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Abstract. Recently, a sufficient condition, namely quasi-regularity, has
been proposed for preserving the connectivity during the process of
digitization of a continuous object whose boundary is not necessarily
differentiable. Under this condition, a rigid motion scheme for digital
objects of Z2 is proposed to guarantee that a well-composed object will
remain well-composed, and its global geometry will be approximately
preserved. In this paper, we are interested in polygons generated from
digital objects and their rigid motions in Z

2. For this, we introduce a
notion of discrete regularity which is a restriction of quasi-regularity for
polygons. This notion provides a simple geometric verification, based on
the measure of lengths and angles, of quasi-regularity which is originally
defined with morphological operators. Furthermore, we present a method
for geometry-preserving rigid motions based on convex decomposition of
polygons. This paper focuses on, the implementation and on the repro-
duction of the method linking to an online demonstration. The way of
using the C++ source code in other contexts is shown as well.

Keywords: Rigid motion · Digital topology · Quasi-regularity ·
Well-composedness

1 Introduction

Rigid motions (i.e. transformations based on translations and rotations) are
involved in many image processing and analysis applications (e.g. segmentation
[2], classification [1], registration [24] or tracking [23]). In such applications, the
input data are usually digital images which are obtained by sampling and quan-
tification, namely a digitization, of continuous objects. Due to the digitization,
the resulting digital object may have different properties than those of the orig-
inal continuous one [6].
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Fig. 1. (a) X ⊂ Z
2 with the square grid of Z2 and the associated Voronoi cell bound-

aries. (b) Rigid motion followed by a digitization applied on the square grid of (a). (c)
The transformed result which is not topologically equivalent to (a); the object is split
into two components if we consider the 4-connectivity.

In this article, we are interested in rigid motions on digital images defined
on Z

2. Contrary to rigid motions in R
2 which are well-known as topology- and

geometry-preserving operations, the rigid motions defined on Z
2 generally do not

preserve these properties, as illustrated in Fig. 1. In this context, some studies
were recently proposed for providing topological guarantees when applying rigid
motions on digital objects [15,16]. Besides, a method is proposed in [13] for
convexity and connectivity-preserving rigid motions on Z

2.
In [14], a morphology-based notion, called quasi-r-regularity, has been pre-

sented together with a rigid motion model that allows to preserve topology and
geometry of the shape of the digital object, in particular those of its boundary,
under arbitrary rigid motions. Inspired by this work, we investigate this notion
in a discrete geometrical way for polygonal objects. More precisely, we intro-
duce the notion of discrete-r-regularity which is a restricted quasi-r-regularity
to polygons. Furthermore, we propose an implementation of the rigid motion
scheme based on polygonal modelling of digital objects in [16] using a convex
decomposition of polygons. More specifically, we use a (continuous) polygon P
generated from a digital object X with some conditions such as X = P(X) ∩ Z

2;
we transform and digitize this polygon for obtaining a final transformed digital
object in Z

2. We show that the topology and some geometric properties of X are
preserved under rigid motions if the polygon is discrete-1-regular.

This article is organized as follows. In Sect. 2, we recall useful notions. The
main results with the method of rigid motion are presented in Sect. 3. Then, we
describe the codes and how to reproduce results in Sect. 4.

2 Preliminaries

2.1 Digitization and Topology Preservation

A digital object X ⊂ Z
2 is generally obtained as the result of a digitization

process applied on a continuous object X ⊂ R
2. In this work, we consider the
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Fig. 2. (a) A continuous object X in R
2. (b) A Gauss digitization of X, leading to the

definition of X which is composed by the black points of Z2 within X. (c) The digital
object X represented as a set of pixels. The objects X and X are not topologically
equivalent: the digitization process led to a disconnection, due to the resolution of the
discrete grid, not fine enough for catching the shape of X.

Gauss digitization [6], which is the intersection of a connected and bounded set
X with Z

2

X = X ∩ Z
2. (1)

The digital object X is a finite subset of Z2; from an imaging point of view, it
can be seen as a subset of pixels, i.e. unit squares defined as the Voronoi cells of
the points of X within R

2. The structure of X can be defined in various topological
frameworks which are mainly equivalent [11] to that of digital topology [7].
However, digital topology of X is often non-coherent with continuous topology of
X. This fact is illustrated in Fig. 2, where a connected continuous object X leads,
after the Gauss digitization, to a disconnected digital object X. In the literature,
various studies proposed conditions for guaranteeing the preservation of topology
of digitized objects [9,20,21]. In particular, Pavlidis and Serra introduced the
notion of r-regularity.

Definition 1 (r-regularity [17]). An object X ⊂ R
2 is r-regular if for each

boundary point of X, there exist two open disks of radius r > 0 being tangent to
the point, and lying entirely in X and its complement X, respectively.

Remark 1. The notion of r-regularity can be rewritten with morphological oper-
ators as follows: X ⊂ R

2 is r-regular if

– X � Br is non-empty and connected;
– X � Br is connected;
– X = (X � Br) ⊕ Br; and
– X = (X � Br) ⊕ Br,
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where Br denotes a closed disk of R2 of radius r > 0 and centered at (0, 0) ∈ R
2,

⊕ and � denote the classical operators of dilation and erosion, corresponding to
the Minkowski addition and its associated subtraction:

X ⊕ Y =
⋃

y∈Y

Xy =
⋃

x∈X

Yx

X � Y =
⋂

y∈Y

X−y

with Xy = {x + y | x ∈ X} and, in our case, X,Y ⊂ R
2 [5,18,20].

It should be mentioned that this definition of r-regularity requires the bound-
ary of X to be differentiable. More specifically, X must have a smooth contour
with curvature at every point on the boundary is greater or equal to 1

r . In addi-
tion, Pavlidis proved the topological equivalence of an r-regular object X and its
digital counterpart X, for a dense sampling.

Proposition 1 ([17]). An r-regular object X ⊂ R
2 has the same topology as its

digitized version X = X ∩ Z
2 if r ≥

√
2
2 .

To deal with non-regular objects, a notion called r-halfregularity has been
proposed in [22]. More precisely, r-halfregular objects are defined as objects X
having for each boundary point of X an open disk of radius r > 0 being tangent
to the point, and lying entirely in either X or its complement X. By definition,
r-halfregular shapes are more general than r-regular ones since they include
objects with non-differentiable boundary. Furthermore, it is shown that the r-
halfregularity allows a topologically correct digitization of such an object using
an additional repairing step. See [22] for more details.

2.2 Well-Composed Sets

To deal with topological paradoxes related to the discrete version of the Jordan
theorem, a couple of dual adjacencies [19] are defined from the L1 and L∞

norms, leading to the well-known 4- and 8-adjacencies in Z
2 [7]. More precisely,

two distinct points p, q ∈ Z
2, are k-adjacent if

‖p − q‖� ≤ 1 (2)

with k = 4 (resp. 8) when � = 1 (resp. ∞). From the reflexive–transitive closure
of the k-adjacency relation on a finite subset X ⊂ Z

2, we derive the k-connectivity
relation on X. It is an equivalence relation, whose equivalence classes are called
the k-connected components of X. In order to avoid the topological issues of the
Jordan theorem, dual adjacencies are used for X and its complement X, namely
(4, 8)- or (8, 4)-adjacencies [19]. Based on the digital topology framework, well-
composedness has been introduced.

Definition 2 (Well-composed sets [8]). We say that X is weakly well-
composed if any 8-connected component of X is also a 4-connected component.
We say that X is well-composed if both X and X are weakly well-composed.
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Fig. 3. (a) X ⊂ Z
2 is neither connected nor well-composed. (b) X is weakly well-

composed and X is 8-connected but not 4-connected. (c) X is weakly well-composed
and X is 8-connected but not 4-connected. (d) X is 4-connected and well-composed.

This definition implies that the boundary1 of X is a set of 1-manifolds when-
ever X is well-composed (see Fig. 3). In particular, there exists a strong link
between r-regularity of X ⊂ R

2 and well-composedness of X = X ∩ Z
2.

Proposition 2 ([9]). If X ⊂ R
2 is r-regular, with r ≥

√
2
2 , then X = X ∩ Z

2 is
well-composed.

Well-composed sets present nice topological properties. However, they may
be altered by rigid motions defined on Z

2, as we will observe in the next section.

2.3 Digitized Rigid Motion and Topology Preservation

A rigid motion T in R
2 is defined for any point x = (x1, x2)T as

T(x) =
(

cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
+

(
t1
t2

)
(3)

where θ ∈ [0, 2π) is a rotation angle, and (t1, t2)T ∈ R
2 is a translation vector.

The transformation T is bijective, isometric and orientation-preserving. In
other words, the transformation T of a continuous object X in the Euclidean
space R

2, denoted by T(X), has the same shape, i.e. the same geometry and
topology, as X.

We cannot straightforwardly apply a rigid motion T, defined in Eq. (3), to a
digital object X ⊂ Z

2, since we generally obtain a transformed object T(X) �⊂ Z
2.

In order to obtain a result in Z
2, we further need a digitization operator

D : R2 → Z
2 (4)

which can be, for instance, the standard rounding function. Then, a digital ana-
logue of T can be defined as the composition of T, (restricted to Z

2) with such
digitization operator, as

Tpoint = D ◦ T|Z2 . (5)

1 The boundary of X is defined here as the boundary of the continuous object obtained
as the union of the closed Voronoi cells associated to the points of X, in R

2.
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Fig. 4. Well-composed digital lines (a, c) with different thicknesses, which remain well-
composed (d) or not (b) after a point-by-point digitized rigid motion Tpoint. In both
cases, the convexity of the digital lines is lost by Tpoint for the rotation angle of π

7
and

the translation of ( 1
2
, 1
2
).

Contrary to T, Tpoint is, in general, neither injective nor surjective. In par-
ticular, the digitization D may lead to unwanted results such as the topological
and geometric properties of digital objects are changed by Tpoint.

In this context, the issue of topological preservation of digital objects by
Tpoint was investigated in [15]. A sufficient condition, namely digital regularity2

was provided for guaranteeing that a well-composed digital object X will not be
topologically modified by any arbitrary rigid motion Tpoint.

However, this notion of digital regularity does not tackle the issue of geometry
alteration. Indeed, the rigid motion model defined in Eq. (5) acts on the object
in a point-wise way and does not preserve the shape of X. This is illustrated in
Fig. 4 by digital lines with different thicknesses under Tpoint. Though the initial
shapes are very simple, the topology and geometry of digital objects are not
always preserved.

3 Digital Shape Rigid Motions via Polygonization

3.1 Quasi-r-Regularity and Discrete Regularity

We now recall the notion of quasi-r-regularity for objects of R2 whose boundaries
are not necessarily differentiable [14]. This notion provides sufficient conditions
for preserving the connectivity by the Gaussian digitization.

Definition 3 (Quasi-r-regularity [14]). Let X ⊂ R
2 be a bounded and simply

connected (i.e. connected with no hole) object. Let Br ⊂ R
2 be a closed disk of

radius r > 0. X is said to be quasi-r-regular, if it satisfies

(i) X � Br is non-empty and connected,
(ii) X � Br is connected,
(iii) X ⊆ (X � Br) ⊕ Br

√
2, and

(iv) X ⊆ (X � Br) ⊕ Br
√
2.

2 In [15] this notion was simply called regularity. We rename it as “digital regularity”
to avoid the confusion with the continuous regularity, i.e. r-regularity, in Definition 1.
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Fig. 5. A quasi-r-regular object X has its border included between (X � Br) ⊕ Br and
(X�Br)⊕Br

√
2. This is a counterexample of P ⊂ R

2 (in blue) which is quasi-r-regular
but does not satisfy the condition of Definition 4; both conditions of distance and angle
at vertices are violated. P�Br is in red, (P�Br)⊕Br is bounded by the yellow curve
and (P � Br) ⊕ Br

√
2 is in green. (Color figure online)

Fig. 6. Examples of quasi-1-regular (a) and non-quasi-1-regular (b,c) objects X: (b)
X �⊆ (X� B1)⊕ B√

2; (c) X� B1 is not connected. The objects X ⊂ R
2 are in blue, the

disks B1 are in red and the disks B√
2 are in black, the erosions X � B1 are in red and

the openings (X � B1) ⊕ B√
2 are in green. (Color figure online)

Roughly speaking, thanks to (iii), the border of X is included between (X �
Br)⊕Br and (X�Br)⊕Br

√
2. In other words, a margin of (

√
2−1)r is authorized

for the border of X (see Fig. 5). Examples of quasi-r-regular and non-quasi-r-
regular objects are given in Fig. 6.

This notion of quasi-r-regularity provides sufficient conditions for guarantee-
ing that the connectedness of X will not be affected by the Gauss digitization
process, as proven in [14].

Proposition 3 ([14]). Let X ⊂ R
2 be bounded and simply connected. If X is

quasi-1-regular, then X = X ∩ Z
2 is well-composed.

In this article, we are interested in polygonal objects generated from
the boundaries of digital objects of Z

2. In the following, we introduce the
notion of quasi-r-regularity restricted to polygons, namely discrete-r-regularity
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Fig. 7. Examples of discrete-1-regular (a) and non discrete-1-regular (b,c) polygons:
(b) the condition of angle is violated and (c) both conditions of angle and distance are
violated.

(see Fig. 7). This notion is extended from the definition proposed in [13] for con-
vex polygons. Then, we show that the set of discrete-r-regular objects is a subset
of quasi-r-regular objects.

Definition 4 (Discrete-r-regularity). Let P be a simple polygon in R
2, V

and E be respectively the set of vertices and edges of P. The polygon P is said
to be discrete-r-regular, if it satisfies the following two properties:

(i) ∀v = e1 ∩ e2 ∈ V with e1, e2 ∈ E, ∀e ∈ E \ {e1, e2}, d(v, e) ≥ 2r,
(ii) ∀v = e1 ∩ e2 ∈ V with e1, e2 ∈ E, n(e1).n(e2) ≥ 0,

where d(v, e) denotes the Euclidean distance between the vertex v and the edge
e, n(e) denotes the normal vector of e directed to the exterior of P, and the dot
“.” designates the scalar product between two vectors.

Roughly speaking, the polygon P is discrete-r-regular if, for any vertex v ∈ V ,
(i) v has a distance at least 2r to any edge that does not contain v, and (ii) the
vertex angle at v is between π

2 and 3π
2 (see Fig. 7).

Proposition 4. Let P ⊂ R
2 be a simple polygon. If P is discrete-r-regular, then

P is quasi-r-regular.

Proof. Assuming that P is discrete-r-regular, i.e. it satisfies the two conditions of
Definition 4. We now prove that P is quasi-r-regular, i.e. it satisfies the four con-
ditions of Definition 3. We only prove the conditions for P as the same reasoning
holds for P.

Consider the r-offset polygon of P, namely P � Br, which is defined by all
interior points of P having a distance at least r from the boundary of P (see
Fig. 8(a)). From (i) of Definition 4, any vertex v of P has its distance to any
edge not containing v greater or equal to 2r. Thus, P � Br is non-empty and
connected.
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Fig. 8. (a) The r-offset polygon P�Br (in black) of P (in blue). (b) Illustration for the
proof of Proposition 4; r ≤ d(c, v) ≤ r

√
2 as d(c, v) = r

sin( θ
2 )

and π
2

≤ θ ≤ 3π
2

. (Color

figure online)

We now prove (iii) of Definition 3 by showing that ∀v ∈ V , the distance of
v to P � Br is between r and r

√
2. Let us consider a vertex v = e1 ∩ e2 ∈ V

for e1, e2 ∈ E. Let Br(c) be the closed disk of radius r centered at c which
is tangent to both e1 and e2 (see Fig. 8(b)). From the definition of erosion, c
belongs to P�Br. We have sin θ

2 = r
d(c,v) where d(c, v) is the Euclidean distance

between c and v and θ is the angle at the vertex v, and thus d(c, v) = r
sin θ

2
. Since

n(e1).n(e2) ≥ 0, π
2 ≤ θ ≤ 3π

2 ,
√
2
2 ≤ sin θ

2 ≤ 1. This leads to r ≤ d(c, v) ≤ r
√

2.�

Note that the converse may not be true; a counterexample is given in Fig. 5.
As exemplified in Figs. 6 and 7 as well, quasi-r-regular objects can have non-
smooth boundaries (i.e. they can be non-differentiable), while discret-r-regular
objects are restricted only to polygons.

The following corollary is a straightforward result of Proposition 4.

Corollary 1. Let P be a simple polygon in R
2 and E be the set of all edges of

P. If P is discrete-r-regular, then ∀e ∈ E, l(e) ≥ 2r where l(e) denotes the length
of the edge e.

Proposition 4 and Corollary 1 provide a sufficient condition of discrete-r-
regular objects and allow for a geometric verification of such objects using the
simple measures of angles and lengths of the considered polygons.

Remark 2. Previously, another discrete regularity defined specially for convex
polygons was presented in [13]. The notion is based on the property on vertex
angle, which is the same as (ii) in Definition 4, and on the existence of a ball of
radius r tangent at each edge, which is contained in the polygon. Indeed, this
last property is not as strong as (i) in Definition 4, so that it does not lead to
the edge length property, as given in Corollary 1. Besides, the new notion given
in Definition 4 is not restricted to convex polygons, and thus more general.
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Fig. 9. (a) A digital shape X. (b) 8-connected contour C(X) (in red) extracted from
(a). (c) Boundary of the convex hull (in blue) computed from C(X). (d) Boundary of
the polygon P(X) (in green) of (a) based on the convex hull and C(X) of X such that
X = P(X) ∩ Z

2. (e) Decomposition into convex parts Pi of P(X) such that P(X) =⋃
i=1..m Pi. (f) Digital decomposition such that X = P(X) ∩ Z

2 =
⋃

i=1..m

(
Pi ∩ Z

2
)
.

(Color figure online)

3.2 Polygonization of a Digital Object and Convex Decomposition

We focus on a polygonal representation P(X) of a digital object X that satisfies
the following properties:

(i) Digitization reversibility: P(X) ∩ Z
2 = X, and

(ii) Rationality: the vertices of P(X) have rational coordinates.

It should be mentioned that the second property is related to our framework
of digital geometry and exact computation. Indeed, we require the vertices of
P(X) to be rational points, and restrict the rigid motion T to be rational, namely
rational rotations and rational translations. Thanks to this rational setting, the
vertices of T(P(X)) are also rational points. As a consequence, only exact com-
putations with integers are involved. These assumptions do not cause applicative
restriction due to the finiteness of input set and the density of rational values
within the rotation and translation parameter space.



Discrete Regular Polygons for Digital Shape Rigid Motion via Polygonization 65

In order to compute the polygonal representation P(X) which satisfies the
above properties, we use the border points of X together with its convex hull. For
an efficient computation of P(X), we use the border tracing algorithm proposed
in [4] and apply the discrete version of the Melkman algorithm [12] to compute
the convex hull of the border points. Both methods have a linear time complexity
w.r.t the number of border points.

The method of polygonal computation consists of first extracting the
8-connected contour points C(X) of X, and then computing the convex hull
of C(X); see Fig. 9(b, c). We initialize the ordered vertex set V of the polygon
P as the sequence of convex hull vertices. For any two consecutive vertices p1
and p2 of V , let us consider the set C ′(p1, p2) ⊂ C(X) of the contour points of
X between p1 and p2. We select p3 ∈ C ′(p1, p2) \ V such that

p3 = arg max
q∈C′(p1,p2)\V

{
d(p1, q) |

(
Δp1qr ∩ Z

2
)

∩ X = ∅ for r ∈ C ′(p1, q)
}

where d(p1, q) denotes the Euclidean distance between p1 and q, and Δp1qr is
the triangle whose vertices are p1, q and r. If such p3 exists, we add it to V
between p1 and p2. We repeat this process with V until no point is added, see
Fig. 9(d). Note that convex hull vertices are also vertices of P(X). We recall that
one can use any other methods of polygonization to obtain P(X) as far as the
method is reversible and the vertices of the polygon have rational coordinates;
for instance the approach based on digital straight segments proposed in [3] can
be considered.

To perform a geometry-preserving rigid motion, we apply a convex decom-
position to subdivide P(X) into convex parts Pi, i = 1..m, (see Fig. 9) such
that

P =
⋃

i=1..m

Pi. (6)

Thus,
X = P(X) ∩ Z

2 =
( ⋃

i=1..m

Pi

)
∩ Z

2 =
⋃

i=1..m

(
Pi ∩ Z

2
)
. (7)

In this work, we use the ACD (Approximate Convex Decomposition) algo-
rithm proposed in [10]. The ACD method is based on a hierarchical strategy to
perform the decomposition and has a O(nr) complexity where n and r are the
numbers of vertices and non-convex features of the polygon, respectively. We set
the parameters of the ACD method to avoid any approximation of the convex
decomposition. It should be mentioned that this step can be performed using
the rational vertices of P. However, we use the convex decomposition since the
digitization is simpler using the half-plane representation of each convex part
than the direct digitization of a polygon.

3.3 Rigid Motion of Discrete-r-Regular Polygons

Before describing the rigid motion model that relies on a discrete-r-regular poly-
gon P of R

2 followed by a digitization process, we first explain the model for
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convex polygons proposed in [13] and then adapt it for non-convex ones using
the convex decomposition (see Sect. 3.2).

A convex polygon P ⊂ R
2 can be defined as the intersection of closed half-

planes H as
P =

⋂

H∈R(P)

H (8)

where R(P) is the smallest set of closed half-planes that defines P. Each closed
half-plane H of this subset is defined as

H = {(x, y) ∈ R
2 | ax + by + c ≤ 0}. (9)

If P has rational vertices, then a, b, c ∈ Q. These rational coefficients of H
are obtained by a pair of consecutive vertices of P, denoted by u, v ∈ Q

2, which
are in the clockwise order, such that

(a, b) = (−wy, wx) (10)
c = (a, b) · u (11)

where (wx, wy) = v − u ∈ Q
2. Then, a half-plane H, as defined in Eq. (9), is

transformed by a rational rigid motion T as

T(H) = {(x, y) ∈ R
2 | αx + βy + γ ≤ 0} (12)

where α, β, γ ∈ Q are given by (α β)T = R(a b)T and γ = c + αt1 + βt2. This
leads to a rational half-plane. From Eqs. (9) and (12), we write the rigid motion
T of the convex polygon P as

T(P) = T

( ⋂

H∈R(P)

H
)

=
⋂

H∈R(P)

T(H) (13)

This rigid motion scheme can be extended to non-convex polygons via their
convex decomposition. From Eqs. (7) and (13) we have

T(P) =
⋃

i=1..m

T(Pi) =
⋃

i=1..m

( ⋂

H∈R(Pi)

T(H)
)

(14)

If P(X) is the polygon of a digital object X, i.e. X = P(X)∩Z
2, then we define

TPoly(X) = T
(
P(X)

) ⋂
Z
2 =

⋃

i=1..m

(
T(Pi)

⋂
Z
2

)
. (15)

It has been proved in [14] that rigid motion via polygonal model allows us
to preserve the 4-connectivity of the transformed object under the condition of
quasi-1-regularity.
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Proposition 5 ([14]). If the polygon P(X) of a bounded and connected digital
object X is quasi-1-regular, then TPoly(X) is 4-connected and well-composed.

From Propositions 4 and 5, we have the corollary.

Corollary 2. If the polygon P(X) of a bounded and connected digital object X
is discrete-1-regular, then TPoly(X) is 4-connected and well-composed.

In other words, if P(X) is discrete-1-regular, then TPoly(X), as defined in
Eq. (15), preserves the topological property of the original object X. Further-
more, P(X) is a piecewise affine object of R2; thus it allows to approximate well
the shape under the rigid motion. As a consequence, P(X) is processed in a
topology- and geometry-preserving way by TPoly(X) for any T if P(X) satisfies
the conditions in Definition 4.

4 Source Codes and Results

4.1 Download and Installation

The proposed method is implemented in C++ using the DGtal3 open source
library (Digital Geometry Tools and Algorithms). It is available at the github
repository: https://github.com/ngophuc/RigidTransformAcd2D. The installa-
tion is done through classical cmake procedure4 (see INSTALLATION.txt file).

4.2 Description and Usage

In the source codes, there are three packages:

– polygonization computes the polygon from a digital image (see Sect. 3.2),
and the discrete-r-regularity is verified in this step for the computed polygon
as well.

– decomposeShapeAcd2d decomposes a polygon into the convex parts using
the ACD method5 [10].

– transformAConvexShape implements the proposed rigid motion method
(see Sect. 3.3).

The executable file is generated in the build directory and named transfor-
mDecomShape2d.

– Input: a binary image in pgm format contains a well-composed set.
– Command line: the execution is in the CODESOURCES/build. For exam-

ple, to run the program on image.pgm with the name of the output file
is image out.pgm, the rigid motion with the parameter setting tx = 0.5,
ty = 0.3, and θ = 0.78 and the option -r to verify the discrete-1-regularity of
the computed polygon, we use

3 http://dgtal.org.
4 http://www.cmake.org.
5 The code sources are available at https://github.com/jmlien/acd2d.

https://github.com/ngophuc/RigidTransformAcd2D
http://dgtal.org
http://www.cmake.org
https://github.com/jmlien/acd2d
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./transformDecomShape2d -i image.pgm -o image_out.pgm -r
-a 0.5 -b 0.3 -t 0.78

More details about the options of the program can be found by the command
line helper: ./transformDecomShape2d -h

– Output: several files are generated as output (in pgm and svg format):

image_out.pgm Output transformed image
image_poly.svg Result of polygonization
image_decomp.svg Result of convex decompostion
image_shape.svg Result of digitized convex decomposition

It should be mentioned that the proposed method is supposed to perform
with an exact computation with rational rigid motions. However, to simplify the
model for the users, the code uses float numbers instead of rational numbers for
approximating the rigid motions; in particular, the rotation angle parameter is
given in radians.

Fig. 10. Left: input image, middle left: generated polygon with the convex decompo-
sition from contour points, middle right: digitization via the convex decomposition,
right: transformed results. For more details about rigid motion parameters of these
experiments, see https://github.com/ngophuc/RigidTransformAcd2D.

https://github.com/ngophuc/RigidTransformAcd2D
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4.3 Experimental Results

We now present some experiments on the convex decomposition for geometry-
preserving rigid motions. It should be mentioned that the polygons generated
from given digital sets are verified to be discrete-1-regular by the conditions in
Definition 4. The results are shown in Fig. 10 with the center of rotations being
the centroid of each set. Details of different parameters of rigid motions using
for these experiments are found at the github repository: https://github.com/
ngophuc/RigidTransformAcd2D.

5 Conclusion

This article presents a method for rigid motions of digital objects defined of Z2.
More precisely, the method uses an intermediate model of a digital object, which
is a polygon representing the digital object. Such polygon is continuous and
processed by standard continuous transformations followed by a digitization to
obtain a result in Z

2. In particular, we proposed a notion of discrete-r-regularity
for polygonal objects, and also showed that these objects are in a subset of
quasi-r-regular objects [14]. It provides a sufficient condition for guaranteeing
topological preservation when digitizing a polygonal object.

An online demonstration is available at http://ipol-geometry.loria.fr/∼phuc/
ipol demo/DecompConvexRigidMotion, and the implementation of the method
can be found at https://github.com/ngophuc/RigidTransformAcd2D.
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