
Chapter 13

Modeling of Inlet, Exhaust,
and Pipe Systems

13.1 Unified Modular Treatment

This chapter deals with the numerical modeling of the components pertaining to
group 1 discussed in section 13.1.1. The components pertaining to this category
are the connecting pipes, inlet and exhaust systems, as shown in Figure 13.1.

Figure 13.1: Component and modular representation of inlet nozzle N, connect-
ing pipe P, and Diffuser D.

The function of this group consists, among other things, of the transportation
of mass flow, and of converting the kinetic energy into potential energy and
vice versa. Their geometry differs only in the sign of the gradient of the cross
section in streamwise direction ∂S/∂x. For ∂S/∂x < 0, flow is accelerated for
subsonic and decelerated for supersonic Mach numbers. On the other hand, for
∂S/∂x > 0, the flow is decelerated for subsonic and accelerated for supersonic
Mach numbers.
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13.2 Physical and Mathematical Modeling of
Modules

For modeling ducts with the varying cross sections, we apply the conservation
laws derived in Chapter 11 ([1], [2], [3], [4]). The temporal change of the density
at position k, shown in Figure 13.2, is determined from (11.26) as is given below:
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Figure 13.2: Modeling the components diffuser ∂S/∂x > 0, pip ∂S/∂x = 0 and
nozzle ∂S/∂x < 0.

The mass flows ṁi and ṁi+1 at stations i and i+1 are determined in conjunction
with the momentum equation (11.33):

∂ṁk
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The energy equation in terms of total pressure Equation (11.54) in the absence
of heat addition is modified as follows:
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ṁi+1ṁ
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For a constant cross-section, the equation of continuity equation (13.1) and
motion equation (13.2) are written respectively as:
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(ṁi+1 − ṁi) (13.4)

∂ṁk
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Similarly, the equation of energy in terms of total pressure is simplified to:
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ṁk

ρkS2

[
1
2

ṁk
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Equations (13.4), (13.5), and (13.6) describe the transient process of a compress-
ible flow within a tube with a constant cross section. For an incompressible flow
(13.5) can be reduced to a simple differential equation:
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The friction coefficient cf can be determined from the known steady-state con-
dition, where the temporal changes of the mass flow are set equal to zero. The
indices 1 and n refer to the first and last station of the component. The solution
of Equations (13.1)-(13.2), and Equations (13.4)-(13.7) can be performed using
the implicit integration method discussed later. However, considerable calcula-
tion speed is reached if the component under investigation is subdivided into
several subsections that are connected to each other via plena. In this case, for
each discrete section, the mass flow can be considered as spatially independent,
which leads to further simplification of the above equations.

13.3 Example: Dynamic behavior of a Shock
Tube

Simulation of a high frequency compression-expansion process within a shock
tube is an appropriate example to demonstrate the nonlinear dynamic behav-
ior of the above components. The shock-expansion process within shock tubes
has been the subject of classical gas dynamics for many decades ([5], [6], [7],
[8]). With the introduction of fast response surface mounted sensors, shock
tubes have gained practical relevance for calibrating the high frequency response
pressure and temperature probes. In classical gas dynamics, shock-expansion
process are treated using the method of characteristics. Results of studies pre-
sented in [9] show substantial disagreement between calculations using method
of characteristics and experiments. In this and the subsequent chapters, we sim-
ulate the dynamic behavior of each individual component using the simulation
code GETRAN [2]. In GETRAN, the system of non-linear differential equations
is solved using the implicit solution method described in Chapter 12.
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The shock tube under investigation has a length of L = 1m and a con-
stant diameter D = 0.5m. The tube is divided into two equal length com-
partments separated by a membrane. The left compartment has a pressure of
pL = 100bar, while the right one has a pressure of pR = 50bar. Both com-
partments are under the same temperature of TL = TR = 400K. The working
medium is dry air, whose thermodynamic properties, specific heat capacities,
absolute viscosity, and other substance quantities change during the process and
are calculated using a gas table integrated in GETRAN. The pressure ratio of
2 to 1 is greater than the critical pressure ratio and allows a shock propaga-
tion with the speed of sound. Two equivalent schemes can be used to predict
the compression-expansion process through the tube. These are shown in Fig-
ure 13.3. In schematic (a), each half of the tube is subdivided into 10 equal
pieces. The corresponding coupling plane 1 though 11, and thus, the left half
of the tube are under pressure of 100 bar, while the right half with the plenums
12 through 21 are under the pressure of 50 bar.

Figure 13.3: Simulation schematics for a shock tube: the physical tube (top),
and the simulation schematics (a) and (b).

The membrane is modeled by a throttle system with a ramp that indicates the
cross sectional area shown underneath the throttle. The sudden rupture of the
membrane is modeled by a sudden jump of the ramp. The schematic (b) offers
a simpler alternative. Here, as in case (a), the tube is subdivided into 20 pieces
that are connected via plenums 1 to 21.

13.3.1 Shock Tube Dynamic Behavior

Pressure Transients: The process of expansion and compression is initiated
by suddenly rupturing the membrane. At time t = 0, the membrane is ruptured
which causes strong pressure, temperatures, and thus, mass flow transients.
Since the dynamic process is primarily determined by pressure, temperature,
and mass flow transients, only a few representative results are discussed as
shown in Figures 13.4 through 13.9.

Figure 13.4 shows the pressure transients within the left sections 1 to 9. As
curve 9 shows, the section of the tube that is close to the membrane reacts with
a steep expansion wave. On the other hand, the pressure within the pipe section
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ahead of the shock, Figure 13.5, curve 11, increases as the shock passes through
the section. Oscillatory behavior is noted as the shock strength diminishes. The
pipe sections that are farther away from the membrane, represented by curves
7, 5, 3, and 1 on the left and curves 13, 15, 17, and 19 on the right section,
follow the pressure transient with certain time lags. Once the wave fronts have
reached the end wall of the tube, they are reflected as compression waves. The
aperiodic compression-expansion process is associated with a propagation speed
which corresponds to the speed of sound. The expansion and compression waves
cause the air, which was initially at rest, to perform an aperiodic oscillatory
motion.

Figure 13.4: Pressure transients within the shock tube. Left section includes
all tube sections initially under high pressure of 100 bar, while the right section
include those initially at 50 bar.

Since the viscosity and the surface roughness effects are accounted for by intro-
ducing a friction coefficient, the transient process is of dissipative nature. This
pressure rise is followed by a damped oscillating wave that hits the opposite
wall and reflects back with an initially increased pressure followed by a damped
oscillation
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Figure 13.5: Pressure transients within the shock tube. Right section includes
all tube sections initially under high pressure of 50 bar, while the left section
includes those initially at 100 bar.

Temperature Transients: Figure 13.6 shows the temperature transients within
the left sections 1 to 9. As curve 9 shows, the section of the tube that is close to
the membrane reacts with a steep temperature decrease. The pipe sections that
are farther away from the membrane, represented by curves 7, 5, 3, and 1 on the
left and curves 13, 15, 17, and 19 on the right section, follow the temperature
transient with certain time lags. Once the shock waves have reached the end
wall of the tube, they are reflected as compression waves where the temperature
experience a continuous increase.

Slightly different temperature transient behavior of the right sections are
revealed in Figure 13.7. Compared to the temperature transients of the left sec-
tions, the right sections temperature transients seem to be inconsistent. How-
ever, a closer look at the pressure transients explains the physics underlying
the temperature transients. For this purpose we consider the pressure transient
curve 11, in Figure 13.5. The location of this pressure transient is in the vicinity
of the membrane’s right side with the pressure of 50 bar. Sudden rapture of
the membrane simulated by a sudden ramp (Figure 13.2) has caused a steep
pressure rise from 50 bar to slightly above 80 bar.
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Figure 13.6: Temperature transients within the left sections of the tube. Left
and right sections includes all tube sections initially under temperature of 400
K.

Figure 13.7: Temperature transients within the right sections of the tube. Left
and right sections includes all tube sections initially under temperature of 400
K.

The pattern of the pressure transients is reflected in temperature distribution,
where the pressure rise causes a temperature increase and vice versa. The
temperature transients at downstream locations 12 to 20 follow the same trend.

Mass flow Transients: Figures 13.8 and 13.9 show the mass flow transients
within the left and the right section of the tube. The steep negative pressure
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Figure 13.8: Mass flow transients within left section of shock tube.

Figure 13.9: Mass flow transients within the shock tube. The right section
include all tube sections initially under high pressure of 50 bar, while the left
section include those initially at 100 bar.

gradient causes the mass contained within the tube to perform aperiodic os-
cillatory motions. During the expansion process, curve 1, mass flows in the
positive x-direction. It continues to stay positive as long as the pressure in
individual sections are above their minimum. This means that the shock front
has not reached the right wall yet. Once the shock front hits the right wall, it is
reflected initiating a compression process that causes the mass flows in the neg-
ative x-direction. Figures 13.8 through 13.9 clearly show the dissipative nature
of the compression and expansion process that results in diminishing the wave
amplitudes and damping the frequency. The degree of damping depends on the
magnitude of the friction coefficient cf that includes the Re-number and surface
roughness effects. For a sufficiently long computational time, the oscillations
of pressure, temperature, and mass flow will decay. For cf = 0, the a-periodic
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oscillating motion persists with no decay.
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