14 J. Blythe et al.

user-repository-event triad. The models implemented in the simulation make use
of previously established links between users and repositories. We are developing
a model to predict the number of events performed by a user both on old and
new repositories. For a given user and type of event, the model will be able to
identify a small subset of candidate repositories for the event, regardless of the
previous interaction between the observed user and their repositories.

Addressing the new users and repositories is yet another challenge. Modeling
the behaviour of entities never seen before can not rely on the historical records.
Almost 20% of events in recent months have been performed by new users. Both
new and old users continuously create new repositories. Even with such a high
growth rate, GitHub is considered to be relatively slow-paced compared to some
other systems, such as Twitter or Reddit. One way to address the newly created
entities is to observe some latent features inferred from the user who created it
or from the characteristics of the entity itself, avoiding the reference to the past.
Therefore, we are continuing to develop the set of models explained in Sect. 4.4.

Acknowledgments. The authors are grateful to the Defense Advanced Research
Projects Agency (DARPA), contract W911NF-17-C-0094, for their support.

References

1. Aggarwal, K., Hindle, A., Stroulia, E.: Co-evolution of project documentation and
popularity within GitHub. In: Mining Software Repositories, MSR (2014)

2. Barbosa, H., de Lima-Neto, F.B., Evsukoff, A., Menezes, R.: The effect of recency
to human mobility. EPJ Data Sci. 4(1), 1–14 (2015)

3. Bissyand, T.F., Thung, F., Lo, D., Jiang, L., Rveillre, L.: Popularity, interoper-
ability, and impact of programming languages in 100,000 open source projects. In:
IEEE 37th Annual Computer Software and Applications Conference (2013)

4. Blythe, J.: A dual-process cognitive model for testing resilient control systems. In:
5th International Symposium on Resilient Control Systems, pp. 8–12, August 2012

5. Blythe, J., Tregubov, A.: Farm: Architecture for distributed agent-based social sim-
ulations. In: IJCAI/AAMAS Workshop on Massively Multi-agent Systems (2018)

6. Borges, H., Hora, A.C., Valente, M.T.: Predicting the popularity of GitHub repos-
itories. In: PROMISE (2016)

7. Collier, N., North, M.: Parallel agent-based simulation with repast for high perfor-
mance computing. Simulation 89(10), 1215–1235 (2013)

8. Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed load balancing
for parallel agent-based simulations. In: 19th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP). IEEE (2011)

9. Dabbish, L.A., Stuart, H.C., Tsay, J., Herbsleb, J.D.: Social coding in GitHub:
transparency and collaboration in an open software repository. In: CSCW (2012)

10. Fennell, P., Zuo, Z., Lerman, K.: Predicting and explaining behavioral data with
structured feature space decomposition (2018). https://arxiv.org/abs/1810.09841

11. Fortunato, S., Flammini, A., Menczer, F.: Scale-free network growth by ranking.
Phys. Rev. Lett. 96(21), 218701 (2006)

12. Gousios, G., Spinellis, D.: Ghtorrent: GitHub’s data from a firehose. In: 9th IEEE
Working Conference on Mining Software Repositories (MSR), June 2012

https://arxiv.org/abs/1810.09841

Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem 15

13. Gousios, G.: The GHTorent dataset and tool suite. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR 2013. IEEE Press
(2013)

14. Klug, M., Bagrow, J.P.: Understanding the group dynamics and success of teams.
R. Soc. Open Sci. 3(4), 160007 (2016)

15. Lima, A., Rossi, L., Musolesi, M.: Coding together at scale: GitHub as a collabo-
rative social network. CoRR abs/1407.2535 (2014)

16. Noda, I.: Multi-agent social simulation for social service design. In: IJCAI/AAMAS
Workshop on Massively Multi-agent Systems (2018)

17. Šǐslák, D., Volf, P., Jakob, M., Pěchouček, M.: Distributed platform for large-
scale agent-based simulations. In: Dignum, F., Bradshaw, J., Silverman, B., van
Doesburg, W. (eds.) AGS 2009. LNCS (LNAI), vol. 5920, pp. 16–32. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-11198-3 2

18. Sornette, D., Maillart, T., Ghezzi, G.: How much is the whole really more than the
sum of its parts? 1 + 1 = 2.5: superlinear productivity in collective group actions.
PLoS ONE 9(8), e103023 (2014)

19. Thung, F., Bissyande, T.F., Lo, D., Jiang, L.: Network structure of social coding
in GitHub. In: Software Maintenance and Reengineering, CSMR (2013)

20. Tumer, K., Agogino, A.: Distributed agent-based air traffic flow management. In:
Autonomous Agents and Multiagent Systems, AAMAS 2007. ACM (2007)

21. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings.
ACM Trans. Inf. Syst. 28(4), 1–38 (2010)

22. Zhu, J., Zhou, M., Mockus, A.: Patterns of folder use and project popularity: a case
study of GitHub repositories. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2014.
ACM (2014)

https://doi.org/10.1007/978-3-642-11198-3_2

	Massive Multi-agent Data-Driven Simulations of the GitHub Ecosystem
	1 Introduction
	2 Challenge Problem Description
	3 Agent Framework and Domain Implementation
	4 Agent Models
	4.1 Stationary Probabilistic Models
	4.2 Link Prediction Through Embedding
	4.3 Bayesian Model
	4.4 Modeling New Users and Repositories

	5 Candidate Agents and Results
	6 Related Work
	7 Discussion
	References

