
Extending IPOL to New Data Types
and Machine-Learning Applications

Miguel Colom(B)

Centre de mathématiques et de leurs applications, CNRS, ENS Paris-Saclay,
Université Paris-Saclay, 94235 Cachan cedex, France

colom@cmla.ens-cachan.fr

Abstract. Image Processing On Line (IPOL) is a journal focused on
mathematical descriptions of image processing (IP)/computer vision
(CV) algorithms. Since the first article was published in 2010, it has
started to become clear that the IP/CV discipline is mainly multi-
disciplinary. For example, nowadays images are de-noised using convolu-
tional neural networks (CNN), and fields such as neurophysiology need
of the rudiments and techniques of IP/CV, general signal processing
and artificial intelligence. IPOL wants to extend the capabilities of its
demo system to cope with these needs. Specifically, in this article we
review the state of the current demo system and its limitations. It enun-
ciates a detailed project on how to build a more adapted system, and its
minimal requirements: new data types, problematic heterogeneous data,
the pre-processing and standardization, the possibility to chain different
algorithms in a complex chain, and how to compare them.

1 Introduction

Image Processing on Line (IPOL) is a research journal founded in 2010 on Repro-
ducible Research in the field of Signal Processing (mainly Image Processing, but
also video, 3D pointclouds/meshes, and audio), giving a special emphasis on the
role of mathematics in the design of the algorithms [1].

As pointed by Donoho et al. [2], there is a crisis of scientific credibility since
in many published papers it is not possible for the readers to reproduce exactly
the same results given by the authors. The causes are many, including incom-
plete descriptions in the manuscripts, not releasing the source code, or that the
published algorithm does not correspond to what actually is implemented. Each
IPOL article has an online demo associated which allows users to run the algo-
rithms with their own data; the reviewers of the IPOL articles must carefully
check that both the description and the implementation match.

Since it started in 2010, the IPOL demo system has been continuously
improved and according to usage statistics collected along these years, it has
about 250 unique visitors per day. However, several problems of design and
potential improvement actions were identified and it was decided to build a
second version of the system based on microservices [3].

c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 3–24, 2019.
https://doi.org/10.1007/978-3-030-23987-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23987-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-23987-9_1


4 M. Colom

The full redesign of the demo system proposed in the project will not only
solve the problems enumerated before, but will allow also to expand IPOL to
much more complex data types and thus to new applications. In particular, we
are especially interested in multidimensional signals since they have applications
in physiological analysis (data from accelerometers, oculometry, EGC, EMG,
EEG), as well as mixtures of data types (for example, time-series signals along
with text).

Another important extension of IPOL will be to allow Machine Learning
applications. Specifically, to allow the algorithms to be able to explore the set of
experiments performed by the users as training data. A typical task which can
be learned is the choice of the best parameters to run the algorithm according
to the characteristics of the input data. For example, in the case of images the
values of the parameters needed to segment a hyperspectral image in general
depend on the number of channels and other parameters on the image which
could be learned automatically by the system. In the case of Machine Learning
algorithms, the space of hyperparameters can vary from a few of them (up to
ten for the main Machine Learning algorithms) to millions in the case of deep
learning applications. The choice of the hyperparameters is an open question
under intensive research1 and the interest of a learning step to automatically
choose the best parameters is clear.

Machine Learning algorithms require important changes in the architecture
of the IPOL system to allow not only new data types, but also adding pre-
processing steps, optimal data storage to allow fast queries, management of
databases, and comparison of algorithms. The system will also require training
processes which run continuously and explore the contents of the archive of
experiments.

After the first four years of publications, the problems noted before were
detected [4] and the architecture of the system was redesigned by a group of
volunteers and part-time collaborators. We arrived at a working prototype of
a new demo system which is scalable, easy to debug, and which implements
the automatic generation of demos, thus alleviating the work load of the editor
and thus allowing for fast demo publishing. Section 2 discusses the design of
this preliminary system. Section 3 presents the plan to extend IPOL to a wide-
purpose platform which allows to run algorithms with much more complex data
types and multiple application fields (medical, research, industrial).

Section 4 discusses the business model of this new platform, and presents a
plan to recover the investment and make the project auto-sustainable, with an
estimation of the costs. Finally Sect. 5 concludes this article.

2 The Current (New) System

In 2014 we identified [4] several technical problems related to the architecture
of the demo system, including the lack of modularity, tightly-coupled interfaces,

1 See for example Cedric Malherbe’s PhD dissertation: http://www.theses.fr/s144139.

http://www.theses.fr/s144139


Extending IPOL to New Data Types and Machine-Learning Applications 5

difficulties to share the computational load along different machines, or compli-
cated debugging of the system in case of malfunction. We found also editorial
problems, such as the slow and rigid procedure that the editors needed to follow
to create or modify demos.

After a careful analysis of the system and with the knowledge accumulated
in those first years, we decided that the best option was to move to a more
flexible architecture oriented to (micro)services (Sect. 2.1). We understood that
the slow process to create and edit demos was a bottleneck in the first version of
the demo system and thus we decided to create an abstract specification for the
demos (the Demo Description Lines, or DDL) to allow automatic and fast demo
generation (Sect. 2.2). And since we needed to have a tool which could be used
by non-technical editors, we created a graphical web interface to create and edit
demos, as well as the associated data, the Control Panel (Sect. 2.3).

After the improvements in the system, we have now:

– A function architecture of microservices, with 7 modules
– Fast demo creation. The new system accounts at this moment for 39 published

demos, 6 pre-prints, and 72 workshops. The fact that there is a large number
of workshops compared to the publications confirms that now it is easy and
fast for our editors to create new demos

– Video demos
– Audio demos
– Interactive controls almost finished. They will be ready in a few weeks.
– The possibility to add custom Javascript code to the demos for editors with

special requirements, without complexifying the demo system itself
– A system easier to debug when a bug is detected. Now it is really easy to track

down bugs, since every module has its own logging system and automatic
alerts. At this moment there are no known bugs in the system, and if they
appeared they would be detect, the engineers warned, and fixed immediately.

Adding completely new features such as support for machine learning appli-
cations with a training step will require intense engineering efforts and more
engineers in the team to build it in a reasonable time.

2.1 The IPOL Demo System Architecture

The architecture of the new IPOL demo system is an Service-Oriented Architec-
ture (SOA) based on microservices2. This change was motivated by the problems
found in the previous version of the demo system. First, it was designed as a
monolithic program3 which made it quite easy to deploy in the servers and
to run it locally, but at the cost of many disadvantages. Given that it was a
monolithic system, it was difficult to split it into different machines to share the
computational load of the algorithms being executed. A simple solution would
be to create specialized units to run the algorithms and to call them from the
2 We use Python 3 but in fact the microservices may be written in any language.
3 Of course, with a good separation of functionality among different classes.



6 M. Colom

monolithic code, but this clearly evokes the first step to move to a microservices
architecture. Indeed, this first step of breaking the monolith [3] can be iterated
until all the functions of the system have been delegated in different modules.
In the case of IPOL, we created specialized modules and removed the code from
the monolith until the very monolith became a module itself: Core. This Core
module is in charge of all the system and delegates the operations to other
modules. Figure 1 summarizes the IPOL modules and other components in the
architecture of the system.

Fig. 1. Modular architecture of the current IPOL demo system.

Other problems we had in the previous version of the demo system got solved
when we moved to the microservices architecture. Since there is a loose cou-
pling between Core and the other modules (in the sense that they are inde-
pendent programs which communicate via an HTTP API), different members
of the development team can work at the same time without worrying about
the implementation details or data structures used in other parts of the sys-
tem. Also, tracking down malfunctions is easier: since Core centralizes all the
operations, when a bug shows it can only be generated either at Core or at the
involved module, but not at any other part of the system. In the old system a
bug could be caused by complex conditions which depend on the global state of
the program, making debugging a complex task. And as noted before, the fact
that the architecture of the system is distributed and modular by design makes
it very natural and simple to have mechanisms to share the computational load
among several machines.

Hiding the internal implementation details behind the interfaces of the mod-
ules is an essential part of the system, and it is needed to provide loose coupling
between its components. The internal architecture of the system is of course
hidden from the users when they interact with the system, but it is also hidden
from the inside. This means that any module (Core included) does not need to
know the location of the modules. Instead, all of them use a published API.



Extending IPOL to New Data Types and Machine-Learning Applications 7

Once the API is defined, the routing to the modules is implemented by a
reverse proxy4. It receives the requests from the clients according to this pattern:
/api/<module>/<service> and redirects them to the corresponding module.
Figure 2 shows how the API messages received by the proxy are routed to the
corresponding modules, thus hiding the internal architecture of the system.

Fig. 2. The reverse proxy routes the API messages to the corresponding modules.

Modules: The IPOL demo system is made of several standalone units used by
the Core module to delegate specialized and well isolated functions. This section
describes briefly these microservices modules.

Blobs (Binary Large OBjects): each demo of IPOL offers the user a set of
default blobs which can be tagged and linked to different demos. Thus, the users
are not forced to supply their own files for the execution of the algorithms. The
term blob in IPOL refers to any file that can be used as an input, regardless
its type. In an image-processing demo they would be images, but they can be
also videos, or even text files representing physiological signals, for instance. The
system does not need to know their particular type since the execution flow is
always the same (load inputs, eventually convert them, run the algorithm, store
the results in the archive, and show results). Only when needed (for example,
when the Conversion module needs to perform some kind of transformation in
the data) the corresponding module will request its actual type. This module
introduces the concept of templates, which are sets of blobs which can be asso-
ciated to a particular demo. For example, this allows all the demos of a specific
type (e.g., de-noising) to share the same images as default input data. Instead of
editing each demo one by one, the editors can simply edit their template to make
changes in all the demos, and then particular changes to each specific demo.

Archive: the Archive module stores all the experiments performed by the
IPOL with their original data. The database stores the experiments and blobs,
which are related with a junction table with a many-to-many relationship. It is
worth noting that the system does not store duplicates of the same blob, but
detects them from their SHA1 hash.

This module offers several services, such as adding (or deleting) an exper-
iment or deleting all the set of experiments related to a particular demo. The
4 We use Nginx as the reverse proxy.



8 M. Colom

archive also has services to show particular experiments or several pages with
all the experiments stored since the first use of the archive.

Core: this module is the centralized controller of the whole IPOL system. It
delegates most of the tasks to the other modules, such as the execution of the
demos, archiving experiments, or retrieving metadata, among others.

When an execution is requested, it obtains first the textual description of the
corresponding demo by using the DDL from DemoInfo and it copies the blobs
chosen by the users as the algorithm’s input. Then, it asks for the workload of the
different DemoRunners and gives this information to Dispatcher in order to pick
the best DemoRunner according to the Dispatcher’s selection policy. Core asks
the chosen DemoRunner to first ensure that the source codes are well compiled
in the machine and then to run the algorithm with the parameters and inputs
set by the user. Core waits until the execution has finished or a timeout happens.
Finally, it delegates to Archive to store the results of the experiment. In case of
any failures, Core terminates the execution and stores the errors in its log file.
Eventually, it will send warning emails to the technical staff of IPOL (internal
error) or to the IPOL editors of the article (compilation or execution failure).

Dispatcher: in order to distribute the computational load along different
machines, this module is responsible of assigning a concrete DemoRunner accord-
ing to a configurable policy. The policy takes into account the requirements of a
demo and the workload of all DemoRunners and returns the one which fits best.
The DemoRunners and their workloads are provided by Core. Figure 3 shows
the communication between Core, Dispatcher, and the DemoRunner modules.

Fig. 3. Communication between Core, Dispatcher, and the DemoRunner modules.

Currently Dispatcher implements three policies:

– random: it assigns a random DemoRunner
– sequential: it iterates sequentially the list of DemoRunners;
– lowest workload: it chooses the DemoRunner with the lowest workload.



Extending IPOL to New Data Types and Machine-Learning Applications 9

The choice of the actual policy is a configuration option in the module. It can
be changed by the system operators at any moment, but the module can not
change the policy depending on the execution needs of the system so far.

Any policy selects only those DemoRunners that satisfy the requirements
(for example, having MATLAB installed, or a particular version of openCV).

DemoInfo: the DemoInfo module stores the metadata of the demos. For
example, the title, abstract, ID, or its authors, among others. It also stores the
abstract textual description of the demo (DDL). All this information can be
required by Core when executing a demo or by the Control Panel when the
demo is edited with its website interface.

It is possible that the demo requires non-reviewed support code to show
results. In this case, the demo can use custom scripts to create result plots. Note
that this only refers to scripts and data which is not peer-reviewed. In case they
are important to reproduce the results or figures in the article, they need to be
in the peer-reviewed source code package.

DemoRunner: this module controls the execution of the IPOL demos. The
DemoRunner module is responsible of informing Core about the load of the
machine where it is running, of ensuring that the demo execution is done with the
last source codes provided by the authors (it downloads and compiles these codes
to maintain them updated), and of executing the algorithm with the parameters
set by the users. It takes care of stopping the demo execution if a timeout is
reached, and to inform Core about the causes of a demo execution failure so
Core can take the best action in response. In order to distribute and share
the computational load of the whole system, several demoRunner instances can
be deployed on different machines. Each of the instances can declare different
capabilities, as for example being able to run MATLAB code, of the presence of
a GPU.

2.2 Automatic Demo Generation

In the previous version of the IPOL demo system the demo editors had to write
Python code to create a new demo. Specifically, to override some methods in a
base demo class in order to configure its input parameters, to call the program
implementing the algorithm, and also to design Mako HTML templates for the
results page.

This approach does not really solve anything, and it simply passes the prob-
lem (the inability of the system to generate demos from a simple textual descrip-
tion) to the hands of the demo editors, that are forced to write code and HTML
templates. Of course, these are the kind of tasks that can be automated and
should not be made by human editors.

When Python code was written by the demo editors, it was prone to bugs
which are specific to each demo. Moreover, fixing a bug in a particular demo does
not guarantee that the same solution as-is could be applied to other demos with
the same problem. Indeed, different demo editors might have written different
codes in each demo to solve the same problem.



10 M. Colom

In fact, it is evident that this design can be simplified and the tasks auto-
mated. Indeed, to completely define a demo all one needs is:

1. The title of the demo;
2. the URL where the system should download the source code of the demo;
3. the compilation instructions;
4. the type interaction of the user with the demo (for example, drawing segments

over the image, or annotating an input signal, or simply picking one image);
5. the input parameters along with their type and default values;
6. a description of what needs to be shown as results.

This information is not tied to any particular language or visualization tech-
nique, but it can be a simple abstract textual description. In IPOL we called
this abstract textual description the Demo Description Lines (DDL). The IPOL
editors only need to write such a description and the system takes care of making
available the demo according to it. This not only avoids any coding problems
(since there is nothing to code, but writing the corresponding DDL), but also
allows IPOL to have non-expert demo editors, and makes it possible to edit and
publish demos quickly. As an example, Fig. 4 shows the graphical tool used to
edit the DDL of a demo within the Control Panel tool.

Fig. 4. Graphical tool to edit the DDL of a demo in the Control Panel.

2.3 Editorial Management: The Control Panel

The Control Panel is a web application which offers a unified interface to con-
figure and manage the platform, intended for non-technical editors. It allows
to create/modify/delete the list of IPOL editors, the demos along their textual
descriptions, upload new testing dataset, and to customize the demos with extra
code for advanced users who need it. It allows also editors to remove specific
experiments upon request (for example, in the case of copyright images) or if



Extending IPOL to New Data Types and Machine-Learning Applications 11

Fig. 5. List of demos as shown in the Control Panel.

inappropriate content is found. Figure 5 shows a screenshot of the Control Panel
application as shown in the browser.

Even if it is an internal tool for the journal management, it has been designed
with these main objectives:

– To allow fast and easy demo creation and edition, to avoid that the generation
of demos becomes a bottleneck. The DDL description was created in the new
system to this purpose (see Sect. 2.2).

– To incorporate as many editors as possible to the journal. To achieve this
objective the Control Panel needs to be a tool intended for editors without
no special technical background. All the technical system administration tools
are outside the Control Panel.

– To hide the complexity of the distributed system to the editor. Indeed, IPOL
is a complex system running in several machines, but from the point of view
of the editors and the demo users they simply interact with a web page front-
end.

3 Plan to Extend to a Wide-Purpose Platform

IPOL has been evolving since it was funded in 2010, from a very simple demo
system which required the editors to write actual Python code and design HTML
templates, to a system of a distributed system started in 2015 with load bal-
ancing along several machines and automatic demo generation from an abstract
description syntax.

The next step is first to move to new data types (audio, video, 3D) and finally
to allow different applications, including Machine Learning. Adapting the system
to a wide-purpose platform will require some changes in the architecture of the
system (new modules) and better data organization (Archive, mainly) but still
the current modular architecture of the system will be able to support it. In any



12 M. Colom

case, moving to new application fields and at the same time keeping a generalist
platform will require strong engineering efforts and a stable team with permanent
positions. This is not the case at this moment, and we need to work on this point
to be able to extend IPOL with advanced features reliably.

The following sections present and discuss the steps needed to build the next
evolution of the IPOL system.

3.1 Extended Architecture: Support for Applications

There is a fundamental difference between the current IPOL demo system and
the complete platform offering Software as a Service (SaaS) applications and
learning capabilities: their execution time. The complete platform differs from a
demo system in the fact that it allows applications whose lifetime5 is largely over
the short period of execution of a demo. In the case of a demo the input data
is loaded, the algorithm executed, the results shown, and the demo has totally
finished. In the case of algorithms which can learn from the archive, they need
to be running indefinitely. Once they are run, they can receive events indicating
the there is new data in the archive, or to explore it regularly.

We shall call these new processes with a large lifetime Applications. The
system will have two different kinds of processes:

– Demos
– Applications

Nevertheless, the architecture of the new system needs not be redesigned in
order to have these new functionalities, but new modules need to be added and
they will share information within the system.

The first module which needs to be added is the equivalent to Core which
delegates the demo operations along different specialized modules, but for the
Applications. We will call this new module AppCore and rename the existing
one to DemoCore.

The DemoCore will delegate some specialized functions in already existing
modules, for example in Conversion or Blobs since they still be needed in the
context of the applications. But new modules will be exclusive to AppCore, such
as:

– Databases : storage and management of training and testing datasets
– UserAccess: lists of users and authorization management

The same way DemoCore offers an API of microservices that the web applica-
tion uses to render demos in the client’s browser, AppCore will offer microservices
to be used by external applications. We can think for example of a MATLAB
application or a Jupyter notebook which uses the AppCore’s services to log in
and then visualize classification results obtained using the corresponding learn-
ing databases. Figure 6 shows the architecture of the complete platform.
5 Here we refer to the “wall clock time” of the process, not their CPU usage time. The

application is expected to have a large lifetime when most of the time the process
in idle, whereas in the case of a demo the process is CPU intensive.



Extending IPOL to New Data Types and Machine-Learning Applications 13

Fig. 6. The complete modular architecture of the future IPOL platform.

Note that the platform is not tied to a particular visualization tool (say, a
website) or to any specific framework (MATLAB, R, or the Android system, for
example) but instead it offers generic webservices that can be used with them.
This way the platform remains generic but at the same time it can be customized
with the frameworks preferred by its users.

3.2 Extension to New Data Types

The new architecture of the IPOL demo system (Sect. 2) already allows to work
with arbitrary data types. By design, we chose to refer to the data generically
as blobs, instead of being attached to a particular data type such as images and
others. The system manages the data in terms of blobs, and only a particular
module (“Conversion”) (see Fig. 1) needs to know about the actual details of the
type to make conversions. This means that when adding a new data type only
Conversion needs to be modified whereas the rest of the system modules remain
the same.

The execution flow given an input blob is the following:

1. The blob arrives to Core module. The origin can be either one of the input
blobs offered by the demo or a new blob uploaded by the user.

2. Core examines the DDL to check if the demo authorizes data conversion and
also it that conversion is actually needed. For example: reduce an image to
the maximum allowed size and convert from JPEG to PNG.

3. In case the modification is authorized and needed, Core delegates the conver-
sion of the blob to Conversion.

4. The Conversion module converts the blob to meet the requirements written
at the DDL. Only in the context of Conversion the actual data type is taken
into account. Outside it is only a generic blob.

5. Core goes on with the execution of the algorithm. With the original blob or
with the converted.



14 M. Colom

The kind of conversions needed depend on the data type. For images, audio,
video, and 3D they are basically two: resampling (or decimation) and format
conversion. Other data types might need different and specific transformations.

While the conversion of the data itself is supported by the current system,
depending on the application it might not be enough. Indeed, two more steps
are needed:

– Data standardization
– Pre-processing

Given that the aim of the platform is to support multiple applications and
data types, the input data is likely to be in different file formats and in different
ranges. We can think for example in the data of two different accelerometer
sensors: one of them could give values of the three spatial axes in m/s units,
while the other might give only two of the three axes in cm/s. Before attempting
the process the data, the system needs to put the input data in a common format.

Even if the data has been standardized, it might require pre-processing. For
example, an algorithm might not work with missing (“NA” - Not Available)
values, while for others this could be acceptable. The system might decide to
pre-process the data in order to remove NA samples by interpolation, or simply
to remove them before passing the data to the algorithm for execution.

The solution is to add two new modules to the system:

– Standardizer : to structure the data in a format understood by the system and
the algorithms;

– Preprocessing : to perform pre-processing steps before execution according to
the needs of the algorithm.

Core would systematically pass the data to these two modules to check if
these steps are needed and to actually perform them in that case.

About the web interface, it needs to be expanded to support the visualiza-
tion of the new data types. At the moment of writing this text, the system has
full support for video processing and visualization and the interactive controls
(masks for inpainting demos, points for Poisson editing, segments for lens correc-
tion, etc.) are expected to be finished in a few weeks. Figure 7 shows the IPOL
demo of the published article Ball Pivoting Algorithm for which the system shows
the result with a 3D mesh renderer.

3.3 Comparison of Algorithms

A desired feature in the future platform is the comparison of algorithms. At this
moment every demo is an isolated unit which takes the input data, applies an
algorithm with the configured parameters, and finally shows the results. How-
ever, being able to measure the performance of the algorithms is of great interest
it this would allow to score them and to know which is the best parameter choice
according to the algorithm and the input data.



Extending IPOL to New Data Types and Machine-Learning Applications 15

Fig. 7. IPOL demo of the published article Ball Pivoting Algorithm showing the results
with a 3D mesh renderer.

In order to compare the algorithms a metric of quality must be available. This
metric can depend solely in the results (for example, exploiting structural simi-
larity in the case of images [5]) or a metric with respect to a given ground-truth.

The inputs and outputs of the algorithm might vary largely and therefore we
need to define common data formats in the platform. Clearly, to compare two
algorithms their outputs need to be encoded with compatible formats to allow
automatic comparisons.

The role of Preprocessing Standardizer presented in Sect. 3.2 becomes clear
here. Indeed, the comparison of algorithms feature relies on this two modules
since the platform needs to:

– Define formats to homogenize the outputs of diverse algorithms. The Stan-
dardizer module will be the responsible for this task, delegated from the
DemoCore or AppDemo controller modules.

– In the case of missing data or if pre-processing is needed, then Preprocessing
will be invoked too.

Sometimes it will be needed to express the same data in different forms. For
example, some metrics would need a temporal series while others could work
only with their spectra. The role of Standardizer is to put the data in a flexible
format when it is entered into the platform for the first time, not to perform data
format conversions during execution (which is a different task and performed by
Conversion, see Fig. 6).

The platform needs to provide large datasets to test the algorithms with and
also several metrics to perform the comparisons. In the most favorable scenario,



16 M. Colom

these datasets are previously annotated by experts and serve as a ground-truth
to evaluate the algorithms. The module responsible for storing the testing and
learning databases is the Databases module (Sect. 3.5).

3.4 Chaining of Algorithms

The chaining of algorithms consists in using the output of one algorithm as the
input for another. For example, a de-noising algorithm could be applied to an
input image before attempting object recognition. Another example may be an
algorithm to interpolate missing samples in the data acquired from an accelerom-
eter could be run in a first step before trying to determine the trajectory followed
by the sensor. In the case of satellite images, we could think of a chain which first
de-noises pairs of images with one algorithm, then rectifies them with a second
algorithm, and finally performs a 3D reconstruction with yet another different
algorithm.

This problem is utterly related to the comparison of algorithms sketched in
Sect. 3.3, since the key to be able to connect one algorithm with a different one is
that both have a common format for their input and outputs. The platform needs
to define general formats for each possible input and output for the algorithm.

Some general data types that should be defined within the platform according
to the current editorial needs:

– Temporal series of k dimensions, allowing missing values.
– Sets of points in a 3D point cloud. In general, sets of hyperpoints with an

arbitrary number of points.
– Sets of edges and vertices to define 3D meshes. In general, edges and vertices

defined in a hyperspace.
– Images and Video. In general, k-dimensional hypercubes of data.

Other generic formats might be defined according to the evolution of the platform
and the needs of the users.

We propose to create input/output wrappers in the algorithms to adapt the
data to the formats of the platform, to avoid forcing the implemented algo-
rithm to follow specific formats. This way the platform would allow most of the
algorithms available without the need of adapting them.

In the future system a final result might not come only from the execution
of a single algorithm, but built from the concatenation of many.

3.5 Machine Learning Applications

Machine Learning algorithms have an extra step which makes them different
to most of the Signal Processing algorithms: a first training step. Indeed, they
normally proceed in three different phases:

1. A training (or learning) step with some examples and one or more metrics
to evaluate the performance of the algorithm. For example, a neural network



Extending IPOL to New Data Types and Machine-Learning Applications 17

classifier intended for face recognition needs to be trained with many samples
previously labeled as faces and non-faces. Typically the learning step is slow,
requires many samples, and can be improved by adding more samples to the
learning database.

2. A validation step, to ensure that the training is not biased.
3. Prediction. Once the algorithm has already learned according to the training

samples (say, a neural network with well-adjusted weights or a SVM6 classifier
with the right hyperplane) it can proceed to predict the result given a sample
that the algorithm has not seen before.

On the other hand, the assessment phase needs:

1. A metric (i.e. a formula), which typically is different from the metric used
during training.

2. A test set, different from the training set.

The two-step process described above might not be directly applicable when
the training of the neural network needs a complex customized training and
therefore can not be reduced to uploading learning data and applying standard
stochastic optimization. Also, depending on the application the learning step
could consist on several phases.

For those complex cases we expect the learning to be performed offline and
to work with two types of data:

– The learning set that must be kept for records and
– the generated neural network.

The researcher should upload a script (as demoExtras, see Sect. 3.6) governing
the learning, in addition to data and to the back-propagation codes. In order
to make it reproducible it would be needed that all the details on the training
process are documented, including any random seeds, the hyperparameters, the
initialization of the weights when learning (for example, Xavier’s initialization),
number of mini-batches, and in general any other learning parameters which are
relevant to reproduce the same results.

The typical demos in the current IPOL system are not well adapted to this
new schema since their cycle is simple to read the input data, apply some algo-
rithm with the given parameters, and finally show the results. It is possible
however to give some pre-learned databases, but the new platform will be able
to update its own training datasets according to the input data from authorized
users.

Let us present a typical case of use of the platform. In order to make it more
understandable, we will explain it in a concrete application such as healthcare.

The platform will be used by persons with different roles, such as clinicians,
technicians, and researchers from different fields (for example, physiologists, sig-
nal processing researchers, statisticians, expert systems researchers, etc). Their
diverse interests converge at the platform. Doctors are mostly interested in

6 Support Vector Machine.



18 M. Colom

obtaining relevant information after they have introduced data of a particular
patient (for example, the possibility of discovering a neurological problem from
the analysis of saccadic signatures in ocular movements [6]), as well as tracking
the evolution of a patient over time.

One of the objectives of the platform is to obtain substantial results by
applying Machine Learning algorithms. In this example our aim would be helping
clinicians extract relevant medical information from large and multidimensional
datasets.

Doctors will decide if the data of their patients (after mandatory anonymiza-
tion [7]) can be incorporated to the databases of the platform, or not. For exam-
ple, if the clinician has labeled data it can be used as a ground-truth for many
algorithms of the platform and thus over colleagues benefit from it. Or they can
decide not to share but still use it as a tool with their own data.

Not all users will be authorized to upload training data (or at least, it needs
to be peer-reviewed first), since the performance of the platform relies on the
quality of its learning base and thus it needs to be carefully controlled. Thus,
depending on the role of the users there will be several combinations of rights
and authorization levels: possibility of uploading training data, possibility of
executing the algorithms on uploaded test data, possibility to label an already
existent dataset, possibility of creating groups of users with common right for
certain datasets, etc. Instead of fixing the set of possibilities it is better to leave
them open as configurable options and to set up rights for users or groups of
users depending on their roles. As advanced in Sect. 3.1, the platform will use
a new Databases module to store and manage the permissions for the training
and test datasets.

In order to take advantage of both the practitioners’ extended knowledge and
the presence of numerous healthcare datasets, the platform could also include a
crowdsourcing aspect (see e.g. [8]). Using trained classification or scoring algo-
rithms, unlabelled data with the largest amount of uncertainty could be pre-
sented to the platform medical user for additional input – thus both improving
the quality of the dataset, the performance of the algorithm, and presenting
practitioner with interesting usecases.

In the case of executing an algorithm with a test dataset (say, to perform
prediction), the execution will be similar to a typical IPOL demo. It can be
sketched as follows:

1. The users upload or choose one of their datasets;
2. they chain several algorithms and configure their parameters;
3. the algorithm is run. The user can wait until it finishes, or it can be stored

and recovered later;
4. the results are shown;
5. the results are archived for further analysis.

This is a complex interaction, perhaps for the most advanced users. However,
most users (say, medical doctors) would just upload their data and wait for their
automatic results. However, the system needs of course to be designed such a
way that it copes with both the complex and common cases.



Extending IPOL to New Data Types and Machine-Learning Applications 19

Technically, the request arrives to Core, which delegates the selection of the
most available DemoRunner for the execution, DemoRunner will perform the
execution, and then Core will retrieve the results. Finally, Core will send a
command to Archive to store all relevant information on the experiment. See
Fig. 3.

While the current system could support easily Machine Learning learning
algorithm to perform testing (say, classification or prediction), it needs to be
extended to reach the new architecture depicted in Fig. 6). Indeed, as explained
in Sect. 3.1, the execution cycle of a simple demo does not allow to have a long
learning phase.

This operative does not adapt well to the needed learning phase and thus a
new entity (the applications). The applications are processes which are started
by AppCore and instead of finishing after a fixed period has elapsed, they simply
enter in a sleep mode. They can be woken up by AppCore for several reasons, as
for example when new data arrives to Archive, or they can wake up by themselves
at regular intervals to perform learning on the data available in the platform.

To better understand the concept of the applications, let us think of an
algorithm to detect faces in pictures using an SVM. The users will upload their
own pictures to the demo to check if the system is able to detect or not the
faces that might be present in the image. The users will provide feedback about
if the system managed to detect a face in the right position (positive), or if it
detected a face in a place where it was not any (false positive), or if it missed
an actual face (false negative). To do it, the demo could use an SVM classifier
whose hyperplane is shaped according to a learning step. Thus, the published
algorithm will implement two tasks: testing (used by the demo), and training
(performed by the application). We can imagine the algorithm’s package as a
ZIP file with two folders with independent codes, one for testing and the other
for training.

Once the algorithm has been installed in the system, AppCore will start the
corresponding application which uses the training code. It will wake up regularly
the application with an event indicating that it has new feedback, and then the
application will run the training code to update the SVM hyperplane. This will
improve the performance of the demo. Once the training with the new data
has finished the application will enter in a sleep mode until it is woken up by
AppCore again.

Note that when we write the AppRunner or the DemoRunner modules, actu-
ally we refer to an instance of many of them. Indeed, while the other modules
are unique in the system, the runners are many distributed processes. Each time
Core needs to execute a process (say, a demo or a learning phase), it uses Dis-
patcher module to pick a particular runner and send the execution. For example,
in the current system we have three distributed demoRunners available. One is
physically installed at CMLA laboratory, and the other two are in the installa-
tions of an external provider. This is easily configured with simple configuration
files.



20 M. Colom

In the case of the applications they will be also distributed along several
servers. The AppCore will ask Dispatcher for an AppRunner, then AppCore
will wake the runner up and ask to update its learning database when needed.
Note that AppCore has the possibility of running several instances of the same
learning process along different runners if necessary. For example, it can split
the input data into several batches and make different runners process each of
the parts at the same time.

Apart of adding these new AppCore and AppRunner modules to the archi-
tecture of the system, the existing Archive module will be improved to allow
queries and receive structured information quickly. For example, we can think
in a demo that runs a classification algorithm in images (let’s say, it tells which
is the animal in the image). If the demo configures Archive to store extra infor-
mation about the inputs (say, level of JPEG compression, the mean intensity of
the image, . . . ), it would be possible to extract meaningful information after-
wards. For example, it how relevant is the compression level of the image when
performing classification, or how images with very low contrast or saturated
impact the performance. This could be done with a query language very similar
to SQL.

Improving Archive will allow not only Machine Learning applications, but
also for more complex Signal Processing algorithms in the demo system.

Finally, already existing Control Panel (Sect. 3.6) will be extended to allow
the system operators to manage7 the installed applications.

3.6 System Management with a Unified Tool

A tool to allow non-technical administrators to manage the platform is needed.
Such a tool is known as the Control Panel in the current system (see Sect. 2.3).

The Control Panel allows the IPOL editors to create new demos and modify
any existing demos. This tool is a web application where the editors have access
after typing their username and password and one of the design requirements is
that it should be used by editors without any technical background. It allows
however to add extra code to the demos (known as demoExtras) in order that
advanced editors can customize them but nevertheless most of the demos are
defined from a simple textual description (see Sect. 2.2).

In order to allow the complete system with the extensions presented, the
Control Panel also needs to be completed. Specifically, it needs new sections to:

– Install, configure, and remove Applications, in a similar way to what does
already for the demos.

– Create, edit, and remove users.
– Add, remove, and configure the access right of the learning and testing

databases for each user or group of users according to their roles in the plat-
form.

7 Add, remove, start, stop, and configure user database rights.



Extending IPOL to New Data Types and Machine-Learning Applications 21

The existence of a unified tool such as the Control Panel8 and the use of an
API (see Sect. 2.1) to interact with the system hides not only the implementation
details but also the fact that the system is distributed along different machines.
Indeed, the editors manage the system with a simple tool which hides all its
complexity and lets them configure it quickly and easily.

4 Business Model: The IPOL Case

This section discusses briefly about the business model that RR platforms could
adopt, focusing on the experience that the authors have as editors of the IPOL
journal.

The scientific interest of IPOL a platform for reproducible research is clear
after look at the number of visitors (about 250 unique visits per day) and the
number of citations of the published papers (see Fig. 8, total citations: 3497,
h-index: 29, i10-index: 61). It has also proved its utility as a tool to prove the
competence of the research group and to obtain research contracts (DxO, CNES,
ONR, and others).

Fig. 8. IPOL citations from 2012 to 2019. Source: Google Scholar. Total citations:
3497, h-index: 29, i10-index: 61.

A very pertinent question is how to obtain a business return which ensures
the sustainability of the project for the long term, out of the support of the
public agencies (CNRS, ERC, and others).

A possible move would be to move to the Software as a Service (SaaS) model
and to receive incomes from:

– The use of already learned databases. This model is already used by large big-
data companies such as Google, for example with their TensorFlow product9.

8 Nowadays, even configuration tools like this are regarded as part of an experimen-
tal system, and techniques like A/B testing are used to improve the performance
(usability) of the tool.

9 https://cloud.google.com/products/machine-learning/.

https://cloud.google.com/products/machine-learning/


22 M. Colom

– The use of computational services. This modality is implemented by similar
platforms such as Code Ocean10 and others.

– Consulting services. The start-up created to build the final platform will
collaborate closely with the scientific staff at CMLA (professors, associate
researchers, postdocs, and PhD candidates) and eventually incorporate them
into the company. This way the company will not only offer the services of
the platform, but also scientific consulting and advice.

– Expanding to areas other than Image Processing and Computer Vision.
Indeed, in IPOL we are exploring the possibility to accept articles on more
general signal processing, including physiological signals.

Other ways of receiving incomes such as crowdfunding or donations might
help too. For example, the Jupyter project is funded mainly by donations11 and
GV12 (Google Ventures) has invested in projects of companies such as Uber,
Light, Slack, Periscope, and many others.

Some companies have already expressed their interest on our future platform.
Other companies13 use or have used IPOL for research purposes, with reference
source codes and detailed algorithmic descriptions.

4.1 Resources Needed

IPOL began as part of the PhD project of a single person [1], and since then it
has been continuously improved. First by the generous contributions of several
collaborators, and finally with a group of interns and software engineers working
part time or hired for short periods to build the new version of the demo system.

At this point, the project needs highly qualified engineers. It is no longer a
small project but a complex system with requires a professional and dedicated
team with stable positions. One of the problems at this moment is that it takes
months to train a new engineer in the details of the project and most of the
time they leave when they start to be really productive. The reason why the
engineers leave the project even if they would like to go on is precisely the
lack of stability and perspectives, since the public organizations are not able to
create stable positions. When the engineers leave the project the group loses all
the accumulated knowledge and again we need to train new members.

Only one person in the team has a permanent position, and even though the
dedication to the project is part time.

It is important to create stable positions for the project and also to obtain
funding to go on with the engineering tasks. A minimum requirement is to obtain
at least one permanent position for the technical director and to have funding for
a team of one director and three software engineers during two years. The current
system is distributed along three servers rented from an external provided, with
a cost of 400 euros/month. We estimate that the final platform will need about
10 https://codeocean.com/pricing.
11 http://jupyter.org/donate.html.
12 https://www.gv.com/portfolio/.
13 We could cite DxO, Thales, or Technicolor, among others.

https://codeocean.com/pricing
http://jupyter.org/donate.html
https://www.gv.com/portfolio/


Extending IPOL to New Data Types and Machine-Learning Applications 23

8 servers with a cost of 400 × 8 = 3200 euros/month. The number of servers is
flexible and can be adapted to the computational needs of the platforms at any
time.

5 Conclusions

The first version of the IPOL demo system has been working since the first
article was published in 2010, with a total of 152 articles, 3364 citations and
h- and i10-indexes of 29 and 61 respectively. While it is clear that the system
is functional, some problems were detected: the system was difficult to debug
to track down malfunctions, it suffered from tightly coupled interfaces, it was
complicated to distribute the computational load among different machines, and
the editors needed to write Python code to create and edit demos. These prob-
lems compromised the durability of the system at the same time they started to
create a bottleneck that prevented to create and edit demos quickly. These prob-
lems are already solved with the new version of the demo system, a distributed
architecture of microservices, presented in Sect. 2.

Of course, even if the system is already functional it still needs strong engi-
neering efforts before it is considered a finished product. The plan for the very
short term is to integrate new data types such as video, audio, and 3D. We are
quite confident on this task since the system is able to manage generic types
(even if we refer to images, for the system they are simply blobs) and it will
come down to a visualization problem in the website interface.

With more than one hundred published demos, more than seven years of
activity, about 250 unique visitors/day, thousands of experiments performed by
the users with their original data, IPOL has been proved to be a useful tool not
only for research but also as a value-added tool for the industry.

The existence of similar initiatives such as Jupyter, Code Ocean, RunMy-
Code, and openCV indicate a great interest of the scientific community and the
industry for this kind of platforms, for which IPOL is a clear precursor. These
other platforms do not need to be understood as a threat for IPOL, but instead
as an indication of the market trend. We refer the reader to [9] for a compari-
son and discussion on platforms that might be used to implement reproducible
research. Nevertheless, IPOL needs to go a step beyond and move from a demo
system to a wide-scope platform to build complete applications over it, following
the Software as a Service model. Machine learning algorithms, the use of learn-
ing databases, and the ability of the platform to improve these databases is a
unique business that is worth exploiting.

As explained in Sect. 4.1, while the technical competence is already met and
a working system has already been built, it is fundamental for the project to
have a stable team. We can afford some temporal contributors (say, interns and
engineers hired for specific tasks), but the fact that nobody in the team has
a permanent position (not even the technical director) puts the continuity the
whole project in obvious danger.



24 M. Colom

Without any doubt, this is an ambitious project but nevertheless realistic,
and the fact that it has been running for almost ten years already is the best
proof of feasibility.

Acknowledgments. I would like to thank Jean-Michel Morel, Nicolas Vayatis, Bertr-
and Kerautret, and Daniel Lopresti for their valuable comments that helped improve
this work.

References

1. Limare, N.: Reproducible Research, Software Quality, Online Interfaces and Pub-
lishing for Image Processing. Ph.D. thesis, École Normale Supérieure de Cachan
(2012)

2. Donoho, D.L., Maleki, A., Rahman, I.U., Shahram, M., Stodden, V.: Reproducible
research in computational harmonic analysis. Comput. Sci. Eng. 11, 8–18 (2009)

3. Neuman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Sebastopol (2015)

4. Colom, M., Kerautret, B., Limare, N., Monasse, P., Morel, J.M.: IPOL: a new
journal for fully reproducible research; analysis of four years development. In: 2015
7th International Conference on New Technologies, Mobility and Security (NTMS),
pp. 1–5. IEEE (2015)

5. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13,
600–612 (2004)

6. Purves, D., Augustine, G., Fitzpatrick, D.: Neural Control of Saccadic Eye Move-
ments. Sinauer Associates, Sunderland (2001)

7. Neubauer, T., Heurix, J.: A methodology for the pseudonymization of medical data.
Int. J. Med. Inform. 80, 190–204 (2011)

8. Foncubierta Rodŕıguez, A., Müller, H.: Ground truth generation in medical imaging:
a crowdsourcing-based iterative approach. In: Proceedings of the ACM Multimedia
2012 Workshop on Crowdsourcing for Multimedia, pp. 9–14. ACM (2012)

9. Colom, M., Kerautret, B.: An Overview of Platforms for Reproducible Research and
New Ways of Publications. Springer, New York (2018)


	Extending IPOL to New Data Types and Machine-Learning Applications
	1 Introduction
	2 The Current (New) System
	2.1 The IPOL Demo System Architecture
	2.2 Automatic Demo Generation
	2.3 Editorial Management: The Control Panel

	3 Plan to Extend to a Wide-Purpose Platform
	3.1 Extended Architecture: Support for Applications
	3.2 Extension to New Data Types
	3.3 Comparison of Algorithms
	3.4 Chaining of Algorithms
	3.5 Machine Learning Applications
	3.6 System Management with a Unified Tool

	4 Business Model: The IPOL Case
	4.1 Resources Needed

	5 Conclusions
	References




