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Abstract. An objective digital pathology solution to quantify the ribonucleic
acid (RNA) signal in tissue samples could enable analysis of gene expression
changes in individual cancer and dysregulated normal cells (immune cells, etc.).
Here, we present a new method that leverages the punctate RNA In-situ
hybridization (ISH) signal to quantify gene expression, while maintaining tissue
context and enabling single cell analysis and workflow. This digital pathology
solution detects and quantifies the punctate dot signals generated by one- and
two-color RNA ISH technology in formaldehyde fixed-paraffin embedded
(FFPE) tissue. The digital pathology solution was implemented to determine the
characteristics of individual spots including size, intensity, blurriness and
roundness all of which were used to determine individual spot feature charac-
teristics. Significantly, we determined that spots maintain similar characteristics
irrespective of the RNA biomarker and/or tissue used. The verification on 31
microscope images shows agreement of R2 = 0.99 and a concordance correla-
tion coefficient (CCC) = 0.99 for the total spot counts identified by the observer
(115,154) and the algorithm (112,809). We have leveraged the unique detection
features of the RNA ISH technology to develop a new method to quantify RNA
signal while maintaining tissue context. It is anticipated that this method will
enable analysis of gene expression changes in heterogeneous cancer and normal
cells and tissues with single cell resolution.
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1 Introduction

In-situ hybridization (ISH) can be used to look for the presence of a genetic abnor-
mality or condition such as amplification of cancer causing genes specifically in cells
that, when viewed under a microscope, morphologically appear to be malignant.
Unique nucleic acid sequences occupy precise positions in chromosomes, cells and
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tissues and ISH allows the presence, absence and/or amplification/expression status of
such sequences to be determined without major disruption of the sequences. ISH
employs labeled deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) probe
molecules that bind to a target gene sequence or transcript to catalyze detection or
localization of targeted nucleic acid genes within a cell or tissue sample [1].

Historically, the clinical evaluation of proteins and nucleic acids in tissue has relied
upon in situ immunoenzymatic detection (staining) methods. For example, detection of
B cell clonality is useful for assisting in the diagnosis of B cell lymphomas and such an
assessment can be accomplished through the evaluation of KAPPA and LAMBDA
light chain expression. As seen in Fig. 1, tonsil tissue stained for KAPPA mRNA may
be detected using a black chromogen (silver, Ag) and LAMBDA mRNA may be
detected using a purple chromogen (tyramide-sulforhodamine). The presence of the
signal of interest appears as tiny spots (e.g. discrete dots) and these spots may accu-
mulate to form larger regions of aggregate signal (hereinafter “signal aggregate blobs”
or “blobs”) depending on the expression level (copy number) of each targeted mRNA
in B cells. By way of example, plasma cells have approximately 100,000 mRNA copies
per cell, and therefore signal in those cells may appear as blobs.

Quantitative ISH analysis will likely be useful in clinical evaluation of a variety of
RNA biomarkers; however, its utility remains uncertain due to limitations of existing
technologies. An automated technique for estimating an amount of isolated dot signal
and signal aggregate blob may facilitate enhanced clinical interpretation of stained
biological samples, enable samples to be interpreted more quickly and accurately, and
empower evaluation of RNA biomarker clinical utility. In this study, we have devel-
oped an image-analysis system and method that enables the detection and quantifica-
tion of the number of nucleic acid signals present in stained samples.

(a)   (b) 

Fig. 1. The example of tonsil stained using in situ hybridization (ISH) illustrating KAPPA
mRNA detected with silver (Ag) in the black color and LAMBDA mRNA detected with
tyramide SRB in the purple color: (a) the wholeslide image with six tonsil regions and (b) a field-
of-view image at 40X. (Color figure online)
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2 Methods

The proposed image-analysis framework for detecting and quantifying the expression
of the RNA targets (biomarkers) used in our study is shown in Fig. 2.

In this study, we propose a method of estimating an amount of signal corresponding
to at least one biomarker in an image of a biological sample comprising: (1) detecting
isolated spots in an image (e.g., an unmixed image channel image corresponding to
signals from a biomarker); (2) deriving an optical density value of a representative
isolated spot (e.g., based on computed signal features or characteristics from the
detected isolated spots); (3) and estimating the number of predictive spots in signal
aggregates in each of the sub-regions based on the derived optical density value of the
representative isolated spot. The method further includes calculation of a total of
number of spots in a sub-region by combining a number of detected isolated spots and
the estimated number of predictive spots in signal aggregates in each of the sub-
regions. Finally, a total number of detected isolated spots combined (i.e. summed) with
the estimated number of predictive spots for each sub-region of signal aggregates for
the entire tissue slides can be calculated and stored in a database [1].

2.1 Tissue Staining and Digital Images

Using 2.5-lm formaldehyde fixed-paraffin embedded (FFPE) tissue sections, a total of
189 field-of-view (FOV) microscope images and a total of 31 tissue slides of tonsil,
lymphoma, and Calu-3 (xenograft) were included in the algorithm development. Tissue
slides were stained with a simplex (one color)- and a duplex (two-color)-ISH protocol
using probes targeting GAPDH, KAPPA, MALAT1, and KAPPA/LAMBDA RNA
transcripts. The staining process was performed using a VENTANA Benchmark Ultra
autostainer. All slides were counterstained with Hematoxylin (HTX) in blue color. The
31 slides were scanned using a VENTANA DP 200 scanner. RGB images were
obtained with a resolution of 0.25 � 0.25 lm2 and a typical size of 3 billion pixels or
20 � 20 mm2.

Fig. 2. Image-analysis flowchart illustrating the steps to detect and quantify the expression of
RNA targets (biomarkers) in a whole slide image (WS – wholeslide).
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2.2 Pre-processing of Color Unmixing

Preprocessing of a color unmixing is performed using a conventional color-
deconvolution method to separate different chromogens e.g., black, purple, and blue.
In our study, the approach proposed by Ruifrok et al. [2] was selected. The unmixing
method can be applied to singleplex stained images with one chromogen and coun-
terstain, or applied to multiplex staining images with more than one chromogen and
counterstain, as shown in the examples in Fig. 3.

2.3 Isolated Spot Detection

Following image acquisition and/or unmixing, an image having a single biomarker
channel is provided to the spot detection module such that isolated spots within the
image may be detected (as opposed to the “blobs” or aggregate dot signals). An
unmixed image channel image is used for input for the spot and blob detection module.
A morphological operation is performed to detect isolated spots, i.e. dots, within the
image.

As seen in Fig. 4, following the detection of each of the isolated spots in the input
image, the detected isolated spots are separated from the blobs in the input image,
providing an “isolated spots image channel” and a “blob image channel”. The detected
spots are masked out from a blob image channel. In an isolated spots image channel,
small objects or blurred point sources can be detected using a multiscale Difference of
Gaussians (DoG) approach. Multiple spot sizes are configured in ascending order
(small to large), but the processing is in the order of large to small spots. In each
iteration, a DoG filter is created from the given inner and outer filter sizes [3]. The
respective detections are collected in a resulting seed/annotation object to become the
location of each of the detected isolated spots in the (x, y) coordinates; this location
corresponds to the seed center of each detected isolated spot. A seed center can be
calculated by determining a centroid or center of mass of each detected isolated spot.

(a)                                (b) (c)                 (d) 

Fig. 3. (a) A portion of a whole slide image stained using an in situ hybridization assay to detect
KAPPA mRNA (black color) and LAMBDA mRNA (purple color) with counterstain
hematoxylin; (b, c) an example of an image channel image after unmixing, showing only signal
corresponding to KAPPA mRNA (black color) and LAMBDA mRNA (purple color),
respectively, and (d) an example of an image channel after unmixing, showing the hematoxylin
channel (blue). (Color figure online)
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2.4 Descriptive Signal Features for Each Detected Isolated Spot

With reference to Fig. 5, the optical density derivation module first computes
descriptive signal features for each of the detected isolated spots in the image. The
signal feature derivation module implements a Gaussian fitting technique is to analyze
and parameterize certain characteristics of the detected isolated spots. The fitting
method is performed based on the assumption that the distribution of the optical density
and the radius is the normal distribution. A 1D-Gaussian-function fitting method is
used to estimate the associated spot parameters within a pre-defined patch size sur-
rounding a detected and isolated spot. The patch size is 7 � 7 pixels, which was
determined to be the most appropriate patch size for any particular application that will
facilitate the provisioning of optimal histogram results.

The characteristics derived from the Gaussian fitting technique include the size,
intensity, blurriness, and roundness of the detected isolated dots, and each of these
characteristics are computed using parameters of the Gaussian function. By solving the
linear system Ax = b, the estimated parameters from the fitting method consist of
mean, standard deviation (SD), and full-width-at-half maximum.

By fitting the parameters using the Gaussian model, the computed descriptive
signal features of each isolated spot were obtained as following:

1. Intensity – is computed using the 98 percentile within the radius of the 5 pixel
surrounded the center of the detected spots [no unit].

2. Blurriness – refers to the standard deviation (r) of the Gaussian-function fitting
method.

Fig. 4. (a) Provides an example of a portion of a whole slide image stained in an ISH assay,
(b) illustrates the result of the unmixing of (a) into a single channel (black channel); (c) illustrates
a blob channel image whereby the signals from the detected isolated spots from (d) are masked
out; (d) illustrates the result of dot detection (a spot channel image) on the unmixed image
channel image of (b); (e, f) illustrates derived (x, y) locations of the detected isolated spots in the
spot channel image; and (g) and (h) illustrate an overlay of the detected isolated spots
superimposed on the portion of the whole slide image.
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3. Size - refers to the full width at half maximum (FWHM) computed by:

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi

2ln2
p

r � 2:355r ð1Þ

4. Roundness – is the characteristic computed based on the comparison between the
actual optical density distribution within a patch and the perfect Gaussian model
computed from the estimated parameters. The concordance correlation coefficient
(CCC) (which measures the agreement between two variables, e.g., to evaluate
reproducibility or for inter-rater reliability) was used to compare the relationship (or
the agreement), where CCC = 1 shows that the estimated parameters are perfectly
agreement to the ideal Gaussian model; whereas, CCC = 0 shows that there is no
agreement between the estimated parameters and the ideal Gaussian model [no unit].

Next, histograms can be generated for each computed signal feature characteristic,
as shown in Fig. 5.

2.5 Estimation of a Number of Predictive Spots in Signal Aggregates
in Each of the Subregions

The generated histograms provide for an understanding of the density of detected
isolated cells that have particular values or representative characteristics. The generated
histograms therefore provide insight into the characteristics of a representative or
typical detected isolated spot. For example, from the intensity histogram (e.g. Fig. 5), it
is possible to determine the intensity value of the detected isolated spots that is repeated
most often (i.e. the mode of the intensity values). The representative or typical detected
isolated spot is then assigned that particular determined intensity value.

The characteristics of the isolated spot representative are used to estimate the
number of the spot in the aggregate signals. The estimation assumes a linear rela-
tionship between the summation of the optical density for the single spots and the
aggregate signals, as following:

N ¼
P

ODA
P

ODS
; ð2Þ

where N is the number of the spots within an aggregate signal region, ODA is the
optical density of the aggregate signals, and ODS is the optical density of the repre-
sentative isolated spot signals.

Using the feature histograms of the isolated spots in the previous step, we can apply
the individual spot properties in the calculation of their summation of the optical
density. The selected properties can be the mode of the intensity (optical density) and
the mode of the radius in the feature histograms to calculate the summation of a
representative individual spot:

X

ODS ¼ Area� ODS; ð3Þ
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where Area refers to a circle (pr2) or a rectangle (w � h) area assumed to be a shape of
a spot, and (ODS) refers to the representative optical density of a single dot. This can be
the mode of the intensity histogram, the average of the total intensity of the total
detected isolated spots, or the weighted intensity, etc.

2.5.1 Segmentation and Residual Image Generation
Prior to estimating the number of predictive spots in signal aggregates, the input image
is segmented into a plurality of sub-regions using segmentation. The generation of sub-
regions is used to minimize the computation error due to the fact that the computations
are based on a smaller local region rather an entire image. The segmentation also
reduces the complexity in computing the spot counting in the aggregate signals and the
sub-region concept is useful for the quality control verification by an observer and to
reduce the complexity in estimating signal in the aggregate signal blobs.

(a) (b)

Fig. 5. The characteristics of (a) the isolated spots shown in red dots and (b) the feature
histograms of intensity, blurriness, size, and roundness, respectively.

Fig. 6. (a) Illustrates the result of the unmixed image in a single black channel, (b) illustrates the
detected isolated dot image, (c) illustrates the residual image after masking out the black channel
image from detected isolated spot image, and (d) the superpixel segmentation method was
applied to the residual image (c).
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As shown in Fig. 6, the residual signal is computed by masking out the black-
channel image with the isolated spot image. On the residual image, irregularly sized
sub-regions can be created by a superpixel segmentation method [4]. The sub-regions
of the residual channel image are segmented and grouped the clump signals into
smaller regions. Using the superpixel segmentation method, it groups the pixels sub-
stantially uniform and perceptually meaningful. The sub-regions using superpixels
support in efficient estimation of the number of the signals efficiently. Because some
sub-regions have little aggregate signal, it is easy to verify the estimated spot count
within that segment. On the other hand, some sub-regions segmented by the superpixel
method have completely aggregated signals within the segment, so that it creates a
consistent approximation of the spot count within that segment.

Finally, the derived intensity parameter is multiplied by the area to give the optical
density of a representative isolated spot. The computed optical density of a representative
spot is then supplied to the spot estimationmodule. Once the number of predictive spots in
each sub-region is estimated, the datamay be stored in a database or other storagemodule.

3 Results

3.1 Verification of Detected Isolated Spot Counts

The quality control was performed based on a graphic user interface (GUI) which the
detected isolated spots overlaid on the original and the observer could correct e.g. add,
delete, move the spots. The verificationwas performed using 31FOVon the simplex silver
microscope images by a trained observer. The agreement plot is shown below with the R2

of 0.99 and CCC = 0.99. The example of the spot counting results before and after the
correction is in Fig. 7. The correspondence of total spot count identified by the observer
(115,154) and the algorithm (112,809) is illustrated in the accompanying Table 1.

Fig. 7. Illustrates the overall scatter of the spot count correspondence between the expert
observer and the algorithm results (R2 = 0.99, CCC = 0.99) verified on 31 FOVs.

Table 1. The total spot counts between the algorithm and the observer

Result Total spot count

Observer 115,154
Algorithm 112,809
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3.2 Individual Spot Feature Characteristics and Number of Predictive
Spots in Signal Aggregates

We characterized and compared the dots generated by a single probe (i.e., Kappa 01,
Kappa 02, or Kappa 03) versus a cocktail of three probes (e.g., Kappa 01, 02, 03), and
no probe control using tonsil tissue. As seen in Fig. 8, the intensity of three probes
shows wider range than in the one probe images, whereas, the blurriness, size, and
roundness characteristics of the spots generated by one probe are not different to spots
generated by three probes. As seen in Fig. 9, the analysis result image overlaid with
superpixel outlines (green), the overlaid red dots indicating the isolated spots detected
by the algorithm, and a red number indicating the additional spots estimated for the
aggregate signal within each superpixel.

4 Conclusions

In this study, we have leveraged the unique detection features of the RNA ISH tech-
nology to develop a new method to quantify the RNA signal in FFPE tissue, while
maintaining tissue context. It is anticipated that this method will enable analysis of gene

Fig. 8. Illustrates histograms of the spot characteristics of (a) intensity, (b) blurriness, (c) size,
and (d) roundness generated by a single probe (i.e., Kappa 01, Kappa 02, or Kappa 03) versus a
cocktail of three probes (Kappa 01,02,03).

Fig. 9. The analysis result image overplaid with superpixel outlines (green), the overplaid red
dots indicating the isolated spots detected by the algorithm, and a red number indicating the
additional spots estimated within the aggregate signal with each superpixel. (Color figure online)
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expression changes in heterogeneous cancer and normal cells and tissues, with single
cell resolution, thereby enabling evaluation of the clinical utility of the plethora of RNA
biomarkers encoded in the human genome.
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