
A Root-to-Leaf Algorithm Computing
the Tree of Shapes of an Image

Pascal Monasse(B)

LIGM (UMR 8049), École des Ponts, UPE, Champs-sur-Marne, France
pascal.monasse@enpc.fr

Abstract. We propose an algorithm computing the tree of shapes of an
image, a unified variation of the component trees, proceeding from the
root to the leaf shapes in a recursive fashion. It proceeds differently from
existing algorithms that start from leaves, which are regional extrema of
intensity, and build the intermediate shapes up to the root, which is the
whole image. The advantage of the proposed method is a simpler, clearer,
and more concise implementation, together with a more favorable run-
ning time on natural images. For integer-valued images, the complexity
is proportional to the total variation, which is the memory size of the
output tree, which makes the algorithm optimal.

Keywords: Tree of shapes · Component trees · Level sets

1 Introduction

1.1 The Tree of Shapes

Extremal regions of an image are connected regions of an image where the inten-
sity is above or below a certain gray level. These generalize the shapes of the
classical mathematical morphology of binary images to gray-scale. Indeed, this
just amounts to binarize the gray level image at a certain level and consider
the resulting shapes. As there is not a single threshold where interesting shapes
occur, all possible thresholds should be applied. For example, for an 8-bit image,
all integer values from 0 to 255 can be used as thresholds. It is clear that when
the threshold increases, minimal regions (those below the threshold) increase
with respect to set inclusion, while maximal regions decrease. From these simple
observations, two trees can be built, the minimal and the maximal trees, called
the component trees. In each tree, a shape is an ancestor of another if the first
contains the second. The root is the full set of pixels, obtained at threshold 255
in the min-tree and 0 in the max-tree. These observations are at the basis of effi-
cient algorithms to compute the component trees, either bottom-up, i.e., from
the leaves to the root [2,20], or top-down, from the root to the leaves [21,22].
While some of these algorithms are very efficient for 8-bit images, others beat the
former on higher bit depths. A full comparison is available in the literature [4].

c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 43–54, 2019.
https://doi.org/10.1007/978-3-030-23987-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23987-9_3&domain=pdf
http://orcid.org/0000-0001-9167-7882
https://doi.org/10.1007/978-3-030-23987-9_3

44 P. Monasse

Naturally, not all extremal regions are significant or are the projection of a
single 3D object in the image. However, a simple criterion, like a high contrast,
can be enough to recover some important shapes that may be used as features
in image registration or disparity estimation. This is the principle at the basis
of maximally stable extremal regions (MSER) [14], which yield point correspon-
dences between images of the same scene in the same manner as the similarity
invariant feature transform (SIFT) [13] and its variants. A more recent alterna-
tive to MSER is shapes just before their merging in a component tree, so-called
tree-based Morse regions [26]. Some of these methods are compared in a famous
study [16].

The need for extraction of both component trees can be lifted by using the
tree of shapes [18]. The shapes involved in this construction are built from the
connected components of extremal regions. The internal holes of the latter, that
is all bounded connected components of their complement except one, the exte-
rior, are filled, yielding the shapes. It happens that shapes, whether issued from
minimal or maximal extremal regions, can still be ordered in an inclusion tree [1].
This unique structure is well suited for contrast-invariant filtering [6,19], self-
dual filtering [10,12], segmentation [24,25], or image registration [9,17].

1.2 Related Work

The computation of the tree of shapes can be done by merging the component
trees [5]. The advantage is that the algorithm works in any dimension, but it is
not particularly efficient for 2D images. The standard algorithm, the fast level
set transform (FLST) [7], works in a bottom-up fashion, starting from the leaves
and leveling the image after each extraction of shape [15]. Interpreting the image
as a continuous bilinear interpolated surface yields the tree of bilinear level lines,
which can be efficiently computed based on level lines [7,8], which is akin to the
proposed algorithm. The closer to the proposed algorithm is top-down [23], from
root to leaves, but only applicable to hexagonal connectivity, while ours works in
the standard 4- and 8-connectivity. Finally, a different definition of shapes based
on multi-valued images [11] has the potential to be computed very efficiently,
but no public implementation seems available.

1.3 Background and Notations

We consider discrete images I defined on pixels. Each pixel p ∈ {0, . . . , w − 1}×
{0, . . . , h − 1} gets a value I(p) ∈ R. We consider the extremal regions, or level
sets: {p : I(p) ≤ λ} and {p : I(p) ≥ λ}. The 4-connected components of the
former are called inferior components and the 8-connected components of the
latter are called superior components. The asymmetry is necessary here to get
an inclusion tree later on. Assuming a component C not touching the image
boundary {0, w − 1}×{0, . . . , h− 1} ∪ {0, . . . , w − 1}×{0, h− 1}, we can fill all
connected components of its complement (8-connected if C is an inferior com-
ponent, 4-connected otherwise) except the one containing the image boundary,
yielding a shape S. The shapes built from all such components, together with

A Root-to-Leaf Algorithm Computing the Tree of Shapes 45

the set of all pixels R, has an inclusion tree structure: A shape S is an ancestor
of another S′ iff S′ ⊂ S. If S and S′ are not nested like here, then S ∩ S′ = ∅.
Since any pixel p is inside a shape (at least R), we can consider all shapes con-
taining p, which are nested since they intersect; the smallest of them is noted
S[p]. Pixels p1, . . . , pk such that S = S[p1] = · · · = S[pk] are called the private
pixels of S. In that case, we must have I[p1] = · · · = I[pk], called the gray level g
of S. A pixel p in S having a 4-neighbor (if S is inferior) or 8-neighbor (if S is
superior) q outside S is said to be at the boundary of S, while q is said to be an
external neighbor of S. It seems that all private pixels of S are at its boundary
or connected to such a pixel inside the iso-level Ig := {p : I(p) = g}. Actually,
this is not all, since all pixels at the external boundary of a child shape of S
in the tree having gray level g and their connected components in Ig are also
private pixels. This is illustrated Fig. 1. The private pixels of shape B are two
components of iso-level at the boundary, together with another component not
at the boundary, but at the immediate exterior of C and D, children of B.

0 7
0

6

A

B

C

0,0:7 6,0:7

1:5,1 1,2:4

2,2:4 4,2:4 3,2

1:5,6 3,3:4

1:5,5

D
C D

B
A

1:5,0 1:5,7

5,2:4

Fig. 1. Tree of shapes of a 7 × 8 image. The boundaries (level lines) of superior shapes
are in red and of inferior shapes in blue. The root is A, its child is B, whose children
are C and D. On the right, the arrangement of pixels according to their smallest shape
(Matlab range notation).

2 Following a Level Line

The key element of the algorithm is that it is based on level lines rather than level
sets. A shape is the “interior region” delimited by a level line and the level line
is the boundary of the shape. Each level line is trodden twice by the algorithm:
the first time to extract the level line itself and find the gray level of the shape,
along with one private pixel; the second time to find possible additional private
pixels of the parent shape that are not connected to its boundary.

The level line is a sequence of consecutive edgels. An edgel (“edge element”)
can be represented as the common boundary between two adjacent pixels, that
is pixels for which one or two coordinates, x and y, differ by one unit. In order
to ensure that each pixel is involved in exactly 8 edgels and to avoid exceptions

46 P. Monasse

for pixels at the boundary of the image, we represent rather an edgel by one
pixel and one cardinal direction: east (E), north (N), west (W) or south (S), and
the diagonal directions. An edgel is thus oriented, and the pixel is called its
interior pixel, while its exterior pixel, if it exists, is the pixel adjacent to the
interior one across the direction, see Fig. 2(a). Consecutive edgels either share a
common interior pixel (we say the level line “turns left”) or a common exterior
pixel (the level line “turns right”), or have their interior pixels adjacent along
their identical directions (the level line “goes straight”).

nnw

w e

ne

sessw

p

NE

NWSW

SE

W

NS

E

(a) Edgels

L R

p

(b) Direction choice

L L̄

R right
right (8)
left (4)

R̄ straight left

(c) Following rules

p

8

p

4

(d) Turns

Fig. 2. Edgels and level lines following. (a) The edgels associated to interior pixel p
are for example (p, s) = (p, E) and (p, ne) = (p, NW), the latter being diagonal. (b)
When following a level line (here at edgel (p, N)), the new edgel depends on whether
L and R are within the shape. (c) Rules for next edgel, depending on whether L and
R are above the threshold or not (L̄ and R̄). (d) Turns left and right. The diagonal
direction is followed iff the connexity matches the displayed number.

To be a level line of the image I, a sequence of consecutive edgels L =
(e0, . . . , en−1, en = e0), with ei 	= ej for 0 ≤ i < j < n, must satisfy

g := max
0≤i<n

I(Int(ei)) < min
0≤i<n

I(Ext(ei)) or (1)

g := min
0≤i<n

I(Int(ei)) > max
0≤i<n

I(Ext(ei)). (2)

In the first case, we say that L is an inferior level line, which is the boundary of
an inferior shape, while in the second case L is a superior level line, boundary
of a superior shape. In any case, the gray level g is called the level of L and of
the shape whose boundary is L. In the above formulas, intensities of nonexistent
exterior pixels are replaced by −∞. If no exterior pixel exists in the sequence,
that is, L follows the boundary of I, the right-hand side becomes −∞ and we are
in the second alternative, a superior level line that is the boundary of the root
shape. In general, any edgel with no exterior pixel is of superior type1. Their
order indicates the type of the level line.

As soon as we have an edgel e with I(Int(e)) 	= I(Ext(e)), e is in a level
line of I. In our algorithm, we need to find the largest shape, in the sense of set
1 This choice is arbitrary, we could have chosen +∞ and the root shape would have

been of inferior type.

A Root-to-Leaf Algorithm Computing the Tree of Shapes 47

inclusion, whose boundary L includes e, that is, the one whose gray level g is as
close as possible to I(Ext(e)), which may be different from I(Int(e)). Starting
from e, we need to find the following one in the sequence L(e) we are building.
We iterate this until we reach again e. For this, the procedure needs to know
which direction to follow (left turn, right turn, or straight ahead). This depends
on the gray levels of two pixels, L and R in Fig. 2(b). The rules for finding the
next edgel are in Fig. 2(c) according to whether L (resp. R) is in the shape or
not, the latter case being noted L̄ (resp. R̄). The rule indicates which direction to
take: straight means continue to the direction of the arrow, that is, the interior
pixel becomes L and the direction does not change. The indications “left” and
“right” indicate a turning direction. In a left turn, the interior pixel remains the
same, but not in a right turn. The complex case is L̄∧R, which is a saddle point.
The turn to take depends on the connexity: left for 4-connexity and right for
8-connexity. Performing a turn is explained by Fig. 2(d). A left turn is performed
in two steps in 8-connexity, first with a diagonal direction (current direction N
would be followed by NW , then W in the illustration), and also for a right turn in
4-connexity (NE then E). The procedure to follow a level line is summarized in
Algorithm 1. According to Fig. 2(d), left and right turns can actually generate
two edgels depending on connexity. In such case, the first edgel appended is
diagonal, and the following edgel finishes the turn.

Data: Edgel e0, with I(Int(e0)) �= I(Ext(e0))
Result: L(e0) = (e0, . . . , en−1, en = e0): largest level line through e0
λ ← I(Ext(e0))
repeat

l ← Int(go straight(ei)), r ← Ext(go straight(ei))
L ← sign(I(l) − λ) = sign(I(Int(e0)) − λ)
R ← sign(I(r) − λ) = sign(I(Int(e0)) − λ)
if L ∧ R then ei+1 ← turn right(ei)
if L ∧ R̄ then ei+1 ← go straight(ei)
if L̄ ∧ R̄ then ei+1 ← turn left(ei)
if L̄ ∧ R then // Saddle point: turn depending on connexity

if I(Int(e0)) > λ then ei+1 ← turn right(ei)
else ei+1 ← turn left(ei)

i ← i + 1

until ei = e0

Algorithm 1. Follow a level line from an initial edgel

3 Top-Down Algorithm

3.1 Representation of the Tree

A shape is stored as a structure comprising its type (inferior or superior), its
level g, its contour (array of positions) and an array of its pixels. Moreover,

48 P. Monasse

it contains pointers to its parent shape, its “first” child, and its next sibling,
if any. In that manner, all children of a shape form a list structure. This is
all that is required for walking the tree in any way. Pixels are stored taking
advantage of nesting: private pixels of a shape come first in the array, followed
by arrays of pixels of its children. This recursive ordering allows to have a single
array containing a permutation of all pixels of the image, and each shape has a
pointer for its beginning and a pointer to its end inside this array (see Fig. 1).
Notice also that such an arrangement provides an O(1) procedure to determine
whether one shape is a descendant of another, by comparison of pointers.

The tree is represented as an array of shapes2. It stores also an index S[p],
giving for each pixel p the shape of which it is a private pixel.

3.2 Top-Down Recursive Extraction

The algorithm 2 starts from an edgel e whose internal and external pixels
have different intensities. The procedure create tree builds the shape S whose
boundary is L(e), and recursively the tree rooted at S. In order to do that, the
first loop of the algorithm follows L(e) and stores a single internal pixel p, which
is a private pixel of S. Its gray level g is the closest to I(Ext(e)) among all inter-
nal pixels of edges in L(e). This loop also reinitializes S[.] to ∅ at each interior
pixel. This is necessary since the call of find pp children from the parent P
(procedure detailed below) has overwritten it with tag P . After this loop, the
level g of S is stored and the registered private pixel p is put into a queue Q.
The tag S[p] is set to S, like all subsequent pixels pushed into Q.

Data: edgel e
Result: Tree rooted at largest shape S whose level line L goes through e
λ ← I(Ext(e)) // Level of parent

p ← Int(e)
for ei ∈ L(e) do // Line following, Algorithm 1

S[Int(ei)] ← ∅
if |I(Int(ei)) − λ| < |I(p) − λ| then

p ← Int(ei)

S.type ←
{

inf if I(p) < λ

sup if I(p) > λ

S.g ← I(p), S[p] ← S
C ← find pp children(S, p) // C is an array of edgels

for ei ∈ C do
S′ ← create tree(ei) // Recursive call for children

Insert S′ as child of S

Algorithm 2. create tree, main routine

2 The first shape in the array is the root, corresponding to the full image, and parents
have a position before their children. This is a consequence of the top-down nature
of the algorithm.

A Root-to-Leaf Algorithm Computing the Tree of Shapes 49

All pixels that will transit in Q will be the private pixels of S. The second step
(Algorithm 3) dequeues the waiting pixel p from Q and examines its neighbors
(4- or 8-neighbors depending on the type of S). For each one q not already
explored (S[p] = ∅), we have two possibilities: if I[p] = I[q], q is also a private
pixel, it is marked as explored (S[q] = S) and inserted in Q. Otherwise, the edgel
e = (q, p) is on a level line L(e) bounding a shape that is a child of S. This edgel
is put in an array C for later treatment. The level line L(e) is followed, with
a twofold goal: mark internal pixels r as explored (S[r] = S) so as to prevent
a re-exploration from a different edgel; if an exterior pixel r is unmarked and
I(p) = g, mark r and enqueue it in Q, since it is a private pixel.

Data: Shape S, one private pixel p0

Result: Find all private pixels of S; Return array C of edgels, one per child
level line.

Q ← p0 // Push p0 in a queue

while Q �= ∅ do
Q → p // Pop pixel from Q, store in p
Add p as private pixel of S
for q ∼ p and S[q] = ∅ do // Unexplored neighbors of p

S[q] ← S
if I(q) = I(p) then

Q ← q // Push q, private pixel

else
e = (q, p) // Edgel with q as interior pixel

C ← e
for ei ∈ L(e) do

S[Int(ei)] ← S
if S[Ext(ei)] = ∅ and I(Ext(ei)) = S.g then

Q ← Ext(ei) // This is a private pixel

S[Ext(ei)] ← S

Algorithm 3. find pp children, find private pixels of S and one edge
per child level line

Each edgel in C is at the boundary of a different child of S. At this point, all
internal and all external pixels of an edgel along the boundary of S is marked
by S[p] = S. Each one provokes a recursive call to create tree, whose first step
puts back internal pixels along the boundary to ∅, as seen above.

3.3 Complexity

At any edgel e, there are at most |I(Int(e))−I(Ext(e))| level lines going through e
if I takes only integer values. Each level line is followed twice, so that the com-
plexity of the algorithm is

O(
∑

p∼p′
|I(p) − I(p′)|) = O(TV(I)), (3)

50 P. Monasse

the (discrete) total variation of I. Notice that if level lines are stored with the
shapes, this complexity is asymptotically optimal, since it is proportional to
the output size. However, for large images storing the level lines can be too
demanding, and our code makes this storage optional at compile time.

3.4 Comparison with the FLST

The reference algorithm for extraction of the tree of shapes is the FLST [7]. Its
high level operation is summarized in Algorithm 4. Its procedure is bottom-up,
that is, it starts from leaves and goes up to the root of the tree.

1 for pixel p do
2 if p local extremum then
3 while true do
4 Extract iso-level S = cc({I = I(p)}, p)
5 if S regional extremum without hole then
6 Insert S as new shape in tree
7 for q ∈ S do
8 if S[q] = ∅ then
9 S[q] ← S

10 else
11 I(q) ← I(p)
12 Add highest ancestor of S[q] as child of S

13 p ← neighbor of S of closest intensity to I(p)
14 else
15 break while loop

Algorithm 4. High-level operation of the FLST.

It relies on the observation that a leaf of the tree of shapes is a regional
extremum of the image with hole, and that a regional extremum contains a local
extremum. Pixels are thus sequentially scanned, and when a local extremum p
is met, the procedure tries to extract a shape and its ancestors:

1. The set S of pixels connected to p at the same level I(p) are extracted by
region growing;

2. If S is a regional extremum without hole then S is a new shape, all pixels q
of S with no smallest associated yet are private pixels of S, while other pixels
of S are set to level I(p) and their largest ancestor yet (upper-most parent of
S[q] is set as a child of S.

3. p is moved to a neighbor of S of closest intensity to I(p) and we continue to
step 1, that is we try going up the tree. It can be noticed that the new S will
be a superset of the current one, so the region growing needs not start from
the single pixel p.

The bottleneck of the algorithm is the abortion of the while loop at line 15,
whose goal is to walk up the tree (to the root), when the set S presents one or

A Root-to-Leaf Algorithm Computing the Tree of Shapes 51

several internal holes: these holes are filled one by one at line 11, but only the
last one is able to proceed up the tree and extract S as a shape.

The worst case scenario for the FLST is in the presence of a large uniform
area with many holes, for example a checkerboard. Each black case of one pixel is
a hole in the white shape, so that the complexity is O(n2) with n the number of
pixels. By contrast, the proposed algorithm does not have any particular trouble
with such a situation, yielding a complexity O(n).

On the contrary, when a deep hierarchy of nested shapes is present, the
proposed algorithm is quite slow, since a new level line has to be followed for
each one. This worst situation can happen for high bit-depth image, typically
when each pixel has its own single gray level. There are as many shapes as pixels,
and the length of level lines could be also large. Another trouble is that the
recursivity follows the tree depth and could result in a memory stack overflow.
In this situation, the FLST has no difficulty at all, just walking up the tree shape
by shape without break.

Roughly speaking, the proposed algorithm is advantageous for low bit-depth
images and wide (many children) but shallow trees, while the FLST prefers
narrow (few children) but deep trees. It happens that for 8-bit images, the former
is more frequent than the latter. This is demonstrated by the experiments of the
next section.

4 Experiments

Our implementation3 is coded in C++. The core of the algorithm is about 250 lines
of code. It is compiled with the GNU compiler gcc version 4.8 in optimized mode
and run on an Intel Xeon CPU E5-2643 at 3.3 GHz. Experiments are performed
on different crops of large Wikipedia images. Each crop is at the center of image.
Run times of the proposed algorithm and of the classical FLST are in Fig. 3.

On the Church image4, a regular photograph, both the proposed algorithm
and the classical FLST are performing well, with a significant advantage for the
proposed algorithm beginning at about 10 Mpixels. Notice the time spent for
our algorithm is roughly linear, so as the TV. For the Meteo image5, a satellite
image, our algorithm is quite fast even at high resolution, while the classical
FLST seems to have a super-linear running time. Speed-ups of our algorithm are
very significant here. Finally, for a simple Cartoon image6, with a low TV, our
algorithm performs very well (5 seconds at 20 Mpixels), while the classical FLST
takes above 120 seconds at 5 Mpixels, and more than 500 seconds at 9 Mpixels.
This is because such a situation is not favorable to the FLST, with some shapes

3 https://github.com/pmonasse/flst.
4 https://upload.wikimedia.org/wikipedia/commons/5/5e/12-04-06-senftenhuette-

by-RalfR-08.jpg.
5 https://upload.wikimedia.org/wikipedia/commons/6/6b/02S Dec 8 2011 0600Z.

jpg.
6 https://upload.wikimedia.org/wikipedia/commons/6/6c/0-cynefin-ORIGINEEL.

jpg.

https://github.com/pmonasse/flst
https://upload.wikimedia.org/wikipedia/commons/5/5e/12-04-06-senftenhuette-by-RalfR-08.jpg
https://upload.wikimedia.org/wikipedia/commons/5/5e/12-04-06-senftenhuette-by-RalfR-08.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6b/02S_Dec_8_2011_0600Z.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6b/02S_Dec_8_2011_0600Z.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6c/0-cynefin-ORIGINEEL.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6c/0-cynefin-ORIGINEEL.jpg

52 P. Monasse

having a high number of children. Each time a child is extracted, the FLST levels
it to the gray level of the parent, until it realizes that more children are to be
extracted. In such a situation, the path going up the tree has to stop until all
children are extracted. The proposed algorithm has no such problem.

The proposed algorithm extracts the tree of shapes of Church (60 Mpixels)
in 54 s, of Meteo (56 Mpixels) in 32 s, and of Cartoon (300 Mpixels) in 85 s. This
shows that the algorithm, although single thread, is able to handle large images
in reasonable time.

Fig. 3. Run-time with respect to image size.

5 Conclusion

We have presented an algorithm that computes the tree of shapes by starting
from the root and proceeding downward to the leaves. Experiments show that
it is more efficient on natural images, and the algorithm is even optimal on
integer-valued images.

One minor drawback is that the current implementation assumes a priori
a fixed gray level outside the image frame, whereas its prime concurrent, the
FLST, adapts to the image contents. A possible solution to recover this feature
is to compute two trees, one when the outside is below the minimal value in the
image and the other where it is above the maximal value. However, the root-to-
leaf extraction of the second tree can be stopped as soon as shapes do not meet
the image boundary, because these shapes are common to both trees. It remains
only to sort the shapes meeting the boundary from both trees to put them in
the correct hierarchy [5].

Further experiments would be needed in order to compare with a modified
version of the FLST that extracts the full tree in several passes with increasing
maximal area [7], which alleviates the problem of wide trees. Another worthwile
comparison is with a quasi-linear algorithm that transforms the extraction to a
max-tree computation into a larger image [3].

A possible extension of the algorithm is to derive a parallel implementation
for handling extra-large images. Indeed, since extracting a subtree rooted at

A Root-to-Leaf Algorithm Computing the Tree of Shapes 53

some node of the tree has no side-effect on its exterior, i.e., the rest of the image,
different threads could handle the bifurcations in the tree (several children to
common parent), each one building the subtree rooted at a sibling, without need
for synchronization. This is in strong contrast to bottom-up algorithms where
threads building up from different leaves would need to wait for each other when
they have to merge at their common ancestor.

References

1. Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. ESAIM:
COCV 9, 1–18 (2003)

2. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.:
Effective component tree computation with application to pattern recognition in
astronomical imaging. In: IEEE International Conference on Image Processing,
2007, ICIP 2007, vol. 4, pp. IV-41. IEEE (2007)

3. Carlinet, E., Crozet, S., Géraud, T.: The tree of shapes turned into a max-tree:
a simple and efficient linear algorithm. In: Proceedings of the IEEE International
Conference on Image Processing (ICIP) (2018)

4. Carlinet, E., Géraud, T.: A comparative review of component tree computation
algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

5. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an
image by fusion of the trees of connected components of upper and lower level
sets. Positivity 12(1), 55–73 (2008)

6. Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vision 17(3), 249–270
(2002)

7. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps.
Lecture Notes in Computer Science, vol. 1984. Springer, Heidelberg (2009)

8. Ciomaga, A., Monasse, P., Morel, J.M.: The image curvature microscope: accu-
rate curvature computation at subpixel resolution. Image Process. Line 7, 197–217
(2017). https://doi.org/10.5201/ipol.2017.212

9. Dibos, F., Koepfler, G., Monasse, P.: Image alignment. Geometric Level Set Meth-
ods in Imaging, Vision, and Graphics, pp. 271–295. Springer, New York (2003)

10. Dibos, F., Koepfler, G., Monasse, P.: Total Variation Minimization for
Scalar/Vector Regularization, pp. 121–140. Springer, New York (2003)

11. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to com-
pute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38294-9 9

12. Keshet, R.: Shape-tree semilattice. J. Math. Imaging Vision 22(2–3), 309–331
(2005)

13. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, 1999,
vol. 2, pp. 1150–1157. IEEE (1999)

14. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from
maximally stable extremal regions. Image Vision Comput. 22(10), 761–767 (2004)

15. Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological
levelings. J. Vis. Commun. Image Represent. 11(2), 245–265 (2000)

16. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

https://doi.org/10.5201/ipol.2017.212
https://doi.org/10.1007/978-3-642-38294-9_9

54 P. Monasse

17. Monasse, P.: Contrast invariant registration of images. In: 1999 IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1999. Proceedings, vol. 6,
pp. 3221–3224. IEEE (1999)

18. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image repre-
sentation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

19. Monasse, P., Guichard, F.: Scale-space from a level lines tree. J. Vis. Commun.
Image Represent. 11(2), 224–236 (2000)

20. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE
Trans. Image Process. 15(11), 3531–3539 (2006)

21. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp.
183–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-
4 14

22. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for
image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

23. Song, Y.: A topdown algorithm for computation of level line trees. IEEE Trans.
Image Process. 16(8), 2107–2116 (2007)

24. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using
tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469
(2017)

25. Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: application to
object segmentation on the tree of shapes. In: 2012 19th IEEE International Con-
ference on Image Processing (ICIP), pp. 1577–1580. IEEE (2012)

26. Xu, Y., Monasse, P., Géraud, T., Najman, L.: Tree-based morse regions: a topo-
logical approach to local feature detection. IEEE Trans. Image Process. 23(12),
5612–5625 (2014)

https://doi.org/10.1007/978-3-540-88688-4_14
https://doi.org/10.1007/978-3-540-88688-4_14

	A Root-to-Leaf Algorithm Computing the Tree of Shapes of an Image
	1 Introduction
	1.1 The Tree of Shapes
	1.2 Related Work
	1.3 Background and Notations

	2 Following a Level Line
	3 Top-Down Algorithm
	3.1 Representation of the Tree
	3.2 Top-Down Recursive Extraction
	3.3 Complexity
	3.4 Comparison with the FLST

	4 Experiments
	5 Conclusion
	References

