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Preface

Since its beginning in Heidelberg in 1992, the European Congress on Digital Pathology
has been a biannual not-for-profit meeting of representatives from academia, industry,
and clinical practice. Attendees at ECDP share a common interest in developing and
applying new technologies to advance the field of pathology, which in the early years
focused primarily on the scanning and remote viewing of histopathological images.
However, as the use of telepathology has become widespread, the emphasis of the
congress has increasingly moved into the application of image analysis and artificial
intelligence techniques to maximize the meaningful information that can be extracted
from tissue samples.

The 15th European Congress on Digital Pathology was held at Warwick University
during April 10–13, 2019, with the theme “Accelerating Clinical Deployment.” This
marked the transition of ECDP into becoming an annual event, reflecting the rapidly
expanding nature of the field. This growth has arisen through the widespread
recognition that the latest developments in deep learning, when combined with
accumulated knowledge of the past 30 years, are capable of solving problems that
previously seemed intractable – and that one of the most pressing questions is how to
translate these advances into the clinic.

ECDP 2019 was also the first time the congress invited both (a) clinical abstracts
and (b) technical research papers focused on computational methods, reflecting the
cross-disciplinary nature of the field. The program comprised oral presentations from
pathologists and informaticians across a broad range of topics, in addition to a
workshop entitled Machine Learning for Pathologists and special session on Digital
Pathology in the Developing World. Together these demonstrate the recognition that
digital pathology can have a truly global impact in benefiting patients – but achieving
this requires effective communication across disciplines, cultures, and geographies.
ECDP plays a unique role in promoting that communication.

This volume of Lecture Notes in Computer Science covers only the technical
research papers submitted to the conference since the clinical abstracts were handled as
abstracts and not full papers. The technical panel of the conference received 31 paper
submissions. All these papers were peer-reviewed by an average of three reviewers and
after a discussion, the Technical Program Committee selected 11 papers for oral and 10
papers for poster presentations. We believe that the papers selected for the proceedings
and published in this volume represent the current state of the art in this dynamic field,
and highlight the progress being made in tackling the real-world challenges of
pathology.



Finally, we wish to thank the organizers of ECDP 2019, the presenters, and the
attendees for making the congress a success.

April 2019 Peter Bankhead
Andrew Janowczyk

Constantino Carlos Reyes-Aldasoro
Korsuk Sirinukunwattana

Mitko Veta
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Bringing Open Data to Whole Slide Imaging

Sébastien Besson1 , Roger Leigh1 , Melissa Linkert2,
Chris Allan2, Jean-Marie Burel1 , Mark Carroll1 , David Gault1,
Riad Gozim1, Simon Li1 , Dominik Lindner1 , Josh Moore1 ,

Will Moore1 , Petr Walczysko1, Frances Wong1 ,
and Jason R. Swedlow1,2(&)

1 Department of Computational Biology, School of Life Sciences,
University of Dundee, Dundee DD1 5EH, UK

jrswedlow@dundee.ac.uk
2 Glencoe Software, Inc., 800 5th Avenue, #101-259, Seattle,

WA 98104, USA

Abstract. Faced with the need to support a growing number of whole slide
imaging (WSI) file formats, our team has extended a long-standing community
file format (OME-TIFF) for use in digital pathology. The format makes use of
the core TIFF specification to store multi-resolution (or “pyramidal”) repre-
sentations of a single slide in a flexible, performant manner. Here we describe
the structure of this format, its performance characteristics, as well as an open-
source library support for reading and writing pyramidal OME-TIFFs.

Keywords: Whole slide imaging � Open file format � Open data � OME-TIFF

1 Introduction

Digital Pathology is a rapidly evolving field, with many new technologies being
introduced for developing and using biomarkers [1, 2], imaging [3], and feature-based
image analysis [4–7], most notably using various approaches to machine and deep
learning [8, 9]. As is often the case in fields that cross research science and clinical
practice, this transformation has been supported by rapid technology development
driven both by academia and industry. A full ecosystem of open and commercial tools
for preparing and scanning slides and analysing the resulting data is now evolving.
These are starting to deliver advanced, innovative technologies that, at least in some
cases, can evolve into defined products suitable for use in clinical laboratories.

During similar phases in the fields of radiology, genomics, structural biology,
electron and light microscopy, and many others, one of key developments that helped
accelerate development was the appearance of common, defined and open methods for
writing, reading, and sharing data. Each of these fields has taken different approaches to
defining open data formats, and the approaches taken in different fields have had
different levels of adoption. Digital Pathology, despite the rapid growth and potential of
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the field has not yet developed and adopted a mature open format that supports the
wide range of data types that have emerged (with more on the horizon).

Since 2002, OME has built open software specifications and tools that accelerate and
scale access to large, multi-dimensional datasets. OME’s OME-TIFF [10], Bio-Formats
[11] andOMERO [12] are used in 1000 s of academic, industrial and clinical laboratories
worldwide managing access to imaging data and also for publishing imaging data on-line
[13, 14], In this report, we present an open, flexible data format based on accepted
imaging community standards that supports all the whole slide imaging (WSI) modalities
we are aware of today and can expand to support many of the emerging data types that are
likely to appear in the near future. Critically, we provide open source, liberally licensed
software for reading, writing and validating the format, freely available documentation
and specifications, open build systems that anyone can monitor for development, and
open, versioned example files for use in development and benchmarking experiments.
Finally, we embed the format writer in a library that supports conversion from some of
the dominant WSI proprietary file formats (PFFs).

2 State and Support of WSI Formats

The field of Digital Pathology has not yet adopted an open, supported, implemented
data format for storing and exchanging WSI generated by acquisition scanners. The
absence of such a format means that WSI in Digital Pathology uses PFFs, making the
data fundamentally non-exchangeable, not available for long-term archiving, submis-
sion with regulatory filings or on-line publication. As more research funders and sci-
entific journals adopt the principle that research data should be Findable, Accessible,
Interoperable and Reproducible (FAIR) [15], this situation ultimately prevents the field
of Digital Pathology from complying with emerging trends and regulations in research
science and also inhibits further innovation as exemplar datasets are not available to
technology developers. Technologies like deep learning require large, diverse datasets
that realistically can only be assembled by combining datasets from multiple centres
and/or clinics. Cohort datasets written in incompatible PFFs slow the development of
new tools and waste precious resources (usually public funding) on converting
incompatible data- a process that is error-prone and often leads to data loss.

Moreover, as each new WSI scanner arrives on the market, a new data format is
introduced to the community. Manufacturers update their formats at arbitrary times,
further expanding the number of versions of these proprietary file formats (PFFs).

To deal with this explosion of WSI PFFs, software translation libraries have
emerged that read data stored across many formats into a common open representation
using a unified application programming interface (API). As of today, the two most
established libraries used in the WSI domain are OpenSlide, a C-based library devel-
oped at Carnegie Mellon University [16] and Bio-Formats, a Java-based library
developed by the OME Consortium [11]. Both have been developed by academic
groups as open source projects. Many open-source and commercial tools in turn rely on
the continued availability of these low-level libraries as a way to seamlessly access
WSI data independently of its format. When reusing these libraries is not possible,
commercial entities end up rewriting their own internal translational library allowing to

4 S. Besson et al.



achieve the same goal: reading WSI data independently of the format (e.g., https://free.
pathomation.com/). Table 1 lists common types of WSI formats including their main
manufacturer, their extension as well as their support in open-source libraries.

It may appear that OpenSlide and Bio-Formats provide a convenient solution to the
large and growing number of WSI PFFs. However, as shown in Table 1, no single
implementation has a full coverage for the complete set of proprietary formats. Second,
the burden of maintaining and expanding such libraries mainly remains the responsi-
bility of the projects that build the libraries, as they reverse engineer each new PFF
released by commercial manufacturers. The absence of prior discussion between
manufacturers and community software developers involves constantly keeping up
with the creation of new variants or new proprietary formats. Finally, data stored using
these proprietary file formats remains fundamentally non-exchangeable between two
researchers due to the absence of agreed-upon specification.

In response, we have embarked on a project to build a truly extensible, flexible,
metadata-rich, cross-platform, open WSI data format for Digital Pathology.

3 Towards an Open WSI File Format

The Digital Imaging and Communications in Medicine (DICOM) working group
published an official release (Supplement 145) in September 2010 specifically designed
to provide a standard specification for WSI data [17]. Conversion tools for generating
DICOM-compliant files have been proposed [18], but community adoption of this
format is limited. A key point is that the DICOM process only provides a data speci-
fication and leaves it to other entities to build reference implementations for the com-
munity. Delivering cross-platform, versioned, supported software that can be used

Table 1. List of common Proprietary File Formats (PFFs) used in the Whole Slide Imaging
(WSI) domain alongside open-source libraries OpenSlide and Bio-Formats.

Manufacturer File format extension Support in open-source libraries

Aperio .tiff OpenSlide, Bio-Formats
Aperio .svs, .afi OpenSlide, Bio-Formats
Hamamatsu .vms OpenSlide, Bio-Formats
Hamamatsu .ndpi, .ndpis OpenSlide, Bio-Formats
Leica .scn OpenSlide, Bio-Formats
Mirax .mrxs OpenSlide
PerkinElmer .qptiff Bio-Formats
Philips .tiff OpenSlide
Sakura .svslide OpenSlide
Trestle .tif Bio-Formats, OpenSlide
Ventana .bif, .tif OpenSlide
Zeiss .czi Bio-Formats

Bringing Open Data to Whole Slide Imaging 5
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across a broad community with many different use cases and applications is challenging
and requires substantial dedicated resources. Moreover, DICOM supports private
attributes and classes that can limit opportunities for implementing interoperability.

A separate issue with DICOM Suppl. 145 specification is the lack of software
libraries for efficient reading and writing of the format for I/O intensive data processing,
e.g., training of convolutional neural networks and other advanced learning applica-
tions. High performance software libraries that can contend with the large data volumes
collected in WSI studies are essential for the routine use of large training sets and the
development of new deep learning-based approaches in Digital Pathology.

An alternative approach is to build an open format based on known, established
standards that are widely supported by communities and both open and commercial
software and is proven to be useful for computational workflows. For example, the
Tagged Image File Format (TIFF) specification is widely used as a binary vessel for
image data storage (https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.
shtml). Since 2005, the OME Consortium has released OME-TIFF, a variant that
complies with the TIFF specification, but adds OME’s flexible imaging metadata model
to the TIFF header [10]. As the OME metadata model includes support for imaging
metadata, region of interest annotations, and a flexible key-value store [19], the format
has been used to support many different imaging modalities in research, industrial
and commercial settings (https://docs.openmicroscopy.org/latest/ome-model/ome-tiff/).
Open source reader and writer implementations in Java and C++ are available [11, 20],
along with a large number of example files (https://downloads.openmicroscopy.org/
images/OME-TIFF/).

Given the interoperability of TIFF, it is no surprise that many PFFs have adopted
the TIFF layout as a convenient way to store WSI data. Some libraries (OpenSlide,
VIPS) use a so-called tiled multi-resolution TIFF format where each resolution is stored
as a separate layer within a multi-page TIFF. A direct advantage of this approach is its
great simplicity. However, while it applies well to single-plane RGB pyramidal images,
this approach does not immediately support multi-channel data from fluorescence WSI,
multiplexed data from cyclic immunofluorescence [2] and mass spectrometry-based
CODEX data [3] or a through-focus series (“Z-stack”). Finally, each of these
approaches, while TIFF-based is yet another PFF.

An alternative layout is to extend the TIFF specification to store reduced resolutions
internally and refer to them from each layer using a specific tag SubIFD. This approach
is also compatible with standard TIFF tools like libtiff (http://www.libtiff.org/) and
commercial tools like Adobe Photoshop. It also allows flexibility to store new multi-
plexed data, or any other extensions available in the TIFF specification. In 2018, OME
proposed the usage of this strategy as an extension of its OME-TIFF specification to be
able to generate exchangeable pyramidal images (https://openmicroscopy.github.io/
design/OME005/). In addition to the interoperability with other tools, this updated
OME-TIFF format makes it possible to store and exchange multi-dimensional pyra-
midal images, so multiplexed data, through-focus Z-series and several others are
supported [11]. Finally, OME’s flexible metadata schemes support multiple WSI
pyramidal images as well as typical ancillary images generated by WSI scanners, e.g.,
barcodes, macro images of the full slide, all as part of an OME-TIFF file.
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A key design requirement is that this updated form of OME-TIFF is backwards
compatible with existing software that reads OME-TIFF. Following discussion and
feedback on the proposed approach, an update to OME-TIFF readers and writers was
released that and fulfilled these requirements and several others.

4 Implementations and Results

Figure 1 presents a graphical representation on how WSI data is stored in an OME-
TIFF file. SubIFDs are used to indicate the location of sub-resolution tiles. Any soft-
ware that implements the TIFF specification can be updated to read and write the file
format. To demonstrate this, we modified the Bio-Formats library to read sub-
resolutions from OME-TIFF files containing sub-resolution tiles. Test files were
manually generated from public domain TIFF-based WSI PFFs to comply with the
specification described above. These sample files were validated under two separate
separate libraries that use Bio-Formats as a plug-in library, OMERO, a client-server
data management application and QuPath, a desktop WSI data analysis application
[12, 21]. In both cases, updating the version of Bio-Formats enabled the software to
read and display the updated OME-TIFF files. We validated the number of detected
images including WSI, macro and label images and the number of sub-resolutions for
each image, the metadata associated with each image and finally the pixel values for
regions of each sub-resolution. The updated Bio-Formats library correctly passed all
image parameters via metadata requests to the Bio-Formats API and properly delivered
all tiles for rendering and display (Fig. 2).

Fig. 1. a. Pyramidal image with five levels of resolution. Resolution 0 is the full-resolution
plane while resolutions 1 to 4 are reduced along the X and Y dimensions using a consistent
downsampling factor. b. In the updated OME-TIFF specification, this data is supported by storing
metadata for sub-resolutions using the TIFF SubIFDs extension tag.

Bringing Open Data to Whole Slide Imaging 7



We also modified the Bio-Formats library to include support for writing pyramidal
OME-TIFFs. The writer API was modified to allow setting the number of resolutions of
an image and changing between sub-resolutions while writing data to disk. In addition,
the OME-TIFF writer was updated to write sub-resolutions as described above. Finally,
we implemented simple options to generate downsampled images from very large
planes in the Bio-Formats conversion tools. These updates were tested using five
different datasets: a selection of brightfield and fluorescent pyramidal images expressed
in the main WSI PFFs supported by Bio-Formats (see Table 1), a collection of large
single-plane TIFF files from the Human Protein Atlas project published in the Image
Data Resource [14, 22], a synthetic image with 1400 Z-stacks, a multi-channel
fluorescence image and a large electron-microscopy published in EMPIAR [23]. We
converted all these datasets into OME-TIFFs using the command-line Bio-Formats
tools and validated them as described above.

All of these functions have been built into and released as reference implementations
that support the updated OME-TIFF formats (see Table 2) that include OME-TIFF

a. b.

Fig. 2. OME-TIFF WSI images generated from Bio-Formats 6 visualized using two graphical
clients a. QuPath and b. OMERO.iviewer [12, 21].

Table 2. List of resources publicly available for testing and validating the open OME-TIFF file
format with support for multi-resolution.

Name Description URL

OME-TIFF Format specification https://docs.openmicroscopy.org/latest/ome-model/ome-
tiff/specification.html

OME-TIFF Public WSI samples https://docs.openmicroscopy.org/latest/ome-model/ome-
tiff/data.html#sub-resolutions

Bio-
Formats 6

Binaries and API
documentation

https://www.openmicroscopy.org/bio-formats/
downloads/

Bio-
Formats 6

Technical
documentation

https://docs.openmicroscopy.org/latest/bio-formats6/
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samples for all the modalities described above, software libraries and documentation.
The source code allowing to reproduce the data generation and validation is available at
https://doi.org/10.5281/zenodo.2595928.

5 Discussion

We have developed an updated specification and implementation for OME-TIFF, an
open image data format by adding support for multi-resolution tiles alongside existing
capability for multiplexed, multi-focus and multi-timepoint images. Multi-resolution
capability is important as it makes OME-TIFF usable as an exchange and/or transport
format for WSI data. We have built and released example files, documentation and
open source reference software implementations to ease OME-TIFF adoption by
software developers and also research and clinical users.

Our goal in this work is not to declare a single data standard, but rather to build an
open, supported WSI data format that is as flexible as possible, supports a wide range of
metadata and binary data from many different applications, and can support the range of
current and emerging domains using whole slide imaging. We have successfully tested
the format across several different applications. We expect that the release of the updated
OME-TIFF specification and open source software will enable the community to test the
use of the format in many other domains and evaluate the utility of the specification and
software. This will likely lead to several updates that steadily improve the utility and
performance of OME-TIFF.

The reference implementation of the updated OME-TIFF has been developed in
Java and integrated into the open-source Bio-Formats library [11]. For manufacturers,
C++ and C# are usually the language of choice for writing software that drives com-
mercial software for WSI acquisition. In addition to the Java-based library, the OME
Consortium has built and released OME Files, a C++ reference implementation for
reading and writing open OME formats [20] which we aim to update in the near future.
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BB/R015384/1) and the Wellcome Trust (Ref: 202908/Z/16/Z).
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Abstract. In this work we present an experimental setup to semi
automatically obtain exhaustive nuclei labels across 19 different tis-
sue types, and therefore construct a large pan-cancer dataset for nuclei
instance segmentation and classification, with minimal sampling bias.
The dataset consists of 455 visual fields, of which 312 are randomly
sampled from more than 20K whole slide images at different magnifica-
tions, from multiple data sources. In total the dataset contains 216.4K
labeled nuclei, each with an instance segmentation mask. We indepen-
dently pursue three separate streams to create the dataset: detection,
classification, and instance segmentation by ensembling in total 34 mod-
els from already existing, public datasets, therefore showing that the
learnt knowledge can be efficiently transferred to create new datasets.
All three streams are either validated on existing public benchmarks or
validated by expert pathologists, and finally merged and validated once
again to create a large, comprehensive pan-cancer nuclei segmentation
and detection dataset PanNuke.

Keywords: Computational pathology · Instance segmentation ·
Instance classification · Histology dataset

1 Introduction

Analysis of nuclear features, that being categorical or appearance related, shape
or texture, density or nucleus-to-cytoplasm ratio have been shown to not only
be useful in cancer scoring, but also in discovering bio-markers that may pre-
dict treatment effectiveness [1,2,5,14]. For example, nuclear shape and textural
features have been shown to be useful in recurrence prediction, while inferred
nuclear categories may help in detecting different tissue structures within the tis-
sue [8,12]. It has also been demonstrated that extracted nuclear shape features
can help stratify patients in prostate cancer patients [13].
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Fig. 1. Left: A sample of 4 visual fields from [11] dataset. Right: A selection of 4 visual
fields randomly sampled from 27k WSIs, with an output of a detector trained on the
dataset on the left overlaid. It is clear that nuclei are detected even where there are
artifacts, burnt tissue, or blur. To each of the detected points a classifier can then be
applied that is able to classify Non-Nucleus class

While the importance of nuclei category and features are clear, it is still vague
how much data we need to ensure that any deep learning model is reliable for such
tasks in medical applications. Nevertheless, it is conspicuous from commercial
and academic practices that the larger and more diverse the dataset is, the
more likely we are to produce a model that captures as much of the true data
distribution as possible. The community has taken great steps in creating open
datasets to develop algorithms for nuclei segmentation and classification [11].
However, these datasets are generally limited in size or provide only sparse nuclei
labeling. For example, [11] consists of only 30 visual fields, while sparse labeling
[15] prevents end-to-end training on a whole image. Moreover, various artifacts
found in a whole slide image (WSI), are inherently found in clinical routine, but
are commonly excluded from publicly available datasets.

Therefore, we argue that currently available data in Digital Pathology pro-
vide partially realistic environment, with cherry-picked visual fields as compared
to the conditions where algorithms could be applied and are therefore likely to
be prone to sampling bias. This has already been demonstrated in a validation
study1 of deep learning models applied to radiology images in practice where
model performance dropped significantly in a real-world environment. Conse-
quently, when creating PanNuke dataset, we employ random sampling of visual
fields from 27,724 H&E WSIs and do not screen out visual fields purposely to
preserve the natural distribution of visual fields variability.

We set it as our aim to obtain as diverse dataset of nuclei types as possible in
H&E images with the most reliable annotations. For that, we need to overcome
three main challenges: (i) Very little ground truth, and no ground truth at all

1 http://archive.rsna.org/2018/18014765.html.

http://archive.rsna.org/2018/18014765.html
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for some tissue types (ii) The ground truth itself is not reliable [3,4], especially
for such ambiguous task as nuclei types (iii) Nuclei types within a tissue are
context-dependent.

In summary, our main contributions are: (i) We demonstrate how impor-
tant it is to create datasets that match the distribution of data in a clinical setting
(ii) We propose a semi-automatically obtained nuclei instance segmentation and
classification dataset PanNuke, that has been verified by domain experiments.

2 Materials

PanNuke is created via ensembling of multiple model combinations with already
existing public data for nuclei classification/segmentation. In this regard, to
produce the proposed dataset new visual fields have been randomly sampled
from 19 different TCGA tissue types and other internal datasets for prostate,
colon, ovarian, breast and oral tissue. Below we describe the publicly datasets
that were used for training segmentation, detection and classification models.

For the initial segmentation model, we used the existing annotated datasets
by Kumar [11] and CPM17 [18]. Kumar dataset has annotations for 16 images of
7 different tissue types (liver, prostate, kidney, breast, stomach, colorectal and
bladder) stained with H&E and the patch size is 1024×1024. The CPM dataset
consists of 32 images of lung tissue with rough image size of 600 × 600. Both of
these dataset are extracted from The Cancer Genome Atlas (TCGA) repository.

Table 1. Initial data for nuclei classification

Type of nuclei

Epithelial Inflam Malignat Necrotic Str Non-nuclei Total

MonuSeg 836 1,698 5,927 0 906 0 9,367

Colon Nuclei 7,544 6,003 4,685 2,547 4,468 0 25,247

SPIE 0 2,139 9,802 0 0 0 11,941

Nuclei Attribute 0 0 0 0 0 500 500

Total 8,380 9,840 20,414 2,547 5,374 500 47,055

We trained nuclei detection model using 4 datasets: Kumar dataset (16
images), CPM2017 dataset (64 images), visual fields extracted from TCGA
labelled by ourselves (15 images) and the Bone Marrow dataset (11 images)
[9]. For Kumar and CPM17 dataset, instance-wise segmentation is provided,
and so we take the centroid, of each object as the locations of nuclei.

Classification labels and their source datasets are described in Table 1. The
MonuSeg dataset originally comes only with instance segmentation masks, how-
ever a selection of images has been annotated internally by two expert patholo-
gists and a trainee. Unlike the common annotation procedure, a detection model
is first utilised to find centroids of nuclei and afterwards detected nuclei are clas-
sified by experts which is more precise and less exhausting for experts. Colon
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Nuclei is an internal dataset for colon nuclei classification. A big majority of
breast malignant nulcei label annotations have been sourced from a recent cel-
lularity scoring competition by SPIE2. Since we are interested in detecting false
positive nuclei detection or segmentation, we add an additional Non-Nucleus
category, which is derived from the Nuclei Attribute dataset released in [12].

3 Methods

We followed three pathways to obtain our final validated dataset. These three
pathways are segmentation, detection and classification. In order to incorporate
the context, crucial to nuclei classification, we merged detection and classification
into one model after a sufficient amount of data has been collected. These models
are described in Sects. 3.1, 3.2, 3.3 and 3.4 respectively.

Primary reason for ensembling separate type of models trained on public
datasets, is to evaluate the performance of each type in a more realistic environ-
ment. For example, in Fig. 1 we illustrate the performance of a detector trained
on a public dataset applied to randomly sampled visual fields that are part of
PanNuke. Clearly, burnt, blurred or poorly stained tissue should not be identi-
fied as nuclei, and therefore not contribute to the downstream analysis. However,
detector trained on a public dataset does indeed detect these parts as nuclei, the
same argument applies to the segmentation models. Identification of these model
failures and quantification of model uncertainty serve as primary tools in creating
PanNuke.

Fig. 2. Two visual fields with most uncertain classification results according to the
model trained on the data in Table 1. Visual field on the left has been sampled from
oral tissue, and testicular tissue on the right

2 https://spie.org/conferences-and-exhibitions/medical-imaging/grand-challenge-
2019.

https://spie.org/conferences-and-exhibitions/medical-imaging/grand-challenge-2019
https://spie.org/conferences-and-exhibitions/medical-imaging/grand-challenge-2019
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For uncertainty quantification in classification and segmentation pathways,
we employ mutual information, which captures epistemic, model uncertainty
[6]. Generally, there are two types of uncertainty - epistemic and aleatoric, also
known as reducible and irreducible. The reason we focus our attention on epis-
temic uncertainty is that it could be reduced by adding more data, or in our
case annotated examples, while aleatoric uncertainty would most likely point to
noisy examples that are likely to be hard to annotate by expert pathologists.

Likewise, for classification, we use mutual information to select visual fields
in order to verify annotation or re-annotate regions where the model fails to
predict correctly. In Fig. 2, the two most uncertain classification visual fields
are depicted. As can be seen visual fields contain large white space and a large
number of red blood cells which are confusing for the model. These are usually
not included in public datasets, however they are very frequent in the real data.
Similar to the segmentation approach, the two most uncertain visual fields per
tissue are selected and re-annotated which are afterward employed for fine-tunig
the model.

Detection 
Model

Classification 
Model

Segmentation 
Model

Model (re)training and inference on unlabeled data

Label correction on visual fields 
selected based on uncertainty

WVF nuclei 
Classification 

Model 

Segmentation 
Model

Model (re)training and inference on unlabeled data

Label correction on visual fields 
selected based on uncertainty

Part 1: First round of exhaustive annotation collection Part 2: Second round of exhaustive annotation collection using 
context based model 

Part 3: Final verification by domain experts 

Public & 
Internal 
Datasets

Exhaustive 
Annotations 
obtained in Part 
1, Public & 
Internal Datasets

Unlabeled 
visual fields

Unlabeled 
visual fields

Verified 
PanNuke

Fig. 3. An overview of data collection for the proposed large-scale pan-cancer nuclei
segmentation and detection in histology images

After performing several re-annotations and re-training rounds for both seg-
mentation and classification, the final dataset is created by ensembling detection
and refined segmentation models. Namely, taking the intersection between the
two and applying a refined classifier to the centroids of the instance segmentation
masks. Figure 3 shows a high-level schematic diagram of our proposed approach
for collecting large instance-wise annotations for visual fields sampled from H&E
histology WSIs3.

3 For the final statistics for the dataset as well as the verified ground truth refer to
https://jgamper.github.io/PanNukeDataset/.

https://jgamper.github.io/PanNukeDataset/e
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Fig. 4. By performing 5-fold cross-validation, we are able to obtain uncertainty esti-
mates for training as well as for testing and newly sampled visual fields

3.1 Segmentation Model

The methodology for instance segmentation consists of an ensemble of a net-
work proposed in the MonuSeg Challenge4, an unpublished model, that has
achieved a relatively high AJI (Aggregated Jaccard Index) score on a public
nuclei segmentation challenge and a top-ranking position (visit MonuSeg website
for more details about model). This model has an encoder-decoder architecture
with dual-head output which outputs the overall shape of objects and eroded
objects (markers). Markers are used for marker-controlled watershed to generate
final instance segmentation. The models are trained in a 5-fold cross-validation
experimental setup. For predicting the output for each fold, we applied 6 differ-
ent augmentation techniques on the test dataset. Therefore, we have ensemble
of 30 models to predict on each test image.

As discussed above, to identify cases for re-annotation within the newly
extracted visual fields, we use the mutual information measure described above.
A distribution of model uncertainties for test and training data of the model as
well as for the newly extracted visual fields is depicted in Fig. 4. We re-annotate
the data from the longer tail and add it to the training data.

3.2 Detection Model

Overall, the detection network is trained using 106 images of different tissue
types with 5-fold setup and 6 test augmentation techniques. Hence, ensemble of
30 predictions are used to estimate the location of nuclei. Among all successful
detection networks [10,15,16], We adopt the same procedure as [19] due to it’s

4 https://monuseg.grand-challenge.org/.

https://monuseg.grand-challenge.org/
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robustness and simplicity to construct our labels for training our network. The
network architecture for this model is the same as segmentation model.

3.3 Classification Model

For nuclei classification, we create an ensemble of four 18 layer residual networks
[7]. The networks are based on the selection of patch training sizes - 64 × 64 or
32 × 32, and training with manifold mixup or without [17]. Every patch has
a nucleus to be classified at the centre of the patch, detected either by the
segmentation or detector models described above.

To balance out the classes, while training each model we employ weighted
sampling. Therefore under-represented patches are sampled more often to bal-
ance distribution of nuclei classes in each batch during training our network.
The test set classification performance (accuracy) for four models ranged from
85% to 92% on held out validation data from public datasets.

3.4 Whole Visual Field Nuclei Classification Model

After finalizing the first round of collecting exhaustive annotations (around 10%
percent of the dataset), we identified that a large portion of nuclear labels
depends on the surrounding tissue, i.e. context. Therefore, unlike the classifica-
tion model described in the previous section, we trained a network that predicts
labels for all nuclei in the visual field as compared to per patch based model in
3.3. In 3, Part 2 we use this model as a Whole Visual Field (WVF) classification
model.

The same network structure as in 3.1 was considered, however the target
labels consist of six channels correspond to six nuclei types. For each nuclei
position on the image a circle with radius of 8 pixel was considered. We used
cross-entropy as an objective function. For test time, detection map generated
by detection network was utilized to locate each nuclei, these locations were
matched on prediction map of classification network to attain the nuclear labels.

4 Conclusion

In this paper, we have proposed an approach for semi-automatically collecting
large amount of annotations from H&E histology images which is a main step
for constructing robust prediction models. To this end, we develop PanNuke: a
nuclei instance segmentation and classification dataset with the world’s largest
collection of annotations so far. The diversity and natural distribution of the
real-world data is preserved by randomizing the process without removing any
clinically valuable images. As a follow up, we will release a highly optimised
end-to-end robust and efficient nuclei classification and segmentation model. We
will additionally release patch-based classifier optimised as part of the process
described in this work. We believe such a classifier, due to the variety of seen
nuclei, might prove to be useful for unsupervised nuclei classification in other
tissue types such as Bone Marrow, Meningioma, etc.
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Abstract. Methods to reduce the need for costly data annotations
become increasingly important as deep learning gains popularity in med-
ical image analysis and digital pathology. Active learning is an appealing
approach that can reduce the amount of annotated data needed to train
machine learning models but traditional active learning strategies do
not always work well with deep learning. In patch-based machine learn-
ing systems, active learning methods typically request annotations for
small individual patches which can be tedious and costly for the anno-
tator who needs to rely on visual context for the patches. We propose
an active learning framework that selects regions for annotation that are
built up of several patches, which should increase annotation through-
put. The framework was evaluated with several query strategies on the
task of nuclei classification. Convolutional neural networks were trained
on small patches, each containing a single nucleus. Traditional query
strategies performed worse than random sampling. A K-centre sampling
strategy showed a modest gain. Further investigation is needed in order
to achieve significant performance gains using deep active learning for
this task.

Keywords: Active learning · Image annotation · Deep learning ·
Nuclei classification

1 Introduction

Modern deep learning algorithms have been shown to improve performance for
tasks such as classification, segmentation and detection in digital pathology.
However, deep learning algorithms require large annotated datasets from which
to build high performing models. This requirement for data has been identified as
a key challenge for using deep learning algorithms for digital pathology [12] and
medical image analysis [5]. There are several approaches to tackling this prob-
lem which include semi-supervised learning, weakly supervised learning, active
learning, and their combinations. This paper focuses on the use of active learning
to aid in annotation collection for patch-based digital pathology image analysis.
c© Springer Nature Switzerland AG 2019
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Active learning is a type of machine learning which hypothesises that having
a learning algorithm select the data it uses to train itself can reduce the amount
of data needed for training. Active learning is used within modern applications
to reduce the quantity of annotations needed. Annotating only the data selected
by the learning algorithm reduces the overall cost of building an effective model.
In a pool-based scenario, the learning algorithm has access to a large pool of
unannotated data. Over multiple iterations, the learning algorithm selects data
to be annotated and added to the training data [9].

Active learning algorithms use query strategies to select the data to be anno-
tated. There are numerous query strategies available with the most popular
methods being based on uncertainty. Uncertainty sampling is a simple query
strategy that samples data based on a model’s predictions for the unannotated
data.

While these methods have been shown to work well with many traditional
learning algorithms, this is not the case when working with deep learning algo-
rithms. There are several reasons for this. Firstly, deep learning algorithms
jointly learn feature representations and classifiers/regressors. Selecting only dif-
ficult examples to train the model leads to learnt features that are not repre-
sentative, decreasing the quality of the model [13]. Secondly, traditional query
strategies are used to select a single data point. It has been shown that deep
learning algorithms work better with batch updates and so require a query strat-
egy to select an optimal batch and not just the top ranked points [8]. Thirdly,
the softmax output from a classifier trained using deep learning algorithms does
not represent the model’s uncertainty well, which is commonly used to sample
unannotated data [4].

A standard approach for using learning algorithms for digital pathology is to
use patches from larger images. This allows the images to be input to learning
algorithms such as convolutional neural networks (CNNs) more efficiently and
removes the necessity of annotating very large images. When using patch-based
methods that use small patches, for tasks such as nuclei detection and classifi-
cation, using active learning to select patches for annotation can be detrimental
for annotation collection. This is due to small patches being time consuming
and tedious to annotate. Small patches may also not include enough context for
accurate annotation.

To address these issues, this paper modifies query strategies so that tasks
which rely on small patches can efficiently use active learning and ease the effort
needed from expert annotators. Methods were tested using the CRCHistoPhe-
notypes dataset for nuclei detection and classification [10].

2 Related Work

Since the rise in popularity of deep learning, numerous active learning query
strategies have been proposed. Some are simple alterations to existing active
learning query methods, such as Cost-Effective Active Learning (CEAL) [13]. In
this algorithm, predictions are made for all the unannotated data and a batch



22 J. Carse and S. McKenna

is then selected from the data with the highest uncertainty. In addition to this,
the most confident predictions are also added to the training data with their
predicted label. This increases the overall size of the training dataset without
any extra annotation cost, adding data which is easier to classify so that the
model can learn more representative features during training. Other methods
seek to alter the deep learning algorithms so that traditional active learning
query strategies can be used. Using Bayesian deep learning algorithms to produce
more accurate uncertainty metrics is an example of this [4].

The Core-Set query strategy [8] focuses on selecting a batch of unannotated
data that can be used for both learning representative features and optimising
the classifier. This is done by treating the problem as a cover problem and
using a mixed integer programming heuristic to minimise the covering radius of
the data. Another query strategy for deep learning uses adversarial attacks to
estimate the decision boundaries of the model and selects the data closest to
the decision margins [3]. These query strategies achieve state of the art results
when working with CNNs, demonstrating how active learning has potential for
working with deep learning algorithms.

The popularity of deep learning inspired multiple applications in digital
pathology [5]. These rely on availability of large annotated datasets such as
the CRCHistoPhenotypes dataset [10]. Application of deep learning algorithms
is limited by dataset availability. Despite this, numerous advances in digital
pathology have been made using deep learning, for example in nuclei detection
and classification [10], organ segmentation [1] and classification of diseases [7].

The expense of annotating large quantities of data has led researchers to
investigate how active learning might be applied to digital pathology problems.
Cosatto et al. [2] used active learning to collect 10,000 nuclei annotations which
were then used to train a machine learning model for nuclear grading. Yang et
al. [14] developed an active learning framework for digital pathology segmenta-
tion, specialised for that task.

3 Proposed Methods

Patch-based methods are common within digital pathology and medical image
analysis more generally. However, applying active learning to these methods can
be tedious, especially in systems that use small patches. Small patches can be
difficult to annotate in isolation. Even if their spatial visual context in provided to
the annotator, continually having to reassess context for each annotation can be
inefficient and frustrating. We propose a region-based alternative that requests
annotations over regions containing multiple small patches. Working with larger
regions eases the effort needed from the annotator and can lead to an improved
annotation collection throughput. This alteration allows for a learning algorithm
to be trained with the small patches and only treats the data as regions when
querying the unannotated data.

The proposed query strategy makes a simple modification to how an existing
query strategy works. An overview of this can be seen in Algorithm1 where S
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is an existing query strategy. This algorithm is called at the end of each active
iteration, once a model has been trained on the currently available annotations.
It extracts all the patches from each unannotated region and make predictions
on each patch. These predictions are then averaged to create a prediction for
the overall region. Once all the regions have predictions, these predictions can
be used within an active learning query strategy. An example of this would be
using entropy uncertainty sampling where an uncertainty value for each region
would be calculated and sampled. However, this approach can also be applied
to more complex query strategies such as core-set sampling, by solving the K-
centre problem for the region predictions rather than feature representations for
individual data points.

4 Experiments

A nuclei classification task was chosen to investigate the effectiveness of
using region-based active learning within digital pathology. This task used the
CRCHistoPhenotypes dataset which consists of 22,444 annotated nuclei from
100 H&E stained histology images [10]. Coordinates for each nucleus along with
their corresponding classifications have been annotated in this dataset. Each
cropped histology image was split into 2,500 100× 100 pixel regions from which
30 × 30 pixel patches were extracted for each nucleus. Augmentation was used
during training, each patch being augmented by having a Gaussian blurring filter
applied, and by horizontal and vertical flipping.

This experiment used a simple CNN inspired by the architecture used in
the nuclei classification benchmark for the CRCHistoPhenotypes dataset [10].
It consisted of two convolutional layers, one with 36 filters with a size of 4 × 4
and the other with 48 filters with a size of 3 × 3, both of which were followed

Algorithm 1. Alteration to query strategy for region-based active learning
Input : θ are the trained weights for the learning algorithm,

δ is the learning algorithm,
U is the set of unannotated data,
n is the batch to be selected,
S is the query strategy that will be used.

Output: U ′ which is a sampled set from U
1 RegionQueryStrategy θ, δ, U, n, S
2 foreach region r in U do
3 P ← ExtractPatches(r) extract patches from region
4 O ← δ(θ, P ) makes predictions on extracted patches
5 O′ ← Average(O) average predictions
6 Y := Y + O′ append region average to array of averages

7 end
8 U ′ ← S(Y, n) select regions to query using the query strategy
9 return U ′
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by max pooling layers with a filter size of 2 × 2. These layers were followed by
two fully connected layers with 1200 neurons and 512 neurons respectively. This
architecture is summarised in Table 1. Each hidden layer used ReLU activation
functions and the two fully connected layers used dropout for regularisation [11].
Dropout was also used to adapt the CNN into a Bayesian CNN.

Fig. 1. Three example regions from the CRCHistoPhenotypes dataset [10] with mul-
tiple nuclei that will be extracted into patches and augmented.

The training environment is constantly changing between iterations as the
dataset expands. The Adadelta training algorithm for gradient decent was cho-
sen as the CNN’s training optimiser [15]. Adadelta requires no manual tuning
of learning rate as it adapts based on the training gradients, making it ideal
for active learning tasks. To ensure that the model has been trained after each
active iteration and that overfitting have been avoided, an early stopping method
was used. The early stopping method chosen compares the generalisation loss
(Eq. 1) and training progression (Eq. 2) and will stop training before overfit-
ting [6]. Generalisation loss is calculated by comparing the validation loss for
each epoch Lval(t) against the minimum validation loss across all epochs. The

Table 1. The Convolutional Neural Network architecture for nuclei classification used
in the region-based active learning experiments.

Convolutional neural network architecture for nuclei classification

Type Filter dimensions Input/output dimensions

I 30 × 30 × 3

C 4 × 4 × 1 × 36 26 × 26 × 36

M 2 × 2 12 × 12 × 36

C 3 × 3 × 36 × 48 10 × 10 × 48

M 2 × 2 5 × 5 × 48

F 5 × 5 × 48 × 1200 1 × 1200

F 1 × 1 × 512 × 512 1 × 512

F 1 × 1 × 512 × 4 1 × 4
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training progression value is calculated by analysing the training losses Ltr(t)
over a batch of recent epochs of size k.

GL(t) = 100 ·
⎛
⎝ Lva(t)
min
t′≤t

Lva(t′)
− 1

⎞
⎠ (1)

Pk(t) = 1000 ·
( ∑t

t′=t−k+1 Ltr(t′)
k ·mint

t′=t−k+1Ltr(t′)
− 1

)
(2)

Experiments tested the region-based modification combined with a range of
query strategies. These query strategies included several more basic methods
which will be used specifically to act as baselines for the other query strategies,
built specifically for deep learning algorithms. These basic query strategies are
random, least confident uncertainty, margin uncertainty and entropy uncertainty
sampling. The other query strategies tried were K-Centre sampling (solved using
a greedy approximation), Core-Set sampling [8] and Bayesian active learning by
disagreement (BALD) sampling using Bayesian neural networks [4].

In each experiment, all available data were initially treated as unannotated;
two randomly selected regions were then used to form the initial annotated train-
ing set. After each active iteration, two regions were selected from the unanno-
tated regions to be added to the training set. This was continued for 50 iterations
meaning that 102 regions out of 2,500 formed the final training set in each exper-
iment. Each experimental setting was run five times with different random seeds
(different weight initialisation and initial annotated patches).

5 Results

Table 2 gives the test accuracy and loss (averaged over the five runs) after 50
iterations for each of the query strategies. These results were obtained on a
single, unchanging test set. Notably, only K-Centre sampling achieved a higher
average accuracy than a random sampling strategy. Core-set sampling accuracy
was very similar to that of random sampling. The other query strategies were
all worse than simply adopting random sampling. Figures 2 and 3 show the test
accuracy and loss for each strategy after each iteration.

For comparison, a fully supervised CNN trained on a much larger training set
of 2,500 annotated regions achieved an accuracy of 68.53% and a loss of 1.111.
Training using the K-Centre query strategy achieved an accuracy of 61.41% and
a loss of 1.137 using 4% of the annotations.

Table 2. The accuracy and loss for each model trained with different query strategies
over 50 iterations resulting in a total of 102 annotated regions.

Query strategy Random Least confident Margin Entropy K-Centre Core-set BALD

Accuracy 58.25% 48.92% 45.84% 32.37% 61.41% 57.33% 48.23%

Loss 1.154 1.243 1.268 1.39 1.123 1.157 1.247
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Fig. 2. Test accuracy across active iterations.

Fig. 3. Test loss across active iterations.

6 Conclusion

This paper proposed a mechanism for applying deep active learning to patch-
based systems with specific focus on its application to nuclei classification. The
results clearly showed that the traditional active learning query strategies per-
formed poorly. Active learning methods tailored to deep CNNs are needed.
Reducing annotation overheads and thus the cost of developing deep learning
systems for digital pathology and medical image analysis can allow those with
less access to resources to work on a range of problems. Methods such as active
learning have great potential but further work is needed in order to achieve
significant gains on tasks such as that investigated here.
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Abstract. Whole Slide Imaging (WSI) has become an important topic
during the last decade. Even though significant progress in both medical
image processing and computational resources has been achieved, there
are still problems in WSI that need to be solved. A major challenge is
the scan size. The dimensions of digitized tissue samples may exceed
100,000 by 100,000 pixels causing memory and efficiency obstacles for
real-time processing. The main contribution of this work is representing
a WSI by selecting a small number of patches for algorithmic process-
ing (e.g., indexing and search). As a result, we reduced the search time
and storage by various factors between (50%–90%), while losing only a
few percentages in the patch retrieval accuracy. A self-organizing map
(SOM) has been applied on local binary patterns (LBP) and deep fea-
tures of the KimiaPath24 dataset in order to cluster patches that share
the same characteristics. We used a Gaussian mixture model (GMM) to
represent each class with a rather small (10%–50%) portion of patches.
The results showed that LBP features can outperform deep features. By
selecting only 50% of all patches after SOM clustering and GMM patch
selection, we received 65% accuracy for retrieval of the best match, while
the maximum accuracy (using all patches) was 69%.

1 Introduction

The advances in digital image processing and machine learning for digital pathol-
ogy are showing practical results. The advantage of such techniques is the ability
to assist pathologists for higher accuracy and efficiency. Such algorithms lead to
more reliable diagnosis by presenting computer-based second opinions to the
clinician [22]. Digital Pathology (DP) uses Whole Slide Imaging (WSI) as a
base for diagnosis. Unlike the traditional pathology workflow in which the tis-
sue samples are inspected under a microscope and stored in physical archives,
WSI enables the digitization of glass slides to very high-resolution digital images
(slides/scans). The introduction of such technologies has led to the develop-
ment of countless methods combining machine learning and image processing
to support the diagnostic workflow which is labour-intensive, time costly, and
c© Springer Nature Switzerland AG 2019
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subject to human errors [4]. The digitization of the biopsy samples has simplified
parts of the analysis, however, it has also introduced several challenges. There
are only a few public digital datasets available for machine-learning purposes
[27]. In addition, the existing datasets are generally unlabeled because of the
tedious and costly nature of the manual delineation of regions of interest in dig-
ital images. Moreover, DP methods suffer from the image imperfections caused
by the presence of artifacts and the absence of accurate methods for tissue (fore-
ground) extraction [17]. Content-based image retrieval (CBIR) is considered as
a practical solution for processing unlabeled data. Retrieving similar cases from
pathology archives alongside their treatment records may help pathologists to
write their reports much more confidently. Finally, the requirements of WSI for
memory usage and computational power is problematic for IT infrastructures
of hospitals and clinics. Therefore, it is desired to have solutions that make
the image processing more memory efficient and computationally less expensive.
This paper addresses the reduction of data dimensionality by clustering images
with in order to provide a compact representation of the scans for algorithmic
processing. Our techniques are developed under the constraint of working with
unlabeled data, a constrained that is motivated by the reality of the clinical
workflow.

2 Related Works

Tissue examination under a microscope reveals important information to render
accurate diagnosis and thus, provide effective treatment for different diseases
[8]. DP offers several opportunities and also presents challenges to the image
processing architectures [15]. Presently, only a small fraction of glass slides are
digitized [20], but even if WSI was more widely available, there are a number of
technical issues that would need to be addressed for their effective usage. One
of the main challenges is data management and storage [8]. Most importantly,
the large dimensions of the WSI files require a large amount of memory and a
expensive computational power.

Content-Based Image Retrieval (CBIR) is an approach to find images with
similar visual content to a query image by searching a large archive of images.
This is helpful in medical imaging and DP databases where text annotations
alone might be insufficient to precisely describe an image [25,29]. In order to
retrieve similar images, a proper feature representation is needed [12]. In CBIR,
accuracy and fast search for similar images from large datasets are important.
Therefore, various techniques for dimensionality reduction of features are used to
speed up CBIR systems [6]. Some of these techniques include principal compo-
nent analysis (PCA), compact bilinear pooling [30] and fast approximate nearest
neighbor search [16]. Image subsetting methods [1,2] have been used to choose a
small region of the whole slide images for computational analysis while reducing
the size of the image for a better tissue representation. Other image subsetting
algorithms use sparsity models for multi-channel representation and classifica-
tion, and expectation maximization by logistic regression [11,26]. Generally, the
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20x magnification is commonly used for many diagnostic tasks [18,24]. As well,
dividing the whole slides into small patches (or tiles) of 256×256 to 1000×1000
pixels is a common strategy to overcome the large dimensionality of the WSI
data [21,23]. This approach results in thousands of patches that should be ana-
lyzed individually. Low-resolution approaches are considerably faster, however,
they may loose the local morphology. One possible solution is regional averaging
where a region is not considered region of interest (ROI) unless it extends over
multiples patches. On the other hand, this can cause missing small ROIs such
as small or isolated tumors. Another solution would be to analyze the complete
image on low resolution and then refine this result on high-resolution patches
by using a registration on each patch [14]. In this manner, the local morphology
is taken into account. However, one major downside is the significantly longer
run time. In this work, We propose unsupervised learning using handcrafted and
deep features, followed by patch selection through Gaussian mixture models, to
provide a more compact representation of the digital slides for image indexing
and search purposes.

3 Materials and Methods

Dataset and Data Preparation – We used the KimiaPath24 dataset to eval-
uate our experiments. This dataset contain 24 WSIs. The slides show diverse
organs and tissue types with different texture patterns [5]. The glass slides were
captured by a digital scanner in bright field using a 0.75 NA lens1. The dataset
contains 1325 test images (patches) of size 1000×1000 pixels (0.5 mm× 0.5 mm)
from all 24 cases. Figure 1 shows some example patches (the dataset can be
downloaded online2).

Fig. 1. Sample patches from KimiaPath24 dataset.

All training and test patches are down-sampled from 1000 × 1000 pixels to
250×250 pixels in order to be more easily processed by for the feature extraction.
We patched WSIs without overlap and then we removed all patches with high
background homogeneity (more than %99) [5]. As a result, we created 27,055

1 TissueScope LE scanner by Huron Digital Pathology.
2 http://kimia.uwaterloo.ca/kimia lab data Path24.html.

http://kimia.uwaterloo.ca/kimia_lab_data_Path24.html
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training patches from 24 WSIs. The presented dataset comprising of diverse
body parts may be suitable for intra-class search operations such as metastasis
and floater detection.

Methodology – Figure 3 illustrates our approach. We divided the whole slide
image into many patches, extract features, cluster the patches and then selected
a subset of patches to represent the scan. We applied image search to verify the
accuracy loss as a consequence of data reduction. We have performed search by
extracting same features from the test set and then compared them against fea-
tures from all training cases by calculating the Euclidean distance as a measure
of (dis)similarity. The most similar patch is considered to be the output of the
CBIR system.

Convolutional Neural Networks (CNN) can learn general features that are
not specific to the dataset or task [13]. The deeper layers are more specific to
the task of the network. Many results indicate that extracted features from CNNs
(deep features) are highly discriminative [3]. These features are extracted from
different layers of the CNN depending on the degree of specificity of the feature
[9]. Usually, the features are extracted from the last layer before the classification
layer which allows getting the most specific and high abstraction features that
can be used for another task (dimensionality reduction, unsupervised learning,
etc.). In this work, we used all 4096 outputs of the last layer before the classifi-
cation layer in the VGG16 network, a pre-trained network model with 16 layers
[9,10]. The second feature extraction method is a handcrafted method that uses
the LBP algorithm (local binary patterns) [19,28]. The obtained feature vectors
are histograms of uniform and rotation-invariant patterns. The LBP vector is a
concatenation of two vectors. The first one has a radius parameter of 3 pixels and
24 pixels to consider resulting in 26 bins. The second one has a radius parameter
of 1 pixel and 8 pixels to consider set to 8 resulting in 10 bins. The concatenated
histogram will be of 36 dimensions (bins) for each patch.

All patches of a scan are represented by two different sets of features for
comparison, namely deep features and LBP histograms. We then train SOM to
cluster each patch. We do not know how many clusters each scan may contain.
Hence, each scan is split into a given number of clusters found by the SOM
algorithm. The range of number of clusters found by SOM was between 10 and
20. Parameter tuning is performed to shed light on variance and map size (see
Fig. 2). We used GMMs [7] for patch selection. The number of representatives
for each cluster is investigated from range 10% to 50% of the total number of
the patches. It is important to point out that the deep features have a large
feature vector (more than 4000 elements). Therefore, we used PCA to reduce
the dimensionality of deep features. We kept 95% of the variance for each vector
which yielded a new feature vector of 1078 elements. We also experimented
with random patch selection which provided slightly worse results compared to
GMMs.

While trying to minimize the number of clusters and maximize the variance
ratio, we observed that these two parameters are positively correlated. Figure 2
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Fig. 2. SOM parameters: The effect of map size on ratio and number of clusters; Left:
variance ratio versus map size. Right: the number of clusters versus the map size.

shows the variation of these two parameters versus the map size. We can see
that with an increasing ratio, the number of clusters is reaching large num-
bers. Based on empirical knowledge, a desirable number of clusters would be
less than 30. We can see that 20 may be regarded as a suitable value for the
map size as it provides a good compromise between the number of clusters and
the inter-/intra-variance ratio. It is important to point out that changing the
SOM’s learning rate did not have much impact. With these values, we are able
to cluster 18 clusters per scan on average. Some of the clusters contain few
patches (less than 1% of the total number of patches). We merged such clusters
with the closest cluster (using Euclidean distance) resulting in a smaller number
of clusters. In case of important clusters removed by merging, GMM may still
select those patches. However, one must keep in mind that main purpose of the
CBIR systems is generally recognizing dominant tissue patterns and not detect-
ing minute cellular details. The latter is a subject for detection and segmentation
algorithms.

4 Results

LBP descriptor outperformed deep features 3 times out of 4. Other (deeper)
networks may perform better, however, they also require more resources. The
LBP histogram has 36 bins while the VGG16 feature vector length is 1078
(after application of PCA). Figure 4 shows two examples for sample patches
that SOM groups together using deep features. Figure 5 illustrates two sets of
patches selected by GMMs from SOM clusters. The accuracy calculation aims to
compare the performance of the proposed method for image retrieval using LBP
and deep features separately by comparing it to the accuracy obtained using
the training data set (27,055 patches). We have used the KimiaPath24 guide-
lines to calculate the patch-to-scan accuracy ηp, whole-scan accuracy ηW
and the total accuracy ηtotal. LBP’s performance improved with the increase
of selected data whereas for VGG16 features the performance only improved
with the increase of selected data in the case of random selection. Indeed, with
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GMM selection, performance decreased with more data. This might be due to
the length of VGG feature vectors. Figure 6 gives a general overview of the per-
formances evaluation while Table 1 reports all accuracy measurements ( r and
g are indicate random selection and GMM selection, respectively).

Fig. 3. SOM clustering and GMM patch selection.

Table 1. Retrieval accuracy for VGG16 and LBP features with the GMM patch
selection.

GMM selection Features Feature length ηp ηW ηtotal

10% LBP 36 58.41 58.03 33.7

10% VGG 1078 59.32 61.47 36.46

15% LBP 36 60.38 60.87 36.75

15% VGG 1078 57.28 57.91 33.17

20% LBP 36 60.98 61.82 37.7

20% VGG 1078 57.28 59.51 34.08

30% LBP 36 63.54 63.27 40.21

30% VGG 1078 57.96 58.72 34.03

40% LBP 36 64.83 64.98 42.13

40% VGG 1078 61.58 64.01 39.42

50% LBP 36 65.28 64.30 41.98

50% VGG 1078 61.13 63.33 38.71

100% LBP 36 69.13 69.40 47.98

100% VGG 1078 63.25 66.19 41.86

100% LBP [5] 555 66.11 62.52 41.33
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Fig. 4. Two sample SOM clusters using deep features.

Fig. 5. Two sample GMM patch selection.
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Fig. 6. Evolution of performance of our methods versus percentages of reduced data.
Note that the underscore ‘100%’ means that the entire training data set has been used.

5 Conclusions

Performance of both LBP and deep features generally drops as a result of patch
selection, a fact that can be considered during the algorithm design. However, the
run time and memory requirements can be considerably reduced which can be an
advantage in dealing with large WSI archives. For CBIR systems in histopathol-
ogy, retrieval of similar images is a major challenge because of the enormous
size of the archives. The results of our experiments showed that for the algorith-
mic purposes such as image search the size of the image indexing (i.e., feature
calculation) can be drastically reduced while keeping the relevant information
and characteristics of each scan. Keeping 50% of the patches and using LBP
descriptor and GMM selection reduces the index size and, expectedly, the com-
putational requirements by 50% and reaches a CBIR accuracy of 65% (for the
first match) only 4% less than feature extraction for the entire data.
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Abstract. Approaches relying on adversarial networks facilitate image-
to-image-translation based on unpaired training and thereby open new
possibilities for special tasks in image analysis. We propose a method-
ology to improve segmentability of histological images by making use
of image-to-image translation. We generate virtual stains and exploit
the additional information during segmentation. Specifically a very basic
pixel-based segmentation approach is applied in order to focus on the
information content available on pixel-level and to avoid any bias which
might be introduced by more elaborated techniques. The results of this
proof-of-concept trial indicate a performance gain compared to segmen-
tation with the source stain only. Further experiments including more
powerful supervised state-of-the-art machine learning approaches and
larger evaluation data sets need to follow.

Keywords: Histology · Adversarial networks · Segmentation ·
Kidney · Unsupervised · Tubuli · Glomeruli

1 Motivation

State-of-the-art digital whole slide scanners generate large amounts of digital his-
tological image data. To exploit the availability of huge data, image analysis in this
field has recently gained significant importance. Fully-automated image analysis
applications mostly consist of either segmentation [2,4] or classification [1,6,11].
For both tasks, convolutional neural networks exhibit the state-of-the-art method.
Here, we focus on the segmentation of histological whole slide images.

For segmentation applications in histology, fully-convolutional networks [2,4]
yielded excellent performances. However, these methods require typically large
amounts of annotated (i.e. manually segmented) training data. Such training
c© Springer Nature Switzerland AG 2019
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data needs to be collected for each individual task, which constitutes a significant
burden for the deployment of deep networks especially for specific tasks with are
not done very frequently. Further challenges arise if the underlying distribution
between training and testing data is dissimilar, which could be introduced by
various aspects, such as inter-scanner variability, inter-subject variability, dye
variations, different staining protocols or pathological modifications [5]. While
variability in color can be effectively compensated [9], other types require either
training data covering all possible variability or dedicated domain adaptation
approaches. Unsupervised segmentation techniques theoretically do not require
any annotated training data, however, such approaches are often either hand-
crafted for very specific tasks and/or show clearly lower performance compared
to the latest supervised methods.

Recently, generative adversarial networks, making use of the so-called cycle
consistency loss [12] (cycleGANs), were introduced. These architectures facilitate
highly realistic image-to-image translation [7,8,12] from one domain to another
related domain. The core idea consists of the cycle-consistency loss, which allows
a training of these models without any supervision and without the requirement
of corresponding pairs. These approaches only need two sets of images refer-
ring to two different domains (such as two different staining protocols). In this
work, we investigate the applicability of image-to-image translation for convert-
ing images from one stain to another stain. Specific stains partly show image
content which cannot be determined based on image information obtained from
other stains. Consequently, e.g. a “fake” Col3 (collagen type 3) image might not
be perfectly identical compared to the corresponding real (i.e. conventionally
stained) Col3 image. However, this is not required for the considered applica-
tion scenarios, as we focus on general segmentation tasks only. The informa-
tion required for segmenting the regions-of-interest are definitely available in
all investigated stains. However, automated segmentation is not a trivial task.
Basic pixel-based methods, such as clustering and thresholding mostly do not
yield reasonable outcomes or at least exhibit high dependency of the underlying
stain.

Contributions: We propose and investigate a method to facilitate segmentation
tasks by generating virtual stains. Artificial stains are obtained with a gener-
ative adversarial network relying on the cycle-consistency loss and are further
merged with the original input image. With the obtained “augmented” images,
we perform experiments with very basic pixel-based unsupervised segmentation
approaches. The aim of this work is not to achieve the highest segmentation
scores, but to obtain reasonable scores with methods which are easy to adapt
and without any problem specific pre- and post-processing. Surely, neural net-
works trained on large image data exhibit better performance, but training data
generation is often not economically efficient. Additionally, the rather basic set-
ting allows to assess whether the idea of merging real and fake images is effec-
tive in principle. Evaluation is performed on four segmentation tasks in renal
histopathology. Particularly, we segment glomeruli, tubuli, nuclei in glomeruli
and nuclei in tubuli.
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2 Methods

The proposed method consists of three stages (Fig. 1): in the first stage, image-
to-image translation is applied in order to augment the available image data.
Based on an original (e.g. PAS stained) input image, further virtual stains (e.g.
Col3, . . .) are computationally generated. In the second stage, all available data
is aggregated and prepared for facilitating a final segmentation. In the third
stage, an unsupervised pixel-based technique is applied to obtain a segmentation
output.

Stage 1: For training the image-to-image translation models, we need a set of
training patches Ps showing the stain corresponding to the image to be seg-
mented (denoted as source domain stain Ss). For each of the other n considered
stains Si (1 ≤ i ≤ n), a further set of training patches Pi is required. Based
on this data, image translation models are trained for each stain-combination
(Ss, S1), (Ss, S2), ..., (Ss, Sn). For details see Sect. 2.1.

Stage 2: After training the image translation models, the input images are
translated to each of the virtual stains. For each input image, we obtain a set
containing n images with dimensionality p × q × c, where p and q refers to the
image dimensionality and c is the number of color channels (typically c = 3).
Together with the original input image, these images are concatenated along
their third dimension resulting in one single p×q× ((n+1) ·c) images. Next, the
pixels of the obtained multi-channel image are interpreted as vectors. To obtain
a decorrelation of information, principal component analysis is performed as a
last step of data preparation. Thereby we obtain e.g. one channel highlighting
the violet hematoxilin and another channel highlighting the red eosin content in
case of processing an H&E patch.

Stage 3: In order to avoid an introduction of any supervision, we perform simple
vector quantization, specifically k-means clustering. The labels obtained for each
vector are finally interpreted as a label map. To determine the optimal number of
clusters depending of the segmentation task, exhaustive search is performed. We

Fig. 1. The proposed approach consists of three stages: in the virtual-staining phase
(stage 1), the image data is augmented by generating a set of fake images for different
stains. In stage 2, the images are merged and the channels are decorrelated. In stage
3, unsupervised segmentation is performed
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optimize the segmentation score (F1-score) in a leave-one-out cross-validation.
Although we are aware that thereby a certain degree of supervision is introduced,
we are confident that choosing this number can be easily performed by a medical
expert if visually inspecting the output label maps. As we investigate five settings
only (between 2 and 6 clusters), only five label maps need to be investigated
manually.

2.1 Stain-Translation Model

For training the stain-translation cycleGAN model, first patches are extracted
from the source stain Ps as well as from a target stain Pi. Training patches
with a size of 512 × 512 pixels are extracted from the original WSIs. For each
data set, we extract 1500 of these patches at random positions in the WSIs (as
long as 50% of the patch shows kidney tissue). Because due to the large size
of the WSIs in the range of gigapixels, a holistic processing of complete images
(without patch extraction) is not feasible.

With these patches, a cycleGAN based on the GAN-loss LGAN , the cycle-loss
Lcyc as well as the identity loss Lid is trained [12] (with corresponding weights
wid = 1, wcyc = 1, wGAN = 1). Apart from a U-Net based generator network [10],
the standard configuration based on the patch-wise CNN discriminator is uti-
lized [12])1. Training is performed for 50 epochs. Learning rate is set to 10−5. For
data augmentation, random flipping and rotations (0, 90, 180, 270◦) are applied.

2.2 Evaluation Details

This proof-of-concept study investigates WSIs showing renal tissue of mouse
kidney. Images are captured by the whole slide scanner model C9600-12, by
Hamamatsu with a 20× objective lens. As suggested in previous work [4], the
second highest resolution is used for both segmentation and stain-translation.
We consider a scenario where WSIs dyed with periodic acid Schiff (PAS) are
available for training the segmentation model. As virtual stains, we consider
Acid Fuchsin Orange G (AFOG), cluster of differentiation 31 (CD31) and a stain
focused on highlighting Collagen III (Col3). The data sets used for training the
image translation models consist of 12 WSIs for each of the stains PAS, AFOG,
Col3 and CD31. Five further PAS images are employed for evaluation only.

For evaluating the final segmentation performance, 5 patches (which are not
used for training) are manually annotated. As annotation of the fine structures
is extremely time-consuming, we manually labeled only a fraction of the patches.

For quantitative evaluation, the F1-score (which is similar to the Dice simi-
larity coefficient) is employed as common practice in case of segmentation tasks.

1 We use the provided PyTorch reference implementation [12].
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(a) Original PAS image (b) Virtual Col3 image (c) Virtual CD31 image

(d) Virtual AFOG image (e) Virtual image containing
principal components 1-3

(f) Virtual image containing
principal components 4-6

(g) First six principal components

Fig. 2. Qualitative results of the virtual staining approach. The subfigures (b)–(d)
show virtual stains corresponding to the original input image (a). The color-channels in
subfigures (e) and (f) indicate the principal components after the principal component
analysis of the merged images. The six channels are individually shown in subfigure (g).
(Color figure online)

3 Results

Figure 2 shows qualitative results of the image translation process. The subfig-
ures (b)–(d) show virtual stains corresponding to the original input image (a).
The color-channels in subfigures (e) and (f) indicate the first six principal com-
ponents after the principal component analysis of the merged images. Each of
the first six channels are individually shown in subfigure (g).

Figure 3 shows qualitative results of the segmentation approach: Each sub-
figure shows a specific task and each column indicates the data used for segmen-
tation. The first column corresponds to a segmentation of original PAS images.
Columns 2–4 correspond to a processing of single virtually stained images and
the last column corresponds to the segmentation based on the merged images col-
lecting information of the original input images and all virtually stained images.
We notice a clear impact of the stain domain on the resulting segmentation
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Fig. 3. Qualitative results of the segmentation approach: Each row (subfigure) shows
a specific task and each column indicates the data used for segmentation. The first
column corresponds to a segmentation of original image data. Column 2–4 correspond
to single virtual stains and the last column corresponds to the segmentation based on
the merged images

output. There is also not one single stain (Column 1–4) which exhibits the best
results for each of the four task.

Quantitative segmentation scores are provided in Fig. 4. Each subplot shows
the F1-score obtained when segmenting the original PAS images, the virtual
images (Col3, CD31 and AFOG) as well as the merged image (All). The proposed
approach (All) corresponds to the best median scores for each segmentation task.
Segmenting the virtual stains without merging all available information leads to
improvements compared to a segmentation of original PAS data in one setting
((c), CD31).
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(b) Task 2: nuclei in glomeruli
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(c) Task 3: tubuli
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(d) Task 4: glomeruli
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Fig. 4. Quantitative results for the four different segmentation tasks. Each subplot
shows the F1-score obtained when segmenting the original PAS images, the virtual
images (Col3, CD31 and AFOG) as well as the merged images ‘All’

4 Discussion

Making use of unpaired image-to-image translation, we propose a methodology
to facilitate unsupervised segmentation of histological images.

We notice that image translation models based on generative adversarial net-
works are able to generate realistic virtually stained image material. Certainly,
our experimental setting does not allow to make statements on the difference
between virtual and corresponding real images. For such an evaluation, perfect
corresponding pairs and a perfect alignment of these pairs would be obligatory.

However, as we focus on general segmentation tasks, we do not necessarily
need perfect reconstructions of real images. Instead we focus on facilitating a
segmentation by augmenting the information available in the images. The aug-
mentation is obtained by translating the images to different domains (stains)
and finally merging all available stains in one virtual image.

Based on the qualitative as well as the quantitative results, we notice that the
additional information helps for various segmentation tasks. Anyway, without
considering neighborhood information, the considered segmentation tasks are
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highly challenging. E.g. a segmentation of tubuli is highly challenging based on
PAS data because the color inside these structures is not homogeneous and can
be similar to other structures (white, purple). A discrimination based on color
information is simplified in case of a translation to the CD31 stain which shows
a higher degree of homogeneity. If making use of all available information, the
segmentation output can be improved even further as shown by the qualitative
as well as the quantitative results. In general, we do not notice an increase of
accuracy for the single virtual stainings. Obviously, PAS exhibits a good stain for
general-purpose segmentation approaches in kidneys. Based on this observation,
it is even more interesting, that a combination of all available information still
leads to improvements. Apparently, it is effective to add (uncorrelated) features
even though the single features are not highly discriminative.

The selection of WSIs for the specific stains for training the image translation
model was performed randomly. We expect that a more intelligent selection of
well suited (e.g. high contrast) images might improve segmentation performance
even further due to intra-slide variability in color and structure.

In future work, the effect of the proposed stain-augmentation method on
state-of-the-art supervised techniques need to be investigated. On the one hand,
it might be argued that segmentation networks are highly powerful and non-
linear methods which are able to learn the underlying task similar to human,
independent of the underlying stain. On the other hand, it was shown that even
deep fully-convolutional networks show different segmentation performance for
different stains [3].

To conclude, we proposed a methodology to facilitate unsupervised segmen-
tation of histological images by making use of an image translation approach.
We showed that image translation not only allows a generation of realistic “fake”
images, but is also capable of facilitating segmentation scenarios. For all of the
four considered segmentation tasts, improvements were obtained compared to a
straight-forward processing of the original input data. Although we only inves-
tigated a basic unsupervised approach, we expect improvements for other more
elaborated segmentation techniques such as deep fully-convolutional networks
which need to be investigated in future.

References

1. Barker, J., Hoogi, A., Depeursinge, A., Rubin, D.L.: Automated classification of
brain tumor type in whole-slide digital pathology images using local representative
tiles. Med. Image Anal. 30, 60–71 (2016)

2. BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for his-
tology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal,
G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46723-8 53

3. Gadermayr, M., Appel, V., Klinkhammer, B.M., Boor, P., Merhof, D.: Which way
round? A study on the performance of stain-translation for segmenting arbitrarily
dyed histological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-
López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 165–173.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2 19

https://doi.org/10.1007/978-3-319-46723-8_53
https://doi.org/10.1007/978-3-030-00934-2_19


46 M. Gadermayr et al.

4. Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M., Boor, P., Merhof, D.:
CNN cascades for segmenting sparse objects in gigapixel whole slide images. Com-
put. Med. Imaging Graph. 71, 40–48 (2019)

5. Gadermayr, M., Eschweiler, D., Jeevanesan, A., Klinkhammer, B.M., Boor, P.,
Merhof, D.: Segmenting renal whole slide images virtually without training data.
Comput. Biol. Med. 90, 88–97 (2017)

6. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based
convolutional neural network for whole slide tissue image classification. In: Pro-
ceedings of the International Conference on Computer Vision (CVPR 2016) (2016)

7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. In: Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR 2017) (2017)

8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

9. Macenko, M., et al.: A method for normalizing histology slides for quantitative
analysis. In: Proceedings of the IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI 2009), pp. 1107–1110 (2009). https://doi.
org/10.1109/ISBI.2009.5193250

10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

11. Sertel, O., Kong, J., Shimada, H., Catalyurek, U.V., Saltz, J.H., Gurcan, M.N.:
Computer-aided prognosis of neuroblastoma on whole-slide images: classification
of stromal development. Pattern Recognit. 42(6), 1093–1103 (2009)

12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the International
Conference on Computer Vision (ICCV 2017) (2017)

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1007/978-3-319-24574-4_28


Virtualization of Tissue Staining
in Digital Pathology Using

an Unsupervised Deep Learning
Approach

Amal Lahiani1,2(B), Jacob Gildenblat3, Irina Klaman1, Shadi Albarqouni2,
Nassir Navab2, and Eldad Klaiman1

1 Pathology and Tissue Analytics, Pharma Research and Early Development,
Roche Innovation Center Munich, Penzberg, Germany

amal.lahiani@roche.com
2 Computer Aided Medical Procedures, Technische Universität München,

Munich, Germany
3 DeePathology.ai, Ra’anana, Israel

Abstract. Histopathological evaluation of tissue samples is a key prac-
tice in patient diagnosis and drug development, especially in oncology.
Historically, Hematoxylin and Eosin (H&E) has been used by patholo-
gists as a gold standard staining. However, in many cases, various target
specific stains, including immunohistochemistry (IHC), are needed in
order to highlight specific structures in the tissue. As tissue is scarce
and staining procedures are tedious, it would be beneficial to generate
images of stained tissue virtually. Virtual staining could also generate
in-silico multiplexing of different stains on the same tissue segment. In
this paper, we present a sample application that generates FAP-CK vir-
tual IHC images from Ki67-CD8 real IHC images using an unsupervised
deep learning approach based on CycleGAN. We also propose a method
to deal with tiling artifacts caused by normalization layers and we vali-
date our approach by comparing the results of tissue analysis algorithms
for virtual and real images.

Keywords: Virtual staining · Multiplexing ·
Unsupervised deep learning · Histopathology

1 Introduction

In the field of pathology, staining types determine which parts or targets in the
tissue are highlighted with specific colors. Tissue staining materials and proce-
dures can be time consuming, expensive, and typically require special expertise.
These limitations usually reduce the number of examinations and stainings per-
formed on a sample. This can limit clinicians’ ability to obtain all relevant infor-
mation from a patient biopsy. In many cases information exists in the stained
c© Springer Nature Switzerland AG 2019
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slide image about targets and objects not specifically targeted by the stain. For
example, pathologists have the ability to identify lymphocytes in a Hematoxylin
and Eosin (H&E) image [11] even without directly staining them for lymphocyte
specific markers. This fact motivated the research in the direction of generating
virtually stained slides from other modalities [2,4,7,8,13]. Recently, supervised
deep learning based methods have been applied in the task of virtual staining
generation [1,3,6,14]. As supervised training methods are based on coupled pairs
of aligned images, all the aforementioned methods require additional accurate
registration steps between dataset image pairs.

In this work we propose to virtually generate FAP-CK stained slide images
from Ki67-CD8 stained slide images. These input and output stainings were
chosen for several reasons. First, information about tumor characteristics in
FAP-CK could be encoded in the form of proliferation and tumor infiltrat-
ing lymphocytes in Ki67-CD8. Furthermore, Ki67-CD8 is one of the classical
Immunohistochemistry (IHC) stainings used in histopathology while FAP-CK
is a new duplex IHC protocol allowing to characterize tumor and to advance
research in the direction of drug development. Additionally, generating virtual
FAP-CK stained slide images from Ki67-CD8 allows the creation of a virtual
multiplexed brightfield image, i.e. having 4 target stains on the same whole slide
coordinate system, which is technically challenging using classical staining meth-
ods. In this paper, we present an unsupervised deep learning method based on
Cycle-Consistent Adversarial Networks (CycleGAN) [17]. This allows avoiding
the slide registration process for training datasets and facilitates dealing with
variability present in sets of slide images due to different lab protocols, scanners
and experiment conditions. We further present a method aimed at reducing the
tiling artifact caused by tile-wise processing of large images, a common problem
in image style transfer encountered when high resolution testing images can not
fit into memory [16]. Finally, we validate the results of our method by comparing
quantification of tumor cells and FAP in virtual slides with a real stained slide
taken from the same tissue block.

2 Methodology

2.1 Dataset

We selected a subset of whole slide images (WSI) of Colorectal Carcinoma metas-
tases in liver tissue from biopsy and surgical specimen from our internal pathol-
ogy image database. All the slides were chosen following a review of tissue,
staining and image quality. The training dataset includes 20 images: 10 from
Ki67-CD8 stained slides and 10 from FAP-CK stained slides, each from differ-
ent patients. As high resolution whole slide histology images contain billions of
pixels with 20x magnification and hardware memory is limited, it is necessary
to tile the image into smaller segments for analysis and when possible use lower
magnification. For these reasons, slides were tiled into overlapping 512 × 512
images at 10x magnification. The reduced magnification allows to have enough
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(a) Ki67-CD8 tile. (b) FAP-CK tile.

Fig. 1. Ki67-CD8 and FAP-CK example tiles.

contextual information in the input which is needed in order to learn a meaning-
ful feature set in the model while at the same time facilitates dealing with the
computational memory limits [12]. The tiling yielded 17025 tiles from Ki67-CD8
slides and 17812 tiles from FAP-CK slides. In order to test the performance of
our method, we selected 10 pairs of Ki67-CD8/FAP-CK slides from the same
tissue block. The training and testing images were taken from different patients.
Figure 1 shows examples of Ki67-CD8 and FAP-CK tiles.

2.2 Network Architecture and Inference

In order to map images from one staining to the other, we used a CycleGAN [17]
based method which allows to learn transforms between domain spaces without
the need to use paired registered image datasets. As generator networks we used
ResNet architectures [9] with 11 residual blocks. The ResNet architecture used
as a generator has a receptive field of 207× 207 pixels, roughly corresponding to
190 × 190 microns on the 10x magnification image of the tissue. This receptive
field size allows enough contextual information from the surroundings of the
target pixel in the input to find meaningful histology features for the prediction of
the virtual stain on the output image. Due to the CycleGAN memory burden, we
were not able to fit more than one 512×512 RGB image per batch during training
per GPU (Nvidia P100). In order to distribute the training on multiple GPUs
and accelerate the learning process, we implemented the stochastic synchronous
ADAM algorithm [5] and used the pytorch distributed computing library which
allowed us to use 12 GPUs concurrently.

In order to overcome the memory bound hardware limitations, inference of
the trained network on the testing slides was also done tilewise. The tile output
is then merged back in order to obtain a virtual whole slide image. This inference
workflow yielded whole slide images containing tiling artifacts. As style trans-
fer networks give better and more realistic results when instance normalization
layers are used [15], these layers were introduced in the CycleGAN architecture.
Instance normalization layers are applied at test time as well, making the value
of any output pixel depends not only on the network parameters and the recep-
tive field area in the input but also on the statics of the input tile image. Let’s
assume that:
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Fig. 2. (right) Tiling effect in adjacent output tiles. (left) Image x and x
′
correspond to

2 adjacent input tiles from a whole slide image. The green and red circles correspond to
2 adjacent pixels belonging to the same cell nucleus but to different input tiles. (Color
figure online)

y = g(x),

where x, y and g correspond to an input tensor, an output tensor and an instance
normalization layer respectively. Let x ∈ IRT×C×W×H be a tensor containing a
batch of T images and xtijk the tijkth element, where j and k correspond to
spatial dimensions, i corresponds to the feature channel and t corresponds to
the batch index. In this case, g can be expressed as:

ytijk = g(xtijk) =
xtijk − μti√

σti
2 + ε

where μti and σti
2 are the mean and variance of the input tile. If we consider 2

adjacent pixels xtijk and x
′
tijk with similar values on the edges of two adjacent

input tiles x and x
′

having very different statistics, the instance normalization
functions g and g

′
applied to these two pixels will be completely different. This

results in a tiling artifact in the generated whole slide image as adjacent output
tiles might have significantly different pixel values on their borders (Fig. 2).

With instance normalization it is possible to use the same running mean and
variance values for all the tiles at inference time in a way similar to inference
with batch normalization. This approach indeed yielded output images without
the tiling artifact. However, the resulting output at inference was of lower quality
and had very faint colors. This effect can be explained by the fact that the train-
ing datasets are quite variable and containing both tissue and background, this
makes the running mean and variance locally irrelevant. We propose a solution
to the tiling artifact problem by using overlapping tiles during inference. Our
solution is based on using a smaller input size of 128 × 128 instead of 512 × 512
and on using a sliding window for the instance normalization function statistics,
allowing to have a smooth transition in the statistic values when deploying on 2
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(a) (b)

Fig. 3. Image (a) corresponds to the inference performed on 2 adjacent slides using
the classical method. Image (b) corresponds to the new inference approach. The solid
and dotted line squares correspond to the sliding window considered and the effective
tile used for inference respectively.

(a) (b)

(c) (d)

Fig. 4. Effect of the new inference approach. (a) corresponds to 2 adjacent tiles from
the input Ki67-CD8 image. (b) and (c) show to the corresponding image area in the
output virtual FAP-CK image using the classical inference method and the proposed
solution respectively. (d) shows a corresponding area from a real FAP-CK image from
the same tissue block.

adjacent slides (Fig. 3). Using this approach, we manage to substantially reduce
the tiling artifact (Fig. 4).

3 Results and Validation

Visual assessment of the generated images shows that the results are visually
similar to the real staining of a slide from the same tissue block (Fig. 5).

We notice that in several cases FAP (purple connective tissue in FAP-CK
images) expression is different between the real and virtual images (Fig. 6). The
localisation of FAP is generally successful however the patterns and the amounts
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(a) (b) (c)

Fig. 5. (a), (b) and (c) correspond to an input Ki67-CD8 image, the image of a real
stained FAP-CK slide from the same tissue block and the virtual FAP-CK slide image.

are not always matching. One explanation for this effect can be that FAP is asso-
ciated with tumor growth and increased angiogenesis rather than with anatomi-
cal or phenotypic features [10]. If these functional features do not elicit a change
visible in the input Ki67-CD8 staining, the model cannot correctly learn the
mapping. The model success in localizing FAP, even if not flawlessly, suggests
there are visual features in the input images that indicate the expression of FAP
in the tissue. Identifying these visual features might lead to better FAP stain vir-
tualisation as well as to new insights into tumor microenvironment anatomies. It
is worthwhile to note that slide staining is a complex process with many variable
and it is not uncommon to see variability in images of slides from the same tis-
sue block stained with the same staining protocol due to variations in the tissue
preparation, staining or imaging processes. For this reason, even with the visible
difference in FAP expression in our virtual slides compared to the real stained
slides, the results could still prove practically useful in some cases. Obtaining a
virtual image which is slightly different from the real one should be acceptable
as long as the pathological interpretations of both of them are similar.

We validate our results on a dataset of 10 testing paired images of slides
from the same tissue block using an automatic algorithm for CK+ and FAP
cells detection. The algorithm was developed and validated using real FAP-CK
images. The results include CK+ cell densities and FAP densities in real and
virtual whole slide images. We verify that the difference between results on real
and virtual stained slides is not one sided, meaning that our mapping algorithm
does not consistently over-generate or under-generate CK or FAP.

In order to visualize the difference between these densities we compute the
absolute relative difference between the results obtained in the real and virtual
slides (Fig. 7). Analysis of the results shows a median absolute relative differ-
ence of 8% with 0.016 variance between CK densities in real and virtual slides.
This was also confirmed by our expert pathologist who evaluated real and virtual
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(a) real FAP-CK tile. (b) Virtual FAP-CK tile.

Fig. 6. FAP expression differences in real and virtual images.

Fig. 7. Boxplot representation of the absolute relative difference between real and
corresponding virtual slides for CK+ cell densities (left side) and FAP cell densities
(right side).

paired slides and reported high correlation in CK expression. For FAP, we report
a median of 14% with a variance of 0.466, reflecting a substantially higher vari-
ability than for CK. Our expert pathologist also confirmed this observation and
mentioned that FAP features are completely not visible for pathologists in Ki67-
CD8 staining. This observation is very interesting for our research and allows
us to discover the limitations of simulation methods when biological constraints
are present.

4 Conclusions

We propose to use an unsupervised deep learning method based on CycleGAN
in order to virtually generate FAP-CK from Ki67-CD8 tissue stained images.
Instance normalization used with the CycleGAN architecture helps the network
learn a more realistic mapping between the stainings but introduces a tiling
artifact in the merged testing set whole slide images. We significantly reduce
this artifact by using a new inference approach based on overlapping tiles to
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create smooth transitions in the instance normalization layers. We validate our
method using a test dataset of Ki67-CD8 input images for which a real FAP-CK
images from the same tissue blocks were generated.

In the next steps, we plan to use additional input stainings and compare
the results to our current results in order to define biological constraints to the
success of stain virtualization. We also plan to replace the instance normalization
module in the CycleGAN with an improved normalization element that reduces
the titling effect during inference.
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Abstract. This paper compares the effects of colour pre-processing on
the classification performance of H&E-stained images. Variations in the
tissue preparation procedures, acquisition systems, stain conditions and
reagents are all source of artifacts that can affect negatively computer-
based classification. Pre-processing methods such as colour constancy,
transfer and deconvolution have been proposed to compensate the arti-
facts. In this paper we compare quantitatively the combined effect of six
colour pre-processing procedures and 12 colour texture descriptors on
patch-based classification of H&E-stained images. We found that colour
pre-processing had negative effects on accuracy in most cases – partic-
ularly when used with colour descriptors. However, some pre-processing
procedures proved beneficial when employed in conjunction with clas-
sic texture descriptors such as co-occurrence matrices, Gabor filters and
Local Binary Patterns.

Keywords: Colour · Histology · Hematoxylin · Eosin · Texture

1 Introduction

Digital Pathology has grown considerably in recent years encompassing
computer-based activities that allow for improvements and innovations in the
workflow of pathology [1]. In this domain the automated processing of tissue
samples has received increasing attention due to the potential applications in
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diagnosis [2], grading [3], identification of tissue substructures [4], prognostica-
tion and mutation prediction [5]. A number of problems, however, still limit the
adoption of digital pathology on a large scale: the relatively scarce availability
of large labelled datasets of histological images, the differences in the acquisi-
tion systems and/or protocol used as well as the variability in tissue preparation
and/or stain reactivity [6]. The latter, in particular, can generate colour varia-
tions and artifacts that can reduce significantly the accuracy of computer-based
methods. This problem has attracted much attention lately and different colour
pre-processing methods have been proposed as possible solutions [7]. Still, their
beneficial effects on patch-based classification of H&E-stained images are not
clear, since only few studies have addressed the subject in a quantitative way [8–
10]. Also, apart from [10], little has been investigated as concerns the coupled
effects of colour pre-processing and the specific image descriptor used.

In this paper we present a quantitative evaluation of the effects of colour
pre-processing on patch-based classification of H&E-stained images. The study
is based on seven datasets of histological images from different sources, six colour
pre-processing procedures and 12 colour texture descriptors.

Abbrv. Sample images Tissue type Classes / Patch size

AP
Breast cancer (in-
vasive ductal carci-
noma)

Grade I (n = 107), II (n = 102) and III
(n = 91) / 1280px × 960px

BH
Breast cancer (eight
histological types)

Benign (n = 625) and malignant (n =
1370) / 700px × 460px

KM Low and high grade
colorectal cancer

Epithelium, stroma, complex stroma,
debris, adipose, necrosis and back-
ground (n = 625 each) / 150px × 150px

LM Lymphoma

Chronic lymphocytic leukemia (n =
113), follicular lymph. (n = 139) and
mantle cell lymph. (n = 122) / 1388px
× 1040px

NKI
Breast cancer (grades
I, II and III)

Epithelium (n = 1106) and stroma (n =
189) / 100px × 100px

VGH
Breast cancer (grades
I, II and III)

Epithelium (n = 226) and stroma (n =
47) / 100px × 100px

WR Colorectal cancer
Benign (n = 74) and malignant (n = 91)
/ Variable

Fig. 1. Datasets used in the experiments: round-up table and sample images.
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2 Materials and Methods

2.1 Image Datasets (Fig. 1)

Agios Pavlos (AP). Breast carcinoma histological images from the
Department of Pathology, ‘Agios Pavlos’, General Hospital of Thessaloniki,
Greece [11] (https://zenodo.org/record/834910) representing tissue samples
from 21 patients with invasive ductal carcinoma of grade I, II and III.

BreakHis (BH). Breast carcinoma histological images from Pathological
Anatomy and Cytopathology, Paraná, Brazil [12] of breast tumour from eight
different histological subtypes (https://omictools.com/breakhis-tool).

Kather Multiclass (KM). Histological images of colorectal cancer from
the University Medical Center Mannheim, Heidelberg University, Germany [4]
(https://zenodo.org/record/53169) representing eight tissue subtypes.

Lymphoma (LM). Multi-center collection of histological images from malig-
nant lymphoma [13] (https://ome.grc.nia.nih.gov/iicbu2008/lymphoma/index.
html) organised in three classes: chronic lymphocytic leukemia, follicular lym-
phoma and mantle cell lymphoma.

Netherlands Cancer Institute (NKI). Tissue micro-arrays (TMAs) from a
cohort of patients with breast cancer enrolled at the Netherlands Cancer Insti-
tute, Amsterdam, Netherlands [14] (https://tma.im/tma portal/C-Path/supp.
html). The dataset includes with segmentation masks from which we extracted
tiles of well defined areas of epithelium and stroma.

Vancouver General Hospital (VGH). Same structure as (NKI), but here
the images come from a cohort of 328 patients enrolled at Vancouver General
Hospital in Canada [14] (https://tma.im/tma portal/C-Path/supp.html).

Warwick-QU (WR). Histological images of colorectal cancer from the Uni-
versity Hospitals Coventry and Warwickshire, United Kingdom [15] (https://
warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/) organised in
two classes (benign and malignant).

2.2 Colour Normalisation

We evaluated three colour constancy, two colour transfer and one colour decon-
volution method as detailed below. The effects of each method on a set of sample
images are shown in Figs. 2 and 3.

Colour Constancy. We considered chromaticity representation (‘chroma’ in
the remainder), grey-world normalisation (‘gw’) and histogram equalisation
(‘heq’) [16]. In the experiments we used Jost van de Weijer’s Color Constancy
Toolbox (http://lear.inrialpes.fr/people/vandeweijer/research.html) and Mat-
lab’s histeq() function respectively for ‘gw’ and ‘heq’.

https://zenodo.org/record/834910
https://omictools.com/breakhis-tool
https://zenodo.org/record/53169
https://ome.grc.nia.nih.gov/iicbu2008/lymphoma/index.html
https://ome.grc.nia.nih.gov/iicbu2008/lymphoma/index.html
https://tma.im/tma_portal/C-Path/supp.html
https://tma.im/tma_portal/C-Path/supp.html
https://tma.im/tma_portal/C-Path/supp.html
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/
http://lear.inrialpes.fr/people/vandeweijer/research.html
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Original images

Colour-normalised images Method Target image

chroma —

gw —

heq —

Macenko

Macenko

Macenko

Macenko

Reinhard

Reinhard

Reinhard

Reinhard

Fig. 2. Illustration of the effects of normalisation. Notice the influence of target images.

Colour Transfer. We employed Macenko’s [17] and Reinhard’s [18] methods
using the implementation provided with Warwick’s Stain Normalization Tool-
box (https://warwick.ac.uk/fac/sci/dcs/research/tia/software/sntoolbox/, SNT
henceforth). For each of the two approaches we used four target images, denoted
in the remainder as T1, T2, T3 and T4 (Fig. 2). These are all histology images
except T1, which is a colour calibration checker. As for the others, T2 is part of

https://warwick.ac.uk/fac/sci/dcs/research/tia/software/sntoolbox/
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SNT demo, whereas T3 and T4 come from The Cancer Genome Atlas (https://
cancergenome.nih.gov/). The target images were chosen by the authors based
on their subjective judgement.

Colour Deconvolution. Colour deconvolution was based on Ruifrok and John-
ston’s method [19], again via SNT. In the remainder this is denoted as ‘decoRJ’.

Original images

Deconvolved images Channels

Hematoxylin

Eosin

Background

Fig. 3. Colour deconvolution via Ruifrok and Johnston’s method: samples of original
(RGB) and deconvolved images. Deconvolved channels are in pseudo-colours.

2.3 Image Descriptors

Colour Histogram (FullHist). Joint three-dimensional colour histogram [20] with
ten bins per channel (103 = 1000 features).

Marginal Colour Histograms (MargHists). Concatenation of the three 1D inten-
sity histograms [21] of each colour channel (256 × 3 = 768 features).

Grey-Level Co-occurrence Matrices (GLCM). Contrast, correlation, energy,
entropy and homogeneity from GLCM computed at distance 1px, 2px and 3px
and orientation 0◦, 45◦, 90◦ and 135◦ (5× 3× 4 = 60 features). Discrete Fourier
transform (DFT) normalisation was applied for rotation invariance [22].

Gabor Filters (Gabor). Mean and standard deviation of the magnitude of trans-
formed images from a bank with four frequencies and six orientations (2×4×6 =
48 features). Rotation invariance was obtained via DFT normalisation.

Local Binary Patterns (LBP). Concatenation of rotation-invariant (‘ri’) LBP
histograms computed at resolution 1px, 2px and 3px using non-interpolated
eight-pixel neighbourhoods as detailed in [23].

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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Hybrid Methods. Marginal colour versions of Gabor, GLCM and LBP were also
obtained by applying the corresponding grey-scale descriptor to each colour
channel separately and concatenating the resulting features. These are indicated
as ‘MargGabor’, ‘MargGLCM’ and ‘MargLBP’ tn the remainder.

Pre-trained Convolutional Networks. L2-normalised output of the last fully-
connected layer from the following pre-trained networks: ResNet-50 and ResNet-
101 [24], VGG very deep 16 and VGG very deep 19 [25].

3 Results and Discussion

Each dataset was analysed for a combination of pre-processing and image
descriptor, the accuracy being estimated via split-sample validation with strat-
ified sampling at the image level1. The random subdivision into train and test
set was repeated a hundred times and the results averaged. Classification was
based on the 1-NN rule with L1 distance. We used a train ratio (i.e. fraction
of images used for training) f = 1/4 and f = 1/8, and the results did not
show significant deviation in the overall trend. The best and second-best com-
binations are shown in Fig. 4. Pre-trained ResNet50/ResNet101 performed best
or second-best in eight cases out of 14 (accuracy range of best configurations
71.56%–98.81%), followed by joint and marginal colour histograms (six cases,
accuracy range 80.09%–98.16%). As for colour pre-processing, doing nothing
was the best or second-best option in seven cases out of 14, followed by heq and
chroma.

Table 1 shows the difference to the baseline (colour pre-processing vs. no
colour pre-processing) by descriptor and pre-processing method. Colour pre-
processing resulted in a loss of accuracy in most cases – in particular, methods
that rely on colour responded negatively to colour pre-processing. Colour transfer
via Macenko’s and Reinhard’s methods did not show a clear trend as for the
effects of the target image used. Note that the non-histological target image
(T1) gave better results than the histological ones (T2–T4) in some cases.

By contrast, the texture-based methods proved more resilient to colour pre-
processing. In this case there was even a noticeable gain in accuracy in some com-
binations descriptor/pre-processing method: marginal colour texture descrip-
tors (i.e. MargGabor, MargGLCM and MargLBP) responded positively both to
‘chroma’ normalisation and colour deconvolution. This suggests that texture fea-
tures provide complementary information when extracted separately from each
of the hematoxylin, eosin and background channels.

1 Complete results available at https://drive.google.com/drive/folders/1bc1mO RCQp
pfbrCjqjWlF50YoZNLWbW4?usp=sharing.

https://drive.google.com/drive/folders/1bc1mO_RCQppfbrCjqjWlF50YoZNLWbW4?usp=sharing
https://drive.google.com/drive/folders/1bc1mO_RCQppfbrCjqjWlF50YoZNLWbW4?usp=sharing
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Fig. 4. Best (left) and second-best combinations (right) for each dataset. Each circle
corresponds to a dataset, with its descriptor, pre-processing and accuracy. Colours
reflect accuracy (brown= best, blue = worst). Results obtained for f = 1/4. (Color
figure online)

Table 1. Effect of colour pre-processing: difference to the baseline broken down
by image descriptor and colour pre-processing method. Colour reflects accuracy
(brown= best, blue = worst). Values are averaged over the seven datasets; f = 1/4.

4 Conclusions

Colour pre-processing produced a noticeable loss of accuracy in the classifica-
tion of histological samples in most cases, particularly when used along with
image descriptors that rely on colour. This is consistent with [10], but differs
from [9]. Some pre-processing methods (i.e. chroma and decoRJ) had positive
effects when coupled with certain texture descriptors, specifically MargGabor,
MargGLCM and MargLBP. This is a novel finding that should be better explored
and validated in future studies.
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In conclusion, our results suggest that the use of colour pre-processing for
patch-based classification of H&E images should be considered with care. In
particular: 1) no pre-processing may provide better results than pre-processing
in most cases; 2) the selection of the pre-processing procedure should always be
evaluated in conjunction with the image descriptor(s) used.
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Abstract. Segmentation of ducts in whole slide images is an important step
needed to analyze ductal carcinoma in-situ (DCIS), an early form of breast
cancer. Here, we train several U-Net architectures – deep convolutional neural
networks designed to output probability maps – to segment DCIS in whole slide
images and validate the optimal patch field of view necessary to achieve
superior accuracy at the slide-level. We showed a U-Net trained at 5x achieved
the best test results (DSC = 0.771, F1 = 0.601), implying the U-Net benefits
from having wider contextual information. Our custom U-Net based architec-
ture, trained to incorporate patches from all available resolutions, achieved test
results of DSC = 0.759 (F1 = 0.682) showing improvement in the duct
detecting capabilities of the model. Both architectures show comparable per-
formance to a second expert annotator on an independent test set. This is pre-
liminary work for a pipeline targeted at predicting recurrence risk in DCIS
patients.

Keywords: DCIS � Segmentation � U-Net � Digital pathology � Deep learning

1 Introduction

Ductal carcinoma in-situ (DCIS) is a non-invasive form of breast cancer, accounting for
approximately 2,500 new cases per year in Canada [1]. After breast conserving surgery
(BCS) to remove the lesion, DCIS patients may undergo post-surgery radiotherapy to
reduce the risk of developing local recurrences. Since prediction of absolute risk of
recurrence based on traditional histopathologic evaluation is limited, it is not possible at
present to identify patients with very low risk of recurrence in whom radiotherapy can
be safely omitted. Improved stratification of patients into low- and high-risk recurrence
groups would be of great benefit for a guidance-based treatment approach.

Histopathologic evaluation of excised tissue is an important step for planning
additional treatment and understanding the underlying biology of tumors which can
help to some extent estimate recurrence risk. As digital slides are becoming more
accessible in practice, automation can be adopted to analyze large datasets of archived
tissue. Previous work has shown quantitative features extracted from digital pathology
images containing DCIS may improve prognostication [2]. Typical digitized whole
slide images (WSIs) are extremely large (approximately 3–8 GB each) and have
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information stored at several different magnifications. As such, it is impractical to
extract quantitative features from an entire WSI due to computational and computer
memory constraints. To efficiently extract relevant information, scalable and efficient
methods are needed to accurately localize DCIS regions in WSIs. This is a non-trivial
problem due to high intraclass variability within WSIs and comparatively low interclass
variability between DCIS and normal ducts. This sets up a challenging segmentation
problem and given recent advancements in deep learning it is possible to leverage large
datasets of WSIs to overcome these issues. In this paper, we describe a fully automated
pipeline for segmentation of ducts containing DCIS which encompasses convolutional
neural networks (CNNs) trained on patches extracted from WSIs.

2 Materials and Methods

Dataset. Our dataset consists of 202 women who were diagnosed with DCIS between
2012/2013 and underwent BCS. Specimens were handled per routine tissue processing
to produce formalin-fixed paraffin embedded tissue blocks and H&E stained sections.
Representative sections were imaged in a digital slide scanner. An expert pathologist
reviewed each WSI and marked annotations via a pen tool around the DCIS ducts,
using the Pathcore Sedeen™ viewer [3]. These annotations served as our ground truth
segmentations for training CNNs. WSIs were split into subsets for training (n = 111),
hyperparameter tuning (n = 72) and testing (n = 19). An additional 10% of the training
set was held out as a validation set, to monitor the CNN for early stopping.

Training. Due to computational costs associated with reading WSIs into memory, the
data must be subdivided into patches for training. To account for high variability within
our dataset, each patch was augmented via random rotations at either 0, 90, 180 or
270°. This augmentation increases the effective size of the training set. The CNNs are
trained using the mean pixelwise cross-entropy loss function and Adam optimizer [4].
Training runs for 100 epochs, and the model with lowest validation loss from the last
10 epochs is selected as the final trained model. This training scheme allows networks
sufficient training time, whilst ensuring they do not finish with a stochastically unfa-
vourable update.

Resolution vs. Field of View. Our WSIs were formatted such that the following
resolutions were available: 5x, 10x and 20x. Using a constant patch size of 256 � 256,
patches extracted at greater resolutions will have a narrower field of view (FOV). Here
we set out to determine which resolution to FOV ratio is most informative for iden-
tifying DCIS. Example patches from these different resolution patch sets can be seen in
Fig. 1. Whilst there are many CNNs available in the literature, we opted to train a U-
Net [5], as they have shown to be effective for segmentation tasks whilst learning
complex features in a fully-automated manner. Modifications to the original U-Net
architecture include using ELU activation functions and batch normalization, as they
have been shown to train networks faster [6, 7]. We use padded convolutions to ensure
that the output segmentation maps have the same dimensions as the input image.
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Multi-resolution Network. In order to overcome the resolution vs. FOV trade off we
also designed a novel multi-resolution network (Fig. 2). Instead of feeding only one
FOV at a time, all three FOVs are treated as a single input sample, giving the network
access to both high resolution details and wider contextual information. Two archi-
tectures were designed to handle multi-resolution inputs. One in which three patches
were concatenated into a single nine channel image (9ch), and the second is a custom
architecture (Fig. 2) that splits the U-Net down-sampling arm into three convolutional
branches, one for each FOV, before recombining via concatenation and feeding into the
up-sampling arm (3rm). The label images used to train these networks correspond to
the high-resolution input images.

Evaluation. Patches were extracted from each WSI at the appropriate resolution to
create segmentation maps during test time. They were sequentially fed through each
CNN, and the outputs were stitched together to create an output probability image.
Each segmentation map was thresholded to create binary DCIS masks. The ground
truth masks were downsampled to evaluate the lower resolution segmentation maps.
We used the following metrics to validate the performance of each CNN.

Dice Coefficient. The dice similarity coefficient is a measure of positive overlap
between two binary images. It is defined as:

DSC ¼ 2 � TP
2 � TPþFPþFN

ð1Þ

where TP is the number of true positive pixels in the images, FP is the number of false
positive pixels, and FN is the number of false negatives. It is a similarity measure
ranging from zero to one – one meaning the two images are identical. The dice
coefficient is a useful metric for labels on a WSI because it does not depend on true
negative values. This means that, unlike other metrics such as binary accuracy, the dice
coefficient is not inflated by the high number of background pixels.

Modified F1 Score. The F1 score is the harmonic mean of precision and recall and is
defined as follows:

20x 10x 5x

Fig. 1. Example patches from each of the three training datasets. The blue squares show the
FOV of the patch one resolution step up within the context of the lower resolution patch. Patch
sizes are 128 µm (20x), 512 µm (10x), 2048 µm (5x). (Color figure online)
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F1 ¼ 2 � precision � recall
precisionþ recall

ð2Þ

The F1 score and dice coefficient are mathematically identical. However, for the F1
score, precision and recall are calculated at the object (duct) level from a binarized
DCIS mask, whereas the dice score is computed at the pixel level. As expert labels
often group collections of ducts together as one region (Fig. 3), we modified precision
and recall so as not to penalize multiple predicted regions within a single ground truth
region. The downside is that the F1 score is no longer symmetric; swapping the
predicted and ground truth images will result in a different value for the F1 score.
Henceforth, all mentions of the F1 score refer to this modified version of the metric.

Post-processing. Our post-processing pipeline consisted of a thresholding operation
on the probability masks, followed by a morphological opening, and finally a mor-
phological closing. The threshold and morphological disk radius were tuned sequen-
tially using metrics computed on the tuning set. The threshold maximizing the dice
coefficient is found first. This threshold is then fixed to find the morphological radius
maximizing the F1 score.

Random Parameter Search. A random search paradigm [8] was used to tune U-Net
hyperparameters, whereby the parameter space is randomly sampled and used to train
the model a set number of times. This allows us to set a search budget independent of
the number of parameters and possible values. The search efficiency does not decrease
by adding extra parameters that do not affect performance. Searched hyperparameters

Fig. 2. Diagram of the multi-resolution U-Net (3rm). Each input is a 256 � 256 histology
patch, and the output is a 256 � 256 probability map. Inputs are down-sampled separately before
being combined and up-sampled.
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included depth, dilation rate, loss, optimizer, activation, dropout, regularization,
pooling function and initializer. The search ran 100 times, each with a randomly
sampled set of hyperparameters. Models were trained with 5-fold cross-validation.

Annotator Similarity. A second expert pathologist was asked to independently
annotate all the DCIS on the held-out test set of 19 WSIs. The dice coefficient and F1
score were measured between pathologists to assess inter-observer variability in our
dataset. Figure 3 shows an example of such independent paired annotations. This
image illustrates the significant variability between observers. These annotator simi-
larity comparisons serve as a benchmark for the described automated techniques.

3 Results and Discussion

Resolution Architecture Evaluation. Test results for each resolution architecture,
including their post-processing pipelines, can be seen in Table 1. Each network was
run on the independent test set used to compare annotators and evaluated against the
annotator who created the original training labels. The 5x model achieves the greatest
dice coefficient and F1 score of the single resolution networks. This implies that the
segmentation quality benefits from patches with a greater FOV, as the network can
make use of the wider contextual information. This makes sense considering that
pathologists mostly determine which regions contain DCIS from observing WSIs at
low resolution, using higher resolutions to fine tune their decisions. The 5x U-Net also
offers additional benefits including decreased training and run times due to the reduced
WSI size at this resolution. The 3rm multi-resolution architecture had the best F1 score
out of all the U-Nets, and a dice coefficient comparable to the 5x U-Net. Thus, the 3rm
network was successfully able to combine information from high and low resolutions
to increase the segmentation accuracy and duct detecting capabilities of the model,
however this was at the cost of significantly longer processing times. An ROC analysis,
as seen in Fig. 4a, further supports the conclusion of 5x performing best with an area
under the receiver operating characteristic (AUC) of 0.987. The 3rm shows slightly

Fig. 3. Example of a group of DCIS ducts annotated independently by two different
pathologists. They annotated images in two categories; definite DCIS (blue) and probable DCIS
(yellow). The remainder of each image would be considered not DCIS. (Color figure online)
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worse performance than the 5x model, though it is still an improvement over all the
other models.

Comparison with Second Annotator. A Wilcoxon sign-rank test was performed to
compare each models’ results to the annotator similarity metrics. When comparing dice
coefficients, only the 10x network was found to be significantly different (worse) than
the second annotator. No other networks show statistical differences from the second
annotator, implying they have comparable performance. When comparing the F1
scores, both multi-resolution models showed statistically significant improvement over
the second annotator. It is important to note the small sample size of dually annotated
WSIs in this test set. More labelled test data would be helpful in teasing out the
performance differences between each model.

Random Search Results. The 5x U-Net was chosen for the random parameter search,
due to its superior performance and drastically reduced run time. The randomly gen-
erated models were each run and evaluated on the tuning set. The AUC was calculated
and averaged across all folds for each model. A series of iterative Kruskal-Wallis tests
was performed on the model set. At each iteration, the test is performed. If it is
significant (p < 0.05), the lowest mean AUC model is removed from the set. This
process is repeated until the test is not significant, resulting in a set of the top models
that are not significantly different from one another. The results of this analysis can be
seen in Fig. 4b. The set of top models includes the base model with original hyper-
parameters. Most models produced by the search did not improve on the base model,
but a reasonably large group (n = 19) are shown to have not significantly different
performance from the base model. This implies that the U-Net architecture is stable
across small hyperparameter alterations, and the baseline hyperparameters were chosen
to move forward.

Sample Output. Figure 5 shows an example of predictions generated from the 5x U-
Net on an entire WSI from the test set, compared to annotations from one of the
pathologists. The predicted segmentation regions are generally very close to the
annotation borders, with large drops in probability marking the edges of predicted
DCIS regions. Some additional ducts are detected, albeit with low probabilities. For our
intended purpose of this pipeline, this result is acceptable because we want our model

Table 1. Results for each architecture run on the test set. P-values are from Wilcoxon sign-rank
tests comparing each model to the second annotator. Asterisks indicate statistical significance.

Model Dice score Dice P-value F1 score F1 P-value Time (s)

Second annotator 0.732 N/A 0.427 N/A N/A
5x 0.771 0.314 0.601 0.077 6.35
10x 0.558 0.009* 0.478 0.573 93.16
20x 0.617 0.184 0.546 0.147 2247.89
3rm 0.759 0.398 0.682 0.006* 3065.07
9ch 0.691 0.546 0.662 0.016* 3177.02
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to be sensitive to duct boundaries for subsequent feature extraction in stromal regions
surrounding DCIS. This is achieved by optimizing the pipeline to have the best dice
coefficient. Optimizing for the best F1 score would yield an algorithm suited to

Fig. 4. a (left). ROC curves for each model, run on the testing set. The ROC analysis requires
the raw probability values, and thus does not include the post-processing pipeline for each model.
b (right). Models resulting from the random parameter search, sorted by mean test AUC Blue
represents top set of models showing no difference from the Kruskal-Wallis test. Orange is all
other models. The green x represents the model with the baseline hyperparameter set. (Color
figure online)

Fig. 5. Example WSI from the test set. Blue outlines indicate a pathologist labelled DCIS
region. The colour overlay represents the probability map output by the 5x based model. Red
indicates high probability and blue is low. Zero values are set to be transparent. (Color figure
online)

Automated Segmentation of DCIS in Whole Slide Images 73



correctly identifying all DCIS ducts, whilst allowing for errors on the boundaries. With
more refinement, our pipeline could be implemented as a processing step on slide
scanners to identify DCIS regions immediately as slides are processed, aiding
pathologists in their analysis.

4 Conclusion

Here we presented a series of U-Net architectures to solve the problem of localizing
DCIS on WSIs automatically. It was found that when using a traditional U-Net
architecture, there are both speed and accuracy benefits to training and running the
model using low resolution patches. This is due to the patches having a greater FOV,
giving the U-Net access to wider contextual information. Two novel multi-resolution
architectures were presented, that combined patches from all three available resolutions
to overcome the resolution vs. FOV trade-off. However, this comes at the expense of
increased training and running times. Finally, a comparison was made between two
pathologist annotators, showing that the best networks have performance comparable
to the second annotator on the segmentation task. Future work will use this pipeline as
a first step in identifying regions-of-interest in large WSIs of DCIS for the purposes of
predicting breast cancer recurrence risk.

Acknowledgements. Canadian Cancer Society Grant #705772, Canadian Breast Cancer
Federation.
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Abstract. Nuclei segmentation is an important but challenging task
in the analysis of hematoxylin and eosin (H&E)-stained tissue sec-
tions. While various segmentation methods have been proposed, machine
learning-based algorithms and in particular deep learning-based models
have been shown to deliver better segmentation performance. In this work,
we propose a novel approach to segment touching nuclei in H&E-stained
microscopic images using U-Net-based models in two sequential stages. In
the first stage, we perform semantic segmentation using a classification U-
Net that separates nuclei from the background. In the second stage, the
distance map of each nucleus is created using a regression U-Net. The final
instance segmentationmasks are then created using awatershed algorithm
based on the distance maps. Evaluated on a publicly available dataset
containing images from various human organs, the proposed algorithm
achieves an average aggregate Jaccard index of 56.87%, outperforming
several state-of-the-art algorithms applied on the same dataset.

Keywords: Digital pathology · Tissue analysis ·
Nuclei segmentation · Deep learning · U-Net

1 Introduction

Nuclei segmentation in microscopic images of hematoxylin and eosin (H&E)-
stained tissue sections is a fundamental step required to determine nuclei count,
nuclei size and nucleus-to-cytoplasm ratio, which are in turn used for cancer
grading and determining cancer prognosis [2,4,6]. However, developing an auto-
matic segmentation algorithm is challenging due to large variations in colour,
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staining, texture and shape of nuclei. While various conventional image process-
ing methods, including thresholding, morphological operations, region growing,
active contour models, graph cuts, k-means clustering and probabilistic models,
have been proposed, their levels of accuracy, especially for less typical cases,
are inferior compared to machine learning-based algorithms due to under- or
over-segmentation issues [2,4,6].

Machine learning-based algorithms and in particular fully convolutional net-
works (FCNs) have shown excellent performance for semantic segmentation tasks
in various applications [2]. However, they are not directly applicable to nuclei
segmentation which has to deal with touching objects in the same class. A num-
ber of methods have been proposed in the literature to address this issue. In the
original U-Net approach [10], a customised weighted loss function was designed to
assign larger weights in the separation borders. In [8], an ensemble of FCN-based
methods was proposed to separate jointly segmented nuclei. While this method
gave satisfying results compared to raw encoder-decoder-based models, it failed
in some more challenging cases [9]. In [2,6], the problem of touching nuclei was
addressed by defining a new class for nuclei boundaries and formulating the
problem as a ternary segmentation task. However, this might not work well in
some histological images where the boundaries are fuzzy and not well-defined.
Another approach which is becoming popular for solving instance segmentation
problems including nuclei segmentation in microscopic images is Mask-RCNN [3].
This multi-task algorithm is a combination of several sub-networks including
region proposal network, feature pyramid network and FCN that together per-
form instance segmentation. Training this model usually includes tuning many
hyper-parameters which makes it challenging to find an optimal performance.

A classical way to tackle the touching cell problem is to perform a dis-
tance transform on the segmentation mask followed by a watershed algorithm.
Although this method has been proven to be ineffective for many largely overlap-
ping cases, it inspired us to train a deep convolutional neural network (DNN) to
infer each individual nucleus distance map directly. Unlike a distance transform
from the fused segmentation contour, a DNN could utilise the image texture
information to recognise the nucleus borders in the overlapping region and build
distinct “dams” between overlapping nuclei. In this study, we propose a two
stage nuclei segmentation algorithm, where we first train an FCN to separate
the nuclei from the background and then train a second FCN to generate a
distance map of individual nuclei to separate them from each other.

Although developed independently, our approach has similarities with the
approach in [9] which also uses DNN-based distance map inference. However,
that method is based on a single regression network while our approach, when
applied on a challenging dataset of various H&E-stained tissues, shows that
having an additional segmentation FCN can provide overall improved segmenta-
tion performance. Evaluation using the aggregate Jaccard index (AJI), which is
sensitive to both semantic and instance segmentation performance, shows that
our approach yields excellent segmentation performance and outperforms several
state-of-the-art algorithms.
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2 Proposed Method

An overview of our proposed method is shown in Fig. 1. In the following, we
describe each stage in detail.

Fig. 1. Flowchart of the proposed algorithm. Only the training phase is depicted; the
inference phase is similar except that no ground truth masks are fed to the model.

2.1 Pre-processing

Normalising H&E-stained images is a common approach to address staining
variability. In our approach, we choose a reference image from the training data
and then normalise all other images to match the staining separation vectors
based on Macenko et al.’s method [7]. To identify an appropriate reference image,
we analyse the histograms of all images. For this, we first convert the RGB images
to grayscale using the standard Y = 0.299R + 0.587G + 0.114B transformation
where R, G and B are the red, green and blue channels of the raw image and
Y is the resulting grayscale image. Then, from the grayscale images, an image
whose histograms of nuclei and background areas are most different is chosen as
the reference image.

Moreover, we apply colour augmentation in the training phase as suggested
in [1]. Figure 2 shows an example of the extreme cases of colour augmentation
for a sample training image. Besides colour augmentation, we also apply a stan-
dard augmentation scheme that performs random rotations (0, 90, 180 and 270
degrees) and random horizontal or vertical flipping. Finally, the input images are
resized to 1024 × 1024 while intensity values are normalised to the [0; 1] range.

2.2 U-Net Models

We use two deep models based on the popular U-Net architecture [10]. In the
first, a standard U-Net model (referred to as segmentation U-Net in Fig. 1) is
trained from scratch with four max pooling layers in the extracting path and
four transpose convolutional layers in the expanding path. We use the Adam
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Fig. 2. Original image (left) and the resulting extreme colour augmented images (mid-
dle and right). (Color figure online)

optimiser [5] to update the weights. As loss function, we utilise a combination
of binary cross-entropy (BCE) and binary Dice loss to train the model as

Losstotal = 0.5LossBCE + LossDice. (1)

We train the network from scratch with an initial learning rate of 0.001 which
is dropped by a factor of 0.4 after every 80 epochs. We train the model for 240
epochs with a batch size of 2 to fit in GPU memory.

In order to obtain better instance segmentation results, we modify the pro-
vided ground-truth nuclei masks in the training phase. First, we binarise the
provided ground truth. Then, we remove all touching borders using a simple
image subtraction for all overlapping areas in the masks. Finally, we apply a
morphological erosion operation on the masks to obtain a distinction between
objects. An example of this procedure is shown in Fig. 3 for a cropped train-
ing sample. Although this modification helps the network to distinguish some
touching nuclei, it does not perform well enough for more challenging cases.

Fig. 3. Modification of ground truth (GT): (a) original GT, (b) binarised GT, (c)
border removed GT, and (d) eroded GT.

Therefore, in analogy to [9], we train another U-Net model (referred to as
distance U-Net in Fig. 1) based on the distance map of the provided ground
truth to identify each nucleus. The structure of this network is similar to the
standard segmentation U-Net model, but in this stage we train the model only
for 120 epochs while the learning rate was dropped at the 60-th epoch. We use
a mean squared error loss function since we try to solve a regression task in this
phase.

Unlike [9], where detection and fusion of local maxima are controlled by a
manually set threshold, our proposed method uses the results from both stages
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(segmentation U-Net results and predicted distance maps) to form the final
instance segmentation masks in an automatic way. In order to obtain smoother
distance maps and prevent false local maxima detection, we apply a Gaus-
sian smoothing filter on the predicted distance maps. We hypothesise that the
smoothing factor depends on the nucleus sizes in the image (i.e., applying a fil-
ter with a larger kernel for images with bigger average nucleus size). To have an
estimate of the average nucleus size, we use the results from the segmentation
U-Net from the first phase.

After applying the filter, we find the local maxima from the distance maps
and use them as seed points for a marker-controlled watershed algorithm [11].
All these steps are performed automatically and thus we avoid the use of any
manual rule to separate touching objects and perform training in an end-to-end
manner.

2.3 Post-processing

We use the results of the segmentation U-Net as a mask on the derived distance
map of the second U-Net to classify all background pixels as indicated in Fig. 1.

We also apply two other simple post-processing steps to improve the final
segmentation results. First, we remove very small objects (<20 pixels) from the
segmentation mask and, second, we fill holes in the detected objects to obtain
uniformly segmented nuclei.

3 Experimental Results

We utilised the Keras framework1 for algorithm development using a standard
workstation with an Intel Core i5-6600k 3.50 GHz CPU, a single NVIDIA GTX
1070 with 8 GB memory and 16 GB of installed RAM. With this setup, the first
and second training stages took around 10 and 5 h, respectively. The number
of trainable parameters for the first and the second stage of the algorithm were
identical at 1,941,105 for each stage.

For evaluation, we used a publicly available dataset [6] which includes 30
images of H&E-stained sections of 7 different organs (breast, liver, kidney,
prostate, bladder, colon and stomach samples) obtained in 18 different hospi-
tals, and contains about 22,000 manually annotated nuclei.

In order to evaluate the generalisation ability of the model and compare our
method with three state-of-the-art algorithms [6,9,10], we split the data into
training and test sets in the exact same manner as described in [6,9]. We used a
subset of images from 4 organs (breast, liver, kidney and prostate) in the training
phase, while the remaining images (i.e., those from bladder, colon and stomach
samples and remaining images from the first 4 organs) were used for testing. No
other external images were used for training.

We used the aggregate Jaccard index (AJI) suggested by [6] as our main
evaluation index since it is sensitive to both semantic segmentation and instance
1 https://keras.io/.

https://keras.io/
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segmentation performance. In addition, we also report our results based on the
average Dice score and the F1-score. While the average Dice score shows the
general performance of the algorithm for semantic segmentation, the F1-score
is sensitive to the object level error and thus quantifies the ability to correctly
separate touching objects. However, as described in [6], AJI is a more reliable
evaluation index as it is sensitive to pixel level and object level errors at the
same time.

Table 1 shows the obtained quantitative results of our proposed method for
all test images as well as comparative results from [6,9,10].

Table 1. Experimental results for all test images. For each image, we give the results,
in terms of average Dice score, F1-score and AJI, for the approach from [10] but using
the modified ground truth (denoted U-Net), the approach from [6] (denoted CNN3),
the deep regression model from [9] (denoted DR), and our proposed algorithm. In
addition, we list the average results over the test images for organs seen in the training
phase (i.e., breast, liver, kidney, and prostate) and unseen in the training phase (i.e.,
bladder, colon, and stomach) as well as average results over all 14 test images. In each
line, the best result is bolded.

organ image
average Dice score (%) F1-score (%) AJI (%)

U-Net CNN3 DR Proposed U-Net CNN3 DR Proposed U-Net CNN3 DR Proposed

Breast
Image 1 83.33 68.85 N/A 83.30 82.37 74.78 77.61 84.02 57.57 49.74 53.34 60.08
Image 2 76.24 74.76 N/A 76.27 69.34 91.49 83.80 76.46 41.34 57.96 58.84 52.17

Liver
Image 1 77.62 67.26 N/A 77.63 69.27 85.68 78.77 75.98 47.17 51.75 54.46 52.41
Image 2 70.58 70.36 N/A 70.51 80.31 94.09 66.84 82.77 46.72 51.48 44.32 47.37

Kidney
Image 1 74.88 66.06 N/A 74.85 80.70 78.69 78.05 83.93 52.63 47.92 56.48 54.36
Image 2 80.68 78.37 N/A 80.47 85.76 71.32 76.06 86.69 58.74 66.72 54.20 60.73

Prostate
Image 1 80.63 83.06 N/A 80.78 80.63 87.17 80.30 85.04 30.04 49.14 62.73 62.27
Image 2 80.43 75.37 N/A 80.40 79.39 74.52 79.03 87.91 47.97 37.61 62.94 64.05

average (seen test organs) 78.05 73.01 N/A 78.03 78.47 82.21 77.56 82.85 47.77 51.54 55.91 56.68

Bladder
Image 1 84.94 93.12 N/A 84.79 78.11 81.84 86.23 79.93 59.42 54.65 64.57 61.02
Image 2 75.47 63.04 N/A 75.62 67.17 75.06 77.68 72.05 44.67 49.68 54.67 53.07

Colon
Image 1 75.99 76.79 N/A 75.60 68.64 71.36 72.12 73.68 40.41 48.91 42.40 46.86
Image 2 79.02 71.18 N/A 78.99 77.47 77.46 73.60 79.68 53.53 56.92 44.84 50.95

Stomach
Image 1 86.06 89.13 N/A 85.82 80.07 97.81 85.47 88.52 54.31 45.38 64.08 64.83
Image 2 85.63 89.82 N/A 85.40 83.53 96.09 85.20 89.71 56.90 43.78 65.50 66.06

averagel (unseen test organs) 81.18 80.43 N/A 81.04 75.83 83.27 80.05 80.60 51.54 49.89 56.01 57.13

average (all test organs) 79.39 76.23 N/A 79.32 75.93 82.67 78.63 81.88 49.39 50.83 55.98 56.87

From Table 1, it is evident that for all 14 cases the second stage of the algo-
rithm improves the ability of the model to separate touching nuclei (as evidenced
by improved F1-score and AJI) compared to the stand-alone U-Net, while it does
not have a significant effect on the overall semantic segmentation performance
(expressed by the average Dice score).

Compared to the other approaches, on average our algorithm is shown to
be superior in terms of overall AJI while being roughly equivalent in terms of
average Dice score and F1-score. Moreover, the overall generalisation ability of
the proposed method for images from previously unseen organs is better com-
pared to the other methods in terms of AJI, while interestingly better results
are obtained on images from unseen organs compared to (unseen) images from
organs that formed the training dataset.
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By running additional experiments to investigate the effect of ground truth
modification on the segmentation U-Net results, we noted a significant improve-
ment of the overall AJI from 44.41% to 49.39% (due to space restrictions, we
only report these improved results in Table 1) which confirms the importance of
this step. It is worth noting that the kernel size of the Gaussian filter in the sec-
ond stage of our algorithm is determined by the results of the first stage U-Net
and hence we aimed to have acceptable instance segmentation performance even
in the first stage. Estimating nucleus size can be further improved by calculating
it from the final instance segmentation results instead of the first stage U-Net
results in an iterative manner which can be addressed in future work.

Figure 4 shows example results of the single raw U-Net model as well as the
results from our proposed method for some of the selected test images and con-
firms that our obtained segmentations are close to the defined ground truth and
that the proposed method performs significantly better than a single segmenta-
tion U-Net.

Fig. 4. Examples of segmentation results.

We also entered our approach in the MICCAI 2018 Multi-Organ Nuclei Seg-
mentation Challenge2 which used the same 30 H&E-stained images mentioned
above as training data while evaluating competing algorithms on a further 14
test images whose type and ground truth were available only to the contest

2 https://monuseg.grand-challenge.org/.

https://monuseg.grand-challenge.org/
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organisers. In total, 36 teams participated in the challenge and achieved aver-
age AJI results ranging from 13.01% to 69.07% on the test data. Our proposed
method ranked 10-th with a very competitive average AJI of 65.74%.

4 Conclusions

In this paper, we have proposed a fully automatic approach for nuclei segmen-
tation for multi-organ H&E stained microscopic images in two sequential steps
based on U-Net models. The obtained segmentation results on a challenging
dataset containing images from different organs are shown to be very competi-
tive and outperform several state-of-the-art algorithms.

References

1. Arvidsson, I., Overgaard, N.C., Marginean, F.E., Krzyzanowska, A., Bjartell, A.,
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Abstract. This contribution introduces a novel approach to the auto-
matic detection of tumor buds in a digitalized pan-cytokeratin stained
colorectal cancer slide. Tumor buds are representing an invasive pattern
and are frequently investigated as a new diagnostic factor for measuring
the aggressiveness of colorectal cancer. However, counting the number of
buds under the microscope in a high power field by eyeballing is a strenu-
ous, lengthy and error-prone task, whereas an automated solution could
save time for the pathologists and enhance reproducibility. We propose a
new hybrid method that consists of two steps. First possible tumor bud
candidates are detected using a chain of classical image processing meth-
ods. Afterwards a convolutional deep neural network is applied to filter
and reduce the number of false positive candidates detected in the first
step. By comparing the automatically detected buds with a gold standard
created by manual annotations, we gain a score of 0.977 for precision and
0.934 for sensitivity in our test sets on over 8.000 tumor buds.

Keywords: Convolutional Neural Network (CNN) ·
Medical image analysis · Tumor budding · Deep learning

1 Introduction

In pathology, new markers for assessment of the prognosis in patients with cancer
are needed. Frequently specific methods like immunohistochemistry and molec-
ular pathology are used in addition to conventional histopathology. These new
methods are crucial for the stratification of cancer patients and the selection of
specific therapies. The extent and prognosis of the disease is today estimated
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by the TNM-Classification, where “T” stands for the size and depth of inva-
sion of the tumor, “N” for the number of affected lymph nodes and “M” for
the presence of distant metastases [14]. In addition, the differentiation of the
tumor is given according to tumor morphology and is graded within a range
from G1 to G3, where G1 represents a high and G3 a low similarity to healthy
tissue [14]. The detection of tumor buds is a new approach which can serve as
an independent prognostic factor. Tumor budding is currently investigated in
many tumor types and could be an additional marker for tumor differentiation
and poor prognosis [8].

1.1 Tumor Budding as an Independent Adverse Prognostic Factor

Tumor buds are defined as single or isolated cells or as a cell cluster with up to
four cells located at the invasion front of a tumor. The invasion front describes the
area where the tumor cells invade into the surrounding healthy tissue. With the
aim of counting the number of buds in the area of highest tumor bud density,
the pathologist first searches for the “hotspots”. For this method one needs
to estimate the tumor buds in ten different high power fields with a size of
0.785mm2 along the invasion front, and for further analysis, the field of view
with the estimated highest count of tumor buds per mm is used for a precise
counting. The selected field of view is now classified as “low”, “intermediate”
or “high” budding. It is recommended to state the exact number of tumor buds
to avoid the loss of crucial information [8]. The fewer tumor buds are present,
the better is the survival rate for the patient. The exact criteria and scoring
methodology for a tumor budding in colorectal cancer have been agreed upon
during the International Tumor Budding Consensus Conference (ITBCC) 2016
[8]. Additionally a German guideline has been published this year for colorectal
cancer treatment [11]. The criteria for counting the cell cluster as a tumor bud
are as follows:

– the cluster is composed of one up to four cells
– optionally, cells in the cluster are allowed to touch each other
– cells are not allowed to touch the main mass of the tumor
– cells are not counted, if the tissue in the slide is fractured or overlapping

Manual counting of tumor buds in multiple fields is time-consuming and is prone
to errors. In the clinical routine, a pathologist would examine the H&E stained
biopsy and count the tumor buds in the hotspots as suggested in [8].

1.2 State of the Art

Nowadays computer systems have sufficient power to support pathologists for
routine tasks, especially in repetitive tasks that involve counting cells. Specif-
ically for quantifying tumor budding a computer assisted solution is presented
by Jepsen et al. in [6]. Jepsen first eliminates the background and objects at a
5x magnification that would be too large to be tumor buds and defines a new
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region of interest (ROI) for further processing. In the second step the previously
calculated ROI in a 20x magnification is evaluated in order to segment possible
tumor buds. They are then matched against a series of conditions in order to
filter out non-buds: (1) the bud candidate must have a suitable size, (2) it must
contain nuclei, (3) it must not be located in debris, (4) it must not contain white
pixel clusters and finally (5) it must have sufficiently sharp cell borders [6]. In
a third step they process the detected tumor buds further by calculating a heat
map to locate the hotspot in a whole slide. In contrast to Jepsen et al. [6] we
use a two-step hybrid approach by first detecting possible objects with a similar
chain of image processing steps and then distinguishing true from false buds by
classifying them with a convolutional neural network (CNN). The CNN can be
regarded as a last filter step, which reduces the problem with the high count of
false positives significantly as seen in [6]. Deep learning has been shown to be a
generically applicable solution for medical image analysis tasks as seen in [4] for
example when detecting cerebral micro bleeds [3] or for classification of nuclei in
histopathological images [12]. Therefore, we have chosen this approach here as
well to reduce the number of false tumor buds and create an automatic solution
for the tumor bud and later the hotspot detection. Another difference is that
Jepsen et al. detect tumor buds solely at the invasion front of the tumor. We
instead detect also intra-tumoral buds located in the malignant tissue.

2 Material

Pan-cytokeratin stained colon sections have been prepared by pathologists of
the Institute of Pathology at the University Hospital Erlangen, FAU Erlangen-
Nuremberg. The slides were scanned with the two 3DHISTECH scanners, Pan-
noramic P250 and Pannoramic Scan, with a 40x Plan-Achromat objective by
Zeiss and the VCC-FC60FR19CL CIS camera. The resolution of the digitized
slides is 0.194×0.194µm2 per pixel. Tumor buds have been annotated manually
in 87 slides (Fig. 1). Additionally, so called unsure objects have been annotated
which could not be clearly classified as tumor buds and thus have been discarded
in the development and evaluation of the approach. Finally, the slides were split
up into disjoint databases for training (51 slides, 27980 tumor buds), validation
(18 slides, 4362 tumor buds) and testing (18 slides, 8169 tumor buds) of the
approach. The test database was never seen by the CNN during the training
process.

3 Methods

Our approach consists of two steps, the detection of possible tumor bud candi-
dates and the reduction of false positives. We applied our method in user selected
field of views on the whole slides which covered almost all areas containing expert
annotations (Fig. 2) to reduce processing time. Therefore, the number of field of
views varies from 3 to 36 depending on the expert annotations. Within these
field of views, possible tumor bud candidates are detected by the classical image
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(a) (b)

Fig. 1. Expert annotated pan-cytokeratin slide, with a size of 0.194 × 0.194µm2 per
pixel, containing the tumor area and the invasive margin. Figure (a) shows the whole
slide and (b) a zoomed in region, marked by the red box, showing annotated tumor
buds. (Color figure online)

processing steps described in Subsect. 3.1. Afterwards, detected candidates are
compared to the expert annotations and are accordingly labeled as true positive
tumor buds or false positive ones. Moreover, the number of missed tumor bud
annotations (false positive) is counted. In the next step a convolutional neural
network was trained with the true positive and false positive candidates in order
to learn how to tell true from false tumor buds. The applied network and training
procedure is described in Subsect. 3.2.

3.1 Detection of Candidates for Tumor Budding

For the detection of candidates classical methods like thresholding, filtering and
morphological operations are applied. As a result of the pan-cytokeratin staining,
the cell membrane of tumor cells is brown and the cores are blue (because of a
counter staining with hematoxylin). Therefore, the depicted color of the stains
plays an important role for the detection of the tumor buds. We tested different
color spaces such as RGB, Lab and HLS to derive a grey value image with the
best contrast between cell core and membrane and found the blue channel of the
RGB color space to be the best choice. Afterwards, a Median-filter is applied
to smoothen the image by reducing noise. The image is then binarized with the
Otsu thresholding algorithm [9]. A crucial criterion for being a tumor bud is the
number of connected tumor cells. A tumor bud consists of four or less tumor cells
[8]. However, tumor cell clusters and tumor buds are three-dimensional objects
and only a thin section is prepared on the glass slides. Therefore the decision
whether two objects (tumor cells or tumor cell clusters) are connected or not is
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Fig. 2. The blue boxes show manually set field of views based on expert annotations.
This reduces processing time on whole-slide-images on a 40x magnification, because
we dont need to iterate over the whole slide and detect tumor buds just in the selected
regions. Automatic detection on complete WSIs is also possible. (Color figure online)

not trivial and in fact cannot be answered with absolute certainty due to the
fact that only a two-dimensional slice is available. So we regard two cells or
cell clusters as connected, if the distance between them is smaller than the mean
diameter of a tumor cell. This knowledge-driven approach has been implemented
by morphological operations. First, a binary erosion removes small artifacts, such
as small staining leftovers. A binary dilation afterwards increases the size of the
remaining objects to their original size plus an additional distance threshold.
Thus, small gaps between unconnected cells that are probably located in the
same cluster are filled. The second erosion reduces the tumor buds to their
original size and cells in the same cluster stay connected. The morphological
approach is based on two parameters, the size of the first erosion mask defining
the minimal size of a single tumor bud and the dilation defining the distances
between tumor buds. The size of the second erosion’s filter mask is given by
the difference of the first erosion and the dilation corresponding to the distance
threshold that determines whether two cells are connected. The output generates
possible candidates containing a lot of false positive candidates due to staining
artifacts or larger groups of cell clusters. This results in a high sensitivity, but
poor precision as seen in (Table 1). Thus, two simple filter steps are implemented
to check the color and size of the detected objects.
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3.2 Reduction of False Positives

In order to distinguish between “true positive” and “false positive” tumor bud
candidates a convolutional neural network was trained and applied. We chose the
AlexNet architecture [7] as it has already been successfully applied for the similar
task of colonic polyp classification [10] and for the detection of malaria infected
cells [2]. We retrained the weights on all convolutional and fully connected layers
and used as initialization the pre-trained weights of the ImageNet dataset [1]. We
trained the network on our testdataset as stated in Subsect. 2 with a pixelsize of
227 × 227 and a batchsize of 100 images per batch. As an input for the network
we use the detected possible candidates from the first step and resize them to
the input dimensions of 227×227 for the network. The labeling of the candidates
as true positive or false positive was based on the manual expert annotations.
When comparing the results from the ground truth with the algorithm based
annotation (Fig. 3), the manual and automatic rectangular annotations were
counted as a match, when the centers of their binarized masks are spaced no
more than five pixels apart. This step is important for the comparison, because
our algorithm produces the annotations based on the binary mask of the cells
and therefore doesnt align with the expert annotations.

(a) (b)

Fig. 3. Figure (a) shows the expert annotation and Fig. (b) our algorithm-detected
candidate. It is seen that the two annotations do not align because the algorithm
produces an annotation based on the pixel border of the binary mask. Therefore a
additional step for the comparison is needed.

4 Results and Discussion

We evaluated the proposed hybrid approach for tumor bud detection separately
for each step on a test dataset disjoint to the training and validation set in
comparison to the manual expert annotation. Table 1 shows the result of the
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Table 1. Detection results of possible tumor buds before applying a neuronal network
listed as false negatives (FN), false positives (FP), true positives (TP) and the cal-
culated precision and sensitivity based on the comparison with the annotated ground
truth.

Data FN FP TP Precision Sensitivity

Validation 144 58131 4218 0.068 0.967

Test 363 87304 7806 0.082 0.956

Table 2. Detection results on the test data set of tumor buds after applying a selection
step using AlexNet.

Data FN FP TP Precision Sensitivity

Validation 279 107 4083 0.974 0.936

Test 537 181 7632 0.977 0.934

first step and Table 2 the result after applying AlexNet. Therefore we need to
compare the detected possible tumor buds with the annotated datasets in the 18
validation and test slides as seen in Table 2. It was shown that similar results were
scored for the training and test dataset. In comparison to the results in Table 1
applying AlexNet yields a significantly improved precision while diminishing the
sensitivity only very slightly. Potentially, more advanced neural networks such
as Inception V3 by Google may improve the results further [13] and will be
tested. We reduced the number of false positives from 87304 to 181 in the test
dataset, with only a small decrease in the sensitivity. A direct comparison with
[6] is not possible yet, because of different evaluation approaches. While Jepsen
et al. evaluates their system based on the detected hotspots, we compare the
detected tumor buds with the ground truth. In future experiments we want to
reduce the number of missed tumor buds. As seen in Table 2 the number is still
quite high (∼7%). After finishing our experiments we will use the detected tumor
buds on the slides to detect the hotspots in a automated approach and make a
direct comparison with [6] based on the hotspots. We also want to test different
neural networks for classification as well as an end to end approach based on
so called Mask R-CNNs [5]. We are steadily increasing our databases and want
to test our approach on the new datasets. Meanwhile, our database counts over
92.000 annotated tumor buds on 114 slides. Additionally, we want to alternate
our algorithm to correspond with the newly published guideline in Germany [11].
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Abstract. Deep neural networks have introduced significant advance-
ments in the field of machine learning-based analysis of digital pathol-
ogy images including prostate tissue images. With the help of trans-
fer learning, classification and segmentation performance of neural net-
work models have been further increased. However, due to the absence
of large, extensively annotated, publicly available prostate histopathol-
ogy datasets, several previous studies employ datasets from well-studied
computer vision tasks such as ImageNet dataset. In this work, we pro-
pose a transfer learning scheme from breast histopathology images to
improve prostate cancer detection performance. We validate our app-
roach on annotated prostate whole slide images by using a publicly
available breast histopathology dataset as pre-training. We show that
the proposed cross-cancer approach outperforms transfer learning from
ImageNet dataset.

Keywords: Prostate cancer · Convolutional neural networks ·
Computer aided diagnosis · Breast cancer · Transfer learning

1 Introduction

Prostate cancer (PCa) is the second most common solid malignant disease among
males in Western world and it derives from the glands within the prostate [23].
The incidence of PCa is especially high in Northern America, Europe and most
parts of Africa, and it is the second common cause of cancer-related deaths
in western countries [4]. PCa is commonly found in older men over the age of
65 years, with a chance of 1 in 8 men diagnosed with the disease during their
lifetime [23].
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Histological examination of the surgical tissue and detection of cancer by
a pathologist is still the gold standard in cancer diagnostics. PCa diagnostics
is heavily time-consuming. Furthermore, it is based on subjective grading, i.e.,
there is considerable inter-pathologist variability in assessing the diagnosis. For
instance, the study by Ozkan et al. reports that two pathologists disagreed on
the presence of cancer in 31 out of 407 biopsy cores and the overall concordance
of the assessed Gleason scores was only 51.7%, depicting the challenges in diag-
nosing PCa consistently [19]. Therefore, development of computer-aided decision
support tools is crucial for saving time, increasing precision and enhancing stan-
dardisation in diagnostics for pathologists.

There has been substantial interest in developing digital image processing
and machine learning-based methods for automatic analysis of pathology images
in order to perform tissue classification and disease grading, as well as predict-
ing disease outcome and enhancing precision medicine [15]. Specifically, recent
advancements in machine learning research involving deep neural networks, i.e.,
deep learning, have successfully increased the performance of such analyses [9].
However, proposed deep learning models often require significant amount of
annotated data in order to be successfully trained. As cohort sizes can be small
and the annotation of histopathology images is very time consuming, a concept
called transfer learning, i.e., training a neural network with an external dataset
and then fine-tuning the model with the dataset at hand, may prove beneficial.
Such an approach of fine-tuning a pre-trained model has been shown to out-
perform training the same neural network architecture from scratch in studies
involving analysis of digital pathology images [13,16,17]. Transfer learning may
also be beneficial for adapting to domains in which images are obtained with
different microscopes or staining procedures.

In this work, we propose a cross-domain transfer learning approach, specif-
ically from breast histopathology images to prostate histopathology images, in
order to train a deep convolutional neural network (CNN) for the detection of
cancerous regions in PCa whole slide images (WSIs). From the pathological point
of view, breast cancer (BrCa) and PCa are both adenocarcinomas (glandular
origin) and the most common cancers among the respective genders. The ratio-
nale for this approach is that the cellular composition of BrCa and PCa have
more visual similarity than the images in conventional pre-training materials,
such as ImageNet dataset [6], applied in earlier studies. Based on this hypoth-
esis, we propose a cross-domain transfer learning scheme between the images
of two types of cancers. We show that pre-training a neural network model on
BrCa histopathology images and fine-tuning it with PCa histopathology images
increases the performance compared to training the model from scratch. In addi-
tion, we show that this approach outperforms models pre-trained on ImageNet
dataset which has been the standard dataset for transfer learning models in deep
learning-based digital pathology analysis. The main focus of this work has not
been to maximize detection performance through rigorous data augmentation,
neural architecture search, hard negative mining, hyper-parameter optimization
or model ensembling but rather to propose a cross-cancer transfer learning alter-
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native to ImageNet dataset. To the best of our knowledge, this study is the first
study to propose a cross-domain (breast tissue to prostate tissue) transfer learn-
ing scheme for deep learning based PCa diagnosis.

2 Related Work

There have been several studies utilising transfer learning, especially with CNNs,
to detect, classify, segment cancerous regions or to predict the Gleason grade in
PCa histopathology images [1,2,5,11,12,18,21]. A typical approach recurring in
previous studies is to divide the image into smaller tiles/patches (overlapping or
non-overlapping) and to perform binary or multi-class classification of the tiles.
Reconstruction of tile-level or pixel-level probability map of a given class for the
original image is similarly performed in a sliding window fashion using the infer-
ence results of the tiles. Tile dimensions (in pixels) as well as the dimensions that
are fed into a CNN vary between studies, e.g., 250× 250 [11], 400 × 400 down-
scaled to 224 × 224 [1], 512 × 512 downscaled to 256 × 256 and further cropped
to 224 × 224 [21], 750 × 750 downscaled to 250 × 250 [2], 911 × 911 [18].

One common transfer learning approach is to use an architecture that has
performed well in other tasks (e.g. object detection in natural images) and to
train it from scratch. Such an approach has been utilized by different works [11,
18]. For Gleason grading, Nagpal et al. [18] employed an architecture that has
been shown to reach significant performance on well-known ImageNet dataset [6],
i.e., InceptionV3 [25] and the study by Isaksson et al. [11] proposes a U-net [20]
based semantic segmentation of prostate tissue.

Another transfer learning method is to use a pre-trained model as a fea-
ture extractor and perform further classification with a separate classifier. This
is achieved by extracting the representations out of the intermediate layers of
a pre-trained network. This approach has been used to predict Gleason score
by extracting features from different layers of the 22-layer OverFeat architec-
ture [22] (pre-trained on ImageNet) and feeding the features into random forest
and support vector machine classifiers [12].

Finally, the most prevalent way to perform transfer learning is to employ a
pre-trained model and to fine-tune it with the data at hand. Several fine-tuning
approaches can be utilised such as fine-tuning all the layers, freezing the ini-
tial neural network layers (usually the convolutional layers) and fine-tuning only
the last few layers or sequential layer-wise fine-tuning [1,2,5,21]. Used architec-
tures for this purpose include either original implementations or implementa-
tions with small modifications of the following: AlexNet [14] in [5], VGG [24]
in [2,5], ResNet [7] in [1,2,5,21], InceptionV3 [25] in [2], MobileNet [8] in [2] and
DenseNet [10] in [2].

Even though the domains are considered both visually and in nature very
different (natural images vs. prostate tissue images), most of the transfer learn-
ing schemes use architectures or models trained on ImageNet dataset. This is
due to the absence of publicly available, large-scale, extensively annotated PCa
histopathology datasets. In addition, the high number of images (over 1.2 million
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images with 1000 classes) and availability of several CNN models pre-trained on
it, renders ImageNet a prominent dataset for the basis of transfer learning.

The performance of the deep neural network models in the abovementioned
studies varies depending on the overall task at hand, dataset used, evalua-
tion setup (sampling, cross-validation, training/validation/test splitting etc.),
whether data augmentation was used or not and whether an ensemble of sev-
eral classifiers was used or not. Therefore, fair comparison between studies is a
non-trivial task. Most frequently used performance metric for reporting tile-level
classification is area under the receiver operating characteristic curve (AUC) [5].

3 Methods

3.1 Data

Here, we aim to utilize a well known image dataset ImageNet and a previ-
ously annotated BrCa dataset, Cancer Metastases in Lymph Nodes Challenge
2016 (CAMELYON16)1, to improve cancer detection with CNNs in our PCa
database. The dataset of 28 macro (2 in.× 3 in.) histological surgical specimen
WSIs was prepared from 28 patients with clinically relevant PCa (Gleason score
≥ 6) who had undergone prostatectomy during the years 2014 or 2015 in the
Helsinki University Hospital, Helsinki, Finland. The slides were stained with
H&E staining in a clinical-grade laboratory (HUSLAB Laboratory Services) at
the Helsinki University Hospital. The scanning of the WSIs was performed by
Zeiss Axio Scan.Z1 at a resolution of 0.220µm × 0.220µm per pixel. Cancerous
loci were annotated with polygons using the open source Automated Slide Anal-
ysis Platform2 (ASAP) software at 750µm magnification. Annotation of a single
slide took 0.5 to 6 h depending on the slide, resulting in an average of 3 h per
slide. An example WSI and corresponding annotations are shown in Fig. 1. Mini-
mum, mean and maximum cancerous area percentages with respect to the image
size are 0.7%, 7.4% and 29.1%, respectively. Minimum and maximum number of
polygon annotations (corresponding to the cancerous area/region in an image)
are 4 and 208, respectively.

Fig. 1. An example of WSI with its annotations and corresponding binary mask.

1 https://camelyon16.grand-challenge.org/.
2 https://github.com/computationalpathologygroup/ASAP.

https://camelyon16.grand-challenge.org/
https://github.com/computationalpathologygroup/ASAP
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For pre-training, publicly available CAMELYON16 dataset was employed
with 110 WSIs with nodal metastases verified by H&E staining [3]. In
this dataset, WSIs have been acquired by 2 different scanners, i.e., Panno-
ramic 250 Flash II - 3DHISTECH and NanoZoomer-XR Digital slide scanner
C12000-01 - Hamamatsu Photonics with resolutions of 0.243µm × 0.243µm and
0.226µm × 0.226µm per pixel, respectively [3].

3.2 Classification and Transfer Learning

We divided 28 WSIs of PCa, each corresponding to a single patient, into training
and held-out test sets with 22 and 6 images, respectively. Each image is then
divided into non-overlapping tiles of 256× 256 pixels to be fed into CNNs. From
the training set, we randomly sampled 300,000 cancerous tiles and 300,000 non-
cancerous tiles (white background is not sampled) in order to ensure a 50%–50%
class balance for binary classification (in total 600,000 tiles). Randomness in the
explained procedure is fixed for every experiment in order to ensure the exact
same sampling and data splits.

a

b

c

d

e

Fig. 2. Examples of data from a. ImageNet b. benign breast tissue c. cancerous breast
tissue d. benign prostate tissue e. cancerous prostate tissue.

For classification, we used an InceptionV3 architecture [25], i.e., the convo-
lutional backbone of the well-known architecture followed by 2 fully-connected
layers with 512 and 128 units, respectively and a single unit output layer. Dense
layers employedReLU activation functions and a dropout rate of 0.8. Output layer
employed a sigmoid activation. Loss function is chosen to be binary crossentropy
and the optimizer is chosen to be Adam with a learning rate of 10−4. Three dif-
ferent models were trained with the same architecture and same training data:
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training from scratch (random weight initialization), fine-tuning on ImageNet pre-
trained model, fine-tuning on BrCa pre-trained model. Only the convolutional
layer weights were used from pre-trained models (fully-connected layers are still
randomly initialized). Example data used during the training of the models can be
seen in Fig. 2. For BrCa pre-training, 110 WSIs (no held-out test set) from CAME-
LYON16 dataset were used with a total of 500,000 randomly sampled tiles (again
50%–50% target distribution). For all PCa and BrCa models, a random split of
80%–20% was employed for training and validation data, respectively. Each train-
ing was run for 50 epochs and the model weights reaching lowest validation error
in that particular training were saved. Finally, models were evaluated on the 6
held-out test PCa WSIs and tile-level as well as pixel-level AUC scores were cal-
culated.

4 Results and Discussion

Results of the experiments can be examined from Table 1. We show that pre-
training the model on breast tissue samples and fine-tuning it with prostate
tissue samples improves the tile-level classification AUC score by 0.051 from
0.873 to 0.924. Similarly, pixel-level AUC score increases from 0.879 to 0.936.
In addition, we compare the performance of pre-training on BrCa data with
pre-training on ImageNet data. We show that the pre-training on BrCa images
outperform pre-training of ImageNet with a 2.3% improvement (0.903 to 0.924)
in tile-level and 2.2% improvement (0.916 to 0.936) in pixel-level AUC score.

Table 1. Tile-level and pixel-level AUC scores of the trained CNNs with different pre-
training data, evaluated on the 6 test slides each belonging to an individual prostate
cancer patient.

Pre-training Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Overall

Tile-level None 0.859 0.964 0.902 0.831 0.794 0.849 0.873

Tile-level ImageNet 0.898 0.952 0.933 0.932 0.854 0.881 0.903

Tile-level CAMELYON16 0.916 0.971 0.946 0.953 0.885 0.874 0.924

Pixel-level None 0.861 0.973 0.911 0.835 0.792 0.882 0.879

Pixel-level ImageNet 0.904 0.970 0.942 0.938 0.859 0.915 0.916

Pixel-level CAMELYON16 0.920 0.979 0.955 0.958 0.890 0.912 0.936

Contributions of this work lie in the transfer learning paradigm which has
been shown to be beneficial to the model performance in several studies involv-
ing digital pathology analysis with deep neural networks [13,16,17]. Due to the
absence of a large, publicly available, extensively annotated prostate histology
image dataset, transfer learning inside the same domain has not been possible so
far. This led to frequent use of ImageNet dataset for this purpose [1,2,5,21]. Our
results bolster the intuition behind this practice, i.e., first-layer representations
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learned by deep neural networks are not specific to a particular dataset but appli-
cable to many even though the tasks are visually different. However, our study
proposes an alternative to ImageNet pre-training by utilising a large dataset
of breast WSIs. Our experiment results show evidence of enhanced knowledge
transfer due to visual similarities of the two cancer domains which is lacking in
natural images of objects, i.e., ImageNet. In addition, such cross-domain transfer
learning may also improve the generalization ability of the models to different
scanners, image resolutions and stainings.

As our methodology can be generalized to other cancer domains, future
work includes extensive analysis of cross-domain pre-training from different can-
cer pathology images, with varying neural network architectures and training
schemes. In addition, double pre-training scheme will be examined in which a
model can be first trained on ImageNet (or on a large dataset of similar nature),
followed by a fine-tuning with breast histopathology images and then finally
further fine-tuned with the data at hand.

5 Conclusion

In this work we propose a cross-domain, deep convolutional neural network-
based transfer learning scheme, specifically from breast to prostate histopathol-
ogy images, to enhance prostate cancer detection performance. In addition, we
compare the proposed breast histopathology pre-training with the well-known
ImageNet dataset pre-training. Our results show that the model pre-trained on
breast cancer images, further fine-tuned with prostate cancer images performs
better than the model that is trained from scratch or pre-trained on ImageNet
dataset. We believe our study serves as an advancement in the field of machine
learning-based analysis of prostate cancer histopathology images by providing
evidence for a transfer learning scheme between different cancer domains.
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Abstract. Tissue composition plays an essential role in diagnosis and
prognosis of colorectal cancer (CRC). Studies have shown that the rel-
ative proportion of tissue composition on colorectal specimens is poten-
tially prognostic of outcome in CRC patients. Some of the important
tissue partitions include blood vessel, tumor epithelium, adipose tissue,
mucosal glands, mucus, muscle, stroma, necrosis, immune cell, and back-
ground/other tissues. A challenge in accurately determining quantitative
measurements of tissue composition however is in the need for auto-
mated tissue partitioning image analysis tools. Towards this goal, we
present a Deeptissue Net, a deep learning strategy which involves inte-
grating DenseNet with Focal Loss. In order to show the effectiveness of
Deeptissue Net, the model was trained with 40 WSIs from one site and
tested on 620 WSIs from two sites. 10 distinct tissue partitions are blood
vessel, tumor epithelium, adipose tissue, mucosal glands, mucus, muscle,
stroma, necrosis, immune cell, and background/other tissues. The ground
truth for training and evaluating Deeptissue Net involved careful anno-
tation of the different tissue compartments by expert pathologists. The
Deeptissue net was trained with the tissue partitions delineated for the
10 classes on the 40 WSIs and subsequently evaluated on the remaining
N = 620 datasets. By measuring with confusion matrices, the Deeptissue
Net achieves the accuracy of 0.72, 0.84, and 0.88 in classifying mucus,
stroma, and necrosis on the 2nd batch of Dataset 1; 0.85 and 0.96 in clas-
sifying mucus and muscle on Dataset 2, respectively, which significantly
outperformed DenseNet and ResNet.
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1 Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed and fourth major
killer among all cancers for both sexes [3]. CRC accounts for 6.1% and 9.2%
for cancer incidence and mortality, respectively [3]. Recently, there is growing
evidence that the relative composition of different tissue partitions in histopa-
tology specimens might be correlated with cancer prognosis and outcome. For
instance the recent revision of the Gleason grading scheme [15] for prostate can-
cer involved explicitly accounting for the presence of cribiform patterns, presence
of which has been associated with worse outcome in prostate cancer. In the con-
text of CRC, as well, there is interest in exploring the association of tissue parti-
tions and relative composition with disease outcome [17]. However, a critical pre-
requisite to evaluating the association between relative tissue composition ratios
and outcome is the need for accurate estimation of the different tissue partitions
on the histopathology images. Broadly speaking, previous approaches for achiev-
ing this goal have either comprised deep learning or hand-crafted feature based
approaches. In [12], texture features were used for discriminating epithelium and
stromal tissue compartments in tissue microarray (TMA) images. In [2], image
features based on visual perception was leveraged for discriminating epithelium
and stroma in colorectal cancer. [1] presented a cascade-learning approach to
the segmentation of tumour epithelium in colorectal cancer on immunohisto-
chemistry images. In [9], 8 different tissues of CRC were classified with texture
and morphological features. In [8,18], deep convolutional neural network (CNN)
based models were developed for epithelial and stromal tissues’ classification.
In [10], a deep VGG19 CNN was used to identify 9 different tissues and then
stromal compartment was found to be an important prognostic factor for sur-
vival prediction on CRC patients. In [4,5] a CNN based model was presented for
detecting presence of invasive tumor on whole slide images. In [14], CNN based
model was used to predict cardiac outcome from endomyocardial biopsy.

ResNets [6] is one of most popular and efficient CNN model in object detec-
tion and image classification problem [16]. ResNets improved traditional CNNs
by adding a skip-connection that bypasses the non-linear transformations with an
identity function. The DenseNet further improved the information flow by intro-
ducing direct connections from any layer to all subsequent layers. The concate-
nate operation can utilize the features more effectively, thus enhancing feature
propagation. It also reduces the parameters of the model and effectively solves
the gradient disappearance problem of the deep network. In order to further
improve the nonlinear transformation associated with ResNet and DenseNet.
A new loss function called focal loss was presented in [11] to deal with class
imbalance as part of the object detection problem. The new loss function adds
a factor (1 − pt)γ to the standard cross entropy criterion that has been used in
conjunction with a number of CNN [6].

This paper presents a Deeptissue Net which integrates DenseNet Network
with Focal Loss for 10 tissues classification from WSIs of CRC. These 10 types
of tissue regions are blood vessel, epithelium, adipose tissue, mucosal glands,
mucus, muscle, stroma, necrosis, immune cell, and background. The major con-
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tribution of the paper is to integrates DenseNet and Focal Loss for multiple tis-
sue identification. The Focal Loss functions aim to enable DenseNet to converge
easily and deal with the class imbalance problem during the model training.

2 Methodological Description

The Deeptissue Net presented in this paper integrates DenseNet [7] with Focal
Loss [11]. The architecture of Deeptissue Net is shown in Fig. 1(b). The Net
mainly comprises of 4 dense blocks and 3 transition layers, and uses Focal Loss
as the output loss to optimize the Deeptissue Net. Equation (1) is DenseNet’s
nonlinear transformation formula [7].

xl =Hl([x0, x1, ..., xl−1]) (1)

where l represents the l-th layer, xl−1 represents the output of l-th layer, and
Hl(·) represents a nonlinear transformation of the l-th layer. The [x0, x1, ..., xl−1]
indicates that the output feature map of the 0 to (l − 1)-th layer is concatenate.
The DenseNet used the traditional cross entropy loss at output layer which can
be written as

CE(p, y) = CE(pt) = − log(pt) (2)

where y ∈ {±1} specifies the ground-truth class and p ∈ [0, 1] is the model’s
estimated probability for the class with label y = 1

pt =

{
− log(p), if y = 1
− log(1 − p), otherwise

(3)

The α-balanced variant of focal loss is defined as

FL(pt) = −αt(1 − pt)γ log(pt) (4)

where α ∈ [0, 1] is a weighting factor for class 1 and 1 − α for class −1. γ ≥ 0
is tunable focusing parameter. The Focal loss function can resolve both sample
class imbalances and similarities problem. As the new Deeptissue Net integrates
DenseNet and Focal Loss, it can greatly improve the performance of original
DenseNet for multi-tissue composition classification.

3 Experimental Design

3.1 Datasets Description

A total of 660 digitalized colorectal cancer specimens of WSI were gathered from
two sites as illustrated in Table 2. The slides from Site �1 (S1) were scanned with
a NanoZoomer S210 and Site �2 (S2) slides with an Aperio AT2, respectively.
The first batch (B1) of 100 slides from S1 were digitalized at 20X (0.5µ per
pixel) and the second batch (B2) from S1 and all slides from S2 were digitalized
at 40X (0.25µ per pixel). In this work, 20X magnification of all WSIs were
used for training and validation. Color normalization were applied to reconcile
the site-specific variation by different institutions and scanners [13].
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Fig. 1. The diagram illustrating the architecture of Deeptissue Net (b) and the
flowchart for classifying each input 150 × 150 patch from a WSI (a) into one of 10
tissues maps in (c)

Table 1. The number of patches in the model and validation sets for B1,B2,S2

Site Model Set � Validation Set� Total � Scanner Magnification

S1 B1 40 60 384 NanoZoomer Scanner

S210

20X

B2 0 284 40X

S2 0 276 276 Leica Aperio AT2 40X

Table 2. The illustration of overall datasets used in the paper

Tissues Model Set (B1) Validation Set (B1,B2,S2)

Training (B1) Validation (B1) B1 B2 S2

Background 73992 10570 34828 16174 14726

Blood vessel 71203 10172 6250 7575 184

Tumor
epithelium

70867 11206 27485 31089 1246

Adipose tissue 70867 10123 32178 23064 3018

Mucosal glands 75807 10829 3468 3519 198

Mucus 79197 11313 344 343 359

Muscle 83631 11947 12800 14853 4241

Stroma 78180 11168 10903 11138 403

Necrosis 73621 10517 4695 5874 293

Immune cell
conglomers

70673 10096 1551 1372 179

All 755613 106941 134502 115001 24847
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3.2 Model and Validation Sets

The number of WSIs in model and validation sets are shown in Table 2.

Model Set (B1). 40 WSIs were randomly chosen from B1 as the model sets
for annotation. These annotated WSIs in the model sets will be used to train
Deeptissue Net and other compared models. 10 tissues were manually annotated
by pathologists (see Fig. 3(a, b, f)). For each annotated WSIs in the model set,
a fixed-size 150 × 150 pixels sliding window with a step size of 75 was used to
generate overlapping image patches. The label of each image patch was decided
by the tissue types of its central pixel (75, 75) annotated by the pathologists.
Table 1 shows the number of image patches in the model set for training.

Validation Sets (B1, B2, and B2). 10 WSIs were randomly chosen for anno-
tation from the validation sets of B1, B2, and S2, respectively. Each WSIs were
sub-divided into non-overlapping 150×150 square window images using a sliding
window. The procedure of generating sub-images for WSIs from validation sets
is shown in Figs. 2(g, h).

The number of image patches in the validation sets of B1, B2, and S2 are
shown in Table 1.

3.3 Training, Validation and Performance Measures

The training and validation procedures of Deeptissue Net are shown in Fig. 2.
During training, different data argument approaches such as data argumenta-
tion approaches such as centre cropping, rotations, affine transform, mirroring,
color variation, and PCA Jattering were used. After training, each patch in the
validation set was then classified by DeepTissue Net into one of more than 10
tissue categories (see Fig. 2(i–j)). We employed confusion matrix of classification
accuracy on 10 different tissues to evaluate the performance of Deeptissue Net
and compared models (see Fig. 2(j–k))

3.4 Experimental Results and Discussion

Experiment 1: Deeptissue Net vs. DenseNet: Our first experiment was
to compare the performance between Deeptissue Net and DenseNet. The goal
of this experiment was to show the contribution of focal loss to DenseNet. The
DenseNet implementation was based on the codes provided in the paper [7]. The
qualitative results of Deeptisse Net and compared models are shown in Fig. 3(c–
e), respectively. The quantitative performance for 10 tissues’ segmentation and
classification for 10 WSIs on B1, B2, and S2 are shown in Fig. 4, where the
confusion matrices were employed to show the classification accuracy of each
type of tissue and the error rate of the tissue being classified into others. Overall,
the Deeptissue Net yields near perfect results in terms of segmentation accuracy
of 10 tissues.
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Fig. 2. The illustration of Deeptissue Net (f) for tissues classification on WSI (g). It
includes training (a–f), testing (g–j), and evaluation (k) phases. 10 tissues (b–c) were
annotated on WSI (a) and training image patches were generated from (b) for training
Deeptissue Net (f). The original WSI (g) is sub-divided into non-overlapping patches
and are then classified by trained Deeptissue net into 10 tissues (i–j). The performance
is evaluated via confusion matrices by comparing with manual annotations (k)

Fig. 3. The illustration of the qualitative segmentation results on 10 tissues from a
WSI (a) in B2 by DenseNet (c), ResNet 50 (d), and Deeptissue Net (e). (b) and (f) are
pathologist’s annotation and corresponding color maps of 10 tissues, respectively

Experiment 2: Deeptissue Net vs. ResNet: The second experiment was
to compare the performance between Deeptissue Net and ResNet. The ResNet
implementation was based on the codes provided in the paper [6].
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Fig. 4. The quantitative evaluation of segmentation results in confusion matrices on B1

(a–c), B2(d–f), and S2(g–i) with ResNet (a, d, g), DenseNet (b, e, h), and Deeptissue
Net (c, f, i), respectively. Each confusion matrix use the same pattern as (a) where
x-axis and y-axis represent prediction results by different models and groundtruth
annotated by pathologist, respectively. In (d–f) and (g–i), red and green boxes indicate
the performances of ResNet, DenseNet, and Deeptissue Net in terms of classifying
mucus, muscle, stroma, and necrosis, respectively

The training, validation, and evaluation procedures illustrated in Fig. 2 were
applied to DenseNet and ResNet for tissues classification of WSIs. The Deep-
tissue Net obviously outperforms ResNet and DenseNet on three datasets. The
Deeptissue Net (see Fig. 3(e)) apprear to suggest better results in identifying
10 tissue compartments as compared to DenseNet (see Fig. 3(c)) and ResNet
(see Fig. 3(d)). DenseNet and ResNet appeared more unordered results. How-
ever, the mucus regions were not identified very well for three models, in turn
leading to misclassification of many glands and cancerous regions. In addition,
there are also many mucus in the gland, which will lead to partially wrong clas-
sification. For the WSIs in S2, most blood vessels, muscle, and necrotic areas
were wrongly classified across all three models. As compared with Deeptissue
Net, ResNet achieves similar classification accuracy on B1, but the immune cells
is not as good as Deeptissue Net. ResNet achieves 84% for immune cells while
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Deeptissue Net was 96%. However, ResNet gets poor performance on B2 and S2

as comparing with Deeptissue Net. By introducing focal loss, Deeptissue Net can
better solve the problem of sample inhomogeneity and similarity as compared to
DenseNet. In the ResNet deep network, the add operation is performed on the
obtained feature map, and some features are not effectively utilized. Deeptissue
Net shows better performance in terms of classifying mucus, muscle, stroma, and
necrosis on three datasets. Finally, the performances of three models on S2 were
not as good as on S1 since the training samples were chosen from a batch B1 of
S1. The results also appear to suggest that different institutions and scanners
can effect the performance of classification models.

4 Conclusion

In this paper we presented a new Deeptissue Net for automated partitioning of
a total 10 different tissue compartments from colorectal slides from two different
sites and scanners. We compared the Deeptissue Net with ResNet and DenseNet
in identify 10 tissues. Deeptissue Net yielded the best performance across three
datasets from two sites. Future work will entail survival prediction based off
relative composition of the tissue compartments.
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Abstract. Analysis of the shape of glands and their lumen in digitised
images of Haematoxylin & Eosin stained colon histology slides can pro-
vide insight into the degree of malignancy. Segmenting each glandular
component is an essential prerequisite step for subsequent automatic
morphological analysis. Current automated segmentation approaches
typically do not take into account the inherent rotational symmetry
within histology images. We incorporate this rotational symmetry into
an encoder-decoder based network by utilising group equivariant convo-
lutions, specifically using the symmetry group of rotations by multiples of
90◦. Our rotation equivariant network splits into two separate branches
after the final up-sampling operation, where the output of a given branch
achieves either gland or lumen segmentation. In addition, at the output
of the gland branch, we use a multi-class strategy to assist with the
separation of touching instances. We show that our proposed approach
achieves the state-of-the-art performance on the GlaS challenge dataset.

Keywords: Computational pathology · Gland segmentation ·
Rotation equivariant · Deep learning

1 Introduction

Almost 95% of all colorectal cancers are adenocarcinomas formed from glands in
the epithelial tissue. An intestinal gland is made up of a single sheet of columnar
epithelium, forming a tubular structure that extends from the inner surface of
the colon into the underlying connective tissue. Therefore, a histological cross-
section of colon tissue will result in glands displaying an elliptical appearance,
with the lumen positioned at the centre. However, as glands become malignant,
this typical glandular appearance is lost and therefore the morphology of the
gland and the lumen can provide insight into the degree of malignancy [11]. As
can be observed in Fig. 1, as the grade of cancer increases, typical glandular
appearance is less evident.
c© Springer Nature Switzerland AG 2019
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Fig. 1. Example image tiles. Yellow and green boundaries show the pathologist annota-
tion of gland lumen respectively. (a), (b) and (c) show images with benign, moderately
differentiated and poorly differentiated glands respectively. (Color figure online)

Assessment of glands is typically done via histological examination, most
commonly with the Haematoxylin & Eosin (H&E) stain. However, manual exam-
ination of each tissue specimen is a time consuming and subjective procedure,
due to the complex nature of the task. Instead, there has been a surge of inter-
est in computational pathology, where techniques are developed to automati-
cally and objectively analyse large-scale histopathology slides, that have been
digitised via a scanning device. Within computational pathology, to understand
how various components within a tissue sample contribute to disease, segmen-
tation must be carried out as an initial step. In particular, gland and lumen
segmentation enable subsequent morphological analysis, which can consequently
assist the pathologist with diagnostic decision making.

Since achieving remarkable results in image recognition, deep learning has
been widely used in the field of computational pathology and has notably been
successfully applied to automated gland segmentation. For example, U-Net [8]
achieved excellent performance by using an encoder-decoder network architec-
ture and skip connections to incorporate low-level features at the output. A deep
contour-aware network [1] was proposed by Chen et al. that incorporated the
gland contour to assist the separation of instances and achieved the best per-
formance in the gland segmentation (GlaS) challenge [9] at the MICCAI 2015
conference. Micro-Net, by Raza et al. [7], considers the input at multiple res-
olutions and generates the output using multi-resolution deconvolution filters.
Xu et al. [13] implemented a multi-channel approach, that combines bounding
box, contour and object predictions for a superior performance. Graham et al.
proposed MILD-Net [4] that minimises the loss of information from max pooling
by incorporating two additional custom residual units. Despite all recent meth-
ods achieving excellent performance, they fail to leverage the inherent rotational
symmetry1 within histology images.

Data augmentation is a well known technique for improving the performance of
a network. For example, multiple rotated versions of an image can be introduced to

1 Rigidly rotating a histopathology image neither increases nor decreases its infor-
mation content. It is the information content, not the geometry, that is symmetric
under rotation.
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boost the network’s ability to be invariant to these transformations. However, this
requires the network to relearn essentially the same filter at various orientations
and therefore leads to redundancy in the learned weights. Also, invariant features
have no knowledge of the relative spatial configuration of the image components.
Instead, it is desirable for a network to be equivariant to certain transformations,
where changes in the input image will lead to a predictable transformation of the
filter responses. There have been various methods that have recently been devel-
oped to achieve rotation equivariance [3,12], yet we choose to focus on the group
equivariant convolutional neural networks (CNNs) [2], that have recently been
applied to digital pathology images [10] for classification. In this work, we propose
a dual-branch rotation equivariant fully convolutional neural network (FCN) that
simultaneously segments the lumen and the gland within colon histology images.
For the gland branch, we segment the gland and the gland contour to help deter-
mine where touching glands should be split.

2 Methods

2.1 Rotation Equivariance

Histopathology images are symmetric under rotation, yet typically CNNs do not
leverage this prior knowledge and need to learn weights at different orientations.
Furthermore, the filter responses of current CNNs do not transform in a pre-
dictable manner with the rotation of the input image, which does not allow us
to recognise the relative spatial configuration of the image components deeper
within the network. Instead, to fully exploit the rotation symmetry, we employ
a framework based on the G-CNN [2] to make the network equivariant to addi-
tional symmetry groups, other than translations. Specifically, we incorporate the
p4 group, that consists of all compositions of translations and rotations by 90◦

about any center of rotation in a square grid. To enable a given layer to exploit
rotation symmetry, all preceding layers must preserve this symmetry. Therefore,
it is necessary for the entire network to be rotation equivariant if we wish for
deeper layers to be rotation equivariant. To ensure full equivariance, we use the
G-convolution, as proposed in [2], and a rotation equivariant batch normaliza-
tion, where we aggregate moments per group rather than spatial feature map.
Other operations, including the rectified linear unit, spatial pooling and bilinear
interpolation are all naturally equivariant under rotation.

Note, a conventional CNN will require significantly more kernels to represent
the same irregular shape appearing in many different orientations than a rotation
equivariant CNN. Therefore, it is expected that a rotation equivariant CNN will
be particularly advantageous when segmenting malignant glands, where there is
more variability in the different orientations.

2.2 G-Convolution

Within our framework, we use the G-convolution [2] on the p4 symmetry group,
which contains translations and rotations by multiples of 90◦. A G-convolution
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Fig. 2. Network architecture. The yellow box within the input denotes the part of the
image considered at the output. The number at the top of each operation denotes the
number of feature maps produced. Note, for group operations, this is the number per
orientation of the kernel (4 orientations in the p4 group). σ is the softmax operation.
(Color figure online)

is an extension of the standard convolution, but additionally rotates the kernel
as it translates over the feature map. This action leads to a predictable trans-
formation in the filter responses and enables the symmetry to be fully exploited
throughout the network. In particular, a rotation of the input image results in
a rotation and channel permutation at the output of the G-convolution. A fur-
ther advantage of utilising the G-convolution is that weights do not need to be
learned at different orientations, which allows the model to learn more discrim-
inative features. Formally, in the first layer we define the (Z2 → G)-convolution
on image f : Z2 → R

K as:

[f � w](g) =
∑

y∈Z2

K∑

k=1

fk(y)wk(g−1y) (1)

where wk denotes kernel k, with corresponding input channel fk and g is a roto-
translation. We can see from above that the operation is a function on the plane
Z
2, i.e the original RGB image, whereas the output is a function on the group

G. Because of this, there are 4 feature maps generated per kernel, corresponding
to the respective number of orientations in the p4 group. Similarly, we define the
(G → G)-convolution on feature maps f : G → R

K as:

[f � w](g) =
∑

h∈G

K∑

k=1

fk(h)wk(g−1h) (2)

We observe that the (G → G)-convolution is computed across all orientation
channels of the group G. As a consequence of a given feature map fk being a
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function on the group G, its respective kernel wk must also be a function on this
group.

2.3 Rota-Net for Accurate Gland and Lumen Segmentation

The overall network architecture, as shown in Fig. 2, is based on the fully con-
volutional network [6] architecture, with residual blocks [5] for efficient gradient
propagation. Because the sum of two rotation equivariant feature maps is also
rotation equivariant, residual blocks are well suited within this network design.
Within our framework, a G-residual block consists of multiple G-residual units,
where each unit consists of two 3 × 3 G-convolutions and a shortcut connection.
Similar to U-Net [8], we utilise skip connections with addition to incorporate low
level features at the output of the network. In the same vein as the residual unit,
this addition is rotation equivariant. All G-convolutions are followed by rota-
tion equivariant batch normalisation, where moments are aggregated per group,
and a ReLU. During feature extraction, we utilise max-pooling to decrease the
spatial size of the feature maps by a factor of 16, which in turn increases the
size of the receptive field. After feature extraction, we up-sample features using
bilinear interpolation. The network splits after the final up-sampling operation,
where each branch is subsequently devoted to either gland or lumen segmenta-
tion. Because feature maps within the network are functions on the p4 group,
features need to be projected from G → Z

2 at the output of the network. We
achieve this by defining the projection layer that takes the average over the 4 ori-
entations. This operation is followed by two consecutive planar 1×1 convolution
operations to obtain the final output.

3 Experimental Results

3.1 Dataset and Pre-processing

For our experiments, we used the Gland Segmentation (GlaS) challenge dataset2,
used as part of MICCAI 2015. Data was extracted from 16 H&E stained his-
tological WSIs, scanned with a Zeiss MIRAX MIDI Slide Scanner with a pixel
resolution of 0.465 µm/pixel.

After scanning, the WSIs were rescaled to 0.620 µm/pixel (equivalent to 20×
objective magnification) and then a total of 165 image tiles were extracted. These
165 images consist of 85 training (37 benign and 48 malignant) and 80 test images
(37 benign and 43 malignant). The test images are split into two test sets: Test
A and Test B. Test A was released to the participants of the GlaS challenge one
month before the submission deadline, whereas Test B was released on the final
day of the challenge. Images are mostly of size 775 × 522 pixels and all training
images have associated instance-level segmentation ground truth that precisely
highlight the gland boundaries. In addition, two expert pathologists provide
accurate lumen annotations for all glands within the GlaS dataset. The lumen
2 https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest.

https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
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Table 1. Comparative results for gland segmentation.

Method F1 score Object dice Object hausdorff Weighted

Test A Test B Test A Test B Test A Test B Rank

Rota-Net 0.920 0.824 0.919 0.849 40.99 95.72 3.5

MILD-Net [4] 0.914 0.844 0.913 0.836 41.54 105.89 5.75

Xu et al. [13] 0.893 0.843 0.908 0.833 44.13 116.82 10.25

Micro-Net [7] 0.913 0.724 0.906 0.785 49.15 133.98 12.25

CUMedVision2 [1] 0.912 0.716 0.897 0.781 45.418 160.347 14

Freidburg2 [8] 0.870 0.695 0.876 0.786 57.09 148.47 17.25

annotations have been further refined since they were initially used in [4]. We
set 20% of the training set aside for evaluating the performance of our model
during training.

During training, we use an input patch size of 456× 456 with an output size of
308 × 308. This difference is due to valid convolution applied during up-sampling.
For each gland annotation, we perform a series of morphological operations to
convert the gland label to a 3 class target that consists of: inner gland; gland con-
tour and background. We perform flip, rotation, scaling, Gaussian blur, elastic
deformation and colour augmentation to the input patches during training.

3.2 Comparative Results

To assess the performance of our algorithm, we used the same evaluation metrics
that were used in the GlaS challenge [9], consisting of F1 score, object-level dice
and object-level Hausdorff distance.

In Table 1 we compare the gland segmentation performance of our proposed
approach with recent top performing methods, using a weighted rank score,
that was first proposed by Xu et al. [13]. This score weighs the ranks of each
metric according to the number of images in each dataset. Therefore, the rank
of Test A is multiplied by 0.75 and the rank of Test B is multiplied by 0.25.
Therefore, it makes sense to pay greater attention to Test A. We note that
the proposed approach achieves the state-of-the-art performance, given by the
best weighted rank score. Figure 3 displays some visual results of the proposed
method compared to the ground truth. We also display some areas of interest,
shown by the black boxes in Fig. 3(b) and (c), where the algorithm successfully
segments lumen, but is missed by the pathologist. It is important to note that the
proposed approach makes one prediction per pixel and no patch overlap is used
during processing, whereas other approaches may make multiple predictions per
pixel. For example, MILD-Net merges overlapping predictions and also uses a
test-time augmentation strategy.

Table 2 shows comparative results for simultaneous gland and lumen seg-
mentation. For effective evaluation, we compare with a modified U-Net and
FCN where, in a similar fashion to Rota-Net, the branches split after the final
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Fig. 3. Visual results of gland and lumen segmentation using our proposed method.
Yellow and green boundaries denote gland and lumen boundaries respectively. Black
boxes show areas of interest. (Color figure online)

Table 2. Comparative results for simultaneous gland and lumen segmentation. All
networks are converted to a dual-branch architecture, where the network splits after
the final up-sampling operation. Note, for conciseness we only evaluate on test set A.

Method F1 score Object dice Object hausdorff

Gland Lumen Gland Lumen Gland Lumen

Rota-Net 0.920 0.831 0.919 0.824 40.99 49.17

U-Net [8] 0.857 0.643 0.846 0.725 86.63 70.59

FCN-8 [6] 0.800 0.735 0.820 0.762 99.98 68.80

Table 3. Ablation study. RE denotes rotation equivariant network. RE+ denotes rota-
tion equivariant network, utilising a multi-class strategy at the gland output.

Method F1 Score Obj. dice Obj. hausdorff Parameters

Gland Lumen Gland Lumen Gland Lumen

Baseline 0.905 0.715 0.899 0.739 50.29 73.36 70.6M

RE 0.916 0.789 0.913 0.807 46.00 57.49 71.3M

RE+ 0.920 0.831 0.919 0.824 40.99 49.17 71.3M

up-sampling operation. We observe that our proposed approach is able to simul-
taneously segment both glands and lumen with high accuracy.

Finally, in Table 3 we perform an ablation study to show the effect of the
various network components. It is clear that the rotation equivariant approach
leads to a significantly better performance, which is improved further when the
contours are considered for effective gland separation. Compared to the baseline
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network, we reduce the number of kernels in each layer of the RE network by a
factor of two to maintain a similar number of parameters.

4 Conclusion

In this paper, we presented a rotation equivariant network for gland and lumen
segmentation that exploits the rotation symmetry inherent in histology images.
The network splits into two branches after the final up-sampling operation, where
each branch separately achieves the tasks of gland and lumen segmentation. At
the output of the gland branch, we incorporate a multi-class strategy to split
touching instances. We report state-of-the art results on the GlaS challenge
dataset.
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Abstract. Whole slide image (WSI) of mouse testicular cross-section
contains hundreds of seminiferous tubules. Meanwhile, each seminiferous
tubule also contains different types of germ cells among different histo-
logical regions. These factors make it a challenge to segment distinct
germ cells and regions on mouse testicular cross-section. Automated seg-
mentation of different germ cells and regions is the first step to develop
a computerized spermatogenesis staging system. In this paper, a set of
28 H&E stained WSIs of mouse testicular cross-section and 209 Stage
VI-VIII tubules images were studied to develop an automated multi-task
segmentation model. A deep residual network (ResNet) is first presented
for seminiferous tubule segmentation from mouse testicular cross-section.
According to the types and distribution of germ cells in the tubules, we
then present the other deep ResNet for multi-cell (spermatid, sperma-
tocyte, and spermatogonia) segmentation and a fully convolutional net-
work (FCN) for multi-region (elongated spermatid, round spermatid, and
spermatogonial & spermatocyte regions) segmentation. To our knowl-
edge, this is the first time to develop a computerized model for analyz-
ing histopathological image of mouse testis. Three segmentation models
presented in this paper show good segmentation performance and obtain
the pixel accuracy of 94.40%, 91.26%, 93.47% for three segmentation
tasks, respectively, which lays a solid foundation for the establishment
of mouse spermatogenesis staging system.

Keywords: Mouse testis histology · Seminiferous tubules ·
Whole slide image · Germ cell segmentation · Deep learning

1 Introduction

The testes are reproductive organs of male mammals, which is capable of produc-
ing germ cells, developing spermatogenesis, secreting androgen, and maintaining
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male sexual characteristics [1,2]. Due to the similarity of mammalian testicular
pathology, early studies of human reproduction are usually modeled on mouse
testes. During spermatogenesis, specific combinations of germ cells at different
developmental periods is called cellular associations or “stages” and “phases” of
spermatogenesis. The accurate spermatogenic phase division makes the dynamic
spermatogenesis process become stable, which can more accurately describe the
histopathological changes of germ cells. However, seminiferous tubule contains
diverse germ cells with complex structures and consecutive phases have little
difference, which both leads to difficult manual discrimination. By observing the
periodic morphological changes of spermatogenic phases, mouse spermatogenesis
is divided into I-XII stages [3]. Especially, stages VI-VIII tubules are the most
difficult consecutive phases to be distinguished by pathologists. In recent years,
with the rapid development of whole slide digital scanners, tissue slides can be
digitized and stored in digital image form [4]. It makes computerized quantita-
tive analysis of histopathological images become possible. The development of
a computerized staging system can help pathologists in making more accurate
staging decisions. Segmentation of different germ cells and regions in WSI is the
basis for building an automated spermatogenic staging system.

High-resolution histopathological images of a mouse testicular cross-section
(see Fig. 1(b)) are very large in size and there are many different germ cells and
histological regions in each tubule (see Fig. 1(c–g)). In general, there are (1) three
types of germ cells: spermatid (see Fig. 1(d)), spermatocyte (see Fig. 1(e)), and
spermatogonia round spermatids (see Fig. 1(f)), and (2) four histological regions:
round spermatids (see purple region in Fig. 1(c)), spermatogonia and sperma-
tocyte region (see red region in Fig. 1(c)), the lumen and elongated spermatid
(see green region in Fig. 1(c)), and background (see white region in Fig. 1(c))
regions. Therefore, automated segmentation of different germ cells and histolog-
ical regions in WSI is a challenged problem. Figure 1 shows the challenges to
segment various germ cells and histological regions in the mouse seminiferous
tubules.

In recent years, deep convolution neural network (CNN) has achieved great
success in the field of image classification and segmentation. The most famous
models are AlexNet [5], VGG Net [6], and ResNet [7], which all make outstand-
ing performance in the ImageNet Classification Competition. The structure of
histopathological images is complex. It is difficult to process histopathological
images by traditional image analysis methods. Fortunately, the emergence of
CNN in recent years is very suitable for dealing with such complex problems.
Deep learning methods can discover morphological and texture patterns from
histological images in a data-driven manner, and thus perform well in various
applications such as classification, segmentation and quantitative description
[8]. Comparing with the classification problem, the segmentation task in pixel-
wise fashion is more challenging. Most of pixel-wise segmentation models were
based on patch-wise sliding window and the pixel-wise segmentation results were
determined by the prediction results of its central pixel [9]. Recently, fully convo-
lutional network (FCN) has attracted considerable attention [10]. It can capture
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Fig. 1. Histopathological images of a mouse testicle slide at different resolutions and
a tubule with different germ cells and histological regions at 40X magnification. (a) a
digitalized WSI of mouse testicles at 1X magnification, (b) a testicular region at 2X
magnification, (c) a tubule region from (b) in Stage VII at 40X magnification where
different germ cells: round spermatid (d), spermatocyte (e), and spermatogonia (f)
are congested in three regions in (c): round spermatids region (purple), spermatogonia
and spermatocyte region (red). In the middle and outside of a tubule region (c) are
the lumen and elongated spermatid in green and background regions (g) in white,
respectively. (h) shows the manually annotated mask of three types germ cells in (c).
(Color figure online)

and utilize global context information on semantic segmentation tasks, which
is fitted to with our task of region segmentation according to the histological
distribution of different regions shown in Fig. 1(c).

Inspired by these works, we aimed at three segmentation tasks in mouse
testicular cross-section, including seminiferous tubule segmentation, multi-cell
(spermatid, spermatocyte, and spermatogonia) segmentation and multi-region
(elongated spermatid, round spermatid, and Spermatogonial & Spermatocyte
regions) segmentation. To our knowledge, this is the first time to develop com-
puterized model to analyze histopathological image of mouse testis. The rest of
the paper is organized as follows. The datasets used in the paper are introduced
in Sect. 2. Segmentation methods for three tasks are presented in Sect. 3. The
results are shown in Sect. 4. Finally, the discussion and concluding remarks are
given in Sect. 5.

2 Datasets

A set of 28 cross-sectioned testis slides were obtained from a institution as
Dataset 1 (D1). All of the slides were prepared in H&E staining and diagnosed by
experts. The size of each WSI is around 21000 × 23000 pixels and the compressed
storage space is approximate 1.5 GB. From these WSIs, 209 cross-sectioned semi-
niferous tubules of Stage VI-VIII were selected by expert pathologists and served
as Dataset 2 (D2) for this study.
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3 Methodology

Automated image analysis on mouse testicular cross-section comprises two parts:
(1) seminiferous tubule segmentation; (2) multi-cell and multi-region segmenta-
tion.

3.1 Seminiferous Tubule Segmentation

Seminiferous tubule segmentation is the first step to analyze the mouse testicu-
lar cross-section. The goal is to identify each seminiferous tubule from a cross-
sectioned testes. The flowchart of seminiferous tubule segmentation is shown
in Fig. 2. For each mouse testicular cross-section from WSI (see Fig. 2(f)), the
image was downsampled to 2X magnification (see Fig. 2(g)) and the seminiferous
tubule segmentation procedure worked under this magnification which was based
on the best resolution to visualize the tubule regions. Then the pixel-wise seg-
mentation model (see Fig. 2(a–e)) was developed to tubule regions’ segmentation.
The flowchart of seminiferous tubule segmentation framework comprises training
(see Fig. 2(a–e)) and seminiferous tubule segmentation phases (see Fig. 2(f–l)).
We used ResNet-18 model [7] whose network structure is shown in Fig. 2(e). The
network ends with a global average pooling layer and a 2-way fully-connected
layer with softmax. A detailed description of them can be referenced in [7].

Fig. 2. The flowchart of seminiferous tubule segmentation. It comprises training (a–e)
and seminiferous tubule segmentation (f–l) phases.

Method for Generating Training Samples. Figue 2(a–d) shows how train-
ing samples were built. The training set includes two types of image patches:
tubule and non-tubule, whose sizes are 39 × 39 pixels. Each image patch is a
context patch which accommodates the local spatial dependencies among cen-
tral pixel and its neighborhoods. As Fig. 2(b) shows, the boundaries of tubules,
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tubule regions, and background were labeled in green, red, and black, respec-
tively. As Fig. 2(c) shows, the randomly selected red patches whose central pixels
are in the tubule region in Fig. 2(b) are tubule patches while green and black
patches whose central pixels are on the boundary and background are non-
tubule patches. These tubule and non-tubule patches build the training set (see
Fig. 2(d)).

Pixel-Wise + Sliding Window Scheme for Seminiferous Tubule Seg-
mentation. In the training phase (see Fig. 2(a–e)), the ResNet 18 model was
trained with the training samples built in the previous section. In the tubule
segmentation phase (see Fig. 2(f–l)), the trained ResNet and a sliding window
scheme was leveraged to choose the context image patches from Fig. 2(g). The
window slides across the entire image row by row from upper left corner to
the lower right with a step size of 1 pixel. Border padding is employed to
address issues of boundary artifacts. The pixel-wise segmentation is achieved
(see Fig. 2(i)) by predicting the class probabilities of the central pixel of each
context patch chosen by sliding window scheme. The segmentation results were
then upsampled back into the original image size via bilinear interpolation (see
Fig. 2(j–l)).

3.2 Multi-cell and Multi-region Segmentation on Stage VI-III

ResNet for Multi-cell Segmentation. The flowchart of multi-cell segmenta-
tion framework comprises training (see Fig. 3(a–g)) and multi-cell segmentation
phases (see Fig. 3(h, k–n)). Different from seminiferous tubule segmentation, as
can be seen in Fig. 3, we focus on round spermatid (see Fig. 3(c)), spermatocyte
(see Fig. 3(d)), and spermatogonia (see Fig. 3(e)) in a cross-sectioned seminifer-
ous tubule. This is no longer a two-class problem, but a multi-class problem. As
shown in Fig. 3(g), the network ends with a global average pooling layer and a
4-way fully-connected layer with softmax. The construction of training set here
is similar with what we have stated in Sect. 3.1. The difference is turnning two
categories into four categories. The corresponding data set generation method
is shown in Fig. 3(a–f).

FCN for Multi-region Segmentation. The flowchart of multi-region seg-
mentation framework comprises training (see Fig. 3(o–q)) and multi-region seg-
mentation phases (see Fig. 3(h, q, i)). According to the distribution of nuclei in
Fig. 3(o), we use FCN to semantically segment three regions. The FCN we used
in this paper is AlexNet-FCN. The traditional CNN can be transformed into
a FCN with some simple modifications. In this paper, we treated each neuron
in the fully connected layer of the convolutional neural network as the convolu-
tion kernel by keeping the same dimension as its input [10]. The training set of
FCN model was built by manually annotating region masks of three regions as
showed in Fig. 3(p). The region mask has the same size as the original image.
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The values of the pixel points in different areas on the label map can be repre-
sented by category information. For example, the elongated spermatids region
is labeled as the first category, and the values of this region in all the label maps
are marked as 1. As can be seen in Fig. 3(p), there are 4 categories of the entire
label map, including the elongated spermatids region (light blue) labeled 1, the
round spermatid region (yellow) labeled 2, the Spermatogonial&Spermatocyte
region (brown) labeled 3, and the background (dark blue) labeled 4.

Fig. 3. The flowchart of multi-cell and multi-region segmentation. (Color figure online)

4 Results

4.1 Seminiferous Tubule Segmentation

The number of training set shows in Table 1. In order to reflect the effective-
ness of proposed method, two other methods: gLoG [11], CoNNACaeF [12] were
compared in terms of segmentation accuracy. Four quantitative measurements:
Pixel accuracy, mean accuracy, mean IU, frequency weight IU [10] were used. The
qualitative and quantitative segmentation results of proposed model and com-
pared models are shown in Fig. 4 and Table 2, respectively. The results suggests
that proposed model outperformed two compared models. The pixel accuracy of
our model is 94.40%, which suggests best performance in spermatogenic tubule
segmentation.
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Table 1. The illustration of datasets studied in the paper and corresponding quan-
titative evaluation results for three segmentation tasks with proposed segmentation
models.

Segmentation Datasets Total Patches Model
Training Set Testing Set

of images model set validation set Classification accuracy of images Pixel accuracy

Tubule D1 28
Tubule

ResNet-18 7
98449 16402

97.93% 21 94.40%
Background 90745 16947

Multi-cell D2 209

round spermatid

ResNet-18 120

85157 37950

99.13% 89 91.26%
spermatocyte 83068 33948
spermatogonia 81774 36384
Background 134810 36136

Multi-region D2 1254 - AlexNet-FCN 720 720 - - 534 93.47%

Fig. 4. The illustration of the tubule region segmentation on a mouse testicular cross-
section (a) by gLoG (b), CoNNACaeF (c), and model presented in this paper (d).

Table 2. Quantitative results of proposed and compared models in tubule segmentation
on D1. The accuracy showed in the table reflects the average values across all the testing
samples.

Proposed gLoG [11] CoNNACaeF [12]

Pixel accuracy 94.40% 58.77% 86.33%

Mean accuracy 92.73% 45.94% 84.87%

Mean IU 88.32% 33.74% 74.28%

Frequency weight IU 89.30% 43.17% 76.11%

4.2 Multi-nuclei and Muti-region Segmentation on Stage VI-VIII

The number of training set shows in Table 1. In nuclei segmentation part,
Fig. 3(a–g, h, k–n) shows the flowchart of nuclei segmentation using pixel-wise
method. The ResNet model achieves an classification accuracy of 99.13% (see
Table 1) on the validation set. The accuracy of the pixels on the test set is 91.26%
(see Table 1). Because our data for FCN training is relatively small. In region
segmentation part, we roll the image horizontally, vertically, and rotate it every
90 degrees, expanding D2 to six times. Meanwhile, we adopt transfer learning
methods using the model parameters which have already been trained in [10] as
initialization parameters of our FCN model. Figure 3(h, q, i) is the flowchart of
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region segmentation using semantic segmentation method. The pixel accuracy
of the FCN model on the test set is 93.47% (see Table 1).

5 Discussion and Concluding Remarks

The establishment of automated staging system for mouse seminiferous tublues
can not only assist pathologists in staging, but also combine with mouse gene
data in future research to explore new comprehensive staging criteria. As the
active center of spermatogenesis process, the distribution and morphology of
germ cells provide a very effective basis for staging. Therefore, the automatic
segmentation of the seminiferous tubules, germ cells and tissue regions is an
important prerequisite to construct an automatic staging system for mouse sper-
matogenic tubules. In this paper, these three segmentation tasks are our first
attempts to analyze the mouse tesiticular pathology. Our models achieved good
performance, which provides a good basis for establishing spermatogenesis stag-
ing system. In the future, we will extract the histological features of the nucleus
and region, and then train the appropriate classifier for mouse spermatogenesis
staging.
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Abstract. Whole slide imaging (WSI) refers to the digitization of a
tissue specimen which enables pathologists to explore high-resolution
images on a monitor rather than through a microscope. The formation of
tissue folds occur during tissue processing. Their presence may not only
cause out-of-focus digitization but can also negatively affect the diagnosis
in some cases. In this paper, we have compared five pre-trained convolu-
tional neural networks (CNNs) of different depths as feature extractors
to characterize tissue folds. We have also explored common classifiers
to discriminate folded tissue against the normal tissue in hematoxylin
and eosin (H&E) stained biopsy samples. In our experiments, we man-
ually select the folded area in roughly 2.5 mm× 2.5 mm patches at 20x
magnification level as the training data. The “DenseNet” with 201 layers
alongside an SVM classifier outperformed all other configurations. Based
on the leave-one-out validation strategy, we achieved 96.3% accuracy,
whereas with augmentation the accuracy increased to 97.2%. We have
tested the generalization of our method with five unseen WSIs from the
NIH (National Cancer Institute) dataset. The accuracy for patch-wise
detection was 81%. One folded patch within an image suffices to flag the
entire specimen for visual inspection.

Keywords: Digital pathology · Tissue folds · Deep features · SVM

1 Introduction

For most types of cancer, biopsy is a dominant procedure for diagnosis. During
the biopsy, a small part of suspicious tissue is cut out. After tissue preparation,
a tiny section of tissue is mounted on a glass slide. Pathologists visually inspect
these glass slides under a microscope and write a report to justify a primary
diagnosis [24].

The rapid progress of image acquisition technologies over the past decade
has led to a dramatic change in the pathology field by developing digital pathol-
ogy. Most whole slide scanners can produce a high-resolution digital image of
histology glass slides in a few minutes [1]. These WSIs can be analyzed on
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Fig. 1. Sample folded tissues from our dataset.

a display rather than through the microscope. In addition, sharing scans for
teleconsultation purposes are much more convenient in digital version compared
to shipping the glass slides to other laboratories to solicit a second opinion [20].

Regardless whether we use digitization or microscopy, the presence of arti-
facts such as folded tissue might negatively affect the diagnosis [4]. When digital
technology is used other artifacts like blur may also reduce the quality of com-
puterized algorithms [10]. Tissue fold can occur in the sectioning part of tissue
processing when a thin tissue slice is folded [11]. Figure 1 shows three samples
of folded tissue.

The difference in tissue thickness changes the precise lens focus when one or
more focus points are localized on the folded parts. Most WSI scanners start with
a lower resolution pre-scan phase which selects focus points in the some areas
with possibility of manual adjustment. Tissue-fold detection can avoid placing
focus points on the folded areas. In addition, different tissue cuts are available
in the laboratories. Selecting a suitable glass slide by a rapid pre-scan quality
control system could save valuable scanning time and improve the workflow.

2 Related Works

The research on tissue-fold detection is relatively young. Pinky et al. [2] proposed
a technique to use colour information to detect tissue folds. The fact that the sat-
uration of the folded area is different from other parts justifies the development
of a colour shifting method to magnify the colour metric difference in folded and
non-folded areas [3]. Other authors have suggested adding the intensity level
to the saturation criteria to develop a fold segmentation method. In such algo-
rithms, if saturation minus intensity is higher than a certain threshold, this area
is segmented as a folded tissue [10]. More recently, statistical approaches such
as the rank-sum method have been applied to find image features (e.g., colour
and connectivity descriptors) that are discriminated from the same set of WSIs
with and without folds [11].

Generally, there is an inevitable drawback associated with the use of colour
information as a feature for tissue-fold distinction. Colour-based approaches
might easily fail due to the colour fluctuations which occur in digital pathology
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relatively often. These changes might happen mainly because of “differences in
manufacturing techniques of stains, laboratories’ staining protocols, and colour
responses of digital scanners” [21]. Convolutional neural networks (CNNs), on
the other hand, have been widely used recently in almost every field of machine
vision due to their unique ability to capture accurate data-driven features [7].
As result of augmentation techniques in their training process, these networks
are fairly robust to a variety of changes including colour changes [13]. As a mat-
ter of fact most CNNs are trained through diverse augmentation techniques,
among others variations of color. In the deep learning literature, the importance
of labeled data is undeniable. Deep networks need more and more labeled train-
ing data to train each layer’s parameters when the networks become deeper and
deeper [18]. On the other hand, providing a large number of labeled data in
the medical domain by the expert physicians is expensive. In contrast, transfer
learning is considered to be an applicable solution to fine-tune a pre-trained deep
network with a much smaller training set compared to training from scratch. The
idea behind transfer learning is that if the network is trained with a large dataset
such as ImageNet [5], it learns useful (general) information that can be applied
in completely different domains. In general, for any given pre-trained network,
the first layers will be held unchanged (i.e., frozen), while the weights of the
last few layers will be adjusted by re-training with the data of the new domain
[12,14]. Moreover, using deep pooling or the weights of fully connected layers
have been reported to be excellent sources for feature extraction [8,22].

In this work, we have compared five well-known pre-trained CNNs as feature
extractors for classifying folded tissue against normal tissue. VGG16, GoogleNet,
Inception V3, ResNet 101 and DenseNet 201 are the networks that have com-
pared in our experiments. We also examined the discrimination power of decision
trees, SVM and k-NNs with respect to the classification of different deep features.

3 Materials and Methods

3.1 Folded-Tissue Dataset

In our experiments, we created a training dataset of folded tissue images. We had
access to 79 rejected WSIs from Huron Digital Pathology1. These scans had been
rejected due to presence of different artifacts. Since there was a large number of
folded-tissue cases in these slides, we created a folded-tissue training dataset and
did not consider other types of artifacts. The folded regions are selected on fairly
large windows at 20x magnification (about 5000× 5000 pixels) which is roughly
equivalent to 250×250 pixels at 1x magnification. In practice, low magnification
images could be easily obtained in the fast pre-scan mode.

We have manually selected 112 folded-tissue patches as the training set
through visual inspection. Since we needed to classify them against the nor-
mal (unfolded) tissue, we selected 315 images from the area around the folded
regions as negative samples (i.e., unfolded tissue). We augmented each image to

1 http://www.hurondigitalpathology.com/.
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12 images by rotating (0◦ and 90◦), flipping (flipped/no-flipped) and changing
the illumination (original, suppressed, amplified). As a result, we established a
dataset of 1,344 folded patches and 3,780 fold-free patches. Change in illumina-
tion was done by converting each image to the CIELAB colour space (LAB),
amplifying and suppressing the L channel by a factor of 1.25 and 0.75, respec-
tively. Finally, we converted them back to RGB colour space. At the end, all
patches were re-sized to input size of each pre-trained network required size (e.g.
255 × 255 for DenseNet).

To evaluate the generalization and the practical performance, we also selected
five WSIs from the NIH dataset2. We selected WSIs from three different organs
(kidney,lung and colon). Figure 3 shows two sample WSIs alongside the boundary
boxes of our classifier.

3.2 Pre-trained CNNs

CNNs are a class of deep networks designed to learn a large bank of filters. These
filters are convolved with the input image in a hierarchical fashion. The major
advantage of CNNs is their independence from prior knowledge and handcrafted
feature design. There are several deep networks that have been trained with avail-
able public images and can be employed for classification in different domains.
VGG16 [16], GoogleNet [18], Inception-V3 [19], ResNet [6] and DenseNet-201
are major examples for pre-trained networks.

DenseNet-201 is a CNN that is designed to overcome the gradient vanishing
problem by adding dense blocks and transition layers. The vanishing gradient
prevents a network from growing. As a result of DenseNet extensions, the net-
work learns rich feature representations for a wide range of images due to its
extremely deep architecture. We used the last fully connected layer of the net-
work with 1024 elements as the feature vector.

4 Experiments and Results

We experimented with several learning methods to classify the dense features
including SVM [17], decision trees [15] and k-NNs [23] to find the optimal classi-
fier for tissue fold detection. As listed in Table 2, the ability of the quadratic SVM
to classify the folded and non-folded tissue was the highest with 96.3% accuracy.
However, median Gaussian SVM and fine k-NN also achieved acceptable results
with accuracy values of 94.8% and 94.1%, respectively. Table 2 compares the
performance of different classifiers when DenseNet features were used.

Augmentation and leave-one-out schemes were selected to compensate for the
small size of training data. Since the size of the training data was relatively small,
we applied augmentation techniques to increase the number of observations. As
well, the leave-one-out strategy [9] to evaluate the accuracy was used to perform
as many experiments as possible.

2 https://gdc.cancer.gov.

https://gdc.cancer.gov


Deep Features for Tissue-Fold Detection 129

Table 1. The accuracy of five pre-trained
networks.

Network Depth Sensitivity Recall Accuracy

1 VGG-16 16 87.55% 90.8% 91.8%

2 Google Net 22 90.8% 92.6% 93.7%

3 inceptionv3 48 90.5% 92.85% 93.7%

4 resnet101 101 93.2% 92.95% 94.6%

5 densenet201 201 94.6% 96.85% 96.7%

Table 2. The accuracy of different
classifiers.

Classifier Sub-type Accuracy

1 Tree Fine 81.5%

2 Tree Coarse 82.9%

3 SVM Quadratic 96.3%

4 SVM Med Gaussian 94.8%

5 k-NN Fine 94.1%

6 k-NN Cosine 87.1%

Figure 2 shows the confusion matrices of leave-one-out quadratic SVM with
augmentation on the right side versus no augmentation on the left side. By
applying the augmentation method, not only did the total accuracy increase
slightly to 97.2% but also the false negative (folded patch, but classified as
normal patch) also decreased from 2.6% to 2.1%. However, the false positive
(normal patch, but classified as a folded patch) remained unchanged. In general,
any type of error is not desirable, nevertheless, in our case, false positive might
be preferred over false negative.

Fig. 2. Confusion matrices of folded tissue classification. The left matrix depicts the
classification without augmentation while the right matrix shows the values after aug-
mentation.

Table 1 shows the performance of the networks when their features were clas-
sified by SVM. As it can be seen from the table, the performance of deep features
increase in our application when the depth of network increased.

Classifiers, which are trained on small datasets predominantly fail to gener-
alize on new classification categories. In our experiments, we selected five new
WSIs with a noticeable amount of folded tissue from the NIH dataset to evaluate
the ability of deep features and SVM to generalize to unseen cases. We applied
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Fig. 3. Results of applying our classifier for two selected WSIs from NIH dataset (lung
and kidney) - folded classes are distinguished by the blue boxes while the yellow colour is
used for normal tissue: (a) 3000 × 3000 patches are fed to the classifier, (b) 1500 × 1500
patches are fed to the classifier, and (c) a large scan with 4000 × 4000 patches. (Color
figure online)

our method in different window sizes with no overlap. All patches will be resized
to 255 × 255 before feeding to the network. Figure 3 shows sample WSIs from
NIH database with different window sizes. Blue boxes are representative of the
presence of folded tissue while a yellow box represents normal tissue. The overall
accuracy in generalization test set with 4000×4000 pixel size dropped to 81%. A
possible explanation for this result may be the lack of adequate fold pattern sam-
ples in the training set. Besides the difference in an organ type, scanner brand
should also be considered. However, as we trained and tested the classifiers for
patch-wise tissue detection, one has to bear in mind that the detection of one
tissue fold is sufficient to flag a scan for visual inspection.

It can be seen in Fig. 3(b) that there is a folded patch which has not been
detected. There might be some justifications for this false negative -yellow win-
dow in Fig. 3(b)-. The first one is that our training dataset enclosed the entire
folded tissue within each patch (i.e., no folded tissue was split between two
patches). In this false negative example, however, the patch does not contain
all of the folded tissue, and parts of the folded tissue are contained within the
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neighbouring patches. The same error has occurred in Fig. 3(c). The second jus-
tification is that the training patch sizes were about 5000 by 5000 pixels, while
the experiment window size was 1500 by 1500, therefore training with bigger
size patches (patch in lower magnification) might have been the reason for false
negatives.

5 Conclusions

Quality control for artifact detection in histopathology slides could be used in
order to reject defective slides. This procedure may save time in clinical practice.
Not only can folded tissue, as one of the most common artifacts in histopathology
slides, lead to rejection of slides in clinical practice, but it may also negatively
affect the diagnosis. In this paper, a procedure based on deep features has been
proposed to detect folded tissues in large scan regions. We trained an SVM clas-
sifier based on the features of augmented training patches to classify folded and
normal tissues. The accuracy in the presented dataset was quite high, whereas
the model’s generalization on new WSIs was acceptable.

Several topics can be anticipated for the future works. A larger dataset, with
a known source of organ could boost up the generalization. And different patch
size selection for dataset also could help to boost the accuracy.
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Abstract. Mitosis detection in Hematoxylin and Eosin images and its
quantification for mm2 is currently one of the most valuable prognostic
indicators for some types of cancer and specifically for the breast cancer.
In whole-slide images the main goal is to detect its presence on the full
image. This paper makes several contributions to the mitosis detection
task in whole-slide in order to improve the current state of the art and
efficiency. A new coarse to fine pyramidal model to detect mitosis is
proposed. On each pyramid level a Bayesian convolutional neural network
is trained to compute class prediction and uncertainty on each pixel. This
information is propagated top-down on the pyramid as a constraining
mechanism from the above layers. To cope with local tissue and cell
shape deformations geometric invariance is also introduced as a part
of the model. The model achieves an F1-score of 82.6% on the MITOS
ICPR-2012 test dataset when trained with samples from skin tissue. This
is competitive with the current state of the art. In average a whole-slide
is analyzed in less than 20 s. A new dataset of 8236 mitoses from skin
tissue has been created to train our models.

Keywords: Mitosis detection · Pyramid · Bayesian model ·
Multiscale processing

1 Introduction

The quantification of mitotic cells in Hematoxylin and Eosin (H&E) images and
more specifically its density per square millimeter is one of the current most
stronger markers in cancer prognosis.
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The advent of the high-resolution scanner technology to the computational
pathology field has allowed to obtain digital whole-slides images (WSI). Never-
theless, the huge size of the images and the computing time of the current detec-
tion algorithms impose in practice a partial rather than a fully image detection
and counting.

Several difficulties can be identified as responsible of the current low detec-
tion rate on H&E stained images. On one hand, the variability in RGB color map
due to different stain intensities and scanners technology [9,12]. On the other
hand, the presence of very hard false positives due to Hematoxylin staining of
non-cells tissue also makes harder the detection process. In addition, the mitosis
undergoes four different stages with different shapes and appearances. This geo-
metric variability and the low number of mitosis pixels per WSI also represent
a new source of false positive. These difficulties all together make the design of
an efficient and accurate mitosis detection algorithms a challenge task [16].

Different Challenges such as TUPAC-2016 [10], MITOS-ATYPIA [5] and
MITOS ICPR-2012 [13] have been organized in the last years to foster the detec-
tion algorithms. But the contributed datasets from them all are too small and
only from breast cancer tissue. Currently, there are no other larger open access
mitosis datasets. We have created a mitosis dataset from skin cancer images to
train our model. In this type of cancer mitosis detection is also a very relevant
prognostic indicator [14]. In order to compare our model with other results in
the literature we have tested with MITOS ICPR-2012.

2 Related Works

Many contributions to the use of CNN model for mitosis detection have been
proposed since the ICPR-2012 challenge MITOS ICPR-2012 [13] was available
[2,3,17]. The best result from all these approaches is an F1 score of 78.8%. In [8]
an adaptation to the general object detection framework from CNN, Faster R-
CNN, is proposed. They focus on the use of very deep architectures for mitosis
detection achieving an F1-score of 83.2% in MITOS ICPR-2012. More recently
in [15] a new way of approaching the detection task is proposed. They stain
twice each slide using Phospho-histone H3 (PHH3) and H&E and leverage on
the complementary properties of these stains to improve the detection. They
succeed in removing many of the false positives but at the cost of a very complex
processing. Our method addresses a similar goal but from a pyramidal approach.
All mentioned approaches exploit the depth increment in the architectures as the
main mechanism to generate good features. In [19] an approach inspired in Wide
Residual networks (WRN) [18] focus on the wide of the layer, instead of the
number of layers. This fact simplifies the architecture making it more efficient
at test time and easier of training. They reached an F1 score of 64.8% in the
challenge TUPAC-2016 [10], which is a result competitive with the state of the
art for this dataset. Our architectures are inspired by this network.

The feature extraction stage of all above approaches either use the 40x scale
or use a fine to coarse feature pyramid starting in 40x. In both cases the highest
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resolution scale is the input information. In contrast, here we propose a coarse to
fine approach in a top-down pass through a pyramid representing three scales of
the image. We find benefits in both efficiency and accuracy. The standard CNN
models lack uncertainty measurements about the predictions as well as specific
layers to obtain invariance to geometric deformations. The use of a Bayesian
approach to CNN allows us to compute uncertainty in a natural way. On each
internal pyramid level, prediction and uncertainty from the above levels are
used as input to improve the final model prediction. We find that information
from lower resolutions allow us to constraint the optimization process at the
highest resolution. In addition, and to cope with both the cell shape variability
induced by the phases of the mitosis and the tissue local deformations, our model
incorporate specific layers to compute geometric invariant features [6].

In summary our contributions are: (a) A new and fast pyramidal mitosis
detection algorithm for WSI achieving a F1-score competitive with the state
of the art on MITOS ICPR-2012 dataset; (b) A new information propagation
mechanism between scales from a cascade of Bayesian CNN model; (c) The use
of uncertainty and geometric invariance to improve the detection score; (d) A
model able of learning knowledge transfer between tissues; (e) Mitosis detection
time on WSI faster than ever before.

The rest of the paper is as follows. Section 3 we describes the model. Section 4
describes the training and test stages. Section 5 shows the experiment and Sect. 6
show the discussion and conclusions.

3 Model Description

Our model is defined as a forward cascade of classifiers applied on a course-to-
fine image pyramid build from a WSI at three magnification scales 10x, 20x and
40x. We assume 40x represents the sample image and the lowest pyramid level.
Figure 1 shows a diagram of the architecture. On each pyramid level a Bayesian
CNN classifier inspired in the design of a Wide Residual Network [18] is trained.
The three classifiers in the cascade output a mask of detected mitosis, a feature
map, and the uncertainty per feature in terms of standard deviation as shown
in Fig. 1.

These feature maps are used by the next detectors, top-down, as soft con-
straints to focus the training on the most difficult negative samples (see Fig. 1).
We call this model PB-CNN. Furthermore, to make the model resistant to local
and shape deformations, appearing by both the process of collecting and staining
tissue and cells shape deformation, a Spatial Transforming Layer [6] is applied
before the residual blocks 4th and 7th in scale x40 (see Fig. 2). We call this model
PB-CNN-STP. On the output of last classifier, we put to zero the predictions
of those pixels which uncertainty is higher than a threshold fixed in training.
The experiments show that these higher values are usually associated to WSI
artifacts of low frequency in the training dataset. Finally, a non-maximum sup-
pression step is carried out to keep, in cluster of overlapping regions, only the
one with the highest probability. Our final output is a list of coordinates joint
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Fig. 1. Diagram showing the pyramidal model and the cascade of classifier to process
the pyramid. The top of the figure shows, in this order, the input image, the pyramid
building and the computation of the initial mask at 10x. The bottom shows how the
first two pyramid levels provide input information to the third pyramid level. The result
is the output of a non-maxima suppression process. See details in the text.

to their corresponding probability and standard deviation. As it can be seen in
Fig. 2, we use a late fusion criteria incorporating feature maps and uncertainty,
of the above levels, at the end of network. We have found in our experiments
that this late fusion of features provides better results that doing it earlier.

The architecture of our detector is shown in Fig. 2. The architecture is a
Wide Residual Network [18] that uses three Wide Residual Units (WRU) (see
right block). To reduce the spatial size of processed patch, we use a stride of 2
at certain layers (indicated by “/2” in the figure), in the case of the WRU block,
the stride is applied at the first convolutional layer. The same architecture is
used for PB-CNN-SPT adding a Spatial Transforming Layer [6] at the scale 40x
as indicated previously.

4 Training and Test

4.1 Dataset

The dataset is created from 22 WSI of melanoma skin cancer. The images were
acquired using a scanner Philips with a resolution of 0.25µ per pixel. A senior
pathologist of the Unit of Computational Pathology of the University Hospital
San Cecilio in Granada labeled the WSI at 40x by indicating the center of the
mitosis. 8236 were annotated mitosis.
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Fig. 2. Network architecture used for PB-CNN (see left figure). K × K × N Conv
indicates a convolution layer with K × K kernel and N filters. /2 idicates that the
convolutution layer uses a stride of 2. 2 × 2 AVG-pooling indicates an average pooling
layer of kernel 2 × 2.

4.2 Input Mask at 10x

To detect initial relevant regions at 10x we apply a Laplacian of the Gaussian
(LoG) filter with σ = 9 over the Hematoxylin band obtained by color decon-
volution [9]. Then a thresholding for negative values that are less than −0.28
is applied. We select the windows centered at each connected component as
possible candidates to contain a mitosis. A window of size 24× 24 pixels is used.

4.3 Learning and Testing

Let’s denote by GTL the pyramid ground-truth labeling defined by the coor-
dinates of mitosis centers in all scales. A strong labeling pyramid (MGTL) is
generated, by labeling as 1 those windows inside circles of fixed radius centered
at the GTL’s mitosis centers. Radius of 96, 48 and 24 pixels are used for 40x, 20x
and 10x scale respectively. The windows of label 0 on each level are computed
in runtime as the difference between the MGTL mask and the mask obtained
by thresholding and extrapolating the predicted probabilities from the above
pyramid level, let denote it as PR. The used threshold is fixed in training time
in order to keep all GTL windows within the class 1. The label 0 at each level
represents hard false positive, since not being mitosis were predicted as such
with high probability by the above level. In the case of the first level (10x), the
mask computed in Sect. 4.2 is used as PR. At each pyramid level the negative
training samples are obtained by sampling of the mask of class 0. The positive
samples are patches centered at the coordinates indicated in GTL. The patch
size used is 24 × 24, 48 × 48 and 96 × 96 for scales 10x, 20x and 40x, respec-
tively. Before extracting the patches for training, we use the stain normalization
algorithm proposed in [12] to reduce the variation in the training dataset. This
normalization is also used during testing before the WSI is processed.

Each classifier in the pyramid is trained for 90 epochs with the Adam opti-
mizer [7] to minimized the binary cross-entropy loss: BCE(y, p) = y log(p) +
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(1 − y) log(1 − p) where y is the label and p the predicted probability of the
sample being mitosis. The probability value of the dropout used in all the mod-
els was 0.4 and the weight decay was set to 10−4. The learning rate was set to
10−3 for PB-CNN and 5 · 10−4 for the scale 40x of PB-CNN-STP; in both cases
was divided by 10 each 30 epochs. Each batch was constructed by randomly
sampling 32 positive samples and 32 negative samples. Each epoch samples 106

batches.
Data augmentation has been applied from random rotations and mirroring.

We also apply random shifting up to 4, 8 and 16 pixels for scales 10x, 20x and
40x respectively, as well as random scaling by a factor sampled in the range
[0.75, 1.25]. Additive Gaussian noise with 0.05 of standard deviation was also
added to the input. Finally, in order to introduce robustness to color variation,
we use the stain augmentation process proposed in [8] with α and β parameters
sampled in the ranges [0.995, 1.05] and [−0.05, 0.05] respectively.

We implement the Bayesian approach according to [4]. For it, we sample
the dropout units from a Bernoulli distribution with probability p = 0.4. Once
trained, the prediction and uncertainty of the network per each input image are
computed as the average of the values of 10 new samples of the dropout units
after weight adaptation by the forward pass.

Finally, we have found necessary to apply a high Dropout rate to the feature
maps of previous levels at the beginning of the training process. This was done
in order to force not to rely too much in previous predictions and extract useful
information from the current scale. We set this dropout rate to 0.8 and linearly
decrease it to 0 at epoch 40.

5 Experiments

To demonstrate the benefits of our proposed PB-CNN, we first test it on our
dataset conformed by 22 WSIs. We separate the WSIs in training and test sets
by randomly selecting 5 WSIs as the test set and leaving the remaining 17 ones
for training. We have 7133 mitoses for training and 1103 for testing.

Table 1. Two first rows show a comparison with state of the art methods on ICPR-
2012 MITOSIS test set [13]. Last three rows show a comparison on our test dataset of
5 WSI. Evolution of the F1-score and processing time are shown by scales. Results for
the times were calculated applying sliding window on each pixel and using a Nvidia
Titan X.

Method PBCNN-STP DeepDet [8] RR [11] CasNN [1]

F1 score 82.6% 83.2% 82.3% 78.8%

Method PBCNN10x PBCNN20x PBCNN PBCNN-STP WRCNN40x

F1-score 62.8% 72.5% 78.1% 81.3% 71.2%

Ave.Time WSI 27 ± 11 28 ± 10 29 ± 11 31 ± 11 56 ± 23
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At the second row of Table 1 we show the F1-score and time increase of adding
each level of the pyramid, as well as using the Spatial Transforming Layer [6].
All models were tested using the same framework and the same computer with a
Nvidia Titan X with 12 GB of RAM. As the table shows, each level comes with
a significant increase in performance at the cost of a small increase in compu-
tational time. Adding the Spatial Transforming Layer [6] we get an increase of
3.2% in F1-score at the cost of a slightly impact on the processing time. For the
sake of comparison, we train a Bayesian Wide Residual Network identical to the
one used on the 40x scale only, we call it WR-CNN-40x. The training process
was the same as described for our PB-CNN in Sect. 4.3, although we change the
dropout probability to 0.3 since we find it gives better results. The results of
this WR-CNN-40x are show in the two first rows of the Table 1. The propose
PB-CNN is almost two times faster and gets a significant better F1-score than
this WR-CNN-40x, showing that the increase obtained is due to the pyramid
architecture.

In order to compare our models with other in the literature, we train our
best performing model PB-CNN-STP with our 22 WSI and test it on MITOS-
ICPR2012 test set containing images produced by the Aperio XT scanner. Then,
we extract the features provide by each scale before the last classification layer
and train a Random Forest classifier on the training dataset of the Aperio XT
scanner. Table 1 shows the results in comparison with other state of the art
methods. We can see that the best of our proposed method get a competitive
result against current state of the art in F1-score, despite being trained on WSI
of a different tissue.

6 Discussion and Conclusions

A new coarse to fine cascade of CNN Bayesian models for mitosis detection has
been proposed. The new mechanism of information propagation from top to bot-
tom, using the uncertainty of the prediction, allow to get results competitive with
the state of the art on MITOS ICPR-2012 dataset. To the best of our knowledge,
this is the first time that a coarse to fine approach combined with uncertainty is
used in mitosis detection. In our experiments, the Bayesian pyramid approach
reduces the computation time by a factor of two and increases by 7% the F1-score
with respect to the same CNN architecture applied only over the 40x scale. We
have also shown the benefits of using Spatial Transforming Layers to deal with
local geometric deformations. On our dataset this invariance increases the F1-
score score by a 3.2%. It is also remarkable that our architecture is trained with
samples from a different tissue than breast cancer. This shows that our model is
able of learning useful mitosis features for the transfer of learning between tis-
sues. Regarding efficiency, the times measured on whole WSI make our method
a good candidate for daily clinic. More experiments on harder databases have to
be carried out in order to assess the good properties pointed out for the model.
The addition of new input information from inmunohistochemistry stains is also
other relevant issue for future work.
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Abstract. Mitosis detection in hematoxylin and eosin (H&E) images is
prone to error due to the unspecificity of the stain for this purpose. Alter-
natively, the inmunohistochemistry phospho-histone H3 (PHH3) stain
has improved the task with a significant reduction of the false negatives.
These facts point out on the interest in combining features from both
stains to improve mitosis detection. Here we propose an algorithm that,
taking as input a pair of whole-slides images (WSI) scanned from the
same slide and stained with H&E and PHH3 respectively, find the match-
ing between the stains of the same object. This allows to use both stains
in the detection stage. Linear filtering in combination with local search
based on a kd-tree structure is used to find potential matches between
objects. A Siamese convolutional neural network (SCNN) is trained to
detect the correct matches and a CNN model is trained for mitosis detec-
tion from matches. At the best of our knowledge, this is the first time that
mitosis detection in WSI is assessed combining two stains. The experi-
ments show a strong improvement of the detection F1-score when H&E
and PHH3 are used jointly compared to the single stain F1-scores.

Keywords: Mitosis detection · WSI · PHH3 and HE · Siamese CNN

1 Introduction

The quantification of mitosis in histopathological tissues and specifically its ratio
per square millimeter is one of the most relevant factors in the prognosis of
cancer. Unfortunately, the process of mitosis detection on images stained with
standard hematoxylin and eosin (H&E) is difficult and prone to errors due to
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multiple factors consequence of its unspecificity [16]. H&E staining only helps
indirectly to mitosis identification, being the hyperchromaticity induced on the
mitotic cell nucleus one of the its most salient features. Unfortunately, many
others tissue parts are stained with a similar color too.

Phospho-histone H3 (PHH3) is a well-known immunomarker, specific for cells
undergoing mitoses [14]. This fact causes PHH3 to improve the inter-observer
variability of the mitosis count by a decrease in false negatives, but at the same
time is prone to false positives as for instance in inter-phase tumor cells with
phosphorylated core protein H3. The staining with PHH3 has meant an impor-
tant improvement in mitosis detection for many type of cancers [4,12].

The technology for the whole scanning of tissue slides (WSI) is able of digitiz-
ing a slide at resolutions of 0.25−0.16µ per pixel, which means image sizes of 1010

pixels. In this setting, the task of mitosis detection can only be addressed using
accurate and efficient algorithms. The convolutional neuronal network (CNN)
models have demonstrated, in recent years, a clear superiority over traditional
approaches in this task. [6,10]. Here we focus on these kind of models.

An issue that remains to be explored in some detail is the relevance of the
combination of stains in the mitosis detection process. Recently, in [15] an inter-
esting approach taking advantage of the properties of both stains, H&E and
PHH3, to build a mitosis detector on H&E has been proposed. This approach
uses the PHH3 information to locate ground-truth mitosis on WSI but the goal
is a classifier on H&E. Although the approach means an important step in the
detection of mitosis in WSI, several issues still remain open. First, to design a
simple training model taking advantage of both stains simultaneously. Second,
the labeling process should take into account both stains. Figure 1 shows some
cases of mitosis where the labeling from a single stain is misleading. Finally,
assessing the contribution of trained detectors with both stains is a relevant
issue to improve routine in daily practice.

In contrast to the above discussed approach, here we propose the simultane-
ous use of both stains in the labeling and detection stages. To do that we stain
twice each slide taking advantage of the property of the antigenic recovering of
the immunochemistry for destaining the H&E. This strategy reports important
benefits: (i) better labeling, (ii) training dataset with both stains, (iii) improve-
ment in detection score. The two most important challenges in our approach are
a fast search for potential correct matches and an assessment model for matches.

Our main contributions in this paper are: (i) a fast and efficient technique
to generate matching between both stains of the same object, (ii) the proposal
of a SCNN model to validate the matches; (iii) we show that training from both
stains means a clear improvement in detection score compared to use of only
one. Finally, we emphasize that our searching algorithm makes very easy the
labeling of pairs.

The rest of the paper is as follows. Section 2 defines the problem. Section 3
discuss the proposed approach. Section 4 shows the experimental results, and in
Sect. 5 the discussion and conclusions are presented.
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Fig. 1. This figure shows by rows examples of two difficult scenarios regarding mitosis
detection in H&E or PHH3. The first row shows examples where the mitoses are very
difficult to detect in H&E but can be easily detected on PHH3. The second row shows
examples where the PHH3 stain indicates positive mitosis but the H&E stain shows
that it is not.

2 Problem Definition

To begin with we focus on the automatic object matching between stains of
the same histological tissue. The relevance of this task is due to the lack of
consensus between pathologists when they are asked to label a set of cells as
mitosis or no-mitosis in H&E images. In the MYTHOS-ATYPIA challenge [5], for
instance, multi-labels had to be considered. Daily practice has shown that many
ambiguities can be solve when both stains are observed together. Figure 1 shows
some examples. This has motivated the interest to know how much a detector can
improve when training with both stains. The automatic identification of correct
matches between stains it is not a straightforward task. The manipulation of the
slide in the double staining process, that is, staining with H&E and scanning,
destaining, and restaining again with PHH3 and new scanning, introduce small
local deformations on the tissue that makes impossible automatic matching of
the images using geometrical registering. In addition, the different response of
the tissue to each one of the stains also introduce strong differences in the shape
and color of the surfaces of the cells as shows Fig. 1. To overcome all these
deformations, we propose a search strategy to extract possible matches and
a similarity distance to find correct matches. For this latter task, we propose
a Siamese CNN (SCNN) [3,8] since the CNN models have shown to be very
efficient in extracting similar features from images, that being visually different,
are similar in a some semantic context. At one last step, the correct matches are
assessed, for mitosis presence, by a CNN classifier.

3 Methodology

3.1 Matches Extraction

Let’s denote by p-WSI = (IPHH3, IHE) the two WSI images of the same slide with
different stain. We extract the objects present in each image applying standard
cell detection functions, [1], and eliminating all those objects with a size greater
than a preset threshold. For this, we use the hematoxiline and DAB bands of
the H&E and PHH3 images respectively. The center of mass of the remaining
connected components (CC) is computed. A kd-tree data structure (KdT) [2]
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(a) (b) (c) (d)

Fig. 2. Images (a) and (b) show, inside circles, objects detected on PHH3 and H&E
respectively. Images (c) and (d) show, in circles of color, SURF points detected in
PHH3 and H&E respectively. (Best see it at higher magnification)

is fed with the coordinates of the centers of the H&E image. The centers of
the PHH3 image are saved as a list of points, LDAB . In order to reduce the
number of pair to analyze we take advantage of the specificity of the PHH3
stain to identify the potential mitosis presents in the image. To this end, each
vector of coordinates in the DAB list is used as query to the KdT to retrieve
matching candidates from the H&E image. Figure 2(a, b)) shows an example of
how unbalanced is the number of detections in both stains. In order to make
easier the searching process we register the bounding boxes of the tissue area in
both images through an affine transformation, A : IPHH3 → IHE, estimate from
SURF points [2] detected from grey levels after sub-sampling the image by a
factor of ten. For each point x ∈ LDAB , its coordinates are projected onto the
axes of H&E by the affine transformation, y = Ax, and all points z ∈ KdT such
that distance(y, z) < thr are extracted, where thr is a prefixed threshold. Let’s
denote by p-center the pair formed by the coordinates of the query-point, x, and
the coordinates of anyone of its matches. For each p-center, image-patches of size
80×80 pixels centered on them are extracted from the images. Let’s denote them
as p-patch. These p-patch are assessed by the SCNN that output a similarity
distance in terms of a probability. For each x the p-patch with maximun prob-
ability is considered the true match. Let’s denote a correct p-patch as p-match.
In summary, our matching algorithms is as follows:

ALGORITHM: MS(H&E,PHH3, T,PHE,PPHH3)
Input:
- (H&E,PHH3): WSI of the same slide
- T : distance-threshold for searching
- PHE: list of coordinates of the object centers detected in H&E
- PPHH3: list of coordinates of the object centers detected in PHH3
Preprocessing:
- Build a KdT from PHE.
- Compute SURF points: SURFHE, SURFPHH3

- Compute Global affine transformation: A : SURFPHH3 → SURFHE. .
Correspondences:
For each item p ∈ PPHH3
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(a) (b) (c)

Fig. 3. Siamese architecture: (a) shows the global network design composed of two
parallel branches to process each one of the images. After the feature extraction a
function of the feature vectors compute the similarity between the images. In (b) we
show the three main blocks that compose the model. CV correspond to Convolution
and ReLU activation and FC to full connected layer followed by ReLU. We use batch
normalization before each ReLU. In (c) the architecture of the CNN model used for
mitosis detection is shown.

1.- Compute p̂ = Ap
2.- Compute PKdT(p) = {q|q ∈ KdT,distance(p̂, q) < T}
3.- Extract patches {oq} centered in q ∈ PKdT(p)
4.- Compute q̂ = argmaxq∈PKdT(p)SimilaritySCCN (op, oq)
5.- Output (oq̂, op)
where SimilaritySCCN denote the probability computed by the Siamese net-
work.

3.2 Dataset and Labeling

Two datasets of p-match have been created. The first dataset, DS1, is defined
by 57k (1k = 1000) p-match extracted after staining and scanning 48 slides,
30 of skin cancer (melanoma) and 18 of breast cancer. The second dataset,
DS2, is defined by 11k p-match of mitosis and 75k p-patch no mitosis extracted
from 17 slides of melanoma. The slides were scanned with a Philips Ultra-Fast
Scanner at a spatial resolution of 0.25µ per pixel. All p-patch were labeled by
a senior pathologist of the Saint Cecilio Universitary Hospital in Granada, who
annotated a percentage of the correct matches on each p-WSI. An interactive
software which iterates showing p-patches and their surrounding areas was used
for this task. A p-patch is tagged with a maximum of two clicks: one click to
decide correspondence vs. no correspondence and another click to decide mitosis
vs. non-mitosis. This is a very simple routine that allows to label many pairs in
a short period of time.
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Fig. 4. This Fig. show some examples of the errors of the algorithm-MS. The first row
shows examples of false negative p-match. The second row shows examples of false
positives p-match. See the pair as (PHH3, HE)

3.3 Training

Our specific SCNN model is shown in Fig. 3(a–b). It can be observed that Block-
PHH3 y Block-H&E share the same architecture based on a standard Lenet
model of CNN [9]. Block-Final processes the features from the input blocks to
learn the similarities. The network is trained during 100 epochs using a batch
size of 128 with Adam [7] optimizer and initial learning rate of 0.0002. We reduce
the learning rate by a factor of 10 each 10 epochs if the training loss has not been
reduced. The training stops if the loss keeps without reducing after another 20
epochs. The networks outputs the probability of a p-patch, {he,phh3}, of being a
p-match. We train the network to minimize the binary cross entropy loss L(·, ·),
defined for each sample as,

L(he,phh3) = −y(log(fθ(he,phh3) + (1 − y) log(1 − fθ(he,phh3))

where y ∈ {+1,−1} represents the image-pair’s label and fθ represents the func-
tion computed by our SCNN. To regularize the model, we use L2-weight decay of
strength 1.0 on the parameters of the network and Dropout [13] with probability
of 0.3 before the last full connected layer. The CNN used for mitosis detection
from p-match is shown in Fig. 3(c). We minimize the binary cross-entropy loss
function using the Adam [7] optimizer with learning rate set to 0.001 during the
first 50 epochs, then reduced to 0.0001 for 25 epochs and finally set to 0.00001
for another 25 epochs. We set the weight decay parameter to 0.0001 and use
Dropout of 0.5 before each non-linearity except before the Softmax layer. Also,
we use data augmentation on the p-match by rotating the input patches by 90◦,
180◦ and 270◦ and performing horizontal and vertical flips. We also add Gaussian
noise with σ = 0.0001 to the input.

4 Experimental Results

We assess the performance of our algorithm-MS by cross-validation. To do this,
we define five folds from the set of 48 p-WSI. On each fold 43 p-WSI are used
for training and 5 for testing. In total we use 25 different p-WSI in testing.
On each fold the set of p-match, extracted from each image, is used according
to the role of the image in that fold. Table 1 shows the number of p-match
used in training and testing for each fold. The items for the negative class are
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Table 1. Top:results of the correspondence experiment. 1k = 1000. The second row
shows the number of corresponding pairs used, in each fold, in training and validation
respectively. The third row shows the validation accuracy in each fold for patches of
80× 80 pixels. Bottom: detection F1-score using the different stains

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Train matches 56.6k 52.5k 47k 54k 45.6k

Valid. matches 721 4.8k 10.4k 3.4k 11.7k

Valid.Accuracy (80× 80) 98.6% 99.9% 100% 99.9% 99.6%

Patches H& E PHH3 H& E+PHH3

Detection F1-score 73.5% 77.8% 80.6%

generated by random combinations of the p-match items. We generate as many
negative item as there are p-match. The test with each fold begins by detecting
and extracting the coordinates of the centers of the objects in the p-WSI test.
We use cell detection routines of the QuPath [1] free software to extract the
center of the object on each p-WSI. The kd-tree structure is build using [2].
From them the set of p-patch is estimated. Eventually, the p-patch are assessed
by the SCNN. In this experiment what we measure is the accuracy of the p-
match test elements (see Table 1(top)). In order to evaluate the effect of the
number of p-match in the testing matching error, we design the folds to cover
a broad range of values in testing. A value of thr = 60 is used as searching
distance in the KdT. The average query time per image is about 3s. Third row
in Table 1 shows the accuracy achieved on each fold. The estimated accuracy of
the algorithm-MS for matches is 99.6%±0.58. Figure 4 shows some examples of
p-match errors from SCNN. We assess the H&E+PHH3 improvement versus the
single stains, on dataset labeled from both stains, using the detector architecture
shown in Fig. 3(c). We select this architecture for two reasons. First, it represents
an adaptation of Lenet model which is the most popular CNN used for mitosis
detection. Second, our dataset is filtered by the matching algorithm that removes
much of the false positives. This makes unnecessary a complex architecture for
this task. In a first experiment we train and test our detector using each one
of the components, H&E and PHH3, of the p-WSI. In the second experiment
we use full p-WSI. In all cases the color of the images was normalized using
the algorithm given in [11]. From the dataset, DS2, we constructed 5 partitions
of WSIs and used them for cross-validation. Table 1 in the bottom shows the
detection F1-score achieved by our detector using patches from H&E, PHH3
and H&E+PHH3 respectively. The result shows that using together both stains
greatly improve the F1 score with respect to only using one. To evaluate the
impact of the p-match errors in detection we test our CNN with the same image
dataset but computing the p-match using the algorithm-MS. In this case an F1
score of 80.1 ± 0.4% is achieved, which means a drop of only 0.6 points.
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5 Discussion and Conclusions

The proposed approach shows that both stains H&E and PHH3 when used
together make a significant contribution to the detection of mitosis. In addition,
our approach contributes with a new technique for the labeling of mitosis using
both stains simultaneously. The size of the datasets makes our results preliminary
but also reliable. It remains to be done a full evaluation of the matching errors
and the influence of the detector. The help of our algorithm-MS in the complete
labeling of p-WSI opens the door to create larger and more challenging training
data sets to evaluate new algorithms. This will be one goal for future work.
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Abstract. An objective digital pathology solution to quantify the ribonucleic
acid (RNA) signal in tissue samples could enable analysis of gene expression
changes in individual cancer and dysregulated normal cells (immune cells, etc.).
Here, we present a new method that leverages the punctate RNA In-situ
hybridization (ISH) signal to quantify gene expression, while maintaining tissue
context and enabling single cell analysis and workflow. This digital pathology
solution detects and quantifies the punctate dot signals generated by one- and
two-color RNA ISH technology in formaldehyde fixed-paraffin embedded
(FFPE) tissue. The digital pathology solution was implemented to determine the
characteristics of individual spots including size, intensity, blurriness and
roundness all of which were used to determine individual spot feature charac-
teristics. Significantly, we determined that spots maintain similar characteristics
irrespective of the RNA biomarker and/or tissue used. The verification on 31
microscope images shows agreement of R2 = 0.99 and a concordance correla-
tion coefficient (CCC) = 0.99 for the total spot counts identified by the observer
(115,154) and the algorithm (112,809). We have leveraged the unique detection
features of the RNA ISH technology to develop a new method to quantify RNA
signal while maintaining tissue context. It is anticipated that this method will
enable analysis of gene expression changes in heterogeneous cancer and normal
cells and tissues with single cell resolution.

Keywords: In situ hybridization (ISH) � Digital pathology � RNA �
Image analysis � Quantitative analysis � Image processing � Cancer �
Histopathology imaging

1 Introduction

In-situ hybridization (ISH) can be used to look for the presence of a genetic abnor-
mality or condition such as amplification of cancer causing genes specifically in cells
that, when viewed under a microscope, morphologically appear to be malignant.
Unique nucleic acid sequences occupy precise positions in chromosomes, cells and
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tissues and ISH allows the presence, absence and/or amplification/expression status of
such sequences to be determined without major disruption of the sequences. ISH
employs labeled deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) probe
molecules that bind to a target gene sequence or transcript to catalyze detection or
localization of targeted nucleic acid genes within a cell or tissue sample [1].

Historically, the clinical evaluation of proteins and nucleic acids in tissue has relied
upon in situ immunoenzymatic detection (staining) methods. For example, detection of
B cell clonality is useful for assisting in the diagnosis of B cell lymphomas and such an
assessment can be accomplished through the evaluation of KAPPA and LAMBDA
light chain expression. As seen in Fig. 1, tonsil tissue stained for KAPPA mRNA may
be detected using a black chromogen (silver, Ag) and LAMBDA mRNA may be
detected using a purple chromogen (tyramide-sulforhodamine). The presence of the
signal of interest appears as tiny spots (e.g. discrete dots) and these spots may accu-
mulate to form larger regions of aggregate signal (hereinafter “signal aggregate blobs”
or “blobs”) depending on the expression level (copy number) of each targeted mRNA
in B cells. By way of example, plasma cells have approximately 100,000 mRNA copies
per cell, and therefore signal in those cells may appear as blobs.

Quantitative ISH analysis will likely be useful in clinical evaluation of a variety of
RNA biomarkers; however, its utility remains uncertain due to limitations of existing
technologies. An automated technique for estimating an amount of isolated dot signal
and signal aggregate blob may facilitate enhanced clinical interpretation of stained
biological samples, enable samples to be interpreted more quickly and accurately, and
empower evaluation of RNA biomarker clinical utility. In this study, we have devel-
oped an image-analysis system and method that enables the detection and quantifica-
tion of the number of nucleic acid signals present in stained samples.

(a)   (b) 

Fig. 1. The example of tonsil stained using in situ hybridization (ISH) illustrating KAPPA
mRNA detected with silver (Ag) in the black color and LAMBDA mRNA detected with
tyramide SRB in the purple color: (a) the wholeslide image with six tonsil regions and (b) a field-
of-view image at 40X. (Color figure online)
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2 Methods

The proposed image-analysis framework for detecting and quantifying the expression
of the RNA targets (biomarkers) used in our study is shown in Fig. 2.

In this study, we propose a method of estimating an amount of signal corresponding
to at least one biomarker in an image of a biological sample comprising: (1) detecting
isolated spots in an image (e.g., an unmixed image channel image corresponding to
signals from a biomarker); (2) deriving an optical density value of a representative
isolated spot (e.g., based on computed signal features or characteristics from the
detected isolated spots); (3) and estimating the number of predictive spots in signal
aggregates in each of the sub-regions based on the derived optical density value of the
representative isolated spot. The method further includes calculation of a total of
number of spots in a sub-region by combining a number of detected isolated spots and
the estimated number of predictive spots in signal aggregates in each of the sub-
regions. Finally, a total number of detected isolated spots combined (i.e. summed) with
the estimated number of predictive spots for each sub-region of signal aggregates for
the entire tissue slides can be calculated and stored in a database [1].

2.1 Tissue Staining and Digital Images

Using 2.5-lm formaldehyde fixed-paraffin embedded (FFPE) tissue sections, a total of
189 field-of-view (FOV) microscope images and a total of 31 tissue slides of tonsil,
lymphoma, and Calu-3 (xenograft) were included in the algorithm development. Tissue
slides were stained with a simplex (one color)- and a duplex (two-color)-ISH protocol
using probes targeting GAPDH, KAPPA, MALAT1, and KAPPA/LAMBDA RNA
transcripts. The staining process was performed using a VENTANA Benchmark Ultra
autostainer. All slides were counterstained with Hematoxylin (HTX) in blue color. The
31 slides were scanned using a VENTANA DP 200 scanner. RGB images were
obtained with a resolution of 0.25 � 0.25 lm2 and a typical size of 3 billion pixels or
20 � 20 mm2.

Fig. 2. Image-analysis flowchart illustrating the steps to detect and quantify the expression of
RNA targets (biomarkers) in a whole slide image (WS – wholeslide).
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2.2 Pre-processing of Color Unmixing

Preprocessing of a color unmixing is performed using a conventional color-
deconvolution method to separate different chromogens e.g., black, purple, and blue.
In our study, the approach proposed by Ruifrok et al. [2] was selected. The unmixing
method can be applied to singleplex stained images with one chromogen and coun-
terstain, or applied to multiplex staining images with more than one chromogen and
counterstain, as shown in the examples in Fig. 3.

2.3 Isolated Spot Detection

Following image acquisition and/or unmixing, an image having a single biomarker
channel is provided to the spot detection module such that isolated spots within the
image may be detected (as opposed to the “blobs” or aggregate dot signals). An
unmixed image channel image is used for input for the spot and blob detection module.
A morphological operation is performed to detect isolated spots, i.e. dots, within the
image.

As seen in Fig. 4, following the detection of each of the isolated spots in the input
image, the detected isolated spots are separated from the blobs in the input image,
providing an “isolated spots image channel” and a “blob image channel”. The detected
spots are masked out from a blob image channel. In an isolated spots image channel,
small objects or blurred point sources can be detected using a multiscale Difference of
Gaussians (DoG) approach. Multiple spot sizes are configured in ascending order
(small to large), but the processing is in the order of large to small spots. In each
iteration, a DoG filter is created from the given inner and outer filter sizes [3]. The
respective detections are collected in a resulting seed/annotation object to become the
location of each of the detected isolated spots in the (x, y) coordinates; this location
corresponds to the seed center of each detected isolated spot. A seed center can be
calculated by determining a centroid or center of mass of each detected isolated spot.

(a)                                (b) (c)                 (d) 

Fig. 3. (a) A portion of a whole slide image stained using an in situ hybridization assay to detect
KAPPA mRNA (black color) and LAMBDA mRNA (purple color) with counterstain
hematoxylin; (b, c) an example of an image channel image after unmixing, showing only signal
corresponding to KAPPA mRNA (black color) and LAMBDA mRNA (purple color),
respectively, and (d) an example of an image channel after unmixing, showing the hematoxylin
channel (blue). (Color figure online)
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2.4 Descriptive Signal Features for Each Detected Isolated Spot

With reference to Fig. 5, the optical density derivation module first computes
descriptive signal features for each of the detected isolated spots in the image. The
signal feature derivation module implements a Gaussian fitting technique is to analyze
and parameterize certain characteristics of the detected isolated spots. The fitting
method is performed based on the assumption that the distribution of the optical density
and the radius is the normal distribution. A 1D-Gaussian-function fitting method is
used to estimate the associated spot parameters within a pre-defined patch size sur-
rounding a detected and isolated spot. The patch size is 7 � 7 pixels, which was
determined to be the most appropriate patch size for any particular application that will
facilitate the provisioning of optimal histogram results.

The characteristics derived from the Gaussian fitting technique include the size,
intensity, blurriness, and roundness of the detected isolated dots, and each of these
characteristics are computed using parameters of the Gaussian function. By solving the
linear system Ax = b, the estimated parameters from the fitting method consist of
mean, standard deviation (SD), and full-width-at-half maximum.

By fitting the parameters using the Gaussian model, the computed descriptive
signal features of each isolated spot were obtained as following:

1. Intensity – is computed using the 98 percentile within the radius of the 5 pixel
surrounded the center of the detected spots [no unit].

2. Blurriness – refers to the standard deviation (r) of the Gaussian-function fitting
method.

Fig. 4. (a) Provides an example of a portion of a whole slide image stained in an ISH assay,
(b) illustrates the result of the unmixing of (a) into a single channel (black channel); (c) illustrates
a blob channel image whereby the signals from the detected isolated spots from (d) are masked
out; (d) illustrates the result of dot detection (a spot channel image) on the unmixed image
channel image of (b); (e, f) illustrates derived (x, y) locations of the detected isolated spots in the
spot channel image; and (g) and (h) illustrate an overlay of the detected isolated spots
superimposed on the portion of the whole slide image.
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3. Size - refers to the full width at half maximum (FWHM) computed by:

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi

2ln2
p

r � 2:355r ð1Þ

4. Roundness – is the characteristic computed based on the comparison between the
actual optical density distribution within a patch and the perfect Gaussian model
computed from the estimated parameters. The concordance correlation coefficient
(CCC) (which measures the agreement between two variables, e.g., to evaluate
reproducibility or for inter-rater reliability) was used to compare the relationship (or
the agreement), where CCC = 1 shows that the estimated parameters are perfectly
agreement to the ideal Gaussian model; whereas, CCC = 0 shows that there is no
agreement between the estimated parameters and the ideal Gaussian model [no unit].

Next, histograms can be generated for each computed signal feature characteristic,
as shown in Fig. 5.

2.5 Estimation of a Number of Predictive Spots in Signal Aggregates
in Each of the Subregions

The generated histograms provide for an understanding of the density of detected
isolated cells that have particular values or representative characteristics. The generated
histograms therefore provide insight into the characteristics of a representative or
typical detected isolated spot. For example, from the intensity histogram (e.g. Fig. 5), it
is possible to determine the intensity value of the detected isolated spots that is repeated
most often (i.e. the mode of the intensity values). The representative or typical detected
isolated spot is then assigned that particular determined intensity value.

The characteristics of the isolated spot representative are used to estimate the
number of the spot in the aggregate signals. The estimation assumes a linear rela-
tionship between the summation of the optical density for the single spots and the
aggregate signals, as following:

N ¼
P

ODA
P

ODS
; ð2Þ

where N is the number of the spots within an aggregate signal region, ODA is the
optical density of the aggregate signals, and ODS is the optical density of the repre-
sentative isolated spot signals.

Using the feature histograms of the isolated spots in the previous step, we can apply
the individual spot properties in the calculation of their summation of the optical
density. The selected properties can be the mode of the intensity (optical density) and
the mode of the radius in the feature histograms to calculate the summation of a
representative individual spot:

X

ODS ¼ Area� ODS; ð3Þ
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where Area refers to a circle (pr2) or a rectangle (w � h) area assumed to be a shape of
a spot, and (ODS) refers to the representative optical density of a single dot. This can be
the mode of the intensity histogram, the average of the total intensity of the total
detected isolated spots, or the weighted intensity, etc.

2.5.1 Segmentation and Residual Image Generation
Prior to estimating the number of predictive spots in signal aggregates, the input image
is segmented into a plurality of sub-regions using segmentation. The generation of sub-
regions is used to minimize the computation error due to the fact that the computations
are based on a smaller local region rather an entire image. The segmentation also
reduces the complexity in computing the spot counting in the aggregate signals and the
sub-region concept is useful for the quality control verification by an observer and to
reduce the complexity in estimating signal in the aggregate signal blobs.

(a) (b)

Fig. 5. The characteristics of (a) the isolated spots shown in red dots and (b) the feature
histograms of intensity, blurriness, size, and roundness, respectively.

Fig. 6. (a) Illustrates the result of the unmixed image in a single black channel, (b) illustrates the
detected isolated dot image, (c) illustrates the residual image after masking out the black channel
image from detected isolated spot image, and (d) the superpixel segmentation method was
applied to the residual image (c).
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As shown in Fig. 6, the residual signal is computed by masking out the black-
channel image with the isolated spot image. On the residual image, irregularly sized
sub-regions can be created by a superpixel segmentation method [4]. The sub-regions
of the residual channel image are segmented and grouped the clump signals into
smaller regions. Using the superpixel segmentation method, it groups the pixels sub-
stantially uniform and perceptually meaningful. The sub-regions using superpixels
support in efficient estimation of the number of the signals efficiently. Because some
sub-regions have little aggregate signal, it is easy to verify the estimated spot count
within that segment. On the other hand, some sub-regions segmented by the superpixel
method have completely aggregated signals within the segment, so that it creates a
consistent approximation of the spot count within that segment.

Finally, the derived intensity parameter is multiplied by the area to give the optical
density of a representative isolated spot. The computed optical density of a representative
spot is then supplied to the spot estimationmodule. Once the number of predictive spots in
each sub-region is estimated, the datamay be stored in a database or other storagemodule.

3 Results

3.1 Verification of Detected Isolated Spot Counts

The quality control was performed based on a graphic user interface (GUI) which the
detected isolated spots overlaid on the original and the observer could correct e.g. add,
delete, move the spots. The verificationwas performed using 31FOVon the simplex silver
microscope images by a trained observer. The agreement plot is shown below with the R2

of 0.99 and CCC = 0.99. The example of the spot counting results before and after the
correction is in Fig. 7. The correspondence of total spot count identified by the observer
(115,154) and the algorithm (112,809) is illustrated in the accompanying Table 1.

Fig. 7. Illustrates the overall scatter of the spot count correspondence between the expert
observer and the algorithm results (R2 = 0.99, CCC = 0.99) verified on 31 FOVs.

Table 1. The total spot counts between the algorithm and the observer

Result Total spot count

Observer 115,154
Algorithm 112,809
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3.2 Individual Spot Feature Characteristics and Number of Predictive
Spots in Signal Aggregates

We characterized and compared the dots generated by a single probe (i.e., Kappa 01,
Kappa 02, or Kappa 03) versus a cocktail of three probes (e.g., Kappa 01, 02, 03), and
no probe control using tonsil tissue. As seen in Fig. 8, the intensity of three probes
shows wider range than in the one probe images, whereas, the blurriness, size, and
roundness characteristics of the spots generated by one probe are not different to spots
generated by three probes. As seen in Fig. 9, the analysis result image overlaid with
superpixel outlines (green), the overlaid red dots indicating the isolated spots detected
by the algorithm, and a red number indicating the additional spots estimated for the
aggregate signal within each superpixel.

4 Conclusions

In this study, we have leveraged the unique detection features of the RNA ISH tech-
nology to develop a new method to quantify the RNA signal in FFPE tissue, while
maintaining tissue context. It is anticipated that this method will enable analysis of gene

Fig. 8. Illustrates histograms of the spot characteristics of (a) intensity, (b) blurriness, (c) size,
and (d) roundness generated by a single probe (i.e., Kappa 01, Kappa 02, or Kappa 03) versus a
cocktail of three probes (Kappa 01,02,03).

Fig. 9. The analysis result image overplaid with superpixel outlines (green), the overplaid red
dots indicating the isolated spots detected by the algorithm, and a red number indicating the
additional spots estimated within the aggregate signal with each superpixel. (Color figure online)
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expression changes in heterogeneous cancer and normal cells and tissues, with single
cell resolution, thereby enabling evaluation of the clinical utility of the plethora of RNA
biomarkers encoded in the human genome.
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Abstract. Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous
tumor that originates from normal B-cells. A limited number of studies
have investigated the role of acellular stromal microenvironment on out-
come in DLBCL. Here, we propose a novel digital proximity signature
(DPS) for predicting overall survival (OS) in DLBCL patients. We pro-
pose a novel end-to-end multi-task deep learning model for cell detection
and classification and investigate the spatial proximity of collagen (type
VI) and tumor cells for estimating the DPS. To the best of our knowl-
edge, this is the first study that performs automated analysis of tumor
and collagen on DLBCL to identify potential prognostic factors. Exper-
imental results favor our cell classification algorithm over conventional
approaches. In addition, our pilot results show that strongly associated
tumor-collagen regions are statistically significant (p = 0.03) in predict-
ing OS in DLBCL patients.

Keywords: Computational pathology · Deep learning ·
Survival analysis

1 Introduction

Lymphomas are malignancies derived from lymphocytes, and are broadly cate-
gorized in to B-cell and T-cell lymphomas, reflecting the proposed cell of origin.
B-cell malignancies are further categorised into low grade and high grade lym-
phomas. Diffuse large B-cell lymphoma (DLBCL) is the most common high grade
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available to authorized users.
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lymphoma in Western populations. The introduction of modern chemotherapeu-
tic regimens, which include Rituximab, has led to improved survival for DLBCL
patients [1]. Despite these advances, approximately 40% of patients will not
show a lasting response to therapy and will inevitably die of their disease [2].
This variability in treatment response in part reflects the biological heterogeneity
of the disease. In recent years, significant progress has been made in unravel-
ing this heterogeneity. Recent studies have also begun to investigate the role of
the tumor microenvironment in DLBCL. Tumor associated macrophages, tumor
infiltrating lymphocytes and immune checkpoint gene expression have all been
associated with tumor behavior [3]. In contrast, few studies have investigated
the role of the acellular stromal microenvironment. Collagen is a component of
the acellular stromal microenvironment, and its presence is linked to outcome in
urothelial and colorectal carcinomas, warranting further investigation of its role
in DLBCL. In previous work we showed that collagen type VI is most closely
associated with tumor cells in DLBCL and furthermore that the tumor cells of
DLBCL overexpress growth promoting collagen receptors (Margielewska et al.,
unpublished data).

In this paper, we investigate the spatial arrangement of tumor cells and col-
lagen VI in DLBCL and describe a novel digital proximity signature (DPS),
which serves as a marker of regions of the tumor likely to be enriched for active
collagen signaling. The core components of the proposed framework involve:
(a) cell detection and classification, and (b) estimation of DPS. In this regard,
we propose a novel deep learning framework, Hydra-Net, for simultaneous cell
detection and classification, enabling the end-to-end learning on a multi-task
problem. During testing, we introduce a multi-stage ensembling predictor that
combines cell detection and classification predictions by leveraging information
about the local neighborhood of cells. The comparative analysis of cell classifi-
cation demonstrates the efficacy of Hydra-Net over single-task learning models.
The tumor-collagen proximity analysis is then performed by aggregating the
tumor cell statistics within the vicinity of collagen VI. We further show that
strongly associated tumor-collagen regions are linked with overall survival (OS)
in DLBCL patients.

2 Related Work

Computational pathology has paved the way for histology based patient sur-
vival analysis. Recently, Zhu et al. [4] studied geometry and texture features
to detect and segment cells in non-small cell lung cancer (NSCLC). Selected
handcrafted features were fed into a supervised principal component regres-
sion model to improve predictive performance. Weng et al. [5] demonstrated
that histology-driven imaging data can better describe the tumor morphology
and outperformed conventional biomarkers for predicting survival in NSCLC
patients. They employed a deep learning (DL) model for cell sub-type classifica-
tion and imaging biomarkers were then identified using cellular features. More
recently, a survival analysis based on WSISA with whole-slide images (WSIs)
of glioma and NSCLC cancer patients was performed [6]. They trained a DL
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survival predictor to aggregate the patient-level predictions from clustered data.
One of the potential shortcomings of prior approaches has been the random
selection or uniformly sampled visual fields for survival analysis. In contrast,
we computed summary-level statistics from the entire WSI and define a novel
tumor-collagen proximity signature. Related work regarding cell detection and
classification is discussed in the Supplementary Material Sect. 1.

Fig. 1. (a) A schematic illustration of our proposed Hydra-Net and (b) description of
different sub-components.

3 Methods

3.1 Hydra-Net: Cell Detection and Classification

Model Description: Given an image patch in ∈ R
H×W×D, where I =

{(in)}N
n=1, our model utilizes the deep convolutional features to simultaneously

predict the class probabilities ck
n, where k is the number of classes, and the center

location ln(x, y) of a cell. Figure 1 illustrates the proposed Hydra-Net architec-
ture. The in is processed by a stack of convolutional layers (CL) followed by a
ReLU activation function. For classification, we use convolutional kernels of rel-
atively small receptive fields including 2×2 and 3×3 kernels, whereas stride for
all CLs is adjusted as 1 pixel, preserving the spatial resolution after the convolu-
tion operation. The last pooling layer is followed by a spatial dropout layer and
the softmax classification layer that predicts the belonging of in into ck

n where
k ∈ {1, 2, 3}, including background (including the collagen regions), normal and
tumor classes. The other head of the Hydra-Net is responsible for predicting
the center of each cell ln(x, y). The intermediate convolutional features are fed
into the attention module that enables the model to learn the structural depen-
dencies lie within the provided activation maps. We use a simple yet effective
sigmoid (or soft) attention layer, which can be represented as Cp = fp(Cp−1, wp)
and A = Cp � σ(Cp), where � denotes the Hadamard product, A denotes the
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Fig. 2. (a) Given image I with p × p small grids, (b) a zoomed-in region from I,
(c) highlighted region shows collagen segmentation and black-dashed circles represent
different proximity regions for DPS, and (d) extracted frequency features. (Color figure
online)

output of the attention layer, Cp represents the convolutional features from the
pth layer with wp trainable weights (biases are omitted).

Model Training: The learning mechanism of the Hydra-Net jointly optimizes
the combined loss function for multi-class cell classification and regression to pre-
dict the location tuple. It optimizes 3 different types of weights w = (wc ,wr ,ws)
including cell classification, regression and shared multi-task learning (MTL)
weights, respectively. The parameters ws are jointly optimized for both the
tasks, and the parameters wc and wr are optimized by using the combined loss
L as defined below,

L = Lc(c, c′) + λLr(l(x, y), l′(x, y)) (1)

where Lc(c, c′) represents log loss for true class c′
i and the second part of the

loss function is formulated over the true center location of a cell l′(x, y) and
the predicted location l(x, y). The Lr is the l1 norm between the true and pre-
dicted locations, which is more robust to outliers as compared to the l2 norm.
Preferably, we want our model to predict location only for image patches that
contains cell, and similarly, for background patches there is no information pro-
vided regarding the l′(x, y). Therefore, during training, we introduced a flag λ
that is set to 1 for tumor and normal classes and 0 for the background class. Dur-
ing test, each in is processed by a multi-stage ensembling predictor (MEP). See
Supplementary Material Sect. 2 for the detailed description of the proposed MEP.

3.2 Digital Proximity Signature

Computation of DPS is based on two core components: (a) select a set of refer-
ence points G = {Gm}M

m=1 within the collagen regions, where M is the number of
sampled points, and (b) perform proximity analysis between tumor cells and Gm.

Collagen Localization: The main objective of localizing Gm is to select a
set of representative points from the collagen regions. We first segmented the
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collagen regions by performing stain deconvolution separating I into 3 channels,
Hematoxylin, Diaminobenzidine (DAB), and background. Collagen VI antibody
generally binds with DAB channel having low intensity values and therefore we
empirically choose a relatively high threshold τ = 0.82 to binarize the DAB
channel IDAB . The highlighted region in Fig. 2(c) (teal color) shows the seg-
mented collagen region. We then compute the medial axis of IDAB(τ) to retain
the connectivity structure of collagen fiber, as defined below

Z = (IDAB(τ) � tS) − (IDAB(τ) � tS) ◦ S (2)

where � and ◦ denote the morphological erosion and opening respectively, and
S is the structuring element with size t. Further, we split Z into small grids of
size p × p, where Z = {(zm)}M

m=1 and p = 256. The next task is to select a Gm

from each zm, in this regard, we compute the Euclidean distance between the
center point zm(p/2, p/2) and the spatial coordinates of medial axis zm(xα, yα),
where α represents the total points in medial axis

Gm(x, y) = min
x,y

(
E(zm(xα, yα), zm(

p

2
,
p

2
))

)
(3)

where E(.) denotes the Euclidean distance. Finally, the collagen region lying
close to the center of zm is selected as the reference point, as shown in Fig. 2(c).

Collagen-Tumor Proximity Analysis: For each Gm, we compute a set of
frequency features by counting the number of tumor cells within its vicinity,
as shown in Fig. 2(d). Similarly, we compute the features for the entire dataset
ω = {(ωη)}ν

η=1, where ν represents the number of collagen reference points from
all the WSIs of the dataset. We then perform clustering on the computed features
in order to assign labels to the segmented collagen regions.

We use a simple yet effective method, k-means clustering (k = 4) to arrange
the frequency features into clusters. The algorithm randomly selects the first
centroid and the remaining centroids are chosen based on the largest minimum
distance to the preceding centroids, as defined below

η̂ = argmaxη

(
minκ ‖ωη − Sκ‖22

)
(4)

where Sκ denotes the centroid of the κth cluster. The algorithm iteratively
updates the cluster centroids by computing the distance between centroids and
the data points using the Jensen-Shannon divergence, as defined in (5)

JSD(Sκ ‖ ωη) =
1
2
KLD(Sκ ‖ Ω) +

1
2
KLD(ωη ‖ Ω) (5)

where KLD represents KullbackLeibler divergence and Ω =
1
2
(Sκ + ωη). On the

basis of clustering results, we assign the clustering labels to the collagen region in
the vicinity of Gm. We further normalize the clustering labels to limit their values
between 0 and 1. Finally, in order to compute the DPS, we split the normalized
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clustering labels into 4 categorizes and individually aggregate the statistics. The
categories includes weak, moderate, significant, and strong association between
tumor and collagen regions. The qualitative results of proximity analysis and
its corresponding DPS can be seen in Fig. 3. Our main intuition of identifying
DPS into 4 categories is to provide a concise summary of statistics regarding the
proximity between tumor and collagen across the WSI.

4 Experimental Results

This study was performed on WSIs of 32 histopathologist-verified cases of
DLBCL using immunohistochemistry for collagen VI with a Hematoxylin coun-
terstain to simultaneously detect collagen VI and nuclear morphology. The
DLBCL samples included 10 from female patients and 22 from male patients.
The age range of the patients was 24 to 90 years, with an average age of 63.6
years. We separately report the results of the Hydra-Net and OS prediction with
tumor-collagen DPS.

Fig. 3. (a) A visual field extracted from a whole slide image, (b) highlighted collagen
regions demonstrate the association between collagen and tumor along with its digital
proximity signature, and (c) shows the area marked by rectangles in (a) and (b). (Color
figure online)

Cell Detection and Classification: The GT for cell detection and classi-
fication was collected on 9 cases and marked by an expert. In total, we get
2,617 annotated cells including 2,039 tumors, 462 normal and 116 macrophages.
To mitigate the effect of sparse (and limited) GT, we extensively perform the
data augmentation by random rotations, cropping, flipping (horizontal or ver-
tical axis), and perturbing the color distribution, attaining a total of 30,416
patches including 12,100 tumor cells, 9,957 normal cells (including macrophages),
and 8,359 randomly selected background patches. Generally, tumor cells and
macrophages exhibit a high degree of morphological resemblance, having weakly
stained boundaries and hollow structure.

We performed 3-fold cross-validation by selecting 2 folds of the dataset for
training and the remaining fold for testing. Table 1(a) & (b) report the quantita-
tive results for cell detection and classification. Overall, the proposed Hydra-Net
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Table 1. (a) Comparative analysis for cell detection and classification, (b) Hydra-Net
confusion matrix for cell classification.

Table 2. Contains p-values from overall survival (OS) analysis.

produces less false negatives as compared to other methods. Table 1(a) also high-
lights the significance of soft attention layer, which is computationally efficient
and enables the model to focus only on a particular element (which in our case
is ln(x, y)) within the given input. Besides, the proposed MTL framework offers
advantages over single task learning models [7–10]: first, it overcomes the risk
of overfitting by increasing the discriminative ability of shared weights. Second,
the inference time for the MTL framework is relatively less as it involves single
(forward) propagation for handling multiple tasks.

Survival Analysis: To obtain the DPS for a WSI, we computed the average
of DPSs obtained from image tiles. The qualitative results along with DPS for
a WSI results are shown in Fig S.2. We observed that a large part of the tissue
region contains weak association (mainly due to normal regions) between tumor
and collagen. Therefore, to avoid the over-localization of weak associations, we
separately performed the survival analysis on all 4 values of proximity signature
(DPS-4) and the remaining 3 categories excluding the weak associations (DPS-
3). It is worth mentioning that we separately performed sum to unity scaling on
the statistics from DPS-3 and DPS-4. For each DPS category, a Kaplan-Meier
(KM) analysis was performed, with patients split into two groups based on the
median value of the DPS proportion. Statistical significance of each KM analysis
was quantified using the log-rank test. A Cox proportional hazards analysis was
also performed for each category of DPS-3 and DPS-4, using the DPS proportion
as the explanatory variable, with the Wald test used to determine the statisti-
cal significance. For DPS-4, the univariate analysis revealed a non-significant
trend for weakly associated tumor-collagen regions with inferior OS (log-rank
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p = 0.39, Wald p = 0.06). Conversely, moderate, significant, and strongly asso-
ciated regions showed the opposite trend. This might be explained by the fact
that weak associations are negatively correlated with the other DPS-4 propor-
tions. Table 2 gives all p-values for DPS associations with survival. Similar results
were obtained for DPS-3 (Fig. 4), but associations with survival were statistically
significant with p-values of 0.05, 0.05, 0.03 for moderate, significant, and strongly
associated regions, respectively. Our results suggest that DPS-3 is a better pre-
dictor of OS than DPS-4 and that using this method, patients whose tumors
exhibit strong tumor-collagen associations appear to experience superior OS.

Fig. 4. Kaplan-Meier survival curves from DPS-3 for moderately, significantly and
strongly associated tumor-collagen regions. The horizontal axis shows the time in days
and the vertical axis represents the probability of overall survival.

Conclusions: In this study, we have described a novel tumor-collagen digital
proximity signature (DPS) that can predict overall survival in DLBCL. We pro-
posed computing of the DPS by first detecting and classifying tumor cells using a
multi-headed Hydra-Net. Second, we performed tumor-collagen proximity anal-
ysis by aggregating tumor cell statistics within the vicinity of collagen regions.
Our results show that strong proximity of collagen and tumor cells are linked
with better OS in DLBCL patients. We are now exploring the utility of our DPS
as a predictor of outcomes in larger cohorts of DLBCL patients.
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Abstract. Breast cancer is one of the most common human neoplasms
in women, commonly diagnosed through histopathological microscopy
imaging. The automated classification of histopathology images can
relieve some workload of pathologists by triaging the cases. Knowing that
histopathological images show a high degree of variability, useful infor-
mation is often obtained at different optical magnification levels in order
to make the correct diagnosis. For automated scoring, if there are differ-
ences in the patient’s score at each considered magnification, the decision
may not be reliable if only one magnification level is taken into consid-
eration. This study proposes an integrated model in which scores across
magnifications are combined by weights estimated from the least square
methods. Moreover, unlike the existing methods, we consider a novel het-
erogeneous committee which includes deep and traditional members, to
design a system for each magnification. As few studies have shown, such
in an ensemble, often only a subset of members is sufficient to provide
enough discriminative information. Hence, we use an information theo-
retic measure (ITS) to select optimal members for each magnification.
We use publicly available BreaKHis dataset for the experimentation, and
demonstrate that the proposed approach yield comparable or better per-
formance when compared with most CNN based frameworks.

Keywords: Histopathology image analysis · Deep features ·
Color-texture features · Quadratic-SVM ·
Information Theoretic Score (ITS)

1 Introduction

One of the most common human neoplasms is breast cancer (BC), recorded in
one quarter of all tumors in females. In all female cancers, breast cancer accounts
for 27%, which is more than double the incidence of cancer in women at any other
site [1]. This cancer’s etiology appears to be multifactorial and involves diet,
reproductive factors and associated hormonal imbalances. BC diagnosis typi-
cally involves the collection of tissue biopsies from suspected areas, identified
c© Springer Nature Switzerland AG 2019
C. C. Reyes-Aldasoro et al. (Eds.): ECDP 2019, LNCS 11435, pp. 172–180, 2019.
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Fig. 1. Sample images correspond to each magnification

using ultrasound imaging or mammography, followed by histopathology image
assessment [2]. Visual observation of tissue micro-structures through histopathol-
ogy is time consuming as well as highly subjective. However, the rates of early
diagnosis and treatment have steadily increased in recent years as a result of
the development of a more sophisticated computer-aided diagnostic (CAD) sys-
tems, which are important to reduce inter-rater variability and also support in
reducing the workload of experts.

Tissues typically consist of cells, and different tissues have different cellular
properties. Cell shape information is well captured in high-power field micro-
scopic images, but structural information such as a glandular structure which
made up of many cells is better seized in a lower-power field. Since cancerous
tissues comprise both cellular and structural atypia, information which captured
at different magnifications can have important clues while making a decision. As
far as diagnosis is concerned, there is lack of consensus about the most informa-
tive magnification [3]. Furthermore, in a CAD based scoring system, if there is
a significant difference in the patient’s score, the decision may not be reliable if
only one magnification level is taken into account. Considering improved accu-
racy can be sometimes achieved by both high and low magnification images.
From the Fig. 1, it can be seen that global shapes could be captured by lower
magnifications while local by higher magnifications beneficially.

Considering aforementioned points, we believe that an assessment of the over-
all score which includes multiple magnifications can also provide useful infor-
mation instead of simply relying on individual scores. With the same spirit,
Gupta et al. [4] proposed an integrated model utilizing color-texture feature,
where an score over multiple magnifications was calculated as the ratio of total
images classified (images of all magnification) to total images of given patient.
However, the weightage of individual contribution was ignored. Different from
Gupta et al. [4] work, in this study, we combine scores correspond to each mag-
nification through weights estimated using the least square method (see Fig. 3).
We hypothesis that weight should be assigned based on accurateness of the
model instead of blind or equal assignment. In addition, this work also considers
a committee which comprises various deep learning-based members and color-
texture feature-based members for classification of breast histopathology images.
Learning without considering the color variations could worsen the performance.
These color-texture members complement the performance of CNN members as
shown by some previous studies [12]. However, we also believe that in such an
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Table 1. Related work

Work Descriptors & approach Classifiers

Spanhol et al. [5] CLBP, GLCM, PFTAS, LBP RF, SVM, QDA

Spanhol et al. [6] Variant of AlexNet (trained on patches)

Song et al. [7] Fisher vector encoding of local features -

Gupta et al. [8] Sequential modeling of deep features XGBoost

Han et al. [9] Class-structure based deep convolution neural network -

Nahid et al. [10] CNN model along with residual block -

Bardou et al. [11] Convolution neural network and hand-crafted features SVM

ensemble, a subset of good members is enough to provide discriminatory infor-
mation on the relevant categories rather than a large committee. And, therefore,
adding a new member to such a subset will not further improve accuracy (or
slight improvement) and can sometimes have a negative impact on accuracy. This
work explores an information theoretic measure [13] to select optimal committee.
Different from traditional methods, it considers both accuracy and diversity.

The effectiveness of proposed framework is evaluated using Break-His [5]
dataset. It contains total 7909 images which were collected from 82 patients
at four different magnifications. We consider the binary classification task
(benign/Malignant). Due to space constraints, we have summarized the related
approaches reported in recent years, which also use the above dataset, in Table 1.
In our section on experimental results, we also provide comparisons with these.

Summary of Contributions: (1) Propose an integrated model to combine
scores from images at different magnification using the least squares method
to estimates the combining weights, (2) An ensemble framework which uses
both color-texture and CNN members, and shows better generalization (3) An
information theoretic approach for diverse member selection, (4) Demonstrate
comparable or better performance with various state-of-the-art works.

2 Proposed Approach

The schematic flow of proposed work is shown in Fig. 2. It constitutes basic unit
which is shown in Fig. 3. the overall work is divided into the following steps.
Due to the lack of space, we only provide short descriptions, and appropriate
references are given for further detail.

1. Building a classifier committee: The committee is build using the CNN-
pooling features from the DenseNet architecture, and color-texture features
such as such as Normalized colour space representation [14], Multilayer coor-
dinate clusters representation [15], Opponent colour local binary pattern [16],
and Gabor features on Gaussian colour model [17].
To design deep members, we fine-tune the DenseNet pre-trained on the
ImageNet data [18]. As early layers capture the generic low-level features,
which are common among pathological images, we frozen the these layers
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Fig. 2. Schematic digram of proposed approach

Fig. 3. Basic module of proposed framework

and fine-tuned the remaining network. As this model comprises various lay-
ers (165), features can be extracted from convolution and pooling layers.
Unlike [8], here, we extract features only from pooling layers as they are
fewer, as compared to convolution layers, and yet compasses diverse features
also shown in various studies [19].
We employ the popular quadratic SVM classifier with the polynomial kernel
of order two for classification with the above features, and consider the output
probability scores for further processing.

2. Selection of optimal members: Optimal committee corresponds to each
magnification is chosen based on information theoretic measure. This measure
is summarized below:
• First select the best individual member:

î1 = arg max
i=1,2,...,M

I(Ci, C) (1)

Where M is total number of members in committee. C and Ci are true
class labels and predicted class labels assigned by member i respectively.
I refers to mutual information.

• Add the member along with above selected member in the new committee
for that ITS score [13] between în and the member is maximized:

ˆin+1 = arg max
i=1,2,...,M−n

I(Cîn
, Ci); n = 1.2...M − 1 (2)
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• We iterate step 2 until the improvements by adding member becomes
small enough. The set of selected members is considered as optimal set
that combines both accuracy and diversity.

3. Fusion of decisions: To fuse the output of members, we use the product
rule because it penalizes the lower scores better than other fusion strategies
such as sum, maximum, majority voting, minimum etc. We observed that the
product rule yields the best results. In product rule, score assigned to each
class by each base member is multiplied respectively. The class which receives
maximum score is announced as final to given input pattern.

5. Learning weights through least square method: For each of the magni-
fication, patient scores (PS) are calculated as given in section 3.1. Given the
PS for all magnifications, weights are learned (w1,w2,w3,w4) using the least
square method (as shown below).

ω̂ = (XTX)−1XTy (3)

Where X is a matrix containing scores for each patient and y vector contains
corresponding label (benign/malignant). ω̂ is an estimated weight vector.

7. Final score: The final score is computed as the weighted combination of the
scores obtained at all magnifications, with the weights computed as above.

3 Results and Discussion

3.1 Training-Testing Protocol and Evaluation Metric

In our experiments, we randomly selected 58 patients (70%) for training and 24
patients (30%) for testing. This also makes it possible to compare fairly with
a state-of-the-art approaches [5–7]. We use data corresponds to 58 patient for
training and validation while doing fine-tuning. In order to increase the number
of samples, we use data augmentation which involves rotation, flip, height shift,
width sift and translation. After augmentation, we have six times the original
training data. We use three trails of random selection of training-testing data
(based on patine) and show average results.

In order to compare results with the existing approach, we use the patient
recognition rate (PRR) and the image recognition rate (IRR). The following
definition is given as follows:

PRR =
∑N

i=1 PSi

N
PS =

Nrec

NP
; IRR =

Nre

Nall
(4)

where N is the total number of patients (testing), and Nrec and NP are the
correctly classified and total cancer image of patient P respectively. Nall and Nre

are the total number of test images and total correctly classified test images.

3.2 Performance Evaluation and Comparison

Tables 2 and 3 illustrate the performance of each individual committee member
and with the selection of members based on ITS, respectively. From the tables
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Table 2. Evaluation of individual committee members

Extracted features Testing accuracy at patient and image level

(committee members) 40X 100X 200X 400X

Patient Image Patient Image Patient Image Patient Image

OLBP (M1) 85.8% 86.5% 87.8% 89.1% 89.3% 91.1% 83.2% 86.0%

NCSR (M2) 85.7% 86.6% 89.6% 90.7% 88.3% 90.1% 84.0% 86.3%

M CCR 8 (M3) 74.7% 75.5% 81.7% 82.9% 79.3% 80.5% 78.3% 79.3%

M CCR 64 (M4) 80.1% 81.5% 80.2% 81.5% 85.1% 86.9% 82.3% 85.9%

M CCR 27 (M5) 77.5% 80.6% 83.3% 83.7% 85.9% 86.9% 79.5% 82.6%

GLCM (M6) 64.8% 62.7% 63.8% 63.2% 66.9% 64.6% 68.3% 67.3%

GCM (M7) 86.2% 87.0% 89.9% 90.9% 88.9% 91.3% 84.5% 86.9%

Pool1 (M8) 79.1% 80.3% 83.8% 84.3% 83.9% 85.2% 84.3% 83.5%

Pool2 (M9) 87.3% 87.8% 87.9% 88.8% 90.2% 90.7% 87.6% 88.0%

Pool3 (M10) 93.7% 93.3% 92.8% 92.5% 93.3% 94.1% 87.0% 88.3%

Pool4 (M11) 91.4% 90.7% 92.4% 92.4% 93.3% 94.2% 89.7% 90.3%

Pool5 (M12) 93.4% 93.6% 92.7% 92.6% 92.3% 92.9% 86.8% 88.7%

Table 3. Selected members for each magnification and their combined accuracy

Mag. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Test acc Test acc Best test acc

(sel. members) (all members) (single member)

40X * * * * * 96.43±0.34 91.44±0.48 93.72

100X * * * * * * * * * * * 95.79±1.69 93.43±3.33 92.75

200X * * * * 96.24±1.58 93.64±2.47 93.36

400X * * * * * * * * 90.89±4.28 88.26± 4.19 89.70

Integrated Model (Patient level) 96.40±0.28 91.62±1.78 -

following can be observed: (1) Best accuracies corresponding to each magnifica-
tion do not show consistency i.e. different members yield best accuracy for differ-
ent magnifications. (2) Pooling members perform better than the color texture
members. However, from the Table 3, it can be noted that the later compliment
the CNN based features, and hence show the improved performance when consid-
ered as an ensemble. (3) The accuracy calculated using selected members (with
ITS) outperforms the accuracy calculated using all members. (4) The integrated
ensemble method shows better accuracy over most of the individual ensemble
models, and also shows less variation.

The reason for choosing different features is that the corresponding errors are
different. This is indicated in Fig. 4, where we show randomly selected samples on
the x-axis, and the corresponding y-axis shows the performance of each member
for given sample. Based on this figure it can be noted that errors made by
some members can be corrected by the remaining members, therefore the overall
framework helps to achieve a more generalized performance.
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Fig. 4. Diversity among the committee member

Table 4. Performance comparison

Mag./method Patient-level accuracy comparison Image-level accuracy comparison

[5] [6] [7] [9] Prop. Prop. [10] [11] Prop.

(Baseline) (sel. member) (sel. member)

40X 83.8 90.0 90.02 97.1 84.72 96.43 94.40 98.33 96.23

100X 82.1 88.4 91.2 95.7 89.44 95.79 95.93 97.12 96.73

200X 85.1 84.6 87.8 96.5 95.65 96.24 97.19 97.85 96.84

400X 82.3 86.10 87.4 95.7 82.65 90.89 96.0 96.15 91.60

Table 4 shows the comparative analysis of the proposed method with vari-
ous state-of-the-art works. Note that the proposed approach outperforms many
recent approaches [5–7]. We also significantly outperform the baseline model.
The baseline model is essentially the same fine-tuned Densenet model but used
for end-to-end classification.

In some cases, [9–11] shows better performance than the proposed method.
In [10,11], some details about training-testing protocol (imagewise or patinet-
wise) are also not clear. In addition to that, only image level accuracy has been
calculated (IRR from Eq. 4) which ignores the patient information. In these
works [9–11], a different CNN model is used for end-to-end classification. How-
ever, we note that different from these methods, a focus of our work is to demon-
strate that the various features including the ones from a CNN framework, when
thoughtfully ensembled, can yield much higher results than the baseline CNN (as
is observed from the comparison with the baseline model in Table 4). Thus, such
an ensembling philosophy can also be applied to the networks in [9–11]. It would
be interesting to see if such a strategy can further increase their performance.

4 Conclusion

This study proposes an integrated model utilizing pooled and color-texture
features over multiple magnifications for the classification of breast cancer
histopathology images. The model proposed shows superior performance when
scores are combined using a least square method over individual magnifications.
Hence, we conclude that more beneficial decision can be made once we include
integrated score. In addition, the selected committee decided on the basis of ITS
measures performs better than committee which considers all members.
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Abstract. We present Icytomine, a user-friendly software platform for
processing large images from slide scanners. Icytomine integrates in one
unique framework the tools and algorithms that were developed inde-
pendently on Icy and Cytomine platforms to visualise and process digital
pathology images. We illustrate the power of this new platform through
the design of a dedicated program that uses convolutional neural net-
work to detect and classify glomeruli in kidney biopsies coming from a
multicentric clinical study. We show that by streamlining the analyti-
cal capabilities of Icy with the AI tools found in Cytomine, we achieved
highly promising results.

Keywords: Whole slide imaging · Reproducible research ·
Open-source plugin · Convolutional neural network · Fine-tuning ·
Detection of glomeruli

1 Introduction

The generalization of whole slide imaging (WSI) in pathology services improves
Digital Pathology. These high throughput and high resolution images generate
large images, called virtual slides offer many outlooks for clinical and research
studies. However the clinical analysis doesn’t exploit this high potential content
and the analysis of virtual slides largely remains the work of human experts.
This manual assessment of slides is known to have high variability and limited
reproducibility. To fully exploit virtual slides that would improve high-quality
reproducibility, we propose a quantitative computing approach. Actually, to pro-
cess automatically these large images raises many computational challenges [1]:
(i) gigapixel images, (ii) high variability of histology images (See Fig. 1). On the
other hand, this large amount of data, big data, is particularly adapted to deep
learning approaches. Which are known to offer state of the art results in many
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Fig. 1. Color variation in Masson’s trichrome staining, due to the muti-centric staining.
Even if it is the same staining, the image appearance could vary due to many reasons:
(i) the tissue preparation protocol is not exactly the same across pathology services: for
example, the resin could be used instead of paraffin, the cut, etc., (ii) image acquisition
system and (iii) the age of the slide

imaging applications [2], however it comes with the expense of requiring exhaus-
tive data, accompanied by annotations. In computer vision field, there exist huge
databases that contain “cheap” images collected from widely available internet
sources and annotations issued from crowd sourced non-expert work. The most
pertinent example is ImageNet [3] that contains a number of 2M images belong-
ing to 2K categories. This database powers object recognition methods that
manage to outperform the human performance for the object detection task [4].

However building databases of this importance for medical applications is
a stringent problem, because the data is not as common as in computer vision
field. In particular, the ground truth generation requires interdisciplinary collab-
oration and specifically expert knowledge. The need for tools that would help
minimizing the effort both on the side of the pathologist (providing annotations)
and on the side of the computer scientist (image processing), also encouraging
an unified workflow.

The present document describes the design, implementation and test for a
plugin that deals with WSI applied to the detection of glomeruli, in kidney
biopsy.

2 Related Works

In the perspective of collaborative project and open-software for reproducible
research, we have only considered the open-source solutions. In fact, the open
source packages encourage users to involve in further development and shar-
ing of customized analysis solutions in the form of plugins, scripts, pipelines or
workflows. This has offered opportunities for image analysis to contribute con-
siderably to translational research by enabling the development of the adapted
analytical methods required to address specific and emerging needs.

Deroulers et al. [5] described an open source tool for splitting Hamamatsu
digital slides (ndpi format) in tiles, that they could be processed with any tool.
In SlideToolkit, Nelissen et al. [6] propose a similar workflow based on Cell
Profiler. With QuPath [7], the authors propose a bioimage analysis software and
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high-throughput biomarker evaluation tools. Della Mea et al. [8] propose SlideJ
a plugin to automatically process digital slides within ImageJ.

3 Our Approach: Icytomine

We have presented in [9] a proof of concept, consisting a in general framework to
process the tissue analysis. It combines two softwares: (i) Icy [10] image analysis
platform (http://icy.bioimageanalysis.org/) dedicated to bio-image analysis, and
(ii) Cytomine [11] the web platform (http://www.cytomine.be/) to store and
share the virtual slides and their annotations, for multicentric digital pathology
studies.

3.1 Icytomine Features

The plugin Icytomine was created as a bridge between Icy and Cytomine to
provide large image and annotation importing, annotation exporting, as well
as handling batch processing on these annotations. We propose an intuitive
interface that provides a project and image explorer and a low-latency image
and annotation viewer, taking advantage of image and data caches to minimize
server queries. We also re-engineered available protocols in order to allow for
seamless analysis integration and automatic batch processing. We present in the
following paragraphs, a brief description of Icytomine and its new features to
interact between the Icy software and Cytomine server.

Connecting Two Technologies. In order to provide access for image analysis
on large images, Icytomine uses the web communication mechanisms provided
by Cytomine. It adapts all incoming data to be compatible with Icy data struc-
tures. Among the adapted data we can find project structure, image data, and
annotations geometrical data and their labeling. This information is then cached
in memory so that it is available for as long as it is needed, or for as long as the
memory allows it. This cache enables fast access to data since repeating server
request are minimized, and also greedy memory allocation and subsequent out
of memory errors are avoided by automatically removing from memory unnec-
essary data. Finally, data can also be transferred back to Cytomine to update
annotation classifications or to send new annotations to the server. For this,
Icytomine serves as a translator to adapt data coming from Icy and sending it
in the correct format so that Cytomine can subsequently store it (Fig. 2).

Exploring Large Images on Icy. Icytomine allows access to Cytomine servers
directly from Icy. Then, user can explore projects or images stored on the server
(See Fig. 3). A cached image viewer was developed to provide a responsive user
experience when interacting on the image. This viewer let users not only to
view annotations made by all the users with access to the image, but also to
classify these annotations and review classifications made by other users. A lot
of effort was invested on this viewer to compute and show annotations and

http://icy.bioimageanalysis.org/
http://www.cytomine.be/
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Fig. 2. Icytomine architecture. Icytomine is the communication port with Cytomine
on Icy’s side

images at different resolution levels while allowing continuous user interaction.
To achieve this, annotations are also cached and treated to improve the viewer
performance when they are conformed by many control points, in which case a
geometry simplification is computed once and then its stored in cache memory.
The Table 1 shows the performance in time of Icytomine when loading a slide
and its annotations from a remote server. This time depend on the amount of
annotations and this time is decreased with the cache: the re-loading is very fast,
less than 5ms even with a big amount of annotations.

Table 1. Time to open an image for the first time

Image Width (px) Height (px) Number of annotations Time in ms (re-load)

ima1 111 145 99 589 0 161 (<1)

ima2 50 603 29 326 35 177 (1)

ima3 134 182 84 480 424 262 (1)

ima4 27 635 34 757 1925 615 (1)

ima5 110 973 108 387 11964 2761 (3)

Batch Processing on Large Images. Automatizing large image analyses
can be a challenging task in terms of resource management, even for the easiest
analyses. Icytomine address this issue by letting the user work on large images
at different resolution scales and processing images by small patches that can
be handled by the standard machine. For this, the user designs the analysis
as a protocol where boxes represent different processes. Protocol blocks have
been developed in Icy for importing images and annotations from the Cytomine
server to Icy and exporting annotations to Cytomine server. These blocks can be
customized according to the user needs, for example: tile size, tile margin (tile
overlapping) and output resolution scale (See Fig. 4).

4 Application to Glomerulus Detection

Glomerulus is a network of capillaries essential to the blood filtration by kidney.
Accurate detection of glomeruli is the first important step in many tasks such as
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Fig. 3. Icytomine explorer. The first panel shows the list of projects. When the project
is selected, the second panel shows the image list within the project. The last panel
shows the information related either to the project, either to the selected image. The
search bar (project or image) filters the display.

Fig. 4. Batch processing with Icytomine. An image can be processed by tiles that are
configured before the batch processing. Extraction of glomeruli within an image o a
project

diagnostic, pronostic, or assessement of the kidney quality graft. Due to biologi-
cal, tissue sample preparation and set-up acquisition variability, the glomerulus
appearance could vary in terms of color, size and texture, making automatic
recognition of glomeruli challenging as shown in Fig. 5.
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4.1 Previous Works

(a) glomeruli (b) non-glomeruli

Fig. 5. Examples of the two classes stained
in Masson’s Trichrome

Many studies define specific features
to characterize the glomerulus. A
comprehensive review can be found
in recent article [12]. Gadermayr [13,
14] propose two different CNN cas-
cades for segmentation applications
with sparse objects. The authors in
[12] describe the development of a
deep learning model that identifies
and classifies non-sclerosed and scle-
rosed glomeruli in WSI of kidney
frozen section biopsies. This model
extends a convolutional neural net-
work (CNN) pre-trained on a large
database of digital images.

4.2 Automatic Glomerulus Candidate Generation

Our dataset contains 100 slides stained by Masson’s trichrome from 7 research
centers and digitized with 20X objective by using a Nanozoomer scanner at
0.452µm pixel resolution, either Aperio scanner at 0.504µm pixel resolution
and either Zeiss AxioScan with 0.44µm pixel resolution.

Icy can provide glomeruli candidate patches as training set: 5857 glomeruli,
7047 non-glomeruli; test set: 595 glomeruli, 792 non-glomeruli.

As the shape is the solely invariance feature of the glomerulus appearance, its
extraction is based on the ellipse fitting [15] of two kinds of feature regions: (i)
lumen extraction (when lumen is visible): extracted by a simple threshold that
separate tissue from the background, (ii) color texture segmentation (for other
cases): the graph based region merging algorithm presented by Felzenszwalb and
Huttenlocher [16] generating superpixels. However, this step generates also non-
glomerular regions that should be removed from the final detection and could
be done with a classification step. CNN appears as a good solution for its high
versatility and efficiency.

4.3 Glomerulus CNN Classification

Based on previous works, we chose the classical approach of fine-tuning the
state-of-the-art architectures InceptionV3 [17], Resnet50 [18], as well as VGG16
[19]. VGG is characterized by its straightforward construction, with consecu-
tive convolution and spatial reduction blocks which sum up to a large number
of parameters i.e. 140M, making it computationally costly. Both ResNet and
Inception are based on micro-modules which introduce different pathways in the
propagation of information, with the benefit of having dramatically less param-
eters, ≈24M each, while also bringing improved performance.
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All architectures were pre-trained on ImageNet and a fully-connected layer
of 1024 neurons was added on top as a classifier along with one last neuron
as output for binary classification. Fine-tuning was performed by minimizing
the cross-entropy loss using stochastic gradient descent on mini-batches of 64
patches with a learning rate of 0.001 and momentum of 0.9. An average of 110
epochs (learning passes on the full training set) was sufficient to reach a stable
result for all the architectures.

The architectures were fed with patches of their respective expected input,
i.e. 299 × 299 pixels for InceptionV3 and 244 × 244 for ResNet50 and VGG16.

4.4 Glomerulus Segmentation by Mask R-CNN

To go further, we tested Mask R-CNN [20], which is as state-of-the-art instance
segmentation architecture, able to achieve pixel accuracy. For the presented work
we used the Keras & Tensorflow implementation by [21], with a ResNet50 back-
bone, also pre-trained on ImageNet.

After fine-tuning the network, we obtained a score of 78% of the mean average
precision (mAP). However, the more interesting observations emerged from the
visual assessment of the predicted segmentation. We notice that this approach
is able to produce a more precise segmentation of the glomeruli borders, while
also being robust to the outliers (erroneous ground truth) in the automatic
annotation. Studying the cases with null intersection over union (IoU) between
the ground truth and prediction, we noticed that Mask R-CNN was able to
discover non-annotated positives (both in train and validation set, which is a
good indicator for the lack of overfitting). We also observed that this approach
is adapted for separating adjacent glomeruli (See Fig. 6).

From these results we deduce that our automatic training set generation
method is well suited also for segmentation and what is more, Mask R-CNN can
be applied as a last step in refining the annotations.

(a) (b) (c) (d) (e) (f)

Fig. 6. Examples of Mask R-CNN segmentation results (ground truth in green, predic-
tion in red): glomeruli detection on sample borders in (a) (b) (c), separation of adjacent
glomeruli in (d) (e) (f) (color figure online)
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5 Results

Table 2. Classification accuracy

Method Accuracy

VGG [19] 0.94375

ResNet50 [18] 0.97188

InceptionV3 [17] 0.975

This framework uses image processing to cre-
ate candidate patches and need a weak inter-
action from the user to validate these patches
as glomerulus or not. This can be done either
with the Cytomine web proofreading tool or the
Icytomine viewer, to re-classify manually candi-
dates. Figure 4 shows the Icy protocol that eases
the batch processing task. The best results are obtained with the Inception net-
work (See Table 2).

6 Conclusion

Current research in biology is continuously requiring software capable of support-
ing high reproducibility of analysis, while offering high performance, re-usability
and modularity of available features through plugins. In this work, we proposed a
user-friendly framework combining the powerful and complementary tools of Icy
and Cytomine open-source softwares to process virtual slides. We have shown
by focusing on detection of glomeruli that Icytomine is very well adapted for
large-scale, multicentric digital pathology. Moreover this framework eases the
generation of datasets to feed deep learning networks.
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