
Chapter 9
Detailed Case Studies

In this chapter we present a few case studies that demonstrate and possibly expand
the concepts presented earlier in this book in practical applications. Each case study
is often a compilation of several research papers led by the authors and is meant to
highlight system integration and practical considerations.

9.1 Eco-Approach to Signalized Intersections

In Sect. 1.3.2 an overview of published results on eco-approach to signalized inter-
sections was presented. Section 4.1.3 provided a basic overview of signalized inter-
sections and Sect. 7.7 presented more insight about potential energy saving via a
fundamental numerical and analytical treatment.

In this section we provide a case study summarizing published results of a decade
of work on the topic at Clemson University. More specifically deterministic and
probabilistic planning of eco-approach to traffic lights [1, 2], impact on mixed traffic
via trafficmicrosimulation analysis [3], and real-world experimental implementation
[4] are discussed.

9.1.1 Numerical Approach

The goal is to find a velocity profile which reduces the energy consumption during
a trip based on full or partial SPAT information. This problem can be formulated
as an energy (fuel) minimization problem as was treated numerically in Sect. 7.7.1
and analytically in Sect. 7.7.2. Energy minimization requires inclusion of dynamic
models of a specific vehicle and its propulsion system (ICEV, EV, HEV) to relate
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energy use to the velocity profile. To avoid the ensuing computational complexity
and to decouple the choice of optimal speed from a vehicle’s make and model, a
simpler cost function can be used that penalizes a weighted sum of the total trip time
and the acceleration and deceleration, instead of total energy use. The underlying
assumptions in this choice are that idling at a traffic light and excessive acceleration
that lead to braking both cost energywith little to no benefit to the driver. Other factors
such as motion constraints imposed by red intervals, road speed limits, and the fact
that very low velocities will be unacceptable to consumers, can be accounted for by
constraining the solution space. In this case study, the fuel economy for a specific
vehicle model is evaluated a-posteriori, by feeding the optimal velocity profile to a
high-fidelity dynamic model of the vehicle.

We first describe, in Sect. 9.1.1.1, the scenario when deterministic and accurate
SPAT information over the entire prediction horizon is available. When the phase
and timing of upcoming signals are uncertain, a probabilistic term can be added to
the cost function, as described in Sect. 9.1.1.2.

9.1.1.1 Planning with Deterministic SPAT Information

Whenonly a single traffic light is on the horizon, one can use deterministic knowledge
of green and red intervals to plan within the allowable velocity limits a timely arrival
at a green as shown in Fig. 9.1.

To obtain a best achievable energy efficiency baseline, the optimal control problem
is first solved assuming full and deterministic knowledge of signals’ phase and timing
over the planning horizon. Instead of the cost function in (8.2), a simpler and heuristic
cost function is used that can be later transformed to a quadratic program for efficient
numerical solution. The following cost function was chosen,
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Fig. 9.1 Feasible velocity intervals in order to avoid stopping at red, if possible
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where J is the total cost and is indexed over position s with index i that starts at the
current position step k and ends N steps later at step k + N − 1 with N being the
length of the prediction horizon.Here�ti = ti+1 − ti is the time required for a vehicle
to cover the fixed distance�s = si+1 − si between steps si and si+1 given the velocity
at si and the acceleration ai ;�tmin is theminimum time to complete the step if starting
and ending at the maximum velocity and is used as a scaling factor, ai is the constant
acceleration assumed during step i , and amax is the maximum allowed acceleration.
The constants w1 and w2 are weighting terms. Motion constraints imposed by a red
interval are imposed as a soft constraint by inclusion of the term c(si , ti )

1
ε
in the

cost function. The value of c(si , ti ) is zero except for spatiotemporal intervals when
a light is red in which case its value is set to one, and ε is a very small constant (for
example 10−6), such that idling at red is discouraged.

The vehicle kinematics, realized by the following two-state equations, are imposed
as equality constraints. Here s is the independent variable, velocity v and time t are
the two states, and acceleration a is the input:

dv(s)

ds
= a(s)

v(s)
, (9.2)

dt (s)

ds
= 1

v(s)
, (9.3)

Discretizing the above equations with a constant sampling interval of �s and with a
zero-order hold on acceleration, we obtain:

vi+1 =
√

(vi )2 + 2ai�s , (9.4)

ti+1 = ti + 2�s

vi + √
(vi )2 + 2ai�s

, (9.5)

The hard inequality constraints: vmin ≤ vi ≤ vmax and amin ≤ ai ≤ amax are also
enforced. Here vmin and vmax are the road speed limits and can also include lowest
speed acceptable to a driver; amin and amax are the feasible bounds for deceleration
and acceleration.

The above optimal control problem can be solved numerically using Dynamic
Programming (DP) and based on the discretization on position, time, and velocity as
schematically shown in Fig. 9.2. The solution is calculated in one backwards sweep
along the position axis taking advantage of Bellman’s principal of optimality. The
outline of the DP algorithm was described in Algorithm 1 of Sect. 6.2.2.2.
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Fig. 9.2 Schematic of the DP grid

9.1.1.2 Planning with Probabilistic SPAT Information

Because perfect full-horizonSPAT information is not always available as explained in
Sect. 8.2.4, herewe consider the scenariowhere SPAT is known only probabilistically
for instance based on historical data. The cost function in (9.1) is modified to the
following to take into account the probabilistic nature of SPAT information,
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. (9.6)

All parameters and variables in (9.6) are the same as those described for (9.1); the
only new variable is p(si , ti ) which represents probability of green at time ti for
a light situated at position si . Therefore higher costs are assigned to solutions that
pass through time intervals where probability of green is lower. At the limit when
probability of green at si and ti is zero, ln (p(si , ti )) = ∞ and passing through a
red would be discarded. Where p(si , ti ) = 1, this term of the cost function drops to
zero and increases the likelihood that the corresponding velocity will be selected.
The probability of green for each light can be generated based on real-time and/or
historical information as described in Sect. 8.2.4. Minimization of the cost function
(9.6)with the equality and inequality constraints described in the previous subsection,
remains a deterministic optimal control problem. The problem is solved usingDP but
in a receding horizon manner; as new information becomes available, the DP is re-
solved taking into account the updated information over the remaining trip horizon.
Note that an alternative approach will be a Stochastic Dynamic Programming (SDP)
formulation where the expected value of the cost in (9.1) is penalized.
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9.1.2 Simulation Results

9.1.2.1 Single Vehicle Simulation

A vehicle driving down a 800m long street with three traffic signals was simulated in
three scenarios. In the first scenario it is assumed that the vehicle has no information
about the future state of the traffic light, in the second scenario real-time probabilistic
SPAT information as described in Sect. 8.2.4 is assumed, and the third scenario full a-
priori knowledge of SPAT information is assumed. Each scenario was run 1000 times
in a Monte Carlo type experiment in which the start of red phases were randomized
within a window of sufficient length for the vehicle to complete the route. The total
cycle length, and length of each red were kept constant. Also the proportion of red to
green times across all simulations were constrained to be the same. The start of each
red of a traffic signal was chosen independently of the start of red of the next traffic
signal. In all simulations, the penalty weights in the cost functions (9.1) and (9.1) are
set tow1 = 1/8,w2 = 1/8. The value of ε is set at 10−6. To solve the DP, the solution
space is discretized to distances of 20 m, time increments of 1 s, and velocity steps
of 1m/s as schematically shown in Fig. 9.2. In this discretization grid choice, the
computational time and memory requirements were reasonable for implementation
on a PC.

In calculating the fuel economy, it was not computationally feasible to run all cases
through a simulation cycle with a full high-fidelity vehiclemodel. Therefore a simpli-
fied vehicle model was developed using efficiency maps taken from AUTONOMIE
[5] and a simplified gear shifting logic. For example, the effects of engine start and
stop transients on fuel economy were not modeled in the simplified fuel economy
calculations. The simulated vehicle is a two-wheel-drive, automatic transmission,
conventional-engine vehicle. This vehicle had a total mass of 1580kg, an engine
producing a peak of 115 kW, and a constant electrical load of 200 W. The velocity
profiles generated by the dynamic program were fed to this model to calculate the
fuel economy for each case. This considerably simplified model provides a signifi-
cant reduction in computational time when calculating the fuel economies for large
numbers of simulation cases.

The Monte-Carlo simulation results found in Table9.1 indicate that, for the road
conditions described and with only real-time information and the probabilistic mod-
els, an average of 16% increase in fuel economy could be expected, representing
approximately 62% of the benefit of full and exact traffic signal timing information.

With Monte-Carlo simulations indicating positive results for fixed time traffic
lights, next an example of traffic signals with adaptive timing is presented. Twenty
four hours of recorded traffic signal timing data from a series of signals in an urban
corridor in Northern California is used. Figure9.3 shows the lengths of the green
phases for four different movements of one of these traffic signals.

A vehicle was simulated driving through the three traffic signals every 10min
over the 24h yielding a total of 144 simulated drives per level of information. The
real-world distance between the signals is preserved in the simulation, such that the
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Table 9.1 Monte-Carlo
simulation results reflect the
positive influence of
information, on average, on
fuel economy

Mean (MPG) Standard
deviation
(MPG)

No information 25.9 5.0

Real time information 29.9 3.7

Full information 32.5 3.0
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Fig. 9.3 Histories of green phases of four different movements of a traffic light on the chosen
real-world route, for every cycle over a 24h period (midnight to midnight)

Table 9.2 Fuel economy
results from recorded
real-world traffic signal
timings with simulated
vehicles moving between the
lights reflect the positive
influence of information

Mean(MPG) Standard
deviation
(MPG)

No information 31.7 3.1

Real time information 33.7 3.0

Full information 34.5 3.6

simulated vehicle has to cover the same distance using the same traffic signal timing
offsets as a real driver would encounter. The total simulation distance is 1320 m.
The lights occur at 520, 800, and 1200m mark from the start. The DP resolution
is the same as those set before. No other vehicles are considered to be on the road.
In the case of real-time information the probability of green is calculated using
Eq. (8.16) using a 24 h average of red and green lengths as tr and tg . If more relevant
averages (for example a short-term average, a time of day average, or other statistical
means) are available, they may continue to improve the performance of this real-time
information case.
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The simulation indicates that drivers with access to real-time probabilistic infor-
mation were able to improve fuel economy over drivers with no information by
approximately 6% (Table9.2). This accounts for roughly 70% of the potential gains
available through access to full and exact future knowledge of traffic signal timing.
To deal with unexpected traffic, pedestrians crossing out of cross-walks, and other
disturbances, the DP can be simulated frequently reproducing its cost-to-go map and
optimal policy when necessary.

9.1.2.2 Multi Vehicle Microsimulation

While eco-approach to traffic signals could improve the energy efficiency of the ego
vehicle, its impact on energy efficiency of upstream traffic deserves further inves-
tigation. One such microsimulation study was presented in [3]. Simulations were
conducted in Quadstone Paramics [6] and custom code was developed to simulate
vehicles with the eco-approach functionality. The equipped vehicles receive the tim-
ing of next upcoming traffic light in advance and adjust their speed for a timely
arrival at green based on an analytical solution to the optimal control problem. The
simulation is run in an urban corridor network. The 2.4km (1.5 mile) path con-
tains four signalized intersections with fixed timings. The speed limit of each link is
80km/h (50 mph). Conventional vehicles do not have prior access to traffic signal
information and always try to reach the maximum road speed limit unless affected
by nearby vehicles or traffic signals. Three different traffic demand levels (300, 600,
and 900 vehicles per hour per lane) and seven different penetration levels of equipped
vehicles (100%, 90%, 70%, 50%, 30%, 10%, 0) are considered; therefore 21 simu-
lations were conducted. Fuel consumption was estimated using a simplified model
adopted from [7] which relates the fuel consumption rate to vehicle’s velocity and
acceleration. The parameters of the model are those in [7] and obtained by a third
order polynomial fit to experimental data. It was further assumed that the engine was
idling during negative acceleration consuming a constant idling fuel rate.

Figure9.4 summarizes the energy consumption results for equipped vehicles as
well as conventional vehicles. As shown in this figure, equipped vehicles (three
bottom curves) consume much less fuel than conventional vehicles. This is due to
fewer stops and closer-to-optimal operation of the engine. Another very interesting
trend seen in Fig. 9.4 is thatwith the increment of the percentage of equipped vehicles,
conventional vehicles consume less fuel. In other words, equipped vehicles have a
positive impact on the energy efficiency of the entire mix of vehicles. With the
increment of equipped vehicles, other conventional vehicles aremore likely to follow
them and benefit indirectly. However the energy efficiency of equipped vehicles
generally decreases as their penetration increases. This could be due to slow-down
of some equipped vehicles hindering procession of those behind them through a
green.
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Fig. 9.4 Fuel consumption of vehicles with and without speed advisory system under different
traffic demand levels and different penetration levels of equipped vehicles

9.1.2.3 Experimental Verification

Real-world implementation of traffic signal eco-approach or advisory has been
reported in several recent publications. In [4] the concept is tested in the city of San
Jose, California where the authors had real-time information of around 800 traffic
lights. The connected vehicle identifies the next relevant traffic light and subscribes
to it to receive updates about the state of the light using the cellular network via User
Datagram Protocol (UDP) messaging. Because the vehicle only subscribed to the
next upcoming light, a rule-based algorithm was employed to determine the feasible
speed range for green arrival and use of dynamic programming was not needed. A
user interface was created and recommended the appropriate speed range to pass
through the next upcoming traffic signal during the green phase. The appropriate
speed recommendation was displayed to the driver as green zones on the speedome-
ter, as seen in Fig. 9.5.

A BMW 5 Series vehicle was used in these street experiments. Four drivers were
asked to follow the speed recommendation shown on the dash display as long as
safety was not jeopardized. The drivers were then asked to repeat the test, this time
with the velocity advisory system deactivated. The tests were conducted in four
different days and in real mixed traffic conditions. The fuel consumption of each
driver was recorded for approximately one hour sessions and the results can be
found in Table9.3. In addition, the mean non-zero velocity, mean positive non-zero
acceleration, and standard deviation of the same are all reported for evaluation of the
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Fig. 9.5 Driver’s dashdisplay, including speed recommendation and countdown.A similar interface
has been used in [8, 9]

Table 9.3 Field testing in San Jose, CA. Drivers were aware of the velocity advisory system and
were specifically asked to follow the dash-display recommendations

Driver # System inactive System active

MPG Mean
velocity
(m/s)

Mean
accel.
(m/s2)

σ accel. MPG Mean
velocity
(m/s)

Mean
accel.
(m/s2)

σ accel.

Driver 1 13.48 7.3 1.4 0.6 14.44 5.9 1.2 0.5

Driver 2 12.71 6.6 1.2 0.5 13.55 6.5 1.2 0.5

Driver 3 13.16 7.4 1.5 0.7 15.91 6.2 1.2 0.4

Driver 4 10.91 7.5 1.5 0.7 11.22 7.7 1.5 0.8

system.The fuel consumptionmeasurements inTable9.3 show that on average a 9.5%
decrease in fuel usage is possible if drivers follow the displayed recommendations
as closely as possible.

9.2 Cooperative Intersection Control

Results in previous section demonstrate that individual vehicles potentially save
energy when they adjust their speed for a timely arrival at a green light. One could
expect even higher efficiency with cooperative intersections in an all-autonomous
vehicle environment as described in Sect. 1.4.3.

In recent years a few groups have proposed methods for such cooperative inter-
section control concepts. Here we summarize the results in [10, 11] in which the
arrival time assignment was formulated as a Mixed Integer Linear Program and was
implemented in a Vehicle-In-the-Loop (VIL) experiment.
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9.2.1 Formulation as an Optimization Problem

Figure9.6 schematically shows a shaded two-way intersection and the goal is to
schedule the two conflicting directions of movements. This is done by defining a
larger square centered at the intersection denoted by access area. Each vehicle i , is
assigned an access time ti , to the edge of this square when it is empty of vehicles
from the opposing movement. The access area is sized large enough and based on
the speed limit, to ensure there is enough time to react safely to a vehicle that violates
its access time in the opposing movement.

The objective of increasing intersection throughput can be formalized here as an
optimization problem. If n vehicles are subscribed at each instant to an intersection,
minimizing the maximum assigned access times to these vehicles will push more
vehicles through the intersection in a given time span. But the optimization objective
could also consider the desired speed of each vehicle. One choice for the objective
function can then be a weighted sum of both objectives:

J = w1max({t1, . . . , tn}) + w2

n∑

i=1

|ti − tdes,i | , (9.7)

where ti and tdes,i are assigned and desired access times for vehicle i respectively and
w1 and w2 are penalty weights. This optimization is expected to not only improve
intersection flow but can reduce energy consumption due to reduced number of stops.

Given the speed limit vmax and the maximum acceleration constraint amax , the
earliest possible access time for vehicle i , denoted by tmin,i = t0 + �t1 + �t2, can
be calculated as illustrated in Fig. 9.7:

tmin,i = t0 + min

⎛

⎝ vmax − vi
ai

,

√
v2i + 2ai di − vi

ai

⎞

⎠ + max

(
di

vmax
− v2max − v2i

2ai vmax
, 0

)
,

(9.8)

Fig. 9.6 Schematic of the
proposed collaborative
intersection control system.
Gray denotes intersection
area while white denotes
access area

ti
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Fig. 9.7 The earliest
possible access time based
on speed limit and maximum
accelerations

di

Time
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vmax

a i

t0 ti

Δt1 Δt2

where t0 is the current time, di is the distance of vehicle i to the intersection, vi is
the current speed of the vehicle i , and ai is the maximum feasible acceleration for
vehicle i thus yielding the minimum travel time. The minimum access time tmin,i

serves as a lower bound to the assigned access time for each vehicle:

ti ≥ tmin,i . (9.9)

Two consecutive vehicles that are traveling on the same movement should be
separated by a time headway of tgap1 as they enter the intersection area. If vehicle j
is the immediate follower of vehicle k in the samemovement, the headway constraint
can be expressed as

t j − tk ≥ tgap1 . (9.10)

Two vehicles traveling on different phases (conflicting movements) need to be
separated by a larger time headway to ensure that a vehicle can only enter the access
area after all conflicting vehicles have left the intersection. For each two vehicles
j and k that are on different phases of an intersection, the following OR constraint
needs to be enforced:

t j − tk ≥ tgap2 ∨ tk − t j ≥ tgap2 , (9.11)

where ∨ is the OR operator. The time headway between access times tgap2 can be
determined based on the dimensions of intersection and speed limits to allow enough
time for a vehicle to come to a stop in the event that the vehicle in the opposing
movement violates its assigned access time.

9.2.2 Numerical Solution

Theoptimization problempresented inSect. 9.2.1 can be converted to aMixed Integer
Linear Program (MILP) using standard techniques. More specifically, in the cost
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function (9.7) the term max({t1, . . . , tn}) can be replaced by a new slack variable
tmax and by imposing new constraints ti ≤ tmax . In the same cost function, the terms
|ti − tdes,i | can be replaced by new slack variables δti and imposing δti ≥ ±(ti −
tdes,i ). As a result the cost function (9.7) will be a linear function of the optimization
variables ti and the newly introduced slack variables. The constraints in (9.9) and
(9.10) are also linear. Each disjunctive OR constraint in (9.11) can be converted
to two linear constraints using the big M method and by introducing new binary
variables Bl ∈ {0, 1} and a large constant M as follows:

t j − tk + MBl ≥ tgap2 ,

tk − t j + M(1 − Bl) ≥ tgap2 ,
(9.12)

where 0 ≤ l ≤ m, m is the number of disjunctive constraints, and j and k corre-
spond to any two vehicles on different phases of an intersection. When Bl = 0,
the first constraint in (9.12) indicates t j − tk ≥ tgap2 and the second constraint in
(9.12) is automatically satisfied given that M is sufficiently large. When Bl = 1 then
tk − t j ≥ tgap2 the first constraint in (9.12) is automatically satisfied and the second
constraint is active.

The above optimization problem can then be written in a canonical linear pro-
gramming form. That is to minimize cT x subject to Ax ≤ b and x ≥ 0. Here
x = (t1, . . . , tn, δt1, . . . , δtn, tmax , B1, . . . , Bm) is the vector of optimizing variables,
n is the number of all subscribed vehicles, and m is the number of artificial binary
variables of Eq. (9.12). By including Bl for each disjunctive (OR) constraint among
optimization variables, we ensure that the most favorable of the two OR constraints
is chosen.

The above MILP problem was solved using IBM’s CPLEX optimization package
on an IntelCore i5@2.5GHzWindows7 laptopwith 8GBofRAM.For 50 subscribed
vehicles, the average intersection controller execution time was 120 ms but varied
between 28 ms and 2400 ms. These times include the MILP solver execution time
plus the time needed for pre-processing the probe vehicle data and expressing the
problem in canonical form. The MILP problem was solved once every 4 s to adapt
to unmodeled effects and to deviation of vehicles from their assigned access times.

9.2.3 Simulation Results

Here we summarize some of the results detailed in [10, 12]. Figure9.8 shows 9 vehi-
cles approaching an intersection with X and O representing vehicles on conflicting
movements. The distance of each to the intersection at the time of their subscription
is shown on the vertical axis in the two plots of Fig. 9.9. The assigned access times
are shown on top horizontal axis. Two extreme choices of penalty weights w1 and
w2 are shown in the two plots. It can be seen that the MILP objective of reducing the
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Fig. 9.8 Nine vehicles at a simplified two phase intersection with four movements

maximum assigned access time along with collision avoidance constraints groups
together the vehicles of the same movement, when possible.

The performance of the proposed intersection control concept was also compared
to a signalized intersection with a pre-timed traffic light in a one hour microsimu-
lation with many vehicles. The intersection had four 500m legs. The signal phase
and timing for the benchmark pre-timed traffic signals were optimized off-line using
Synchro signal optimization [13] resulting in a cycle time, green split, and yellow
interval of 100, 44.5, and 3.5 s respectively. The vehicles were sampled from a neg-
ative exponential distribution [14] at 750 vehicles per hour for all four legs of the
intersection. The vehicles’ arrival pattern was recorded and replayed in all simula-
tions. The average and maximum speeds were set to vavg = 15.6 m/s (35 mph) and
vmax = 20 m/s (45 mph). The pre-timed case was simulated twice: (i) with no speed
advisory in which vehicles did not receive SPaT preview and (ii) with speed advi-
sory to vehicles, similar to that of Sect. 9.1, in which vehicles received SPaT preview
when they were within a 500m range of the intersection. The penalty weights in the
MILP objective function (9.7) were set to w1 = 50% and w2 = 50%.

Table9.4 summarizes some of the performance metrics for the three simulations
that were conducted. It can be seen that number of stops has an almost 100-fold
reduction with respect to a pre-timed signalized intersection. Average idle time for
stopped vehicles is also cut in half. The average travel time shows considerable
improvement as well. We expect the reduced idling and travel time positively impact
energy efficiency. The experimental results presented next confirm this hypothesis.
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Fig. 9.9 Examples of MILP
solution with 9 subscribed
vehicles (vertical axis at time
zero: remaining distance of
each individual vehicle to the
access area, horizontal axis
at distance zero: access time
assigned to each individual
vehicle, solid lines:
minimum access times tmin,i ,
dashed lines: desired access
times tdes,i , i ∈ [1, 9], colors
and marks refer to the four
directions of Fig. 9.8); a all
weight given to intersection
throughput improvement, b
all weight given to satisfying
the desired speeds of all
vehicles [10]
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Table 9.4 Microsimulation results comparingMILP controlled intersection conceptwith pre-timed
signalized intersections with and without speed advisory

Performance metric Pre-timed Pre-timed+advisory MILP

Intersection traversals 2900 2900 2900

Simulation time [min] 61 61 61

Number of
intersection stops

1171 872 13

Total intersection
idling Delay [min]

3640 1843 2

Avg. idle per stopped
vehicle [s]

20 15 9

Avg. travel time per
vehicle [s]

50 51 36
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9.2.4 Experimental Results

In order to investigate the energy efficiency potential of the proposed approach, a
Vehicle-In-the-Loop (VIL) test concept was proposed in [11] in which a real vehicle
approaching a signal-less intersection on a test track interacts with hundreds of sim-
ulated vehicles approaching a simulated version of that intersection. Simulated and
real vehicles all subscribe and communicate similarly to the intersection controller
and are treated equally. The position of the real vehicle is injected in the microsim-
ulation and therefore is easily visualized. The proposed approach is more realistic
than a simulation-only environment, while also ensuring a safer environment for test
vehicles because conflicting movements (and potential crashes) occur in a simulated
environment. The VIL concept is shown in Fig. 9.10.

The test vehicle was a human driven Honda Accord LX with a 2.4L 4-Cylinder
SI gasoline engine. The vehicle was driven on an isolated straightaway located at
International Transportation Innovation Center (ITIC) test track in Greenville, South
Carolina. A custom-coded user interface on a mobile phone allowed speed control
by the driver for a timely arrival at assigned access times. A cellular network was
used for communicationbetween the in-vehiclemobile phone and remote intersection
controller. Themobile phone sent the vehicle position and velocity to the intersection
controller every 5 s, received the assigned access time, calculated appropriate speed
to meet this access time, and visualized the calculated speed by a narrow green arc
on a circular speedometer. The traffic microsimulator node ran inside the test vehicle
as shown in Fig. 9.10c for real-time monitoring of the simulations.

The fuel rate was estimated from data logged in real-time from the vehicle On-
Board Diagnostics (OBD-II) port with details reported in [11]. Extra care was taken
in calibrating the fuel rate estimator so that it matched the actual fuel consumption
measured from a gasoline tank fill-up.

Within the same VIL framework described above 3 sets of tests were run: a pre-
timed intersection baseline, pre-timed with speed advisory baseline similar to that of
Sect. 9.1, and our proposed MILP controlled intersection. Each set consisted of 12
laps around the test track with wide U-turns at both ends of the track. The start time

Real Vehicles
(VIL)

Virtual Driver Assistant
Fuel Rate Tracker
Virtual Traffic Signal

GPS
Position/Time

Cellular
Broadcast

Simulated
Vehicles

Intersection Controller

Real
Vehicle in the loop

Proposed intersection control
with virtual traffic sign

Inters. area
Safety area
Conn. veh.

Driver Assistant
iOS application

Vehicle-in-the loop
simulation

(a) (b) (c)

Fig. 9.10 Vehicle-in-Loop experimental setup in [11] showing a interactions between a real vehicle
andmicrosimulation environment via 4Gnetwork,b Javamicrosimulation interface, and c in-vehicle
setup
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Table 9.5 VILexperiment results for real vehicle:ComparingMILPcontrolled intersection concept
with pretimed baselines

Performance metric Pre-timed Pre-timed+advisory MILP

Intersection traversals 12 12 12

Simulation time [min] 57.5 55 51

Number of
intersection stops

10 0 0

Total intersection
idling delay [min]

4.3 0 0

Avg. idle per stopped
vehicle [s]

26 0 0

Avg. travel time per
vehicle [s]

108 99 79

Fuel consumption [L] 1.13 1.11 0.91

at the beginning of each lap was randomized using a random number generator to
prevent unintended bias due to cyclic runs.

Table9.5 summarizes some of the performance metrics for the test vehicle. The
test vehicle passed theMILP-based imaginary intersection 12 timeswithout stopping.
This resulted in 19.5 and 18.0% reduction in fuel consumption compared respectively
with the two pretimed benchmarks.

9.3 Anticipative Car Following

In Sect. 1.3.3 we highlighted the potentials offered by CAVs for proactive and antic-
ipative car following to lower energy use compared to current reactive car following
practices. This approach is the eco-ACC introduced in Sect. 8.1.3. An analytic treat-
ment of this scenario was presented in Sect. 7.8.

Here we expand on what was presented before in the book and present a detailed
case study based on a compilation of the approach and results in [15–18]. We start
by formulating car following as an optimal control problem. The unknown “distur-
bance” is the future position of the preceding vehicle which motivates methods for
its deterministic or probabilistic prediction. We show via microsimulation analysis
that one could gain on average by such anticipative car following measures.

9.3.1 Formulation as an Optimization Problem

In anticipative car following the goal is to reduce energy-consuming braking or stop
and go events by judiciously adjusting the following distance between the two vehi-
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cles as a buffer. This desire can be cast as an optimization with a cost function that
balances the car following distance against acceleration command by penalizing a
weighted sum of both as described in Sect. 8.1.3. For instance, in a model predic-
tive approach the following quadratic cost minimization can be performed at the
beginning of each receding horizon similar to that shown in [16],

min
u(i)

J = ws‖sp(N ) − s(N ) − T ṡ(N ) − Lmin‖2+

+
N−1∑

i=0

(
ws‖sp(i) − s(i) − T ṡ(i) − Lmin‖2 + wu‖u(i)‖2) ,

(9.13)

where N is the number of time steps in a predictionhorizon, progressionof steps along
the horizon is indexed by i , u(i) are the acceleration commands and optimization
variables, ‖.‖ denotes the two norm and ws and wu are penalty weights. Here sp and
s are the position of the preceding and ego vehicles respectively, and Lmin is the
minimum desired gap between them when the ego vehicle is stopped. The distance
headway T ṡ is the product of time headway T and velocity of the ego vehicle ṡ and
is meant to induce larger gaps at higher ego vehicle speeds.

The vehicle longitudinal kinematics along with a first order lag between the accel-
eration command input u and the vehicle’s acceleration a can be enforced as equality
constraints and obtained by discretizing the following continuous time equations:

ṡ(t) = v(t) , (9.14)

v̇(t) = a(t) , (9.15)

ȧ(t) = −1

τ
a(t) + 1

τ
u(t) , (9.16)

where τ approximates the time constant from acceleration command to actual accel-
eration. After discretization, the continuous-time t is indexed by i as the independent
variable.

Hard constraints on vehicles states and on the following distancemust be enforced
at each step in time. An important safety constraint is a lower bound on car following
distance. An upper bound can also be optionally enforced to avoid leaving large gaps
that could negatively impact traffic flow or encourage cut-ins. In summary:

Lmin ≤ sp(i) − s(i) − T ṡ(i) ≤ Lmax i = 1, . . . , N . (9.17)

Minimum and maximum speed limits should also be enforced,

vmin ≤ v(i) ≤ vmax i = 1, . . . , N . (9.18)

As shown in [17] and illustrated in Fig. 9.11, the powertrains maximum accelera-
tion capacity depends strongly on velocity as seen in combined engine-transmission
maps. The velocity dependent acceleration constraint can be approximated as piece-
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Fig. 9.11 Velocity dependent acceleration constraints (dashed orange) for a a passenger vehicle
where conjunctive maximum acceleration constraints yield a convex velocity-acceleration admis-
sible set and b a heavy duty vehicle where disjunctive maximum acceleration constraints yield a
non-convex velocity-acceleration admissible set. In both scenarios, the blue phase portrait trajec-
tories are sample operating point trace of vehicles running MPC planning under US06 drive cycle
[17]

wise linear combinations of velocity and acceleration as detailed in [17] and
illustrated in Fig. 9.11. Depending upon the convexity of the acceleration-velocity
constraint-admissible set, these piecewise linear constraints may be applied conjunc-
tively or disjunctively. As shown in [17] disjunctive OR constraints can be converted
to conjunctive AND constraints by introducing new integer optimization variables
in the big M method described in Sect. 9.2.2.

In [18] a terminal constraint is also imposed on velocity and position of the ego
vehicle to prevent a collision post-prediction horizon. This terminal constraint on
velocity and position of ego vehicle is constructed using kinematic relationships
and assuming that the preceding vehicle will apply maximal braking post-prediction
horizon (worst case scenario). While the resulting terminal constraint is nonlinear, a
linear approximation to it could be used.

The above linear constraints along with the quadratic cost function in (9.13) form
a quadratic program over each horizon. Efficient QP solvers exist that could solve
this problem in real-time. Even when integer variables are introduced to handle dis-
junctive linear constraints shown in Fig. 9.11b, the resultingMixed Integer Quadratic
Program (MIQP) can still be solved relatively fast as documented in [17].

The main challenge is the uncertainty about the position of the preceding vehicle
sp over the optimization horizon. Note that sp appears in the cost function (9.13) as
well as in the constraint (9.17). The optimization could be solved under the worst
case scenario assuming the preceding vehicle comes to a sudden emergency stop at
each step of the horizon. Suchworst case assumptions could induce very conservative
and perhaps unnecessarily large headways between vehicles. Here we employ the
methods described in Sect. 8.2.3 for predicting the motion of preceding vehicle.
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With a probability distribution for sp(i), the gap constraints can be enforced prob-
abilistically as a so-called chance constraint. For instance a minimum gap constraint
in Eq. (9.17) can be instead written as:

P(s(i) + T ṡ(i) ≤ sp(i) − Lmin) ≤ 1 − α i = 1, . . . , N , (9.19)

which means that the chance of violating the constraint should be less than 1 − α.
Note that at any current step i = 0, s, ṡ, and sp are all deterministic rather than prob-
abilistic, and MPC finds solutions that do not violate constraints. The probabilistic
constraint will be converted to a deterministic constraint using probability distribu-
tion of sp(i). If we denote R1−α as the position where the cumulative distribution
function of sp(i) is equal to 1 − α, then the equivalent deterministic constraint is

s(i) + T ṡ(i) ≤ R1−α − Lmin . (9.20)

Similarly, the maximum distance constraint can be enforced probabilistically.
With transformation of the probabilistic constraints to deterministic ones, we end up
with a standard MPC problem. This is the approach employed in [15, 16].

9.3.2 Numerical Solution

In [18] a parameter optimization was performed to find optimal values of the penalty
weights and the predictionhorizon length.Once the parameterswerefixed, theGurobi
optimization package [19] was used to solve the QP MPC problem for a passenger
vehicle. For a heavy truck the maximum acceleration constraint is disjunctive as
was illustrated in Fig. 9.11b which resulted in a Mixed Integer Quadratic Program
(MIQP) formulation for the MPC problem. For both cases, passenger cars and heavy
truck, two scenarios were considered: (i)When a CAV follows another CAV inwhich
future intentions of the preceding CAV were available to the following CAV for the
duration of prediction horizon, and (ii) when a CAV follows a conventional vehicle
in which a probabilistic model similar to those described in Sect. 8.2.3 was used to
estimate the intentions of the preceding vehicle.

Table9.6 shows the computation times for both QP and MIQP MPCs. One MPC
vehicle was simulated following an open-loop vehicle. The optimization was solved
on a laptop PC equipped with 16.0 GB RAM and a 2.70 GHz CPU. In Table9.6,
Optimization Time refers to the time required to solve themathematical program (QP
or MIQP) and Compt. Time refers to the total time required to run a single vehicle’s
control move determination, including both preview handling and optimization.
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Table 9.6 Computation time for anticipative car following MPC. The MPC is converted to a QP
for a passenger car and to aMIQP for a heavy truck. When a CAV follows another CAV the preview
source is connectivity and full intentions over the horizon is communicated from the preceding
CAV. On the other hand when the preceding vehicle is a conventional vehicle, preview source is a
probabilistic model

Algorithm Preview
source

Worst
case in-
horizon
con-
straints

Worst
case
terminal
con-
straints

Mean
comp.
time [s]

Max
comp.
time [s]

Mean opt.
time [s]

Max opt.
time [s]

Car Connectivity No Yes 0.0337 0.0561 0.0108 0.0444

Car Probabilistic Yes Yes 0.0757 0.1134 0.0110 0.0892

Truck Connectivity No Yes 0.0435 0.0789 0.0148 0.0504

Truck Probabilistic Yes Yes 0.0571 0.0919 0.0069 0.0425

9.3.3 Simulation Results

Here we report the results of the implementation in [18] in which a mixed string
of 8 vehicles following a target vehicle are simulated. The mix includes conven-
tional cars with no connectivity that use a standard Intelligent Driver Model (IDM)
for car following as described in Sect. 4.2.1.3. The IDM parameters were sampled
from empirical data. More specifically, the desired time headway and maximum
and minimum acceleration levels were sampled from log-normal distributions fit to
the empirical data of [20]. Different penetrations of CAVs in the mix are explored.
Each CAV solves a variant of the receding horizon car following approach described
above.When aCAV is immediately preceded by another CAV it receives the intended
position of the preceding vehicle but when it is following an IDM vehicle it uses a
probabilistic prediction of the preceding carmotion. Post horizon, collision avoidance
is ensured by considering worst case hard constraints at the end of each prediction
horizon when two CAVs follow each other. When a CAV follows an IDM vehicle,
worst case collision constraints are enforced along the prediction horizon as well.

Both passenger vehicle and heavy duty CAVs are injected in the mix. Observing
that the penetration of heavy trucks is 25% in some US highways, 0, 1, or 2 heavy
duty trucks are injected in the mix of the 8 vehicles in the string. The receding
horizon problem for the passenger vehicle is converted to a QP and that of a heavy
duty CAV becomes a MIQP as described in Sect. 9.3.1. A quasi-random approach
is used to create different placement of the vehicle types in the string leading to a
total of 2224 scenarios and simulations as detailed in [17]. Figure9.12 shows the
cumulative fuel consumption results at different CAV penetrations and for 0, 1, and
2 heavy duty vehicles. The fuel consumption was estimated using quasi-static engine
fuel maps. As expected the energy efficiency increases with the penetration of CAVs.
A comparison between homogeneous human-like IDM strings and those composed
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Fig. 9.12 Combined string
fuel economy at various
penetration levels of
predictive and heavy vehicles
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entirely of CAVs is available from the endpoints of each line in the plot. In absence
of heavy duty vehicles a 1.9% improvement in fuel economy is shown for every 10%
increase in CAV penetration.

9.4 Anticipative Lane Selection

In Chap.4 mandatory and discretionary lane change behavior of human drivers were
briefly discussed and the MOBIL lane change model was presented. Connected and
automated vehicles can more judiciously make a lane change decision and execute
it as explained in Sect. 1.3.4. Here we present a case study based on results in [21]
in which lane selection is formulated as an optimization problem and in anticipation
of neighboring vehicles’ intentions.

9.4.1 Formulation as an Optimization Problem

A lane command ul as well as a longitudinal acceleration command ua are the high
level control inputs. The longitudinal state space Eq. (9.16) relates ua to vehicle
longitudinal acceleration, velocity, and position. The lateral position of the vehicle
l(i) is expressed in lane width units with respect to a reference frame that aligns
integer values of l with lane centers. For example, on a two-lane road l = 1 could
coincide with the center of the right lane, l = 2 denotes the center of the left lane,
and l = 1.5 is on the visible marking between the lanes. In [21] a critically damped
second order lag is assumed between the lane command ul and the actual lane l of
the form

l̈(t) + 2ζωnl̇(t) + ω2
nl(t) = ω2

nul(t) . (9.21)
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The damping ratio ζ is chosen to be unity and the natural frequency ωn is chosen to
be 1.1 rad/s resulting in a settling time of around four seconds to match a naturalistic
lane change behavior. Binary “lane indicator” variables will be defined later that
determine whether each lane is occupied as a function of l.

The state dynamics in (9.16) and (9.21) are discretized, transforming the
continuous-time formulation with t as the independent variable into a discrete-time
problem with i as the independent variable. The cost function (9.13) can be modified
to include lane choices along with new constraints that arise in multi-lane traffic.
Similar to the approach in Sect. 9.3.1, the following moving horizon cost function
can be used,

min
ua(i),ul (i)

J =
N−1∑

i=0

(
wv(v(i) − vre f (i))

2 + wa(ua(i))
2 + wl(l(i) − lre f (i))

2) +

wv(v(N ) − vre f (N ))2 + wl(l(N ) − lre f (N ))2 ,

(9.22)
where i = 0 denotes the current time step and N is the prediction horizon. Here vre f
is the desired velocity and lre f denotes the desired lane1 that could be dictated from
the vehicle navigation system. For instance a vehicle may prefer to stay in the right-
most lane in anticipation of an imminent exit. The above cost function strikes a trade
off between remaining in the desired lane and following the desired velocity while
it penalizes the acceleration command to reduce unnecessary braking and energy
loss. Minimizing the moving horizon cost could command changing to a faster lane
to pass a slow moving vehicle instead of reducing speed in the desired lane. After
passing the slow vehicle, return to the desired lane could be commanded due to the
residual lane cost. This behavior is consistent with what a human driver would do.

The position of the ego vehicle s in its lane is constrained by other reachable
vehicles in the same lane. The ego can be either behind or in front of another vehicle
which is a non-convex OR constraint:

s � srear,p − Lego ∨ s � s f ront,p , (9.23)

where ∨ is the OR operator. Here srear,p denotes the position of the rear bumper
of the neighboring vehicle p and s f ront,p is the position of its front bumper. The
length of the ego vehicle is denoted by Lego. Similar to the approach in Sect. 9.2 the
disjunctive OR constraint can be converted to an AND constraint using the big M
method:

s � srear,p − Lego + Mβp ∧ s � s f ront,p − M(1 − βp) , (9.24)

where ∧ is the AND operator. Here βp ∈ {0, 1} is a new binary variable defined
for each reachable obstacle p in the ego vehicle lane and M is a large enough

1lre f does not need to be an integer, in fact it is useful to offset it slightly to break symmetry in
common situations.
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constant. When βp = 0, the first constraint in (9.24) may be active and indicates
s � srear,p − Lego and the second constraint in (9.24) is trivially satisfied given that
M is sufficiently large. When βp = 1 then s � s f ront,p and the first constraint in
(9.24) is automatically satisfied. The optimal solution chooses the value for βp that
results in minimum value of the cost function in (9.22).

Finally for each lane a new “lane indicator” binary variable μnl ∈ {0, 1} can be
defined. When the ego is fully or partly in lane nl, μnl = 1, otherwise if it does not
occupy lane nl at all μnl = 0. The inequality constraints in (9.24) are only relevant
if the two vehicles occupy the same lane. So in multi-lane scenarios the constraint
in (9.24) should be expressed as

s � srear,p − Lego + Mβp + M(1 − μnl ) ∧ s � s f ront,p − M(1 − βp) − M(1 − μnl ) ,

(9.25)
which should be imposed for every reachable vehicle in the occupied (or to be
occupied) lanes.

The lane indicator binary variablesμnl are determined as a function of ego vehicle
lane state l(i). For instance in a 2-lane scenario only two of these binary variablesμ1

and μ2 are defined. Consider the variable δ to be the maximum deviation, in units of
lane width, for a vehicle to remain wholly in a lane. If 1 + δ ≤ l(i) ≤ 2 − δ then the
vehicle occupies both lanes and we set μ1 = μ2 = 1. If l(i) ≤ 1 + δ then vehicle is
in lane 1 and we set μ1 = 1 and μ2 = 0. If l(i) ≥ 2 − δ then vehicle is in lane 2 and
we set μ1 = 0 and μ2 = 1.

Setting these lane indicators must be handled by using inequality constraints as
proposed in [21] since the MIQP solver demands a certain canonical form that does
not accommodate if-then-else rules. For instance in a two lane scenario the following
four constraints correctly set the values for μ1 and μ2,

− l(i) − Mμ1 ≤ −(2 − δ) , (9.26)

l(i) + Mμ1 ≤ M + 2 − δ , (9.27)

l(i) − Mμ2 ≤ 1 + δ , (9.28)

−l(i) + Mμ2 ≤ −1 − δ + M , (9.29)

where again M is a large enough number andμ1, μ2 ∈ {0, 1} are binary optimization
variables to be determined for each time step.

9.4.2 Numerical Solution

The above moving horizon optimization was solved using the Gurobi optimization
package [19]. In order to reduce the computational effort of a mixed integer quadratic
program which can be high for reasonable choices of prediction horizon, a move
blocking approach is used in [21] to reduce the number of integer variables. The lane
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Table 9.7 Simulation results
of anticipativelane selection
algorithm

Time [min] Fuel [L]

Rule-based 13.8 17.1

MPC 12.9 15.7

Free flow 12.7 15.3

change command ul is held constant over every three steps while the acceleration
command ua can assume a different value at each step of the prediction horizon.With
a sampling time of 0.4 s, a 10 s prediction horizon could be handled in real-time.
With move blocking, longer horizons could be executed real time all on a laptop PC
equipped with a 4 core, 2.7GHz CPU and 16GB RAM. More details can be found
in [21].

9.4.3 Simulation Results

In [21] the simulated receding horizon approachwas tested first in a two lane scenario
inMATLABwith 4MPCCAVs in their desired first lane encountering a slowmoving
vehicle. Each CAV has a different desired speed and a set of full factorial simulations
was performed to include all possible placements of the CAVs with respect to each
other. TheMPC algorithm was compared to a reactive rule-based algorithm in which
the CAVs used an IDMmodel for car following. They changed lane reactively when
slowed down by a user defined threshold behind the slow moving vehicle provided
that necessary space in the adjacent lane was available.

As shown in Table9.7, theMPC algorithm reduced fuel consumption by 8.4% and
travel time by 6.2%compared to the rule-based algorithm in full factorial simulations.
The results were also compared to free flow traffic results. Excess travel time, defined
as the increase in travel timeover the congestion-free value, decreasedby79%relative
to the reactive algorithm. Correspondingly, excess fuel consumption was reduced by
80% compared to a baseline of 18.1mL for the average vehicle.

9.5 Eco-Routing and Eco-Coaching

Eco-routing has been extensively described in Chap.5. Eco-coaching, an implemen-
tation variant of eco-driving is the subject of Sect. 8.1.1. This section is mainly based
on the publication [22], which collects various results of the European Commis-
sion funded project OPTEMUS (2015–2019).2 The scope is to discuss the energy
efficiency benefits of the eco-routing and eco-coaching functions as experimentally
assessed on a demonstrator car.

2www.optemus.eu.

www.optemus.eu
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9.5.1 Experimental Setup

In order to evaluate the impact of the eco-routing and eco-coaching (Sect. 8.1.1)
strategies in real-world conditions, an experimental setup as illustrated in Fig. 9.13
was implemented. The system consists of:

• A dedicated smartphone application, which serves as a Human-Machine Interface
(HMI) and hosts the eco-driving algorithms ensuring high response time;

• A cloud computing server which communicates with a Geographical Information
System (GIS) to retrieve real-time traffic data and hosts the routing and driving
range algorithms which are both costly in terms of computation time;

• AnOnBoardDiagnosis (OBD) dongle whichmonitors the battery state-of-charge.
This device is optional and could be replaced by an observer.

For the pre-trip and in-trip assistance, the driver can obtain from the HMI themost
energy-efficient route, as well as the energy driving range available with the current
battery state-of-charge. Furthermore, to perform in-trip eco-driving assistance, the
smartphone application computes the optimal speed on the previous sub-trip at each

Destination

Suggested route
Driving range

Optimal speed profile

Eco-Routing and
Driving Range Algorithms

GIS

Battery
State of charge

HMI

Eco-Driving
Algorithm

Smartphone App

OBD Dongle

Fig. 9.13 System architecture for experimental validation of eco-routing and eco-coaching algo-
rithms



266 9 Detailed Case Studies

speed breakpoint, as shown in Fig. 8.2. The application shows the optimal trajectory
together with the actual speed profile in order to provide the drivers with visual
feedback on their driving style. An energy consumption evaluation of the driving
style on the sub-trip is also shown.

9.5.2 Experimental Results

In order to experimentally assess the energy benefits in using the proposed strategies,
a series of field tests has been conducted. The tests have been conducted in the urban
and sub-urban area of Turin, Italy, with a Fiat 500e (83 kW, 200 N electric motor)
driven by a professional driver.

9.5.2.1 Energy Consumption Model

For the energy consumption model validation, a total of 35 trips were recorded,
featuring an overall traveled distance of 434.6km and a total travel time of 16.1 h
(i.e. an average of about 12.4km and 27.5min per trip). The vehicle reference data
for model validation were provided by the CAN-Bus data acquisition system. The
topological data (i.e. road network, road signs, etc.) and the traffic information (i.e.
average speeds) were provided by HERE [23].

The presented models for energy consumption and travel time, in Eqs. (4.41) and
(4.31) respectively, were compared to standard state-of-the-art approaches. In par-
ticular, the energy consumption model was compared to a simple model reducing
Eq. (4.28) to the average speed Vi for the entire road link (“NOacc”), and yet a simpler
version neglecting also the auxiliary power term (“NOacc+NOaux”). Analogously,
the travel time model was compared to a simple model obtained by considering only
average velocity, τi = 	i/Vi in (4.31) (“NOacc”). The results of the experimental val-
idation in Table9.8 are expressed in terms of symmetric Mean Absolute Percentage
Error [24] (sMAPE3)with respect to theCAN-busmeasured energy consumption and
travel time. The energy consumption estimation performed by the different models
for one specific case is shown in Fig. 9.14. The proposed model largely outperforms
the state-of-the-art approaches. Accuracy of the prediction models is crucial for a
reliable navigation strategy.

3sMAPE is an accuracy measure based on percentage errors. It is used to solve the issue of heavier
penalty on negative errors than on positive errors.
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Table 9.8 Experimental validation results of the energy consumption model

Energy Time

Proposed
model

NOacc NOacc+
NOaux

Proposed
model

NOacc

sMAPE 8.5% 17.4% 30.4% 7.9% 13.4%

Fig. 9.14 Energy
consumption estimations
over one trip compared to the
CAN-bus reference
measurement
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9.5.2.2 Eco-Routing

The aim of the conducted experiments for eco-routing validation is threefold. The
first goal, achieved in simulation, is to show that a bi-objective eco-routing is highly
effective in discarding those energy-optimal routes that penalize travel time. This
feature could increase drivers’ compliance to the route planning assistance. The
second goal, achieved in simulation, is to prove that the shortest route is likely to
be out of the Pareto efficient solutions in terms of energy consumption and travel
time. The third goal, achieved both in simulation and experimentally for a selected
origin/destination (O/D) pair, is to show that the eco-route is actually more energy-
efficient than the shortest and the fastest route.

The energy and time weightswk (5.7) and τk (5.15) were computed by using aver-
age traffic speed information for a regular working day at 09:00. The non-dominated
points in the objective space calculated by the proposed algorithm are shown in
Fig. 9.15. The eco-route and the fastest route correspond to the two solutions for
λ = 1 and λ = 0 in formulation (5.17). A route corresponding to one of the Pareto-
optimal trade-offs is labeled asmulti-route. The shortest route is away from the Pareto
front of the non-dominated points, and therefore not interesting either in terms of
energy consumption nor in terms of travel time. The four routes are displayed on a
map in Fig. 9.16.

For the experimental routing validation, the professional driver was instructed to
drive on the eco, the shortest, and the fastest routes previously identified in simulation.
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Fig. 9.15 Routing
simulation results.
Non-dominated points in the
criteria space calculated by
the proposed algorithm. The
performance of the four
routes is also displayed
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Fig. 9.16 The four routes obtained in simulation for the selected origin/destination pair

The driver performed three repetitions for each route, starting the experiments always
at the same hour of the day, therefore over several working days. As summarized in
Table9.9, the experimental results showed that the eco-route for the identified O/D
pair is actually the most energy-efficient among the three alternatives. In particular,
the eco-route shows on average an energy gain of 4.5% with respect to the shortest
route, and 12.4% with respect to the fastest one. In terms of energy prediction accu-
racy over the three repetitions of each route, the sMAPE (between the measurement
and the estimation) ranged from 4.5% for the eco-route to 9.3% for the fastest route.
In terms of travel time prediction, the sMAPE ranged from 3.5% for the eco-route
to 12.7% for the fastest.
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Table 9.9 Experimental eco-routing results

Energy Travel time

Mean sMAPE Gain Mean sMAPE

Eco CAN 1784 4.5% / 1637 3.5%

Prediction 1759.5 1696

Short CAN 1868 5.9% 4.5% 2236 10.6%

Prediction 1854 2230

Fast CAN 2041 9.3% 12.4% 1457 12.7%

Prediction 2305 1655

9.5.2.3 Driving Range Estimation

As discussed in Sect. 5.2 typical strategies for the estimation of electric vehicles driv-
ing range make assumptions on the average energy consumption per kilometer. Such
an average energy consumption, often corresponding to the worst-case consumption
for conservative estimation, is then used to calculate the driving range in terms of
distance.

In Fig. 9.17, the proposed strategy for the calculation of the driving range is
compared to a typical approach based on an average energy consumption and the
corresponding driving range in terms of distance. In the experiment, which can
be conducted only in simulation, a conservative average energy consumption of
0.18kWh/km was chosen (the value is consistent with a worst-case energy con-
sumption observed during the experimental campaign). The available energy capac-
ity was set to 1kWh. The chosen average energy consumption translates into a radius
of 5.5km, which corresponds to a quite symmetric driving range as shown in blue
in Fig. 9.17. However this approach neglects important factors such as road grade,
traffic conditions, type of employed route. The proposed strategy is able to take
into account all these aspects, and every destination inside the driving range may
be reached by following an eco-route. The driving range (in green in Fig. 9.17) is
asymmetric about the origin due to the presence of hilly terrain in the road network
and different consumption patterns. In this example, the energy driving range varies
from a minimum of about 5km to a maximum of about 10km.

Furthermore, it may happen that the region is not simply connected, as discussed
in [25], meaning that some destinations in the driving range are unreachable with the
current battery state of charge, even by following an eco-route. Such critical destina-
tions may be shown to the driver for more precise assistance, and they are shownwith
orange dots in Fig. 9.17. In this case, the unreachable destinations correspond either
to points close to the driving range boundary or to particularly energy-expensive
roads, such as motorways.
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Fig. 9.17 Comparison of the energy driving range based on the prediction of energy consumption
and the standard distance driving range

Fig. 9.18 Itinerary for the
eco-coaching experimental
campaign. The itinerary is
about 16km long, with an
estimated travel time of
40min

9.5.2.4 Eco-Coaching

The eco-coaching strategy was tested in the city center of Turin. The following
test procedure was followed: (i) three repetitions of the itinerary given in Fig. 9.18
without eco-driving assistance (i.e. “pre-eco”), (ii) the driver was then introduced
to the eco-driving smartphone application, and (iii) three repetitions of the itinerary
were then performed with the eco-driving assistance (i.e. “eco”).

An example of the corresponding speed profiles is given in Fig. 9.19. Table9.10
shows the energy consumption measured from the CAN bus with and without the
eco-driving assistance. It shows that with the eco-coaching assistance the energy
consumption was reduced by 9% on average, while travel time was reduced by 3%.
It is therefore possible to improve the energy efficiency of the trips without driving
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Fig. 9.19 Example of measured (blue) and optimal (orange) vehicle speed profiles for the same
road segment without (a) and with the eco-coaching assistant (b)

Table 9.10 Experimental eco-coaching results

Energy [Wh] Time [s] Speed[km/h]

Average of pre-eco
trips

2246 2623 19.9

Average of eco trips 2041 2543 21.3

Variation −9% −3% +3%

more slowly since the average speed is not decreased. One additional fact is that each
eco-trip made with the eco-driving assistance has a lower energy consumption.

9.5.2.5 Overall Gains

Eco-routing and eco-coaching have been validated independently on a similar urban
driving conditions with the same vehicle and driver. On average, the eco-coaching
and eco-routing allow the driving range to increase by 9 and 12% respectively (as
compared to the fastest route), by reducing the energy consumption. The driving
range prediction strategy allows the driver to have amore precise knowledge ofwhich
destination is reachable. The state-of-the-art iso-distance approach is significantly
less precise and is therefore necessarily tuned in a conservative way. By overcoming
this limitation, the proposed strategy allows the driver to use the full potential of the
available driving range.
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