
On the Implementation of ALFA –
Agglomerative Late Fusion Algorithm

for Object Detection

Iuliia Saveleva(B) and Evgenii Razinkov

Institute of Computational Mathematics and Information Technologies,
Kazan Federal University, Kazan, Russia

JuOSaveleva@stud.kpfu.ru, Evgenij.Razinkov@kpfu.ru

Abstract. The paper focuses on implementation details of ALFA – an
agglomerative late fusion algorithm for object detection. ALFA agglom-
eratively clusters detector predictions while taking into account bound-
ing box locations and class scores. We discuss the source code of ALFA
and another late fusion algorithm – Dynamic Belief Fusion (DBF). The
workflow and the hyperparameters necessary to reproduce the published
results are presented. We also provide a framework for evaluation of late
fusion algorithms like ALFA, DBF and Non-Maximum Suppression with
arbitrary object detectors.

Keywords: Object detection · Late fusion · Agglomerative clustering

1 Introduction

Object detection is an important and challenging computer vision problem. State
of the art object detectors, such as Faster R-CNN, YOLO, SSD and DeNet, rely
on deep convolutional neural networks and show remarkable results in terms
of accuracy and speed. Fusing results of several object detection methods is a
common way to increase accuracy of object detection. In the companion paper [1]
a new late fusion algorithm for object detection called ALFA was proposed.
ALFA relies on agglomerative clustering and shows state of the art results on
PASCAL VOC 2007 and 2012 object detection datasets.

We also implemented Dynamic Belief Fusion – state of the art late fusion
algorithm for object detection proposed in [2] – as our baseline, since the imple-
mentation from authors is not available.

Here we describe our implementation of ALFA and DBF providing pseu-
docode for the key functions of these methods. We also provide hyperparameter
values required to reproduce results from [1] on PASCAL VOC 2012 dataset.
Results on PASCAL VOC 2007 are not reproducible due to randomness of a
cross-validation procedure.

Link to our implementation: http://github.com/IuliiaSaveleva/ALFA. All
the details required to successfully run the code are provided in README.md.
c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 98–103, 2019.
https://doi.org/10.1007/978-3-030-23987-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23987-9_9&domain=pdf
http://orcid.org/0000-0001-6295-5003
http://orcid.org/0000-0002-0899-4180
http://github.com/IuliiaSaveleva/ALFA
https://doi.org/10.1007/978-3-030-23987-9_9

On the Implementation of ALFA 99

2 Implementation

Assume object detection task for K classes and N trained object detectors
D1,D2, ...,DN . Given an image I object detector produces a set of predictions:

Di(I) = {p1, ..., pmi
}, p = (r, c),

where mi is the number of detected objects, r represents four coordinates of the
axis-aligned bounding box and c is class scores tuple of size (K + 1), including
“no object” score c(0).

2.1 ALFA Implementation

The steps of ALFA are given below.

2.1.1 Agglomerative Clustering of Base Detectors Predictions
We assume that prediction bounding box ri and class scores ci should be similar
to other prediction bounding box rj and class scores cj if they correspond to
the same object. Let Ci and Cj be two clusters and σ(p, p̃) – similarity score
function between predictions p and p̃. We define the following similarity score
function with hyperparameter τ for prediction clusters:

σ(Ci, Cj) = min
p∈Ci,p̃∈Cj

σ(p, p̃), while maxi,jσ(Ci, Cj) ≥ τ. (1)

We propose the following measure of similarity between predictions:

σ(pi, pj) = IoU(ri, rj)γ · BC(c̄i, c̄j)1−γ , (2)

where γ ∈ [0, 1] is a hyperparameter, BC – Bhattacharyya coefficient as a mea-
sure of similarity between class scores (c̄ is obtained from class score tuple c by
omitting the zeroth “no object” component and renormalizing):

BC(c̄i, c̄j) =
K∑

k=1

√
c̄
(k)
i c̄

(k)
j , c̄(k) =

c(k)

1 − c(0)
, k = 1, ...K, (3)

IoU – intersection over union coefficient which is widely used as a measure of
similarity between bounding boxes:

IoU(ri, rj) =
ri ∩ rj

ri ∪ rj
. (4)

See Algorithm 1.

100 I. Saveleva and E. Razinkov

2.1.2 Class Scores Aggregation
Assume that predictions from detectors Di1 ,Di2 , ...,Dis were assigned to object
proposal π. We assign an additional low-confidence class scores tuple to this
object proposal for every detector that missed:

clc =
(
1 − ε,

ε

K
,

ε

K
, ...,

ε

K

)
, (5)

where ε is a hyperparameter.
Each method uses one of two class scores aggregation strategies:

– Averaging fusion:

c(k)π =
1
N

(
s∑

d=1

c
(k)
id

+ (N − s) · c
(k)
lc

)
, k = 0, ...,K. (6)

– Multiplication fusion:

c(k)π =
c̃
(k)
π

∑
i c̃

(i)
π

, c̃(k)π =
(
c
(k)
lc

)N−s s∏

d=1

c
(k)
id

, k = 0, ...,K. (7)

2.1.3 Bounding Box Aggregation
All methods have the same bounding box aggregation strategy:

rπ =
1

∑
i∈π c

(l)
i

∑

i∈π

c
(l)
i · ri, where l = argmax

k≥1
c(k)π . (8)

Best ALFA parameters are provided in Table 1:

Table 1. Best ALFA parameters.

Detectors Methods Confidence
threshold

mAP τ γ Scores
aggrega-
tion
strategy

ε δ

SSD + DeNet Fast ALFA0.05 mAP 0.73 0.25Averaging 0.26True

ALFA 0.015

Fast ALFA0.05 mAP-s 0.48 0.22Multiplication 0.56True

ALFA 0.015

SSD + DeNet Fast ALFA0.05 mAP 0.74 0.3 Averaging 0.39False

+ Faster R-CNN ALFA 0.015

Fast ALFA0.05 mAP-s 0.75 0.28Multiplication 0.17True

ALFA 0.015

On the Implementation of ALFA 101

Algorithm 1. Agglomerative Clustering
Data: D = D1(I) ∪ ... ∪ DN (I); Hyperparameters: γ, τ ∈ [0, 1],

δ = {False, T rue}
begin

Set σ(pi, pj) = IoU(ri, rj)γ · BC(c̄i, c̄j)1−γ

G = {gij}, gij = 1 if ((labeli = labelj) or δ = False), 0 otherwise
U = {uij}, uij = 1 if �t : pi, pj ∈ Dt(I), 0 otherwise
S = {sij}, sij = σ(pi, pj) if σ(pi, pj) > τ else 0
Q = G ◦ U ◦ S
k = 0; W0 = Sign(Q)
do

k = k + 1
Wk = Sign(Wk−1 · Wk−1)

while Wk �= Wk−1;
M = UniqueRows(Wk)
for i := 1 to |M | do

Clustersi = {Cj = {pj}|mij = 1}
do

sim = max
C,C′

min
p∈C,p′∈C′

σ(p, p′), C, C ′ ∈ Clustersi

if sim > τ then
Ci = Ci ∪ Cj

Clustersi = Clustersi \ Cj

while sim > τ ;

return ∪iClustersi

2.2 DBF Implementation

Our implementation of DBF consists of the following steps:

1. Compute PR-curves PRk
i for each class k and each detector Di,

i = 1, ..., N ;
2. Construct detection vectors for each p ∈ Di(I), i = 1, ..., N , and calculation

of basic probabilities of hypothesis according to label l and PRk
i .

See Algorithm 2;
3. Join basic probabilities by Dempster-Shaffer combination rule:

mf (A) =
1
N

∑

X1∩X2...∩XK=A

K∏

i=1

mi(Xi),

where N =
∑

X1∩X2...∩XK �=∅

∏K
i=1 mi(Xi), to determine fused basic proba-

bilities mf (T) and mf (¬T);
4. Get fused score as s̄ = mf (T) − mf (¬T);
5. Apply NMS to bounding boxes r and scores s̄. In order to help DBF more

on NMS step we sort detections by score s̄ and precision from PRk
i , k = l, if

detections had equal s̄ values.

102 I. Saveleva and E. Razinkov

Algorithm 2. DBF algorithm: Constructing detection vectors and calcu-
lating basic probabilities of hypothesis
Data: p = (r, c), Di(I), i = 1, ..., N , PRk; Hyperparameter: n
begin

for i := 1 to N do
if p �∈ Di(I) then

Find p̄i = (r̄i, c̄i) that l = li and max(IoU(r, ri)),
l = argmaxk≥1 ck

if IoU(r, r̄i) > 0.5 then
di = c̄l̄i

i

else
di = −∞

else
di = cl

Calculate {m(T), m(¬T), m(I)} for each component of detection
vectors d:

for i := 1 to N do
Get precision p and recall r from PRk, k = argmaxk≥1 ck, using

score from di

m(T)i = p
pbpd = 1 − rn – precision of best possible detector
m(¬T)i = 1 − pbpd

m(I)i = pbpd − p

return m(T), m(¬T), m(I)

Best DBF parameters are provided in Table 2:

Table 2. Best DBF parameters.

SSD + DeNet SSD + DeNet + Faster R-CNN

mAP mAP-s mAP mAP-s

n 16 16 18 14

Confidence threshold 0.015

3 Conclusion

This paper had presented implementation details of ALFA and DBF late fusion
methods for object detection. We provide source code and hyperparameter values
that allow one to reproduce results from [1] on PASCAL VOC 2012.

On the Implementation of ALFA 103

Acknowledgment. I. Saveleva was funded by the Russian Government support of the
Program of Competitive Growth of Kazan Federal University among World’s Leading
Academic Centers and by Russian Foundation of Basic Research, project number 16-
01-00109a.

References

1. Razinkov, E., Saveleva, I., Matas, J.: ALFA: agglomerative late fusion algorithm
for object detection. In: 2018 24th International Conference on Pattern Recognition
(ICPR), pp. 2594–2599. IEEE, August 2018

2. Lee, H., Kwon, H., Robinson, R., Nothwang, W., Marathe, A.: Dynamic belief fusion
for object detection. In: 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1–9. IEEE (2016)

	On the Implementation of ALFA – Agglomerative Late Fusion Algorithm for Object Detection
	1 Introduction
	2 Implementation
	2.1 ALFA Implementation
	2.2 DBF Implementation

	3 Conclusion
	References

