
Chapter 7
Specific Scenarios and Applications

In this chapter, the general methods for computing eco-driving strategies introduced
inChap. 6 are applied to several driving scenarios. These scenarios roughly reflect the
list of Sect. 6.1.1 and comprise of: acceleration to a cruise speed (Sect. 7.1), deceler-
ation to stop (Sect. 7.2), cruising with road slopes (Sect. 7.3), driving between stops
with a speed limit (Sect. 7.5), approaching an intersection (Sect. 7.6), approaching a
traffic light (Sect. 7.7), and car following (Sect. 7.8).

From the viewpoint of the driving optimization, the first two scenarios do not
present external constraints.We shall study the influenceof the optimizationhorizons,
and compare the optimal speed profile to typical driving behavior as described by the
models of Sect. 4.2.1. For the other scenarios, which are characterized by external
constraints,we shall investigate the role of predictive information,which have already
been broadly discussed in Sect. 6.1.2, and we shall evaluate the associated energy
benefits. For all scenarios, we shall make use of the numerical methods of Chap. 6
to solve the corresponding ED-OCPs. To better illustrate the influence of the various
parameters, we also solve several subproblems in an analytical fashion, using the
simplified EV model of Sect. 6.5.3.3.

7.1 Acceleration

In this scenario, a target speed v f is to be reached from rest in a given distance
s f and in a free time t f , or with both distance and time being free parameters. A
numerical analysis of this scenario is presented in Sect. 7.1.1. Then in Sect. 7.1.2
we use closed-form solutions of the ED-OCP (6.64) to corroborate the numerical
results.
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7.1.1 Numerical Analysis

Figure 7.1 shows the numerical results obtained with the DP Algorithm 6 for the
ICEV of Table 6.2 and the EV of Table 6.3, for varying end time and given the end
position.

In the case of an ICEV, the speed profiles consist of two acceleration phases
separated by a pulse-and-glide phase, whose duration increases with the required
end time. In the case of an EV, the speed profiles are smoother. For both propulsion
systems, when the required end time becomes shorter, the calculated speed profile
might first cross the target final speed and then retrieve it with a deceleration phase.
The energy consumption generally decreases with an increase of the final time.

As a basis of comparison, the output of Gipps’ model (4.6) is also shown in the
figures. The parameters of the latter are amax = 1.5 m/s2, amin = −1 m/s2, which
yield an acceleration time, that is, the time at which the computed speed reaches
within a band of ±0.5 m/s around the target speed, of about 21 s. Calculation of
energy consumption for both powertrains (datum not shown for ICEV due to scale)
reveals that Gipps’ driving is clearly far from being energy optimal.
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Fig. 7.1 Optimal speed profiles and Gipps’ speed profile for an acceleration from 0 to 50 km/h
with s f = 200 m and varying final time t f , for an ICEV (a) and an EV (c). Energy consumption as
a function of final time, (b) and (d). The black curves and dots represent Gipps’ model



7.1 Acceleration 181

7.1.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.

7.1.2.1 Optimal Strategy

The solution of the ED-OCP for the considered EV model is given by (6.74) and
(6.75), which we repeat here for vi = 0,

v(t) = −2v f t

t f
− 6s f t2

t3f
+ 6s f t

t2f
+ 3v f t2

t2f
, (7.1)

Eb = mhs f + m
v2f
2

+ bh2t f + 2bhv f + 4b

(
3s2f
t3f

− 3s f v f

t2f
+ v2f

t f

)
, (7.2)

where only the last term represents the effective energy consumption Eb,e as defined
in Sect. 6.5.3.3.

First we study the domain of validity of (7.1) in terms of t f and s f , looking for con-
ditions of the type F(s f , t f ) ≥ 0. We use the general results derived in Appendix B
and particularize them for vi = 0. A first condition (see (B.14)) is obtained by requir-
ing that the speed profile never becomes negative, which is equivalent to imposing
that v̇(0) ≥ 0, and reads

FUB1 � 3s f − v f t f ≥ 0 . (7.3)

Further, we can impose a maximum speed vmax not to exceed during the acceleration,
which leads to the condition (see (B.16))

FLB1 � v f + vmax + √
v2max − v f vmax

3
− s f

t f
≥ 0 . (7.4)

We can also impose the maximum initial acceleration that is allowed. Denoting this
value with amax , we obtain (see (B.24) and (B.23))

FLB2 � −6s f + 2v f t f + t2f amax ≥ 0 . (7.5)

and
FUB2 � 6s f − 4v f t f + t2f amax ≥ 0 . (7.6)

The resulting domain of feasibility is illustrated in Fig. 7.2.
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Fig. 7.2 Domain of feasibility (shaded gray area) of the parabolic speed profile in the plane t f –
s f for the acceleration scenario. The curves shown are: FUB1 (orange), FLB1 (purple), FUB2
(green), and FLB2 (blue). Coordinates of the intersection points are A: (2/3 · σ , 2τ ), B: (2/3 ·
σ/β2(1 + √

1 − β)(β + 1 + √
1 − β), 2τ/β(1 + √

1 − β)), and C: (σ/2, τ ), where τ � v f /amax ,
β � v f /vmax , and σ � v2f /amax . Also shown (dashed) is the upper bound of the domain of feasi-
bility of the simplified Gipps’ profile

Now we can study the case of a free final time t f ∈ [t f,min, t f,max ], where t f,min is
given as a function of s f by (7.4) or (7.5), while t f,max by (7.3) or (7.6), as depicted
in Fig. 7.2. Local minima of Eb are found by setting

∂Eb

∂t f
= bh2 + 4b

(−9s2f
t4f

+ 6s f v f

t3f
− v2f

t2f

)
= 0 , (7.7)

which has four solutions in t f . For a realistic choice of the parameters, one solution
is negative and must be discarded. Among the remaining three, one solution cor-
responds to a local maximum and two to local minima, with the energy becoming
infinitely large for very large end times. The first local minimum is at

t∗f =
−v f +

√
v2f + 6hs f

h
. (7.8)

For small h, this value may be larger than t f,max . Therefore the energy consumption
is a decreasing function of time and the optimal time is t f,max . However, for large
values of h (typically, positive slopes), the quantity (7.8) can be lower than the upper
bound and thus represents the global minimum. Such a behavior is illustrated in
Fig. 7.3, in terms of the normalized energy consumption Eb/EW (see (2.5) for the
definition of the energy at the wheels EW ) for two different road grades. The curve
for α = 10% has a minimum, while that for α = 0 is continuously decreasing.
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Fig. 7.3 Analytical optimal speed profiles for an acceleration from 0 to 50 km/h with varying final
time, s f = 200 m (a). Normalized energy consumption as a function of final time, for α = 0 and
α = 10% (b). The simplified EV model parameters used are: m = 1100 kg, h = 0.1472 (α = 0),
h = 1.1282 (α = 10%), b = 147.5

7.1.2.2 Gipps’ Driving

The full Gipps’ model during an acceleration maneuver is not easily integrable to
be used with the simplified EV energy consumption model. However, observing
the results of its numerical simulation, it becomes apparent that a simple enough
approximation of the speed profile is

v(t) =
{
a1t, t ∈ [0, t1]
v f , t ∈ [t1, t f ] , (7.9)

where a1t1 = v f . The fulfillment of final distance yields the further condition v f t f −
1/2v2f /a1 = s f , from which the relations

a1 = v2f
2(v f t f − s f )

, t1 = 2(v f t f − s f )

v f
(7.10)

hold. The latter equations bring the bounds for the final time, that is, s f ≤ v f t f ≤ 2s f ,
which are shown in Fig. 7.2.

The effective energy consumption is evaluated as

Eb,e = bv3f
2t f (v f t f − s f )

, (7.11)

which is shown to be always positive and larger than with the optimal strategy, see
Fig. 7.3b.
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7.2 Deceleration

In this scenario, the vehicle must decelerate from a given speed vi to stop in a given
distance s f and free time t f . A numerical analysis of this scenario is presented in
Sect. 7.2.1. Then in Sect. 7.2.2 we use closed-form solutions of the ED-OCP (6.64)
to corroborate the numerical results.

7.2.1 Numerical Analysis

Figure 7.4 shows the numerical results obtained with the DP Algorithm 6 for the
ICEV of Table 6.2 and the EV of Table 6.3, for varying end time and given end
position.

In the case of an ICEV, the speed profiles may consist of an initial acceleration,
followed by coasting and braking phases, as anticipated in the analysis of Sect. 6.4,
although in principle slower decelerations could be achievedby interposing a coasting
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Fig. 7.4 Optimal speed profiles for a deceleration from 50 km/h to stop in 200 m with varying final
time, for an ICEV (a) and an EV (c). Energy consumption as a function of final time, (b) and (d).
The black curves and dots represent Gipps’ model
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phase between two braking phases. The maximum deceleration time considered is
when only coasting and braking are used. In the case of an EV, the speed profiles
are smoother and larger end times are allowed. The energy consumption generally
decreases with the final time and becomes negative in the EV case due to larger
proportion of regenerative braking.

The output of the Gipps’ model (4.6) with amin = −1 m/s2 is also shown in the
figures. Calculation of energy consumption for both powertrains again reveals that
Gipps’ driving is far from being energy optimal.

7.2.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.

7.2.2.1 Optimal Strategy

The solution of the ED-OCP for the considered model is given by (6.74) and (6.75),
which we repeat here for v f = 0,

v(t) = vi − 4vi t

t f
− 6s f t2

t3f
+ 6s f t

t2f
+ 3vi t2

t2f
, (7.12)

Eb = mhs f − m
v2i
2

+ bh2t f − 2bhvi + 4b

(
3s2f
t3f

− 3s f vi
t2f

+ v2i
t f

)
. (7.13)

Similarly to the previous section, we find the conditions F(t f , s f ) ≥ 0 for which
(7.12) is an admissible speed profile.Weuse the general results derived inAppendixB
and particularize them for v f = 0. Imposing that the speed profile never becomes
negative yields

FUB1 � 3s f − vi t f ≥ 0 . (7.14)

Imposing a maximum speed vmax yields

FLB1 � vi + vmax + √
v2max − vi vmax

3
− s f

t f
≥ 0 . (7.15)

Imposing the maximum deceleration amin yields

FLB2 � −6s f + 2vi t f − t2f amin ≥ 0 (7.16)
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Fig. 7.5 Domain of feasibility (shaded gray area) of the parabolic speed profile in the plane
t f –s f for the deceleration scenario. The curves shown are: FUB1 (orange), FLB1 (purple),
FUB2 (green), and FLB2 (blue). The coordinates of the intersection points are A: (2/3σ , 2τ ),
B: (2/3 · σ/β2(1 + √

1 − β)(β + 1 + √
1 − β), 2τ/β(1 + √

1 − β)), and C: (σ/2, τ ), where τ �
v f /|amin |, β � v f /vmax , and σ � v2f /|amin |. Also shown (dashed) is the upper bound of the domain
of feasibility of the simplified Gipps’ profile

and
FUB2 � 6s f − 4vi t f − t2f amin ≥ 0 . (7.17)

The resulting feasibility domain is illustrated in Fig. 7.2.
Nowwe study the case of a free final time t f ∈ [t f,min, t f,max ], where t f,max is given

as a function of s f by (7.14), while t f,min is given by (7.15) or (7.16), as depicted
in Fig. 7.5. In both cases, the same expressions as in the acceleration scenario are
obtained, with |amin| replacing amax and vi replacing v f . Therefore, (7.7) and (7.8)
are still valid with the aforementioned replacements.

The consumed energy is now lower in absolute value than thewheel energy, which
is a negative quantity. As shown in Fig. 7.6, the stationary point (7.8) is now a maxi-
mum. However, the latter belongs to the feasibility domain only for sufficiently low
road grades (steep downhills).

7.2.2.2 Gipps’ Driving

The Gipps’ model is easily integrable in the deceleration case, at least for small step
times �t (see Eq.4.6), yielding a speed profile

v(t) =
{
vi , t ∈ [0, t1]
vi + a1t, t ∈ [t1, t f ] , (7.18)
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Fig. 7.6 Analytical optimal speed profiles for a deceleration from 50 km/h to stop, with varying
final time, s f = 200 m (a). Normalized energy consumption as a function of final time, for α = 0
and α = −10% (b). The simplified EV model parameters used are: m = 1100 kg, h = 0.1472
(α = 0), h = −0.834 (α = −10%), b = 147.5

where t f − t1 = vi/|a1|. The fulfillment of the final distance yields the further con-
dition vi t f − v2f /(2|a1|) = s f , from whence the relations

a1 = − v2i
2(vi t f − s f )

, t1 = 2s f
vi

− t f (7.19)

hold. The latter equations impose the bounds on the final time, s f ≤ vi t f ≤ 2s f ,
which are shown in Fig. 7.5.

The effective energy is evaluated as

Eb,e = bv3i
2(vi t f − s f )

, (7.20)

which is shown to be always positive and larger than with the optimal strategy, see
Fig. 7.6.

7.3 Road Slopes

As anticipated in Chap. 1, a dominating factor in vehicle power demand is road
grade, in particular on steep roads, and more so for heavier vehicles. Therefore, not
surprisingly, energy-optimal speed profiles are strongly affected by road grade and
its prior knowledge is highly beneficial in predictive eco-driving. For example, a
vehicle can slow down in anticipation of a steep descent or speed up in preparation
for a climb.

In this section we aim at illustrating the dependency between road grade and
optimal speed. We consider the baseline situation of cruising at constant speed (e.g.,
on a highway) and we introduce a sinusoidal altitude profile of the type
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z(s) = z0 sin(�s) + z1 , (7.21)

from which grade is evaluated as

α(s) = dz(s)/ds = �z0 cos(�s) . (7.22)

Note that the absolute altitude level z1 has no influence on α. A numerical analysis
of this scenario is presented in Sect. 7.3.1. Then in Sect. 7.3.2 we use closed-form
solutions of the ED-OCP (6.64) to corroborate the numerical results.

7.3.1 Numerical Analysis

We consider a baseline scenario (z0 = 0) of cruising at a constant speed of 36 km/h.
Figure 7.7a, b show the optimal speed profiles obtained with the DP (Algorithm 6)
for the ICEV in Table 6.2 and the EV in Table 6.3, respectively for varying z0. These
optimization results confirm the intuitive rule that a vehicle should be slowed down
before a downhill and accelerated before a climb. In other terms, one can observe
an inverse correlation between optimal speed and altitude, that would be in principle
useful to adapt speed when future altitude (grade) is estimated.

We can regard the optimal speed profile as the output of a predictive (P) eco-
driving strategy that, using GPS and 3D GIS information (see Sect. 4.1), perfectly
anticipates the upcoming road slope. To illustrate the effects of such preview, we
compare the energy consumption of the P strategy with that of a non-predictive
strategy (NP) that has no preview and would keep following a constant speed despite
the slope changes. We define a measure of performance as

ε = E (N P)
T − E (P)

T

E (P)
T

, (7.23)

where ET is the tank energy, that is, the fuel energy for the ICEV and the battery
energy for the EV, while the superscripts P , N P stand for the predictive and non-
predictive strategies, respectively.

Figure 7.7c, d show the calculated values of ε as a function of z0. Clearly, the
higher z0 in absolute value, the higher ε. The ICEV is affected more than the EV
by the prediction of the road slope. The numbers reveal that keeping a constant
speed (actually, the optimal speed for z0 = 0, which is a pulse-and-glide profile) can
consume two to three times more energy than following the optimal slope-sensitive
speed profile.
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Fig. 7.7 Optimal speed profiles for sinusoidal slope profiles of the type (7.21), with � =
π/100 m−1 and z0 = {−4,−2, 0, 2, 4} m, vi = v f = 36 km/h, s f = 200 m, t f = 20 ± 1 s, and
measures of performance, for an ICEV (a, c) and an EV (b, d). Normalized altitude profile is shown
as a dashed line

7.3.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.

With respect to the assumptions in that section, here we relax the constancy of
slope and make the resistance term h(s) variable with the position. According to
(7.21), the resistance term is evaluated as

h(s) = h0 + gα(s) = h0 + g�z0 cos(�s) , (7.24)

where h0 is the constant factor due to rolling resistance, g is gravity and � is chosen
such that the net difference of altitude is zero, i.e., sin(�s f ) = 0.

To solve this problem in a closed form, we consider vi = v f = s f /t f and perturb
the solution for z0 = 0, which is trivially v(t) ≡ s f /t f . We consider small altitude
variations, i.e., gz0 � (s f /t f )2, and small resistance forces, i.e., bh0 � (s f /t f ).
With these positions, it is easy to show that the control input u p(t) ≈ h0 and the
speed profile
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v(t) ≈ s f
t f

− 2bh0 − gz0t f
s f

sin(�s(t)) (7.25)

satisfies the necessary conditions for optimality and is thus the optimal solution
sought. Note that for z0 = 0, the profile (6.73)–(6.74) is retrieved, with h = 0.

The energy consumption can be evaluated by integrating the battery power over
position and using the transformation ds/dt = v,

Eb =
∫ s f

0
muds +

∫ s f

0
b
u2

v
ds = mh0s f + bh20

∫ s f

0

ds

v(s)
. (7.26)

Under the assumptions above, the latter integral is equal to t f . Thus the energy
consumption of the optimal speed profile is

E (P)
b = mh0s f + bh20t f , (7.27)

the same value that would be obtained by (6.75) with h ≡ h0 and a constant speed.
These results confirm the observations made in the previous section that the optimal
speed follows the altitude profile and that the optimal energy consumption is largely
independent of the altitude.

The energy consumption of the non-predictive strategy that follows a constant
speed despite the altitude variations is obtained by evaluating the control input as
u p = h and then inserting it into the expression (7.26). The result is

E (N P)
b = mh0s f + bh20t f + 1

2
bg2�2z20t f . (7.28)

Consequently, the measure of performance defined in (7.23) is evaluated as

ε = 1

2
· bg2�2z20t f
mh0s f + bh20t f

, (7.29)

whose quadratic dependency on z0 clearly matches the numerical results of Fig. 7.7.

7.4 Constrained Eco-Driving

In the rest of this chapter (Sects. 7.5–7.8), we shall treat scenarioswith trip constraints
imposed on the optimization of the speed profile, under the form of state or interior
constraints.

In particular, we shall present the constrained-optimal speed profiles for the sce-
narios considered. These solutions shall be regarded as the output of a predictive (P)
eco-driving strategy that, assuming that the vehicle is equipped with dedicated sen-
sors and/or communication technology, perfectly anticipates the trip constraints with
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Fig. 7.8 Domain of
feasibility of the parabolic
speed profile (shaded gray
area) in the plane t f –s f for
the constrained scenarios.
The curves shown are: FLB1
(purple) and FLB2 (blue).
The coordinates of the
intersection points are
A ≡ C: (0, 0) and B:
(8/3 · v2max/amax ,
4vmax/amax )

s f

t f

A ≡C

B

unlimited preview distance. The P speed profiles shall be compared with the respec-
tive unconstrained optimal speed profiles to illustrate the effects of the constraints
on the energy consumption.

As discussed in Chap. 1, energy savings are highly dependent on the preview
capability, and we shall study the effects of such anticipation. Therefore, we shall
further compare the P speed profiles and energy consumption with those of non-
predictive (NP) eco-driving strategies, which have no or limited preview of the trip
constraints (but are supposed to know the trip duration).

Generally speaking, the NP strategy is composed of four phases for all the con-
strained scenarios considered: (i) in the first phase, it follows the unconstrained opti-
mum until a constraint is detected, assuming visual preview only; (ii) upon detection,
the NP strategy adjusts its trajectory to match the constraint and (iii) then it tracks the
constraint perfectly; (iv) lastly, the NP strategy retrieves a sub-optimal behavior to
complete the trip in the desired duration and distance. In some cases we shall assume
the adjustment phase (ii) as instantaneous for simplicity.

In order to understand the differences between P and NP strategies, we use the
simplified EV model of Sect. 6.5.3.3, for which explicit solutions of the ED-OCP
can be calculated.

v∗(t) = 6s f
t f

(
t

t f

) (
1 − t

t f

)
. (7.30)

In terms of t f , s f , both conditions FUB1 and FUB2 (see Appendix B) are always
satisfied for vi = v f = 0, thus there is no upper bound on t f for a given s f , see
Fig. 7.8. Condition FLB2 reads t f ≥ √

6s f /amax , while condition FLB1 reads t f ≥
3s f /(2vmax ). The unconstrained minimal energy consumption is found as

E∗
b = mhs f + bh2t f + 12bs2f

t3f
. (7.31)
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7.5 Speed Limit

In this section, we discuss the eco-driving along a route in the presence of amaximum
speed limit,

v(t) − vmax (t) ≤ 0, t ∈ [0, t f ] , (7.32)

which is a pure state constraint of the form (6.5). The key factor for effective eco-
driving in such a situation is the ability to anticipate the limit and its variability along
the route.

A numerical analysis of this scenario is presented in Sect. 7.5.1. Then in Sect.
7.5.2 we use closed-form solutions of ED-OCP (6.64) to corroborate the numerical
results and highlight the influence of the preview ability and other parameters of the
problem.

7.5.1 Numerical Analysis

We consider a trip having fixed distance s f and duration t f , with a constant speed
limit vmax . The unconstrained optimal speed profile, used as a baseline, is denoted as
v∗(t).We further compare predictive (P) and non-predictive (NP) constrained optimal
speed profiles, as they have been defined in Sect. 7.4. The latter has no information
about the upcoming limit, while predictive eco-driving perfectly anticipates the speed
constraint.

Speed profiles P and NP can be obtained numerically using the methods intro-
duced in Chap. 6. With dynamic programming, a speed constraint is easily enforced
by making unfeasible all the points of the grid that exceed the limit value. The pre-
dictive speed profile is thus obtained by solving the constrained OCP for the original
boundary conditions, see Table 7.1. The non-predictive speed profile is obtained by
concatenating (i) the unconstrained solution until a time tN , such that v∗(tN ) = vmax ,
with (ii) the solution of the constrained OCP from tN to the end time, with a distance
to cover s f − s∗(tN ), an initial speed equal to vmax and a final speed of zero.

Table 7.1 Boundary conditions for the speed-limit-constrained scenario

Constrained
optimiza-
tion?

Duration Distance Initial speed End speed

Unconstrained N t f s f 0 0

Predictive Y t f s f 0 0

Non-predictive #1 N tN s∗(tN ) 0 vmax

#2 Y t f − tN s f − s∗(tN ) vmax 0
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Fig. 7.9 Unconstrained optimal (U), predictive (P), and non-predictive (NP) strategies for a trip
with s f = 1500 m, t f = 120 s, vi = v f = 0, vmax = 50 km/h. Speed profiles (a) and performance
indexes (b)

Figure 7.9a shows the three speed profiles for s f = 1500 m, t f = 120 s, vi =
v f = 0, vmax = 50 km/h, computed with the DP Algorithm 6 and the EV model of
Table 6.3. Note how the non-predictive speed profile is forced to keep the top speed
longer than the P profile in order to cover the prescribed distance in the prescribed
time.

As a measure of performance of the eco-driving strategies, the relative energy loss
with respect to the unconstrained optimum is defined as

ε({P,N P}) � E ({P,N P})
b − E∗

b

E∗
b

, (7.33)

where E∗
b is the energy consumption for the unconstrained optimal strategy and

E ({P,N P})
b are those for the predictive and non-predictive strategy, respectively.
The values obtained for ε(P) and ε(N P) for the aforementioned scenario are plotted

in Fig. 7.9b as a function of the speed limit. The latter has an influence only if it is
smaller than the maximum speed reached in the unconstrained case (53 km/h for this
scenario). Clearly, the energy losses increase dramatically as the speed constraint
becomes more aggressive, because the vehicle does not have enough time to take
advantage of coasting.

7.5.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.We assume that themaximum road speed
limit is held constant over the sub-trip.
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This model, with vi = v f = 0, yields an unconstrained optimal speed profile v∗
given by (7.30) and an overall energy consumption E∗

b given by (7.31), and will
be now compared with the values achieved by the predictive and the non-predictive
strategies as a function of vmax .

For later use,we introduce here the ratio between the speed limit and themaximum
speed in the unconstrained case (larger speed limits would have no effect),

rs � 2vmax t f
3s f

, (7.34)

with 2/3 < rs < 1 by virtue of condition FLB1 (see Sect. 7.4).

7.5.2.1 Predictive Strategy

Anticipating the presence of the speed limit allows the implementation of a
constrained-optimal speed profile. The necessary conditions for optimality are
obtained from (6.72) in the Lagrangian form with the addition of the conditions
(6.31)–(6.34). Using the nomenclature introduced in Sect. 6.2.2.1, the speed con-
straint g(x(t), t) = v(t) − vmax ≤ 0 is of the first order (p = 1), since ġ = g(1) =
v̇ = u p − h. Additionally, we have ∂g/∂v = 1, ∂g/∂s = 0 and, from the assumption
of constant vmax , ∂g/∂t = 0. Therefore, the system of equations to be solved reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = v(t), s(0) = 0, s(t f ) = s f
v̇ = u p(t) − h, v(0) = vi , v(t f ) = v f

λ̇ = −mup(t) − μ, λ(0) = λ0

u p(t) = − 1

2b
(λ(t) + mv(t) + η(t))

η(t)g(v(t)) = 0, η(t) ≥ 0, η̇ ≤ 0

λ(τ−) = λ(τ+) + π0, π0 ≥ 0, π0g(v(t)) = 0

H(τ−) = H(τ+)

(7.35)

where τ is a junction time (entry or contact time) for the constraint and the Hamil-
tonian is H = mupv + bu2p + λ(u p − h) + μv.

When the speed constraint is not active (interior intervals), η(t) ≡ 0 and the opti-
mal control input is linear in time with a constant derivative u̇ p = (μ + mh)/(2b).
Thus the speed is quadratic in time as in the unconstrained case, see (6.73)–(6.74). The
jump conditions together with the algebraic relation between u p and λ imply the con-



7.5 Speed Limit 195

tinuity of the control input.1 Since inside the boundary interval (when the constraint
is active), it must be v̇ ≡ 0, which is ensured by u p ≡ h, then u p(τ

−) = u p(τ
+) = h.

Once the solution has left the first boundary interval, the control input keeps
varying with time with the same constant derivative as in the first interior interval.
That means that the trajectory u p(t) cannot reach the boundary value h more than
once. In other terms, the speed constraint can be active only on a single boundary
interval, between an entry time t1 and an exit time t2. The constrained-optimal control
law is thus made up of just three phases, see Fig. 7.11a.

Given the constancy of v̈ = (μ + mh)/(2b) − h in the two unconstrained
(parabolic) phases and the symmetric boundary conditions vi = v f = 0, the two
unconstrained phases must be symmetrical, thus t2 = t f − t1. Further imposing the
continuity of the control input at the junction times (v̇(t1) = v̇(t2) = 0), the speed
profile is completely characterized by the boundary conditions and the unknown
parameter t1. Explicitly, it reads2

v(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2vmax

t1
t − vmax

t21
t2, t ∈ [0, t1)

vmax , t ∈ [t1, t2]
2vmax

t1
(t f − t) − vmax

t21
(t f − t)2, t ∈ (t2, t f ]

. (7.36)

The time t1 is found by imposing the overall distance,

t1 = 3

2
· vmax t f − s f

vmax
. (7.37)

We find now the conditions F(t f , s f ) ≥ 0 for which (7.36) is an admissible speed
profile.As discussed earlier, the general conditions on the unconstrained speed profile
FUB1 and FUB2 are both inactive for vi = v f = 0, while FLB1 and FLB2 fix the
unconstrained lower bound.

This lower bound can be exceeded by the constrained speed profile, as discussed
in detail in Appendix B. A first obvious constraint is

vmax − s f
t f

≥ 0 . (7.38)

1Denoting H(τ−) − H(τ+) with �H and analogously for the other jumps at a junction time, we
can compute �H = mv�u p + b�u2p + �(λu p) − h�λ from the Hamiltonian definition and the
fact that �v = 0. The algebraic relation between λ and u p provides �λ = −2b�u p − �η, which
equals −2b�u p + η for the slack conditions, and �(λu p) = −2b�u2p − mv�u p − �(ηu p),

which equals −2b�u2p − mv�u p − ηh by construction. Combining these equations, we obtain

�H = −b�u2p + 2bh�u p . Since this quantity must be zero for the jump conditions, �u p = 0
results.
2See Appendix B for the general solution when vi 
= 0, v f 
= 0.
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Fig. 7.10 Domain of
feasibility of the
unconstrained speed profile
(shaded gray area) and of the
constrained speed profile
(dark gray area) in the plane
t f –s f for the limit speed
scenario. The curves shown
are: FLB1 (purple), FLB2
(blue), FLB2′ (black), and the
inactive constraint (7.38)
(dashed)

s f

t f

B
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On the other hand, limiting the acceleration/deceleration of the constrained speed
profile to a maximum value amax , that is, imposing v̇(0) = −v̇(t f ) = amax yields

FLB2′(t f , s f ) � vmax t f − s f − 4v2max

3amax
≥ 0 . (7.39)

Note that the latter condition implicitly ensures that t1 given by (7.37) is a positive
quantity. It also is intrinsicallymore restrictive than (7.38), which is thus never active.

The domain of feasibility is illustrated in Fig. 7.10.
Finally, the effective energy consumption, as defined in (6.76) for the uncon-

strained profile, is evaluated by particularizing and summing (6.76) for the three
phases, with phase 2 that has no contribution. After tedious calculations, we obtain

E (P)
b,e = 12bs2f

t3f

(
r3s

3rs − 2

)
. (7.40)

7.5.2.2 Non-predictive Strategy

The non-predictive strategy initially follows the unconstrained optimal speed profile
v∗(t). Then, at a time tN , the speed limit is reached and the strategy is forced to keep
the speed constant. As the numerical results of the previous section have shown, there
is a time, denoted here as tN < tT < t f , when the NP strategy retrieves a sub-optimal
(parabolic, within the assumption of themodel) speed profile until stop. Therefore the
NP speed profile is made of three phases and, imposing the continuity of the control
input (v̇(tT ) = 0), it is completely characterized by the boundary conditions and the
unknown parameters tN , tT . The latter are found by imposing that v∗(tN ) = vmax and
the overall distance.
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The first condition, using (7.30) and (7.34), yields

tN = t f
2

(
1 − √

1 − rs
)

, (7.41)

while the second condition yields

tT = t f

(
−1

2
+ 1

rs
−

(
1 − 1

rs

)√
1 − rs

)
. (7.42)

The effective energy consumption is finally found as

E (N P)
b,e = 6bs2f

t3f

(
3r2s + 2rs − 3 + (2r2s − 5rs + 3)

√
1 − rs

4rs − 3

)
, (7.43)

where sN � s∗(tN ) is easily evaluated from (7.30).

7.5.2.3 Analysis

As a measure of performance of eco-driving strategies, we use here the relative
effective energy loss with respect to the unconstrained optimum, defined as

ε({P,N P})
e �

E ({P,N P})
b,e − E∗

b,e

E∗
b,e

. (7.44)

With this definition, the influence of vehicle parameters vanishes and (7.44) is a
function of the scenario parameter rs only.

For the predictive strategy,

ε(P)
e = r3s − 3rs + 2

3rs − 2
, (7.45)

while for the non-predictive strategy

ε(N P)
e = 3r2s − 6rs + 3 + (2r2s − 5rs + 3)

√
1 − rs

2(4rs − 3)
. (7.46)

Functions (7.45)–(7.46) are plotted in Fig. 7.11b. Although they cannot be compared
quantitatively, the analytical predictions show the same trend of the numerical results
of Fig. 7.9. Note that the energy losses become unrealistically high as rs approaches
its lower bound of 2/3 (when s f = vmax t f the acceleration and deceleration phases
become infinitely fast).
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Fig. 7.11 Schematic strategies for the limit speed scenario: unconstrained optimal, non-predictive
sub-optimal, and predictive (a); performance index as a function of the parameter rs (b)

7.6 Intersection

This section discusses the effect of an intersection or a stop sign in the middle
of a route that is otherwise unconstrained. This circumstance imposes the interior
constraints

s(tt ) = st , v(tt ) = vt , (7.47)

with st denoting the position of the intersection, vt the prescribed crossing speed,
while the crossing time tt is free.

A numerical analysis of this scenario is presented in Sect. 7.6.1. Then in Sect. 7.6.2
we use closed-form solutions of the ED-OCP (6.64) to corroborate the numerical
results and highlight the influence of the preview ability and other parameters of the
problem.

7.6.1 Numerical Analysis

As in the previous sections, we consider a trip having a fixed distance s f and duration
t f . The unconstrained optimal speed profile, used as a baseline, is denoted as v∗(t).
We further compare predictive (P) and non-predictive (NP) constrained optimal speed
profiles, as they have been defined in Sect. 7.4. The latter has just some limited visual
previewof the intersection, quantified by thepreviewdistance rt st (0 ≤ rt < 1),while
predictive eco-driving perfectly anticipates the intersection constraint with unlimited
preview distance (rt = 1).

Speed profiles P and NP can be obtained using the methods introduced in Chap. 6.
In particular, if the intersection crossing time tt , is fixed, the optimization of the trip
ahead of the intersection becomes independent from that after it. The predictive speed
profile is thus obtained by solving a first unconstrained OCP from the initial time to
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Table 7.2 Boundary conditions for the intersection-constrained scenario

Duration Distance Initial speed End speed

Unconstrained t f s f 0 0

Predictive #1 tt st 0 vt
#2 t f − tt s f − st vt 0

Non-
predictive

#1 tN st (1 − rt ) 0 v∗(tN )

#2 tt − tN rt st v∗(tN ) vt
#3 t f − tt s f − st vt 0
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Fig. 7.12 Unconstrained optimal (U), predictive (P), and non-predictive (NP) strategies for a trip
with s f = 1500 m, t f = 120 s, vi = v f = 0, st = s f /2 = 750 m, vt = 0. Speed profiles (a) and
performance indexes (b)

the crossing time, then a second one from tt to the end time. As for the NP speed
profile, it results from the concatenationof: (i) the unconstrainedoptimal speedprofile
until the time tN at which the intersection is detected, such that s∗(tN ) = st (1 − rt ),
(ii) the solution of an unconstrained OCP from time tN to the crossing time tt , and
(iii) downstream of the intersection, the solution of an unconstrained OCP from tt to
the end time. In both cases, the crossing time tt is further optimized to have minimal
energy consumption. See Table 7.2 for a more detailed list of the respective boundary
conditions.

Figure 7.12a shows the three speed profiles for s f = 1500 m, t f = 120 s, vi =
v f = 0, st = s f /2 = 750 m, vt = 0 (stop), rt = 0.2 (preview distance of 150 m),
computed with the DP Algorithm 6 and the EV model of Table 6.3. The optimal
crossing time for the predictive strategy is found as tt = t f /2 = 60 s, which yields
two equal speed profiles before and after the intersection, while for the NP strategy
it is found to be around 64 s.

The values of the measures of performance (7.45) are plotted in Fig. 7.12b as
a function of the preview distance. While ε(P) does not depend on the preview
distance, ε(N P) generally decreases with it. Note that the optimal crossing time in



200 7 Specific Scenarios and Applications

the NP strategy varies with the preview distance, ranging from 65 s at small preview
distances, while decreasing to 60 s as rt increases.

7.6.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.

In particular, the benefits of preview and anticipation are analyzed as a function
of two parameters, namely the preview distance and the crossing speed, while setting
the intersection position at st = s f /2. We define for later use the ratio between the
crossing speed vt and the average speed along the route,

rv � vt t f
s f

, (7.48)

with 0 ≤ rv ≤ 3/2 since vt cannot exceed the top speed of the unconstrained scenario,
2/3(s f /t f ). As for the preview distance, we convert it into a more easily treatable
preview time, by using the average speed of the unconstrained profile. In such a way,
the ratio rt takes the new formulation

rt = tt − tN
tt

, (7.49)

with rt ∈ [0, 1].

7.6.2.1 Predictive Strategy

The predictive speed profile is composed of two separate parabolic phases, before and
after the intersection. Imposing the crossing speed and the distance of both phases,
the P profile is completely defined by the crossing time tt , see Fig. 7.13. The optimal
value for this parameter is found by minimizing the consumption. Using (7.30), the
effective energy consumption as a function of tt is

E (P)
b,e (tt ) = bs2f

{
3

(
1

t3t
+ 1

(t f − tt )3

)
− 6

rv
t f

(
1

t2t
+ 1

(t f − tt )2

)
+

+ 4
r2v
t2f

(
1

tt
+ 1

(t f − tt )2

)}
,

(7.50)
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Fig. 7.13 Schematic
strategies for the intersection
scenario: unconstrained
optimal, non-predictive
sub-optimal, and predictive,
with rv = 0

speed

time
tN tAtt

The minimum of this function is obtained for

∂E (P)
b,e

∂tt
= 0 → tt = t f

2
, (7.51)

meaning that the predictive speed profile is made of two equal phases, the result
numerically found in Sect. 7.6.1. With this optimal crossing time, the effective con-
sumption is derived as

E (P)
b,e = 16bs2f

t3f

(
3 − 3rv + r2v

)
. (7.52)

7.6.2.2 Non-predictive Strategy

The non-predictive strategy initially follows the unconstrained optimal speed profile
v∗. This phase ends at time tN = tt (1 − rt ) when the presence of the intersection is
detected. The corresponding distance and speed are easily evaluated as

s∗(tN ) = s f
4

(2 − 3rt + r3t ) , (7.53)

v∗(tN ) = 3s f
2t f

(1 − r2t ) , (7.54)

respectively. The intersection is then approached with a second parabolic profile
to be reached at time tt . After that, a third parabolic speed profile is performed
until stop at the final distance. Imposing the crossing speed and the distance of the
two latter phases, the NP speed profile is completely characterized by the boundary
conditions and the unknown parameter tt . The latter should in principle be found
by minimizing the energy consumption, similarly to the predictive scenario. Instead
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of attempting such an optimization that would lead to formulas difficult to manage,
we shall consider for simplicity the same value as in the predictive scenario, i.e.,
tt = t f /2, for which the overall consumption is derived as

E (N P)
b,e = 4bs2f

t3f
· (9 − 12rv + 4r2v ) + rt (15 − 12rv + 4r2v )

2rt
. (7.55)

Note that for rt = 1, the fully predictive result (7.52) is retrieved.

7.6.2.3 Analysis

The performance indexes for the predictive and the two non-predictive strategies are
obtained from (7.52), (7.55) as

ε(P)
e = (3 − 2rv)2

3
(7.56)

and

ε(N P)
e = (1 + rt )(3 − 2rv)2

6rt
. (7.57)

Functions (7.56)–(7.57) are plotted in Fig. 7.14a. As in the previous section, these
results are not quantitatively comparable with the numerical ones shown in Fig. 7.12.
However, the qualitative trend shows that, as the preview horizon increases, energy
loss of the non-predictive strategy monotonically decreases.

On the other hand, the energy loss decreases with an increase of the desired speed
at the intersection, as shown in Fig. 7.14b for a preview distance corresponding to
rt = 0.25. If the vehicle must stop at the traffic signal (rv = 0), the resulting energy
loss with the NP strategy is several times higher than that of the P strategy, which is
due to higher electric losses during the regenerative braking process.

0 0.2 0.4
0

5

10

rt [-]

ε e
[-

]

P
NP

0 0.5 1 1.5
0

5

10

rv [-]

ε e
[-

]

P
NP

(a) (b)

Fig. 7.14 performance indexes for the intersection scenario as a function of the parameters rt (a)
and rv (b)
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These results are largely independent of the choice of the boundary conditions.
For a slightly different scenario where the vehicle would cruise at a constant speed if
the intersectionwas not present (vi = v f = s f /t f ), the effective energy consumption
of the three strategies are

E∗
b,e = 0, E (P)

b,e = 16bs2f
t3f

(1 − rv)
2, E (N P)

b,e = 8bs2f
t3f

(1 − rv)
2

(
1 + 1

rt

)
,

(7.58)
showing a similar dependency on rv, rt than (7.52)–(7.55).

7.7 Traffic Light

The scenario studied in this section is the presence of a signalized intersection (traffic
light) in the middle of the route (at st = s f /2), allowing the crossing only during
fixed time slots that correspond to the green light periods. In particular, the light is
set to be red at time t f /2. Denoting the crossing time with tt (such that s(tt ) = st ),
the constraint reads

tt ≤ t f
2

(1 − rx ) ∨ tt ≥ t f
2

(1 + rx ) , (7.59)

where rx is the parameter that defines the duty cycle of the traffic light (see Sect. 4.1.3)
and Fig. 7.15.

Anumerical analysis of this scenario is presented inSect. 7.7.1. Then, inSect. 7.7.2
we use closed-form solutions of ED-OCP (6.64) to corroborate the numerical results
and highlight the influence of the preview ability and other parameters of the problem.

Fig. 7.15 Schematic
definition of the traffic light
scenario

position

time
t f

s f

st

t f
2 (1− rx)

t f
2 (1+ rx)

red light
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Table 7.3 Boundary conditions for the traffic-light-constrained scenario

Duration Distance Initial speed End speed

Unconstrained t f s f 0 0

Predictive #1 tt st 0 vt
#2 t f − tt s f − st vt 0

Non-
predictive

#1 tN s∗(tN ) 0 v∗(tN )

#2 tA − tN st − s∗(tN ) v∗(tN ) 0

#3 t f − tA s f − st 0 0

7.7.1 Numerical Analysis

As in the previous sections, we consider a trip having a fixed distance s f and duration
t f . The unconstrained optimal speed profile, used as a baseline, is denoted as v∗(t).
We further compare predictive (P) and non-predictive (NP) eco-driving, as they have
been defined in Sect. 7.4. The latter has just visual information of the signal phase and
color, while predictive eco-driving perfectly anticipates the traffic light constraint.

The enforcement of the interior constraint (7.59) requires that the optimization of
the speed profiles P and NP is made with a DP algorithm having speed and time as
state variables. To speed up the calculation, a single-state DP code can still be used,
provided that time tt is considered a free parameter to be further optimized.

For the predictive strategy, we can reasonably assume from physical consider-
ations that the optimal choice for tt is to equal the last useful green time, that is,
tt = t f /2(1 − rx).3 The original OCP can thus be split into two partial OCPs, before
and after the traffic light crossing. However, these two OCPs are not independent as
in the intersection case of Sect. 7.6, but coupled by the crossing speed vt that plays
the role of final speed in the former OCP and initial speed in the latter. The parameter
vt must therefore be further optimized to have the minimal energy consumption.

As for the NP speed profile, it first follows the unconstrained solution until the
time at which the traffic light is assumed to be detected, which we also set at tN =
t f /2(1 − rx ) = tt . Then, having no preview about the red phase duration, the NP
strategy should decelerate and stop in an arbitrary time, and wait for the next green
phase. The faster the deceleration, the larger is the energy consumption. We consider
the best-case scenario (from the NP perspective), where the strategy exactly chooses
to stop at the last time on red, tA = t f /2(1 + rx ), only to start again soon after.
Thus, the rest of the NP profile is found by concatenating (i) the solution of an
unconstrained OCP from time tt to the time tA, and (ii) after the traffic light, the
solution of an unconstrained OCP from tA to the end time. See Table 7.3 for a more
detailed list of the respective boundary conditions of the three strategies.

3Due to the symmetry of the problem in this particular case, the same result would be obtained with
tt as the first useful green time after the central red phase.
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Fig. 7.16 Unconstrained optimal (U), predictive (P), and non-predictive (NP) strategies for a traffic
light scenario with s f = 800 m, t f = 120 s, vi = v f = 0, st = s f /2 = 400 m, rx = 0.3. Speed (a)
and position (b) profiles and performance indexes (c)

Figure 7.16a shows the three speed profiles for s f = 800 m, t f = 120 s, vi =
v f = 0, st = s f /2 = 400 m, rx = 0.3, computed with the DP Algorithm 6 and the
EV model of Table 6.3. Figure 7.16b shows the respective position trajectories,
together with the forbidden window with the traffic light being red. The optimal
crossing speed of the predictive strategy is found to be around 30 km/h in this case.

The values of the measures of performance (7.33) are plotted in Fig. 7.16c as a
function of the duty cycle parameter rx . While ε(P) increases with an increase of
rx and tends to zero as rx tends to zero, ε(N P) results from two opposite trends and
shows a minimum. On the one hand, small values of rx mean small preview times
and strong decelerations/accelerations to catch the new green period. On the other
hand, large values of rx mean longer red intervals and thus stronger accelerations in
the second green period to complete the trip.
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7.7.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.

7.7.2.1 Predictive Strategy

The predictive strategy perfectly anticipates the presence of the traffic light and
chooses the optimal crossing time and speed satisfying the constraint imposed by its
timing. As discussed above, we assume the optimal timing choice as tt = t f /2(1 −
rx ). However, the crossing speed vt is free and can be optimized. Similarly to (7.50),
we evaluate the overall consumption as a function of vt ,

E (P)
b,e (vt ) = 4b

(
12s2f
t3f

1 + 3r2x
(1 − r2x )

3
− 12s f vt

t2f

1 + r2x
(1 − r2x )

2
+ 4v2t

t f

1

(1 − r2x )

)
. (7.60)

The minimum of function (7.60) is obtained for

∂E (P)
b,e

∂vt
= 0 → vt = 3s f

2t f
· 1 + r2x
1 − r2x

. (7.61)

Note that for rx = 0 the top speed of the unconstrained optimal profile is retrieved.
With this choice of crossing speed, the effective consumption is derived as

E (P)
b,e = 12bs2f

t3f
· 1 + 6r2x − 3r4x

(1 − r2x )
3

(7.62)

and equals the unconstrained optimum for rx = 0.

7.7.2.2 Non-predictive Strategy

For the non-predictive strategy, we set tN = t f /2(1 − rx ) and we impose a stop
(vt = 0) at the traffic light at time tA = t f /2(1 + rx ), as in the numerical analysis.
Thus the effective consumption is derived as

E (N P)
b,e = 12bs2f

t3f
· (1 + r2x )(3 + rx (31 + (−3 + rx )rx(8 + r2x ))

16(1 − rx )3rx
. (7.63)
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Fig. 7.17 Performance
index for the traffic light
scenario as a function of the
parameter rx
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7.7.2.3 Analysis

The performance indexes (7.44) are evaluated as

ε(P)
e = r2x (3 − r2x )

2

(1 − r2x )
3

(7.64)

and

ε(N P)
e = 3 + 15rx + 27r2x − 9r3x − 11r4x + 9r5x − 3r6x + r7x

16(1 − rx )3rx
. (7.65)

Figure 7.17 shows the two functions (7.64)–(7.65) as a function of the parameter rx .
Clearly, the trend numerically obtained and shown in Fig. 7.16c is retrieved, with
ε(P) increasing with rx and ε(N P) showing a minimum.

These results are largely independent of the particular boundary conditions cho-
sen. For a slightly different scenario where the vehicle is cruising at a constant speed
(vi = v f = s f /t f ) except for the traffic light, the effective energy consumption of
the three strategies are

E∗
b,e = 0, E (P)

b,e = 48bs2f
t3f

· r2x
(1 − rx )3

, E (N P)
b,e = 8bs2f

t3f
· 1 + rx + r2x

(1 − rx )3
, (7.66)

showing a similar dependency on rx to (7.62)–(7.63).

7.8 Car Following

In the scenario of this section, the host vehicle is subject to avoiding rear-end colli-
sions with a preceding vehicle, whose motion is described by a temporal law sp(t).
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That imposes a constraint of the type

s(t) − (sp(t) − smin(v(t), vp(t))) ≤ 0, t ∈ [0, t f ] , (7.67)

where smin is theminimum inter-vehicle safe distance. The latter quantity can actually
describe a distance headway or a time headway enforced by the road law or other
considerations. While the minimal safe distance headway is usually a constant, the
minimal safe time headway depends on the relative speed of the two vehicles. In
this section, we shall assume that the safe distance at most depends on the preceding
vehicle’s speed vp only (not on the host vehicle’s speed), and thus it will be considered
as a prescribed function of time, smin(t).

A numerical analysis of this scenario is presented in Sect. 7.8.1. Then in Sect.
7.8.2 we use closed-form solutions of ED-OCP (6.64) to corroborate the numerical
results and highlight the influence of the preview ability and other parameters of the
problem.

7.8.1 Numerical Analysis

Position constraint (7.67) plays the role of a state constraint in the ED-OCP. Addi-
tionally, there might be speed constraints such as those studied in Sect. 7.5. The
key factor for performing eco-driving in such a situation is the ability to detect the
position and the velocity of the preceding vehicle. That is usually feasible with cur-
rent ADAS-type sensors (see Sect. 3.2.1), which nevertheless have a finite range.
An extension of the preview distance provided by standard ADAS sensors could be
made possible by the use of dedicated vehicle-to-vehicle or vehicle-to-infrastructure
communication (see Sect. 3.1).

As in the previous sections, we consider a trip having a fixed distance s f and
duration t f . The preceding vehicle is assumed to advance at constant acceleration,
that is, we assume sp(t) = sp,0 + vp,0t + apt2/2.4 The unconstrained optimal speed
profile, used as a baseline, is denoted as v∗(t). We further compare predictive (P) and
non-predictive (NP) constrained optimal speed profiles, as they have been defined in
Sect. 7.4. The latter has just a limited preview of the preceding vehicle, defined by
the preview distance rds f , with 0 ≤ rd ≤ 1. Here we consider only the case rd = 0.
The predictive eco-driving perfectly anticipates the preceding vehicle constraint with
unlimited preview distance (rd = 1).

The speed profile P is obtained using the methods introduced in Chap. 6. In partic-
ular, a full two-state DP code can be used, with time as the independent variable and
velocity and position as state variables. In this way it is possible to enforce the posi-
tion constraint directly, by making unfeasible all the points of the position grid that

4In Chap. 9, we present a case study where motion of the preceding vehicle is modeled as a Markov
chain and predicted probabilistically.
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Table 7.4 Boundary conditions for the position-constrained scenario

Constrained
optimiza-
tion?

Duration Distance Initial speed End speed

Unconstrained N t f s f 0 0

Predictive Y t f s f 0 0

Non-
predictive

#1 N tN s∗
p(tN ) 0 v∗(tN )

#2 Y t f − tN s f − s∗(tN ) vp(tN ) 0

exceed the maximal allowed position sp(t) − smin(t). The predictive speed profile is
thus obtained by solving the constrained OCP for the original boundary conditions,
see Table 7.4. The non-predictive speed profile is obtained by concatenating (i) the
unconstrained solution until a time tN such that s∗(tN ) = sp(tN ) − smin(tN ) with (ii)
the solution of the constrained OCP from tN to the end time, with a distance to cover
s f − s∗(tN ), an initial speed equal to v∗(tN ) and a final speed of zero. Note that this
definition might imply an unrealistic speed discontinuity at tN if vp(tN ) < v∗(tN ).

Figure 7.18a, b shows theU and P profiles in terms of speed and position computed
with the two-state DP and the EVmodel of Table 6.3 for s f = 500 m, t f = 60 s, vi =
v f = 0, and two leader’s scenarios: sp,0 = 20 m, vp,0 = 15 km/h, ap = 0.14 m/s2

(P1) and sp,0 = 50 m, vp,0 = 15 km/h, ap = 0.17 m/s2 (P2). Clearly, the P profiles
present milder initial accelerations to allow a rendez-vous with the leader when the
two vehicles have the same speed. For the sake of figure readability, these figures do
not show the NP profiles.
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Fig. 7.18 Unconstrained optimal (U) and predictive (P) strategy for a trip with s f = 500 m, t f =
60 s, vi = v f = 0, sp,0 = {20, 50} m, vp,0 = 15 km/h, and ap = {0.14, 0.17} m/s2
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7.8.2 Analytical Approach

In order to retrieve and explain the behavior shown by the numerical results of the
previous section, we use the simplified EV model of Sect. 6.5.3.3, for which explicit
solutions of the ED-OCP can be calculated.

We further assume that the preceding vehicle departs from the same position as the
host vehicle (smin = 0) and drives at a constant speed, denoted by vp. Amore general
case, including initial separation and relative speed between the two vehicles, and a
constant leader acceleration, is treated in Appendix B. The unconstrained solution
in terms of speed is still given by (7.30).

7.8.2.1 Predictive Strategy

The predictive speed profile is the result of a constrained optimization. The nec-
essary conditions for optimality derive from (6.72) in the Lagrangian form with
the addition of the conditions (6.31)–(6.34). Using the nomenclature introduced
in Sect. 6.2.2.1, the position constraint g(x(t), t) = s(t) − vpt ≤ 0 is of the sec-
ond order (p = 2), since g̈ = g(2) = v̇ = u p − h. Additionally, we have ∂g/∂s = 1,
∂g(1)/∂v = 1, ∂g/∂t = −vp, and ∂g(1)/∂t = ∂g(1)/∂s = ∂g/∂v = 0. Therefore, the
system of equations to be solved reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = v(t), s(0) = 0, s(t f ) = s f
v̇ = u p(t) − h, v(0) = vi , v(t f ) = v f

λ̇ = −mup(t) − μ, λ(0) = λ0

μ̇ = 0, μ(0) = μ0

u p(t) = − 1

2b
(λ(t) + mv(t) + η(t))

η(t)g(s(t), t) = 0, η(t) ≥ 0, η̇ ≤ 0, η̈ ≥ 0

λ(τ−) = λ(τ+) + π1

μ(τ−) = μ(τ+) + π0

π0 ≥ 0, π1 ≥ 0, π0g(s(t), t) = 0, π1g(s(t), t) = 0

H(τ−) = H(τ+) + π0vp

(7.68)

where τ is a junction time (entry or contact time) for the constraint and the Hamil-
tonian is H = mupv + bu2p + λ(u p − h) + μv.

When the position constraint is not active, η(t) ≡ 0 and the optimal control input
is linear in time with a constant derivative u̇ p = (μ0 + mh)/(2b). Thus the speed
is quadratic in time as in the unconstrained case, see (6.73)–(6.74). The position
constraint can be active either on a boundary interval or at a contact point. Here
only the case with a contact point t1 is considered. The tangency conditions impose
that s(t1) = sp(t1) = vpt1 and v(t1) = vp. The jump conditions together with the
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algebraic relation between u p and λ imply the continuity of the control input at the
contact point.5

The constrained-optimal trajectory is thus made up of two parabolic phases sep-
arated by the contact point, see Fig. 7.20a, b. Imposing the tangency conditions,
the speed profile is completely characterized by the boundary conditions and the
unknown parameter t1. Explicitly, it reads

v(t) =

⎧⎪⎪⎨
⎪⎪⎩
4vp
t1

t − 3vp
t21

t2, t ∈ [0, t1)

3vp − 2vp
t1

t + vp
t1

2t f − 3t1
(t f − t1)2

(t − t1)
2, t ∈ [t1, t f ]

. (7.69)

Note that the first of (7.69) implies that the first phase has a maximum at 2/3t1. The
maximum speed reached is 4/3vp. Here we shall assume that this speed is lower than
any top speed limit.

The contact time is found by imposing the overall distance, yielding

t1 = t2f vp

4t f vp − 3s f
. (7.70)

We find now the conditions F(t f , s f ) ≥ 0 for which (7.69) is an admissible speed
profile. As discussed earlier, the general conditions on the unconstrained speed pro-
file FUB1, FUB2, and FLB1 are always satisfied when vi = v f = 0 and vmax → ∞.
Thus the only conditions to be fulfilled, which defines the limits of feasibility of
the unconstrained speed profile, are FLB2 (maximum acceleration/deceleration) and
FLB3 that is imposed by the position constraint. The latter condition can be expressed
by the requirement that the quadratic-in-time equation s∗(t) = vpt has at most one
degenerate real root. As shown in Appendix B, that reads

FLB3(t f , s f ) � 8vpt f − 9s f ≥ 0 . (7.71)

The domain of feasibility of the unconstrained speed profile can be exceeded
by the constrained speed profile. However, we must obviously require that the final
position does not exceed the final leader position, that is,

FLB3′′(t f , s f ) � vpt f − s f ≥ 0 . (7.72)

Note that this condition implicitly ensures that t1 given by (7.70) is a positive quantity.

5Denoting H(τ−) − H(τ+) with �H and analogously for the other jumps at a junction time, we
can compute�H = mvp�u p + b�u2p + �(λu p) − h�λ + v�μ from the Hamiltonian definition
and the fact that �v = 0. The algebraic relation between λ and u p provides �λ = −2b�u p − �η,
which equals −2b�u p for the slack conditions, and �(λu p) = −2b�u2p − mvp�u p − �(ηu p),

which equals −2b�u2p − mvp�u p by construction. Combining these equations, we obtain �H =
−b�u2p + 2bh�u p + vp�μ. Since this quantitymust equal vpπ0 = vp�μ for the jump conditions,
�u p = 0 results. In addition, π1 = �λ = 0.
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In the position-constrained profile’s domain of feasibility, the lower bound FLB2

is replaced by the condition that the maximum acceleration and deceleration of the
position-constrained profile, a(0), are lower than amax and |amin| = amax , respec-
tively. That yields

FLB2′′a � amax − 4

t2f
(4t f vp − 3s f ) ≥ 0 , (7.73)

which is always satisfied in the region of interest, and

FLB2′′d � amax − 2

3t2f

(4t f vp − 3s f )(2t f vp − 3s f )

t f vp − s f
≥ 0 , (7.74)

which in turn limits the domain of feasibility of the position-constrained profile.
The domain of feasibility in terms of s f , t f is illustrated in Fig. 7.19. For later

use, we introduce here a speed ratio

rp � vp
s f /t f

− 1 , (7.75)

with 0 ≤ rp ≤ 1/8 as a consequence of (7.71).
Finally, the effective energy consumption is derived as

E (P)
b,e = 4bs2f

9t3f
· (4rp + 1)3

rp
. (7.76)

Fig. 7.19 Domain of
feasibility of the
unconstrained speed profile
(shaded gray area) and the
constrained speed profile
(dark gray area) in the plane
t f –s f for the car following
scenario. The curves shown
are: FLB2 (blue), FLB3
(yellow), FLB2′′a (dashed
green), FLB2′′d (dashed
blue), and FLB3′′ (red). The
coordinates of the
intersection points are D:
(128/27σ , 16/3τ ), where
σ � v2p/amax , τ � vp/amax

s f

t f

D

A ≡ B ≡C
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7.8.2.2 Non-predictive Strategy

The non-predictive speed profile initially follows the unconstrained optimal speed
profile v∗, see Fig. 7.20. This phase ends at time tN when the preceding vehicle
is reached (assuming smin = 0). The preceding vehicle is then followed, assuming
for simplicity instantaneous adaptation (i.e., infinitely fast deceleration) of the NP
speed to vp. This phase lasts until time tT , at which the non-predictive speed profile
retrieves a parabolic sub-optimal profile until stop.

Therefore, the speed profile ismade of three phases and, imposing continuity of the
control input at tT (v̇(tT ) = 0), it is completely determinedby theboundary conditions
and the unknown parameters tN , tT . Imposing the condition s∗(tN ) = sp(tN ) = vptN ,
the contact time is evaluated as

tN = 3t f
4

(
1 −

√
1 − 8t f vp

9s f

)
. (7.77)

On the other hand, the switching time tT is found by imposing the overall distance,
yielding

speed

time
tN tT t1

position

time
tN tT t1
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Fig. 7.20 Schematic strategies for the car following scenario: unconstrained optimal (blue), predic-
tive (orange), and non-predictive (green) speed (a) and position (b) profiles; performance indexes
as a function of the parameter rp (c)
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tA = 3s f
vp

− 2t f . (7.78)

Finally, the effective energy consumption is evaluated as

E (N P)
b,e = 4bs2f

t3f
· (1 + rp)2((1 + rp)

√
1 − 8rp − 3(1 + 13rp))

9rp(
√
1 − 8rp − 3)

. (7.79)

7.8.2.3 Analysis

The performance indexes (7.44) are evaluated as

ε(P)
e = (1 − 8rp)2(1 + rp)

27rp
(7.80)

and

ε(N P)
e = 9rp(1 + rp)

√
1 − 8rp + (1 − 2rp)(2 − 17rp − r2p)

54rp
. (7.81)

Note that ε(P) goes to zero for rp = 1/8, where ε(N P) would be negative. It is thus
clear that the domain of feasibility of the NP profile in terms of rp is smaller than
that of the P profile. These trends are shown in Fig. 7.20c where the two performance
indexes are plotted as a function of the speed ratio rp.

*
* *

The scenarios presented in this chapter are obviously oversimplified and represent
real-life situations only in an idealized way. However, their analysis has allowed us
to identify for each of them the key parameters that induce energy inefficiencies and
how to alleviate them with predictive optimal driving control. While the existing
literature has often addressed these scenarios separately with ad hoc strategies, the
next chapter, grounded on the theory of Chap. 6, will discuss their implementation in
a unified eco-driving system. More realistic conclusions can be drawn after several
of these scenarios are treated in the detailed case studies of Chap. 9.
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