Chapter 5 ®)
Energy-Efficient Route Navigation e
(Eco-Routing)

Eco-routing methods are the strategies and tools aimed at minimizing a vehicle’s
energy consumption by route selection. Given some origin and destination, which
are typically chosen by the driver or user, eco-routing plans an energy-minimal route.

The set of possible routes from origin to destination constitutes a graph, where
nodes and links represent junctions and roads. In the next Sect. 5.1 we will define
a weighting function, which associates each link of the graph with a weight. In
conventional routing graphs, the weight associated with each arc is either the length
of the arc or its travel time. In the eco-routing framework, each link of the graph
is assigned a weight that represents the travel energy expenditure. Differently from
length or travel time weights, energy weights can be negative when EVs or HEVs
with regenerative braking are concerned. Then in Sect. 5.2 we present how the eco-
routing algorithms can be used to predict the maximal driving range of a vehicle.
Finally, Sect. 5.3 will discuss some practical implementation issues.

5.1 Eco-Routing as a Shortest-Path Problem

The energy-minimal navigation problem introduced above is treated by formulating
an eco-routing shortest-path problem (ER-SPP) in Sect. 5.1.1, while Sect. 5.1.2
presents various techniques to solve such a problem.

5.1.1 Problem Formulation

The eco-routing as a shortest path problem can be stated in the following way. For a
given directed graph G = (V, A), where V is the set of nodes n;, and A is the set of
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links (or edges) e, connecting these nodes, find the path p = (ey, €2, ...) C P, where
Pis the set of all simple! paths in G, such as to minimize the objective function

J@) 2 wilt, be(0)) (5.1)

ek EP

where wy is the weight attributed to the link &, possibly as a function of time and
of additional decision variables by. Minimization of (5.1) is subject to (i) initial and
terminal conditions (single-source shortest path)

ny=no, ngp)="np, (5.2)

where no and np are the origin and the destination sought, respectively, and | - |
denotes cardinality, (ii) first-order dynamic constraints on the state vector x; for
each node n; belonging to p,

Xkt = Xk + fi(t, wie (8, bi(1)), b (1)) x1 = x(no) , (5.3)
(iii) algebraic constraints on the state,
gilx) <0, i=1,...,¢, 5.4
terminal inequality constraints over (iv) the state,
h(x(np)) <0, (5.5)

and (v) possibly, over a certain resource,

R(p) £ re(t, bi(1) < Ry, (5.6)

erEp

where ry is the resource consumption over link k.

How the quantities V, A, wy, by, xi, f, g, h, and ry, are particularized for our
ER-SPP will be discussed in the following sections. Although costs, state variations,
and resource consumptions might change with time, we will consider only the time-
independent SPP. Similarly, although the situation in the road network is continually
evolving and predicting its state in future is arguably difficult, we shall not consider
stochastic SPP.

5.1.1.1 Graph

The most intuitive choice to set G for a given road network is such that nodes rep-
resent road intersections and links represent roads. However, the use of this primal

A simple path is a path without cycles: its edges are distinct.
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graph presents some major difficulties. In particular, consider the case of an inter-
section with two or more incoming roads and one outgoing road i. The weight of the
latter clearly depends on which upcoming link the vehicle comes from because each
movement to enter i (e.g., left-turn, right-turn, through) might be accompanied by a
different speed transition. In fact, the synthetic profile v;(r) introduced in Sect. 4.4
is not unique since it depends on the upstream average speed V;_; that is not unique
in this case.

This difficulty is resolved by modeling the road network as an adjoint graph,
which is defined as follows. The adjoint graph G = (A, A*) of a directed graph
G = (V, A) has a node for each link in G, and a link connecting two nodes if the
corresponding two links in G share a common node.

In other words, each link i € A of G’ becomes anode of G, and each link k € A* of
G encompasses two generic links i — 1,i € A of G. Thus, the adjoint graph allows
to correctly assign unique weights to all the possible maneuvers in the original graph
G. Figure 5.1 illustrates this concept. Useful properties of adjoint graphs allow to
compute the number of links of G, and therefore its size, based on the connectivity

(a)

Fig. 5.1 Relation between a road network (a) and the corresponding road network graph G (b) [2].
The nodes are shown as circles, the edges as arrows. There are fifteen nodes n; to n15 representing
the roads in the road network. The edges (arrows) spanning from nodes indicate to which nodes
(roads) can the vehicle turn to at the downstream intersection
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properties of G [1]. Note that the origin and destination nodes of (5.2) represent in
G the initial and target links (i, ip) of the primal graph.

In this context, battery recharge stations (of either type, swapping, full/partial
refill, continuous wireless charging, etc.) can be attributed to some nodes of the
primal graph, thus to a subset A¥ C A* in the adjoint graph.

5.1.1.2 Objective Function

In standard navigation systems, the objective function J(p) is chosen such as to
represent the trip length or the travel time. In eco-routing, the focus is on energy
saving and therefore the weight assigned to each link of the graph represents the
associated (tank) energy consumption Er.

Using the synthetic energy consumption defined on the links of the primal graph
G, we can now attribute energy weights to each link ¢; € A*. Reminding that the
link & of the adjoint graph encompasses the road segments i — 1 and i of the primal
road network, the most natural choice is to attribute to e; the energy consumption of
the downstream road segment (i) that already accounts for the transition from road
segment i — 1, see Sect. 4.4.3. In other words, we set

wy = E7;, (5.7

where Er; can be evaluated with (4.38) for ICEVs, (4.41) for EVs, and with (4.46)
for HEVs. Note that in the latter case, the fuel energy consumption depends on the
electric energy consumption, which thus plays the role of a decision variable b; in
(5.1).

The shortest path (SP) and the fastest path (FP) routing can be defined analogously
such that the SP routing minimizes the distance and the FP routing minimizes the
travel time. In these cases, the link weights wy are represented by the length of the
outgoing road segment or its travel time, respectively,

wSP =g WP = (5.8)

This travel time can be evaluated with (4.31).

5.1.1.3 Decision Variables

Decision variables b add degrees of freedom to the eco-routing problem besides the
choice of the link sequence in the path.
In HEVs, the additional decision variables are the electricity consumption on links
ks
b = By (5.9)
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whereas the cost is represented by the minimal fuel consumption. Note that the b;’s
can be negative in this case.

When recharge facilities for electrified vehicles (a scenario denoted here as xEVR)
are taken into account, that is, the path is not supposed to be covered with one single
battery recharge, the additional decision variable is the quantity of electricity refilled
at links where a recharge facility is available,

bIEVR — AE.;, e € AY. (5.10)

In both aforementioned cases, the kth graph weight wy can take on infinitely-many
values depending on the decision variable over the graph link. The problem of finding
the optimal b, for each link of the graph while searching the optimal route from an
origin to a destination has been addressed in the literature [3]. However, the proposed
solution strategies are often impractical due to large computational cost. A practical
approach therefore consists of augmenting the adjoint graph G = (A, A*) by creating
as many copies of each link of the graph as the number of pre-defined possible
values of b;. Using the discretized values b,((j) € [bk.mins bkmax]l, j =1, ..., Np, let
us define a b-augmented graph Gz = (A, A%) with link copies k) € A%, and a new
cost function ' '

w 2w ibe=bY, j=1,....N,, (5.11)

that represents the cost to perform the maneuver k) € A% for a given decision
variable b,((j ). The number of copies, or decision variable levels, N, is a design
parameter, in a trade-off between discretization accuracy and computational burden.
Furthermore, the variation range of b,(cj ) depends on the physical properties of the
maneuver k € A*.

Another possibility to treat the problem of eco-routing with additional decision
variables is to make copies of the links w.r.t. discretized values of the state (see
below) at the end of the link [3, 4]. However, augmenting the graph in terms of
decision variables offers a much higher precision as compared to these alternative
graph expansions, while the best choice in terms of algorithmic complexity is a matter
of debate.

5.1.1.4 State Dynamics and Constraints

In both scenarios where states are relevant, that is, HEVs and XxEVs with battery

recharge, the role of state variable is played by the electrical energy stored in the

battery, x = {¢5}. Given (5.7) and (5.9)—(5.10), the state dynamics (5.3) reads
HEV) — By = —by (5.12)

for HEVs and
fk(xEVR) = —Ep; = —w + by (5.13)
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for xEVs with battery recharge, with x(np) = €, in both cases. These dynamics
are further subject to the physical limits of the battery, that is, the local constraints
(5.4) that are to be applied at each link and for partial paths,

0 <& = Eb,max » (514)

with &5 ax £ 0, Vi being the battery maximum capacity, while it has been assumed
for simplicity that the battery can be completely depleted.”

Depending on the type of HEV, the battery energy at the end of the trip should
match a prescribed value. For charge-sustaining HEVs, the final SoC should match
the initial value, thus &, (np) — €50 = 0 in (5.5). For plug-in HEVs, if a recharge is
possible at the destination, the battery should be depleted. Thus the desired value for
ep(np) is usually close to zero, that is, a battery fully discharged.

5.1.1.5 Resource Constraints

Although energy efficiency is the main objective in ER-SPP, neglecting travel time
might reduce the appeal of the selected route and the drivers’ compliance to the
routing suggestion. Hence, it is important to optimize energy consumption while
providing the opportunity to the drivers to define their preferred trade-off with travel
time. This trade-off can be achieved by selecting the resource consumption ry in (5.6)
as to represent the travel time of the link %,

e =71;, (515)

where 7; is the travel time of the downstream link of the primal graph. The term R
in (5.6) thus plays the role of the maximum time allowed for the route.

When battery recharge is taken into account, the travel time must include the wait-
ing time at stations and the recharging time. Therefore, the resource consumptions
become a function of the electricity recharged, thus of the decision variable (5.10),

rOEYR = 1 AT (AEes. e42) - (5.16)

For the charging function At ;(AE.;, ), the models introduced in Sect. 4.1.4
can be used.

%
k) kK

The presence of terminal state and resource constraints makes the eco-routing
problem a resource-constrained SPP (RCSPP), which is known to be NP-hard. In
order to overcome this complexity, which makes the problem impractical for end-

2In practice, that is not true, and a practical SoC window must be considered instead.
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user applications and driving assistance, a more tractable problem formulation can
be introduced under the form of a Multi-Objective Optimization Problem (MOOP),
where resources and state constraints are transformed into additional objective func-
tions to be minimized alongside with J (p).

Solving a MOOP requires an external decision making process to give relative
preference to the various objectives. In a-posteriori methods, preference is given, and
adecision is made, once a representative set of optimal solutions is found. In contrast,
a-priori methods require that preference information is available before searching for
optimal solutions. A standard a-priori method is scalarization, that is, combining the
various objectives into a single objective function. Several approaches to scalariza-
tion exist, depending on the form of the single objective function. In particular, the
standard approach of the weighted-sum scalarization [5] casts the MOOP as a single-
objective problem by appending the terminal constraints as additional terms of the
objective function,

A= =) Y Wit M > ret+r ) fi. (5.17)

e Ep exEP erEP

where the first term of (5.17) is the original objective function, the second is the
terminal value of the resource that is constrained by (5.6), and the third is the terminal
value of the state constrained by (5.5), where for simplicity a hard constraint has
been assumed. The optimization weights A € [0, 1] define the trade-off between the
objectives, and should be sought such that the terminal constraints for the optimal
path p are met, see below Sect. 5.1.2.3.

The presence of local state constraints (5.4) could be treated by making several
copies of each link for several state levels in a discretized set and thus directly
enforce the constraints. However, this problem makes the graph complexity grow
exponentially. Therefore, a common approach to deal with these constraints is to
relax them in the problem formulation, and verify them a posteriori on the optimal
path [6]. Such a path is feasible if Ve, € p, x; fulfills (5.4). If it is not, it is necessary
to select the next-best path, which in turn requires a routing algorithm that is capable
to sort paths according to the objective function chosen (see Sect. 5.3).

5.1.2 Routing Algorithms

Graphs modeling road networks are directed and cyclic by nature, and, due to limited
connectivity and the presence of one-way roads, the adjacency matrix representing
road networks graphs tends to be highly sparse. Furthermore, the consideration of
electric vehicles and energy recuperation phenomena implies that the graph links may
be weighted with negative costs. In theory, negative weights on a cyclic graph may
lead to the criticality of negative cycles: there might be cycles in the road network
graph whose sum of costs is negative. Routing in such graphs is not possible, as
the vehicle can gain any amount of energy simply by running along these cycles
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sufficiently many times. However, this issue does not make physical sense in our
framework, provided that the modeling approach is correct.

In the next sections two common shortest-path algorithms are presented, namely
Dijkstra’s and Bellman-Ford (BF). Then, algorithms are presented that can be used
to effectively find the Pareto front for the bi-objective optimization (5.17).

5.1.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm, conceived by Edsger Dijkstra in the 1950s [7], is perhaps
the most commonly used algorithm in routing context. A basic implementation is
described in Algorithm 1. The procedure starts marking all nodes of the graph unvis-
ited and assigning a cost, denoted with J, equal to zero to the origin node, infinity to
the others. Then an iteration over the unvisited nodes is launched, starting from the
origin node. For the current node, all of its unvisited neighbors are considered and
their link costs through the current node are evaluated. This value is compared to
the current assigned cost and the smaller one is assigned. When all of the unvisited
neighbors of the current node are considered, the current node is marked as visited
(it will never be checked again). If the destination node has been marked visited,
then the procedure has finished. Otherwise, the unvisited node with the smallest cost
is selected as the new current node and a new iteration begins. Once this procedure
is completed, a reverse iteration allows then reconstructing the optimal path.

The computational complexity of Dijkstra’s algorithm is O(||A||?), where || - ||
denotes the set cardinality, which makes its use particularly attractive. However,
Dijkstra’s algorithm requires that the costs are non-negative to provide an optimal
solution. Therefore, it cannot be generally used for the eco-routing problem with
EVs or HEVs.

A widely used extension of Dijkstra’s algorithm is the A* algorithm. This search
method differs from Dijkstra’s essentially because it uses a heuristic function to
evaluate the current node’s neighbors in addition to the “real” cost w. This heuristic
is an estimate of the remaining cost from the neighbor to the target node.

5.1.2.2 Bellman-Ford Algorithm

The well-known Bellman-Ford (BF) algorithm [8] can be used to route on graphs
with negative costs. Similarly to Dijkstra’s algorithm, BF can be considered fast since
their runtime is polynomially bounded. However, while Dijkstra’s method visits only
those nodes that can potentially be on the shortest path, Bellman-Ford operates on
every node in the graph. Hence the computational effort associated with Dijkstra’s
method is dominated by trip properties while the road network size dominates the
computational effort associated with the Bellman-Ford algorithm. In particular, its
computational complexity is O(||Al] - ||A*]]).

For large road networks, such a computational complexity leads to significantly
high computation time, which is not suitable for user-oriented applications and real-
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time use. However, early termination conditions [9] can be introduced in order to
stop the search when an iteration of the algorithm main loop ends without making
any link relaxation. When this happens, it means that the algorithm has already found
all the shortest paths from the origin and the following iterations would not modify
them. This does not improve the worst-case performance of the algorithm, but it
performs extremely well on real road networks [10]. In practice, the Algorithm 2

drastically reduces the computation time.

Algorithm 1 Dijkstra algorithm

Require: G, wx,no,np
Ensure: p, J

p<9, J< oo, preding) <0, J(np) <0
Q<« A
while O # ¢ do

Jopt <= 00
foru € Q do
if J(u) < Jop, then
Jopt < J(u)
Uopr < U
end if
end for
U < Uop;

Q < O \ugpy

if uop; = np then
return
end if

for v € neighbors(u) do
if J(u) +w(u,v) < J(v) then
JW) <« J() +w(u,v)
pred(v) < u
end if
end for
end while

u<«np, p<9
repeat
p<«<uUp
u <« pred(u)
untilu =ngp

> Initialization

> Find current node

> Remove u from Q

> Termination condition

> Evaluate neighbors

> Reverse iteration
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Algorithm 2 Bellman-Ford algorithm

Require: G, wy,no,np
Ensure: p, J

> Initialization
p<9, J< oo, preding) <0, J(np) <0

> Cycle
fori e{l,...,]|A||} do
optimal <— True
for arc € {1,...,||A*||} do

u < tail(arc)
v < head(arc)
if J(v) > J(u) + w(arc) then
J() < J(u) +wlarc)
pred(v) < u
optimal < False
end if
end for
if optimal then
return
end if
end for
> Reverse iteration
u<np, p<9
repeat
p<uUp
u <— pred(u)
until u = nop

5.1.2.3 Bi-objective Optimization

We consider a particular case of the MOOP defined in Sect. 5.1.1 where only a
resource constraint is present (bi-objective optimization), weighted withA; = 1 — A,
X2 = 0.3 The goal is to find the paths that do not allow to improve one component of
the objective function without deteriorating the other one (non-dominated solutions).
The corresponding set in the objective space {J (p), R(p)} is generally called Pareto
front, see Fig. 5.2. Given the nature of the eco-routing problem, the Pareto front
is intrinsically made of a discrete set of solutions. Spanning the entire front thus
provides the exhaustive list of possible solutions compromising between the selected
cost (energy) and resource consumption (often, travel time). On the one hand, that
allows a decision maker to arbitrarily select a desired trade-off. On the other hand,
the particular non-dominated solution that minimizes the original objective function
J without violating the resource constraint (5.6) can be easily identified.

The combinatorial nature of such problems makes the search of all Pareto solutions
a very time-consuming task. Thus the practical goal is often to find the most diverse
set of solutions, i.e., solutions that are sufficiently varied in the true Pareto set. An

3The same approach could be of course applied to situations where the state constraints but not the
resource constraints are relevant, just by replacing R with h.
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Algorithm 3 Scalarization bi-objective optimization
Require: wy, ri,np,np
Ensure: S

S <0

> Initialize binary search
A<0
p! < BFalgorithm (G, Awy 4+ (1 — A)rg, no,np)
S < su{/eH, ReH}
A1
p> < BFalgorithm (G, Awx + (1 — A)rk, np, np)
S < su{J@, Rp"H)}
> Compute S
S <« solveRecursion (J(pz), R(pz), J(p'), R(pl), S, 1, 0)
> Recursive function
function SOLVERECURSION(z}, 75, 2}, 25, S, A1, Ar)
A ()\l + )\,,)/2
p < BFalgorithm (G, Awg + (1 — Mrg, np, np)
271 < J(p)
22 < R(p)
if {z1, z2} ¢ S then
S« SU{z1. 22}
if [ — A0 = ¥4 AND | (Az1 + (1 — M)z2) — (A2} 4+ (1 — M)z5) | = yq then
S <« solveRecursion (z1, z2, 2}, 25, S, A, Ar)
end if
if A — ] >y AND | (Az1 + (1 — M)z2) — (AZ} + (1 = 1)zh) | = y4 then
S <« solveRecursion (z]] , 212, 21,22, S, A, )»)
end if
else
if {z1,22) = {2}, z}} then
if |» — 4| > y then
S « solveRecursion (z1, z2, 2}, 25, S, A, &)
end if
else
if |A — A;] > 7 then
S < solveRecursion (2}, 25, 21, z2. S, A, A)
end if
end if
end if
return S
end function

example of efficient dichotomic algorithm for the search of the non-dominated solu-
tions is Aneja’s [11], which was proved to find all the non-dominated solutions within
a finite number of iterations. In [10], a new binary search algorithm (see Algorithm
3) has been proposed to significantly reduce the computation time, while computing
a representative sub-set of non-dominated solutions.* The main difference between

“In theory, the algorithm only finds a subset of extreme supported non-dominated solutions, that is,
a subset of those non-dominated solutions that lie on vertices of the convex hull of the Pareto front,
see Fig. 5.2.



122 5 Energy-Efficient Route Navigation (Eco-Routing)

Fig. 5.2 Objective space of a bi-objective optimization problem. Solid line: Pareto front. Dash-dot
line: convex hull. Black circles: extreme supported non-dominated solutions. Gray circle: non-
extreme supported non-dominated solution. Light gray circle: non-supported non-dominated solu-
tion. White circles: dominated solutions. Solution s is the one that minimizes energy consumption
without violating the constraint on resource consumption

the two algorithms consists of the space where the solutions are searched: Aneja’s
algorithm recursively explores the objective space selecting the decision weight A
based on the known non-dominated solutions, the modified algorithm explores the
decision space performing a recursive binary search of the decision weight. The latter
algorithm presents a standard initialization phase in which the two single-objective
solutions for A = 0 (minimizing the resource consumption, e.g., the fastest route)
and A = 1 (the energy-optimal route) are computed. The parameters y; and y, in
Algorithm 3 are set in such a way to find the right trade-off between number of
algorithm iterations and number of solutions found.

5.1.3 Numerical Solutions

This section presents some results obtained using the modified BF algorithm (Algo-
rithm 2) for a simple route graph. The primal graph is shown in Fig. 5.3a, which
has been obtained from the road network of Fig. 4.2 by further considering sepa-
rate directions of the original database links as different segments. Also indicated
in the figure are average speeds for each route segment and altitude at each node.
The adjoint graph is shown in Fig. 5.3b, with energy cost and travel time (resource
consumption) indicated at each link. In this illustration, wheel energy is considered
as the energy cost, which is independent from the particular powertrain used. No
recharge facilities are considered. Extra energy and travel time are assigned to links,
according to the method in Sect. 4.4, depending on the value of the parameter ¢
defined in (4.27), that is randomly assigned to the links to represent traffic signals
(¢ = 1 is for free flow, ¢ = 0 is for a stop).

Figure 5.4 shows the eco-route and the space of energy-time solutions for a given
sequence of stop signals. Note that, for such a small graph, the distinct routes with
no loops are easily enumerated and the Pareto front explicitly calculated.
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Fig. 5.3 Simple route graph, with directions on route segments numbered from 1 to 16 and altitude
values on nodes (a). Corresponding adjoint graph with nodes numbered from 1 to 16 and links
numbered from 1 to 21 (b). Values of average speed and length for each road segment/graph node
(c). Values of parameter y, travel time, and wheel energy for each graph link, for a vehicle with

Co = 161.7, C2 = 0.409, m,, = 1100 kg (d)
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Fig. 5.4 Minimal-energy path (eco-route) in red for the graph of Fig. 5.3 and np =1, np = 15
(a). Results for the the seven possible solutions with no loops (1-5-7-13-15, 1-5-8-11-15, 1-4-
10-11-15, 1-4-10-9-7-13-15, 1-5-7-13-14-10-11-15, 1-5-8-11-14-10-9-7-13-15, 1-5-7-13-12-9-6-
4-10-11-15), in terms of wheel energy and travel time; Pareto set (non-dominated solutions) in blue

(b)

5.2 Energy-Optimal Driving Range Estimation

Vehicles’ owners often wonder how far they can drive with the on-board stored
energy. Such a question is particularly relevant for electric vehicles, where the limited
amount of energy stored in the battery is often perceived as a strong limitation to the
penetration of this powertrain technology (‘“range anxiety”).

Driving range is often estimated in terms of distance making assumptions on the
average energy consumption per kilometer. Such estimations are made either before
the trip based on worst-case average energy consumption assumptions, or during the
trip based on measured consumption [12]. Because the range output to the user is
typically conservative to avoid running out of charge, imprecise range estimates may
further increase range anxiety.

In order to be insightful and effective, a driving range estimation strategy should
be accurate by specifically considering the characteristics of the vehicle and the
road transportation network. Also, when predicting driving range, it is of paramount
importance to clearly state the route types allowing the driver to reach the locations
within the driving range. For instance, routes favoring lower travel time could be
more energy-expensive than other types of routes, therefore the route choice directly
affects the size of the driving range. This aspect, although very important, is often
neglected [13]. In only few works [14, 15], the authors realize the importance of
choosing eco-routes to determine the driving range, however the simplified energy
consumption and road network model do not allow for a satisfactory precision in
urban and suburban environments.

In the next sections, it will be shown how the eco-routing methods of Sect. 5.1
can be used to provide an energy-optimal driving range, by predicting the optimal
energy consumption to reach all the possible destinations within the driving range.
This allows to relax the typical unrealistic assumptions of a worst-case average energy
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consumption and to give a clearer insight into the energy characteristics of the road
network [16].

5.2.1 Problem Formulation

The energy-optimal driving range to find may be defined as
range(no) = {A S A:Vn € A, Er(nng) < E}} | (5.18)

where n¢ is the origin node, A is the set of nodes in the graph, A is the subset of
nodes within the energy-optimal driving range, Er(n|no) is the predicted energy
consumption from the origin node to node n, and E7 is a desired (tank) energy
consumption. Typically, for EVs, this quantity is the electric energy stored in the
battery at the origin node.

5.2.2 Solution Method

The single-source shortest-path algorithms used for eco-routing, typically Dijkstra’s
or Bellman-Ford algorithms, have the property of returning within the same execution
not only the shortest path from origin to destination, denoted in Sect. 5.1 with p, but
also the optimal costs to reach all the nodes in the graph, denoted, e.g., in Algorithms 1
and 2, with J. Such a characteristic may be exploited to identify all the destinations
reachable with a certain desired energy consumption.

In practice, it suffices to replace Er(n|np) in (5.18) with J(n), the minimal
cost function to reach node n. Note that the driving range obtained by means of a
single-source SP algorithm is optimal in the sense that each node within the range is
reachable by following the shortest path from the origin to that node. In other words,
since the routing graph is weighted with energy costs (for a choice of A = 1), the
nodes in the energy-optimal driving range are reachable via eco-routes.

This approach enables a high level of precision in the driving range calculation.
As opposed to the techniques providing only the polygonal curve delimiting the
driving range, this strategy allows to analyze the energy consumption characteristics
of the region within the driving range and, more importantly, to determine whether
such a region is simply connected. If the properties of simple connectedness do not
hold, then some nodes within the driving range are unreachable even by means of an
eco-route.

The strategy may be easily extended to compute a round-trip driving range, which
may be of interest especially in the case of electric vehicles. The round-trip driving
range can provide an insight into the reachable destinations that also allow to return
to the departure point within a desired energy consumption threshold. In order to do
s0, the single-destination shortest path problem is simply solved on the same routing
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2f

Fig. 5.5 Energy range evaluated for the problem of Fig. 5.3 with np = 1. Gray dashed lines are
the contour lines at the wheel energy consumption indicated (Wh)

graph with reversed links orientation. The Bellman-Ford algorithm is run on such a
graph using again the origin (i.e. the destination of the round-trip itinerary) as the
starting node.

5.2.3 Numerical Solutions

An example result of energy-optimal driving range estimation is presented in Fig. 5.5.
The graph considered is the simple road network of Fig. 5.3. Taking np =1 as the
origin node, the figure shows some contour lines of equal energy consumption.

More extensive experiments [16] have demonstrated that the methods of this
section allow to correctly capture important characteristics of the energy driving
range for EVs and HEVs, such that:

e the driving range may be asymmetric about the origin;

e the driving range region may be not simply connected;

e auxiliary power demand may have a significant impact on the driving range;

e the round-trip driving range may be able to restore symmetry about the origin.

A detailed case study is presented in Sect. 9.5.

5.3 Practical Implementation

In principle, the eco-routing algorithm is run at the demand of the user and should
start with an update of the energy weights and resource consumptions (w; and ry
in this chapter) for each link of the road network as a function of the current traffic



5.3 Practical Implementation 127

conditions. In other terms, wy and r; should be evaluated from the speed data v, in
order to implement a procedure like the one introduced in Sect. 4.4. This calculation
could be even projected for the future time when the host vehicle will cross that
particular link. However, this complete update is seldom practical, due to the large
computing time required.

A more practical implementation of an eco-routing system aimed at reducing the
computing time, and thus the service time for the user, distributes the calculations
between an offline and an online layer, as illustrated by the flowchart in Fig. 5.6.

A remote server (cloud-computing) stores the road network of the preferred region,
with N sets of different energy weights and resource consumptions for each link.
These sets have been evaluated offline, based on historical traffic information. Typ-
ically, they correspond to different daytimes and weekdays to represent the most
diverse possible set of traffic conditions.

Through an HMI (see Sect. 8.31), the user enters either an address or coordinates
for its destination. In the former case, street addresses are converted by most GIS
into geographic coordinates, in a process called geocoding. As for the origin of the
trip, it is provided by a GPS signal.

These pieces of information are sent to the remote server where calculations are
performed. At first, origin and destination locations must be converted into useful
nodes or links in the road graph in a process called map-matching. For example, the
point-to-point method matches a given location to the nearest node in A. Conversely,
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Fig. 5.6 Conceptual sketch of an eco-routing system
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the point-to-curve method matches a given location to the nearest point on the nearest
road in A*. When entire trajectories, i.e., sequences of locations, are to be matched,
curve-to-curve methods try to match them to the most similar route in the road
network.

Based on current time of request (¢p in Fig. 5.6), the most suitable among the
N weighted graphs stored is selected. A routing algorithm is then executed on this
graph to output the K best routes according to the objective function implemented.
For single-objective routing problems, the K best routes can be evaluated using
Yen’s algorithm, a variant of the Belmann-Ford algorithm. For multi-objective cases,
the spanning of the Pareto front described in Sect. 5.1.2.3 already provides several
alternative routes.

The actual traffic conditions are provided by an external web-service and trans-
formed in weights and resource consumptions for the selected routes only using, for
example, the model of Sect. 4.4.

The K best routes are then evaluated using these updated weights. In other terms,
the objective function is evaluated for each of these routes and the constraints on the
state are verified to discard possible unfeasible routes. Finally, the best (“eco”) route
is found as the optimal sequence of links in A*. To transform this sequence into a
sequence of geographical coordinates suitable to be displayed by the HMI, a new
map-matching stage is required.
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