
Chapter 11

Nonlinear Dynamic
Simulation of
Turbomachinery
Components and Systems

The following chapters deal with the nonlinear transient simulation of turbo-
machinery systems. Power generation steam and gas turbine engines, combined
cycle systems, aero gas turbine engines ranging from single spool engines to
multi-spool high pressure core engines with an afterburner for supersonic flights,
rocket propulsion systems and compression systems for transport of natural gas
with a network of pipeline systems are a few examples of systems that heavily
involve turbomachinery components.

Considering a power generation gas turbine engine as a turbomachinery sys-
tem that is designed for steady state operation, its behavior during routine
startups, shot downs, and operational load changes significantly deviates from
the steady state design point. Aero gas turbine engines have to cover a rela-
tively broad operational envelope that includes takeoff, low and high altitude
operation conditions, as well as landing. During these operations, the com-
ponents are in a continuous dynamic interaction with each other, where the
aero-thermodynamic as well as the mechanical load conditions undergo tem-
poral changes. As an example, the acceleration/deceleration process causes a
dynamic mismatch between the turbine and compressor power resulting in tem-
poral change of the shaft speed.

In the above cases, the turbomachinery systems are subjected to the oper-
ating modes that are specific to the system operation. Besides these foreseeable
events, there are unforeseeable operation scenarios that are not accounted for
when designing the system. System failures, such as, blade loss during a routine
operation, loss of cooling mass flow through the cooled turbine blades, adverse
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operation conditions that force the compressor component to surge, and failure
of the control system, are a few examples of adverse operational conditions. In
all of these operations, the system experiences adverse changes in total fluid
and the thermodynamic process leading to greater aerodynamic, thermal and
mechanical stress conditions.

The trend in the development of gas turbine technology during the past
decades shows a continuous increase in efficiency, performance, and specific
load capacities. This trend is inherently associated with increased aerodynamic,
thermal, and mechanical stresses. Under this circumstance, each component op-
erates in the vicinity of its aerodynamic, thermal and mechanical stress limits.
Adverse operational conditions that cause a component to operate beyond its
limits can cause structural damages as a result of increased aerodynamic, ther-
mal, and structural stresses. To prevent this, the total response of the system,
including aerodynamic, thermal, and mechanical responses must be known in
the stage of design and development of new turbomachinery systems.

This chapter describes the physical basis for the non-linear dynamic sim-
ulation of gas turbine components and systems. A brief explanation of the
numerical method for solution is followed by detailed dynamic simulation of
several components described in the following chapters.

11.1 Theoretical Background

Dynamic behavior of turbomachinery components and systems can generally be
described by conservation laws of fluid mechanics and thermodynamics ([1], [2],
[3], [4]). The fluid dynamic process that takes place within an inertial system is,
as a rule, unsteady. The steady state, a special case, always originates from an
unsteady condition during which the temporal changes in the process parameters
have largely come to a standstill. Considering this fact, the conservation laws
of fluid dynamics and thermodynamics must be rearranged such that temporal
changes of thermo-fluid dynamic quantities are expressed in terms of spatial
changes. A summary of relevant equations are found in [5]. For an unsteady
flow, the conservation of mass derived in [5], Chapter 3, Equation (3.4), is called
upon:

∂ρ

∂t
= −∇ · (ρV ). (11.1)

Equation (11.1) expresses the temporal change of the density in terms of spatial
change of the specific mass flow. Neglecting the gravitational force, the Cauchy
equation of motion in [5] Equation (3.22) was derived as:

∂V

∂t
+ V · ∇V =

1
ρ
∇ · Π. (11.2)

We rearrange Equation (11.2) to include the density in the temporal and spatial
derivatives by implementing the continuity equation [5], Equation (3.4)

∂(ρV )
∂t

+∇ · (ρV V ) = ∇ · Π (11.3)
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where the stress tensor Π can be decomposed into the pressure and shear stress
tensor as follows:

Π = Ip + T (11.4)

with Ip as the normal stress and T as the shear stress tensor. Inserting Equation
(11.4) into Equation (11.3) results in

∂(ρV )
∂t

+∇ · (ρV V ) = −∇p +∇ · T . (11.5)

Equation (11.5) directly relates the temporal changes of the specific mass flow
to the spatial changes of the velocity, pressure, and shear stresses. For the
complete description of the unsteady flow process, the total energy equation
that includes mechanical and thermal energy balance is needed. Referring to
[5], Equation (3.58) and neglecting the gravitational contribution, we find for
mechanical energy that:

ρ
D

Dt

(
V 2

2

)
= −V · ∇p +∇ · (T · V )− T : D. (11.6)

Equation (11.6) exhibits the mechanical energy balance in differential form. The
first term on the right-hand side represents the mechanical energy contribution
due to the pressure gradient. The second term is the contribution of the shear
stress work. The third term represents the production of the irreversible me-
chanical energy due to the shear stress. It dissipates as heat and increases the
internal energy of the system. Before rearranging Equation (11.6) and perform-
ing the material differentiation, we revert to the thermal energy balance, [5],
Equation (3.66),

ρ
Du

Dt
= −∇ · q̇ − p∇ · V + T : D. (11.7)

The combination of the mechanical and thermal energy balances, Equations
(11.6) and (11.7), results in:

ρ
D

Dt

(
u +

V 2

2

)
= −∇ · q̇ +∇ · (Π · V ). (11.8)

Since all components of a turbomachinery system are considered open systems,
it is appropriate to use enthalpy h rather than internal energy u. The state
properties h and u can be expressed as a function of other state properties such
as T, v, p etc.

u = u(T, ν), du =

(
∂u

∂T

)
ν

dT +

(
∂u

∂ν

)
T

dν (11.9)

h = h(T, p), dh =

(
∂h

∂T

)
p

dT +

(
∂h

∂p

)
T

dp (11.10)
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where T and h are the absolute static temperature and enthalpy. With the
definitions:

cν =

(
∂u

∂T

)
ν

, cp =

(
∂h

∂T

)
p

(11.11)

and the application of the first law, the following relation between cp and cν is
established:

cp = cν +

[(
∂u

∂ν

)
T

+ p

](
∂ν

∂T

)
p

. (11.12)

For the open cycle gas turbines and also jet engines with moderate pressure
ratios, the working fluids air and combustion gases behave practically like ideal
gases whose internal energy is only a function of temperature and not volume.
This circumstance considerably simplifies the interconnection of different ther-
modynamic properties if the equation of state of ideal gases is considered:

pν = RT. (11.13)

Introducing the Gibbs’s enthalpy function:

h = u + pν (11.14)

the differentiation gives:

dh =
κ

κ− 1
d(pv) and dh = κdu (11.15)

with
cp − cν = R and

cp

cν
= κ. (11.16)

As a consequence, for ideal gases, the result of this operation leads to:(
∂ν

∂T

)
p

=
R

p
. (11.17)

Thus, the state properties, u and h, as well as the specific heat capacities cp,
and cν and their ratio κ are solely functions of temperature. This is also valid
for combustion gases with approximately ideal behavior. For combustion gases,
there is a parametric dependency of the above stated properties and the fuel-air
ratio. After this preparation, Equation (11.7) can be written in terms of h and
p:

ρ
Dh

Dt
= −∇ · q̇ +

Dp

Dt
+ T : D (11.18)

with Equation (11.15) and considering the continuity equation (11.54), the sub-
stantial change of the static pressure is:

Dp

Dt
=

κ− 1
κ

ρ
Dh

Dt
− p∇ · V . (11.19)
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Introducing Equation (11.19) into Equation (11.18):

ρ

κ

Dh

Dt
= −∇q̇ − p∇ · V + T : D. (11.20)

The combination of thermal energy equation (11.20) and mechanical energy
equation (11.6) leads to:

∂H

∂t
= −kV · ∇H(−κ− 1)

(
1
ρ
∇ · (ρV )(H + K) +

V · ∂(ρV )
ρ∂t

)

+

(
−κ∇ · q̇

ρ
+

κ

ρ
∇ · (V · T )

)
(11.21)

with H = h + V 2/2 as the total enthalpy and K = V 2/2 the kinetic energy.
Equation (11.21) can also be obtained by introducing the relationship between
the pressure and enthalpy into Equation (11.21). The total enthalpy can be
expressed in terms of total temperature:

cp
∂T0

∂t
= −kV · ∇(cpT0)− (κ− 1)

(
1
ρ
∇ · (ρV )(cpT0 + K) +

V · ∂(ρV )
ρ∂t

)

+

(
−κ∇ · q̇

ρ
+

κ

ρ
∇ · (V · T )

)
. (11.22)

Finally, the total energy equation in terms of total pressure can be established
by inserting Equations (11.14) and (11.16) into Equation (11.8):

∂P

∂t
= −k∇ · (V P ) + (κ− 1)[−∇ · (q̇) + ∇ · (V · T )]

− (κ− 2)

[
∂(ρK)

∂t
+∇ · (ρKV )

]
+ ρg · V (11.23)

where P = p + ρV 2/2 is the total pressure. Equations (11.21), (11.22) and
(11.23) express the same physical principles, namely the law of conservation of
energy in two different forms. In physical terms, they are fully equivalent and
mathematically convertible to each other. As shown in the following chapters,
one or the other of these equations is called upon in conjunction with the other
laws to deal with various dynamic problems. For example, in dealing with an
unsteady exchange of energy and impulse, it is useful to apply the differen-
tial equation for total temperature. If the principal goal of a problem is the
determination of the unsteady changes in pressure, the total pressure differen-
tial equation should be used. A summary of the working equations is given in
Table 11.1.
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Table 11.1: Summary of thermo-fluid dynamic equations.

Equations in terms of substantial derivatives D/Dt Eq. No.
Continuity (11.1)
Dρ
Dt = −ρ∇ · V
Motion (11.2)
ρDV

Dt = ∇ · Π + gz
Mechanical Engineering (11.6)

ρ D
Dt

(
V 2

2

)
= −V · ∇p +∇ · (T · V ) = T : D + ρV · g

Table : Summary of thermo-fluid dynamic equations (continued).

Equations in terms of substantial derivatives D/Dt, ∂/∂t Eq. No.
Equation of thermal energy in terms of u (11.7)
ρDu

Dt = −∇ · q̇ − p∇ · V + T : D
Equation of thermal energy in terms of h for ideal gas (11.18)
ρDh

Dt = −∇ · q̇ + Dp
Dt + T : D

Equation of total enthalpy (11.21)
ρDH

Dt = ρ D
Dt (h + V 2

2 ) = ∂p
∂t +−∇ · q̇ +∇ · (T · V ) + ρV · g

Equation of thermal energy in terms of cv and T for ideal gas (11.7)
ρcν

DT
Dt = −∇ · q̇ − p∇ · V + T : D

Equation of thermal energy in terms of cp and T for ideal gas (11.7)
ρcp

DT
Dt = −∇ · q̇ + Dp

Dt + T : D
Equation of continuity (11.1)
∂ρ
∂t = −∇ · (ρV )
Equation of motion in terms of total stress tensor (11.2)
∂(ρV )

∂t +∇ · (ρV V ) = ∇ · Π
Equation of motion, stress tensor decomposed (11.5)
∂(ρV )

∂t +∇ · (ρV V ) = −∇p +∇ · T
Equation of mechanical energy including ρ (11.6)
∂(ρK)

∂t = −∇ · (ρKV )− V · ∇p +∇ · (T · V ) + ρV · g
Equation of thermal energy in terms of u for ideal gas (11.7)
∂(ρu)

∂t = −∇ · (ρuV )−∇q̇ − p∇ · V + T : ∇V Rearranged
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Table : Summary of thermo-fluid dynamic equations (continued).

Equations in terms of local derivatives ∂/∂t Eq. No.
Equation of thermal energy in terms of h for ideal gas (11.7)
∂(ρh)

∂t = −∇ · (ρhV )−∇q̇ + Dp
Dt + T : ∇V Rearranged

Equation of thermal energy in terms of cv and T (11.7)
∂(ρcνT )

∂T = −∇ · (ρuV )−∇q̇ − p∇ · V + T : ∇V Rearranged
Equation of thermal energy in terms of static h for ideal gases (11.7)
∂(ρcpT )

∂t = −∇ · (ρhV )−∇q̇ + Dp
Dt + T : ∇V Rearranged

Energy equation in terms of total enthalpy (11.21)
∂H

∂t
= −kV · ∇H − (κ− 1)

(
1
ρ
∇ · (ρV )(H + K) +

V · ∂(ρV )
ρ∂t

)

+

(
−κ∇ · q

ρ
+

κ

ρ
∇ · (V · T )

)
Energy equation in terms of total temperature (11.22)

cp
∂T0

∂t
= −kV · ∇(cpT0)− (κ− 1)

(
1
ρ
∇ · (ρV )(cpT0 + K) +

V · ∂(ρV )
ρ∂t

)

−
(

κ∇ · q̇
ρ

− κ

ρ
∇ · (V · T )

)
Energy equation in terms of total pressure (11.23)
∂P

∂T
= −k∇ · (V P )− (κ− 1)[∇ · q̇ +∇ · (V · T )]

− (κ− 2)

[
∂(ρK)

∂t
+∇ · (ρKV )

]
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11.2 Preparation for Numerical Treatment

The thermo-fluid dynamic equations discussed above constitute the theoretical
basis describing the dynamic process that takes place within a turbomachin-
ery component during a transient operation. A four-dimensional time space
treatment that involves the Navier solution is, at least for the time being, out
of reach. For simulation of dynamic behavior of a turbomachine that consists
of many components, it is not primarily important to calculate the unsteady
three-dimensional flow processes in great detail. However, it is critical to accu-
rately predict the response of each individual component as a result of dynamic
operation conditions. A one-dimensional time dependent calculation procedure
provides sufficiently accurate results. In the following, the conservation equa-
tions are presented in index notation. For the one-dimensional time dependent
treatment, the basic equations are prepared first by setting the index i = 1 in
Equations (11.24)-(11.27).

11.3 One-Dimensional Approximation

The thermo-fluid dynamic equations discussed above constitute the theoretical
basis describing the dynamic process that takes place within a turbomachinery
component during a transient operation. A four-dimensional time space treat-
ment that involves the Navier solution is, at least for the time being, out of
reach. For simulation of the dynamic behavior of a turbomachine that consists
of many components, it is not primarily important to calculate the unsteady
three-dimensional flow processes in great detail. However, it is critical to accu-
rately predict the response of each individual component as a result of dynamic
operation conditions. A one-dimensional time dependent calculation procedure
provides sufficiently accurate results. For this purpose, firstly, the basic equa-
tions are prepared for the one-dimensional treatment.

11.3.1 Time Dependent Equation of Continuity

In Cartesian coordinate system the continuity equation (11.1) is:

∂ρ

∂t
= − ∂

∂xi
(ρVi). (11.24)

Equation (11.24), after setting ρV1 = ṁ/S, becomes:

∂ρ

∂t
= − ∂

∂x1

(
ṁ

S

)
. (11.25)

with x1 ≡ x as the length in streamwise direction and S = S(x) the cross
sectional area of the component under investigation. Equation (11.25) expresses
the fact that the temporal change of the density is determined from the spatial
change of the specific mass flow within a component. The partial differential
Equation (11.25) can be approximated as an ordinary differential equation by
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Figure 11.1: Discretization of an arbitrary flow path with variable cross section
S = S(x).

means of conversion into a difference equation. The ordinary differential equa-
tion can then be solved numerically with the prescribed initial and boundary
conditions. For this purpose, the flow field is equidistantly divided into a num-
ber of discrete zones with prescribed length, ΔX, inlet and exit cross sections
and Si and Si+1 as Figure 11.1 shows. The quantities pertaining to the in-
let and exit cross sections represent averages over the inlet and exit heights.
For the annular nozzles and diffusers the quantities are thought of as averages
taken in circumferential as well as radial direction. Using the nomenclature in
Figure 11.1, Equation (11.25) is approximated as:

∂ρk

∂t
= − 1

Δx

(
ṁi+1

Si+1
− ṁi

Si

)
(11.26)

with ṁi and ṁi+1 as the mass flows at stations i and i+1 with the corresponding
cross sections. For a constant cross section, Equation (11.26) reduces to:

∂ρk

∂t
= − 1

ΔxS
(ṁi+1 − ṁi) = − 1

ΔV
(ṁi+1 − ṁi) (11.27)

with ΔV = ΔxS as the volume of the element k enclosed between the surfaces
i and i + 1. The index k refers to the position at Δx/2, Figure 11.1.
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11.3.2 Time Dependent Equation of Motion

The index notation of the momentum equation (11.5) is:

∂(ρVi)
∂t

= − ∂

∂xj
(ρViVj)− ∂p

∂xi
+

∂Tij

∂xj
. (11.28)

In the divergence of the shear stress tensor in Equation (11.28), ∇ · T =
ei∂Tij/∂xj represents the shear force acting on the surface of the component.
For a one-dimensional flow, the only non-zero term is ∂τ21/∂x2. It can be re-
lated to the wall shear stress τw which is a function of the friction coefficient
cf .

τw = cf
ρ

2
V 2. (11.29)

In the near of the wall, the change of the shear stress can be approximated as
the difference between the wall shear stress τw and the shear stress at the edge
of the boundary layer, which can be set as τe ≈ 0(

∂τ12

∂x2

)
x2=0

=
τe − τw

Δx2
= − τw

Δx2
. (11.30)

The distance in Δx2 can be replaced by a characteristic length such as the
hydraulic diameter Dh. Expressing the wall shear stress in Equation (11.30) by
the skin friction coefficient(

∂τ12

∂x2

)
x2=0

= −cf
ρ

Dh

V 2

2
= −cf

ṁ2

2DhρS2
(11.31)

and inserting Equation (11.31) into the one-dimensional version of Equation
(11.28), we obtain

∂ṁ

∂t
= − ∂

∂x1
(ṁV1 + pS) + (ṁV1 + pS)

1
S

∂S

∂x1
− cf

ṁ2

2DhρS
. (11.32)

Equation (11.32) relates the temporal change of the mass flow to the spatial
change of the velocity, pressure and shear stress momentums. As we will see in
the following sections, mass flow transients can be accurately determined using
Equation (11.32). Using the nomenclature from Figure 11.1, we approximate
(11.32) as:

∂ṁk

∂t
=− 1

Δx
(ṁi+1Vi+1 − ṁiVi + pi+1Si+1 − piSi)

+

(
ṁkVk + PkSk

Sk

)(
Si+1 − Si

Δx

)
− cf

m2
k

2Dhk
ρkSk

. (11.33)

For a constant cross section, Equation (11.33) is modified as:

∂ṁk

∂t
= − 1

Δx
[ṁi+1Vi+1 − ṁiVi + (pi+1 − pi)S]− cf

m2
k

2Dhk
ρkSk

. (11.34)
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11.3.3 Time Dependent Equation of Total Energy

The energy equation in Equation (11.21), in terms of total enthalpy, is written
in index notation

∂H

∂t
= −kVi

∂H

∂xi
− κ− 1

ρ

[
(H + K)

∂(ρVi)
∂xi

+
Vi · ∂(ρVi)

∂t

]

− κ

ρ

[
∂q̇i

∂xi
− ∂(VjTij)

∂xi

]
(11.35)

expressing the total enthalpy, Equation (11.35), in terms of total temperature
results in:

∂(cpT0)
∂t

= −kVi
∂(cpT0)

∂xi
− κ− 1

ρ

[
(cpT0 + K)

∂(ρVi)
∂xi

+
Vi · ∂(ρVi)

∂t

]

− κ

ρ

[
∂q̇i

∂xi
− ∂(VjTij)

∂xi

]
. (11.36)

For calculating the total pressure, the equation of total energy is written in
terms of total pressure already derived as Equation (11.23), which is presented
for the Cartesian coordinate system as:

∂P

∂T
= −κ

∂

∂xi
(PVi)− (κ− 1)

(
∂q̇i

∂xi
− ∂

∂xi
(VjTij)

)

− (κ− 2)
(

∂(ρKVi)
∂xi

+
∂(ρK)

∂t

)
. (11.37)

Before treating the energy equation, the shear stress work needs to be evaluated:

∇ · (T · V ) = δijδkm
∂(τjkVm)

∂xi
=

∂(τijVj)
∂xi

. (11.38)

For a two-dimensional flow, Equation (11.38) gives

∇ · (T · V ) =
∂(τijVj)

∂xi
=

∂(τ11V1 + τ12V2)
∂x1

+
∂(τ21V1 + τ22V2)

∂x2
. (11.39)

Assuming a one-dimensional flow with V2 = 0, the contribution of the shear
stress work (11.39) is reduced to

∇ · (T · V ) =
∂(τ11V1)

∂x1
≈ (τ11 inletVinlet − τ11 exitV1 exit)

Δx1
. (11.40)

The differences in τ11 at the inlet and exit of the component under simulation
stem from velocity deformation at the inlet and exit. Its contribution, however,
compared to the enthalpy terms in the energy equation, is negligibly small.
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Thus, the one-dimensional approximation of total energy equation (11.35) in
terms of total enthalpy reads:

∂H

∂t
= −κṁ

ρS

∂H

∂x1
− κ− 1

ρ

[
(H + K)

∂

∂x1

(
ṁ

S

)
+

1
2ρS2

∂ṁ2

∂t

]
− κ

ρ

∂

∂
. (11.41)

For a steady state case without changes of specific mass ṁ/S, Equation (11.41)
leads to:

∂H

∂x1
= − S

ṁ

∂q̇1

∂xi
. (11.42)

Assuming a constant cross section and mass flow, Equation (11.42) gives

∂H

∂x1
= − ∂

∂x1

(
Sq̇i

ṁ

)
. (11.43)

Integrating (11.43) in a streamwise direction results in:

Hout −Hin = −
(

S

ṁ

)
Δq̇ (11.44)

for Equation (11.44) to be compatible with the energy equation, a modified
version of Equation (3.27) is presented.

HOut −HIn = q + wShaft. (11.45)

Equating Equations (11.44) and (11.45) in the absence of a specific shaft power,
the following relation between the heat flux vector and the heat added or rejected
from the element must hold:

q = −
(

S

ṁ

)
Δq̇. (11.46)

From Equation (11.46), it immediately follows that

Δq̇ = −qṁ

S
= − Q̇

S
(11.47)

where Q̇ is the thermal energy flow added to or rejected from the component.
In the presence of shaft power, the specific heat in Equation (11.47) may be
replaced by the sum of the specific heat and specific shaft power:

Δq̇ = −ṁq + ṁlm
S

= −
(

Q̇ + L

S

)
. (11.48)

Equation (11.48) in differential form in terms of Q̇ and L is

∂q̇

∂x
= − ∂

∂x

(
ṁq + ṁlm

S

)
= − ∂

∂x

(
Q̇ + L

S

)
. (11.49)
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With Equation (11.49), we find:

∂H

∂t
=− κṁ

ρS

∂H

∂x1
− κ− 1

ρ

[
(H + K)

∂

∂x1

(
ṁ

S

)
+

1
2ρS2

∂ṁ2

∂t

]

− κ

ρ

∂

∂x

(
Q̇ + L

S

)
. (11.50)

Using the nomenclature in Figure 11.1, Equation (11.50) is written as:

∂H

∂t
=− κk

ṁk

ρkSk

(
Hi+1 −Hi

Δx

)
−

−
(

κ− 1
ρ

)
k

[(
Hk + Kk

Δx

)(
ṁi+1

Si+1
− ṁi

Si

)
+

ṁk

ρkS2
k

∂ṁi+1

∂t

]
−

− κk

ρk

(
ΔQ̇ + ΔL

ΔV

)
. (11.51)

In terms of total temperature, Equation (11.51) is rearranged as:

∂cpT0

∂t
=− κk

ṁk

ρkSk

(
cpT0i+1 − cpT0i

Δx

)
−

−
(

κ− 1
ρ

)
k

[(
cpT0k

+ Kk

Δx

)(
ṁi+1

Si+1
− ṁi

Si

)
+

ṁk

ρkS2
k

∂ṁi+1

∂t

]
−

− κk

ρk

(
ΔQ̇ + ΔL

ΔV

)
. (11.52)

In terms of total pressure, Equation (11.37) is:

∂P

∂t
= −κ

∂

∂x1
(PV1)− (κ− 1)

(
∂q̇1

∂x1
− ∂

∂x1
(VjT1j)

)

− (κ− 2)

(
∂(ρKV1)

∂x1
+

∂(ρK)
∂t

)
(11.53)

which is approximated as:

∂Pk

∂t
=− κk

Δx

(
ṁi+1pi+1

ρi+1Si+1
− ṁipi

ρiSi

)
− (κk − 1)

(
ṁkqk

ΔV
+ cfk

ṁi+1ṁ
2
1

2Dhi+1Si+1ρ

)

− (κk − 2)
ṁk

ρkS2
k

(
1
2

ṁk

ρk

1
Δx

(
ṁi+1

Si+1
− ṁi

Si

)
+

∂ṁi+1

∂t

)

− (κk − 2)
2Δx

(
ṁ3

i+1

ρ2
i+1S

3
i+1

− ṁ3
i

ρ2
i S

3
i

)
(11.54)
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with:

ρk =
1
R

(
pi+1 + pi

Ti+1 + Ti

)
, cpk

=
Hi+1 −Hi

Ti+1 − Ti
, κk =

cpk

cpk
−R

(11.55)

11.4 Numerical Treatment

The above partial differential equations can be reduced to a system of ordinary
differential equations by a one-dimensional approximation. The simulation of
a complete gas turbine system is accomplished by combining individual com-
ponents that have been modeled mathematically. The result is a system of
ordinary differential equations that can be dealt with numerically. For weak
transients, Runge-Kutta or Predictor-Corrector procedures may be used for the
solution. When strong transient processes are simulated, the time constants
of the differential equation system can differ significantly so that difficulties
must be expected with stability and convergence with the integration methods.
An implicit method avoids this problem. The system of ordinary differential
equations generated in a mathematical simulation can be represented by:

dX

dt
= G(X, t) (11.56)

with X as the state vector sought. If the state vector X is known at the time
t, it can be approximated as follows for the time t + dt by the trapezoidal rule:

Xt+Δt = Xt +
1
2
Δt(Gt+Δt + Gt). (11.57)

Because the vector X and the function G are known at the time t, i.e., Xt and
Gt are known, Equation (11.57) can be expressed as:

Xt+Δt −Xt − 1
2
Δt(Gt+Δt + Gt) = F (Xt+Δt). (11.58)

As a rule, the function F is non-linear. It can be used to determine Xt+dt by
iteration when Xt is known. The iteration process is concluded for the time
t + dt when the convergence criterion

X
(k+1)
i −X

(k)
i

X
(k+1)
i

< ε (11.59)

is fulfilled. If the maximum number of iterations, k = kmax, is reached with-
out fulfilling the convergence criterion, the time interval Δt is halved, and the
process of iteration is repeated until the criterion of convergence is met. This
integration process, based on the implicit one-step method described by Liniger
and Willoughby [6] is reliable for the solution of stiff differential equations. The
computer time required depends, first, on the number of components in the
system and, second, on the nature of the transient processes. If the transients
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are very strong, the computer time can be 10 times greater than the real time
because of the halving of the time interval. For weak transients, this ratio is
less than 1.
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