
Bertrand Kerautret · Miguel Colom · 
Daniel Lopresti · Pascal Monasse · 
Hugues Talbot (Eds.)

LN
CS

 1
14

55

Second International Workshop, RRPR 2018
Beijing, China, August 20, 2018
Revised Selected Papers

Reproducible Research 
in Pattern Recognition



Lecture Notes in Computer Science 11455

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA



More information about this series at http://www.springer.com/series/7412

http://www.springer.com/series/7412


Bertrand Kerautret • Miguel Colom •

Daniel Lopresti • Pascal Monasse •

Hugues Talbot (Eds.)

Reproducible Research
in Pattern Recognition
Second International Workshop, RRPR 2018
Beijing, China, August 20, 2018
Revised Selected Papers

123



Editors
Bertrand Kerautret
LIRIS
Université de Lyon 2
Bron, France

Miguel Colom
CMLA, ENS Cachan, CNRS
Université Paris-Saclay
Cachan, France

Daniel Lopresti
Department of Computer Science
and Engineering
Lehigh University
Bethlehem, PA, USA

Pascal Monasse
Laboratoire d'Informatique Gaspard-Monge
Ecole des Ponts Paristech
Marne-la-Vallée, France

Hugues Talbot
CentraleSupelec
Universite Paris-Saclay
Gif-sur-Yvette, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23986-2 ISBN 978-3-030-23987-9 (eBook)
https://doi.org/10.1007/978-3-030-23987-9

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-23987-9


Preface

This volume contains the articles from the second edition of the Workshop on Repro-
ducible Research in Pattern Recognition that was held during August 20, 2018, in
conjunction with ICPR 2018 in Beijing. It followed in the same spirit as the first edition
with a special focus on digital geometry and mathematical morphology. It was intended
as both a short participative course on reproducible research (RR) aspects leading to
open discussions with the participants and also on how to actually perform RR. For this
second edition, a new call for short papers was proposed to the ICPR authors. The main
idea was to give authors of already accepted ICPR papers the possibility to highlight the
reproducibility of their work with a companion paper. It was an opportunity to include
implementation details, source code descriptions, parameter choice etc.

This proceedings volume gathers 14 contributions covering the RR result track
(three papers), invited RR contributions (five papers), and the new companion paper
tracks (six papers). The contributions were reviewed by an average of 2.35 reviewers
and the short papers were generally given two assessments: one for the short paper
itself and another from the RR label linked to the code repository (when authors apply
for the label). A comparable number of participants were present in this workshop with
around 25 participants. The public participated actively in the discussions with pre-
senters focusing on RR. The number of authors increased by over 45% for this second
edition with 41 different authors.

From all the contributions, two invited talks opened the workshop. The first was
related to the evolution and the future of the IPOL journal, including a new structure for
machine learning applications. The second invited talk focused on a review of repro-
ducible research platforms with an overview of the most recents means of publication.
The three main papers on RR results were oral presentations and four short papers were
oral fast-track presentations. In addition to these new classic presentations, a new type
of practical session was proposed by Miguel Colom with “Hands on IPOL Demon-
stration System” where users were able to construct their own online demonstration
from a simple description file.

As in the first edition, the RRPR workshop received the endorsement of the
International Association of Pattern Recognition (IAPR). We would like to thank this
association as well as all authors who contributed to these proceedings. We also thank
the Springer computer sciences team and in particular Alfred Hofman and Anna
Kramer, for allowing to us once again to publish the proceedings as an LNCS volume.
Finally, we also thank Jean-Michel Morel for supporting our initiative and Audrey
Bichet of the MMI department of Saint Dié-des-Vosges for designing a new poster for
this workshop.

March 2019 Bertrand Kerautret
Miguel Colom
Daniel Lopresti
Pascal Monasse
Hugues Talbot
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Extending IPOL to New Data Types
and Machine-Learning Applications

Miguel Colom(B)

Centre de mathématiques et de leurs applications, CNRS, ENS Paris-Saclay,
Université Paris-Saclay, 94235 Cachan cedex, France

colom@cmla.ens-cachan.fr

Abstract. Image Processing On Line (IPOL) is a journal focused on
mathematical descriptions of image processing (IP)/computer vision
(CV) algorithms. Since the first article was published in 2010, it has
started to become clear that the IP/CV discipline is mainly multi-
disciplinary. For example, nowadays images are de-noised using convolu-
tional neural networks (CNN), and fields such as neurophysiology need
of the rudiments and techniques of IP/CV, general signal processing
and artificial intelligence. IPOL wants to extend the capabilities of its
demo system to cope with these needs. Specifically, in this article we
review the state of the current demo system and its limitations. It enun-
ciates a detailed project on how to build a more adapted system, and its
minimal requirements: new data types, problematic heterogeneous data,
the pre-processing and standardization, the possibility to chain different
algorithms in a complex chain, and how to compare them.

1 Introduction

Image Processing on Line (IPOL) is a research journal founded in 2010 on Repro-
ducible Research in the field of Signal Processing (mainly Image Processing, but
also video, 3D pointclouds/meshes, and audio), giving a special emphasis on the
role of mathematics in the design of the algorithms [1].

As pointed by Donoho et al. [2], there is a crisis of scientific credibility since
in many published papers it is not possible for the readers to reproduce exactly
the same results given by the authors. The causes are many, including incom-
plete descriptions in the manuscripts, not releasing the source code, or that the
published algorithm does not correspond to what actually is implemented. Each
IPOL article has an online demo associated which allows users to run the algo-
rithms with their own data; the reviewers of the IPOL articles must carefully
check that both the description and the implementation match.

Since it started in 2010, the IPOL demo system has been continuously
improved and according to usage statistics collected along these years, it has
about 250 unique visitors per day. However, several problems of design and
potential improvement actions were identified and it was decided to build a
second version of the system based on microservices [3].

c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 3–24, 2019.
https://doi.org/10.1007/978-3-030-23987-9_1
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4 M. Colom

The full redesign of the demo system proposed in the project will not only
solve the problems enumerated before, but will allow also to expand IPOL to
much more complex data types and thus to new applications. In particular, we
are especially interested in multidimensional signals since they have applications
in physiological analysis (data from accelerometers, oculometry, EGC, EMG,
EEG), as well as mixtures of data types (for example, time-series signals along
with text).

Another important extension of IPOL will be to allow Machine Learning
applications. Specifically, to allow the algorithms to be able to explore the set of
experiments performed by the users as training data. A typical task which can
be learned is the choice of the best parameters to run the algorithm according
to the characteristics of the input data. For example, in the case of images the
values of the parameters needed to segment a hyperspectral image in general
depend on the number of channels and other parameters on the image which
could be learned automatically by the system. In the case of Machine Learning
algorithms, the space of hyperparameters can vary from a few of them (up to
ten for the main Machine Learning algorithms) to millions in the case of deep
learning applications. The choice of the hyperparameters is an open question
under intensive research1 and the interest of a learning step to automatically
choose the best parameters is clear.

Machine Learning algorithms require important changes in the architecture
of the IPOL system to allow not only new data types, but also adding pre-
processing steps, optimal data storage to allow fast queries, management of
databases, and comparison of algorithms. The system will also require training
processes which run continuously and explore the contents of the archive of
experiments.

After the first four years of publications, the problems noted before were
detected [4] and the architecture of the system was redesigned by a group of
volunteers and part-time collaborators. We arrived at a working prototype of
a new demo system which is scalable, easy to debug, and which implements
the automatic generation of demos, thus alleviating the work load of the editor
and thus allowing for fast demo publishing. Section 2 discusses the design of
this preliminary system. Section 3 presents the plan to extend IPOL to a wide-
purpose platform which allows to run algorithms with much more complex data
types and multiple application fields (medical, research, industrial).

Section 4 discusses the business model of this new platform, and presents a
plan to recover the investment and make the project auto-sustainable, with an
estimation of the costs. Finally Sect. 5 concludes this article.

2 The Current (New) System

In 2014 we identified [4] several technical problems related to the architecture
of the demo system, including the lack of modularity, tightly-coupled interfaces,

1 See for example Cedric Malherbe’s PhD dissertation: http://www.theses.fr/s144139.

http://www.theses.fr/s144139


Extending IPOL to New Data Types and Machine-Learning Applications 5

difficulties to share the computational load along different machines, or compli-
cated debugging of the system in case of malfunction. We found also editorial
problems, such as the slow and rigid procedure that the editors needed to follow
to create or modify demos.

After a careful analysis of the system and with the knowledge accumulated
in those first years, we decided that the best option was to move to a more
flexible architecture oriented to (micro)services (Sect. 2.1). We understood that
the slow process to create and edit demos was a bottleneck in the first version of
the demo system and thus we decided to create an abstract specification for the
demos (the Demo Description Lines, or DDL) to allow automatic and fast demo
generation (Sect. 2.2). And since we needed to have a tool which could be used
by non-technical editors, we created a graphical web interface to create and edit
demos, as well as the associated data, the Control Panel (Sect. 2.3).

After the improvements in the system, we have now:

– A function architecture of microservices, with 7 modules
– Fast demo creation. The new system accounts at this moment for 39 published

demos, 6 pre-prints, and 72 workshops. The fact that there is a large number
of workshops compared to the publications confirms that now it is easy and
fast for our editors to create new demos

– Video demos
– Audio demos
– Interactive controls almost finished. They will be ready in a few weeks.
– The possibility to add custom Javascript code to the demos for editors with

special requirements, without complexifying the demo system itself
– A system easier to debug when a bug is detected. Now it is really easy to track

down bugs, since every module has its own logging system and automatic
alerts. At this moment there are no known bugs in the system, and if they
appeared they would be detect, the engineers warned, and fixed immediately.

Adding completely new features such as support for machine learning appli-
cations with a training step will require intense engineering efforts and more
engineers in the team to build it in a reasonable time.

2.1 The IPOL Demo System Architecture

The architecture of the new IPOL demo system is an Service-Oriented Architec-
ture (SOA) based on microservices2. This change was motivated by the problems
found in the previous version of the demo system. First, it was designed as a
monolithic program3 which made it quite easy to deploy in the servers and
to run it locally, but at the cost of many disadvantages. Given that it was a
monolithic system, it was difficult to split it into different machines to share the
computational load of the algorithms being executed. A simple solution would
be to create specialized units to run the algorithms and to call them from the
2 We use Python 3 but in fact the microservices may be written in any language.
3 Of course, with a good separation of functionality among different classes.



6 M. Colom

monolithic code, but this clearly evokes the first step to move to a microservices
architecture. Indeed, this first step of breaking the monolith [3] can be iterated
until all the functions of the system have been delegated in different modules.
In the case of IPOL, we created specialized modules and removed the code from
the monolith until the very monolith became a module itself: Core. This Core
module is in charge of all the system and delegates the operations to other
modules. Figure 1 summarizes the IPOL modules and other components in the
architecture of the system.

Fig. 1. Modular architecture of the current IPOL demo system.

Other problems we had in the previous version of the demo system got solved
when we moved to the microservices architecture. Since there is a loose cou-
pling between Core and the other modules (in the sense that they are inde-
pendent programs which communicate via an HTTP API), different members
of the development team can work at the same time without worrying about
the implementation details or data structures used in other parts of the sys-
tem. Also, tracking down malfunctions is easier: since Core centralizes all the
operations, when a bug shows it can only be generated either at Core or at the
involved module, but not at any other part of the system. In the old system a
bug could be caused by complex conditions which depend on the global state of
the program, making debugging a complex task. And as noted before, the fact
that the architecture of the system is distributed and modular by design makes
it very natural and simple to have mechanisms to share the computational load
among several machines.

Hiding the internal implementation details behind the interfaces of the mod-
ules is an essential part of the system, and it is needed to provide loose coupling
between its components. The internal architecture of the system is of course
hidden from the users when they interact with the system, but it is also hidden
from the inside. This means that any module (Core included) does not need to
know the location of the modules. Instead, all of them use a published API.
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Once the API is defined, the routing to the modules is implemented by a
reverse proxy4. It receives the requests from the clients according to this pattern:
/api/<module>/<service> and redirects them to the corresponding module.
Figure 2 shows how the API messages received by the proxy are routed to the
corresponding modules, thus hiding the internal architecture of the system.

Fig. 2. The reverse proxy routes the API messages to the corresponding modules.

Modules: The IPOL demo system is made of several standalone units used by
the Core module to delegate specialized and well isolated functions. This section
describes briefly these microservices modules.

Blobs (Binary Large OBjects): each demo of IPOL offers the user a set of
default blobs which can be tagged and linked to different demos. Thus, the users
are not forced to supply their own files for the execution of the algorithms. The
term blob in IPOL refers to any file that can be used as an input, regardless
its type. In an image-processing demo they would be images, but they can be
also videos, or even text files representing physiological signals, for instance. The
system does not need to know their particular type since the execution flow is
always the same (load inputs, eventually convert them, run the algorithm, store
the results in the archive, and show results). Only when needed (for example,
when the Conversion module needs to perform some kind of transformation in
the data) the corresponding module will request its actual type. This module
introduces the concept of templates, which are sets of blobs which can be asso-
ciated to a particular demo. For example, this allows all the demos of a specific
type (e.g., de-noising) to share the same images as default input data. Instead of
editing each demo one by one, the editors can simply edit their template to make
changes in all the demos, and then particular changes to each specific demo.

Archive: the Archive module stores all the experiments performed by the
IPOL with their original data. The database stores the experiments and blobs,
which are related with a junction table with a many-to-many relationship. It is
worth noting that the system does not store duplicates of the same blob, but
detects them from their SHA1 hash.

This module offers several services, such as adding (or deleting) an exper-
iment or deleting all the set of experiments related to a particular demo. The
4 We use Nginx as the reverse proxy.
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archive also has services to show particular experiments or several pages with
all the experiments stored since the first use of the archive.

Core: this module is the centralized controller of the whole IPOL system. It
delegates most of the tasks to the other modules, such as the execution of the
demos, archiving experiments, or retrieving metadata, among others.

When an execution is requested, it obtains first the textual description of the
corresponding demo by using the DDL from DemoInfo and it copies the blobs
chosen by the users as the algorithm’s input. Then, it asks for the workload of the
different DemoRunners and gives this information to Dispatcher in order to pick
the best DemoRunner according to the Dispatcher’s selection policy. Core asks
the chosen DemoRunner to first ensure that the source codes are well compiled
in the machine and then to run the algorithm with the parameters and inputs
set by the user. Core waits until the execution has finished or a timeout happens.
Finally, it delegates to Archive to store the results of the experiment. In case of
any failures, Core terminates the execution and stores the errors in its log file.
Eventually, it will send warning emails to the technical staff of IPOL (internal
error) or to the IPOL editors of the article (compilation or execution failure).

Dispatcher: in order to distribute the computational load along different
machines, this module is responsible of assigning a concrete DemoRunner accord-
ing to a configurable policy. The policy takes into account the requirements of a
demo and the workload of all DemoRunners and returns the one which fits best.
The DemoRunners and their workloads are provided by Core. Figure 3 shows
the communication between Core, Dispatcher, and the DemoRunner modules.

Fig. 3. Communication between Core, Dispatcher, and the DemoRunner modules.

Currently Dispatcher implements three policies:

– random: it assigns a random DemoRunner
– sequential: it iterates sequentially the list of DemoRunners;
– lowest workload: it chooses the DemoRunner with the lowest workload.
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The choice of the actual policy is a configuration option in the module. It can
be changed by the system operators at any moment, but the module can not
change the policy depending on the execution needs of the system so far.

Any policy selects only those DemoRunners that satisfy the requirements
(for example, having MATLAB installed, or a particular version of openCV).

DemoInfo: the DemoInfo module stores the metadata of the demos. For
example, the title, abstract, ID, or its authors, among others. It also stores the
abstract textual description of the demo (DDL). All this information can be
required by Core when executing a demo or by the Control Panel when the
demo is edited with its website interface.

It is possible that the demo requires non-reviewed support code to show
results. In this case, the demo can use custom scripts to create result plots. Note
that this only refers to scripts and data which is not peer-reviewed. In case they
are important to reproduce the results or figures in the article, they need to be
in the peer-reviewed source code package.

DemoRunner: this module controls the execution of the IPOL demos. The
DemoRunner module is responsible of informing Core about the load of the
machine where it is running, of ensuring that the demo execution is done with the
last source codes provided by the authors (it downloads and compiles these codes
to maintain them updated), and of executing the algorithm with the parameters
set by the users. It takes care of stopping the demo execution if a timeout is
reached, and to inform Core about the causes of a demo execution failure so
Core can take the best action in response. In order to distribute and share
the computational load of the whole system, several demoRunner instances can
be deployed on different machines. Each of the instances can declare different
capabilities, as for example being able to run MATLAB code, of the presence of
a GPU.

2.2 Automatic Demo Generation

In the previous version of the IPOL demo system the demo editors had to write
Python code to create a new demo. Specifically, to override some methods in a
base demo class in order to configure its input parameters, to call the program
implementing the algorithm, and also to design Mako HTML templates for the
results page.

This approach does not really solve anything, and it simply passes the prob-
lem (the inability of the system to generate demos from a simple textual descrip-
tion) to the hands of the demo editors, that are forced to write code and HTML
templates. Of course, these are the kind of tasks that can be automated and
should not be made by human editors.

When Python code was written by the demo editors, it was prone to bugs
which are specific to each demo. Moreover, fixing a bug in a particular demo does
not guarantee that the same solution as-is could be applied to other demos with
the same problem. Indeed, different demo editors might have written different
codes in each demo to solve the same problem.
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In fact, it is evident that this design can be simplified and the tasks auto-
mated. Indeed, to completely define a demo all one needs is:

1. The title of the demo;
2. the URL where the system should download the source code of the demo;
3. the compilation instructions;
4. the type interaction of the user with the demo (for example, drawing segments

over the image, or annotating an input signal, or simply picking one image);
5. the input parameters along with their type and default values;
6. a description of what needs to be shown as results.

This information is not tied to any particular language or visualization tech-
nique, but it can be a simple abstract textual description. In IPOL we called
this abstract textual description the Demo Description Lines (DDL). The IPOL
editors only need to write such a description and the system takes care of making
available the demo according to it. This not only avoids any coding problems
(since there is nothing to code, but writing the corresponding DDL), but also
allows IPOL to have non-expert demo editors, and makes it possible to edit and
publish demos quickly. As an example, Fig. 4 shows the graphical tool used to
edit the DDL of a demo within the Control Panel tool.

Fig. 4. Graphical tool to edit the DDL of a demo in the Control Panel.

2.3 Editorial Management: The Control Panel

The Control Panel is a web application which offers a unified interface to con-
figure and manage the platform, intended for non-technical editors. It allows
to create/modify/delete the list of IPOL editors, the demos along their textual
descriptions, upload new testing dataset, and to customize the demos with extra
code for advanced users who need it. It allows also editors to remove specific
experiments upon request (for example, in the case of copyright images) or if



Extending IPOL to New Data Types and Machine-Learning Applications 11

Fig. 5. List of demos as shown in the Control Panel.

inappropriate content is found. Figure 5 shows a screenshot of the Control Panel
application as shown in the browser.

Even if it is an internal tool for the journal management, it has been designed
with these main objectives:

– To allow fast and easy demo creation and edition, to avoid that the generation
of demos becomes a bottleneck. The DDL description was created in the new
system to this purpose (see Sect. 2.2).

– To incorporate as many editors as possible to the journal. To achieve this
objective the Control Panel needs to be a tool intended for editors without
no special technical background. All the technical system administration tools
are outside the Control Panel.

– To hide the complexity of the distributed system to the editor. Indeed, IPOL
is a complex system running in several machines, but from the point of view
of the editors and the demo users they simply interact with a web page front-
end.

3 Plan to Extend to a Wide-Purpose Platform

IPOL has been evolving since it was funded in 2010, from a very simple demo
system which required the editors to write actual Python code and design HTML
templates, to a system of a distributed system started in 2015 with load bal-
ancing along several machines and automatic demo generation from an abstract
description syntax.

The next step is first to move to new data types (audio, video, 3D) and finally
to allow different applications, including Machine Learning. Adapting the system
to a wide-purpose platform will require some changes in the architecture of the
system (new modules) and better data organization (Archive, mainly) but still
the current modular architecture of the system will be able to support it. In any
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case, moving to new application fields and at the same time keeping a generalist
platform will require strong engineering efforts and a stable team with permanent
positions. This is not the case at this moment, and we need to work on this point
to be able to extend IPOL with advanced features reliably.

The following sections present and discuss the steps needed to build the next
evolution of the IPOL system.

3.1 Extended Architecture: Support for Applications

There is a fundamental difference between the current IPOL demo system and
the complete platform offering Software as a Service (SaaS) applications and
learning capabilities: their execution time. The complete platform differs from a
demo system in the fact that it allows applications whose lifetime5 is largely over
the short period of execution of a demo. In the case of a demo the input data
is loaded, the algorithm executed, the results shown, and the demo has totally
finished. In the case of algorithms which can learn from the archive, they need
to be running indefinitely. Once they are run, they can receive events indicating
the there is new data in the archive, or to explore it regularly.

We shall call these new processes with a large lifetime Applications. The
system will have two different kinds of processes:

– Demos
– Applications

Nevertheless, the architecture of the new system needs not be redesigned in
order to have these new functionalities, but new modules need to be added and
they will share information within the system.

The first module which needs to be added is the equivalent to Core which
delegates the demo operations along different specialized modules, but for the
Applications. We will call this new module AppCore and rename the existing
one to DemoCore.

The DemoCore will delegate some specialized functions in already existing
modules, for example in Conversion or Blobs since they still be needed in the
context of the applications. But new modules will be exclusive to AppCore, such
as:

– Databases : storage and management of training and testing datasets
– UserAccess: lists of users and authorization management

The same way DemoCore offers an API of microservices that the web applica-
tion uses to render demos in the client’s browser, AppCore will offer microservices
to be used by external applications. We can think for example of a MATLAB
application or a Jupyter notebook which uses the AppCore’s services to log in
and then visualize classification results obtained using the corresponding learn-
ing databases. Figure 6 shows the architecture of the complete platform.
5 Here we refer to the “wall clock time” of the process, not their CPU usage time. The

application is expected to have a large lifetime when most of the time the process
in idle, whereas in the case of a demo the process is CPU intensive.
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Fig. 6. The complete modular architecture of the future IPOL platform.

Note that the platform is not tied to a particular visualization tool (say, a
website) or to any specific framework (MATLAB, R, or the Android system, for
example) but instead it offers generic webservices that can be used with them.
This way the platform remains generic but at the same time it can be customized
with the frameworks preferred by its users.

3.2 Extension to New Data Types

The new architecture of the IPOL demo system (Sect. 2) already allows to work
with arbitrary data types. By design, we chose to refer to the data generically
as blobs, instead of being attached to a particular data type such as images and
others. The system manages the data in terms of blobs, and only a particular
module (“Conversion”) (see Fig. 1) needs to know about the actual details of the
type to make conversions. This means that when adding a new data type only
Conversion needs to be modified whereas the rest of the system modules remain
the same.

The execution flow given an input blob is the following:

1. The blob arrives to Core module. The origin can be either one of the input
blobs offered by the demo or a new blob uploaded by the user.

2. Core examines the DDL to check if the demo authorizes data conversion and
also it that conversion is actually needed. For example: reduce an image to
the maximum allowed size and convert from JPEG to PNG.

3. In case the modification is authorized and needed, Core delegates the conver-
sion of the blob to Conversion.

4. The Conversion module converts the blob to meet the requirements written
at the DDL. Only in the context of Conversion the actual data type is taken
into account. Outside it is only a generic blob.

5. Core goes on with the execution of the algorithm. With the original blob or
with the converted.



14 M. Colom

The kind of conversions needed depend on the data type. For images, audio,
video, and 3D they are basically two: resampling (or decimation) and format
conversion. Other data types might need different and specific transformations.

While the conversion of the data itself is supported by the current system,
depending on the application it might not be enough. Indeed, two more steps
are needed:

– Data standardization
– Pre-processing

Given that the aim of the platform is to support multiple applications and
data types, the input data is likely to be in different file formats and in different
ranges. We can think for example in the data of two different accelerometer
sensors: one of them could give values of the three spatial axes in m/s units,
while the other might give only two of the three axes in cm/s. Before attempting
the process the data, the system needs to put the input data in a common format.

Even if the data has been standardized, it might require pre-processing. For
example, an algorithm might not work with missing (“NA” - Not Available)
values, while for others this could be acceptable. The system might decide to
pre-process the data in order to remove NA samples by interpolation, or simply
to remove them before passing the data to the algorithm for execution.

The solution is to add two new modules to the system:

– Standardizer : to structure the data in a format understood by the system and
the algorithms;

– Preprocessing : to perform pre-processing steps before execution according to
the needs of the algorithm.

Core would systematically pass the data to these two modules to check if
these steps are needed and to actually perform them in that case.

About the web interface, it needs to be expanded to support the visualiza-
tion of the new data types. At the moment of writing this text, the system has
full support for video processing and visualization and the interactive controls
(masks for inpainting demos, points for Poisson editing, segments for lens correc-
tion, etc.) are expected to be finished in a few weeks. Figure 7 shows the IPOL
demo of the published article Ball Pivoting Algorithm for which the system shows
the result with a 3D mesh renderer.

3.3 Comparison of Algorithms

A desired feature in the future platform is the comparison of algorithms. At this
moment every demo is an isolated unit which takes the input data, applies an
algorithm with the configured parameters, and finally shows the results. How-
ever, being able to measure the performance of the algorithms is of great interest
it this would allow to score them and to know which is the best parameter choice
according to the algorithm and the input data.
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Fig. 7. IPOL demo of the published article Ball Pivoting Algorithm showing the results
with a 3D mesh renderer.

In order to compare the algorithms a metric of quality must be available. This
metric can depend solely in the results (for example, exploiting structural simi-
larity in the case of images [5]) or a metric with respect to a given ground-truth.

The inputs and outputs of the algorithm might vary largely and therefore we
need to define common data formats in the platform. Clearly, to compare two
algorithms their outputs need to be encoded with compatible formats to allow
automatic comparisons.

The role of Preprocessing Standardizer presented in Sect. 3.2 becomes clear
here. Indeed, the comparison of algorithms feature relies on this two modules
since the platform needs to:

– Define formats to homogenize the outputs of diverse algorithms. The Stan-
dardizer module will be the responsible for this task, delegated from the
DemoCore or AppDemo controller modules.

– In the case of missing data or if pre-processing is needed, then Preprocessing
will be invoked too.

Sometimes it will be needed to express the same data in different forms. For
example, some metrics would need a temporal series while others could work
only with their spectra. The role of Standardizer is to put the data in a flexible
format when it is entered into the platform for the first time, not to perform data
format conversions during execution (which is a different task and performed by
Conversion, see Fig. 6).

The platform needs to provide large datasets to test the algorithms with and
also several metrics to perform the comparisons. In the most favorable scenario,
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these datasets are previously annotated by experts and serve as a ground-truth
to evaluate the algorithms. The module responsible for storing the testing and
learning databases is the Databases module (Sect. 3.5).

3.4 Chaining of Algorithms

The chaining of algorithms consists in using the output of one algorithm as the
input for another. For example, a de-noising algorithm could be applied to an
input image before attempting object recognition. Another example may be an
algorithm to interpolate missing samples in the data acquired from an accelerom-
eter could be run in a first step before trying to determine the trajectory followed
by the sensor. In the case of satellite images, we could think of a chain which first
de-noises pairs of images with one algorithm, then rectifies them with a second
algorithm, and finally performs a 3D reconstruction with yet another different
algorithm.

This problem is utterly related to the comparison of algorithms sketched in
Sect. 3.3, since the key to be able to connect one algorithm with a different one is
that both have a common format for their input and outputs. The platform needs
to define general formats for each possible input and output for the algorithm.

Some general data types that should be defined within the platform according
to the current editorial needs:

– Temporal series of k dimensions, allowing missing values.
– Sets of points in a 3D point cloud. In general, sets of hyperpoints with an

arbitrary number of points.
– Sets of edges and vertices to define 3D meshes. In general, edges and vertices

defined in a hyperspace.
– Images and Video. In general, k-dimensional hypercubes of data.

Other generic formats might be defined according to the evolution of the platform
and the needs of the users.

We propose to create input/output wrappers in the algorithms to adapt the
data to the formats of the platform, to avoid forcing the implemented algo-
rithm to follow specific formats. This way the platform would allow most of the
algorithms available without the need of adapting them.

In the future system a final result might not come only from the execution
of a single algorithm, but built from the concatenation of many.

3.5 Machine Learning Applications

Machine Learning algorithms have an extra step which makes them different
to most of the Signal Processing algorithms: a first training step. Indeed, they
normally proceed in three different phases:

1. A training (or learning) step with some examples and one or more metrics
to evaluate the performance of the algorithm. For example, a neural network
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classifier intended for face recognition needs to be trained with many samples
previously labeled as faces and non-faces. Typically the learning step is slow,
requires many samples, and can be improved by adding more samples to the
learning database.

2. A validation step, to ensure that the training is not biased.
3. Prediction. Once the algorithm has already learned according to the training

samples (say, a neural network with well-adjusted weights or a SVM6 classifier
with the right hyperplane) it can proceed to predict the result given a sample
that the algorithm has not seen before.

On the other hand, the assessment phase needs:

1. A metric (i.e. a formula), which typically is different from the metric used
during training.

2. A test set, different from the training set.

The two-step process described above might not be directly applicable when
the training of the neural network needs a complex customized training and
therefore can not be reduced to uploading learning data and applying standard
stochastic optimization. Also, depending on the application the learning step
could consist on several phases.

For those complex cases we expect the learning to be performed offline and
to work with two types of data:

– The learning set that must be kept for records and
– the generated neural network.

The researcher should upload a script (as demoExtras, see Sect. 3.6) governing
the learning, in addition to data and to the back-propagation codes. In order
to make it reproducible it would be needed that all the details on the training
process are documented, including any random seeds, the hyperparameters, the
initialization of the weights when learning (for example, Xavier’s initialization),
number of mini-batches, and in general any other learning parameters which are
relevant to reproduce the same results.

The typical demos in the current IPOL system are not well adapted to this
new schema since their cycle is simple to read the input data, apply some algo-
rithm with the given parameters, and finally show the results. It is possible
however to give some pre-learned databases, but the new platform will be able
to update its own training datasets according to the input data from authorized
users.

Let us present a typical case of use of the platform. In order to make it more
understandable, we will explain it in a concrete application such as healthcare.

The platform will be used by persons with different roles, such as clinicians,
technicians, and researchers from different fields (for example, physiologists, sig-
nal processing researchers, statisticians, expert systems researchers, etc). Their
diverse interests converge at the platform. Doctors are mostly interested in

6 Support Vector Machine.
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obtaining relevant information after they have introduced data of a particular
patient (for example, the possibility of discovering a neurological problem from
the analysis of saccadic signatures in ocular movements [6]), as well as tracking
the evolution of a patient over time.

One of the objectives of the platform is to obtain substantial results by
applying Machine Learning algorithms. In this example our aim would be helping
clinicians extract relevant medical information from large and multidimensional
datasets.

Doctors will decide if the data of their patients (after mandatory anonymiza-
tion [7]) can be incorporated to the databases of the platform, or not. For exam-
ple, if the clinician has labeled data it can be used as a ground-truth for many
algorithms of the platform and thus over colleagues benefit from it. Or they can
decide not to share but still use it as a tool with their own data.

Not all users will be authorized to upload training data (or at least, it needs
to be peer-reviewed first), since the performance of the platform relies on the
quality of its learning base and thus it needs to be carefully controlled. Thus,
depending on the role of the users there will be several combinations of rights
and authorization levels: possibility of uploading training data, possibility of
executing the algorithms on uploaded test data, possibility to label an already
existent dataset, possibility of creating groups of users with common right for
certain datasets, etc. Instead of fixing the set of possibilities it is better to leave
them open as configurable options and to set up rights for users or groups of
users depending on their roles. As advanced in Sect. 3.1, the platform will use
a new Databases module to store and manage the permissions for the training
and test datasets.

In order to take advantage of both the practitioners’ extended knowledge and
the presence of numerous healthcare datasets, the platform could also include a
crowdsourcing aspect (see e.g. [8]). Using trained classification or scoring algo-
rithms, unlabelled data with the largest amount of uncertainty could be pre-
sented to the platform medical user for additional input – thus both improving
the quality of the dataset, the performance of the algorithm, and presenting
practitioner with interesting usecases.

In the case of executing an algorithm with a test dataset (say, to perform
prediction), the execution will be similar to a typical IPOL demo. It can be
sketched as follows:

1. The users upload or choose one of their datasets;
2. they chain several algorithms and configure their parameters;
3. the algorithm is run. The user can wait until it finishes, or it can be stored

and recovered later;
4. the results are shown;
5. the results are archived for further analysis.

This is a complex interaction, perhaps for the most advanced users. However,
most users (say, medical doctors) would just upload their data and wait for their
automatic results. However, the system needs of course to be designed such a
way that it copes with both the complex and common cases.
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Technically, the request arrives to Core, which delegates the selection of the
most available DemoRunner for the execution, DemoRunner will perform the
execution, and then Core will retrieve the results. Finally, Core will send a
command to Archive to store all relevant information on the experiment. See
Fig. 3.

While the current system could support easily Machine Learning learning
algorithm to perform testing (say, classification or prediction), it needs to be
extended to reach the new architecture depicted in Fig. 6). Indeed, as explained
in Sect. 3.1, the execution cycle of a simple demo does not allow to have a long
learning phase.

This operative does not adapt well to the needed learning phase and thus a
new entity (the applications). The applications are processes which are started
by AppCore and instead of finishing after a fixed period has elapsed, they simply
enter in a sleep mode. They can be woken up by AppCore for several reasons, as
for example when new data arrives to Archive, or they can wake up by themselves
at regular intervals to perform learning on the data available in the platform.

To better understand the concept of the applications, let us think of an
algorithm to detect faces in pictures using an SVM. The users will upload their
own pictures to the demo to check if the system is able to detect or not the
faces that might be present in the image. The users will provide feedback about
if the system managed to detect a face in the right position (positive), or if it
detected a face in a place where it was not any (false positive), or if it missed
an actual face (false negative). To do it, the demo could use an SVM classifier
whose hyperplane is shaped according to a learning step. Thus, the published
algorithm will implement two tasks: testing (used by the demo), and training
(performed by the application). We can imagine the algorithm’s package as a
ZIP file with two folders with independent codes, one for testing and the other
for training.

Once the algorithm has been installed in the system, AppCore will start the
corresponding application which uses the training code. It will wake up regularly
the application with an event indicating that it has new feedback, and then the
application will run the training code to update the SVM hyperplane. This will
improve the performance of the demo. Once the training with the new data
has finished the application will enter in a sleep mode until it is woken up by
AppCore again.

Note that when we write the AppRunner or the DemoRunner modules, actu-
ally we refer to an instance of many of them. Indeed, while the other modules
are unique in the system, the runners are many distributed processes. Each time
Core needs to execute a process (say, a demo or a learning phase), it uses Dis-
patcher module to pick a particular runner and send the execution. For example,
in the current system we have three distributed demoRunners available. One is
physically installed at CMLA laboratory, and the other two are in the installa-
tions of an external provider. This is easily configured with simple configuration
files.
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In the case of the applications they will be also distributed along several
servers. The AppCore will ask Dispatcher for an AppRunner, then AppCore
will wake the runner up and ask to update its learning database when needed.
Note that AppCore has the possibility of running several instances of the same
learning process along different runners if necessary. For example, it can split
the input data into several batches and make different runners process each of
the parts at the same time.

Apart of adding these new AppCore and AppRunner modules to the archi-
tecture of the system, the existing Archive module will be improved to allow
queries and receive structured information quickly. For example, we can think
in a demo that runs a classification algorithm in images (let’s say, it tells which
is the animal in the image). If the demo configures Archive to store extra infor-
mation about the inputs (say, level of JPEG compression, the mean intensity of
the image, . . . ), it would be possible to extract meaningful information after-
wards. For example, it how relevant is the compression level of the image when
performing classification, or how images with very low contrast or saturated
impact the performance. This could be done with a query language very similar
to SQL.

Improving Archive will allow not only Machine Learning applications, but
also for more complex Signal Processing algorithms in the demo system.

Finally, already existing Control Panel (Sect. 3.6) will be extended to allow
the system operators to manage7 the installed applications.

3.6 System Management with a Unified Tool

A tool to allow non-technical administrators to manage the platform is needed.
Such a tool is known as the Control Panel in the current system (see Sect. 2.3).

The Control Panel allows the IPOL editors to create new demos and modify
any existing demos. This tool is a web application where the editors have access
after typing their username and password and one of the design requirements is
that it should be used by editors without any technical background. It allows
however to add extra code to the demos (known as demoExtras) in order that
advanced editors can customize them but nevertheless most of the demos are
defined from a simple textual description (see Sect. 2.2).

In order to allow the complete system with the extensions presented, the
Control Panel also needs to be completed. Specifically, it needs new sections to:

– Install, configure, and remove Applications, in a similar way to what does
already for the demos.

– Create, edit, and remove users.
– Add, remove, and configure the access right of the learning and testing

databases for each user or group of users according to their roles in the plat-
form.

7 Add, remove, start, stop, and configure user database rights.
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The existence of a unified tool such as the Control Panel8 and the use of an
API (see Sect. 2.1) to interact with the system hides not only the implementation
details but also the fact that the system is distributed along different machines.
Indeed, the editors manage the system with a simple tool which hides all its
complexity and lets them configure it quickly and easily.

4 Business Model: The IPOL Case

This section discusses briefly about the business model that RR platforms could
adopt, focusing on the experience that the authors have as editors of the IPOL
journal.

The scientific interest of IPOL a platform for reproducible research is clear
after look at the number of visitors (about 250 unique visits per day) and the
number of citations of the published papers (see Fig. 8, total citations: 3497,
h-index: 29, i10-index: 61). It has also proved its utility as a tool to prove the
competence of the research group and to obtain research contracts (DxO, CNES,
ONR, and others).

Fig. 8. IPOL citations from 2012 to 2019. Source: Google Scholar. Total citations:
3497, h-index: 29, i10-index: 61.

A very pertinent question is how to obtain a business return which ensures
the sustainability of the project for the long term, out of the support of the
public agencies (CNRS, ERC, and others).

A possible move would be to move to the Software as a Service (SaaS) model
and to receive incomes from:

– The use of already learned databases. This model is already used by large big-
data companies such as Google, for example with their TensorFlow product9.

8 Nowadays, even configuration tools like this are regarded as part of an experimen-
tal system, and techniques like A/B testing are used to improve the performance
(usability) of the tool.

9 https://cloud.google.com/products/machine-learning/.

https://cloud.google.com/products/machine-learning/
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– The use of computational services. This modality is implemented by similar
platforms such as Code Ocean10 and others.

– Consulting services. The start-up created to build the final platform will
collaborate closely with the scientific staff at CMLA (professors, associate
researchers, postdocs, and PhD candidates) and eventually incorporate them
into the company. This way the company will not only offer the services of
the platform, but also scientific consulting and advice.

– Expanding to areas other than Image Processing and Computer Vision.
Indeed, in IPOL we are exploring the possibility to accept articles on more
general signal processing, including physiological signals.

Other ways of receiving incomes such as crowdfunding or donations might
help too. For example, the Jupyter project is funded mainly by donations11 and
GV12 (Google Ventures) has invested in projects of companies such as Uber,
Light, Slack, Periscope, and many others.

Some companies have already expressed their interest on our future platform.
Other companies13 use or have used IPOL for research purposes, with reference
source codes and detailed algorithmic descriptions.

4.1 Resources Needed

IPOL began as part of the PhD project of a single person [1], and since then it
has been continuously improved. First by the generous contributions of several
collaborators, and finally with a group of interns and software engineers working
part time or hired for short periods to build the new version of the demo system.

At this point, the project needs highly qualified engineers. It is no longer a
small project but a complex system with requires a professional and dedicated
team with stable positions. One of the problems at this moment is that it takes
months to train a new engineer in the details of the project and most of the
time they leave when they start to be really productive. The reason why the
engineers leave the project even if they would like to go on is precisely the
lack of stability and perspectives, since the public organizations are not able to
create stable positions. When the engineers leave the project the group loses all
the accumulated knowledge and again we need to train new members.

Only one person in the team has a permanent position, and even though the
dedication to the project is part time.

It is important to create stable positions for the project and also to obtain
funding to go on with the engineering tasks. A minimum requirement is to obtain
at least one permanent position for the technical director and to have funding for
a team of one director and three software engineers during two years. The current
system is distributed along three servers rented from an external provided, with
a cost of 400 euros/month. We estimate that the final platform will need about
10 https://codeocean.com/pricing.
11 http://jupyter.org/donate.html.
12 https://www.gv.com/portfolio/.
13 We could cite DxO, Thales, or Technicolor, among others.

https://codeocean.com/pricing
http://jupyter.org/donate.html
https://www.gv.com/portfolio/
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8 servers with a cost of 400 × 8 = 3200 euros/month. The number of servers is
flexible and can be adapted to the computational needs of the platforms at any
time.

5 Conclusions

The first version of the IPOL demo system has been working since the first
article was published in 2010, with a total of 152 articles, 3364 citations and
h- and i10-indexes of 29 and 61 respectively. While it is clear that the system
is functional, some problems were detected: the system was difficult to debug
to track down malfunctions, it suffered from tightly coupled interfaces, it was
complicated to distribute the computational load among different machines, and
the editors needed to write Python code to create and edit demos. These prob-
lems compromised the durability of the system at the same time they started to
create a bottleneck that prevented to create and edit demos quickly. These prob-
lems are already solved with the new version of the demo system, a distributed
architecture of microservices, presented in Sect. 2.

Of course, even if the system is already functional it still needs strong engi-
neering efforts before it is considered a finished product. The plan for the very
short term is to integrate new data types such as video, audio, and 3D. We are
quite confident on this task since the system is able to manage generic types
(even if we refer to images, for the system they are simply blobs) and it will
come down to a visualization problem in the website interface.

With more than one hundred published demos, more than seven years of
activity, about 250 unique visitors/day, thousands of experiments performed by
the users with their original data, IPOL has been proved to be a useful tool not
only for research but also as a value-added tool for the industry.

The existence of similar initiatives such as Jupyter, Code Ocean, RunMy-
Code, and openCV indicate a great interest of the scientific community and the
industry for this kind of platforms, for which IPOL is a clear precursor. These
other platforms do not need to be understood as a threat for IPOL, but instead
as an indication of the market trend. We refer the reader to [9] for a compari-
son and discussion on platforms that might be used to implement reproducible
research. Nevertheless, IPOL needs to go a step beyond and move from a demo
system to a wide-scope platform to build complete applications over it, following
the Software as a Service model. Machine learning algorithms, the use of learn-
ing databases, and the ability of the platform to improve these databases is a
unique business that is worth exploiting.

As explained in Sect. 4.1, while the technical competence is already met and
a working system has already been built, it is fundamental for the project to
have a stable team. We can afford some temporal contributors (say, interns and
engineers hired for specific tasks), but the fact that nobody in the team has
a permanent position (not even the technical director) puts the continuity the
whole project in obvious danger.
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Without any doubt, this is an ambitious project but nevertheless realistic,
and the fact that it has been running for almost ten years already is the best
proof of feasibility.
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3 ICube, UMR 7357, Université de Strasbourg, Strasbourg, France

Abstract. There exist several dissemination repositories, computation
platforms, and online tools that might be used to implement Repro-
ducible Research. In this paper, we discuss the strengths and weaknesses,
or better, the adequacy of each of them for this purpose. Specifically, we
present aspects such as the freely availability of contents for the scientific
community, the languages which are accepted, or how the platform solves
the problem of dependency to specific library versions. We discuss if arti-
cles and codes are peer-reviewed or if they are simply spread through a
dissemination platform, and if changes are allowed after publication. The
most popular platforms and tools are presented with the perspective to
highlight new ways for scientific communication.

1 Introduction

Reproducibility and replicability are common and usual criteria in many fields as
biology, economy, psychology or medicine. Although paramount, meeting these
criteria is a goal difficult to achieve. In Computer Science, it is easier since, most
of the time, it involves applying the same data to the same algorithm. Ten years
ago, Donoho et al. mentioned the so-called credibility crisis and suggested to not
only publish computational results but also the complete source code and data
[1]. More recently, this crisis was also mentioned in a research survey where more
than 70% of researchers affirm that they fail to reproduce the work of another
researcher [2]. Moreover, more than half affirm they fail reproduce their own
work. This survey was realized in different domains such as biology, physics and,
chemistry.

Before the awareness of this problem, the benefit of Reproducible Research
(RR) for authors and computational scientists was illustrated with concrete
example from Wavelet Matlab package. According to Buckheit et al. [3], the
package was designed to help implement the reproducible research following the
guidelines of Claerbout [4], who defines the scholarship in computational science
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not as the scientific publication but as “the complete software development envi-
ronment and the complete set of instructions which generated the figures”. As
shown in the following, RR presents an increasing importance for platforms, in
the J. Buckheit et al. spirit, with the perspective to define a new way of diffusing
scholarship contents.

Several definitions of a reproducible result were proposed. In the following,
we consider the definitions by Krijthe and Loog [5] and by Rougier and Hinsen
[6]. These authors distinguish two main notions, the reproducibility and repli-
cability. The reproducibility is defined as the success of a same individual in
re-generating the same results with the same inputs and following the same pro-
tocols. The replicability reflects the possibility to obtain identical results in a
different context without taking the same implementation and protocol of the
first authors. It can be considered as valuable since it offers the proof that the
proposed scholarship is not only specific to particular conditions but can also be
extended to other kinds of situations.

Mainly motivated by reproducible and replicable aspects, new platforms are
appearing to help researchers to execute, reproduce, experiment, and compare or
diffuse research codes and software, often through an online website. In parallel,
other initiatives are growing with introduction of new journals focused on original
content as softwares associated to research publications, replication experiences,
or specialized in the image processing domain. In the following of this paper,
we first present an overview of these platforms (Sect. 2) before comparing them
through several criteria (Sect. 3). In addition, we will focus on new initiatives
like the Graphics Replicability Stamp Initiative that was proposed in conjunction
to more classic conferences in order to augment publication with reproduction
guarantee (Sect. 4).

2 Overview of Reproducible Research Platforms

In this section we present different types of platforms that could be used to
implement RR. We refer to them as:

– Online execution platforms (Sect. 2.1): an online platform offering an exe-
cution service infrastructure.

– Dissemination platforms (Sect. 2.2): their goal is to spread articles, source
code, data, and make them public, without necessarily being peer-reviewed.

– Peer-reviewed journals (Sect. 2.3): similar to the dissemination platforms,
but with an Editorial Board that requests opinion of external experts to
decide article acceptation.

2.1 Online Execution Platforms

Some very well-known platforms are closely related to RR in there usages,
whether they are domain-specific or more generic.
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Galaxy. In the case of Biology, the Galaxy project [7–9] started in 2005 as a
platform for genomics research making available tools which can be used by non-
expert users too. Galaxy defines a workflow as a reusable template containing
different algorithms applied to the input data. In order to achieve reproducibility,
the system stores the input dataset, the parameters, the tools and algorithms
applied to the data within the chain, and the output dataset. Thus, performing
the same workflow with the same data ensures that the same results are obtained,
given that the version of all the elements remains the same. The platform allows
its users to upload their own data and to adjust the parameters before executing
an algorithm. Galaxy is made of four main elements: (i) the main public Galaxy
server featuring tool sets and data for genomics analysis, (ii) open source software
and API allowing users to install their own Galaxy server, (iii) a repository for
developers and administrators, and (iv) the whole community contributing to
the development.

Fig. 1. The GitHub activity (in number of commits) of the main Galaxy project,
extracted from https://github.com/galaxyproject/galaxy.

As shown in Fig. 1, the activity of the Galaxy platform is increasing from
its beginning and up to now. The Galaxy community has a hub1 that includes
yearly conferences (Galaxy Community Conference). This community is also
composed of several groups associated to the Intergalactic Utilities Commission,
a Galaxy training network and an open source package management system.
Some regional communities are visible from several countries (Arabic, Austria,
France, Japan, UK).

IPython. Generic tools for RR include the IPython tool and its notebooks [10].
This mature tool created in 2001 allows to create reproducible articles, not only
by editing text in the notebook, but also by allowing code execution and creating
figures in situ. This approach follows closely the definition of a reproducible
scientific publication given by Claerbout. Even though the high activity of the
platform was during 2011–2015 (from the GitHub remote source), this platform
is always active and continues to share the main kernel of the Jupyter platforms
described below.

Jupyter. In 2014 the Jupyter project [11] was started as a spin-off of IPython
in order to separate the Python language used in IPython from all the other

1 https://galaxyproject.org/community/.

https://github.com/galaxyproject/galaxy
https://galaxyproject.org/community/
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functionalities needed to run the notebooks (for example, the notebook format,
the web framework, or the message protocols) [12]. IPython turns then into just
another computation kernel for Jupyter , which nowadays supports more than
40 languages that can be used as kernels2. The Jupyter notebook also provides
new ways to generate interactive webpages from the nbinteract viewer [13]. The
Fig. 2 illustrates an example of Jupyter notebook.

Fig. 2. A Jupyter notebook shown online in a web browser.

Jupyter: The Binder Service. Directly related to the Jupyter platform, this
service offers the possibility to transform any repository containing a Jupyter
notebook source into an online notebook environment. Therefore, user exper-
iments can be reproduced and executed from a simple git repository without
installing any Jupyter server. The Fig. 3 illustrates the three main steps to repro-
duce the results of a demonstration code from a git repository. Note that the
service is free of charge and no registration is needed to build or run the resulting
notebook.

Runmycode.online. In the same line than the previous Binder service, this
tool is able to execute a source code hosted on an external repository [14]. The
website proposes a navigator extension that allows to set the program parameters
and start running the code. It can be run online from various code repositories

2 https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
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Fig. 3. The three main steps to build a Jupyter online notebook from a git repository:
(a) source repository, (b) Binder interface, (c) resulting notebook.

as GitHub, GitLab, or BitBucket, and accepts several languages such as C/C++,
Java, Nodejs, python. PHP, Ruby, and others. The service is free to use.

Code Ocean. Started in February 2017, this platform [15] is a recent initia-
tive from the IEEE with the aim to attach online demonstrations to the pub-
lished articles. It defines itself as a cloud-based computational reproducibility
platform3. The platform is only designed to run code and not to really publish
article even if a DOI is assigned to each source code. Numerous languages are
accepted (Python, R, Julia, Matlab, Octave, C++, Fortran, Perl, Java, Sata,
Lua, Octave). There are fees to pay according to the computational load of the
servers running the algorithms. A free plan exists, but limited to two concurrent
users and 1h/month of computing time.

Note that recently, three Nature journals have run a trial partnership with
this platform, allowing authors to demonstrate the reproducibility of their works
[16]. Such an initiative could be an interesting answer to the reproducibility crisis
mentioned in introduction.

The Fig. 4 illustrates the Code Ocean platform that can be executed online.
The main view of the platform is composed of sub-views showing the inputs and
the results. Note that the source code can also be edited by the user, in a private
environment.

The DAE Platform. In the field of document image analysis, the Document
Analysis and Exploitation platform (DAE ) was designed to share and distribute
document image with algorithms. Created in 2012, the DAE platform contains
tools to exploit document annotations and to perform benchmark [17]. Similarly
to the previous platforms, DAE allows the users to upload their own data and
to combine several algorithms. The user can tune the parameters of each of
the algorithms proposed by the platform. The users have control over the data
uploaded, the parameters used, and the choice of the platform on which the
algorithms are available. The Fig. 5 illustrates an example of the DAE data sets
with different scanned documents. The code is executed exclusively online but is

3 https://codeocean.com.

https://codeocean.com
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Fig. 4. Development environment of the Code Ocean platform, from https://
codeocean.com/2018/09/07/polyline-approximation-with-arcs-and-segments

free to use and without any computing time limitation (contrary to Code Ocean).
The source code of the platform is also open source and available online4.

The IPOL Journal. It is a full peer-reviewed indexed journal where each paper
is associated to an online demonstration and an archive of experiments. The set
of online demonstrations [18] can be seen as an online execution platform that
share some of the characteristics with Jupyter . In particular, IPOL proposes to
run algorithms online through a web interface, to obtain an immediate visual-
ization of the results and to write algorithms in several programming languages.
Moreover, it is free of any cost for authors and users.

IPOL is however exclusively designed to run the demonstration of already
published papers. An original point is the fact that it contains the history of
the different executions with original source images and parameters. The online
demonstrations are build from a simple demo description language avoiding the
author to code the demonstration interface himself.

Regarding the system architecture, IPOL is built as a Service-Oriented Archi-
tecture (SOA) made of micro-services. This type of architecture allows to have
simple units (called modules in its own terminology, or micro-services) which
encapsulate isolated high-level functions. Other examples of service-oriented
architectures made of micro-services are Amazon AWS API Gateway5, Netflix
[19] or Spotify [20].

IPOL and Code Ocean share many features, as a user-friendly demonstration
builder, an online code execution, and an advanced visualization. But they also
have some differences since IPOL stores all experiments performed by the users

4 https://sourceforge.net/projects/daeplatform.
5 https://aws.amazon.com/api-gateway.

https://codeocean.com/2018/09/07/polyline-approximation-with-arcs-and-segments
https://codeocean.com/2018/09/07/polyline-approximation-with-arcs-and-segments
https://sourceforge.net/projects/daeplatform
https://aws.amazon.com/api-gateway
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Fig. 5. Example of database available on the DAE platform, at address http://dae.
cse.lehigh.edu/DAE/?q=browse

in a freely available archive, has demonstrations always free to use, and doesn’t
require authentication to execute a demonstration.

2.2 Dissemination Platforms

Other generic tools can be seen as dissemination platforms since their objective
is to make source code and data widely available to everyone. This category
contains among others:

– ResearchCompendia [21], that stores data and code in an accessible, traceable,
and persistent form.

– MLOSS [22], dedicated to machine learning.
– DataHub [23], that allows to create, register, and share generic datasets.
– RunMyCode [24], that associates code and data to scientific publications.
– IPOL, that, in addition to propose an online execution environment (see

Sect. 2.1), makes available the source code of the algorithm.

The various community code development platforms like GitHub, GitLab,
BitBucket can also be considered as dissemination platforms since they con-
tribute to diffuse source codes. However, the evolution of the repositories over
time is a key question and no guarantees are given from their owners. Despite
this, each user can easily replicate a repository to another platform, thanks to
the distributed version-control systems, as git or mercurial, on which they are
based.

A more global answer to this problem was given in France, leading by
the National Institute in Computer Science and Automation (INRIA), at the

http://dae.cse.lehigh.edu/DAE/?q=browse
http://dae.cse.lehigh.edu/DAE/?q=browse
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origin of a project called Software Heritage. Its aim is to collect repositories
from different platforms into one single place with the plan to ensure their
durability [25]. This system is linked to HAL Open Archives System [26], an
open source paper publication system. The platform de-duplicates any sub-
mitted repository from different platforms but do not review any code nor
evaluate the execution. An interesting perspective could be to propose a way
to obtain a compilation/execution status for each repository. This could be
done, for instance, with tools such as Travis [27] or the Docker framework [28].

2.3 Peer-Reviewed Journals

IPOL Journal. The Image Processing OnLine journal
was founded in October 2009 at the initiative of Nico-
las Limare and Jean-Michel Morel at CMLA (Univer-
sité Paris-Saclay), with the first paper published in 2010.
Motivated by RR and first focused on image processing, it differs from classic
journals since all articles are provided with (i) a mathematical description of the
method, as detailed as possible, (ii) the source code of the presented algorithms,
and (iii) an online demonstration [29]. Each demonstration has an archive that
stores the history of all executions performed with data from the users. As in
classic journals, it has an Editorial Board and every article is assigned an edi-
tor that will put the paper under peer-review (both the article and the source
code). A mandatory requirement is that each description (pseudo-codes, formu-
las) given in the text need to match exactly to the source code implementation.

IPOL is an Open Science journal, with an ISSN and a DOI, that contains
more than 140 papers covering various image processing subdomains like image
de-noising, stereovision, segmentation, 3D mesh processing, or computer graph-
ics. The journal was extended to video and audio processing, as well to general
signal processing, including physiological signals.

The main goal is to establish a complete state of the art in algorithms for
general signal processing.

ReScienceJournal. This peer-reviewed journal was cre-
ated in 2015 at the initiative of Konrad Hinsen and Nico-
las Rougier. Their motivation follows the replication main
goals, as defined by [30] or [5]. ReScience aims to promote
already published work and highlights the reproduction of research results in
new or different contexts. The authors of the original work are not allowed to
submit their own work, even if they claim to have changed their results, archi-
tectures, or frameworks. The submission process takes place from the GitHub
platform with a direct non-anonymous interaction through a Pull Request pro-
cess, used by authors to integrate the new contribution in a shared project.
ReScience is an online Open Science journal, with article in PDF form. It has a
classic organization with volume number, DOI, and reviews available online on
GitHub.
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A typical contribution to ReScience is the case of an author who would
like reproduce an existing method for which its authors do not propose any
implementation. The author can then replicate the method from the original
paper and submit his implementation to ReScience, including a description of
the main steps to reproduce the results.

The journal contains currently 22 accepted contributions, all of them success-
ful replications. Failing replication experiences can also be potentially accepted
for publication, even if so far all published papers concern successful replications.
A call for replication is diffused on the GitHub repository, allowing to suggest the
replication of published papers [31]. The call is materialized by adding an issue
on the repository, from which users can discuss and interact. A more detailed
presentation of the journal can be found in a recent article [6].

JOSS Journal. The Journal of Open Source Software
was founded by Arfon Smith in May 2016. The motivation
to create this new journal comes from the fact that “Cur-
rent publishing and citation do not acknowledge software
as a first-class research output” [32]. To answer this, the journal acknowledges
research software and contributes to offer modern computational research results.
JOSS is a free Open Science journal and similarly to the ReScience journal, it
is hosted on GitHub with a public peer reviewing process that provides direct
visibility. As other classic journals it has an ISSN number and the articles a
Crossref DOI.

Associated to its source code archive, a JOSS publication contains also a PDF
with a short abstract and a short description of the content with a link to the
forked repository of the software. The very short description is voluntary since
novel research descriptions is not requested (and not allowed) and is not what
the journal is focused on. Publications of APIs are neither allowed. The source
code needs to be open source and the submitter needs to be main contributor.
Another requirement of the journal is to submit a complete and fully functional
product.

The journal covers several domains including Astronomy, Bioinformatics,
Computational Science, Data Science, General Engineering, among others. It
contains currently more than 551 accepted papers. With a basis of 100 papers
per year, the editor of the journal estimates the cost around of $6/paper [32].
The current editor strategy is to handle software versions throughout the publi-
cation steps. Requesting major new features can be important to maintain the
value for the publications itself while minor updates are also welcome to ensure
the maintenance of the software.

Insight J Journal. As JOSS, Insight J is an online Open
Science journal and covers the domain of medical image pro-
cessing and visualization [33]. It was created in 2005 by the
Insight Software Consortium and contains currently 642 pub-
lications with 768 peer open reviews. All the publications
do not necessary receive reviews and numerous papers are
visible online and do not have any reviews even ten years after publication.
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A star based rating process is proposed for any user and allows to evaluate the
paper, source code and the review quality. A top ranked list of publications is
available along with the number of downloads and views.

Contrary to the JOSS journal, Insight J is mainly related to a specific library
(ITK) and can be seen as a way to increase the value of contributions to this
library. Accepted publications usually propose a new module that can be poten-
tially integrated within the library. It generally contains a scientific description
with a detailed description of the implementation proposed, using the ITK frame-
work together. The journal has an ISSN number and all its papers are indexed
by Google Scholar, thus allowing to compute a citation score. The number of
citations of the most downloaded paper is relatively low compared to other sim-
ilar journals. For instance, the Insight J paper of Tustison et al. [34] was cited
68 times while, for instance, the popular IPOL paper of Grompone et al. [35]
accounts 373 references. However, it appears that the publications in Insight J
contribute to promote other associated papers that are published in more gen-
eral classic journals. For example, an associated paper published in a medical
imaging journal [36] obtained 1230 citations.

Notes that two other variants exist with the same form and identical publica-
tion process but focused on scientific visualization: the VTK Journal [37] (using
VTK library) and the MIDAS journal for visualization and image processing [38].

In the context of RR, these almost new journals offer new complementary
alternatives of publication that can break with the usual procedures of scientific
communication. The model of the IPOL journal follows a larger content model,
including scientific descriptions, online demonstrations and perfect matching
between algorithms and source codes. More focused on the replication, ReScience
covers a larger domain and publication related to already known results can fos-
ter the discussion in the scientific community. Research software can also be pub-
lished in the JOSS journal whereas contributions on image processing libraries
can be proposed to Insight J .

3 Comparison

This section summarizes and confronts the characteristics of the previously pre-
sented platforms. It shows their strengths and weaknesses as well as opportunities
and eventual threats of used approaches. The following criteria are evaluated:

(1) Free to use
(2) No mandatory registration
(3) Several programming languages allowed
(4) Peer-reviewed code and data
(5) Easy to use by the non-expert
(6) General scope
(7) Possibility to upload user data
(8) Interaction through a web interface
(9) Access to a public and persistent archive of experiments

(10) Design of automatic demonstration from textual description or visual tool
(11) Allow to modify the source code before execution
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Platform (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Galaxy � ✗ (A) � (B) ✗ � � ✗ ✗ ✗

DAE � ✗ (A) � ✗ ✗ � � ✗ ✗ ✗

IPython � � ✗ – ✗ � ✗ ✗ – ✗ �
Jupyter � � � ✗ ✗ � � � ✗ ✗ �
Code Ocean (C) ✗ � ✗ (D) � � � ✗ � �
Res. Comp. � � � ✗ ✗ � ✗ ✗ ✗ – –

DataHub � ✗ – ✗ � – � (E) – – –

RunMyCode � � � ✗ ✗ � ✗ (E) ✗ – –

IPOL (F) (G) � � � � � � � � ✗

Legend

– Not Applicable

(A) It allows users to execute the proposed algorithms, but it is not a
dissemination platform and thus it does not accept a list of languages.
Instead, it wraps the algorithms and incorporates them

(B) It frees the user from using command line tools, but it still requires to
know the details of the algorithms to perform genomics analysis

(C) A free plan is offered, but limited to 1h/month of computing time, and a
single researcher user. With a cost of $20/month, it allows 10h/month
and 5 concurrent users

(D) A web interface is proposed, but the usability depends on the author who
creates its own interface

(E) The user interacts through a web interface without interactive
demonstration

(F) The demonstrations are free to use up to some limits (say, size of the data
or computation time), but industrial use of demonstrations and
applications requires payment

(G) True for demonstrations using a sample learning dataset. To use the
platform as a service, the user needs to be connected with a role
authorizing this usage

This comparison of platforms should not be seen as a competition to decide
if a platform is better or worse than the others, but as a way to decide which
platforms are more adapted to a particular application.

Almost all platforms are free to use (1) with the exception of Code Ocean,
which offers a very limited free plan.

The possibility of using a platform without a prior registration (2) greatly
helps its diffusion and, in the case of scientific applications, it allows spreading
knowledge. Some of platforms are mainly oriented to specialists, as for instance
Galaxy (genomics research).

For any of the platforms publishing source code it is important that at least
the most popular languages and frameworks are supported (3). In the case of
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the Galaxy and DAE platforms that do not publish algorithms but use them
to offer a service, they solve the problem by wrapping the algorithms. In the
case of platforms publishing algorithms like Code Ocean, ResearchCompendia,
RunMyCode, and IPOL, they accept the most popular languages, frameworks
and libraries.

About the peer-review of the code (4), Galaxy and DAE do it before wrap-
ping and incorporating them into their platform, once the interest and oppor-
tunity of making publicly available a particular algorithm is clear. Others like
Code Ocean, DataHub, RunMyCode, IPython and Jupyter do not peer-review
the code or the data. The code is carefully peer-reviewed only when the plat-
form publishes paper in a journal, like IPOL, or when algorithms are offered as
a professional service, like Galaxy or DAE .

In addition to the journal aspect, IPOL can be used as a computational
platform. It allows users to create workshops, which are demonstrations without
associated paper. The workshops are not publications and, therefore, are not
peer reviewed. This can allow to use IPOL as a computational facility in order
to, for instance, monetize services. Some platforms such as Galaxy or DAE try
to hide the technical details as the direct calls of tools from the command line
and they offer instead a web interface (8). Jupyter and Code Ocean also hide
the direct interaction with the framework by proposing a web interface acting as
a proxy for execution and visualization. IPOL solves the problem by a flexible
interface that can be adapted to each application.

Some of the platforms are domain specific (6) like Galaxy or DAE , whereas
others are more general. This frees the domain-specific platforms to create dif-
ferent web interfaces depending on the final application but, on the other hand,
makes them less flexible.

For online execution platforms willing to reach RR, it is mandatory that
they allow users to upload their own data (7). And, indeed, all of them propose
this functionality. Another interesting add-on is to have a permanent and public
archive of experiments (9). In the case of Galaxy , DAE , Jupyter , Code Ocean,
they are no publicly accessible. Only IPOL has a permanent, public and open
archive of experiments.

For the platforms which offer demonstrations, an interesting feature is to
modify the source code of the method before running the demo (11). This is
only found in Code Ocean. Both Code Ocean and IPOL allow to create new
demonstrations (10) just with a simple textual description (IPOL) or a visual
tool (Code Ocean).

4 Augmented Publications

The classic way of communicating scientific publications is more and more aug-
mented with new emerging initiatives based on the reproducibility. In the domain
of Geometry Processing, the Graphics Replicability Stamp Initiative (GRSI)
was created in order to certify the reproduction of both the results and figures
contained in the published paper [39]. This initiative was created at the thir-
teenth Symposium on Geometry Processing where it was proposed to authors of
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accepted papers to apply to this stamp. Note that it was initially known as the
Reproducibility Stamp and the new “Replicability” term differs from the defini-
tion used in this paper and is in fact related to the reproducibility. The initiative
was continued and extended through collaborations with journals ACM TOG,
IEEE TVCG, Elsevier CAGD and Elsevier C&G. Currently 32 contributions
received the stamp after 3 years of activity. The contributions are all hosted on
the GitHub repository.

More related to the Pattern Recognition domain, a similar initiative was pro-
posed with the first workshop on Reproducible Research in Pattern Recognition
(RRPR 2016) [40]. This satellite workshop was proposed along the ICPR confer-
ence and a reproducible label was given to authors of the main conference after
review. The aim of the label is to ensure reproducibility of the paper results, i.e.
figures and tables. The labeled contributions are also hosted on GitHub from a
fork of the authors repository.

5 Conclusion

This paper presented an overview of the main structures contributing to facil-
itate reproducible works. Starting from the RR platforms that change poten-
tially the way the information is spread, we explored four main journals that
achieve to make original contributions that go beyond classic publications. We
also described recent initiatives allowing to extend or augment classic publi-
cation procedures, in particular by showing reproducible results in the form
of online algorithm executions. Reproducible Research is absolutely needed to
avoid fraud, to establish the state of the art in all involved disciplines, and to
definitively ensure reliable scientific practices. All the presented platforms make
a valuable contribution in this direction and, with all other mentioned initiatives,
will certainly help to disseminate good science and reliable knowledge.
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Abstract. We propose an algorithm computing the tree of shapes of an
image, a unified variation of the component trees, proceeding from the
root to the leaf shapes in a recursive fashion. It proceeds differently from
existing algorithms that start from leaves, which are regional extrema of
intensity, and build the intermediate shapes up to the root, which is the
whole image. The advantage of the proposed method is a simpler, clearer,
and more concise implementation, together with a more favorable run-
ning time on natural images. For integer-valued images, the complexity
is proportional to the total variation, which is the memory size of the
output tree, which makes the algorithm optimal.

Keywords: Tree of shapes · Component trees · Level sets

1 Introduction

1.1 The Tree of Shapes

Extremal regions of an image are connected regions of an image where the inten-
sity is above or below a certain gray level. These generalize the shapes of the
classical mathematical morphology of binary images to gray-scale. Indeed, this
just amounts to binarize the gray level image at a certain level and consider
the resulting shapes. As there is not a single threshold where interesting shapes
occur, all possible thresholds should be applied. For example, for an 8-bit image,
all integer values from 0 to 255 can be used as thresholds. It is clear that when
the threshold increases, minimal regions (those below the threshold) increase
with respect to set inclusion, while maximal regions decrease. From these simple
observations, two trees can be built, the minimal and the maximal trees, called
the component trees. In each tree, a shape is an ancestor of another if the first
contains the second. The root is the full set of pixels, obtained at threshold 255
in the min-tree and 0 in the max-tree. These observations are at the basis of effi-
cient algorithms to compute the component trees, either bottom-up, i.e., from
the leaves to the root [2,20], or top-down, from the root to the leaves [21,22].
While some of these algorithms are very efficient for 8-bit images, others beat the
former on higher bit depths. A full comparison is available in the literature [4].
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Naturally, not all extremal regions are significant or are the projection of a
single 3D object in the image. However, a simple criterion, like a high contrast,
can be enough to recover some important shapes that may be used as features
in image registration or disparity estimation. This is the principle at the basis
of maximally stable extremal regions (MSER) [14], which yield point correspon-
dences between images of the same scene in the same manner as the similarity
invariant feature transform (SIFT) [13] and its variants. A more recent alterna-
tive to MSER is shapes just before their merging in a component tree, so-called
tree-based Morse regions [26]. Some of these methods are compared in a famous
study [16].

The need for extraction of both component trees can be lifted by using the
tree of shapes [18]. The shapes involved in this construction are built from the
connected components of extremal regions. The internal holes of the latter, that
is all bounded connected components of their complement except one, the exte-
rior, are filled, yielding the shapes. It happens that shapes, whether issued from
minimal or maximal extremal regions, can still be ordered in an inclusion tree [1].
This unique structure is well suited for contrast-invariant filtering [6,19], self-
dual filtering [10,12], segmentation [24,25], or image registration [9,17].

1.2 Related Work

The computation of the tree of shapes can be done by merging the component
trees [5]. The advantage is that the algorithm works in any dimension, but it is
not particularly efficient for 2D images. The standard algorithm, the fast level
set transform (FLST) [7], works in a bottom-up fashion, starting from the leaves
and leveling the image after each extraction of shape [15]. Interpreting the image
as a continuous bilinear interpolated surface yields the tree of bilinear level lines,
which can be efficiently computed based on level lines [7,8], which is akin to the
proposed algorithm. The closer to the proposed algorithm is top-down [23], from
root to leaves, but only applicable to hexagonal connectivity, while ours works in
the standard 4- and 8-connectivity. Finally, a different definition of shapes based
on multi-valued images [11] has the potential to be computed very efficiently,
but no public implementation seems available.

1.3 Background and Notations

We consider discrete images I defined on pixels. Each pixel p ∈ {0, . . . , w − 1}×
{0, . . . , h − 1} gets a value I(p) ∈ R. We consider the extremal regions, or level
sets: {p : I(p) ≤ λ} and {p : I(p) ≥ λ}. The 4-connected components of the
former are called inferior components and the 8-connected components of the
latter are called superior components. The asymmetry is necessary here to get
an inclusion tree later on. Assuming a component C not touching the image
boundary {0, w − 1}×{0, . . . , h− 1} ∪ {0, . . . , w − 1}×{0, h− 1}, we can fill all
connected components of its complement (8-connected if C is an inferior com-
ponent, 4-connected otherwise) except the one containing the image boundary,
yielding a shape S. The shapes built from all such components, together with
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the set of all pixels R, has an inclusion tree structure: A shape S is an ancestor
of another S′ iff S′ ⊂ S. If S and S′ are not nested like here, then S ∩ S′ = ∅.
Since any pixel p is inside a shape (at least R), we can consider all shapes con-
taining p, which are nested since they intersect; the smallest of them is noted
S[p]. Pixels p1, . . . , pk such that S = S[p1] = · · · = S[pk] are called the private
pixels of S. In that case, we must have I[p1] = · · · = I[pk], called the gray level g
of S. A pixel p in S having a 4-neighbor (if S is inferior) or 8-neighbor (if S is
superior) q outside S is said to be at the boundary of S, while q is said to be an
external neighbor of S. It seems that all private pixels of S are at its boundary
or connected to such a pixel inside the iso-level Ig := {p : I(p) = g}. Actually,
this is not all, since all pixels at the external boundary of a child shape of S
in the tree having gray level g and their connected components in Ig are also
private pixels. This is illustrated Fig. 1. The private pixels of shape B are two
components of iso-level at the boundary, together with another component not
at the boundary, but at the immediate exterior of C and D, children of B.
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Fig. 1. Tree of shapes of a 7 × 8 image. The boundaries (level lines) of superior shapes
are in red and of inferior shapes in blue. The root is A, its child is B, whose children
are C and D. On the right, the arrangement of pixels according to their smallest shape
(Matlab range notation).

2 Following a Level Line

The key element of the algorithm is that it is based on level lines rather than level
sets. A shape is the “interior region” delimited by a level line and the level line
is the boundary of the shape. Each level line is trodden twice by the algorithm:
the first time to extract the level line itself and find the gray level of the shape,
along with one private pixel; the second time to find possible additional private
pixels of the parent shape that are not connected to its boundary.

The level line is a sequence of consecutive edgels. An edgel (“edge element”)
can be represented as the common boundary between two adjacent pixels, that
is pixels for which one or two coordinates, x and y, differ by one unit. In order
to ensure that each pixel is involved in exactly 8 edgels and to avoid exceptions
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for pixels at the boundary of the image, we represent rather an edgel by one
pixel and one cardinal direction: east (E), north (N), west (W) or south (S), and
the diagonal directions. An edgel is thus oriented, and the pixel is called its
interior pixel, while its exterior pixel, if it exists, is the pixel adjacent to the
interior one across the direction, see Fig. 2(a). Consecutive edgels either share a
common interior pixel (we say the level line “turns left”) or a common exterior
pixel (the level line “turns right”), or have their interior pixels adjacent along
their identical directions (the level line “goes straight”).

nnw
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(a) Edgels

L R
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(b) Direction choice

L L̄

R right
right (8)
left (4)

R̄ straight left

(c) Following rules

p

8

p
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(d) Turns

Fig. 2. Edgels and level lines following. (a) The edgels associated to interior pixel p
are for example (p, s) = (p, E) and (p, ne) = (p, NW ), the latter being diagonal. (b)
When following a level line (here at edgel (p, N)), the new edgel depends on whether
L and R are within the shape. (c) Rules for next edgel, depending on whether L and
R are above the threshold or not (L̄ and R̄). (d) Turns left and right. The diagonal
direction is followed iff the connexity matches the displayed number.

To be a level line of the image I, a sequence of consecutive edgels L =
(e0, . . . , en−1, en = e0), with ei 	= ej for 0 ≤ i < j < n, must satisfy

g := max
0≤i<n

I(Int(ei)) < min
0≤i<n

I(Ext(ei)) or (1)

g := min
0≤i<n

I(Int(ei)) > max
0≤i<n

I(Ext(ei)). (2)

In the first case, we say that L is an inferior level line, which is the boundary of
an inferior shape, while in the second case L is a superior level line, boundary
of a superior shape. In any case, the gray level g is called the level of L and of
the shape whose boundary is L. In the above formulas, intensities of nonexistent
exterior pixels are replaced by −∞. If no exterior pixel exists in the sequence,
that is, L follows the boundary of I, the right-hand side becomes −∞ and we are
in the second alternative, a superior level line that is the boundary of the root
shape. In general, any edgel with no exterior pixel is of superior type1. Their
order indicates the type of the level line.

As soon as we have an edgel e with I(Int(e)) 	= I(Ext(e)), e is in a level
line of I. In our algorithm, we need to find the largest shape, in the sense of set
1 This choice is arbitrary, we could have chosen +∞ and the root shape would have

been of inferior type.
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inclusion, whose boundary L includes e, that is, the one whose gray level g is as
close as possible to I(Ext(e)), which may be different from I(Int(e)). Starting
from e, we need to find the following one in the sequence L(e) we are building.
We iterate this until we reach again e. For this, the procedure needs to know
which direction to follow (left turn, right turn, or straight ahead). This depends
on the gray levels of two pixels, L and R in Fig. 2(b). The rules for finding the
next edgel are in Fig. 2(c) according to whether L (resp. R) is in the shape or
not, the latter case being noted L̄ (resp. R̄). The rule indicates which direction to
take: straight means continue to the direction of the arrow, that is, the interior
pixel becomes L and the direction does not change. The indications “left” and
“right” indicate a turning direction. In a left turn, the interior pixel remains the
same, but not in a right turn. The complex case is L̄∧R, which is a saddle point.
The turn to take depends on the connexity: left for 4-connexity and right for
8-connexity. Performing a turn is explained by Fig. 2(d). A left turn is performed
in two steps in 8-connexity, first with a diagonal direction (current direction N
would be followed by NW , then W in the illustration), and also for a right turn in
4-connexity (NE then E). The procedure to follow a level line is summarized in
Algorithm 1. According to Fig. 2(d), left and right turns can actually generate
two edgels depending on connexity. In such case, the first edgel appended is
diagonal, and the following edgel finishes the turn.

Data: Edgel e0, with I(Int(e0)) �= I(Ext(e0))
Result: L(e0) = (e0, . . . , en−1, en = e0): largest level line through e0
λ ← I(Ext(e0))
repeat

l ← Int(go straight(ei)), r ← Ext(go straight(ei))
L ← sign(I(l) − λ) = sign(I(Int(e0)) − λ)
R ← sign(I(r) − λ) = sign(I(Int(e0)) − λ)
if L ∧ R then ei+1 ← turn right(ei)
if L ∧ R̄ then ei+1 ← go straight(ei)
if L̄ ∧ R̄ then ei+1 ← turn left(ei)
if L̄ ∧ R then // Saddle point: turn depending on connexity

if I(Int(e0)) > λ then ei+1 ← turn right(ei)
else ei+1 ← turn left(ei)

i ← i + 1

until ei = e0

Algorithm 1. Follow a level line from an initial edgel

3 Top-Down Algorithm

3.1 Representation of the Tree

A shape is stored as a structure comprising its type (inferior or superior), its
level g, its contour (array of positions) and an array of its pixels. Moreover,
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it contains pointers to its parent shape, its “first” child, and its next sibling,
if any. In that manner, all children of a shape form a list structure. This is
all that is required for walking the tree in any way. Pixels are stored taking
advantage of nesting: private pixels of a shape come first in the array, followed
by arrays of pixels of its children. This recursive ordering allows to have a single
array containing a permutation of all pixels of the image, and each shape has a
pointer for its beginning and a pointer to its end inside this array (see Fig. 1).
Notice also that such an arrangement provides an O(1) procedure to determine
whether one shape is a descendant of another, by comparison of pointers.

The tree is represented as an array of shapes2. It stores also an index S[p],
giving for each pixel p the shape of which it is a private pixel.

3.2 Top-Down Recursive Extraction

The algorithm 2 starts from an edgel e whose internal and external pixels
have different intensities. The procedure create tree builds the shape S whose
boundary is L(e), and recursively the tree rooted at S. In order to do that, the
first loop of the algorithm follows L(e) and stores a single internal pixel p, which
is a private pixel of S. Its gray level g is the closest to I(Ext(e)) among all inter-
nal pixels of edges in L(e). This loop also reinitializes S[.] to ∅ at each interior
pixel. This is necessary since the call of find pp children from the parent P
(procedure detailed below) has overwritten it with tag P . After this loop, the
level g of S is stored and the registered private pixel p is put into a queue Q.
The tag S[p] is set to S, like all subsequent pixels pushed into Q.

Data: edgel e
Result: Tree rooted at largest shape S whose level line L goes through e
λ ← I(Ext(e)) // Level of parent

p ← Int(e)
for ei ∈ L(e) do // Line following, Algorithm 1

S[Int(ei)] ← ∅
if |I(Int(ei)) − λ| < |I(p) − λ| then

p ← Int(ei)

S.type ←
{

inf if I(p) < λ

sup if I(p) > λ

S.g ← I(p), S[p] ← S
C ← find pp children(S, p) // C is an array of edgels

for ei ∈ C do
S′ ← create tree(ei) // Recursive call for children

Insert S′ as child of S

Algorithm 2. create tree, main routine

2 The first shape in the array is the root, corresponding to the full image, and parents
have a position before their children. This is a consequence of the top-down nature
of the algorithm.
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All pixels that will transit in Q will be the private pixels of S. The second step
(Algorithm 3) dequeues the waiting pixel p from Q and examines its neighbors
(4- or 8-neighbors depending on the type of S). For each one q not already
explored (S[p] = ∅), we have two possibilities: if I[p] = I[q], q is also a private
pixel, it is marked as explored (S[q] = S) and inserted in Q. Otherwise, the edgel
e = (q, p) is on a level line L(e) bounding a shape that is a child of S. This edgel
is put in an array C for later treatment. The level line L(e) is followed, with
a twofold goal: mark internal pixels r as explored (S[r] = S) so as to prevent
a re-exploration from a different edgel; if an exterior pixel r is unmarked and
I(p) = g, mark r and enqueue it in Q, since it is a private pixel.

Data: Shape S, one private pixel p0

Result: Find all private pixels of S; Return array C of edgels, one per child
level line.

Q ← p0 // Push p0 in a queue

while Q �= ∅ do
Q → p // Pop pixel from Q, store in p
Add p as private pixel of S
for q ∼ p and S[q] = ∅ do // Unexplored neighbors of p

S[q] ← S
if I(q) = I(p) then

Q ← q // Push q, private pixel

else
e = (q, p) // Edgel with q as interior pixel

C ← e
for ei ∈ L(e) do

S[Int(ei)] ← S
if S[Ext(ei)] = ∅ and I(Ext(ei)) = S.g then

Q ← Ext(ei) // This is a private pixel

S[Ext(ei)] ← S

Algorithm 3. find pp children, find private pixels of S and one edge
per child level line

Each edgel in C is at the boundary of a different child of S. At this point, all
internal and all external pixels of an edgel along the boundary of S is marked
by S[p] = S. Each one provokes a recursive call to create tree, whose first step
puts back internal pixels along the boundary to ∅, as seen above.

3.3 Complexity

At any edgel e, there are at most |I(Int(e))−I(Ext(e))| level lines going through e
if I takes only integer values. Each level line is followed twice, so that the com-
plexity of the algorithm is

O(
∑

p∼p′
|I(p) − I(p′)|) = O(TV(I)), (3)
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the (discrete) total variation of I. Notice that if level lines are stored with the
shapes, this complexity is asymptotically optimal, since it is proportional to
the output size. However, for large images storing the level lines can be too
demanding, and our code makes this storage optional at compile time.

3.4 Comparison with the FLST

The reference algorithm for extraction of the tree of shapes is the FLST [7]. Its
high level operation is summarized in Algorithm 4. Its procedure is bottom-up,
that is, it starts from leaves and goes up to the root of the tree.

1 for pixel p do
2 if p local extremum then
3 while true do
4 Extract iso-level S = cc({I = I(p)}, p)
5 if S regional extremum without hole then
6 Insert S as new shape in tree
7 for q ∈ S do
8 if S[q] = ∅ then
9 S[q] ← S

10 else
11 I(q) ← I(p)
12 Add highest ancestor of S[q] as child of S

13 p ← neighbor of S of closest intensity to I(p)
14 else
15 break while loop

Algorithm 4. High-level operation of the FLST.

It relies on the observation that a leaf of the tree of shapes is a regional
extremum of the image with hole, and that a regional extremum contains a local
extremum. Pixels are thus sequentially scanned, and when a local extremum p
is met, the procedure tries to extract a shape and its ancestors:

1. The set S of pixels connected to p at the same level I(p) are extracted by
region growing;

2. If S is a regional extremum without hole then S is a new shape, all pixels q
of S with no smallest associated yet are private pixels of S, while other pixels
of S are set to level I(p) and their largest ancestor yet (upper-most parent of
S[q] is set as a child of S.

3. p is moved to a neighbor of S of closest intensity to I(p) and we continue to
step 1, that is we try going up the tree. It can be noticed that the new S will
be a superset of the current one, so the region growing needs not start from
the single pixel p.

The bottleneck of the algorithm is the abortion of the while loop at line 15,
whose goal is to walk up the tree (to the root), when the set S presents one or
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several internal holes: these holes are filled one by one at line 11, but only the
last one is able to proceed up the tree and extract S as a shape.

The worst case scenario for the FLST is in the presence of a large uniform
area with many holes, for example a checkerboard. Each black case of one pixel is
a hole in the white shape, so that the complexity is O(n2) with n the number of
pixels. By contrast, the proposed algorithm does not have any particular trouble
with such a situation, yielding a complexity O(n).

On the contrary, when a deep hierarchy of nested shapes is present, the
proposed algorithm is quite slow, since a new level line has to be followed for
each one. This worst situation can happen for high bit-depth image, typically
when each pixel has its own single gray level. There are as many shapes as pixels,
and the length of level lines could be also large. Another trouble is that the
recursivity follows the tree depth and could result in a memory stack overflow.
In this situation, the FLST has no difficulty at all, just walking up the tree shape
by shape without break.

Roughly speaking, the proposed algorithm is advantageous for low bit-depth
images and wide (many children) but shallow trees, while the FLST prefers
narrow (few children) but deep trees. It happens that for 8-bit images, the former
is more frequent than the latter. This is demonstrated by the experiments of the
next section.

4 Experiments

Our implementation3 is coded in C++. The core of the algorithm is about 250 lines
of code. It is compiled with the GNU compiler gcc version 4.8 in optimized mode
and run on an Intel Xeon CPU E5-2643 at 3.3 GHz. Experiments are performed
on different crops of large Wikipedia images. Each crop is at the center of image.
Run times of the proposed algorithm and of the classical FLST are in Fig. 3.

On the Church image4, a regular photograph, both the proposed algorithm
and the classical FLST are performing well, with a significant advantage for the
proposed algorithm beginning at about 10 Mpixels. Notice the time spent for
our algorithm is roughly linear, so as the TV. For the Meteo image5, a satellite
image, our algorithm is quite fast even at high resolution, while the classical
FLST seems to have a super-linear running time. Speed-ups of our algorithm are
very significant here. Finally, for a simple Cartoon image6, with a low TV, our
algorithm performs very well (5 seconds at 20 Mpixels), while the classical FLST
takes above 120 seconds at 5 Mpixels, and more than 500 seconds at 9 Mpixels.
This is because such a situation is not favorable to the FLST, with some shapes

3 https://github.com/pmonasse/flst.
4 https://upload.wikimedia.org/wikipedia/commons/5/5e/12-04-06-senftenhuette-

by-RalfR-08.jpg.
5 https://upload.wikimedia.org/wikipedia/commons/6/6b/02S Dec 8 2011 0600Z.

jpg.
6 https://upload.wikimedia.org/wikipedia/commons/6/6c/0-cynefin-ORIGINEEL.

jpg.

https://github.com/pmonasse/flst
https://upload.wikimedia.org/wikipedia/commons/5/5e/12-04-06-senftenhuette-by-RalfR-08.jpg
https://upload.wikimedia.org/wikipedia/commons/5/5e/12-04-06-senftenhuette-by-RalfR-08.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6b/02S_Dec_8_2011_0600Z.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6b/02S_Dec_8_2011_0600Z.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6c/0-cynefin-ORIGINEEL.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6c/0-cynefin-ORIGINEEL.jpg
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having a high number of children. Each time a child is extracted, the FLST levels
it to the gray level of the parent, until it realizes that more children are to be
extracted. In such a situation, the path going up the tree has to stop until all
children are extracted. The proposed algorithm has no such problem.

The proposed algorithm extracts the tree of shapes of Church (60 Mpixels)
in 54 s, of Meteo (56 Mpixels) in 32 s, and of Cartoon (300 Mpixels) in 85 s. This
shows that the algorithm, although single thread, is able to handle large images
in reasonable time.

Fig. 3. Run-time with respect to image size.

5 Conclusion

We have presented an algorithm that computes the tree of shapes by starting
from the root and proceeding downward to the leaves. Experiments show that
it is more efficient on natural images, and the algorithm is even optimal on
integer-valued images.

One minor drawback is that the current implementation assumes a priori
a fixed gray level outside the image frame, whereas its prime concurrent, the
FLST, adapts to the image contents. A possible solution to recover this feature
is to compute two trees, one when the outside is below the minimal value in the
image and the other where it is above the maximal value. However, the root-to-
leaf extraction of the second tree can be stopped as soon as shapes do not meet
the image boundary, because these shapes are common to both trees. It remains
only to sort the shapes meeting the boundary from both trees to put them in
the correct hierarchy [5].

Further experiments would be needed in order to compare with a modified
version of the FLST that extracts the full tree in several passes with increasing
maximal area [7], which alleviates the problem of wide trees. Another worthwile
comparison is with a quasi-linear algorithm that transforms the extraction to a
max-tree computation into a larger image [3].

A possible extension of the algorithm is to derive a parallel implementation
for handling extra-large images. Indeed, since extracting a subtree rooted at
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some node of the tree has no side-effect on its exterior, i.e., the rest of the image,
different threads could handle the bifurcations in the tree (several children to
common parent), each one building the subtree rooted at a sibling, without need
for synchronization. This is in strong contrast to bottom-up algorithms where
threads building up from different leaves would need to wait for each other when
they have to merge at their common ancestor.
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Abstract. Recently, a sufficient condition, namely quasi-regularity, has
been proposed for preserving the connectivity during the process of
digitization of a continuous object whose boundary is not necessarily
differentiable. Under this condition, a rigid motion scheme for digital
objects of Z2 is proposed to guarantee that a well-composed object will
remain well-composed, and its global geometry will be approximately
preserved. In this paper, we are interested in polygons generated from
digital objects and their rigid motions in Z

2. For this, we introduce a
notion of discrete regularity which is a restriction of quasi-regularity for
polygons. This notion provides a simple geometric verification, based on
the measure of lengths and angles, of quasi-regularity which is originally
defined with morphological operators. Furthermore, we present a method
for geometry-preserving rigid motions based on convex decomposition of
polygons. This paper focuses on, the implementation and on the repro-
duction of the method linking to an online demonstration. The way of
using the C++ source code in other contexts is shown as well.

Keywords: Rigid motion · Digital topology · Quasi-regularity ·
Well-composedness

1 Introduction

Rigid motions (i.e. transformations based on translations and rotations) are
involved in many image processing and analysis applications (e.g. segmentation
[2], classification [1], registration [24] or tracking [23]). In such applications, the
input data are usually digital images which are obtained by sampling and quan-
tification, namely a digitization, of continuous objects. Due to the digitization,
the resulting digital object may have different properties than those of the orig-
inal continuous one [6].
c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 55–70, 2019.
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Fig. 1. (a) X ⊂ Z
2 with the square grid of Z2 and the associated Voronoi cell bound-

aries. (b) Rigid motion followed by a digitization applied on the square grid of (a). (c)
The transformed result which is not topologically equivalent to (a); the object is split
into two components if we consider the 4-connectivity.

In this article, we are interested in rigid motions on digital images defined
on Z

2. Contrary to rigid motions in R
2 which are well-known as topology- and

geometry-preserving operations, the rigid motions defined on Z
2 generally do not

preserve these properties, as illustrated in Fig. 1. In this context, some studies
were recently proposed for providing topological guarantees when applying rigid
motions on digital objects [15,16]. Besides, a method is proposed in [13] for
convexity and connectivity-preserving rigid motions on Z

2.
In [14], a morphology-based notion, called quasi-r-regularity, has been pre-

sented together with a rigid motion model that allows to preserve topology and
geometry of the shape of the digital object, in particular those of its boundary,
under arbitrary rigid motions. Inspired by this work, we investigate this notion
in a discrete geometrical way for polygonal objects. More precisely, we intro-
duce the notion of discrete-r-regularity which is a restricted quasi-r-regularity
to polygons. Furthermore, we propose an implementation of the rigid motion
scheme based on polygonal modelling of digital objects in [16] using a convex
decomposition of polygons. More specifically, we use a (continuous) polygon P
generated from a digital object X with some conditions such as X = P(X) ∩ Z

2;
we transform and digitize this polygon for obtaining a final transformed digital
object in Z

2. We show that the topology and some geometric properties of X are
preserved under rigid motions if the polygon is discrete-1-regular.

This article is organized as follows. In Sect. 2, we recall useful notions. The
main results with the method of rigid motion are presented in Sect. 3. Then, we
describe the codes and how to reproduce results in Sect. 4.

2 Preliminaries

2.1 Digitization and Topology Preservation

A digital object X ⊂ Z
2 is generally obtained as the result of a digitization

process applied on a continuous object X ⊂ R
2. In this work, we consider the
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Fig. 2. (a) A continuous object X in R
2. (b) A Gauss digitization of X, leading to the

definition of X which is composed by the black points of Z2 within X. (c) The digital
object X represented as a set of pixels. The objects X and X are not topologically
equivalent: the digitization process led to a disconnection, due to the resolution of the
discrete grid, not fine enough for catching the shape of X.

Gauss digitization [6], which is the intersection of a connected and bounded set
X with Z

2

X = X ∩ Z
2. (1)

The digital object X is a finite subset of Z2; from an imaging point of view, it
can be seen as a subset of pixels, i.e. unit squares defined as the Voronoi cells of
the points of X within R

2. The structure of X can be defined in various topological
frameworks which are mainly equivalent [11] to that of digital topology [7].
However, digital topology of X is often non-coherent with continuous topology of
X. This fact is illustrated in Fig. 2, where a connected continuous object X leads,
after the Gauss digitization, to a disconnected digital object X. In the literature,
various studies proposed conditions for guaranteeing the preservation of topology
of digitized objects [9,20,21]. In particular, Pavlidis and Serra introduced the
notion of r-regularity.

Definition 1 (r-regularity [17]). An object X ⊂ R
2 is r-regular if for each

boundary point of X, there exist two open disks of radius r > 0 being tangent to
the point, and lying entirely in X and its complement X, respectively.

Remark 1. The notion of r-regularity can be rewritten with morphological oper-
ators as follows: X ⊂ R

2 is r-regular if

– X � Br is non-empty and connected;
– X � Br is connected;
– X = (X � Br) ⊕ Br; and
– X = (X � Br) ⊕ Br,
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where Br denotes a closed disk of R2 of radius r > 0 and centered at (0, 0) ∈ R
2,

⊕ and � denote the classical operators of dilation and erosion, corresponding to
the Minkowski addition and its associated subtraction:

X ⊕ Y =
⋃

y∈Y

Xy =
⋃

x∈X

Yx

X � Y =
⋂

y∈Y

X−y

with Xy = {x + y | x ∈ X} and, in our case, X,Y ⊂ R
2 [5,18,20].

It should be mentioned that this definition of r-regularity requires the bound-
ary of X to be differentiable. More specifically, X must have a smooth contour
with curvature at every point on the boundary is greater or equal to 1

r . In addi-
tion, Pavlidis proved the topological equivalence of an r-regular object X and its
digital counterpart X, for a dense sampling.

Proposition 1 ([17]). An r-regular object X ⊂ R
2 has the same topology as its

digitized version X = X ∩ Z
2 if r ≥

√
2
2 .

To deal with non-regular objects, a notion called r-halfregularity has been
proposed in [22]. More precisely, r-halfregular objects are defined as objects X
having for each boundary point of X an open disk of radius r > 0 being tangent
to the point, and lying entirely in either X or its complement X. By definition,
r-halfregular shapes are more general than r-regular ones since they include
objects with non-differentiable boundary. Furthermore, it is shown that the r-
halfregularity allows a topologically correct digitization of such an object using
an additional repairing step. See [22] for more details.

2.2 Well-Composed Sets

To deal with topological paradoxes related to the discrete version of the Jordan
theorem, a couple of dual adjacencies [19] are defined from the L1 and L∞

norms, leading to the well-known 4- and 8-adjacencies in Z
2 [7]. More precisely,

two distinct points p, q ∈ Z
2, are k-adjacent if

‖p − q‖� ≤ 1 (2)

with k = 4 (resp. 8) when � = 1 (resp. ∞). From the reflexive–transitive closure
of the k-adjacency relation on a finite subset X ⊂ Z

2, we derive the k-connectivity
relation on X. It is an equivalence relation, whose equivalence classes are called
the k-connected components of X. In order to avoid the topological issues of the
Jordan theorem, dual adjacencies are used for X and its complement X, namely
(4, 8)- or (8, 4)-adjacencies [19]. Based on the digital topology framework, well-
composedness has been introduced.

Definition 2 (Well-composed sets [8]). We say that X is weakly well-
composed if any 8-connected component of X is also a 4-connected component.
We say that X is well-composed if both X and X are weakly well-composed.
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Fig. 3. (a) X ⊂ Z
2 is neither connected nor well-composed. (b) X is weakly well-

composed and X is 8-connected but not 4-connected. (c) X is weakly well-composed
and X is 8-connected but not 4-connected. (d) X is 4-connected and well-composed.

This definition implies that the boundary1 of X is a set of 1-manifolds when-
ever X is well-composed (see Fig. 3). In particular, there exists a strong link
between r-regularity of X ⊂ R

2 and well-composedness of X = X ∩ Z
2.

Proposition 2 ([9]). If X ⊂ R
2 is r-regular, with r ≥

√
2
2 , then X = X ∩ Z

2 is
well-composed.

Well-composed sets present nice topological properties. However, they may
be altered by rigid motions defined on Z

2, as we will observe in the next section.

2.3 Digitized Rigid Motion and Topology Preservation

A rigid motion T in R
2 is defined for any point x = (x1, x2)T as

T(x) =
(

cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
+

(
t1
t2

)
(3)

where θ ∈ [0, 2π) is a rotation angle, and (t1, t2)T ∈ R
2 is a translation vector.

The transformation T is bijective, isometric and orientation-preserving. In
other words, the transformation T of a continuous object X in the Euclidean
space R

2, denoted by T(X), has the same shape, i.e. the same geometry and
topology, as X.

We cannot straightforwardly apply a rigid motion T, defined in Eq. (3), to a
digital object X ⊂ Z

2, since we generally obtain a transformed object T(X) �⊂ Z
2.

In order to obtain a result in Z
2, we further need a digitization operator

D : R2 → Z
2 (4)

which can be, for instance, the standard rounding function. Then, a digital ana-
logue of T can be defined as the composition of T, (restricted to Z

2) with such
digitization operator, as

Tpoint = D ◦ T|Z2 . (5)

1 The boundary of X is defined here as the boundary of the continuous object obtained
as the union of the closed Voronoi cells associated to the points of X, in R

2.
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Fig. 4. Well-composed digital lines (a, c) with different thicknesses, which remain well-
composed (d) or not (b) after a point-by-point digitized rigid motion Tpoint. In both
cases, the convexity of the digital lines is lost by Tpoint for the rotation angle of π

7
and

the translation of ( 1
2
, 1
2
).

Contrary to T, Tpoint is, in general, neither injective nor surjective. In par-
ticular, the digitization D may lead to unwanted results such as the topological
and geometric properties of digital objects are changed by Tpoint.

In this context, the issue of topological preservation of digital objects by
Tpoint was investigated in [15]. A sufficient condition, namely digital regularity2

was provided for guaranteeing that a well-composed digital object X will not be
topologically modified by any arbitrary rigid motion Tpoint.

However, this notion of digital regularity does not tackle the issue of geometry
alteration. Indeed, the rigid motion model defined in Eq. (5) acts on the object
in a point-wise way and does not preserve the shape of X. This is illustrated in
Fig. 4 by digital lines with different thicknesses under Tpoint. Though the initial
shapes are very simple, the topology and geometry of digital objects are not
always preserved.

3 Digital Shape Rigid Motions via Polygonization

3.1 Quasi-r-Regularity and Discrete Regularity

We now recall the notion of quasi-r-regularity for objects of R2 whose boundaries
are not necessarily differentiable [14]. This notion provides sufficient conditions
for preserving the connectivity by the Gaussian digitization.

Definition 3 (Quasi-r-regularity [14]). Let X ⊂ R
2 be a bounded and simply

connected (i.e. connected with no hole) object. Let Br ⊂ R
2 be a closed disk of

radius r > 0. X is said to be quasi-r-regular, if it satisfies

(i) X � Br is non-empty and connected,
(ii) X � Br is connected,
(iii) X ⊆ (X � Br) ⊕ Br

√
2, and

(iv) X ⊆ (X � Br) ⊕ Br
√
2.

2 In [15] this notion was simply called regularity. We rename it as “digital regularity”
to avoid the confusion with the continuous regularity, i.e. r-regularity, in Definition 1.
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Fig. 5. A quasi-r-regular object X has its border included between (X � Br) ⊕ Br and
(X�Br)⊕Br

√
2. This is a counterexample of P ⊂ R

2 (in blue) which is quasi-r-regular
but does not satisfy the condition of Definition 4; both conditions of distance and angle
at vertices are violated. P�Br is in red, (P�Br)⊕Br is bounded by the yellow curve
and (P � Br) ⊕ Br

√
2 is in green. (Color figure online)

Fig. 6. Examples of quasi-1-regular (a) and non-quasi-1-regular (b,c) objects X: (b)
X �⊆ (X� B1)⊕ B√

2; (c) X� B1 is not connected. The objects X ⊂ R
2 are in blue, the

disks B1 are in red and the disks B√
2 are in black, the erosions X � B1 are in red and

the openings (X � B1) ⊕ B√
2 are in green. (Color figure online)

Roughly speaking, thanks to (iii), the border of X is included between (X �
Br)⊕Br and (X�Br)⊕Br

√
2. In other words, a margin of (

√
2−1)r is authorized

for the border of X (see Fig. 5). Examples of quasi-r-regular and non-quasi-r-
regular objects are given in Fig. 6.

This notion of quasi-r-regularity provides sufficient conditions for guarantee-
ing that the connectedness of X will not be affected by the Gauss digitization
process, as proven in [14].

Proposition 3 ([14]). Let X ⊂ R
2 be bounded and simply connected. If X is

quasi-1-regular, then X = X ∩ Z
2 is well-composed.

In this article, we are interested in polygonal objects generated from
the boundaries of digital objects of Z

2. In the following, we introduce the
notion of quasi-r-regularity restricted to polygons, namely discrete-r-regularity
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Fig. 7. Examples of discrete-1-regular (a) and non discrete-1-regular (b,c) polygons:
(b) the condition of angle is violated and (c) both conditions of angle and distance are
violated.

(see Fig. 7). This notion is extended from the definition proposed in [13] for con-
vex polygons. Then, we show that the set of discrete-r-regular objects is a subset
of quasi-r-regular objects.

Definition 4 (Discrete-r-regularity). Let P be a simple polygon in R
2, V

and E be respectively the set of vertices and edges of P. The polygon P is said
to be discrete-r-regular, if it satisfies the following two properties:

(i) ∀v = e1 ∩ e2 ∈ V with e1, e2 ∈ E, ∀e ∈ E \ {e1, e2}, d(v, e) ≥ 2r,
(ii) ∀v = e1 ∩ e2 ∈ V with e1, e2 ∈ E, n(e1).n(e2) ≥ 0,

where d(v, e) denotes the Euclidean distance between the vertex v and the edge
e, n(e) denotes the normal vector of e directed to the exterior of P, and the dot
“.” designates the scalar product between two vectors.

Roughly speaking, the polygon P is discrete-r-regular if, for any vertex v ∈ V ,
(i) v has a distance at least 2r to any edge that does not contain v, and (ii) the
vertex angle at v is between π

2 and 3π
2 (see Fig. 7).

Proposition 4. Let P ⊂ R
2 be a simple polygon. If P is discrete-r-regular, then

P is quasi-r-regular.

Proof. Assuming that P is discrete-r-regular, i.e. it satisfies the two conditions of
Definition 4. We now prove that P is quasi-r-regular, i.e. it satisfies the four con-
ditions of Definition 3. We only prove the conditions for P as the same reasoning
holds for P.

Consider the r-offset polygon of P, namely P � Br, which is defined by all
interior points of P having a distance at least r from the boundary of P (see
Fig. 8(a)). From (i) of Definition 4, any vertex v of P has its distance to any
edge not containing v greater or equal to 2r. Thus, P � Br is non-empty and
connected.



Discrete Regular Polygons for Digital Shape Rigid Motion via Polygonization 63

Fig. 8. (a) The r-offset polygon P�Br (in black) of P (in blue). (b) Illustration for the
proof of Proposition 4; r ≤ d(c, v) ≤ r

√
2 as d(c, v) = r

sin( θ
2 )

and π
2

≤ θ ≤ 3π
2

. (Color

figure online)

We now prove (iii) of Definition 3 by showing that ∀v ∈ V , the distance of
v to P � Br is between r and r

√
2. Let us consider a vertex v = e1 ∩ e2 ∈ V

for e1, e2 ∈ E. Let Br(c) be the closed disk of radius r centered at c which
is tangent to both e1 and e2 (see Fig. 8(b)). From the definition of erosion, c
belongs to P�Br. We have sin θ

2 = r
d(c,v) where d(c, v) is the Euclidean distance

between c and v and θ is the angle at the vertex v, and thus d(c, v) = r
sin θ

2
. Since

n(e1).n(e2) ≥ 0, π
2 ≤ θ ≤ 3π

2 ,
√
2
2 ≤ sin θ

2 ≤ 1. This leads to r ≤ d(c, v) ≤ r
√

2.�

Note that the converse may not be true; a counterexample is given in Fig. 5.
As exemplified in Figs. 6 and 7 as well, quasi-r-regular objects can have non-
smooth boundaries (i.e. they can be non-differentiable), while discret-r-regular
objects are restricted only to polygons.

The following corollary is a straightforward result of Proposition 4.

Corollary 1. Let P be a simple polygon in R
2 and E be the set of all edges of

P. If P is discrete-r-regular, then ∀e ∈ E, l(e) ≥ 2r where l(e) denotes the length
of the edge e.

Proposition 4 and Corollary 1 provide a sufficient condition of discrete-r-
regular objects and allow for a geometric verification of such objects using the
simple measures of angles and lengths of the considered polygons.

Remark 2. Previously, another discrete regularity defined specially for convex
polygons was presented in [13]. The notion is based on the property on vertex
angle, which is the same as (ii) in Definition 4, and on the existence of a ball of
radius r tangent at each edge, which is contained in the polygon. Indeed, this
last property is not as strong as (i) in Definition 4, so that it does not lead to
the edge length property, as given in Corollary 1. Besides, the new notion given
in Definition 4 is not restricted to convex polygons, and thus more general.
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Fig. 9. (a) A digital shape X. (b) 8-connected contour C(X) (in red) extracted from
(a). (c) Boundary of the convex hull (in blue) computed from C(X). (d) Boundary of
the polygon P(X) (in green) of (a) based on the convex hull and C(X) of X such that
X = P(X) ∩ Z

2. (e) Decomposition into convex parts Pi of P(X) such that P(X) =⋃
i=1..m Pi. (f) Digital decomposition such that X = P(X) ∩ Z

2 =
⋃

i=1..m

(
Pi ∩ Z

2
)
.

(Color figure online)

3.2 Polygonization of a Digital Object and Convex Decomposition

We focus on a polygonal representation P(X) of a digital object X that satisfies
the following properties:

(i) Digitization reversibility: P(X) ∩ Z
2 = X, and

(ii) Rationality: the vertices of P(X) have rational coordinates.

It should be mentioned that the second property is related to our framework
of digital geometry and exact computation. Indeed, we require the vertices of
P(X) to be rational points, and restrict the rigid motion T to be rational, namely
rational rotations and rational translations. Thanks to this rational setting, the
vertices of T(P(X)) are also rational points. As a consequence, only exact com-
putations with integers are involved. These assumptions do not cause applicative
restriction due to the finiteness of input set and the density of rational values
within the rotation and translation parameter space.
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In order to compute the polygonal representation P(X) which satisfies the
above properties, we use the border points of X together with its convex hull. For
an efficient computation of P(X), we use the border tracing algorithm proposed
in [4] and apply the discrete version of the Melkman algorithm [12] to compute
the convex hull of the border points. Both methods have a linear time complexity
w.r.t the number of border points.

The method of polygonal computation consists of first extracting the
8-connected contour points C(X) of X, and then computing the convex hull
of C(X); see Fig. 9(b, c). We initialize the ordered vertex set V of the polygon
P as the sequence of convex hull vertices. For any two consecutive vertices p1
and p2 of V , let us consider the set C ′(p1, p2) ⊂ C(X) of the contour points of
X between p1 and p2. We select p3 ∈ C ′(p1, p2) \ V such that

p3 = arg max
q∈C′(p1,p2)\V

{
d(p1, q) |

(
Δp1qr ∩ Z

2
)

∩ X = ∅ for r ∈ C ′(p1, q)
}

where d(p1, q) denotes the Euclidean distance between p1 and q, and Δp1qr is
the triangle whose vertices are p1, q and r. If such p3 exists, we add it to V
between p1 and p2. We repeat this process with V until no point is added, see
Fig. 9(d). Note that convex hull vertices are also vertices of P(X). We recall that
one can use any other methods of polygonization to obtain P(X) as far as the
method is reversible and the vertices of the polygon have rational coordinates;
for instance the approach based on digital straight segments proposed in [3] can
be considered.

To perform a geometry-preserving rigid motion, we apply a convex decom-
position to subdivide P(X) into convex parts Pi, i = 1..m, (see Fig. 9) such
that

P =
⋃

i=1..m

Pi. (6)

Thus,
X = P(X) ∩ Z

2 =
( ⋃

i=1..m

Pi

)
∩ Z

2 =
⋃

i=1..m

(
Pi ∩ Z

2
)
. (7)

In this work, we use the ACD (Approximate Convex Decomposition) algo-
rithm proposed in [10]. The ACD method is based on a hierarchical strategy to
perform the decomposition and has a O(nr) complexity where n and r are the
numbers of vertices and non-convex features of the polygon, respectively. We set
the parameters of the ACD method to avoid any approximation of the convex
decomposition. It should be mentioned that this step can be performed using
the rational vertices of P. However, we use the convex decomposition since the
digitization is simpler using the half-plane representation of each convex part
than the direct digitization of a polygon.

3.3 Rigid Motion of Discrete-r-Regular Polygons

Before describing the rigid motion model that relies on a discrete-r-regular poly-
gon P of R

2 followed by a digitization process, we first explain the model for
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convex polygons proposed in [13] and then adapt it for non-convex ones using
the convex decomposition (see Sect. 3.2).

A convex polygon P ⊂ R
2 can be defined as the intersection of closed half-

planes H as
P =

⋂

H∈R(P)

H (8)

where R(P) is the smallest set of closed half-planes that defines P. Each closed
half-plane H of this subset is defined as

H = {(x, y) ∈ R
2 | ax + by + c ≤ 0}. (9)

If P has rational vertices, then a, b, c ∈ Q. These rational coefficients of H
are obtained by a pair of consecutive vertices of P, denoted by u, v ∈ Q

2, which
are in the clockwise order, such that

(a, b) = (−wy, wx) (10)
c = (a, b) · u (11)

where (wx, wy) = v − u ∈ Q
2. Then, a half-plane H, as defined in Eq. (9), is

transformed by a rational rigid motion T as

T(H) = {(x, y) ∈ R
2 | αx + βy + γ ≤ 0} (12)

where α, β, γ ∈ Q are given by (α β)T = R(a b)T and γ = c + αt1 + βt2. This
leads to a rational half-plane. From Eqs. (9) and (12), we write the rigid motion
T of the convex polygon P as

T(P) = T

( ⋂

H∈R(P)

H
)

=
⋂

H∈R(P)

T(H) (13)

This rigid motion scheme can be extended to non-convex polygons via their
convex decomposition. From Eqs. (7) and (13) we have

T(P) =
⋃

i=1..m

T(Pi) =
⋃

i=1..m

( ⋂

H∈R(Pi)

T(H)
)

(14)

If P(X) is the polygon of a digital object X, i.e. X = P(X)∩Z
2, then we define

TPoly(X) = T
(
P(X)

) ⋂
Z
2 =

⋃

i=1..m

(
T(Pi)

⋂
Z
2

)
. (15)

It has been proved in [14] that rigid motion via polygonal model allows us
to preserve the 4-connectivity of the transformed object under the condition of
quasi-1-regularity.
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Proposition 5 ([14]). If the polygon P(X) of a bounded and connected digital
object X is quasi-1-regular, then TPoly(X) is 4-connected and well-composed.

From Propositions 4 and 5, we have the corollary.

Corollary 2. If the polygon P(X) of a bounded and connected digital object X
is discrete-1-regular, then TPoly(X) is 4-connected and well-composed.

In other words, if P(X) is discrete-1-regular, then TPoly(X), as defined in
Eq. (15), preserves the topological property of the original object X. Further-
more, P(X) is a piecewise affine object of R2; thus it allows to approximate well
the shape under the rigid motion. As a consequence, P(X) is processed in a
topology- and geometry-preserving way by TPoly(X) for any T if P(X) satisfies
the conditions in Definition 4.

4 Source Codes and Results

4.1 Download and Installation

The proposed method is implemented in C++ using the DGtal3 open source
library (Digital Geometry Tools and Algorithms). It is available at the github
repository: https://github.com/ngophuc/RigidTransformAcd2D. The installa-
tion is done through classical cmake procedure4 (see INSTALLATION.txt file).

4.2 Description and Usage

In the source codes, there are three packages:

– polygonization computes the polygon from a digital image (see Sect. 3.2),
and the discrete-r-regularity is verified in this step for the computed polygon
as well.

– decomposeShapeAcd2d decomposes a polygon into the convex parts using
the ACD method5 [10].

– transformAConvexShape implements the proposed rigid motion method
(see Sect. 3.3).

The executable file is generated in the build directory and named transfor-
mDecomShape2d.

– Input: a binary image in pgm format contains a well-composed set.
– Command line: the execution is in the CODESOURCES/build. For exam-

ple, to run the program on image.pgm with the name of the output file
is image out.pgm, the rigid motion with the parameter setting tx = 0.5,
ty = 0.3, and θ = 0.78 and the option -r to verify the discrete-1-regularity of
the computed polygon, we use

3 http://dgtal.org.
4 http://www.cmake.org.
5 The code sources are available at https://github.com/jmlien/acd2d.

https://github.com/ngophuc/RigidTransformAcd2D
http://dgtal.org
http://www.cmake.org
https://github.com/jmlien/acd2d
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./transformDecomShape2d -i image.pgm -o image_out.pgm -r
-a 0.5 -b 0.3 -t 0.78

More details about the options of the program can be found by the command
line helper: ./transformDecomShape2d -h

– Output: several files are generated as output (in pgm and svg format):

image_out.pgm Output transformed image
image_poly.svg Result of polygonization
image_decomp.svg Result of convex decompostion
image_shape.svg Result of digitized convex decomposition

It should be mentioned that the proposed method is supposed to perform
with an exact computation with rational rigid motions. However, to simplify the
model for the users, the code uses float numbers instead of rational numbers for
approximating the rigid motions; in particular, the rotation angle parameter is
given in radians.

Fig. 10. Left: input image, middle left: generated polygon with the convex decompo-
sition from contour points, middle right: digitization via the convex decomposition,
right: transformed results. For more details about rigid motion parameters of these
experiments, see https://github.com/ngophuc/RigidTransformAcd2D.

https://github.com/ngophuc/RigidTransformAcd2D
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4.3 Experimental Results

We now present some experiments on the convex decomposition for geometry-
preserving rigid motions. It should be mentioned that the polygons generated
from given digital sets are verified to be discrete-1-regular by the conditions in
Definition 4. The results are shown in Fig. 10 with the center of rotations being
the centroid of each set. Details of different parameters of rigid motions using
for these experiments are found at the github repository: https://github.com/
ngophuc/RigidTransformAcd2D.

5 Conclusion

This article presents a method for rigid motions of digital objects defined of Z2.
More precisely, the method uses an intermediate model of a digital object, which
is a polygon representing the digital object. Such polygon is continuous and
processed by standard continuous transformations followed by a digitization to
obtain a result in Z

2. In particular, we proposed a notion of discrete-r-regularity
for polygonal objects, and also showed that these objects are in a subset of
quasi-r-regular objects [14]. It provides a sufficient condition for guaranteeing
topological preservation when digitizing a polygonal object.

An online demonstration is available at http://ipol-geometry.loria.fr/∼phuc/
ipol demo/DecompConvexRigidMotion, and the implementation of the method
can be found at https://github.com/ngophuc/RigidTransformAcd2D.
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Abstract. Embedding data into vector spaces is a very popular strategy
of pattern recognition methods. When distances between embeddings
are quantized, performance metrics become ambiguous. In this paper,
we present an analysis of the ambiguity quantized distances introduce
and provide bounds on the effect. We demonstrate that it can have a
measurable effect in empirical data in state-of-the-art systems. We also
approach the phenomenon from a computer security perspective and
demonstrate how someone being evaluated by a third party can exploit
this ambiguity and greatly outperform a random predictor without even
access to the input data. We also suggest a simple solution making the
performance metrics, which rely on ranking, totally deterministic and
impervious to such exploits.

Keywords: Deterministic · mAP · Ranking ·
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1 Introduction

1.1 Motivation

In typical pattern recognition works, researchers introduce algorithms and
demonstrate their performance using specific metrics.

The measure of difference between the obtained outputs and the given ideal
output (ground-truth) is the actual estimated performance. Although the exam-
ined systems can have some randomness, it is assumed they follow a statistical
distribution, whose mean can be estimated; it is generally also assumed that
measuring the difference from the ground-truth with metrics defined in the lit-
erature is purely deterministic. However, while experimenting with a typical
retrieval method, it occurred that a specific output from a system would yield
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different measured performances when evaluated with data in a different order.
After investigation, the problem was found to be a form of numerical insta-
bility, possibly attributed to the 32 bit limitation of modern GPU computing.
The problem is quite general and affects performance evaluation metrics that
require sorting distances matrices. In this paper, we (1) reproduce the incoher-
ence in the recorded behavior of a real-world system, (2) we provide a data-driven
analysis of the phenomenon, and (3) provide a simple fix that provably makes
ranking-based metrics, such as mean average precision (mAP) [6], behave deter-
ministically under these conditions.

1.2 Performance Evaluation and Competitions

Evaluation protocols are a sensitive matter. As there is no way to assess them
objectively, their validity is mostly determined by consensus on how informative
they are. In order to constrain experimental bias, the development of a system
and evaluating a system is considered as two distinct acts and researchers always
try to keep the two roles as distinct as possible. In the case of competitions, the
two roles are strictly segregated between participants and organizers. For such
reasons, competitions set the gold standard in performance evaluation and have
gained popularity. As an indication of the rising popularity and importance of
competitions, in the context of ICDAR in 2017, 25 different competitions were
hosted by different groups while ten years earlier in 2007, there were only 3.
Competitions establish a good practice in performance evaluation, which people
then apply to measure their own methods’ performance.

2 Rank Based Metrics

Most of the popular performance metrics associated with Information Retrieval
(IR) are closely related among each other. In the most usual form, IR systems
return data from a database sorted by relevance with respect to a query sample.
Then, evaluation metrics are computed that assess the ranking.

Any classification problem can be considered a retrieval problem where all
samples in the database having the same class as the query are the relevant
documents. In this way, ranking metrics have become prevalent in evaluating
classification tasks.

2.1 Metric Estimation

The first step in computing ranking metrics of an embedding is to compute the
distance matrix D ∈ R

Q×K between any query xq, q ∈ {1, . . . , Q} and a database
of size K for a specified distance metric, or equivalently a similarity matrix. The
next step is to compute a relevance matrix R ∈ {0, 1}Q×K with elements:

Rq,k =

{
1 if y(xq) = y(xd)
0 if y(xq) �= y(xd)

, (1)
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where y(x) denotes the class of sample x.
The row-wise sorting of R by the values in D, results in the so called correct

matrix C ∈ R
Q×K , containing elements that are 1 if the k-th closest sample of

the database to the query q is relevant and 0 otherwise. The matrix C can be
directly used to compute the precision and recall for any query xq and rank k
resulting in the matrix Pr and Rc, respectively with elements:

Prq,k =
1
k

k∑
n=1

Cq,n Rcq,k =
∑k

n=1 Cq,n∑
n=1 Cq,n

. (2)

These two matrices can be used to produce all established metrics such as mean
Average Precision (mAP), precision at rank 10, accuracy etc. In the remaining
of this paper we focus on mAP as it is by far the most popular of these metrics
but the observations and analysis can easily be extended to all such metrics.

2.2 Performance Evaluation of Embeddings

A deployable retrieval system can be defined as a system that ranks a database of
samples with respect to a query sample. In most cases, retrieval systems consist
of two steps: (1) mapping samples into a representation, i. e., typically a vector of
fixed dimensionality and (2) returning the distance of the two representations.
Embedding methods map any sample to a metric space R

n and usually used
in combination with a metric distance, such as Euclidean distance, to form a
retrieval system.

Performance evaluation protocols should be designed such any person acts
either as a creator (of a method) or an evaluator (of the method) at any given
time. It follows that the test-set should not be accessible to the creator, Ideally,
the only thing the creator should pass to the evaluator is an opaque system
(black-box) that produces outputs for given inputs and the evaluator should run
this system on sequestered data and return a performance score. The aforemen-
tioned is the higher standard for performance evaluation. Yet, quite often, the
creator receives the test samples and reports the outputs instead of providing his
system as a black-box; yet any evaluation protocol should be designed so that it
can accommodate the strict separation of creator and evaluator.

The question arises, where does the retrieval system end and where does the
evaluation system begin? Under the assumption that the embedding method has
a high cost, from an evaluators perspective, it is a lot faster to compute all the
embeddings in the test-set only once, and then compute the distance matrix
of them given a distance metric. The other alternative, ranking the database
for every query sample independently, would cost a lot more and is practically
intractable, because for each query, the embeddings for the database are recom-
puted.

In terms of complexity, assuming the number of queries and the size of the
retrieval database to be of approximately the sane size m, the dimensionality
of the embedding to be a constant and the cost of mapping a single sample
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as k, then the complexity of a performance evaluation for systems with ranked
outputs can be given by:

O(k × m × m) = O(km2) (3)

On the other hand, under the assumption that the embedding dimensionality
n is a constant, the complexity for evaluating a black-box producing embeddings
is given by:

O(k × m + k × m + m × m) = O(max(m2, km)) (4)

The aforementioned computability issue is not only theoretical, it is also well
exemplified in the evolution the writer identification competition from ICHFR
2012 [8] to ICDAR 2013 [7] where the increase of the test set made the transition
inevitable The above problem is not just about evaluating, retrieval methods,
such as word-spotting with dynamic time-warping [10], are not tractable for
large-scale retrieval systems due to their computational complexity. Embedding
methods ensure a tractable computational complexity for retrieval system and
thus, they are so important.

2.3 Equidistant Samples

When sorting is part of the evaluation protocol, each sorting of the database
that affects the ranking of relevant samples must be deterministic and unam-
biguous. If rows in the distance matrix contain duplicate distances, then ranking
becomes undefined. Important to note is that an undefined algorithmic behav-
ior in the context of sorting, is not the same as a random one. As opposed to
random behavior, we cannot obtain an estimate of the expectation by repeat-
edly running the algorithm. Worse than that, undefined behavior might behave
deterministically with respect to unknown and theoretically irrelevant factors,
such as the order of the queries or even memory availability. This allows for bugs
that are hard to detect and hard to be reproduced.

In Fig. 1 the problem and the effect equidistant samples in the database have
on the resulting mAP is demonstrated. Line (a) is an indicative retrieval given
a query where the relevant data appears in the first and sixth position. Line
(b) represents a perfect retrieval case, which obtains an AP of 100%. Lines (c)
to (f) represent alternative sorting of the same embeddings where the first two
samples and the fifth to seventh samples are equidistant from the query. As can
be seen, ambiguity only occurs when consecutive equidistant samples are both
relevant (green) and non relevant (non-green).

Other metrics depending on sorting are also affected to an equivalent degree,
but we focus on mAP because it is the most popular metric.

3 Experimental Data Analysis

3.1 PHOCNET

Although this paper addresses the general case of vector embeddings, we show
experimental validation using a specific retrieval task known as segmented
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Fig. 1. mAP calculated for a query where there are 2 relevant samples out of 100 in the
database. Green boxes are the relevant samples, non-green colored boxes are samples
of other classes, while gray boxes signify irrelevant boxes whose class doesn’t matter.
Red borders denote clusters of samples that are equidistant from the query. (Color
figure online)

word-spotting. Segmented word-spotting classifies a word-image into word
classes, i. e., elements of a dictionary. Word-spotting is quite often modeled as a
typical embedding system used in the context of information retrieval. Domain
adaptation has been a popular strategy, allowing to learn embeddings which
map both word-images and word-transcriptions into a common subspace, the
Pyramid Histogram Of Characters (PHOC) [2].

The PHOCNET [12] is a deep CNN, which is trained with a regression loss to
map word-image inputs to a PHOC space (R504). The PHOC space is a metric
space under the cosine distance. For evaluation, we use the George Washing-
ton (GW) dataset [5]. Specifically, we evaluate the test-set in a leave-one-out-
image out cross-evaluation, i. e., each sample of the test set is compared with
the remainder of the test-set. The test-set is stemmed for short (3 characters
or less), and numerals so that there are 1164 word images left belonging to 431
classes. Singleton samples, samples that occur only once and therefore can not
be both a query and in the retrieval database, are removed from the query set,
which is reduced to 899 samples, but are retained in retrieval database. In Fig. 2
the distribution of collisions under different distance metrics is shown.

A collision refers to two samples in the database having exactly the same dis-
tance. For visualization purposes, this was extended to all distances smaller than
a threshold ε in Figs. 2 and 3. Note, for a better visualization, the first 650 sam-
ples are dropped from the test-set. When measuring the mAP of retrieval with
GW, we observed values between 95.34% and 95.36% attributed to equidistant
samples.

3.2 Random Embeddings

We perform an additional experiment to obtain further insights and contextual-
ize the measurements on GW. We generated white noise embeddings of exactly
the same cardinality as the PHOCNET embeddings uniformly sampled in the
range [0, 1] having the same range as the PHOCNET embeddings. We also used
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Fig. 2. PHOCNET embeddings for GW under various distances with ε = 10−10. Rows
represent queries and columns represent samples sorted from left to right by similarity
to each query.

the same labels as GW test-set to make sure that the labeling statistics are
identical. In Fig. 3 we can see occurrence of collisions under different distance
metrics. In order to visualize collisions, we considered any consecutive samples
having a difference greater than ε as colliding. In the case of random embeddings,
in order to produce enough collisions to have plots comparable to GW we had
to increase ε to 10−6.

Fig. 3. Random embeddings with the same cardinalities and labels as GW. Rows rep-
resent queries and columns represent samples sorted from left to right by similarity to
each query.

3.3 Analysis

These experiments1 provide some insights into the described phenomena. What
stands out is the effect the different distance functions have on the same vectors.
Specifically it is worth observing that consistently across both GW and random
embeddings, city-block distance produces a lot less collisions than Euclidean
distance which in turn has approximately 20 times less collisions than cosine
distance. Conversely, it is worth pointing out that only in the case of the trained
embeddings and cosine distance almost all collisions happen in the right side of
the spectrum, where samples that are the furthest apart from each query concen-
trate. Furthermore, PHOCNET in combination with cosine distance produces
1 All experiments and plots presented in this paper are reproducible and available at

https://github.com/anguelos/embedding map.

https://github.com/anguelos/embedding_map
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many collisions among relevant samples. This demonstrates the extent to which
PHOCNET manages to regress perfect PHOC representations. Another impor-
tant observation is that in order to produce plots where collisions are visible
when using random embeddings we had to increase the collision visibility crite-
rion from 10−10 to 10−5. The fact that a real-world method is 10000 times more
prone to collisions than random data of the same cardinalities and distributions
is a good indication that the probability of collision is practically unpredictable
unless measured.

4 Proposed Solution

4.1 Determinism and Bounds

The principal problem arising from equidistant embeddings is the unpredictabil-
ity of their sorting. The simplest remedy for this is to make the evaluation
system consistently sort equidistant samples in the most favorable way possible.
Therefore, we define a new matrix E, which holds a small constant ε for any
non-relevant element:

E = (1 − R) ∗ ε , (5)

where R is the relevance matrix R, cf. Sect. 2.1. Then, we can define two new
similarity/distance matrices D+ and D− as:

D+ = D + E D− = D − E . (6)

In this way, the relevant and irrelevant matches are separated from each other.
Note, collisions within the individual groups have no influence on the perfor-
mance evaluation.

In order to only affect equidistant samples, ε must be smaller than the small-
est observed difference between any pair of distances in any query that is greater
than zero.2

It follows that computing mAP from D+ instead of D, provides an upper
bound on all the plausible mAP estimates for given outputs of a system. Respec-
tively, by computing mAP from D−, we can get the lower bound among all
plausible mAP estimates of the performance of a system. From here on we refer
to the two bounds as mAP+ and mAP−. Figure 4 shows D and E computed
on a part of the GW test-set. It should be pointed out that the modality used
is self-classification, where queries and database are the same samples, and the
nearest sample to each query is always omitted as the sample is always itself
with a distance of 0. Given the small numerical effect equidistant samples have
over the mAP in real world systems, providing the two bounds of mAP should
be informative enough. It should be pointed out that both bounds are deter-
ministic with respect to the embeddings and the data labels, and therefore also
their mean. Nonetheless, the mean of the bounds is not directly related to the
expected AP of a retrieval containing equidistant samples.
2 This can for example be easily achieved by switching from float to double precision

and choosing ε appropriately.
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Fig. 4. Cosine distance matrix D for the GW test-set and the matrix E.

4.2 Expectation

While the bounds of all valid mAP are easy to compute, computing the expected
mAP over all possible permutations of equidistant samples is not trivial.

As can be seen in Fig. 1 an ambiguous ranking contains one, or more
sequences of equidistant samples that are both relevant and non-relevant.

By definition mAP only samples precision at the points where recall changes,
thus equidistant sequences with only relevant or non-relevant sequences do not
affect mAP and can be ignored. It can also be deduced that the effect each
sequence of equidistant samples has over the total mAP expectation can be
independently computed for every equidistant sequence.

Each equidistant sequence of length l containing m relevant samples, is pre-
ceded by a retrieval of n relevant samples from k retrieved samples. We then
know that precision before the sequence is n/k and after it is (n + m)/(k + l).
The two fractions (n+m)/(k+m) and (n)/(k+ l−m) are respectively the upper
and lower bounds of all possible precision measurements occurring within the
equidistant sequence. By definition of the mAP, we also know that each equidis-
tant sequence will affect the overall mAP m times, thus m is in effect a coefficient
of the sequence. Under the assumption of small equidistant sequences, the mean
mAP for all possible permutations of equidistant samples could be computed
but the brute force algorithm would be inefficient.

5 Exploitation of the Unpredictability

5.1 A Computer Security Approach

Although scientific work is predicated on the integrity of the scientists, it is
important to keep in mind that there might be serious incentives for improving
the perceived performance of a system. The disqualification [1] of Baidu from the
ImageNet competition [11] demonstrates that even the leading scientific teams
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can show ambiguous ethics. More than that, the incident is an interesting exam-
ple of how a participant to a competition can act in a manner that is ethically
in a gray-zone rather than all-out cheating. Performance evaluation design in
the context of public competitions should have a computer security aspect to it,
the rules and protocols should be designed in a way that ethical gray-zones are
minimized. People could always cheat or lie, but most people, will never cross
that line.

5.2 All Zero Embedding Exploit

Even though the experiments presented in Sect. 3 demonstrate that the phe-
nomenon of sorting ambiguity has a small effect under regular conditions, there
are circumstances where it could be exploited and amplified the effect to an
extreme level.

As a naive exploitation of the ambiguity we tried the following adversarial
example. We hypothesized a system that always maps any input sample to a vec-
tor of R1000 with all zeros. When all embeddings have all zeros, then everything
is equidistant. All performance estimates depend on how the sorting algorithm
deals with equal values. We created labels for a thousand samples, 10 classes each
having 100 samples. Afterwards, we employed standard self-classification where
query and retrieval samples are the same, also known as leave-one-out cross-
validation. By tweaking the order in which we evaluated the samples, which were
identical, we managed to obtain different mAP measurements between 10.32%
and 18.68%. In Fig. 5, the sample arrangements that produce the most and least
favorable mAP estimates are visible. The exploit does not produce the full range
of mAP− to mAP+, which lies in the range 5.18% to 100%. In order to produce
such a variation, someone would probably need to alter the distance matrix
D instead of the order of the queries. The exploit was not demonstrated on
publicly deployed system but rather on a straight forward implementation of
mAP as described in Sect. 2.1. The exploit is simpler to implement in leave-one-
evaluation is also directly applicable to regular retrieval if the retrieval samples
are sorted by class or if the third party being evaluated can infer how order of
the samples relates to their classes.

It should be pointed out that over 30 repetitions of random embeddings
instead of all zero produced an mAP mean of 10.4% with a standard devia-
tion of 0.053%. The repercussions of this finding are quite significant as the
adversarial all-zero system managed to outperform almost by two-fold the ran-
dom system. There are many cases where systems are considered state-of-the-art
while marginally surpassing the random predictor. For example, in gender iden-
tification from handwriting [4] the winner [9] demonstrated a performance of
62% while the random predictor produces 50%.

5.3 Protection from the Exploit

From the perspective of securing mAP against attacks exploiting equidistant
samples, the simplest solution is to substitute mAP with mAP−. Adopting
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Fig. 5. Most favorable and least favorable orderings of the query samples.

mAP− as the evaluation metric puts a penalty on equidistant samples without
any foreseeable side-effect. If someone being evaluated wants to be protected
from map− having a penalty on him, he can easily avoid it by adding some noise
on his outputs. Given that equidistant samples occur rarely in regular condi-
tions, having them in such abundance so that they affect the evaluation metrics
significantly, should probably be attributed to intent or poor system design. In
either case this should not be rewarded. The last but most important reason for
adopting mAP− instead of mAP, is that no system that is agnostic to the inputs
should ever out-perform a random predictor significantly.

6 Conclusion

6.1 Key Points

The key points and arguments of this paper can be summarized as follows:

– Randomness is allowed in evaluated systems but should not be accepted in
evaluation metrics.

– Unpredictability of an algorithm should not be treated as randomness.
– Evaluation protocols should be treating systems as black boxes.
– Embedding methods scale well large datasets and are the most applicable

pattern recognition retrieval techniques.
– Evaluation of embeddings requires sorting the distances from the query.
– Relevant and non-relevant samples that are equidistant from the query make

the exact mAP measurement unpredictable.
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– Although marginal, this phenomenon has been observed in real-world sys-
tems.

– The unpredictability can be easily addressed but estimating the “True” mAP
is more complicated.

– The phenomenon can be used malevolently to demonstrate performance sig-
nificantly better than the random predictor while totally independent from
input data.

– In the context of competitions and other rigorous testing, mAP− should
be preferred over mAP as it penalizes the occurrence of ambiguities and
motivates the method’s creator to resolve them.

6.2 Discussion

The collision effect from equidistant samples in real scenarios is rather small, but
it should be pointed out that detecting such phenomena in most circumstances
is practically impossible. Therefore, we cannot really know how often they occur.
The fact that GPUs, which are used in practically all modern pattern recognition
methods, operate on 32 bit floating point, makes equidistant sample ambiguity
more plausible. Moreover, embedding methods might produce near-discretized
embeddings, such as the PHOC, or even discretized ones, such as POOF [3]. This
makes the occurrence of such phenomena even more probable than one would
expect. We believe that an evaluation metric should be robust against adversarial
inputs and always provide meaningful results. We also believe that the standard
of reproducibility, to which an evaluation metric is set, should be higher than
any other component of the experimental evaluation. While one might argue
that it is hard to prove the statistical significance of the analyzed phenomena,
we believe that performance metrics should be held to the standard of algebra. It
can be argued that statistics are not as informative when analyzing phenomena
such as numerical instability. Numerical instability problems cannot be modeled
as random variables because they are usually pseudo-deterministic; a system will
usually be extremely consistent in producing the wrong number, thus repetition
cannot provide an estimation on the distribution that the instability follows.

Computer and data science operates in a totally deterministic space where
all randomness seizes at the point of digitization. When the behavior of systems
modeled black-boxes is the subject of scientific analysis, then the actual eval-
uation metrics are the principal mean of observation, it is important to know
and control the exact amount of error that these metrics have. Disparities on
measurements of the same observation must be quantified, accounted for, and
understood, as in many cases, one might be right to suspect they indicate a bug
in his experimental pipeline.

By considering only statistically significant errors in the metrics as unaccept-
able, we let go of perfect reproducibility.

By providing an easily computable quantification of these effects, we remove
this source of non-determinism from an otherwise purely deterministic experi-
mental process.
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Abstract. The paper “Convolutional Networks for semantic Heads Seg-
mentation using Top-View Depth Data in Crowded Environment” [1]
introduces an approach to track and detect people in cases of heavy occlu-
sions based on CNNs for semantic segmentation using top-view RGB-D
visual data. The purpose is the design of a novel U-Net architecture,
U-Net 3, that has been modified compared to the previous ones at the
end of each layer. In order to evaluate this new architecture a comparison
has been made with other networks in the literature used for semantic
segmentation. The implementation is in Python code using Keras API
with Tensorflow library. The input data consist of depth frames, from
Asus Xtion Pro Live OpenNI recordings (.oni). The dataset used for
training and testing of the networks has been manually labeled and it is
freely available as well as the source code. The aforementioned networks
have their stand-alone Python script implementation for training and
testing. A Python script for the on-line prediction in OpenNI recordings
(.oni) is also provided. Evaluation of the networks has been made with
different metrics implementations (precision, recall, F1 Score, Sørensen-
Dice coefficient), included in the networks scripts.

Keywords: CNN · People detection · Top-view

1 Introduction

The main novelty in this work is to take an existing convolutional neural network
architecture initially born for medical image segmentation [2] and use it, after a
proper training phase, for head detection in a top-view depth frame. In order to
evaluate the new architecture on our application domain, that is people counting
in heavy crowded environment, a new dataset has been built and freely published.
After a first evaluation of the networks present in the literature we modified
U-Net architecture to achieve better performances.

The paper is organized as follows: Sect. 2 introduces our approach consisting
of a modified U-Net and gives details on the “TVHeadsDataset” [3]. Section 3
presents conclusions with future works.
c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 85–88, 2019.
https://doi.org/10.1007/978-3-030-23987-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23987-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-23987-9_6


86 R. Pietrini et al.

2 Implementation

2.1 Dataset

The dataset consist of 1815 (320 × 240 pixels) 16-bit depth images, acquired
in real scenarios. Binary masks indicating heads in the frame as ground truth
are also provided. The labeling has been manually made by 6 human annotator
with a majority policy. Additionally 8-bit images, obtained from the original
one through conversion, have been used for comparing purpose, as they allow to
enhance the overall contrast.

The first step is the image management, for this reason we created a script
data.py in charge of pre-process each image with resizing, split the dataset in
train and validation and store them in Numpy binary format for faster loading.

2.2 State of the Art

The first step was to implement different architectures taken from the literature.
FractalNet [4], U-Net [2], U-Net2 [5], SegNet [6], ResNet [7] has been imple-
mented. Source code is implemented through Keras 2 functional API, with a
specific script for training and testing each network and also a script for on line
prediction with U-Net 3. Sørensen-Dice coefficient has been selected as loss func-
tion minimizing the negative Dice loss, in a total of 200 epochs, with the Adam
optimizer. In order to evaluate the networks each script contains implementa-
tions for the following metrics: Sørensen-Dice coefficient, accuracy, precision,
recall, f1 score. In the original paper has been also calculated the Jaccard index
from the Sørensen-Dice coefficient.

2.3 U-Net 3

The network architecture is depicted in Fig. 1, basically we started from
U-Net classic architecture with the main idea to add a batch normalization after
the first ReLU activation function and after each max-pooling and up-sampling
functions.

The main contribution is contained in script train unet3 conv.py that after
loading the dataset using the aforementioned functions implement the network
for training and testing. Final results are then stored in csv files for both 8 and
16 bit images.

2.4 On-Line Prediction

The dedicated script for the on-line prediction takes a OpenNI recording file
(.oni) as argument and after loading the trained model predict on line the seman-
tic segmentation frame by frame, saving the predicted binary images.
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Fig. 1. U-Net 3 architecture.

3 Conclusion

People counting from top view cameras allow to avoid problems like occlusion
and can be reduced to head counting problem, with the obvious advantage that
from an image point of view blobs (heads) unlikely will overlap or touch them-
selves, bringing high performances [8]. Semantic segmentation is the first step
of every counting and tracking algorithm and our approach show great perfor-
mance in terms of accuracy and speed for top-view depth images. In the later
steps will be really trivial to implement a contour detection and tracking, since
we already have a binary image, that can also be used as masks to retrieve
the depth information. The aforementioned scripts allow to reproduce all the
experiments in the original paper, in particular tables I and II [1] regarding
Sørensen-Dice coefficient, while the relative Jaccard can be directly calculated
from it.
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Abstract. In this paper we describe the algorithmic implementation
details of “Connected Components Labeling on DRAGs” (Directed
Rooted Acyclic Graphs), studying the influence of parameters on the
results. Moreover, a detailed description of how to install, setup and use
YACCLAB (Yet Another Connected Components LAbeling Benchmark)
to test DRAG is provided.

1 Introduction

Connected Components Labeling (CCL) is one of the fundamental operations
in Computer Vision and Image Processing. With the labeling procedure, all
objects in a binary image are labeled with unique values, typically integer num-
bers. In the last few decades many novel proposals for CCL appeared, and only
some of them were compared on the same data and with the same implementa-
tion [3,11,14]. Therefore, the benchmarking framework Yet Another Connected
Components LAbeling Benchmark (YACCLAB in short) has been developed,
aiming to provide the fairest possible evaluation of CCL algorithms [10,15].

The performance evaluation task is not as easy as it may seem, as there
are several aspects that could influence an algorithm. However, since CCL is a
well-defined problem, admitting a unique solution, the key elements influencing
the “speed” of an algorithm can be reduced to: the data on which tests are
performed, the quality of the implementations, the hardware capabilities, and
last but not least, the code optimization provided by the compiler.

For these reasons, the YACCLAB benchmark is based on two fundamen-
tal traits which aim at guaranteeing the reproducibility of the claims made by
research papers:

(i) A public dataset of binary images that covers different application scenarios,
ranging from text analysis to video surveillance.

(ii) A set of open-source C++ algorithms implementations, on which anyone can
contribute to, with extensions or improvements.
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The results obtained with YACCLAB may vary when the computer architec-
ture or the compiler change, but being the code publicly available, anyone can
test the provided algorithms on his own setting, choosing the one which suits
his needs best, and verify any claim found in literature.

Following this line of work, in this paper we describe the algorithmic and
implementation details of a recently developed CCL algorithm, “Connected
Component Labeling on DRAGs” (Directed Rooted Acyclic Graphs) [7], focusing
on its integration with YACCLAB and on the installation procedure. A detailed
analysis of parameters influence on the result is also provided.

The source code of the aforementioned algorithm is located at [1], whereas
the benchmarking suite can be found at [4].

2 How to Test DRAG with YACCLAB

To correctly install and run YACCLAB the following packages, libraries and
utilities are required:

• CMake 3.0.0 or higher (https://cmake.org);
• OpenCV 3.0 or higher (http://opencv.org),
• Gnuplot (http://www.gnuplot.info);
• C++11 compiler.

The installation procedure requires the following steps:

• Clone the GitHub repository [4];
• Install the software using CMake, which should automatically find OpenCV

path, whether correctly installed on your OS, download the YACCLAB
dataset, and create a C++ project for the selected compiler;

• Set the configuration file config.yaml placed in the installation folder and
select the desired tests;

• Open the project, compile and run it.

There are six different tests available: correctness tests are an initial valida-
tion of the algorithms; average tests run algorithms on every image of a dataset,
reporting for each method the average run-time; average with steps separates
the labeling time of each scan, and that required to allocate/deallocate data
structures; density and granularity use synthetic images to evaluate the perfor-
mance of different approaches in terms of scalability on the number of pixels,
foreground density and pattern granularity; memory tests report an indication
on the expected number of memory accesses required by an algorithm on a ref-
erence dataset.

YACCLAB stores average results in three different formats: a plain text file,
histogram charts, either in color and in gray-scale, and a LaTEX table, which can
be directly included in research papers. If an algorithm employs multiple scans,
results will display time spent in each of them separately, producing a stacked
histogram chart as output.

All the algorithms included in YACCLAB employ a base interface and imple-
ment the following virtual methods:

https://cmake.org
http://opencv.org
http://www.gnuplot.info
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• PerformLabeling: includes the whole algorithm code and it is necessary to
perform average, density, granularity and size tests;

• PerformLabelingWithSteps: implements the algorithm, dividing it in steps
(i.e. alloc/dealloc, first scan and second scan for those which have two
scans, or all scan for the others) in order to evaluate every step separately;

• PerformLabelingMem: is an implementation of the algorithm that traces the
number of memory accesses whenever they occur.

The Union-Find strategy is independent from the CCL one, therefore all
CCL algorithms invoke a templated Union-Find implementation. YACCLAB is
then able to compare each algorithm (but those for which the labels solver is
built-in) with four different labels solving strategies: standard Union-Find (UF),
Union-Find with Path Compression (UFPC) [21], Interleaved Rem’s algorithm
with splicing (RemSP) [12] and Three Table Array (TTA) [16]. This standard-
ization reduces the code variability, allowing to separate the Union-Find data
structures from the ones of CCL algorithms, and provides fairer comparisons
without negatively impacting the execution time.

The NULL labeling, also referred as NULL, defines a lower bound limit for the
execution time of CCL algorithms on a given machine and a reference dataset. As
the name suggests, the NULL algorithm does not provide the correct connected
components of an image, but only copies the pixels from the input image into
the output one. This “algorithm” allows to identify the minimum time required
for allocating the memory of the output image, reading the input image and
writing the output one. In this way, all the algorithms can be compared in terms
of how costly the additional operations required are.

3 Experiments Reproducibility

The DRAG algorithm was tested on an Intel Core i7-4770 CPU @ 3.40 GHz
(4 × 32 KB L1 cache, 4 × 256 KB L2 cache, and 8 MB of L3 cache) with Linux
OS and GCC 7.2.0 compiler enabling the -O3 and -m32 flags.

The impact of the labels solver on the overall performance is typically limited
for most algorithms, so we only reported results obtained with the UFPC solver
on the state-of-the-art algorithms.

The DRAG performance have been compared on six different datasets: a
collection of histological images [13] with an average amount of 1.21 million
pixels to analyze and 484 components to label (Medical), fingerprint images [20],
collected by using low-cost optical sensors or synthetically generated, with an
average of 809 components to label (Fingerprints), high resolution historical
document images [6,8,9] with more than 15000 components and a low foreground
density (XDOCS), a dataset for people detection [5], tracking, action analysis
and trajectory analysis with very low foreground density and few components to
identify (3DPeS), a selection of documents [2,18,19] collected and scanned using
a wide variety of equipment over time with a resolution varying from 150 to 300
DPI (Tobacco800), and a large set of standard resolution natural images [17]
taken from Flickr (MirFlickr).
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In order to execute the same experiments reported in [7] the perform, algo-
rithms, and average datasets fields in the configuration file must be set as
follows:

perform: {correctness: true, average: true, average_with_steps: false,
density: false, granularity: false, memory: false}

algorithms: [SAUF_UFPC, BBDT_UFPC, DRAG_UFPC, CTB_UFPC, PRED_UFPC, CT,
labeling_NULL]

average_datasets: ["mirflickr", "fingerprints", "xdocs", "tobacco800",
"3dpes", "medical"]

Average tests were repeated 10 times (setting the tests number.average
in the configuration file), and for each image the minimum execution time was
considered. The use of minimum is justified by the fact that, in theory, an algo-
rithm on a specific environment will always require the same time to execute.
This time was computable in exact way on non multitasking single core pro-
cessors (8086, 80286). Nowadays, too many unpredictable things could occur in
background, independently with respect to the specific algorithm. Anyway, an
algorithm cannot use less than the required clock cycles, so the best way to get
the “real” execution time is to use the minimum value over multiple runs. The
probability of having a higher execution time is then equal for all algorithms.
For that reason, taking the minimum is the only way to get reproducible results
from one execution of the benchmark to another on the same environment.

4 Conclusion

This paper describes how to setup the YACCLAB project to reproduce the result
reported in [7]. The processor model –and in particular the cache sizes–, the RAM
speed and the background tasks will influence the execution time. Nevertheless,
the algorithms relative performance should remain extremely similar. Changing
the OS or the compiler is instead likely to heavily influence the outcome.
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Abstract. We present the implementation details of a scalable spectral
clustering algorithm with cosine similarity (ICPR 2018, Beijing, China),
which are based on simple, efficient matrix operations. The sensitivity of
its parameters is also discussed.

1 Introduction

In our recent work [1] we introduced a scalable implementation of various spectral
clustering algorithms, such as the Ng-Jordan-Weiss (NJW) algorithm [3], Nor-
malized Cut (NCut) [4], and Diffusion Maps (DM) [2], in the special setting of
cosine similarity by exploiting the product form of the weight matrix. We showed
that if the data X ∈ R

n×d is large in size (n) but has some sort of low dimensional
structure – either of low dimension (d) or being sparse (e.g. as a document-term
matrix), then one can perform spectral clustering with cosine similarity solely
based on three kinds of efficient operations on the data matrix: elementwise
manipulation, matrix-vector multiplication, and low-rank SVD, before the final
k-means step. As a result, the algorithm enjoys a linear complexity in the size of
the data. We present the main steps of the algorithm in Algorithm 1 and refer
the reader to the paper [1] for more details.

Remark 1. The outliers detected by the algorithm may be classified back to
the main part of the data set by simple classifiers such as the nearest centroid
classifier, or the k nearest neighbors (kNN) classifier.

2 Implementation Details

We implemented Algorithm 1 and conducted all the experiments in MATLAB.
Note that the Statistics and Machine Learning Toolbox is needed because of the
k-means function used in the final step (the rest of the steps consist of very basic
linear algebra operations). If unavailable, the toolbox may be avoided if one uses
a freely-available substitute k-means function such as litekmeans.1

1 Available at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html.
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B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 94–97, 2019.
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Algorithm 1. Scalable Spectral Clustering with Cosine Similarity
Input: Data matrix X ∈ R

n×d (sparse or of moderate dimension, with L2-normalized
rows), #clusters k, clustering method (NJW, Ncut, or DM), fraction of outliers α

Output: Clusters C1, . . . , Ck and a set of outliers C0

1: Calculate the degree matrix D = diag(X(XT1) − 1) and remove the bottom
(100α)% of the input data that have the lowest degrees as outliers (stored in C0).

2: For the remaining data, normalize them by ˜X = D−1/2X and find its top k singular
values λ1, . . . , λk and corresponding left singular vectors ũ1, . . . , ũk by rank-k SVD.
Let Λ = diag(λ1, . . . , λk) ∈ R

k×k and ˜U = [ũ1 . . . ũk] ∈ R
n×k.

3: Form the matrix Y ∈ R
n×k dependent on the clustering method (the rows of Y

are regarded as an embedding of the input data):

– NJW: Y = ˜U;
– NCut: Y = D−1/2

˜U
– DM: Y = D−1/2

˜UΛt, where t is a positive integer representing the number of
diffusion steps.

4: Normalize the rows of Y to have unit �2 norm and apply the k-means algorithm
to find k clusters C1, . . . , Ck.

To promote the simplicity and efficiency of the implementation, we did the
following things:

– We extended the value of the parameter t (hidden in DM) to include the
other two clustering methods: NCut (t = 0) and NJW (t = −1).

– When the input data matrix X is sparse (e.g., as a document-term matrix),
we take advantage of the sparse matrix operations in MATLAB.

– Diagonal matrices are always stored as vectors.
– All the multiplications between a matrix and a diagonal matrix (such as

D−1/2X and D−1/2
˜UΛ), are implemented as element-wise binary operations

through the bsxfun function in MATLAB. Additionally, the matrix-vector
product XT1 is implemented through transpose(sum(X, 1)) in MATLAB.

– The svds function is used to find only the top k singular values and associated
singular vectors of ˜X.

– The k-means clustering is initialized with the default plus option, and uses
10 restarts.

– We implemented the nearest centroid classifier for assigning the outliers back
into the clusters due to its faster speed than k-NN.

The software, as well as the data sets used in [1] and this paper, has been
published at https://github.com/glsjsu/rprr2018.

3 Parameter Setting

The algorithm has only one parameter α that needs to be specified. It indi-
cates the fraction of input data to be removed and treated as outliers.

https://github.com/glsjsu/rprr2018
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Fig. 1. Clustering accuracy rates of the three scalable methods on both versions of 20
newsgroups data corresponding to different α values.

Experiments conducted in [1] showed that the parameter α was not sensitive
in the scalable NJW algorithm, as long as it is set bigger than zero.2 Here, we
further test the sensitivity of the α parameter in all three scalable methods on
the same two versions of 20 newsgroups data [1] and report the accuracy results
in Fig. 1.
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Fig. 2. Clustering accuracy of Algorithm 1 with DM and each value of t = −1 : 15
obtained on the top 30 categories of the TDT2 data set [1] (α = .01 is always fixed).
Note that the two special values t = −1, 0 correspond to the NJW and NCut options.

There is another parameter t in the code that needs to be specified, which
in the case of DM represents the number of steps taken by a random walker.
2 This is actually a necessary condition for the algorithm to work; see [1, Section III.B].

The value zero was included to verify the necessity of the condition.
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In general, its optimal value is data-dependent. We have observed that DM with
t = 1 often gives better accuracy than NCut (corresponding to t = 0); see Fig. 2
for an example.

4 Conclusions

We presented the MATLAB implementation details of a scalable spectral clus-
tering algorithm with cosine similarity. The code consists of a few lines of simple
linear algebra operations and is very efficient and fast. There are two parameters
associated to the algorithm – α and t – but they are easy to tune: for the former,
it is insensitive and we observed that the value α = .01 often works adequately
well; for the latter, it is truly a parameter when DM is used and in that case,
setting it to t = 1 seems to achieve good accuracy in most cases. Lastly, all steps
except the last step of k-means clustering in Algorithm 1 are deterministic and
thus for fixed data and parameter values, the code yields very consistent results
(any inconsistency is caused by the k-means clustering step).

Acknowledgments. We thank the anonymous reviewers for helpful feedback.
G. Chen was supported by the Simons Foundation Collaboration Grant for Mathe-
maticians.
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Abstract. The paper focuses on implementation details of ALFA – an
agglomerative late fusion algorithm for object detection. ALFA agglom-
eratively clusters detector predictions while taking into account bound-
ing box locations and class scores. We discuss the source code of ALFA
and another late fusion algorithm – Dynamic Belief Fusion (DBF). The
workflow and the hyperparameters necessary to reproduce the published
results are presented. We also provide a framework for evaluation of late
fusion algorithms like ALFA, DBF and Non-Maximum Suppression with
arbitrary object detectors.

Keywords: Object detection · Late fusion · Agglomerative clustering

1 Introduction

Object detection is an important and challenging computer vision problem. State
of the art object detectors, such as Faster R-CNN, YOLO, SSD and DeNet, rely
on deep convolutional neural networks and show remarkable results in terms
of accuracy and speed. Fusing results of several object detection methods is a
common way to increase accuracy of object detection. In the companion paper [1]
a new late fusion algorithm for object detection called ALFA was proposed.
ALFA relies on agglomerative clustering and shows state of the art results on
PASCAL VOC 2007 and 2012 object detection datasets.

We also implemented Dynamic Belief Fusion – state of the art late fusion
algorithm for object detection proposed in [2] – as our baseline, since the imple-
mentation from authors is not available.

Here we describe our implementation of ALFA and DBF providing pseu-
docode for the key functions of these methods. We also provide hyperparameter
values required to reproduce results from [1] on PASCAL VOC 2012 dataset.
Results on PASCAL VOC 2007 are not reproducible due to randomness of a
cross-validation procedure.

Link to our implementation: http://github.com/IuliiaSaveleva/ALFA. All
the details required to successfully run the code are provided in README.md.
c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 98–103, 2019.
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2 Implementation

Assume object detection task for K classes and N trained object detectors
D1,D2, ...,DN . Given an image I object detector produces a set of predictions:

Di(I) = {p1, ..., pmi
}, p = (r, c),

where mi is the number of detected objects, r represents four coordinates of the
axis-aligned bounding box and c is class scores tuple of size (K + 1), including
“no object” score c(0).

2.1 ALFA Implementation

The steps of ALFA are given below.

2.1.1 Agglomerative Clustering of Base Detectors Predictions
We assume that prediction bounding box ri and class scores ci should be similar
to other prediction bounding box rj and class scores cj if they correspond to
the same object. Let Ci and Cj be two clusters and σ(p, p̃) – similarity score
function between predictions p and p̃. We define the following similarity score
function with hyperparameter τ for prediction clusters:

σ(Ci, Cj) = min
p∈Ci,p̃∈Cj

σ(p, p̃), while maxi,jσ(Ci, Cj) ≥ τ. (1)

We propose the following measure of similarity between predictions:

σ(pi, pj) = IoU(ri, rj)γ · BC(c̄i, c̄j)1−γ , (2)

where γ ∈ [0, 1] is a hyperparameter, BC – Bhattacharyya coefficient as a mea-
sure of similarity between class scores (c̄ is obtained from class score tuple c by
omitting the zeroth “no object” component and renormalizing):

BC(c̄i, c̄j) =
K∑

k=1

√
c̄
(k)
i c̄

(k)
j , c̄(k) =

c(k)

1 − c(0)
, k = 1, ...K, (3)

IoU – intersection over union coefficient which is widely used as a measure of
similarity between bounding boxes:

IoU(ri, rj) =
ri ∩ rj

ri ∪ rj
. (4)

See Algorithm 1.
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2.1.2 Class Scores Aggregation
Assume that predictions from detectors Di1 ,Di2 , ...,Dis were assigned to object
proposal π. We assign an additional low-confidence class scores tuple to this
object proposal for every detector that missed:

clc =
(
1 − ε,

ε

K
,

ε

K
, ...,

ε

K

)
, (5)

where ε is a hyperparameter.
Each method uses one of two class scores aggregation strategies:

– Averaging fusion:

c(k)π =
1
N

(
s∑

d=1

c
(k)
id

+ (N − s) · c
(k)
lc

)
, k = 0, ...,K. (6)

– Multiplication fusion:

c(k)π =
c̃
(k)
π

∑
i c̃

(i)
π

, c̃(k)π =
(
c
(k)
lc

)N−s s∏

d=1

c
(k)
id

, k = 0, ...,K. (7)

2.1.3 Bounding Box Aggregation
All methods have the same bounding box aggregation strategy:

rπ =
1

∑
i∈π c

(l)
i

∑

i∈π

c
(l)
i · ri, where l = argmax

k≥1
c(k)π . (8)

Best ALFA parameters are provided in Table 1:

Table 1. Best ALFA parameters.

Detectors Methods Confidence
threshold

mAP τ γ Scores
aggrega-
tion
strategy

ε δ

SSD + DeNet Fast ALFA0.05 mAP 0.73 0.25Averaging 0.26True

ALFA 0.015

Fast ALFA0.05 mAP-s 0.48 0.22Multiplication 0.56True

ALFA 0.015

SSD + DeNet Fast ALFA0.05 mAP 0.74 0.3 Averaging 0.39False

+ Faster R-CNN ALFA 0.015

Fast ALFA0.05 mAP-s 0.75 0.28Multiplication 0.17True

ALFA 0.015
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Algorithm 1. Agglomerative Clustering
Data: D = D1(I) ∪ ... ∪ DN (I); Hyperparameters: γ, τ ∈ [0, 1],

δ = {False, T rue}
begin

Set σ(pi, pj) = IoU(ri, rj)γ · BC(c̄i, c̄j)1−γ

G = {gij}, gij = 1 if ((labeli = labelj) or δ = False), 0 otherwise
U = {uij}, uij = 1 if �t : pi, pj ∈ Dt(I), 0 otherwise
S = {sij}, sij = σ(pi, pj) if σ(pi, pj) > τ else 0
Q = G ◦ U ◦ S
k = 0; W0 = Sign(Q)
do

k = k + 1
Wk = Sign(Wk−1 · Wk−1)

while Wk �= Wk−1;
M = UniqueRows(Wk)
for i := 1 to |M | do

Clustersi = {Cj = {pj}|mij = 1}
do

sim = max
C,C′

min
p∈C,p′∈C′

σ(p, p′), C, C ′ ∈ Clustersi

if sim > τ then
Ci = Ci ∪ Cj

Clustersi = Clustersi \ Cj

while sim > τ ;

return ∪iClustersi

2.2 DBF Implementation

Our implementation of DBF consists of the following steps:

1. Compute PR-curves PRk
i for each class k and each detector Di,

i = 1, ..., N ;
2. Construct detection vectors for each p ∈ Di(I), i = 1, ..., N , and calculation

of basic probabilities of hypothesis according to label l and PRk
i .

See Algorithm 2;
3. Join basic probabilities by Dempster-Shaffer combination rule:

mf (A) =
1
N

∑

X1∩X2...∩XK=A

K∏

i=1

mi(Xi),

where N =
∑

X1∩X2...∩XK �=∅

∏K
i=1 mi(Xi), to determine fused basic proba-

bilities mf (T ) and mf (¬T );
4. Get fused score as s̄ = mf (T ) − mf (¬T );
5. Apply NMS to bounding boxes r and scores s̄. In order to help DBF more

on NMS step we sort detections by score s̄ and precision from PRk
i , k = l, if

detections had equal s̄ values.
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Algorithm 2. DBF algorithm: Constructing detection vectors and calcu-
lating basic probabilities of hypothesis
Data: p = (r, c), Di(I), i = 1, ..., N , PRk; Hyperparameter: n
begin

for i := 1 to N do
if p �∈ Di(I) then

Find p̄i = (r̄i, c̄i) that l = li and max(IoU(r, ri)),
l = argmaxk≥1 ck

if IoU(r, r̄i) > 0.5 then
di = c̄l̄i

i

else
di = −∞

else
di = cl

Calculate {m(T ), m(¬T ), m(I)} for each component of detection
vectors d:

for i := 1 to N do
Get precision p and recall r from PRk, k = argmaxk≥1 ck, using

score from di

m(T )i = p
pbpd = 1 − rn – precision of best possible detector
m(¬T )i = 1 − pbpd

m(I)i = pbpd − p

return m(T ), m(¬T ), m(I)

Best DBF parameters are provided in Table 2:

Table 2. Best DBF parameters.

SSD + DeNet SSD + DeNet + Faster R-CNN

mAP mAP-s mAP mAP-s

n 16 16 18 14

Confidence threshold 0.015

3 Conclusion

This paper had presented implementation details of ALFA and DBF late fusion
methods for object detection. We provide source code and hyperparameter values
that allow one to reproduce results from [1] on PASCAL VOC 2012.
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Abstract. Nowadays, Machine Learning techniques are more and more
pervasive in several application fields. In order to perform an evaluation
as reliable as possible, it is necessary to consider the reproducibility of
these models both at training and inference time. With the introduc-
tion of Deep Learning (DL), the assessment of reproducibility became
a critical issue due to heuristic considerations made at training time
that, although improving the optimization performances of such com-
plex models, can result in non-deterministic outcomes and, therefore, not
reproducible models. The aim of this paper is to quantitatively highlight
the reproducibility problem of DL approaches, proposing to overcome
it by using statistical considerations. We show that, even if the models
generated by using several times the same data show differences in the
inference phase, the obtained results are not statistically different. In
particular, this short paper analyzes, as a case study, our ICPR2018 DL
based approach for the breast segmentation in DCE-MRI, demonstrating
the reproducibility of the reported results.

1 Introduction

With the spread of Machine Learning techniques in several application fields,
performing a reliable evaluation of obtained results requires to consider their
reproducibility both at training and inference time. This is a non-trivial problem
for Deep Learning (DL) based applications, since their training and optimization
strongly relies on stochastic procedures, thus undermining the basis for results
reproducibility. Although these considerations can improve performances, they
can result in non-deterministic outcomes and, therefore, not reproducible models.
This problem is usually faced by using probabilistic considerations that, however,
do not really fit some application field standard (as medical imaging analysis
with Computer-Aided Detection and Diagnosis systems - CAD [4]) that requires
demonstrable proofs of effectiveness and repeatability of results. Our opinion is
that in those cases it is very important to clarify if and to what extent a DL
based application is stable and repeatable over than effective.

Therefore, the aim of this paper is to quantitatively highlight the repro-
ducibility problem of Convolutional Neural Networks (CNN) based approaches,
proposing to overcome it by using statistical considerations. As a case of study,

c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 104–109, 2019.
https://doi.org/10.1007/978-3-030-23987-9_10
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we analyze our ICPR2018 [5] proposal for the breast tissues segmentation in
DCE-MRI by using a modified version of a 2D U-Net CNN [6], a very effec-
tive deep architecture for semantic segmentation. The rest of the paper is orga-
nized as follows: Sect. 2 introduce the reproducibility issue for the deep learning
frameworks; Sect. 3 describes the proposed validation procedure, briefly introduc-
ing the considered breast segmentation problem; Sect. 4 reports reproducibility
results, while Sect. 5 draws some conclusions.

2 Reproducibility of Deep Learning Models

Convolution GP-GPU library (i.e. cuDNN from NVidia) default configuration
exploits stochastic and speculative procedures that, although increase the execu-
tion speed, introduce uncontrollable factors that can result in not reproducible
outcomes. In particular, the following cuDNN routines do not guarantee the
reproducibility because they use atomic operations to speed up the compu-
tation: cudnnConvolutionBackwardFilter, cudnnConvolutionBackwardData, cud-
nnPoolingBackward and cudnnSpatialTfSamplerBackward [1]. In all the frame-
works using cuDNN (such as Tensorflow), this causes non-deterministic gradient
updates, mainly due to underlying non-deterministic reductions for convolutions
(i.e. floating point operations are not necessarily associative) leading to random-
ness in the trained models.

Thus, in this paper, we propose to shift the reproducibility issue from a
strictly combinatorial problem to a statistical one, in order to validate the model
robustness and stability more than its perfect outcomes predictability that, in
our experiments, can strongly vary across different frameworks and hardware
used. To this aim, we performed a Montecarlo-like repetition experimentation,
considering the model stable, and thus repeatable, if results stay within a given
confidence interval.

3 Case Study: Whole Breast Segmentation via CNNs

In our ICPR2018 [5] paper we propose to perform the breast tissues segmentation
by considering the 3D volume as a composition of 2D sagittal slices and using
a modified 2D U-Net (Fig. 1): (a) the output feature-map was set to one to
speed up the convergence; (b) zero-padding, with a size-preserving strategy, was
applied for preserving the output shapes; (c) batch normalization (BN) layers
was inserted after each convolution. The network was trained by minimizing the
task-specific loss: 1−DSC. Where DSC is the Dice Similarity Coefficient defined
in Eq. 1, n(·) represents the enclosed volume number of voxels, GS represents
the gold standard and SEG represents the segmented volume.

DSC = (2 · n(GS ∩ SEG))/(n(GS) + n(SEG)) (1)

The network kernel weights have been initialized from a standard distribution
N (0,

√
2/(fan in + fan out)) [2], where fan in and fan out are respectively the
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Fig. 1. Our U-Net proposal for the breast tissues segmentation. The left side performs
the contracting path while the right side performs the expansive path

convolution layer input and output features sizes, while the bias weights have
been initialized to a constant value of 0.1 to avoid slow-start learning when using
ReLu activation functions.

ADAM optimizer [3] was used to minimize the loss function setting β1 = 0.9,
β2 = 0.999 and learning rate = 0.001, with an inverse time decay strategy. Per-
formances were evaluated on 42 subjects DCE-MRI data acquired using a 1.5T
scanner (Magnetom Symphony, Siemens) equipped with breast coil, considering
only the pre-contrast series.

The proposed CNNs have been implemented using the Keras high-level neural
networks API in Python 3.6 with the TensorFlow (v1.9) as back-end. With the
aim of also consider the likely impact of the underlying GPU family, the Python
scripts have been evaluated on the following configurations:

Conf. ‘A’ A virtual environment freely offered by Google Colaboratory1. The
virtual machine has an Intel(R) Xeon(R) @ 2.2 GHz CPU (2 cores), 13 GB
RAM and an Nvidia K80 GPU (Tesla family) with 12 GB GRAM.

Conf. ‘B’ A physical server hosted in our university HPC center2 equipped
with 2 x Intel(R) Xeon(R) Intel(R) 2.13 GHz CPUs (4 cores), 32 GB RAM
and an Nvidia Titan Xp GPU (Pascal family) with 12 GB GRAM.

The assessment was performed by using a patient-based 10-fold Cross Vali-
dation (CV), in order to prevent slices from the same subject belonging to two
different folds, applying a training/test data standardization using the median
and standard deviation calculated only on the training patients’ fold. To val-
idate the repeatability of our model, we repeated the execution 50 times. We
used the same initialization seeds for the random numbers generators to try
highlighting only the uncertainty due to random considerations introduced by
the optimization tools’ randomness. The obtained breast-mask is compared to
the gold standard in terms of Dice Similarity Coefficient (DSC) index.

1 https://colab.research.google.com.
2 http://www.scope.unina.it.

https://colab.research.google.com
http://www.scope.unina.it
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4 Results

For brevity reasons, this section reports only the first 10 executions of the Mon-
tecarlo analysis. Each Montecarlo execution applies a 10-fold cross-validation
producing 10 folds containing the 42 patient segmentations3. The median values
of a part of the Montecarlo execution are reported in the Tables 1 and 2.

Table 1. Results obtained for each of
the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation
for our approach, using the conf. ‘A’.
The results presented in ICPR2018
are also reported in bold. Median
values with corresponding 95% con-
fidence intervals (LB: LowerBound,
UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [5] 95.90 95.16 96.64

Rep.01 95.80 95.24 96.37

Rep.02 96.19 95.62 96.75

Rep.03 95.85 95.38 96.39

Rep.04 96.11 95.69 96.57

Rep.05 96.04 95.15 96.62

Rep.06 95.90 95.02 96.60

Rep.07 96.25 95.29 96.52

Rep.08 95.93 95.44 96.56

Rep.09 95.95 95.38 96.36

Rep.10 95.89 95.35 96.43

ICP
R20

18
Rep

.01
Rep

.02
Rep

.03
Rep

.04
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98.0

Fig. 2. Boxplots of the ICPR2018 results and
of the first 10 out of 50 Montecarlo executions,
using the conf. ‘A’. Statistics are in Table 1

Both Tables 1 and 2 show how the computational frameworks for the opti-
mization of deep learning models suffer from reproducibility during the training
phase producing different models and thus, different results. This problem is
not limited to the analyzed framework, Tensorflow, neither in the used GPU
architecture, but lies in the Nvidia libraries as discussed in Sect. 2. Neverthe-
less, the randomness introduced in the trained models (by fixing the seeds of all
the random numbers generators) produces not statistically different results as
graphically shown in the Fig. 2.

3 Scripts where available to reviewers for reproducing the executions.
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Table 2. Results obtained for each of
the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation
for our approach, using the conf. ‘B’.
The results presented in ICPR2018
are also reported in bold. Median
values with corresponding 95% con-
fidence intervals (LB: LowerBound,
UB: UpperBound) are reported.

Repetition DSC [%] LB [%] UB [%]

ICPR2018 [5] 95.90 95.16 96.64

Rep.01 95.89 95.18 96.47

Rep.02 95.91 95.25 96.32

Rep.03 96.14 95.08 96.66

Rep.04 95.90 94.92 96.48

Rep.05 96.01 94.98 96.41

Rep.06 96.12 94.95 96.53

Rep.07 96.03 95.56 96.28

Rep.08 95.95 95.52 96.29

Rep.09 96.08 94.77 96.39

Rep.10 96.12 95.31 96.48

ICP
R20

18
Rep

.01
Rep

.02
Rep

.03
Rep

.04
Rep

.05
Rep

.06
Rep

.07
Rep

.08
Rep

.09
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.10
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98.0

Fig. 3. Boxplots of the ICPR2018 results and
of the first 10 out of 50 Montecarlo executions,
using the conf. ‘B’. Statistics are in Table 2

5 Conclusions

The aim of this paper was to quantitatively highlight the problem of the repro-
ducibility of Deep Learning approaches, proposing to overcome it by using statis-
tical considerations. We quantitatively highlighted, in Table 1, the reproducibil-
ity problem of Convolutional Neural Networks (CNN) based approaches eval-
uating our DL approach for breast segmentation proposed in [5]). It is worth
noting that this problem is not limited to the analyzed framework, Tensorflow,
neither in the used GPU architecture, but lies in the Nvidia libraries as discussed
in Sect. 2. Analyzing the boxplots in Figs. 2 and 3, we can state that our CNN-
based model is stable to the different training executions over different hardware
configurations, since the confidence intervals obtained on the tests data overlap.
We have been able to demonstrate that the reproducibility issue can be shifted
from a strictly combinatorial problem to a statistical one, in order to validate
the model robustness and stability more than its perfect outcomes predictability.
Generally speaking, the randomness introduced with the advent of optimization
engines for deep learning models, even if it may impact on the results of a reliable
and reproducible research, only shift the attention on the statistical validity of
the obtained outcomes. In fact, a model showing large variations in results will
have very wide confidence intervals leading to unreliable results.
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Abstract. We present some details of Bayesian block sparse model-
ing using hierarchical prior having deterministic and random parameters
when entries within the blocks are correlated. In particular, the effect of
the threshold to prune out variance parameters of algorithms correspond-
ing to several choices of marginals, viz. multivariate Jeffery prior, multi-
variate Laplace distribution and multivariate Student’s t distribution, is
discussed. We also provide details of experiments with Electroencephalo-
graph (EEG) data which shed some light on the possible applicability of
the proposed Sparse Variational Bayes framework.

Keywords: Bayesian block sparse modeling ·
Gaussian Mixture Model (GSM) · Sparse Variational Bayes (SVB) ·
Electroencephalograph (EEG) data

1 Introduction to Sparse Variational Bayes Framework

Compressed Sensing problem aims at solving an undetermined system of linear
equations:

y = Φx + v (1)

where y ∈ R
m×1 is the observation vector, x ∈ R

n×1 is the unknown solution
vector with n >> m, v is the unknown noise vector and Φ ∈ R

m×n is the known
random matrix with full row rank and satisfies Restricted Isometry Property.
Infinitely many x can solve (1) provided solution exists and thus we need to
make some assumptions to make the problem well defined [1]. Sparsity is one of
the viable assumption which has received a lot of attention in the recent times.
In addition to sparsity, sometimes signals exhibit additional structures in the
form of blocks and we have block linear sparse model [2]:

y =
g∑

i=1

Φixi + v (2)
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where Φi ∈ R
m×di , xi ∈ R

di×1 and
∑g

i=1 di = n, g being the number of non-zero
blocks and di being the size of ith block.

Generalized Sparse Variational Bayes (cSVB) framework is a three level hier-
archical estimation framework [3] which is extension of the work proposed in [4,5]
for block sparse signals with correlated entries. At first level, it assigns heavy
tailed sparsity promoting priors (which can also be expressed as Gaussian Scale
Mixtures with appropriate mixing density [6]) over each block:

xi =
1√
αi

Cig ∀i = 1, . . . , g (3)

where g ∼ N (0di
, Idi

), αi is the inverse variance random parameter and
B−1

i � CiCt
i ∈ R

di×di is the covariance deterministic parameter matrix of
the block xi. At second level, depending on the choice of prior distribution
over parameters αi, various heavy tailed distributions can be induced over xi

viz. multivariate Laplace distribution, multivariate Student’s t distribution and
multivariate Jeffery’s prior. At third level, we impose different priors over hyper-
parameters. Graphical model representing this framework is shown in Fig. 1.

In this framework, αis play an important role in inducing sparsity in the
solution vector. When αi = ∞, the corresponding ith block of x becomes 0.
Due to the mechanism of Automatic Relevance Determination (ARD), most
of the αi tend to infinity and thus block sparsity is encouraged. However, in
the presence of noise, αi never becomes ∞ and thus a threshold is used to
prune out large αi. This work aims at addressing the effect of threshold to
prune out αi parameters (Sect. 2) in terms of mean square error, failure rate
and speed of the algorithms proposed1 in our work [3]. For notations and other
details, please refer [3]. We also demonstrate the utility of the framework for
EEG data reconstruction problem [7] and Steady-State Visual Evoked Potential
EEG recognition problem [8,9].

2 Effect of Threshold to Prune Out Variance Parameters

We randomly generated the unknown solution vector x of length n = 480 with
total non-zero coefficients being 24, occurring in blocks at random locations.
Coefficients within each blocks were generated as AR(1) process with common
AR coefficient ρ. m = 50 was kept fixed and block size was varied from 1 to
6. Φ ∈ R

m×n consisted of columns drawn from a standard Gaussian distribu-
tion with unit �2 norm. Zero mean v was added to measurements y = Φx + v
with variance depending on the desired SNR. For analysis of algorithms, we car-
ried out simple experiments over synthetic data of 200 independent trials with
different realizations of measurement matrix Φ and true signal x. Correlation
coefficient ρ was kept 0.8. We investigated the effect of threshold value to prune
out αi and considered threshold values: 10, 50, 100, 103, 104, 105, 106, 107, 108.

1 The codes for [3] can be found at https://github.com/shruti51/cSVB.

https://github.com/shruti51/cSVB
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Fig. 1. Graphical Model representing the Bayesian Model. Red plate (the box labeled
G) represents G nodes of which only a single node (xi and related variables) is shown
explicitly (Color figure online)

We measured the algorithm’s performance in terms of failure rate (please refer
[3] for definition of failure rate), MSE and speed.

From Figs. 2, 3 and 4, we see that α-pruning threshold plays an important
role in determining the performance of the algorithms. Figure 2 shows that while
optimal performance, in terms of failure rate, of BSBL variants and SVB vari-
ants depends on the threshold, cSVB variants do not depend much on α-pruning
threshold. This is desirable in the sense that we don’t want our algorithms to
depend much on the parameters of framework. It also shows that cSVB variants
have outperformed SVB variants and BSBL-BO. Figure 3 shows that SVB vari-
ants have again performed poorly but now BSBL-BO performance is comparable
to that of cSVB variants. Finally, we see from Fig. 4 that good performance of
cSVB variants has come at a price of their computational complexity where time
taken by cSVB variants is high as compared to BSBL-BO. SVB variants offer low
complex algorithms as compared to cSVB and BSBL-BO which do not involve
extra computational burden of inversion of matrix B and thus attributing to
their fast execution speed at low threshold values.

To summarize, we say that cSVB variants have a potential to recover block
sparse signals with high fidelity irrespective of the αi-pruning threshold. But
this comes at a cost of high computational time.

3 Experiments with EEG Data

3.1 Reconstruction Performance of Algorithms with EEG Signals

We have used eeglab data.set from EEGLAB which has 32 channels. Dataset
and related MATLAB codes were downloaded from [10]. Each channel consists
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Fig. 3. Mean square error versus α-pruning threshold

of 80 epochs with 384 samples in every channel and epoch was processed indepen-
dently. The data matrix was firstly transformed using Discrete Cosine Transform
(DCT) and sensing matrix Φ was considered to be binary matrix of dimensions
150×384, each column of which contained 10 ones and rest zeros [7]. This model
can be written as:

y = Φx = ΦDz (4)

where y are compressed measurements, x are original measurements and z =
D−1x are DCT coefficients and have few significant entries due to ’energy com-
paction’ property of the transform. Block partitioning was kept equal and block
size 24.

The reconstruction performance of all the algorithms is shown in Fig. 5. Due
to our inability to interpret EEG signals, it is very difficult to assess the quality
of EEG reconstruction by the proposed algorithm. However, it can be seen that
at least all the algorithms have managed to capture the trends of original EEG
signal. So, in this case, experiments suggest that EEG data does not exhibit
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Fig. 4. Time (in seconds) versus α-pruning threshold

strong correlation which is otherwise also true in the sense that EEG data is
highly non-stationary data. So, SVB variants can be seen as equally strong can-
didates for the analysis which do not model any correlation structure of the
signal.

3.2 Experimental Results on SSVEP-Recognition

Main aim of this experiment is to demonstrate the power of Sparse Varia-
tional Bayesian framework in recognizing Steady-State Visual Evoked Potential
(SSVEP).

The benchmark dataset in [8] based on SSVEP-based Brain Computer Inter-
face (BCI) is used for the validation of algorithms. It consists of 64-channel EEG
data from 35 healthy subjects (8 experienced and 27 naive) and 40 stimulation
frequencies ranging from 8 to 15.8 Hz with an interval of 0.2 Hz. For each subject,
the experiment was performed in 6 blocks and each block consisted of 40 trials
corresponding to 40 characters (26 English alphabets, 10 digits and 4 other sym-
bols) indicated in random order. Each trial started with a visual cue indicating
a target stimulus which appeared for 0.5 s on the screen and then all stimuli
started to flicker on the screen concurrently and lasted for 5 s. The screen was
kept blank for 0.5 s before the next trial began.

We used the same experimental setup as proposed in [11]. Measurement
matrix Φ ∈ R

m×n was sparse binary matrix having each column with two entries
of 1 in random locations while rest of the entries are 0. n was kept fixed and m
was varied to meet desired Compression Ratio (CR) defined: CR = n−m

n × 100.
For performance evaluation, we used task-specific performance evaluation

where all the algorithms were evaluated based on their performances on fre-
quency detection of SSVEPs using Canonical Correlation Analysis (CCA) [9].
In particular, at first, SSVEP detection was performed on the original dataset
(which also serves as the baseline for algorithms) and then the same task was per-
formed on the recovered dataset from few measurements using the algorithms.
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Fig. 5. Performance of Algorithms for EEG Reconstruction using 150 random mea-
surements

For analysis, nine electrodes over the parietal and occipital areas (Pz, PO5,
POz, PO4, PO6, O1, Oz and O2) were used. Number of harmonics for reference
reconstruction was kept 3.

From Fig. 6, it is clear that cLSVB has outperformed in the experiment.
Therefore, it can be seen that for CCA, around 40% (which corresponds to
CR = 60) of the randomly sampled points were sufficient to correctly detect
almost 90% (peak) of the letters for cLSVB based recovered EEG signals. For
the sake of brevity, we present the result for Subject 2 but similar results were
obtained for all the subjects. For more details of this work, please refer [12].
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Fig. 6. Classification Rate for Subject 2 using Canonical Correlation Analysis (CCA)
of all Algorithms when CR= 60

4 Conclusion

Sparse Variational Bayesian framework offers an alternate to handle block sparse
recovery problem. In this paper, we analyzed one of the crucial parameters αi

which ultimately controls the structure of block sparse signals. We also discussed
application of the framework in EEG signal processing context. To encourage
reproducible research, the codes for [3] can be found at https://github.com/
shruti51/cSVB.
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Abstract. As there are as many clients as many usages of an Image
Processing library, each one may expect different services from it. Some
clients may look for efficient and production-quality algorithms, some
may look for a large tool set, while others may look for extensibility
and genericity to inter-operate with their own code base. . . but in most
cases, they want a simple-to-use and stable product. For a C++ Image
Processing library designer, it is difficult to conciliate genericity, effi-
ciency and simplicity at the same time. Modern C++ (post 2011) brings
new features for library developers that will help designing a software
solution combining those three points. In this paper, we develop a method
using these facilities to abstract the library components and augment the
genericity of the algorithms. Furthermore, this method is not specific to
image processing; it can be applied to any C++ scientific library.

Keywords: Image processing · Modern C++ · Generic programming ·
Efficiency · Simplicity · Concepts

1 Introduction

As many other numerical fields of computer science, Computer Vision and Image
Processing (IP) have to face the constantly varying form of the input data. The
data are becoming bigger and comes from a wider range of input devices: the
current issue is generally not about acquiring data, but rather about handling
and processing it (in a short time if possible. . . ). In image processing, the two-
dimensional RGB model has become too restrictive to handle the whole variety of
kinds of image that comes with the variety of images fields. A non-exhaustive list
of them includes: remote sensing (satellites may produce hyperspectral images
with some thousands of bands), medical imaging, (scans may provide 3D and
3D+t volumes with several modalities), virtual reality (RGB-D cameras used
for motion capture provide 2D/3D images with an extra 16-bits depth channel),
computational photography (some high-dynamic-range sensors produce 32-bits
images to preserve details in all ranges of the luminance). . .

These examples already highlight the need for versatility, but some more
domain-oriented applications attempt to broaden further the definition of
c© Springer Nature Switzerland AG 2019
B. Kerautret et al. (Eds.): RRPR 2018, LNCS 11455, pp. 121–137, 2019.
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images. For example, in digital geometry, one would define images over non-
regular domains as graphs, meshes or hexagonal grids. The increase of image
type should not require to write several implementation of the algorithm. A sin-
gle version should be able to work on several image types. The Fig. 1 illustrates
this idea with the same watershed implementation applied on an image 2D, a
graph as well as a mesh.

Fig. 1. Watershed algorithm applied to three images having different types.

Tools able to handle many data representations are said to be generic. In the
particular case of a library providing a set of routines, genericity means that the
routines can be applied to a variety of inputs (as opposed to specific routines
that support inputs of unique predefined type). As an example, consider the
morphological dilation that takes two inputs: an image and a flat structuring
element (SE). Then, the set of some possible inputs is depicted in Fig. 2. Note
that in this example, the image is already a type product between the underlying
structure kind and the value kind. Let s be the number of structures, v the
number of types of values, and k the number of structuring elements. With no
generalization, one would have to write s× v × k dilation routines.

Many IP libraries have emerged, developed in many programming languages.
They all faced this problem and tried to bring solutions, some of which are
reviewed in Sect. 2. Among these solutions, we see that generic programming is
good starting point [15] to design a generic library but still has many problem.
In particular, we focus on the case of Milena [16,22], a generic pre-modern
C++ IP libray and its shortcomings that led to the design of Pylena [5]. The
work presented in this paper contrasts with the previous works on obtaining
genericity for mathematical morphology operators [8,21] and digital topology
operators [23].

In Sect. 3, we present this new generic design, that emerged with the evo-
lution of the Modern C++ and allowed solving some Milena’s shortcomings.
Not only does this new design re-conciliate simplicity and performance, but it
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Fig. 2. The space of possible implementation of the dilation(image, se) routine. The
image axis shown in (a) is in-fact multidimensional and should be considered 2D as
in (b).

also promotes extensibility as it enables easily creating custom image types as
those shown in Sect. 3.5.

2 Bringing Genericity in IP Libraries:
Solutions and Problems

Generic programming aims at providing more flexibility to programs. It is itself a
very generic term that means different things to different people. It may refer to
parametric polymorphism (which is the common sense in C++), but it may also
refer to data abstraction and reflection /meta-programming [17]. The accordance
on a strict definition of generic programming is not our objective, but we can
observe a manifestation of the generic programming : a parametrization of the
routines to augment flexibility.

To tackle the problem of a generic dilation from the introduction, several
programming techniques have been reviewed by Levillain et al. [24], Géraud [13].
We discuss these techniques w.r.t. some criteria: usability (simplicity from the
end-user), maintainability (simplicity from the library developer stand-point),
run-time availability (running routines on images whose kind is unknown until
run-time), efficiency (speed and binary size tradeoff).

Ad-Hoc Polymorphism and Exhaustivity. The straightforward brute-force
solution is the one that enumerates every combination of parameters. This means
one implementation for each couple (‘image ‘kind, ‘structuring element ‘kind)
and involves much code duplication. Both run-time or compile-time selection
of the implementation are possible depending on the parametrization. If the
kind of parameters are known at compile time (through their type), routine
overload selection is automatically done by the compiler. On the contrary, if the
kind of parameters are known at run-time (or if the language does not support
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overloading, the user has to select the right implementation by hand (a manual
dispatch) as illustrated below:

Such a strategy is simple and efficient as the best implementation is written
for each case. However it cannot scale, as any addition of a new kind (either a
SE, a structure or a value type) would require duplicating many routines and
lead to maintenance issues that is why no IP library has chosen such a strategy.

Generalization. A second approach is to generalize to the greatest common
type (a type to rule them all) instead of augmenting their number. For example,
one can consider that all value types are double since uint8, int16, . . . can
roughly be represented by double as in MegaWave [10]. Even, if a library
supports different value kinds for images, it is also common to use an adapter
that performs a value conversion before calling a specific routine with the most
general type. OpenCV [4] uses such an approach where one has to adapt his
value types from one routine to another, which makes it painful to extend due
to the wide variety of types and algorithms that this library has to offer. Dynamic
data analysis framework as Matlab, Octave, Numpy/SciPy have many routines
implemented for a single value type and convert their input if it does not fit the
required type. The major drawback to this approach is a performance penalty
due to conversions and processing on larger type.

Structures can also be generalized to a certain extent. In the image processing
library CImg, all images are 3-dimensional with an arbitrary number of chan-
nels. It leads to an interface where users can write ima(x,y,z,channel) even if
the image has a single dimension. There are three drawbacks to this approach:
the number of dimensions is bounded (cannot handle 3D+t for example), the
interface allows the image to be used incorrectly (weak type-safety), every algo-
rithm has to be written following a 4D pattern even if the image is only 2D.
Moreover, generalization of structures is not trivial when they are really differ-
ent (e.g. finding the common type between a 3D-buffer encoded image and an
image over a graph).

Inclusion & Parametric Polymorphism. A common conception of generic
programming relates the definitions of abstractions and template methods.
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A first programming paradigm that enables such a distinction is object ori-
ented programming (OOP). In this paradigm, template methods, as defined by
[11], are general routines agnostic to the implementation details and specific
properties of a given type. A template method defines the skeleton of an algo-
rithm with customization points (calls can be redefined to our own handlers) or
we can plug our own types. Hence, template methods are polymorphic. They rely
on the abality to abstract the behavior of objects we handle. The abstraction
thus declares an interface: a set of services (generally abstract methods) which
are common to all the kinds. The concrete types have then to define abstract
methods with implementation details.

On the other hand, generic programming, in the sense of (author?) [25]
provides another way of creating abstraction and template methods. In this
paradigm, the abstraction is replaced by a concept that defines the set of oper-
ations a type must provide. OOP template methods are commonly refered as
template functions and implement the algorithm in terms of the concepts.

While similar in terms of idea, the two paradigms should not be confused. On
one hand, OOP relies on the inclusion polymorphism. A single routine (imple-
mentation) exists and supports any sub-type that inherits from the abstract type
(which is the way of defining an interface in C++). Also, the kind of entities
is not known until run-time, types are dynamic and so is the selection of the
right method. This has to be compared to generic programming that relies on
the parametric polymorphism, which is static. The kinds of entities have to be
known at compile time and a version of the template function is created for each
input types. In Fig. 3, we illustrate these differences through the implementation
of the simple routine copy (dilate would require a more advanced abstraction
of an image that will be detailed in Sect. 3). Basically, copy just has to traverse
an input image and stores the values in an output image. The way of abstracting
the traversal is done with iterators.

Run-time polymorphism offers a greater flexibility in dynamic environment,
where the types of the image to handle are not known until the execution of
the program. For example, scipy.ndimage, a python image processsing library
for interactive environments, uses a C-stylished version of the iterator abstrac-
tion [28] and value abstraction given above (C-style stands for an hand-made
switch dispatch instead of virtual methods). GEGL [1], used in GIMP, is also
written in C ans uses C-style run-time polymorphism to achieve abstraction
over colors and data buffers (e.g. to model graphs).

Nevertheless, this flexibility comes at the cost of degraded performances due
to the dynamic dispatches. On the other hand, static polymorphism provides bet-
ter performances because concrete types are known at compile time and there is
no need to resolve methods at run-time. As there is never no free lunch, perfor-
mance comes at the cost of less run-time flexibility. Moreover, since parametric
polymorphism is implemented through templates in C++, many instanciations
of the same code occur for different input types and may lead to code bloat and
large executables.
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Fig. 3. Comparison of the implementations of a polymorphic routine with the object-
oriented programming and generic programming paradigms

Parametric Polymorphism in C++ Image Processing Libraries. Para-
metric polymorphism is common in many C++ IP libraries to a certain extent.
Many of them, (e.g. CImg [34], Video++ [12], ITK [19]) provide value type gener-
icity (e.g. image2d<T>) while a few provide a full structural genericity (DGTal [7],
GrAL [2], Milena [24], VIGRA [20], Boost.GIL [3]). To reach such a level a
genericity, these libraries have been written in a complex C++ which remains
visible from the user standpoint. Erich Gamma [11] notice that dynamic, highly
parameterized software is harder to understand than more static software. In
particular, errors in highly templated code is hard to read and to debug because
they show up very deep in the compiler error trace.

Also, they have not been written with the modern user-friendly features that
the new C++ offers. Worst, in the case of Milena, some design choices made
in pre-C++ 11, makes the library not compatible with the current standard and
prevents usage of these new features.

Additionally, there exists other, non-library approach, such as designing
a whole new DSL (Domain Specific Language) to reach a specific goal. For
instance, Halide [29] chose this approach to fully focus on the underlying
generated code to optimize it for vectorization, parallelism and data locality.
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Unfortunately this implies trade-offs on genericity and interoperability as we are
not dealing with native C++ anymore.

3 C++ Generic Programming and Concepts

C++ is a multi-paradigm language that enables the developer to write code that
can be object oriented, procedural, functional and generic. However, there were
limitations that were mostly due to the backward compatibility constraint as
well as the zero-cost abstraction principle. In particular the generic programming
paradigm is provided by the template metaprogramming machinery which can
be rather obscure and error-prone. Furthermore, when the code is incorrect,
due to the nature of templates (and the way they are specified) it is extremely
difficult for a compiler to provide a clear and useful error message. To solve this
issue, a new facility named concepts was brought to the language. It enables the
developer to constraint types: we say that the type models the concept(s). For
instance, to compare two images, a function compare would restrict its input
image types to the ones whose value type provides the comparison operator ==.

In spite of the history behind the concept checking facilities being very tur-
bulent [30,32,33], it will finally appear in the next standard [35] (C++20).

3.1 From Algorithms to Concepts

The C++ Standard Template Library (STL) is a collection of algorithms and
data structures that allow the developer to code with generic facilities. For
instance, there is a standard way to reduce a collection of elements: std::
accumulate that is agnostic to the underlying collection type. The collection
just needs to provide a facility so that it can work. This facility is called itera-
tor. All STL algorithms behave this way: the type is a template parameter so it
can be anything. What is important is how this type behaves. Some collection
requires you to define a hash functions (std::map), some requires you to set
an order on your elements (std::set) etc. This emphasis the power of gener-
icity. The most important point to remember here (and explained very early in
1988 [25]) is the answer to: “What is a generic algorithm?”. The answer is: “An
algorithm is generic when it is expressed in the most abstract way possible”.

Later, in his book [31], Stepanov explained the design decision behind those
algorithms as well as an important notion born in the early 2000s: the concepts.
The most important point about concepts is that it constraints the behavior.
Henceforth: “It is not the types that define the concepts: it is the algorithms”.

The Image Processing and Computer Vision fields are facing this issue
because there are a lot of algorithms, a lot of different kind of images and a
lot of different kind of requirements/properties for those algorithms to work. In
fact, when analyzing the algorithms, you can always extract those requirements
in the form of one or several concepts.
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3.2 Rewriting an Algorithm to Extract a Concept

Gamma Correction. Let us take the gamma correction algorithm as an exam-
ple. The naive way to write this algorithm can be:

This algorithm here does the job but it also makse a lot of hypothesis. Firstly,
we suppose that we can write in the image via the = operator (l.9–11): it may not
be true if the image is sourced from a generator function. Secondly, we suppose
that we have a 2D image via the double loop (l.6–7). Finally, we suppose we
are operating on 8bits range (0–255) RGB via ’.r’, ’.g’, ’.b’ (l.9–11). Those
hypothesis are unjustified. Intrinsically, all we want to say is “For each value of
ima, apply a gamma correction on it.”. Let us proceed to make this algorithm
the most generic possible by lifting those unjustified constraints one by one.

Lifting RGB constraint: First, we get rid of the 8bits color range (0–255) RGB
format requirement. The loops become:

By lifting this constraint, we now require the type Image to define
a nested type Image::value type (returned by ima(x, y)) on which
std::numeric limits and std::pow are defined. This way the compiler will
be able to check the types at compile-time and emit warning and/or errors in
case it detects incompatibilities. We are also able to detect it beforehand using
a static assert for instance.

Lifting bi-dimensional constraint: Here we need to introduce a new abstraction
layer, the pixel. A pixel is a couple (point, value). The double loop then becomes:

This led to us requiring that the type Image requires to provide a method
Image::pixels() that returns something we can iterate on with a range-for
loop: this something is a Range of Pixel. This Range is required to behave like
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an iterable: it is an abstraction that provides a way to browse all the elements
one by one. The Pixel is required to provide a method Pixel::value() that
returns a Value which is Regular (see Sect. 3.3). Here, we use auto&& instead of
auto& to allow the existence of proxy iterator (think of vector<bool>). Indeed,
we may be iterating over a lazy-computed view Sect. 3.5.

Lifting writability constraint: Finally, the most subtle one is the requirement
about the writability of the image. This requirement can be expressed directly
via the new C++20 syntax for concepts. All we need to do is changing the
template declaration by:

In practice the C++ keyword const is not enough to express the constness
or the mutability of an image. Indeed, we can have an image whose pixel values
are returned by computing cos(x+ y) (for a 2D point). Such an image type can
be instantiated as non-const in C++ but the values will not be mutable: this
type will not model the WritableImage concept.

When re-writing a lot of algorithms this way: lifting constraints by requiring
behavior instead, we are able to deduce what our concepts needs to be. The real
question for a concept is: “what behavior should be required?”

Dilation Algorithm. To show the versatility of this approach, we will now
attempt to deduces the requirements necessary to write a classical dilate algo-
rithm. First let us start with a naive implementation:
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Here we are falling into the same pitfall as for the gamma correction example:
there are a lot of unjustified hypothesis. We suppose that we have a 2D image
(l.7–8), that we can write in the output image (l.10, 13). We also require that
the input image does not handle borders, (cf. loop index arithmetic l.7-8, 11-
12). Additionally, the structuring element is restricted to a 5 × 5 window (l.11-
12) whereas we may need to dilate via, for instance, a 11 × 15 window, or a
sphere. Finally, the algorithm does not exploit any potential properties such
as the decomposability (l.11-12) to improve its efficiency. Those hypothesis are,
once again, unjustified. Intrinsically, all we want to say is “For each value of
input ima, take the maximum of the X ×X window around and then write it
in output ima”.

To lift those constraints, we need a way to know which kind of structuring
element matches a specific algorithm. Thus, we will pass it as a parameter.
Additionally, we are going to lift the first two constraints the same way we did
for gamma correction:

We now do not require anything except that the structuring element returns
the neighbors of a pixel. The returned value must be an iterable. In addition,
this code uses the zip utility which allows us to iterate over two ranges at the
same time. Finally, this way of writing the algorithm allows us to delegate the
issue about the border handling to the neighborhood machinery. Henceforth, we
will not address this specific point deeper in this paper.

3.3 Concept Definition

The more algorithms we analyze to extract their requirements, the clearer the
concepts become. They are slowly appearing. Let us now attempt to formalize
them. The formalization of the concept Image from the information and require-
ments we have now is shown in Table 1 for the required type definitions and
valid expressions.

The concept Image does not provide a facility to write inside it. To do so, we
have refined a second concept named WritableImage that provides the necessary
facilities to write inside it. We say “WritableImage refines Image”.

The sub-concept ForwardRange can be seen as a requirement on the under-
lying type. We need to be able to browse all the pixels in a forward way. Its
concept will not be detailed here as it is very similar to concept of the same
name [26,27] (soon in the STL). Also, in practice, the concepts described here
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Table 1. Formalization of concepts.

are incomplete. We would need to analyze several other algorithms to deduce
all the requirements so that our concepts are the most complete possible. One
thing important to note here is that to define a simple Image concept, there are
already a large amount of prerequisites: Regular, Pixel and ForwardRange. Those
concepts are basic but are also tightly linked to the concept in the STL [6]. We
refer to the STL concepts as fundamental concepts. Fundamentals concepts are
the basic building blocks on which we work to build our own concepts. We show
the C++20 code implementing those concepts in the code below.
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3.4 Specialization Vs. Properties

Another advantage of concepts are that they allow a best match machinery over
requirement(s) met by a type. We call this mechanic the property specialization.
It allows to select the correct overload (best match machinery) when the given
template parameter satisfies the requirement(s) expressed via the concept(s).
Historically we used the template specialization mechanism to achieve the same
thing (via inheritance of specialized types and other tricks) but it came with lot of
disadvantages. Those are the cost of the abstraction and indirection, the difficulty
to extend as well as to inject new type or behavior for a new user, being tied to
a type and finally, each new type needs its own new implementation. Switching
to a property-based approach with an automatic best match machinery is much
more efficient and user-friendly.

This machinery could be emulated pre-C++20 via cryptic template metapro-
gramming tricks (i.e. type-traits, SFINAE and enable if). However, C++20
brings a way to remove the need of these need, making it widely accessible.
The code in Fig. 4 shows this difference in action.

Fig. 4. C++17 SFINAE trick vs. C++20 Concepts.

The result about which code is clearer, easier to read and less error-prone should
be obvious. The first advantage is that the compiler do the type-checking pass
early when instantiating the template instead of waiting until the overload res-
olution pass (the improper functions candidate are removed from overload res-
olution thanks to SFINAE ). This directly enhances the error messages emitted
by the compiler. Instead of having a long error trace one needs to scroll down to
find the error within, the compiler will now emits the error first at the top with
the incorrect behavior requirement that does not match the concept for a given
instantiated type.

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/types/enable_if
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Also, in the C++17 code, with heavy metaprograming trick, informations
about function prototypes such as return type, parametric types and input types
are fuzzy and not very clear. It needs carefully designed and written user doc-
umentation to be usable by a tier. Furthermore, this documentation is often
difficult to generate and documentation generators do not help because they
have a very limited understanding of templated code. However, we can see in
the C++20 code that, with concepts, we just have two different overloads with a
single piece of information changing: the 2nd input parameter. The information
is clear and can be easily understood by documentation generators.

In addition, as concepts are working with a best-match machinery, we can
notice that it is not the case with the SFINAE tricks version. Each time you
add a new variant, every possibilities, incompatibilities and ambiguities between
all the overloads have to be manually lifted. Not doing so will lead to multiple
overloads ambiguities (or none selected at all). Also, the compiler will issue a
non-friendly error message difficult to address.

In Image Processing we are able to make use of this machinery, in particular
with a property on structuring elements: the decomposability. For reminder a
multi-dimensional structuring element is decomposable if it can be rewritten as
many simpler structuring elements.

Indeed when the structuring element window is tiny, it makes little sense
to exploit this property for efficiency. If instead of browsing the image once
while selecting 4 neighbors for each pixel, then we browse the image twice while
selecting 2 neighbors for each pixel, the difference is not relevant. However, the
more the structuring element window grows, the more neighboring pixels are
selected for each pixel. With a multi-dimensional structuring element the growth
is quadratic whereas it is linear if the structuring element is decomposed.

Henceforth, bringing the property best-match machinery with concepts as well
as this decomposable property lead us to this dilate algorithm version:

It is much more efficient as it reduces the complexity dramatically when the
structuring element has a large selection window.
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3.5 Practical Genericity for Efficiency: The Views

Let us introduce another key point enabled by genericity and concepts: the
Views. A View is defined by a non-owning lightweight image, inspired by the
design introduced in Ranges for the Standard Library [9] proposal for non-owning
collections. A similar design is also called Morphers in Milena [13,21]. Views
feature the following properties: cheap to copy, non-owner (does not own any
data buffer), lazy evaluation (accessing the value of a pixel may require computa-
tions) and composition. When chained, the compiler builds a tree of expressions
(or expression template as used in many scientific computing libraries such as
Eigen [18]), thus it knows at compile-time the type of the composition and
ensures a 0-overhead at evaluation.

There are four fundamental kind of views, inspired by functional program-
ming paradigm: transform(input, f) applies the transformation f on each
pixel of the image input, filter(input, pred) keeps the pixels of input that
satisfy the predicate pred, subimage(input, domain) keeps the pixels of input
that are in the domain domain, zip(input1, input2, . . . , inputn) allows to pack
several pixel of several image to iterate on them all at the same time.

Lazy-evaluation combined with the view chaining allows the user to write
clear and very efficient code whose evaluation is delayed till very last moment
as shown in the code below (see [14] for additional examples). Neither memory
allocation nor computation are performed; the image i has just recorded all the
operations required to compute its values.

4 Conclusion and Perspectives

Through a simple example, we have shown a step-by-step methodology to make
an algorithm generic with zero overhead1. To reach such a level of genericity and
be able to write versatile algorithms, we had to abstract and define the most
simple and fundamental elements of the libray (e.g. image, pixel, structuring
element). We have shown that some tools of the Modern C++, such as concepts,
greatly facilitate the definition and the usage of such abstractions. These tools

1 The zero-cost abstraction of our approach is not argued here but will be discussed
in an incoming paper with a comparison with the state of the art libraries.
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enable the library designer to focus on the abstraction of the library components
and on the user-visible development. The complex template meta-programming
layer that used to be a large part of C++ generic programming is no more
inevitable. In this context, it is worth pointing out the approach is not limited
Image Processing libraries but works for any library that wants to be modernized
to augment its productivity.

As one may have noticed, the solution presented in this paper is mostly
dedicated to C++ developer and C++ end-user. Unlike dynamic environments
(such as Python), C++ is not the most appropriate language when one has to
prototype or experiment an IP solution. As a future work, we will study the
conciliation of the static genericity from C++ (where types have to be known
at compile time) with a dynamic language (with a run-time polymorphism) to
allows the interactive usage of a C++ generic library.
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types et algorithmes. Habilitation thesis, Université Paris-Est (2012). (in French)
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16. Géraud, T., Levillain, R., Lazzara, G.: The Milena image processing library. IPOL
meeting, ENS Cachan, France, June 2012. https://www.lrde.epita.fr/∼theo/talks/
geraud.2012.ipol talk.pdf

17. Gibbons, J.: Datatype-generic programming. In: Backhouse, R., Gibbons, J., Hinze,
R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp. 1–71. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76786-2 1

18. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010).
Available at http://eigen.tuxfamily.org

19. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK software guide (2005)
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Abstract. Robustness is an important concern in machine learning and
pattern recognition, and has attracted a lot of attention from technical
and scientific viewpoints. Actually, the robustness models the capacity
of a computerized approach to resist to perturbing phenomena and data
uncertainties, and generate common artefact while designing algorithms.
However, this question has not been dealt in depth in such a way for
image processing tasks. In this article, we propose a novel definition of
robustness dedicated to image processing algorithms. By considering a
generalized model of image data uncertainty, we encompass the classic
additive Gaussian noise alteration that we study through the evaluation
of image denoising algorithms, but also more complex phenomena such as
shape variability, which is considered for liver volume segmentation from
medical images. Furthermore, we refine our evaluation of robustness wrt.
our previous work by introducing a novel quality-scale definition. To do
so, we calculate the worst loss of quality for a given algorithm over a set
of uncertainty scales, together with the scale where this drop appears.
This new approach permits to reveal any algorithm’s weakness, and for
which kind of corrupted data it may happen.

Keywords: Image processing · Robustness · Image denoising ·
Liver segmentation

1 Introduction

Reproducibility and robustness are important concerns in image processing and
pattern recognition tasks, and for various applications such as medical image
analysis for instance [18,26]. While the first refers to the replicable reuse of a
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method (and generally a code) by associating input image data and method’s
outputs [17], the second is generally understood as the ability of an algorithm
to resist to uncontrolled phenomena and to data uncertainties, such as image
noise [29]. This article focuses on the evaluation of this robustness, which is
a crucial matter in machine learning and computer vision [2,21] and increas-
ingly with the emergence of deep learning algorithms [3,6] and big data [22,25].
However, in the field of image processing, this definition of robustness and its
evaluation have not been further studied in such a way. The first definition we
have proposed in RRPR 2016 [28] (called α-robustness) was the first attempt in
measuring robustness by considering multiple scales of noise, and applied to two
tasks: still image denoising and background subtraction in videos. In this previ-
ous work, image data was supposed to be altered by an additive Gaussian (or
equivalent) noise, which is a common hypothesis when we refer to noisy image
content. This robustness measurement consisted in calculating the worst quality
loss (the α value) of a given algorithm, for a set of noise scales (e.g. increasing
standard deviation of a Gaussian noise).

In the present article, we introduce in Sect. 2 a novel quality-scale definition
of robustness still dedicated to image processing algorithms, by a generalized
model of the pertubating phenomenon under consideration. Instead of repre-
senting only additive Gaussian noises, we can consider more complex image data
uncertainties. To be able to evaluate robustness, we only need to measure data
uncertainty by a monotonic increasing function. Moreover, together with the α
value presented earlier, we also calculate the scale of uncertainty (σ) that gener-
ated an algorithm’s worst loss of quality. Then, we apply this definition (called
(α, σ)-robustness) first by revisiting the topic of image enhancement and denois-
ing with the parallel concern of representation of noise in a multi-scale manner
(Sect. 3), as we did in [28]. In this context the uncertainty is modeled as a classic
Gaussian noise. Second we study the impact of shape variability in liver volume
segmentation from medical images (Sect. 4). Here, we also propose to measure
the uncertainty (liver variability) by a monotonic function, thus adapted to our
test of robustness. In Sect. 5, we describe the code that can be publicly down-
loaded in [24] to reproduce the results of this paper, and so that any reader may
evaluate the robustness of image processing methods. We conclude and enlarge
the viewpoint of this paper by proposing future axes of progress of this research
in Sect. 6.

2 A Novel Definition of Robustness for Image Processing

We first consider that an algorithm designed for image processing may be per-
turbed, because of an input data altered with a given uncertainty. By extending
notations from the work [20,28], we pose:

ŷi = y0
i � δyi, yi ∈ R

q, i = 1, . . . , n, (1)

which will be shortened by ̂Y = Y0 � δY when the context allows it, i.e. when
the subscripts are not necessary. The measurement ̂Y is obtained from a perfect
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value Y0, corrupted by the alteration δY. Classically, δY may be considered
as a Gaussian noise by supposing that δyi � GI(0, σ2Cy) where σ2Cy is the
covariance of the errors at a known noise scale σ (e.g. standard deviation or
std.). This noise is generally added to the input data so that ̂Y = Y0 + δY.
Section 3 explores this classic scenario of additive noise modeling.

Fig. 1. Evaluation of the (α, σ)-robustness with a synthetic example with two algo-
rithms compared by graphical inspection (a) where we can observe the most severe
decrease of quality for Algorithm 1, and confirmed by the numerical evaluation (b).

In this article, we also consider more complex phenomena that do not refer to
this model. In such difficult situations, alteration δY and operator � cannot be
modeled theoretically or numerically evaluated, and we only know the measures
̂Y and the perfect case Y0. A way to model the uncertainty is to define a
variability scale σ between a given sample ̂Y and the perfect, standard case Y0.
In Sect. 4, we propose to study shape variability through this viewpoint.

Let A be an algorithm dedicated to image processing, leading to an output
X = {xi}i=1,n (in general the image resulting from the algorithm). Let N be an
uncertainty specific to the target application of this algorithm, and {σk}k=1,m

the scales of N . The different outputs of A for every scale of N is X = {Xk}k=1,m.
The ground truth is denoted by Y

0 =
{

Y0
k

}

k=1,m
. Let Q(Xk,Y0

k) be a quality
measure of A for scale k of N . This Q function’s parameters are the result of
A and the ground truth for a noise scale k. An example can be the F-measure,
combining true and false positive and negative detections for a binary decision
(as binary segmentation for instance). Our new definition of robustness can be
formalized as follows:

Definition 1 ((α, σ)-robustness). Algorithm A is considered as robust if the
difference between the output X and ground truth Y

0 is bounded by a Lipschitz
continuity of the Q function:

dY
(

Q(Xk,Y0
k), Q(Xk+1,Y0

k+1)
) ≤ αdX(σk+1, σk), 1 ≤ k < m, (2)
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where

dY
(

Q(Xk,Y0
k), Q(Xk+1,Y0

k+1)
)

= Q(Xk+1,Y0
k+1) − Q(Xk,Y0

k),
dX(σk+1, σk) = |σk+1 − σk|. (3)

We calculate the robustness measure (α, σ) of A as the α value obtained and the
scale σ = σk where this value is reached.

In other words, α measures the worst drop in quality through the scales of
uncertainty {σk}, and σ keeps the uncertainty scale leading to this value. The
most robust algorithm should have a low α value, and a very high σ value.
Figure 1 is a synthetic example of evaluation of two algorithms with this defini-
tion. This example illustrates the better robustness of Algorithm 2, since its α
value is smaller than the one of Algorithm 1. Moreover, we can precise that this
robustness is achieved for a larger value of uncertainty with the σ value.

3 Application to Image Enhancement and Denoising

Image denoising has been addressed by a wide range of methodologies, which can
be appreciated in a general manner in [16] for instance. The shock filter [23] is a
PDE scheme that consists in employing morphological operators depending on
the sign of the Laplacian operator. The original algorithm is not able to reduce
image noise accurately, but several authors have improved it for this purpose.
As summarized in Fig. 2-b, our test of robustness concerns these approaches
based on shock scheme [1,7,30]; another PDE-based algorithm named coherence
filtering [32]; together with the classic median [12] and bilateral [27] filterings;
and an improved version of the median filter [14]. We use 13 very famous images
(Barbara, Airplane, etc.), with additive white Gaussian noise altering them with
varying kernel std., by considering the scales of noise {σk} = {5, 10, 15, 20, 25}.
The quality measure is the SSIM (structural similarity) originally introduced
by [31].

Thanks to Definition 1, we are able to evaluate the robustness of various
algorithms (Fig. 2), from a visual assessment thanks to the graph in Fig. 2(a), or
numerically by getting the (α, σ) values as in (b).

Since we consider an additive noise ( ̂Y = Y0+δY with our notations), qual-
ity functions are decreasing monotonically over the set of noise scales, revealing
that the tested algorithms loose progressively their efficiency. We can appreciate
the good behavior of the algorithms SmoothedMedian and SmoothedShock, with
a lower α value and a larger σ scale than the other approaches, which means
that the worst quality decrease has been observed when an aggressive Gaussian
noise is applied to images.

Figure 3 presents the outputs obtained for all algorithms of our test. This
confirms the good image enhancement achieved by the most robust methods,
SmoothedMedian and SmoothedShock.
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Fig. 2. Evaluation of (α, σ)-robustness for image denoising algorithms, by studying
quality function decrease through scales of noise (a) or numerically by appreciating the
(α, σ) values for each algorithm.

4 Application to Liver Volume Segmentation

Liver segmentation has been addressed by various approaches in the litera-
ture [11], and mostly oriented towards CT (computerized tomography) modal-
ity (see e.g. [10]). We propose to compare two liver extraction approaches in
this test of robustness. The automatic model-based algorithm presented in [15]
(named hereafter MultiVarSeg) is based on the prior 3-D representation of any
patient’s liver by accumulating images from diverse public datasets. We compare
MultiVarSeg with a free available semi-automatic segmentation software, called
SmartPaint [19]. It allows a fully interactive segmentation of medical volume
images based on region growing.

To compare these methods, we employ the datasets provided by the
Research Institute against Digestive Cancer (IRCAD) [13] and by the SLIVER
benchmark [11]. We propose to study the uncertainty of liver shape variabil-
ity, revealing this organ’s complex and variable geometry. First, we construct a
bounding box (BB) with standard dimensions of the liver certified by an expert
and computed by the mean values of our database. We measure the liver vari-
ability of a given binary image (object of interest -the liver- vs. background) by
the following function:

σ =
#(L \ BB)

#(L)
× 100, (4)

where L is the set of pixels that belong to the liver in a binary segmentation.
L \ BB represents pixels that belong to the liver measured outside the standard
box BB. The operator #(.) stands for the cardinality of sets. To compare the
tested algorithms, we use the Dice coefficient, which is a very common way to
measure the accuracy of any segmentation method.
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(a) Noisy image

(b) Bilateral (c) Median (d) Coherence

(e) OriginalShock (f) ComplexShock (g) EnhancedShock

(h) SmoothedMedian (i) SmoothedShock

Fig. 3. Illustrations of the results obtained for all the image denoising algorithms of
our test.
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Fig. 4. Evaluation of (α, σ)-robustness for liver segmentation algorithms, by studying
quality function fluctuations through scales of variability (a) or numerically by appre-
ciating the (α, σ) values for each algorithm. The scale σ obtained for each algorithm
in (b) is depicted with a vertical dotted line in (a).

(a) Original CT

(b) MultiVarSeg (c) SmartPaint

Fig. 5. Illustration of the results obtained by the two algorithms of our test.

In Fig. 4, we present the result of the test of robustness by considering scale
of variability following Eq. 4.
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We consider here a more complex phenomenon producing uncertainty upon
image data (general formalism ̂Y = Y0 � δY), measured by a variability func-
tion. It provokes non-linear quality functions for both algorithms, however our
definition of robustness enables the assessment in this case. We can thus observe
the robustness of MultiVarSeg compared to SmartPaint, by a lower α and a
larger σ values.

In Fig. 5 are depicted the segmentation results obtained for each tested
method. This visual inspection permits to confirm the accuracy of the model-
based approach MultiVarSeg.

5 Reproducibility

We have developed a Python code, provided publicly in [24], which permits
to assess visually and numerically robustness of image processing techniques.
The reader can thus reproduce the plots and tables of Figs. 1, 2 and 4 of this
paper. These elements are automatically created by means of the input data files
presented as in Fig. 6.

Such files are composed of: the quality measure in the first line; in the second
line the name of noise or uncertainty to be studied, followed by values of scales;
then the next lines concern quality values of the tested algorithms, with their
name at the first position, line by line until the end of the file.

Once any user runs:

python measure_robustness.py rip_test_image_filtering .dat

for instance, our program will provide a plot displayed and saved as
‘fig rob.pdf’; a LaTeX file named ‘tab rob.tex’ containing the table with
values of (α, σ)-robustness in decreasing order of α; it will also print these values
in the console (see Fig. 6-d).

To obtain these measures, our program first calculates α according to Defi-
nition 1. To do so, we can rewrite Eq. 2 to determine α as:

α ≥ dY
(

Q(Xk,Y0
k), Q(Xk+1,Y0

k+1)
)

dX(σk+1, σk)
, 1 ≤ k < m. (5)

The denominator dX(σk+1, σk) does not equal zero, this is easily ensured by
always considering distinct scales of uncertainty, i.e. by assuming wlog. That
σk+1 > σk, 1 ≤ k < m. We could select any value of α satisfying this equation,
however, we prefer a reproducible strategy by computing the maximal value:

α = max
1≤k<m

{

dY
(

Q(Xk,Y0
k), Q(Xk+1,Y0

k+1)
)

dX(σk+1, σk)

}

. (6)

During this process, we also store the uncertainty scale σ where this α value has
been reached.



146 A. Vacavant et al.

Fig. 6. Input data files for the three tests of robustness presented in this article (a–c).
Comments (lines starting by ‘#’) have been removed in this figure, for a sake of clarity.
In (d), the outputs are a table written in LaTeX summarizing the robustness test (left);
a figure for a visual inspection of robustness and an output in the console (right).
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Fig. 7. Simulations of FDG-PET (FluoroDeoxyGlucose - Positron Emission Tomogra-
phy) and CT (right and left respectively) by VIP, from [8].

6 Discussion

In this paper, we have introduced a novel approach to measure robustness of
image processing algorithms. We have first proposed to model image uncertainty,
which encompasses the classic additive Gaussian noise alteration. Second, we
have refined the factors we calculate for a given algorithm. Beside the quality
loss obtained by considering Lipschitz continuity over the scales of uncertainties,
we also keep the scale where this worst decrease appears. This permits to study
the weakness of a method, and for which kind of image data it may happen in
a concrete application.

As future concern, we would like to compare our measure with other
approaches, such as calculating area under the curve, or by summing the succes-
sive quality variations. For both image enhancement and segmentation, we have
conducted our study with datasets of limited size, and we have to confirm our
results with larger image collections. We also hope that the code freely down-
loadable at [24] will help researchers and engineers to address more easily this
problem of robustness for image processing in their activity.

Furthermore, it would be interesting to study noises inherent to acquisition
machines from a multi-scale point of view, as Rician noise in MRI (magnetic
resonance imaging) for instance [5,9]. Drawing a relation between organ shape
variability and robust image processing is another important question that is
not studied in such a way in the literature. Our first measure of variability can
be obviously applied to any other organ than the liver, and should be enhanced
by further researches. More precisely, we could increase the number of parame-
ters to represent complex organic shapes, but using more sophisticated models,
such as [4] for instance. Robustness could be thus studied at a (slightly) greater
dimension, to better understand the variation of image processing’s outcomes.
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Whatever the uncertainty studied, it is necessary to acquire a voluminous
amount of data, and to annotate it in order to determine algorithms’ robust-
ness. For completing such a database, we could use simulation, as VIP (Virtual
Imaging Platform) that consists in generating images, with various parameters
related to acquisition machine and target organ’s anatomy [8] (see Fig. 7). To
do so, we would have to inject in this simulator data from the target modality
(CT, MRI, ultrasound) and from organ localization (e.g. binary masks of liver
volume).
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Abstract. Independent replication is one of the most powerful methods
to verify published scientific studies. In computational science, it requires
the reimplementation of the methods described in the original article by
a different team of researchers. Replication is often performed by scien-
tists who wish to gain a better understanding of a published method,
but its results are rarely made public. ReScience C is a peer-reviewed
journal dedicated to the publication of high-quality computational repli-
cations that provide added value to the scientific community. To this end,
ReScience C requires replications to be reproducible and implemented
using Open Source languages and libraries. In this article, we provide
an overview of ReScience C’s goals and quality standards, outline the
submission and reviewing processes, and summarize the experience of
its first three years of operation, concluding with an outlook towards
evolutions envisaged for the near future.

Keywords: Open Science · Computational science · Reproducibility

1 Introduction

The question of how to attain reliable outcomes from unreliable components per-
vades many aspects of life. Scientific research is no exception. Individual research
contributions are prone to mistakes, and sometimes fraud, and therefore error
detection and correction mechanisms are required to reach a higher level of reli-
ability at the collective level. The two main methods for error detection are
critical inspection, starting with peer review of article submissions but contin-
uing well after publication, and independent replication of published work. But
replication is more than a verification technique. For the researchers performing
the replication, it yields a level of understanding and insight that is impossible to
achieve by other means. This is in fact the main motivation for much replication
work, verification being merely a side effect.
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The power but also the limitations of replication as an approach to verifica-
tion are best illustrated by the recent discussion of replication crises in various
scientific domains [3,5,6,9], which are all based on the observation of frequent
failures to replicate published scientific findings. However, a replication failure
does not necessarily mean that the original study is flawed. First of all, it could
well be the replication work that is at fault. But it is also possible that both the
original and the replication work are of excellent quality and yet yield different
conclusions, if some important factor has escaped everyone’s attention and acci-
dentally differs between the two studies (see [10,12] for a recent example that
led to a seven-year search for the cause of the disagreement). In this situation,
independent replication can become the starting point of completely new lines
of research.

Replication is thus an important contribution to science, and its findings
should be shared with the scientific community. Unfortunately, most journals do
not accept replication studies for publication because originality is one of their
selection criteria. For this reason, we launched ReScience in 2015 (now called
ReScience C for reasons explained later) as a journal dedicated to replications
of computational research. In this article, we outline its mode of operation and
summarize our experience from the first few years. A more complete account,
also containing more background references, has been published recently [11].

2 Terminology: Reproducible Replications

The replication crisis has given rise to an active debate in various domains of
science, in which some terms, in particular “reproducible” and “replicable”, are
used with very different meanings. We therefore explain the definitions that we
are using in this article and more generally in ReScience C. Our definitions are
formulated in the specific context of computational science, and are not easily
transferable to experimental science [4].

A computation is reproducible if the code and input data is available together
with sufficient instructions for someone else to re-do or reproduce the computa-
tion. The only point in reproducing the computation is to verify its reproducibil-
ity, which in turn is evidence that the archived code and data is (1) complete
and (2) indeed the code and data that was used in the original published study.
A failed reproduction means that the description of the original code and data
is incomplete or inaccurate. A frequent form of incompleteness is the lack of
a detailed description of the computational environment, i.e. the infrastructure
software (operating system, compiler, ...) or code dependencies (libraries, ...)
that were used in the original work. Reproducible computations are the most
detailed and accurate possible description of a computational method within the
current state of the art of computational science.

A replication of computational work involves writing and then running new
software, using only the description of a method published in a journal article,
i.e. without using or consulting the software used by the original authors, which
may or may not be available. Successful replication confirms that the method
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description is complete and accurate, and significantly reduces the probability
of an error in either implementation. A replication failure can be caused by
such errors or by an inexact or incomplete method description. It requires fur-
ther investigation which, as explained above, can even lead to new directions of
scientific inquiry.

A reproducible replication is a replication whose code and data has been
archived and documented for reproducibility. It is especially useful in the still
dominant situation that the target of the replication was not published repro-
ducibly. In that case, the replication provides not only verification, but also the
missing code and data.

3 ReScience C

The definition of a replication given above should be sufficient to show that
performing replications is a useful activity for a researcher. Moreover, whether
successful or not, a replication yields additional insight into the problem that are
worth sharing with the scientific community. For example, minor omissions or
inaccuracies are inevitable in the narratives that make up for most of a journal
article, meaning that replication authors have to do some detective work whose
results are of use to others.

Unfortunately, the vast majority of scientific journals would not consider
such work for publication, with the possible exception of a failed replication of
particularly important findings, because novelty is for them an important selec-
tion criterion. Moreover, the reviewing process of traditional scientific journals,
designed in the 20th century for experimental and theoretical but not for com-
putational work, cannot handle the technical challenges posed by a verification
of reproducibility and successful replication. For these reasons we created the
ReScience C journal (at the time called simply ReScience) in September 2015 as
a state-of-the-art venue for the publication of reproducible replication studies in
computational science.

The criteria that a submission must fulfill for acceptance by ReScience C are
the following:

– It must aim at reproducing all or a significant part of the figures and tables
in an already published scientific study.

– The text of the article must discuss which results were successfully replicated
and which, if any, could not be replicated. It should also provide a description
of problems that were encountered, e.g. additional assumptions that had to
be made.

– The complete source code of the software used for the replication must be
provided, and should have only Open Source software as dependencies in
order to allow full inspection of the complete software stack.

– In order to ensure the independence of the replication, its authors should not
include any authors of the original study, nor their close collaborators.
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A newly submitted replication is assigned to a member of the editorial
board, which at this time is composed of 12 scientists from different research
domains. The handling editor recruits two reviewers from a pool of currently
nearly 100 volunteers. The reviewing process consists of a dialog between the
reviewers, the authors, and the handling editor whose goal is to improve the
submission to the point that it can be accepted. In particular, the reviewers
verify that they can reproduce the results from the supplied code and data, and
judge if the replication claims made by the authors are valid subject to the cri-
teria of their scientific domain. The entire reviewing process is openly conducted
on the GitHub platform, meaning that contributions are open to read for any-
one, and anyone with a GitHub account can participate by leaving a comment.
Once the submission is deemed acceptable, it is added to the table of contents
and to the ReScience archive, with links to the submission repository, the review,
and a PDF version which permits the article to handled like a standard scientific
paper in personal and institutional databases and bibliography management soft-
ware. An additional copy is deposited on Zenodo [2], which, being an archiving
platform, makes stronger promises about long-term preservation than GitHub,
whose primary goal is to support dynamic development processes. An additional
advantage is that Zenodo issues a DOI that serves as a persistent reference.

The outstanding feature of this reviewing process, even compared to other
journals practicing open peer review, is the rapid interaction between reviewers
and authors that does not require the constant intervention of the handling
editor. This rapid exchange has turned out to be essential in the quick resolution
of the technical issues that inevitably arise when dealing with software and data.

Another outstanding feature of ReScience C is its reliance on no other infras-
tructure than two digital platforms, GitHub and Zenodo, which are both free
to use. Considering that editors and reviewers as well as authors are unpaid
volunteers, this means that ReScience C has so far been able to operate without
any budget at all, and thereby avoid being subjected to any political pressure.
We note however that this may not always be true for the individual volunteers
contributing to ReScience C because the open reviewing process provides no
anonymity. It is therefore imaginable that authors or reviewers of a ReScience
article pointing out a mistake in prior work by an influential scientist could be
exposed to sanctions by that scientist in grant or tenure reviews.

4 Learning from the Past to Prepare the Future

After three years of operation, our original ideas for ReScience C have turned
into concrete practical experience which has mostly confirmed our expectations.
It has also shown a few weaknesses, most of which concern technical details,
which we are currently addressing in an overhaul of the ReScience C publishing
workflow. In the following we summarize this experience and the conclusions we
have drawn from it, referring to the full account [11] for the details.

ReScience C has so far published 27 articles. Most submissions are from
computational neuroscience, the other represented domains are neuroimaging,



154 N. P. Rougier and K. Hinsen

computational ecology, and computer graphics. No submission was ever rejected.
All submitted replications were successful, but this is probably due to a selection
bias: publishing a failed replication is equivalent to publicly accusing the authors
of the target work of having made a mistake, which is a potential source of
conflict. One idea we have put forward to alleviate this obstacle is pre-publication
replication. In that scenario, researchers submit their original work to a new type
of journal, for which we use the name CoScience to indicate that we imagine it
as the successor of ReScience. The journal then invites other scientists to do a
replication, and publishes the original work and the replication together as a
single joint work by the original authors and the replication team.

Achieving reproducibility has been much more challenging than expected. It
is the reviewers’ task to verify reproducibility, but our experience has shown that
this is not sufficient to ensure that someone else can reproduce the work as well.
Reviewers typically work in the same field as the authors and are likely to have
similar software installation on their computers, meaning that unlisted depen-
dencies can easily go unnoticed. There are a few approaches that would improve
reproducibility, but each has its downsides as well. IPOL [8] provides online exe-
cution via its Web site, which is extremely convenient for both reviewers and
readers. However, it is feasible only because IPOL’s narrow domain scope (signal
processing) makes the restriction to a small number of computational environ-
ments (C/C++, Python, Matlab) acceptable. We could also impose higher tech-
nical reproducibility guarantees on authors, e.g. the submission of an archived
environment in the form of a virtual machine or a container image, which would
also open the door to online execution via services such as Binder [1]. Such
a requirement might, however, also become an additional barrier discouraging
researchers from publishing their replication work.

The open reviewing process has overall worked very well. The exchanges
between reviewers and authors have been constructive and courteous without
exception. The handling editor intervenes mainly at the beginning, by inviting
reviewers, and at the end, by judging if the reviewers’ feedback is satisfactory for
publication. Occasionally, reviewers or authors ask the handling editor for help
with specific, mostly technical, issues. Another common task for the handling
editor is to gently nudge authors or reviewers towards completing their tasks
within reasonable delays. It is rare for third parties to intervene, but in one case
a reviewer suggested asking the author of the target study for the permission to
re-use some data, which he did by commenting directly on the GitHub platform.

An unexpected and so far unresolved consequence of the open reviewing
process is the impossibility to handle replications that process confidential data.
In some fields of science, confidentiality is inevitable, be it for ethical reasons
(e.g. in medical research) or for commercial ones (e.g. data on stock market
transactions not freely available). This is an issue of wider concern for the Open
Science community, and we hope that satisfactory solutions will emerge in the
near future.

The use of the GitHub platform has turned out to be a good choice overall.
Since a ReScience C submission combines a narrative and source code, with the
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code taking center stage during the reviewing process, a platform designed for
collaborative software development and code reviewing is a better match than
the traditional manuscript management platforms used by scientific journals,
which have no provision at all for reviewing code. We are, however, currently
revising several technical details. Submissions currently take the form of a pull
request to the ReScience repository, which is counter intuitive for an article
submission. More importantly, the final steps of publishing in our current work-
flow are laborious and not automated, causing too much hassle mainly for the
handling editor. In the future workflow, articles are submitted as individual
repositories of which ReScience retains a fork upon acceptance.

Finally, an evolution that has motivated the name change from ReScience to
ReScience C is the imminent launch of ReScience X, a new journal dedicated
to replications of experimental research, under the auspices of Etienne Roesch
and Nicolas Rougier. We hope that it will be able to profit from the experience
gained with ReScience C, although the challenges it will face are of a quite dif-
ferent nature. ReScience C will continue to focus on improving computational
research, joining forces with the wider Reproducible Research community wher-
ever possible. For example, we envisage proposing the publication of dedicated
issues to reproducibility-related workshops such as the Reproducible Research
on Pattern Recognition workshop [7] (part of the International Conference on
Pattern Recognition) or the Enabling Reproducibility in Machine Learning work-
shop (part of the International Conference on Machine Learning).
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