
Some Comments on Variational Bayes
Block Sparse Modeling with Correlated

Entries

Shruti Sharma(B) , Santanu Chaudhury(B), and Jayadeva(B)

Indian Institute of Technology Delhi, New Delhi, India
shruti sml@yahoo.com,{santanuc,jayadeva}@ee.iitd.ac.in

Abstract. We present some details of Bayesian block sparse model-
ing using hierarchical prior having deterministic and random parameters
when entries within the blocks are correlated. In particular, the effect of
the threshold to prune out variance parameters of algorithms correspond-
ing to several choices of marginals, viz. multivariate Jeffery prior, multi-
variate Laplace distribution and multivariate Student’s t distribution, is
discussed. We also provide details of experiments with Electroencephalo-
graph (EEG) data which shed some light on the possible applicability of
the proposed Sparse Variational Bayes framework.
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1 Introduction to Sparse Variational Bayes Framework

Compressed Sensing problem aims at solving an undetermined system of linear
equations:

y = Φx + v (1)

where y ∈ R
m×1 is the observation vector, x ∈ R

n×1 is the unknown solution
vector with n >> m, v is the unknown noise vector and Φ ∈ R

m×n is the known
random matrix with full row rank and satisfies Restricted Isometry Property.
Infinitely many x can solve (1) provided solution exists and thus we need to
make some assumptions to make the problem well defined [1]. Sparsity is one of
the viable assumption which has received a lot of attention in the recent times.
In addition to sparsity, sometimes signals exhibit additional structures in the
form of blocks and we have block linear sparse model [2]:

y =
g∑

i=1

Φixi + v (2)
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where Φi ∈ R
m×di , xi ∈ R

di×1 and
∑g

i=1 di = n, g being the number of non-zero
blocks and di being the size of ith block.

Generalized Sparse Variational Bayes (cSVB) framework is a three level hier-
archical estimation framework [3] which is extension of the work proposed in [4,5]
for block sparse signals with correlated entries. At first level, it assigns heavy
tailed sparsity promoting priors (which can also be expressed as Gaussian Scale
Mixtures with appropriate mixing density [6]) over each block:

xi =
1√
αi

Cig ∀i = 1, . . . , g (3)

where g ∼ N (0di
, Idi

), αi is the inverse variance random parameter and
B−1

i � CiCt
i ∈ R

di×di is the covariance deterministic parameter matrix of
the block xi. At second level, depending on the choice of prior distribution
over parameters αi, various heavy tailed distributions can be induced over xi

viz. multivariate Laplace distribution, multivariate Student’s t distribution and
multivariate Jeffery’s prior. At third level, we impose different priors over hyper-
parameters. Graphical model representing this framework is shown in Fig. 1.

In this framework, αis play an important role in inducing sparsity in the
solution vector. When αi = ∞, the corresponding ith block of x becomes 0.
Due to the mechanism of Automatic Relevance Determination (ARD), most
of the αi tend to infinity and thus block sparsity is encouraged. However, in
the presence of noise, αi never becomes ∞ and thus a threshold is used to
prune out large αi. This work aims at addressing the effect of threshold to
prune out αi parameters (Sect. 2) in terms of mean square error, failure rate
and speed of the algorithms proposed1 in our work [3]. For notations and other
details, please refer [3]. We also demonstrate the utility of the framework for
EEG data reconstruction problem [7] and Steady-State Visual Evoked Potential
EEG recognition problem [8,9].

2 Effect of Threshold to Prune Out Variance Parameters

We randomly generated the unknown solution vector x of length n = 480 with
total non-zero coefficients being 24, occurring in blocks at random locations.
Coefficients within each blocks were generated as AR(1) process with common
AR coefficient ρ. m = 50 was kept fixed and block size was varied from 1 to
6. Φ ∈ R

m×n consisted of columns drawn from a standard Gaussian distribu-
tion with unit �2 norm. Zero mean v was added to measurements y = Φx + v
with variance depending on the desired SNR. For analysis of algorithms, we car-
ried out simple experiments over synthetic data of 200 independent trials with
different realizations of measurement matrix Φ and true signal x. Correlation
coefficient ρ was kept 0.8. We investigated the effect of threshold value to prune
out αi and considered threshold values: 10, 50, 100, 103, 104, 105, 106, 107, 108.

1 The codes for [3] can be found at https://github.com/shruti51/cSVB.

https://github.com/shruti51/cSVB
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Fig. 1. Graphical Model representing the Bayesian Model. Red plate (the box labeled
G) represents G nodes of which only a single node (xi and related variables) is shown
explicitly (Color figure online)

We measured the algorithm’s performance in terms of failure rate (please refer
[3] for definition of failure rate), MSE and speed.

From Figs. 2, 3 and 4, we see that α-pruning threshold plays an important
role in determining the performance of the algorithms. Figure 2 shows that while
optimal performance, in terms of failure rate, of BSBL variants and SVB vari-
ants depends on the threshold, cSVB variants do not depend much on α-pruning
threshold. This is desirable in the sense that we don’t want our algorithms to
depend much on the parameters of framework. It also shows that cSVB variants
have outperformed SVB variants and BSBL-BO. Figure 3 shows that SVB vari-
ants have again performed poorly but now BSBL-BO performance is comparable
to that of cSVB variants. Finally, we see from Fig. 4 that good performance of
cSVB variants has come at a price of their computational complexity where time
taken by cSVB variants is high as compared to BSBL-BO. SVB variants offer low
complex algorithms as compared to cSVB and BSBL-BO which do not involve
extra computational burden of inversion of matrix B and thus attributing to
their fast execution speed at low threshold values.

To summarize, we say that cSVB variants have a potential to recover block
sparse signals with high fidelity irrespective of the αi-pruning threshold. But
this comes at a cost of high computational time.

3 Experiments with EEG Data

3.1 Reconstruction Performance of Algorithms with EEG Signals

We have used eeglab data.set from EEGLAB which has 32 channels. Dataset
and related MATLAB codes were downloaded from [10]. Each channel consists
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Fig. 2. Failure rate versus α-pruning threshold
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Fig. 3. Mean square error versus α-pruning threshold

of 80 epochs with 384 samples in every channel and epoch was processed indepen-
dently. The data matrix was firstly transformed using Discrete Cosine Transform
(DCT) and sensing matrix Φ was considered to be binary matrix of dimensions
150×384, each column of which contained 10 ones and rest zeros [7]. This model
can be written as:

y = Φx = ΦDz (4)

where y are compressed measurements, x are original measurements and z =
D−1x are DCT coefficients and have few significant entries due to ’energy com-
paction’ property of the transform. Block partitioning was kept equal and block
size 24.

The reconstruction performance of all the algorithms is shown in Fig. 5. Due
to our inability to interpret EEG signals, it is very difficult to assess the quality
of EEG reconstruction by the proposed algorithm. However, it can be seen that
at least all the algorithms have managed to capture the trends of original EEG
signal. So, in this case, experiments suggest that EEG data does not exhibit
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Fig. 4. Time (in seconds) versus α-pruning threshold

strong correlation which is otherwise also true in the sense that EEG data is
highly non-stationary data. So, SVB variants can be seen as equally strong can-
didates for the analysis which do not model any correlation structure of the
signal.

3.2 Experimental Results on SSVEP-Recognition

Main aim of this experiment is to demonstrate the power of Sparse Varia-
tional Bayesian framework in recognizing Steady-State Visual Evoked Potential
(SSVEP).

The benchmark dataset in [8] based on SSVEP-based Brain Computer Inter-
face (BCI) is used for the validation of algorithms. It consists of 64-channel EEG
data from 35 healthy subjects (8 experienced and 27 naive) and 40 stimulation
frequencies ranging from 8 to 15.8 Hz with an interval of 0.2 Hz. For each subject,
the experiment was performed in 6 blocks and each block consisted of 40 trials
corresponding to 40 characters (26 English alphabets, 10 digits and 4 other sym-
bols) indicated in random order. Each trial started with a visual cue indicating
a target stimulus which appeared for 0.5 s on the screen and then all stimuli
started to flicker on the screen concurrently and lasted for 5 s. The screen was
kept blank for 0.5 s before the next trial began.

We used the same experimental setup as proposed in [11]. Measurement
matrix Φ ∈ R

m×n was sparse binary matrix having each column with two entries
of 1 in random locations while rest of the entries are 0. n was kept fixed and m
was varied to meet desired Compression Ratio (CR) defined: CR = n−m

n × 100.
For performance evaluation, we used task-specific performance evaluation

where all the algorithms were evaluated based on their performances on fre-
quency detection of SSVEPs using Canonical Correlation Analysis (CCA) [9].
In particular, at first, SSVEP detection was performed on the original dataset
(which also serves as the baseline for algorithms) and then the same task was per-
formed on the recovered dataset from few measurements using the algorithms.
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Fig. 5. Performance of Algorithms for EEG Reconstruction using 150 random mea-
surements

For analysis, nine electrodes over the parietal and occipital areas (Pz, PO5,
POz, PO4, PO6, O1, Oz and O2) were used. Number of harmonics for reference
reconstruction was kept 3.

From Fig. 6, it is clear that cLSVB has outperformed in the experiment.
Therefore, it can be seen that for CCA, around 40% (which corresponds to
CR = 60) of the randomly sampled points were sufficient to correctly detect
almost 90% (peak) of the letters for cLSVB based recovered EEG signals. For
the sake of brevity, we present the result for Subject 2 but similar results were
obtained for all the subjects. For more details of this work, please refer [12].
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Subject 2: Original EEG vs Compressively Sensed EEG (Block Size 25, CR=60) for SSVEP Recognition
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Fig. 6. Classification Rate for Subject 2 using Canonical Correlation Analysis (CCA)
of all Algorithms when CR= 60

4 Conclusion

Sparse Variational Bayesian framework offers an alternate to handle block sparse
recovery problem. In this paper, we analyzed one of the crucial parameters αi

which ultimately controls the structure of block sparse signals. We also discussed
application of the framework in EEG signal processing context. To encourage
reproducible research, the codes for [3] can be found at https://github.com/
shruti51/cSVB.
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