
Chapter 3
Perception and Control for Connected
and Automated Vehicles

In this book, by connected vehicles we are referring to vehicles that use commu-
nication technologies such as DSRC and cellular for vehicle-to-everything (V2X)
communication. The U.S. Department of Transportation’s National Highway Traffic
Safety Administration (NHTSA) defines fully automated vehicles as those in which
operation of the vehicle occurs without direct driver input to control the steering,
acceleration, and braking and are designed so that the driver is not expected to con-
stantly monitor the roadwaywhile operating in self-drivingmode [1]. In categorizing
partial automation, NHTSA’s federal automated vehicles policy adopts that of Soci-
ety of Automotive Engineers (SAE) definitions for levels of vehicle automation as
shown in the reproduced Table3.1. Automation levels range from no automation
with full driver control (Level 0) to full automation with no driver control (Level 5).
Many of the benefits discussed in this book are realizable with partial level 2 or 3
automation as they mostly rely on automated speed and steering control which can
be overseen and overridden by a human driver.

In this chapter, after a review of V2X technologies for connected vehicles in
Sect. 3.1, we provide a brief overview of automated vehicle localization and per-
ception in Sect. 3.2 and planning and control in Sect. 3.3. A schematic overview is
shown in Fig. 3.1.

3.1 V2X Communication

Connected vehicles could ideally benefit from Vehicle-to-everything (V2X) com-
munication channels and protocols to exchange data and information with a wide
variety of entities. Some of the main benefits are increased road safety, harmonized
traffic flow, and energy savings. For instance Vehicle-to-Vehicle (V2V) communica-
tion allows equipped vehicles to exchange their coordinates and intentions to prevent
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Fig. 3.1 Sensing, perception, planning, and control in CAVs

collision or to move in coordination. Vehicle-to-Infrastructure (V2I) communication
allows vehicles to communicate with roadside units and infrastructure such as traf-
fic signals enabling better coordination between them. A few other communication
modes to name are Vehicle-to-Pedestrian (V2P), Vehicle-to-Device (V2D), Vehicle-
to-Network (V2N), Vehicle-to-Cloud (V2C) and Vehicle-to-Grid (V2G) communi-
cation. In this book our main results only require V2V or V2I.

Today there exists two main communication technologies for V2X: (i) Wireless
Local Area Network (WLAN) and (ii) Cellular Network.

WLAN technology allows vehicles moving at high speeds to establish ad-hoc
and direct communication channels with neighboring vehicles and roadside traffic
units without the need for additional communication infrastructure. Several coun-
tries have allocated a spectrum for Intelligent Transportation Systems communica-
tion that enables WLAN V2X. For instance in the United States, a 75 MHz band
in the spectrum of 5.850–5.925 GHz has been set by the US Federal Communica-
tion Commission (FCC) since 1999. In Europe 30 MHz has been assigned for the
same purpose. Currently the IEEE 1609 family, IEEE 802.11p, and the Society of
Automotive Engineers (SAE) J2735 [3] form the key parts of the currently proposed
WirelessAccess inVehicular Environments (WAVE) protocols. [4]. The architecture,
communications model, management structure, security mechanisms and physical
access for high speed (up to 27Mb/s) short range (up to 1000m) low latency wireless
communications in the vehicular environment is defined by the IEEE 1609 Family
of Standards [5]. Society of Automotive Engineers (SAE) uses the term Dedicated
Short Range Radar Communication (DSRC) for the WAVE technology with J2735
set of standards which define the message payload at the physical layer. The SAE
J2735 [6] supports interoperability among DSRC applications through the use of
standardized message sets, data frames, and data elements.

Cellular V2X or in short C-V2X technology was initially defined as LTE in the
Third Generation Partnership Project (3GPP) Release 14 [7] and is designed to oper-
ate in several modes: (1) Device-to-device and (2) Device-to-cell-tower. The device-
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to-device mode allows direct communication without necessarily relying on cellular
network involvement. On the other hand, device-to-cell-tower relies on existing cell
towers, network resources, and scheduling. Direct device-to-device communication
improves latency and supports operation in areas without cellular network coverage.

3.2 Localization and Perception for Automated Driving

A key to successful automated driving is effective localization, obstacle detection,
and perception. The vehicle must not only determine with high precision its loca-
tion in the world and on the road but it should perceive accurately its surrounding
environment such as neighboring vehicles, pedestrians, animals crossings, lanemark-
ings, traffic signs and signals, street signs, curbs and shoulders, buildings and trees,
etc, and measure their relative distance and speed. These are perhaps the hardest
technical challenges to overcome for highly automated driving. Here we present a
brief overview of sensors and algorithms that are currently used for localization and
perception.

3.2.1 Sensors for Perception and Localization

An overview of sensors for perception and localization is provided in Fig. 3.2. Self-
or proprioceptive-sensors measure the ego vehicle internal states such as its velocity,
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Fig. 3.2 Schematic of vehicle sensors for perception and localization. Adapted from [8]



3.2 Localization and Perception for Automated Driving 67

acceleration, wheel speed, yaw, steering angle, engine speed, and engine torque.
Odometers, accelerometers, Inertial Measurement Units (IMU), and information
from Control Area Network (CAN) bus are used for proprioceptive-sensing and
are not limited only to automated vehicles; many modern human driven vehicles rely
on them for state estimation and advanced control functions. For example, IMUs
contain gyroscopes, accelerometers, and sometimes magnetometers along each axis
that provide dead reckoning capability in combination with the vehicle’s wheel speed
sensors. Since an IMU relies on integrating acceleration to determine positions, they
are prone to drift and may require GPS-fusion (or camera-fusion when indoor) for
more accurate localization.

Global Navigation Satellite Systems (GNSS) sensors also known commonly as
Global Positioning System (GPS) are becoming standard on modern vehicles for
navigation and localization. Other regional GNSS systems are Russia’s GLONASS,
Europe’s Galileo, and China’s Beidou. While current GNSS may not provide the
needed sub-meter precision for localization of automated vehicles, filtering algo-
rithms that fuse GNSS and IMU readings could offer more precise localization. Still
centimeter precision levels needed for some automated vehicle functions, such as
lane determination, may benefit from more precise positioning systems. Reduction
in cost of highly accurate GNSS is expected in near future making it available to the
mass market [9]. Today Real-Time Kinematic (RTK) GPS technology is available
and relies on a roadside base station to correct GPS readings to within centimeter
accuracy. Simultaneous Localization And Mapping (SLAM), which we discuss in
more detail later under localization algorithms, are used bymany autonomous vehicle
developers to localize the vehicle with respect to the surrounding environment.

Extroceptive sensors such as sonar, radar, LIght Detection And Ranging (LIDAR)
and cameras are used for sensing the surrounding environment and objects as sum-
merized in Table3.2. Sonar, radar, and Lidar are called active sensors because they
emit energy in the form of sound and electromagnetic waves and measure the return
to map the surrounding environment, e.g. distance to nearby objects. On the other
hand light and infrared cameras are called passive sensors since they do not emit
energy and only measure the light/electromagnetic waves in the environment [10].

Sonar can measure distance to nearby objects but only has a very limited range
(<2m) and has low angular resolution. Radars rely on reflection of radio waves that
they emit to measure distance to and velocity of moving objects and have a much
higher range than sonar but are weak in classification, pedestrian detection, and in
detecting static objects. Also radars may suffer from interference from other radars
and create false alarms. Lidar works similarly to radar but relies on infrared light
(laser) instead of radio waves. Lidars emit laser at wavelengths beyond the visual
light spectrum at typical scan frequency of 10–15 Hz. They emit millions of pulses
per second giving them high resolution, a large field of view, and the capability to
create a 3D point cloud of surrounding environment. This has made them an essential
sensor for most automated vehicle developers. Nevertheless, Lidar cannot directly
measure velocity, may have difficulty with detecting highly reflective objects and
has degraded performance in fog, rain, or snow. Segmentation, classification, and
sometimes time integration algorithms are still needed to convert the 3D raw data
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Table 3.2 Comparison of different extroceptive sensor technologies for automated driving. The
results are compiled from [10, 12–14]

Sonar Radar Lidar Single vision
camera

Perceived Energy Sound waves Millimeter wave
radio signal

600–1000
nanometer wave
laser signal

Visible light

Range [m] 2–5 0.15–250 2–100 250

Vehicle
recognition
versus other
objects

Tracking Tracking Spatial
segmentation,
motion

Appearance,
motion

Resolution – o + ++
Field of view – + (short range

radar)- (long
range radar)

++ ++

Distance
measurement

+ ++ ++ –

Velocity
measurement

−− ++ + –

Operation in poor
weather

++ ++ o –

Poor lighting
performance

++ ++ ++ −−

Other challenges Poor
classification low
range low
resolution

Poor
classification,
poor pedestrian
detection, poor
static object
detection, prone
to interference

Poor
classification
compared to
vision, difficulty
with highly
reflective objects

high
computational
cost

Cost (US $) 50 50–200 7,000–70,000 100–200

++Very good +good o average – poor −−very poor

to classified objects [11]. While laser emitting detection technology is not new, it
was not till 2005 that Velodyne put 64 rotating lasers in one compact package for
360◦ detection needed in automated driving. Since then Lidar technology has been
adopted by almost all autonomous vehicle teams. Still current Lidars are not designed
to withstand many years of harsh conditions in open road driving. Both radar and
Lidar also are weak in detecting very near objects (<2m) where sonar performs well
[10].

Cameras provide high field of vision and high resolution, and capture information
that Lidar cannot such as color and texturewhich helps object classification. However
with monocular camera vision it is more difficult to measure depth; this can be
overcome with stereo vision provided by two cameras. Computationally, camera
vision is more demanding than Lidar. Converting 2D images to 3D understanding of
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the environment requires computationally demanding software andmachine learning
algorithms. Camera vision is sensitive to lighting conditions and its performance
degrades in bad weather [12].

The algorithmic aspects of perception and localization are briefly discussed next.

3.2.2 Algorithms for Perception and Localization

Given the pros and cons of extroceptive sensors, in particular camera and Lidar, it
is common to use both and rely on filtering and data fusion algorithms to increase
accuracy and robustness. Measurement error covariance when using two sensors
is always smaller than the error covariance achieved by each individual sensor. So
it often makes sense to fuse data from two inexpensive sensors and achieve similar
accuracy of a single high end sensor [11].V2Xcommunication can provide additional
information from other vehicles and roadside units for higher accuracy perception
and localization.

3.2.2.1 Perception Algorithms

Perception algorithms could be vision-based relying on camera data, or rely on active
sensors which capture objects by a large number of points on their surface, also
called point clouds. Camera and active sensors can be employed together to detect
and perceive the surrounding environment and objects (such as vehicles, pedestrians,
animals, curbs) more precisely.While there are mature machine vision and statistical
learning and classification algorithms for parsing information embedded in an image
or point cloud, recent advances in deep learning and artificial intelligence provide new
supervised learningmethods for real-time object detection. Rapidly growing training
datasets, increased computing power, cheaper storage, and widely available open-
source algorithms seem to be bringing about revolutionary advances. For instance an
open source real-time object detection algorithm presented recently in [15] based on
convolutional neural networks has the ability to process 45–150 frames per second,
label objects in it with a bounding box, and assign a confidence score to each as
illustrated in Fig. 3.3.

In automated driving three paradigms have been proposed for perception: (i)medi-
ated perception, (ii) behavior reflex perception, and (iii) direct perception [16]. In the
more common mediated perception, a detailed map and distance to relevant objects
around the ego vehicle including other vehicles, pedestrians, trees, and road mark-
ings are extracted first using standard machine vision or deep learning algorithms.
Planning and control algorithms will then use this map to plan the motion of the
vehicle considering the constraints imposed by the road and stationary and dynamic
obstacles. Quite differently, behavior reflex perception algorithms use artificial intel-
ligence to construct a direct mapping from the sensory input to a driving action thus
bypassing intermediate layers such as localization, path planning, decision making
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Fig. 3.3 An example of application of YOLO real-time object detection [15] to a driving scene.
The numbers next to each label show the confidence in that label. Picture courtesy of Austin Dollar
and Tyler Ard of Clemson University

and control [17].While they reduce complexity, such end-to-end solutions, lack trans-
parency, are too low-level missing the big picture, and sometimes may be ill-posed
in training. For instance in [18] it is shown that stability can be lost when applying
supervised learning to a training set of locally exponentially stable controllers. Direct
perception methods proposed in [16] aim to strike a balance between the former two
approaches. They abstract an image to a selected and meaningful set of indicators
of the road situation, such as the angle of the car relative to the road, the distance
to the lane markings, and the distance to cars in the current and adjacent lanes. The
outcome is much more compact than what a mediated perception approach would
generate and only contains the most relevant information to the the planning and
control layers which could now be simplified according to [16].

3.2.2.2 Prediction

While perception by itself is an important and challenging step, predicting themotion
of neighboring vehicles or pedestrians based on perceived current and historical
information may be as important for CAV planning purposes. This is a difficult topic
and still an open problem. In Sect. 1.3.3 we discussed relevant prediction literature
in the context of anticipative car following where probabilistic prediction was a
common theme for predicting the longitudinal motion of a preceding vehicle. Other
examples are assuming a constant speed in [19], a speed-dependent acceleration in
[20], probabilistic trajectory prediction in horizontal plane using a variationalmixture
model in [21], aGaussianmixturemodel in [22], or classification and particle filtering
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in [23]. Most of these prediction methods target a 1–3 second prediction window
which may be limited. With V2X connectivity the opportunity exists for receiving
future intentions of neighboring vehicles and nearby traffic controllers which should
enable predicting with more accuracy over longer horizons. We will come back to
this topic in Sect. 8.2.3 in the context of energy efficient driving.

3.2.2.3 Localization and Mapping

CAVs require rather precise localization not only for navigational purposes but also
to situate themselves within the road and the lane, with respect to other (connected)
vehicles, and for use ofmapped information such as location of traffic signals, upcom-
ing hills, curves, dynamic congestion tail, etc. While localization and mapping is a
well established topic in indoor robot navigation and mature algorithms exist [24],
outdoor, dynamically changing, and high speed road environments present extra
challenges for CAV localization.

Fusing GPS, IMU, and wheel odometer readings could provide meter-level pre-
cision in determining the position of the vehicle on the road. The raw coordinates
determined by GPS may not match a logical model of the world where vehicles are
expected to be on a road. Establishedmapmatchingmethods [25] are commonly used
to correct the rawGPS recordings to a logical position on a road. The (corrected) GPS
data can be fused with IMU and odometry readings via Extended Kalman Filtering
(EKF) methods that rely on a model of vehicle kinematics or dynamics. Velocity
of the vehicle could be determined as a by-product. Accurately determining vehicle
heading is more difficult due to reliance on IMU readings which are subject to drift.

Algorithms relying on GPS inertial navigation could be challenged in urban
canyons with tall buildings due to loss of GPS signals [26]. Also autonomous vehicle
control may require centimeter level position accuracy not provided by conventional
GPS/IMU fusion. While RTK GPS provides high level of position accuracy, its
reliance on additional roadside stations makes it impractical on today’s roads. To
overcome this challenge many automated driving vehicles such as Waymo’s and
Uber’s rely on a priori mapped roads. Instrumented mapping vehicles drive roads
of interest and collect detailed 3D image or Lidar data linked to highly accurate
GPS information, process and store them in large databases. Subsequent CAVs can
localize by comparing their sensor readings against these a priori maps and trian-
gulating their position with the aid of fixed objects. Moreover they can more easily
distinguish dynamic objects absent from a priori maps. An early successful imple-
mentation can be found in [27]. Such a method works as long as the mapped roads
remain unchanged. Construction zones, changes in lane markings or road geometry
could render parts of these maps obsolete.

This problem can be overcome by High Definition (HD) mapping where a priori
maps are dynamically updated in the cloud based on latest sensory information
communicated from CAVs traversing these roads [28]. For instance a consortium
formed by BMW, HERE, and Mobileye aims to crowdsource HD maps relying
on accurate prior maps from HERE, BMW connected fleet, and Mobileye REM
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technology that transmits changes detected with respect to prior map to cloud servers
to update the maps. The dynamically updated maps become then accessible to the
connected fleet in real-time via HERE servers.

In this context Simultaneous Localization AndMapping (SLAM) arises when the
vehicle has to simultaneously localize and map the environment and obviously are
more difficult than only localization or only mapping. SLAM is well established in
indoor robotic navigation [24] often in well-structured and well-lit environments.
SLAM is more challenging for automated vehicles due to variable lighting, less
structured road environments and higher speeds that require faster computations
[10].

3.2.3 Web Services

Connected vehicles can queryweb-basedApplication Programming Interfaces (API)
to retrievemap, traffic congestion, andweather information in real-time. For instance
the cloud based Google Map Platform [29] provides several APIs for retrieving
maps, elevation, traffic, directions, travel times and distances, and places in real-
time. Similar services are provided by HERE APIs [30]. Inrix offers a traffic and a
parkingAPI [31]. There are several weather informationAPIs such asYahooWeather
API [32]. Today computational clouds such as Amazon Web Services (AWS) offer
their computing and machine learning tools to connected [33] and automated [34]
vehicle developers. The idea is to offload the onboard computations and data analytics
partially to the cloud.

3.3 Planning and Control

Once an automated vehicle localizes itself with respect to a 3D map of the environ-
ment and identifies constraints imposed by the surrounding stationary and moving
objects, traffic rules, traffic control infrastructure, and road geometry, it can plan its
long- and short-term moves. This plan is then executed by a hierarchy of motion
planners and controllers in the longitudinal and lateral directions. Both planning and
control layers can benefit from the extended preview of the upcoming road and traffic
scene provided by V2X connectivity to make longer term judicious decisions. Here
weprovide a brief overviewof the planning and control layers as shown schematically
in Fig. 3.4.
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Fig. 3.4 Logical scheme of
planning and control layers
in CAVs
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3.3.1 Mission Planning

At the highest planning layer, the route is decided, for instance to minimize trip
distance, time, delay, or energy. The road network is often modeled as a directed
graph with its edge weights reflecting the relevant cost of travel on that link. The
minimum cost path can then be found via optimization which can be executed very
efficiently today as explained in [35]. For electric vehicles, visits to charging stations
may also be planned at this stage. The mission planning layer can then set waypoints
along the chosen route as targets for the lower level motion planning layer. More
details of algorithms employed in the mission planning layer in the context of eco-
routing are described in Chap. 5.

3.3.2 Mode Planning

Another distinct planning layer may exist that chooses between a finite set of driving
modes in consideration of mission waypoints, road rules, and traffic conditions.
For instance the vehicle may choose lane keeping, a lane change, (adaptive) cruise
control, stopping at a stop sign, or emergency braking. This will be a finite set of
modes that can be handled in a finite state machine framework or via decision trees.
We refer to this layer as Mode Planning, but in the literature other terms such as
driving strategy [36], maneuver planning [37] and behavioral decision making [35]
are also used.
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We will show in Chaps. 6 and 7 that optimal eco-driving in a trip could consist of
several modes for examplemaximum acceleration, constant speed cruising, coasting,
and maximal braking between two stopping intervals.

3.3.3 Motion Planning

After a driving mode is selected, the motion planning layer generates legal, collision-
free, smooth, comfortable, and efficient paths or trajectories for longitudinal and
lateral motion of the vehicle. The literature distinguishes a trajectory from a path
in that a path is in the spatial configuration space of the vehicle while a trajectory
has a temporal component as well [38]. For instance in the longitudinal direction
s, usually the velocity trajectory ṡ(t) is planned with safety, ride comfort, travel
time, and energy efficiency considerations while respecting constraints imposed by
speed limits, traffic lights and stop signs, surrounding vehicles, road curvature, and
longitudinal vehicle dynamics.

For example in Cruise Control (CC) mode the vehicle tracks a constant reference
speed while Adaptive Cruise Control (ACC) adjusts the velocity to maintain a safe
time or distance headway to the preceding vehicle. More details on that are discussed
in Sect. 4.2.2. In Predictive Cruise Control (PCC) mode, the velocity is adjusted
relying on V2I communication and in anticipation of future events such as changes
in road slope or traffic signal phase and timing. Cooperative Adaptive Cruise Control
(CACC)mode relies onV2V communication to allow vehicles cruise in coordination
with neighboring vehicles. In emergency braking mode, the vehicle could apply
maximal braking to avoid a collision.

Lane change, merge, and collision avoidance need to determine a feasible path in
the 2D x-y plane which is by itself complex due to many choices in a 2 dimensional
space and the non-convex drivable regions. Furthermore due to velocity and time
dependent constraints arising from vehicle dynamics and movement of surrounding
vehicles, themotion planning algorithms should also determine safe and comfortable
acceleration and velocity profiles on these paths; thus a trajectory planning problem.

In Sect. 3.3.6 we discuss optimal planning algorithms applicable to motion plan-
ning.

3.3.4 Motion Control

The trajectory or path planned at the motion planning layer is issued as a reference to
the vehicle longitudinal and lateral controllers for feedforward and feedback tracking.
In the longitudinal direction, throttle and braking control adjusts acceleration and
velocity. Lateral control relies mainly on steering and sometimes on differential
braking to control lateral acceleration, velocity, and vehicle yaw rate.
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3.3.4.1 Longitudinal Control

When the reference speed is determined at the planning layer, well-established clas-
sical or modern control techniques can be used at the motion control layer, to follow
the planned reference by accelerator or brake actuation. For instance standard fixed
gain or gain-scheduled PID type controllers can actuate accelerator and brakes for
velocity reference tracking [39]. An integrator anti-windup mechanism [40] must be
added to properly handle actuator saturation. Logical checks should be in place to
ensure safe operations under all perceivable circumstances. Switching between accel-
erating and braking modes needs to be handled with care for smooth performance
[41].

For instance [42] proposed the following PID type controller with an added non-
linear term shown below:

u(s) = −kpev − ki
1

s

(
ev − 1

Tt
[u − sat(u)]

)
− kd

τds
1
N τds + 1

ev − kqev|ev| , (3.1)

where the equation should be read in the Laplace domain with s denoting the Laplace
variable. Here u commands accelerator or braking, and ev is the velocity tracking
error. Tunable proportional, integral, and derivative gains are denoted by kp, ki , kd
respectively, while kq is a tunable gain for the last nonlinear term. The term 1

Tt
[u −

sat(u)] prevents integrator windup where the sat(u) function saturates at actuator
limits and Tt is a time constant that determines how fast the integrator is reset.
Because a pure derivative term would be non-causal and prone to noise, a pseudo-
derivative term is employed by augmenting a first order lag, wherein parameter N
determines the amount of filtering on the derivative term. The last nonlinear term
kqev|ev| is termed the quadratic component in [42] and is intended to achieve fast
tracking while limiting the overshoot. Asymptotic convergence of tracking error to
zero is established in [42] via a Lyapunov analysis.

Feedforward control along with feedback control can enhance the responsiveness
of the longitudinal control loop. For instance when the planning layer commands an
acceleration profile, a feedforward pedal/braking input can be issued [43] based on
pedal-to-acceleration and braking-to-deceleration response mappings along with a
feedback controller.

Input saturation, vehicle state constraints, and toggling between accelerator and
braking actuators can bemore systematically handled in a constrained control frame-
work. For heavy vehicles sensitivity to often unknown mass of the truck can also be
handled by adaptive control techniques as shown in [44].

3.3.4.2 Lateral Control

Lateral control engages steering and sometimes differential braking to control the
vehicle in scenarios such as lane changing, merging, turning, and parallel parking.
The assumption is that an appropriate reference path or trajectory is already deter-
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Fig. 3.5 A simplified bicycle model of a 4 wheeled vehicle: geometric bicycle model (a) and pure
pursuit geometry (b). Adapted from [46]

mined in the motion planning layer. A widely used approach for path tracking with
mobile robots and autonomous vehicles is pure pursuit control that was first intro-
duced in [45] and is relatively simple to implement. The pure pursuit algorithm has a
simple formula for choice of the steering angle that steers the rear axle on a circular
arc to the center of the path. If a bicycle model, as shown in Fig. 3.5, is used to relate
the steering angle of the front wheels δ(t) to vehicle heading θ(t), the pure pursuit
algorithm formula is

δ(t) = tan−1

(
2L sin(θ(t))

ld

)
, (3.2)

where L is the wheelbase, ld is the the distance from the rear wheel to a look-ahead
point on the center of the path, and θ is angle between the heading vector and the
look-ahead vector pointing to the center of the path ld units ahead. In practice the
look-ahead distance is chosen as a function of vehicle speed [46].

Another method [47], adjusts the steering as a function of vehicle heading mis-
alignment with the path and a nonlinear function of cross track error,

δ(t) = θ(t) − θp(t) + tan−1

(
key
vx (t)

)
, (3.3)

where θ is heading angle of the vehicle, θp is path heading at the point nearest to the
front wheel, ey is the cross-track error measured from the center of the front wheels
to the nearest point on the track, vx is vehicle’s forward velocity, and k is a gain
parameter. Using an idealized bicycle model, the cross-tracking error is shown to be
monotonically convergent to zero.

The above lateral control methods are easy to implement, but rely on feedback
from a single point of the lane at each time. For smoother performance, the lane
tracking problem can be formulated as a finite horizon optimal control problem
with full horizon preview of lane reference trajectory. The optimal steering control
action will not only be a function of instantaneous vehicle state but also will include
a feedforward term that integrates the entire lane preview. An analytical solution
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to this preview optimal control problem exists when the vehicle model is linear,
the tracking cost is quadratic, and input and states are unconstrained as shown in
[48]. Input and state constraints must be considered for aggressive or emergency
maneuvers or when driving on slippery roads with the tires at their traction limit.
In such scenarios the trajectory tracking problem can be formulated in a model
predictive control framework with higher fidelity vehicle models and with explicit
consideration of traction constraints. Successive model linearizion results in a Linear
Time-Varying (LTV)MPC problem as shown in [49] along with experimental results
that demonstrates the feasibility of real-time implementation.

Planning and control algorithms that can handle more sophisticated conditions
than the relatively simple longitudinal and lateral control methods described above,
are described later in Sect. 3.3.6.

3.3.5 Powertrain Control

The powertrain control modules of a CAV can be programmed to take advantage
of extra information that is available to them due to connectivity and increased cer-
tainty in that information due to driving automation as highlighted in Sect. 1.3.1.
Depending on the powertrain type as described in Chap.2, we have several actuators
to coordinate such as throttle, braking, ignition, injection, cam phasing, wastegate,
valve lift, cylinder deactivation, and transmission for SI ICEVs, battery utilization
in HEVs, and vehicle-level actuators for accessory loads. Anticipated future veloc-
ity and road grade profile provide an estimate of the future power demands. This
anticipated power demand profile can be used to better schedule choice of gears,
battery utilization in hybrid vehicles, thermal load management, and handling of the
powertrain auxiliary loads such as air-conditioning load.

The powertrain controllers can benefit from longer term plans of the mission
planning and mode planning layers as well as more imminent intentions of motion
planning andmotion control layers. For example scheduling a hybrid vehicle’s battery
utilization can benefit from the long term mission plan due to the slow dynamics
associatedwith the battery state of charge; so is thermalmanagement due to relatively
slow thermal dynamics as discussed respectively in Sects. 2.4.2 and 4.4.4. On the
other hand, shorter term decisions at motion planning and control layers could be
beneficial to functions with faster dynamics such as anticipative gear shift, fuel cut-
off, engine start/stop, and cylinder deactivation.

3.3.6 Algorithms for Planning and Control

Two main schools of thoughts dominate the planning and control literature and
practice. One approach guided by the robotics and computer science community
employs (model-free) learning methods that aim to emulate human drivers, leverag-
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ing abundant training data and advances in deep learning and reinforcement learning
algorithms. The second approach spearheaded by the automatic control community
casts planning in a (model-based) optimal control framework aiming to minimize
a mathematical cost of the motion (be it time, discomfort, energy, risk, etc.) while
respecting all motion constraints. For instance, in a reinforcement learning approach
to lane changing, the motion planning layer gradually learns a lane change policy
that maximizes a cumulative reward function. The policy defines what action to take
given the state of the road and neighboring vehicles and associates a reward to a suc-
cessful lane change and gets penalized for a collision. The algorithm goes through a
systematic trial and error process in a realistic simulation or real-world environment
until it is “sufficiently” trained. It can then employ its learned policy in real-world
driving.

An alternative to learning from training scenarios is optimal control that relies on
models of the vehicle and its surrounding environment, a carefully designed objective
function, andwell characterizedmotion constraints. The plan can then be determined
by solving a dynamic constrained optimization problem. For example in an optimal
control approach to lane selection, the objective could be to balance a trade off
between deviation from a desired velocity and a deviation from a desired lane. The
predicted path of the surrounding vehicles can be imposed as motion constraints
and a bicycle model of the vehicle can approximate the ego vehicle motion under
candidate input sequences [50].

Closed-form analytic solutions for optimal control and planning problems rarely
exist. Exact numerical solutions are often NP hard and not solvable in polynomial
time. But one can often find approximations that simplify the problem. For example
discretization, linearizing the models and constraints, and using a quadratic cost are
common and reduce an optimal control problem to a quadratic program for which
computationally efficient solution methods exist and enable its real-time implemen-
tation. The planning problem can be solved over a receding temporal or spatial
horizon using feedback from the current state of the vehicle to update its plan at each
optimization stage in what is referred to as Model Predictive Control (MPC) [51].
More details of numerically solving an planning problem in an MPC framework are
described later in Sect. 8.2.5.

Numerical methods for optimal planning problems can be categorized to varia-
tional, graph search, and incremental search sample methods [38]. Under this cat-
egorization, Pontryagin Minimum Principle (PMP) is a variational approach that
reduces the optimal control problem to a two point boundary value problem using
variational calculus, the more details of which is described in Sect. 6.2.2.1. PMP is
considered an indirect method because it is based on analytical construction of the
necessary and sufficient conditions for optimality, and then discretizing these con-
ditions and solving them numerically. Direct methods on the other hand discretize
state and control trajectories and convert the optimal control problem to a nonlin-
ear program [52], which is then solved using well-known optimization techniques.
Pseudospectral optimal control methods [53] are among direct variational methods.

In graph searchmethods, the configuration space is discretized and represented by
a graph consisting of vertices and edges. The graph is then explored to find the mini-
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Fig. 3.6 Numerical methods for optimal motion planning

mum cost motion. Dijsktra [54], A∗ [55] and its variants, and Dynamic Programming
(DP) [56] are among graph search methods. We will describe Dijkstra’s algorithm
in more detail in Sect. 5.1.2.1 in the context of eco-routing (mission planning) and
DP in Sect. 6.2.2.2 in the context of eco-driving (motion planning).

A popular incremental search method is the Rapidly-exploring Random Tree
(RRT) algorithm [57] designed to efficiently search nonconvex, high-dimensional
spaces by randomly growing a space-filling tree in the reachable set of the vehicle.
RRT algorithm is suited to problems with obstacles and differential constraints and
is therefore widely used in robotic motion planning.

Heuristic methods such as ant colony optimization [58] and particle swarm opti-
mization [59] have also been employed for path planning of autonomous agents and
robots. A schematic of these categorizations is shown in Fig. 3.6.

*
* *

In the rest of this book, the main focus in on higher level decisions at Mission
Planning, Mode Planning, andMotion Planning layers. Readers interested inMotion
Control and Powertrain Control may refer to many articles and books that exist on
vehicle control such as [60].
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