
Chapter 5
Online Recognition via a Finite Mixture
of Multivariate Generalized Gaussian
Distributions

Fatma Najar, Sami Bourouis, Rula Al-Azawi, and Ali Al-Badi

Abstract The huge amount of data expanding day by day entail creating powerful
real-time algorithms. Such algorithms allow a reactive processing between the
input multimedia data and the system. In particular, we are mainly concerned
with active learning and clustering images and videos for the purpose of pattern
recognition. In this paper, we propose a novel online recognition algorithm based on
multivariate generalized Gaussian distributions. We estimate at first the generative
model’s parameters within a discriminative framework (fixed-point, Riemannian
averaged fixed-point, and Fisher scoring). Then, we propose an online recognition
algorithm in accordance with those algorithms. Finally, we applied our proposed
framework on three challenging problems, namely: human action recognition, facial
expression recognition, and pedestrian detection from infrared images. Experiments
demonstrate the robustness of our approach by comparing with the state-of-the art
algorithms and offline learning techniques.

5.1 Introduction

Online, real-time sequential arrival of data has increased the computer science
community efforts to analyze, understand, and extract information. Despite the
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fact that information is continuously changing in real time and cannot be available
at once, the traditional learning approach remains constant. In fact, when data is
generated in a function of time, we need to incrementally assemble data as long as
they arrive in a time sequence. Besides, when the size of data is out of the memory
limits, it will be computationally infeasible to train over the entire dataset. In order
to meet these necessities, online learning has been emerged to deal with data in an
incremental process, react to new data, and predict the future coming inputs. As the
notation suggests, online learning is an online method that processes information at
a time. The core idea of this learning algorithm is to generate a model from training
on a stored dataset and then using an iterative algorithm like stochastic gradient
descent and recursive least squares to learn new data introduced dynamically to the
model.

Researchers have made interesting progress in developing online approaches in
several research fields including machine learning, pattern recognition, computer
vision, game theory, and information theory. Online learning is important for various
applications such as faster clustering, forecasting times, catastrophic interference,
spam filtering, pattern recognition, and online tracking. Among the extensive related
work in this field, we cite the most interesting approaches proposed in literature.

Recognizing human activity is an active research topic where the need to identify
real-time moves and actions continuously over the time remains a challenging
problem. Authors in [46] propose an online method to recognize human gestures
through discriminative key poses and speed-aware action graphs. In [50], a hidden
Markov model with modified short-time Viterbi algorithm was proposed for online
recognizing human daily activity. In order to deal with the problem of clustering
parallel data streams, the authors in [5] develop an online version of the classical
K-means clustering algorithm. The idea of this method is based on an incremental
computation of distances between streams of data using a DFT approximation. A
probabilistic model was proposed for online clustering in [48] to detect the novel
objects from sequences of data. They used a non-parametric Dirichlet process for
modeling documents in an online fashion and an empirical Bayes method to estimate
model hyperparameters. When features are expensive, authors in [39] proposed
a novel online feature selection allowing the feature to be only available one at
a time. This online framework was based on grafting approach that combines
the speed of filters with the accuracy of wrappers. Applied to spam filtering, an
online model has been presented to filter a sequence of emails using distance-
based kernels and string kernels in [2]. In this paper, we consider particularly the
problem of online recognition which is one of the most important problems that
arises in computer vision, image analysis, information retrieval, data compression,
and pattern recognition. Online cluster analysis is the task of grouping data into
homogeneous clusters as long as they arrive in a temporal sequence. Finite mixture
model is among the most applied approaches in the context of machine learning
applications [11–13, 19, 33], especially for online clustering. In [41], an online
approach was introduced based on a stochastic approximation of the Expectation-
Maximization algorithm for the normalized Gaussian network. Experiments results
showed that this online EM-algorithm for the NGnet is able to manage dynamic
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environments and to deal efficiently with the robot dynamics problem. In video
surveillance application, an adaptive Gaussian mixture model [29] has been used
to model real video data with an incremental EM for the learning update. In
[51], Gaussian mixture models have been proposed in an online fashion based on
description length reducing prior and a MAP estimation procedure for an up-to-
date description of the data. Despite the adoption of this model to various online
clustering because of its simplicity, real-world applications cannot be considered
by the Gaussian assumption which fails to fit the shape of the data. For instance,
recent works have shown that other non-Gaussian models such as the Dirichlet,
the generalized Gaussian, and the Beta Liouville mixtures provide better clustering
results in several applications. In [8], a finite mixture of Dirichlet and a stochastic
approach was proposed in the light of online clustering application, namely the
dynamic summarization of image databases. A more general distribution has been
applied to this type of non-Gaussian data is the generalized Dirichlet. The authors in
[18] have proposed an online variational learning of generalized Dirichlet mixture
models with feature selection to challenging problems, namely text clustering and
image clustering using the bag-of-visual-words representation. Another approach
that can control how the system should perceive new coming data over time is
based on the generalized inverted Dirichlet [4]. For recognizing human facial
expression, an online variational learning based on Beta-Liouville mixture model
was proposed in [17]. A novel approach based on spherical mixtures has been
proposed in [3] to tackle the problem of tracking and detecting news topic trend.
The model in [1], besides, proposes a flexible online clustering algorithm in
order to accurately approximate the non-Gaussian data. This online technique,
based on finite mixture of generalized Gaussian distribution, has been applied to
video foreground segmentation. In fact, generalized Gaussian mixture models have
been the subject of wide applications [16, 26, 40]. However, in many multivariate
statistical processes, generalized Gaussian distribution fails to be as accurate as the
multivariate generalized Gaussian mixture as shown in previous works [32, 34, 35].
In fact, authors have proved that this multivariate mixture model is able to efficiently
recognize human activity. Based on these studies, it is concluded that it is interesting
to build our online framework based on the multivariate generalized Gaussian
mixture model. One of the fundamental tasks of finite mixture model is parameter
estimation, usually related to optimization problem.

The question to ask then is this: how to recursively estimate the parameters
of the mixture of multivariate generalized Gaussian distributions and how to
simultaneously select the number of components? In this paper, we seek to answer
this question by improving our previous deterministic approaches proposed in
[34, 35] and presenting a novel online recognition algorithm based on multivariate
generalized Gaussian mixture model suitable for various applications. We are
mainly interested by recognizing the human actions, facial expression from videos
and detecting pedestrian from infrared images.

This paper is organized as follows: Sect. 5.2 proposes the deterministic frame-
work based on multivariate generalized Gaussian mixture model. In Sect. 5.3, we
introduce our novel online learning algorithm. Next, we applied the proposed algo-
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rithms to the problem of human action recognition, facial expression recognition,
and pedestrian detection from infrared images. Finally, we conclude this paper with
a summary and potential future works in Sect. 5.4.

5.2 Multivariate Generalized Gaussian Mixture Model

5.2.1 Multivariate Generalized Gaussian Distribution

Multivariate generalized Gaussian distribution (MGGD) is defined by the probabil-
ity density functions [25] as follows:

p(X|Σ;β;µ) = Γ (d
2 )

π
d
2 Γ ( d

2β
)2

d
2β

β

|Σ | 1
2

exp
[
− 1

2
((X−µ)T Σ−1(X−µ))β

]
(5.1)

where X ∈ Rd , Σ = mM is a d × d symmetric positive definite matrix, called
the dispersion matrix, µ is a d-dimensional mean vector, and β > 0 is the shape
parameter that we assumed to be the same for all the dimensions of the data. Noting
now that if β = 1, the MGGD is equivalent to the multivariate Gaussian distribution.
The shape parameter β controls the peakedness and the spread of the distribution.
The smaller the beta, the more peaked for the probability distribution function (pdf),
and the larger the beta, the flatter will be the pdf just as exposed in Fig. 5.1b. Positive
shape parameter values produce skewed distributions to the left and bounded to the
right. In contrast, negative shape parameter values produce skewed distributions to
the right and bounded to the left.

5.2.2 Finite Mixture and Deterministic Learning

The finite mixture of K multivariate generalized Gaussian distributions is given by:

p(X|Θ) =
K∑

j=1

pjp(X|Θj), (5.2)

where p(X|Θj) is known as the j th component of the mixture defined with its
parameters Θj = (µj ,Σj , βj ). The parameter pj is called a mixing weight
parameter and must satisfy 0 ≤ pj ≤ 1 together with

∑K
j=1 pj = 1.

The main purpose of deterministic techniques is maximizing the likelihood
function with respect to model’s parameters. One of the standard inferential methods
and the powerful tool used to fit Gaussian based-mixture model to an observed data
is the Expectation-Maximization (EM) algorithm [15]. Its aim is to optimize the
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Fig. 5.1 Multivariate generalized Gaussian distributions with different shape parameters. (a) β =
0.5. (b) β = 1. (c) β = 3. (d) β = 5

likelihood function in regard to the model’s parameters. The EM algorithm starts
with initializing parameters Θ0. Then, it iterates between two steps: the expectation
and the maximization and converges to the maximum. In the expectation step (E-
step), the expected likelihood is estimated given the current estimated parameters.
For that purpose, the following posterior probability, named also responsibilities,
for the j-th component of the mixture is computed:

p(j |X) = pjp(X|Θj)∑K
m=1 pmp(X|Θm)

(5.3)
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During the maximization step (M-step), the model’s parameters are updated
using the current responsibilities. In order to maximize the likelihood function,
the log-likelihood function is maximized instead with respect to parameters as it
is a monotone function. Then applying the logarithm to the likelihood function, it
follows for X = (X1, . . . , XN) that :

L(X |Θ) =
N∑

i=1

log p(Xi |Θ) =
N∑

i=1

log

⎛
⎝

K∑
j=1

pjp(Xi |Θj)

⎞
⎠ (5.4)

The M-step can be formally described as solving directly the following equation:

∂L(X |Θ)

∂Θj

= 0 (5.5)

Given the multivariate generalized Gaussian distribution p(X|µj ,Σj , βj ), we
obtain the following estimates :

• Mixing parameter

p̂j = 1

N

N∑
i=1

p(j |Xi ) (5.6)

• Mean parameter

µ̂j =
∑N

i=1 p(j |Xi)|Xi − µj |βj −1Xi∑N
i=1 p(j |Xi)|Xi − µj |βj −1

(5.7)

As there is no closed form for the covariance matrix and the likelihood estimation
for this parameter is indistinct, the authors in [9, 10, 38] have proven the existence
of the covariance matrix estimator up to certain conditions. We present those
mentioned works in the following section.

5.2.2.1 Fixed-Point Estimation Method

One of the above-mentioned parameters estimation techniques of the MGGD is the
so-called fixed-point method [38]. Indeed, this method guarantees the existence and
uniqueness of the MLE of the covariance matrix for each shape parameter belonging
to [0,1]. The existence was proved by showing that the profile likelihood is positive,
bounded in the set of symmetric positive definite matrices and equals to zero on the
boundary of this set. Regarding the uniqueness, it was proved that for any initial
symmetric positive definite matrix, the sequence of matrices satisfying a fixed point
equation converges to the unique maximum of this profile likelihood.
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Let (X1, X2, . . . , XN) be a random sample of N observation vectors of dimen-
sion d, drawn from a zero-mean MGGD with scatter matrix C = mΣ ; m is the
scale parameter, and β is the shape parameter. The MLE of m,β, and Σ are found
by solving the maximum likelihood equations defined as follows:

m̂ =
[

1

N

N∑
i=1

(ui)
β

] 1
β

, (5.8)

where ui = XT
i Σ−1Xi .

Assuming first that β is known. By differentiating the likelihood function with
respect to Σ , the MLE of the covariance matrix satisfies the following fixed point
(FP) equation:

f (Σ) =
N∑

i=1

d

ui + u
1−β
i

∑
i �=j u

β
j

XiX
T
i , (5.9)

In other words, the fixed point equation can be written as:

Σ̂k+1 = f (Σk) (5.10)

Indeed, mathematically the solution of fixed point equation is settled using an
iterative proceeding until Σ stabilize (i.e., there is no sensible difference between
Σk and Σk+1).

Afterwards, an iterative algorithm based on a Newton–Raphson technique is then
applied to compute the maximum likelihood estimation of the shape parameter.

β̂k+1 = β̂k − α(β̂k)

α′(β̂k)
(5.11)

where

α(β) = dN

2
∑N

i=1 u
β
i

N∑
i=1

[
u

β
i log(ui)

]
− dN

2β

[
ψ

( d

2β

)
+ log(2)

]

− N − dN

2β
log

( β

dN

N∑
i=1

u
β
i

) (5.12)

where ψ is the digamma function.
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5.2.2.2 Riemannian Averaged Fixed-Point Estimation Algorithm

The second developed algorithm is the named “Riemannian Averaged Fixed Point”
method (RA-FP) [10]. The latter estimator is proposed as a generalization form of
the previous proposed technique fixed-point (FP) estimator [38]. The basic idea of
RA-FP algorithm is to implement successive Riemannian average of fixed point
iterates in order to estimate the covariance matrix for any positive value of the shape
parameter. This process is different from the fixed-point algorithm which estimates
the covariance matrix for only the shape parameter belonging to [0, 1].

The RA-FP uses the Riemannian geometry for estimating the covariance matrix.
The RA-FP based estimation of Σ is determined as follows:

For t ∈ [0, 1], the Riemannian average of Σ̂k+1 is defined as:

Σ̂k+1 = Σk#tk f (Σk) (5.13)

= Σ
1/2
k (Σ

−1/2
k f (Σk)Σ

−1/2
k )tkΣ

1/2
k

where

tk = 1

k + 1
, tk ∈ [0, 1], (5.14)

and f (Σ) is defined as (5.9).
If tk = 1, the RA-FP estimator is reduced to the fixed-point estimator, and

Eq. (5.13) yields to (5.10).
For computing the maximum likelihood of the shape parameter, an iterative

algorithm based on a Newton–Raphson technique [10] is applied as in the fixed-
point algorithm.

5.2.2.3 Fisher Scoring Algorithm

The Fisher scoring algorithm [9] is a maximum likelihood estimator based on the
fixed-point technique also and followed by an optimization through the Fisher
scoring method. The estimators of m,β are given by Eqs. (5.8) and (5.11) as
proposed in [38]. Hence, in this work, the main purpose of the Fisher scoring
algorithm is to optimize the likelihood function based on fixed-point technique and
followed by an optimization iteration through the Fisher information matrix.

The likelihood function of vectors X = (X1, X2, . . . , XN) is given by:

L(X |Θ) =
N∏

i=1

K∑
j=1

pjp(Xi |Σj ;βj ;µj ) (5.15)
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The gradient of likelihood function with regard to covariance matrix is defined as:

∇L(Σ;Θ) = [F(Σ)]N−2
2 ∇F(Σ), (5.16)

with :

F : SK++ → R+{0} (5.17)

Σ → |Σ |−1
( N∑

i=1

u
β
i

)− d
β

and the gradient of F at a point Σ is given by:

∇F(Σ) = F(Σ)Σ−1[f (Σ) − Σ]Σ−1 (5.18)

where f (Σ) is defined by fixed-point algorithm in [38].
To numerically maximize the likelihood function, the Fisher-scoring iteration is

given by:

Σk+1 = Σk + G−1∇L(Σ;Θ) (5.19)

where the entries of the Fisher information matrix are defined by [45]:

Gii(β) = 1

4

(3d + 6β

d + 2
− 1

)
, (5.20)

Gij (β) = 1

4

(d + 2β

d + 2
− 1

)
, i �= j, (5.21)

for i, j = 1, . . . , K .
Afterwards, an iterative algorithm based on Newton–Raphson technique is

applied to compute the maximum likelihood estimation of the shape parameter as
the two previous estimator algorithms.

We summarize the EM-algorithm for the multivariate generalized Gaussian
mixture model in the following algorithm:

5.3 Online Learning Algorithm

The deterministic framework presented in the above section was based on batch
learning; the parameters are updated on the entire dataset at once. In this section, we
introduce an online EM learning approach. We suppose the dataset was represented
by M multivariate generalized Gaussian distributions with parameters ΘN . Assume
now at time t + 1, a new data XN+1 is inserted to the database, thus, we should



90 F. Najar et al.

Algorithm 1 MGGMM learning algorithm
Require: X , K

Ensure: Θ∗
Initialization
Apply the K-Means to obtain the parameters of each component.
Then, apply the Method-of-Moment for each component j
repeat

for j:=1 to K do
E-step: Compute posterior probabilities using Eq. (5.3)
M-step:
Update µj using Eq. (5.7)
Update βj using Eq. (5.11)
Update Σj using FP algorithm ((5.10), (5.9)), RA-FP algorithm (5.13) or FS algo-
rithm (5.19).

end for
until Convergence of Likelihood
Return the model’s parameters Θ∗.

update the different mixture model parameters with the new input vector. For which
reason, a stochastic approximation for obtaining the maximum likelihood of mixture
parameters was considered. Namely, we have used the stochastic ascent gradient
parameter updating proposed in [47] where the updating parameters are given by:

Θ
(t+1)
N+1 = Θ

(t)
N + δN

∂ log(p(XN+1|Θ(t)
N , p

(t)
j ))

∂Θ
(t)
N

(5.22)

In terms of updating the mixing weight, the above updating equation does not ensure
the constraints: 0 ≤ pj ≤ 1,

∑M
j=1 pj = 1. For this aim, a logit parameterization

was presented to overcome this problem.

π
(t)
j = log

pj

pM

, j = 1, . . . , M − 1 (5.23)

π
(t+1)
j = π

(t)
j + δN

(
Z

(t+1)
N+1,j − p

(t)
j

)
, j = 1, . . . ,M − 1 (5.24)

So that, for j = 1 . . . ,M − 1,the updating mixing weight is given by:

p
(t+1)
j = exp(π

(t+1)
j )

1 + ∑M−1
j=1 exp

(
π

(t+1)
j

) , (5.25)

p
(t+1)
M = 1

1 + ∑M−1
j=1 exp

(
π

(t+1)
j

) (5.26)
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The updating mean parameter, shape parameter, and covariance matrix are as
follows:

µ
(t+1)
j = µ

(t)
j + δN ∗ Z

(t+1)
N+1,j ∗

[
(XN+1 − µj )

T Σ−1
j (XN+1 − µj )

]βj −1
(5.27)

β
(t+1)
j = β

(t)
j + δN ∗ Z

(t+1)
N+1,j ∗

[(
1

βj

+ dψ(d/2βj )

2β2
j

+ d log(2)

2β2
j

)

−((XN+1 − µj )
T Σ−1

j (XN+1 − µj )
βj )

log((XN+1 − µj )
T Σ−1

j (XN+1 − µj ))

]
(5.28)

Σ
(t+1)
j = Σ

(t)
j + δN ∗ Z

(t+1)
N+1,j ∗

[(
− 1

2
tr(Σ−1

j dΣ)

)

+βj

2
(XN+1 − µj )

T Σ−1
j dΣjΣ

−1
j

((XN+1 − µj )(XN+1 − µj )
T Σ−1

j (XN+1 − µj ))
(βj −1)

]
(5.29)

Thus, the complete online updating MGGMM algorithm was resumed as follows.

Algorithm 2 Online MGGMM learning algorithm

Require: X = {X1, . . . , XN }, Θ
(t)
N , K

Ensure: Θ
(t+1)
N+1

At t + 1, new data vector XN+1
repeat

for j:=1 to K do
Compute posterior probability

zN+1j = pjp(XN+1|Θj )∑K
m=1 pmp(XN+1|Θm)

(5.30)

Affect XN+1 to a cluster using the Bayes rule: XN+1 is affected to cluster j1 if zN+1j1 >

zN+1j , ∀j �= j1
Update the weights using Eqs. (5.25) and (5.26)
Update µj using Eq. (5.27)
Update βj using Eq. (5.28)
Update Σj using Eq. (5.29).

end for
until Convergence of Likelihood
Return the model’s parameters ΘN+1.
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5.4 Experiments Results

5.4.1 Datasets

In our experiments, we are using three different datasets to evaluate the performance
of the proposed online mixture model. For human action recognition, we use the
well-known KTH dataset [42]. This human action dataset presents to date the most
tremendous at handset of video sequences for human actions. It contains 2391
sequences categorized in six different human actions: walking, jogging, running,
boxing, hand waving, and hand clapping. Each action is performed in four diverse
scenarios: outdoors, outdoors with scale variations, outdoors with different clothes,
and indoors. We present some examples of frames from video sequences in each
category in Fig. 5.2. For recognizing facial expression, the set of data that we
have used is the Cohn–Kanade dataset [22]. It contains 486 sequences where each
sequence starts with a neutral expression and proceeds to a target expression of
anger, surprise, joy, fear, sadness, or disgust. The sequences are collected from 97
university students ranging in age from 18 to 30 years. Sixty-five percent were
female, 15% were African-American, and 3% were Asian or Latino with one to
six emotions per subject. Sample images from this database with different facial
expressions are shown in Fig. 5.3. In regard to the detecting pedestrian from infrared
images, we make use of a challenging dataset of thermal imagery, namely the OSU
thermal dataset. It is composed of 10 test collections with the total of 284 thermal
images. Those images contain 984 pedestrians captured from Ohio State University
campus using a Raytheon 300D thermal sensor core with 75 mm lens mounted on
an 8-story building. We display an exemplary of different number of pedestrians in
Fig. 5.4.

Fig. 5.2 Examples of frames from the KTH dataset of different human actions within different
scenarios
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Fig. 5.3 Sample face expression images from the Cohn–Kanade database

Fig. 5.4 Example of pedestrian images from the OSU-thermal database

5.4.2 Database Preprocessing Approach

The methodology that we have adopted for each application can be summarized
as follows (Fig. 5.5). Basically, we have adopted the bag-of-words approach to
represent our images and video sequences. In this model, each image or video of
the dataset is depicted as a set of features. First, we extracted local spatio-temporal
features from each video sequence from KTH database using space-time interest
point detector [28] and SIFT3D descriptor [43]. From Cohn–Kanade videos dataset,
we extracted dynamic textures features using LBP-TOP descriptor within 9 × 8
blocks [49]. Besides, for the infrared images, we used dense SIFT descriptors [30]
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Fig. 5.5 Database preprocessing approach

of 16 × 16 pixel patches computed over a grid with a spacing of 8 pixels. Second,
we have quantized the extracted features into visual words using K-means algorithm
[14], and each image and video is then represented as a frequency histogram
over the visual words. Finally, we have applied a probabilistic latent semantic
analysis (pLSA) to the obtained histograms in order to represent each image by
a d-dimensional vector where d is the number of latent aspects [6].

5.4.3 Online Human Action Recognition

Recognizing human from videos is a widely studied problem in many applications,
both offline and online. The interest of online processing is motivated by the
promise of many applications. If we take the example of video surveillance
systems for airports, online human recognition plays a key role in protecting
against acts of terrorism and in providing real-time surveillance in various airport
departments. Another application of online human action processing is in smart
environments such as health care and assisted living geared to provide housing
facilities for elderly population and people with disabilities. Accordingly, many
recent researchers have concentrated on online human action recognition. An
approach based on motion data and location information has been adapted in [50]
to indoor human daily activity recognition. A combination between neural network
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and HMM has been proposed to model motion data and location information. A
more recent approach [46] based on semi-supervised learning was proposed to
robustly recognize moves online from unsegmented data. In [24], an online activity
recognition on smart phones using the built-in accelerometers was proposed to
classify the basic movement of the user. This method was performed using the
KNN classifier and evaluated by applying Naive Bayes classification method. To
deal with the problem of continuous activities and personalized learning, an online
multitask learning method for large-scale personalized activity recognition has been
introduced in [44]. Using a dataset obtained from real-home settings, the authors in
[36] have proposed an evolving fuzzy systems to recognize activities of the daily
living (ADLs) from sensor streams.

5.4.4 Online Human Facial Expression Recognition

Recognizing human facial expression is an active research problem in the recent
years. Various works have focused on online facial expression recognition that have
been used for different applications such as smart environment, video surveillance
systems, e-education, and many other interesting utilization. The interest in online
human facial expression recognition is motivated by the promise of automati-
cally categorizing the different types of human face expression used in computer
interaction, medicine, e-learning, access control, monitoring, and marketing. For
example, knowing the client’s emotional state, computer can become a more
effective interface to detect patient feeling about medical treatment. For instance,
interpreting autism’s expressions could help in developing a therapy system. In
tutoring system, detecting the state of the learner may enhance the presentation
style of e-learning program. Another interesting application is to detect drivers’
state, helping the driver monitor their stress level and alert other cars. If we take
the example of video surveillance systems for ATM, facial expression recognition
plays a key role in protecting against acts of terrorism and theft as it doesn’t dispense
money when someone is scared. Many researches have focused on facial expression
recognition but few of them were interested how could we understand the facial
expression in an interactive way. A system built on elastic graph matching [21]
was proposed to track and detect the face of a person in a live video sequence.
In [7], a study on understanding how babies learn to recognize facial expressions
is presented. They have used a cognitive system algebra combined with a neural
network model to online recognize facial expressions. A method for collecting
and analyzing facial responses over the web was introduced in [31]. The proposed
framework was utilized to crowdsource over three million face videos in response
to thousands of media clips ranging from advertisements to movie trailers to TV
shows and political debates.
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5.4.5 Online Pedestrian Detection in Infrared Images

Infrared (IR) thermography is an imaging method for visualizing radiation not
observable by human eye. Analyzing thermal images has occurred growing interest
both in research and in industry with a wide area of applications. In military
surveillance uses, they have the need to mount infrared detection system on vehicles
or towers for border surveillance. Fire-fighters use infrared imaging as a mechanism
to find missing people in buildings on fire. As well, car-pedestrians accidents
which occur at night acquire the use of far-infrared camera in order to discern the
thermal energy. Online detection pedestrians from infrared images has not been
much explored yet. In [27], a real-time online learning was proposed to track
pedestrians using boosted random ferns and using Weber–Fechner’s law to detect
pedestrians according to the season and the weather. Another interesting work on
online pedestrians detection based on particle filters and combination of a local
intensity distribution (LID) with oriented center symmetric local binary patterns was
introduced in [23]. The proposed algorithm was applied to various thermal videos
to detect the most likely target position in the subsequent frame.

5.4.6 Results

In this section, we evaluate our proposed framework in different experiments and we
compare recognition rates with methods from literature and offline methods. After
preprocessing our databases, we used 15 subjects from each activity from KTH
dataset to construct the visual vocabulary and the remaining 10 subjects to test. For
facial expression and pedestrian detection experiments, we selected 70% of the data
to the training and the remaining for the test.

We start by studying the impact of the visual vocabulary sizes on the recognition
accuracy for our online methods onFP-MGGMM, onRA-FP-MGGMM, onFS-
MGGMM, and the other approaches (GMM,GGMM), as depicted in Fig. 5.6a for
KTH dataset, Fig. 5.7a for Cohn–Kanade and in Fig. 5.8a for OSU thermal dataset.
According to these results, the maximum accuracy value is obtained with visual
vocabulary sizes of 200 for KTH, 20 for Cohn–Kanade, and 50 for OSU thermal
dataset. Moreover, we have studied the impact of the number of aspects on the
recognition accuracy as shown in Figs. 5.6b, 5.7b, and 5.8b and we found that the
optimal accuracy was obtained when the number of aspects was set to 20 for KTH
and 6 for Cohn–Kanade and OSU thermal dataset.

We achieved the best performance with human action recognition, facial expres-
sion recognition, and infrared pedestrian detection in different proposed online
learning multivariate generalized Gaussian methods. For instance, for human
action recognition, the online Riemannian averaged fixed-point multivariate gen-
eralized Gaussian mixture achieves the best recognition rates (99.37%) as shown
in Table 5.1. In recognizing facial expression, the online fixed-point MGGMM



5 Online Recognition via a Finite Mixture of Multivariate Generalized. . . 97

(96.84%) outperforms the other related works, Gaussian-based models, and also
the two proposed online mixture models as indicated in Table 5.2. With respect to
infrared pedestrian detection, experiments results on OSU thermal dataset shown in
Table 5.3 that the Fisher-scoring MGGMM provides the best performance (96.64%)
as compared to other online Gaussian-based models. We notice from those tables
(Tables 5.1–5.3) that our three proposed discriminative online learning methods
reached superior performance where the accuracy increases approximately by 20%
comparing to the basic Gaussian mixture model and the univariate generalized
Gaussian mixture. We display also the confusion matrix for the proposed online
learning methods for KTH database in Tables 5.4, 5.5, 5.6, for Cohn–Kanade in
Tables 5.7, 5.8, 5.9, and for OSU-thermal database in Tables 5.10, 5.11, and 5.12.

Fig. 5.6 (a) Recognition accuracy vs. vocabulary size for the KTH dataset; (b) recognition
accuracy vs. the number of aspects for the KTH dataset
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Fig. 5.7 (a) Recognition accuracy vs. vocabulary size for the Cohn–Kanade dataset. (b) Recogni-
tion accuracy vs. the number of aspects for the Cohn–Kanade dataset

We compare the performance of the offline learning and online learning proposed
in Sect. 5.2.2 on all the three datasets. Tables 5.13, 5.14, and 5.15 illustrate the
accuracy and the running time for each proposed model and for the Gaussian
mixture model and the generalized Gaussian mixture model. According to those
tables, we notice that online learning has improved the quality of the clusters and
decreased the time of running compared to the offline learning.
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Fig. 5.8 (a) Recognition accuracy vs. vocabulary size for the OSU-thermal dataset. (b) Recogni-
tion accuracy vs. the number of aspects for the OSU-thermal dataset

Table 5.1 The average
recognition rates using
different online algorithms
for KTH dataset

Approach Recognition rates

sig min-Hash [20] 91.2

Baseline [20] 44.3

OHAC [37] 82.2

onGMM 91.66

onGGMM 89.16

onFP-MGGMM 99.16

onRA-FP-MGGMM 99.37

onFS-MGGMM 96.25
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Table 5.2 The average
recognition rates using
different online algorithms
for Cohn–Kanade dataset

Approach Recognition rates

onBM [17] 84.57

onDM 79.69

onGDM 83.08

onGMM 77.50

onGGMM 85.85

onFP-MGGMM 96.84

onRA-FP-MGGMM 85.94

onFS-MGGMM 86.62

Table 5.3 The average
recognition rates using
different algorithms for
OSU-thermal dataset

Approach Recognition rates

onGMM 90.76

onGGMM 89.06

onFP-MGGMM 92.06

onRA-FP-MGGMM 94.34

onFS-MGGMM 96.64

Table 5.4 Confusion matrix for KTH dataset using onFP-MGGMM

C1 C2 C3 C4 C5 C6

C1 97.5% 0% 2.5% 0% 0% 0%

C2 0% 100% 0% 0% 0% 0%

C3 0% 0% 100% 0% 0% 0%

C4 0% 0% 0% 100% 0% 0%

C5 0% 0% 0% 0% 100% 0%

C6 0% 0% 0% 0% 2.5% 97.5%

Table 5.5 Confusion matrix for KTH dataset using onRA-FP-MGGMM

C1 C2 C3 C4 C5 C6

C1 92.5% 5% 0% 0% 2.5% 0%

C2 0% 100% 0% 0% 0% 0%

C3 0% 0% 100% 0% 0% 0%

C4 0% 0% 0% 100% 0% 0%

C5 0% 0% 0% 0% 100% 0%

C6 0% 0% 0% 0% 0% 100%

Table 5.6 Confusion matrix for KTH dataset using onFS-MGGMM

C1 C2 C3 C4 C5 C6

C1 90% 2.5% 0% 0% 7.5% 0%

C2 0% 92.5% 2.5% 0% 0% 5%

C3 0% 0% 100% 0% 0% 0%

C4 0% 2.5% 0% 97.5% 0% 0%

C5 0% 0% 0% 2.5% 97.5% 0%

C6 0% 0% 0% 0% 0% 100%
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Table 5.7 Confusion matrix for Cohn–Kanade dataset using onFP-MGGMM

C1 C2 C3 C4 C5 C6

C1 100% 0% 0% 0% 0% 0%

C2 0% 91.66% 8.34% 0% 0% 0%

C3 0% 0% 93.75% 0% 6.25% 0%

C4 0% 0% 0% 100% 0% 0%

C5 0% 0% 0% 0% 100% 0%

C6 4.35% 0% 0% 0% 0% 95.65%

Table 5.8 Confusion matrix for Cohn–Kanade dataset using onRA-FP-MGGMM

C1 C2 C3 C4 C5 C6

C1 86.66% 0% 6.6% 0% 6.74% 0%

C2 0% 91.66% 0% 8.34% 0% 0%

C3 6.25% 0% 87.5% 0% 6.25% 0%

C4 0% 14.05% 0% 80.95% 0% 5%

C5 0% 0% 0% 19.05% 80.95% 0%

C6 0% 0% 0% 17.4% 0% 82.60%

Table 5.9 Confusion matrix for Cohn–Kanade dataset using onFS-MGGMM

C1 C2 C3 C4 C5 C6

C1 100% 0% 0% 0% 0% 0%

C2 8.34% 91.66% 0% 0% 0% 0%

C3 6.25% 0% 87.5% 0% 0% 6.25%

C4 3.4% 0% 11.13% 66.66% 18.81% 0%

C5 0% 9.53% 0% 0% 90.47% 0%

C6 8.7% 0% 0% 8.7% 0% 82.60%

Table 5.10 Confusion matrix for OSU-thermal dataset using onFP-MGGMM

C1 C2 C3 C4 C5 C6 C7

C1 94.73% 0% 5.27% 0% 0% 0% 0%

C2 0% 86.66% 0% 13.34% 0% 0% 0%

C3 9.1% 0% 90.90% 0% 0% 0% 0%

C4 0% 7.69% 0% 84.61% 0% 7.7% 0%

C5 11.38% 0% 11.7% 0% 76.92% 0% 0%

C6 0% 36.37% 0% 0% 0% 63.63% 0%

C7 0% 0% 0% 16.67% 0% 0% 83.33%
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Table 5.11 Confusion matrix for OSU-thermal dataset using onRA-FP-MGGMM

C1 C2 C3 C4 C5 C6 C7

C1 94.73% 0% 5.27% 0% 0% 0% 0%

C2 13.3% 80% 0% 6.7% 0% 0% 0%

C3 0% 0% 90.90% 0% 9.1% 0% 0%

C4 0% 7.7% 0% 92.30% 0% 0% 0%

C5 0% 0% 23.08% 0% 76.92% 0% 0%

C6 0% 36.37% 0% 0% 0% 63.63% 0%

C7 0% 0% 0% 8.34% 0% 0% 91.66%

Table 5.12 Confusion matrix for OSU-thermal dataset using onFS-MGGMM

C1 C2 C3 C4 C5 C6 C7

C1 92.10% 0% 0% 7.9% 0% 0% 0%

C2 0% 76.66% 0% 11.6% 0% 11.74% 0%

C3 0% 0% 90.90% 0% 0% 9.1% 0%

C4 11.54% 0% 0% 88.46% 0% 0% 0%

C5 0% 19.24% 0% 0% 80.76% 0% 0%

C6 0% 0% 0% 0% 13.64% 86.36% 0%

C7 0% 16.67% 0% 0% 0% 0% 83.33%

Table 5.13 Performance of human recognition using offline and online algorithms for KTH
dataset

Offline Online

Accuracy (%) Run time (s) Accuracy (%) Run time (s)

GMM 87.14 27.78 91.66 8.63

GGMM 88.33 38.36 89.16 3.39

FP-MGGMM 91.97 19.18 99.16 10.29

RA-FP-MGGMM 94.16 22.71 99.37 10.44

FS-MGGMM 94.58 15.87 96.25 10.03

Table 5.14 Performance of facial expression recognition using offline and online algorithms for
Cohn–Kanade dataset

Offline Online

Accuracy (%) Run time (s) Accuracy (%) Run time (s)

GMM 76.46 14.74 77.50 2.31

GGMM 85.85 9.55 85.85 1.36

FP-MGGMM 88.98 7.1 96.84 2.35

RA-FP-MGGMM 91.61 8.76 85.94 2.61

FS-MGGMM 93.87 3.8 86.62 2.24



5 Online Recognition via a Finite Mixture of Multivariate Generalized. . . 103

Table 5.15 The average recognition rates using offline and online algorithms for OSU-thermal
dataset

Offline Online

Accuracy (%) Run time (s) Accuracy (%) Run time (s)

GMM 79.61 15.17 90.76 1.78

GGMM 84.26 8.56 89.06 1.05

FP-MGGMM 89.32 6.65 92.06 1.7

RA-FP-MGGMM 92.51 6.75 94.34 2.1

FS-MGGMM 89.81 6.21 96.64 2.02

5.5 Conclusion

In this paper, we have proposed an online learning based on deterministic framework
that is able to estimate the multivariate parameters of the generalized Gaussian
mixture model. To this aim, we were motivated by developing a robust maximum
likelihood approach based on recent techniques, namely fixed-point, Riemannian-
averaged fixed-point, and Fisher scoring and a stochastic gradient descent algorithm.
We applied our algorithms on extensive experiments including challenging applica-
tions namely recognizing human action, facial expression and detecting pedestrian
in infrared images. Comparisons revealed that our online methods achieve better
recognition rates with respect to other offline methods, proposed methods in
literature, and other Gaussian-based models. In spite of the promising results
achieved, further enhancement could be done using online variational learning.
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