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Preface

Increasingly, business, government agencies, and scientists are confronted with
large amounts of heterogenous data that are critical for the daily activities, but
not well enough analyzed to get the valuable information and knowledge that
they potentially hide. The availability of large data sets has changed the scientific
approaches to data mining. This has given rise to the need to develop efficient data
modeling tools. Among these approaches, mixture models have become a tool of
choice in the last years in many scientific domains [1–3]. This is mainly due to
their ability to offer a well-principled approach to clustering. New challenges (e.g.,
Big Data), new approaches (e.g., deep learning), and new technologies (e.g., cloud
computing, Internet of Things, etc.) have added new problems when deploying
mixture models in real-life scenarios. And several new frameworks based on mixture
models have been proposed. The importance of mixture models as a powerful
learning machine is evident by the great plethora of papers dedicated to this subject.
Such models are finding applications in almost any area of human endeavor. This
includes applications in engineering, science, medicine, and business, just to name
a few. At the same time, however, there are a lot of challenges related to the
development and application of mixture models. Indeed, very few books present
a comprehensive discussion about the application of such models to many real-life
domains. The present edited book shows clearly that mixture models may be applied
successfully in a variety of applications if well deployed.

The book contains 14 chapters that are grouped into 5 parts, namely, Gaussian-
based models (3 chapters), generalized Gaussian-based models (2 chapters), spher-
ical and count data clustering (3 chapters), bounded and semi-bounded data
clustering (3 chapters), and image modeling and segmentation (3 chapters). In
the first chapter, Parsons presents a Gaussian mixture model approach to classify
response types. The parameter estimates obtained from fitting the proposed Gaus-
sian model are used in a naive Bayesian classifier to perform the classification
task. In Chap. 2, Berio et al. use Gaussian mixtures for the interactive generation of
calligraphic trajectories. The authors exploit the stochastic nature of the Gaussian
mixture combined with an optimal control to generate paths with natural variation.
The merits of the approach are tested by generating curves and traces that are

v



vi Preface

similar from a geometrical and dynamical point of views to the ones that can be
observed in art forms such as calligraphy or graffiti. In Chap. 3, Calinon presents
an interesting overview of techniques used for the analysis, edition, and synthesis
of continuous time series, with emphasis on motion data. The author exploits the
fact that mixture models allow the decomposition of time signals as a superposition
of basis functions. Several applications with radial, Bernstein, and Fourier basis
functions are presented in this chapter. A generalization to the Gaussian mixture
called multivariate bounded asymmetric Gaussian mixture model is proposed by
Azam et al. in Chap. 4. The proposed model is learned via expectation maximization
and applied to several real-life applications such as spam filtering and texture image
clustering. Another generalization is proposed in Chap. 5 by Najar et al. and applied
for online recognition of human action and facial expression as well as pedestrian
detection from infrared images. In Chap. 6, Fan et al. tackle the problem of spherical
data clustering by developing an infinite mixture model of von Mises distributions.
A localized feature selection approach is integrated within the developed model to
detect relevant features. The resulting model is learned via variational inference and
applied to two challenging applications, namely, topic novelty detection and image
clustering. A hybrid generative discriminative framework, based on an exponential
approximation to two distributions dedicated to count data modeling, namely, the
multinomial Dirichlet and the multinomial generalized Dirichlet, is developed in
Chap. 7 by Zamzami and Bouguila. Several SVM kernels are developed within this
hybrid framework and applied to the problem of analyzing activities in surveillance
scenes. A challenging problem when considering the multinomial Dirichlet and
the multinomial generalized Dirichlet distribution in statistical frameworks is the
computation of the log-likelihood function. This problem is tackled in Chap. 8
by Daghyani et al. by approximating this function using Bernoulli polynomials.
The approach is validated via two clustering problems: natural scene clustering
and facial expression recognition. A unified approach for the estimation and
selection of finite bivariate and multivariate beta mixture models is developed
in Chap. 9 by Manouchehri and Bouguila. The approach is based on minimum
message length and deployed to several problems (e.g., sentiment analysis, credit
approval, etc.). In Chap. 10, Maanicshah et al. tackle the problem of positive
vector clustering by developing a variational Bayesian algorithm to learn finite
inverted Beta-Liouville mixture models. Applications such as image clustering and
software defect detection are used to validate the model. In Chap. 11, Kalra et al.
examine and analyze multimodal medical images by developing an unsupervised
learning algorithm based on online variational inference for finite inverted Dirichlet
mixture models. The algorithm is validated using challenging applications from
the medical domain. Kalsi et al. tackle in Chap. 12 image segmentation problem
by integrating spatial information within three mixture models based on inverted
Dirichlet, inverted generalized Dirichlet, and inverted Beta-Liouville distributions.
The same problem is approached in Chap. 13 by Chen et al. by developing a spatially
constrained inverted Beta-Liouville mixture model applied to both simulated and
real brain magnetic resonance imaging data. Finally, Chap. 14 by Channoufi et
al. presents a flexible statistical model for unsupervised image modeling and
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segmentation. The model is based on bounded generalized Gaussian mixtures
learned using maximum likelihood estimation and minimum description length
principle.

Montreal, QC, Canada Nizar Bouguila
Xiamen, China Wentao Fan
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Chapter 1
A Gaussian Mixture Model Approach
to Classifying Response Types

Owen E. Parsons

Abstract Visual perception is influenced by prior experiences and learned expec-
tations. One example of this is the ability to rapidly resume visual search after
an interruption to the stimuli. The occurrence of this phenomenon within an
interrupted search task has been referred to as rapid resumption. Previous attempts
to quantify individual differences in the extent to which rapid resumption occurs
across participants relied on using an operationally defined cutoff criteria to classify
response types within the task. This approach is potentially limited in its accuracy
and could be improved by turning to data-driven alternatives for classifying response
types. In this chapter, I present an alternative approach to classifying participant
responses on the interrupted search task by fitting a Gaussian mixture model to
response distributions. The parameter estimates obtained from fitting this model can
then be used in a naïve Bayesian classifier to allow for probabilistic classification of
individual responses. The theoretical basis and practical application of this approach
are covered, detailing the use of the Expectation-Maximisation algorithm to estimate
the parameters of the Gaussian mixture model as well as applying a naïve classifier
to data and interpreting the results.

1.1 Background

1.1.1 The Influence of Prior Information During Interrupted
Visual Search

Visual perception is widely regarded to involve processes of unconscious inference
about the state of the external world which act upon incoming noisy sensory
information [1]. Hermann von Helmholtz was an early pioneer of the view that
visual perception involves higher order processing of ambiguous retinal images.

O. E. Parsons (�)
University of Cambridge, Cambridge, UK
e-mail: oep20@cam.ac.uk
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4 O. E. Parsons

He suggested that vision was a process of finding the most likely state of visual
stimuli based on both the sensory information being received and the previous
experiences of the observer [2]. This view of vision, as a process of testing
hypotheses about the state of the world, has since been strongly advocated and
perception is now understood to be heavily influenced by our expectations of the
external environment [3]. These expectations help to solve any ambiguities in the
incoming sensory information and enable us to process visual scenes in a fast and
efficient way.

Prior expectations have been shown to influence performance during visual
search tasks [4–9]. One particular set of studies, which were carried out by Lleras
and colleagues, demonstrated how periodically removing the search display during
visual search tasks results in a unique distribution of response times [4, 10, 11].
These results illustrated the effects of previously acquired information on search
performance. The initial paradigm within these studies required participants to
complete a visual search task in which the search display was only visible for short
intervals, while being intermittently interrupted by a blank screen [4]. By separating
responses into those which occurred after a single presentation of the search display
and those which occurred after two or more presentations, the authors found
that the distributions of these two response types were distinct. Responses which
immediately followed the first presentation of the search display showed a typical
unimodal distribution, with all responses occurring after 500 ms from the onset of
the search display. However, responses that followed subsequent presentations of
the search display showed a clear bimodal distribution with a large proportion of
responses occurring within 500 ms of the most recent presentation of the search
display. This was interpreted as evidence for a predictive aspect of visual processing
in the latter response type, as participants were able to use information acquired
from previous exposures of the search display to facilitate their search performance
on subsequent presentations.

Lleras and colleagues built on this initial finding by carrying out a number of
different manipulations to the original task design in order to better understand the
mechanisms of this phenomenon and to rule out alternative explanations for their
results [4]. First, they implemented an adaptation of the original paradigm in which
the participants had to search for two separate targets in parallel which occurred
within distinct search displays that alternated on each presentation. This version of
the task produced similar response distributions from participants as the original
task, which provided evidence that the results they found in the original task were
not simply the product of delayed responses following previous presentations of
the display. The authors also experimented with increasing the display time of their
search display from 100 ms to 500 ms, which resulted in a stronger influence of prior
information on search performance as the participants had longer to accumulate
visual information.

Importantly, they were able to rule out the possibility that the effects they
observed in the original study were due to a confirmation bias. This refers to a
potential strategy where participants would withhold their response following the
initial presentation of the search display until they could confirm their decision after
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viewing a subsequent presentation. The authors assessed whether this strategy was
adopted by participants by inserting catch trials into the task (20% of time) in which
the search display did not reappear following the initial presentation. The absence of
further presentations of the search display forced participants to respond when they
realised that they weren’t going to be presented with any additional information.
The results from this version of the task found that responses which occurred during
these catch trials were likely to have been generated by random guessing, suggesting
that a confirmation strategy was unlikely to have been the cause of the observed
results in the original task.

1.1.2 Quantifying Individual Differences During the
Interrupted Search Task

It is common that distributions of responses which are obtained from single-
condition behavioural tasks (tasks in which the behavioural paradigm is consistent
across all trials) are assumed to be a result of a single underlying cognitive process.
Distinct cognitive processes are more commonly seen in multiple-condition tasks
where two types of condition are presented to participants. A classic example of
a multiple-condition task is the Posner cueing task, in which trials may either have
valid or invalid cues [12]. In tasks such as this, the data are normally stratified by the
type of task condition to allow for statistical comparison. This is straightforward in
multiple-condition tasks where the different response types occur as a direct result
of task manipulation. However, a different approach is required in the case of single-
condition tasks, such as the interrupted search task, as different response types occur
throughout the task independently of any task manipulation. This means there are no
directly observable labels that indicate which response type occurred in any given
trial.

Previous attempts have been made to classify response types during the inter-
rupted search task in order to quantify the effects of rapid resumption across
individual participants. Lleras and colleagues carried out a subsequent study which
looked at whether there were age-related differences in the extent to which
individuals showed the effects of rapid resumption [10]. In their study, they focused
on responses that occurred after subsequent presentations of the search display
(in which rapid resumption could occur) and discarded responses that occurred
immediately after the first presentation of the search display (in which rapid
resumption could not occur). They classified trials where rapid resumption was
thought to have occurred using a cutoff value of 500 ms, which was based on their
operational definition of rapid resumption. This allowed for a comparison to be
made between the reaction time distributions of the two different response types and
for the relative proportion of each response type to be calculated. Using this method,
they were able to calculate the ratio of trials in which rapid resumption did and did
not occur and then used this to assess for age-related effects. While they found
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increasing age led to an improvement in overall visual search performance, they
were unable to find an association between age and the extent to which participants
displayed the effects of rapid resumption.

The method developed by Lleras and colleagues has some potential issues
regarding its validity and suitability for classifying response types in the interrupted
search paradigm. First, the defined cutoff used to differentiate between response
types is slightly arbitrary as it wasn’t derived empirically from behavioural data.
The cutoff used in this approach was chosen primarily based on visual inspection of
data [4, 11] and is therefore unlikely to allow for optimal labelling of the different
response types. By using more sophisticated statistical methods, empirical data
could be used to classify response types more accurately. Second, the use of a
cutoff point leads to binary classifications that might lose some of the richness of
the behavioural data. To further illustrate the potential variance in performance that
this method fails to capture, I generated simulated data for 3 different hypothetical
response distributions (see Fig. 1.1). These 3 response distributions were created
using distinct underlying generative models. Distributions (a) and (c) were each
drawn from single Gaussians. While both of these had a mean reaction time of μ =
0.5, they had differing variances of σ = 0.07 and σ = 0.3, respectively. Distribution
(b) was drawn from a mixture of two Gaussians with the same variance (σ = 0.1)
but different means (μ = 0.25 and μ = 0.75). Using the approach by Lleras and
colleagues [10] to classify these different distributions (in terms of the proportion of
rapid resumption responses that they contain) gives us the same value (0.5) for all 3
distributions. As they clearly have distinct underlying generative models, this result
highlights how this method fails to capture certain types of variation in response
distributions that may be indicative of differences in performance on the task.

Fig. 1.1 Simulated reaction time distributions. Distribution (a) was drawn from a single Gaussian
of μ = 0.5 and σ = 0.07. Distribution (b) was drawn equally (λ = 0.5) from a mixture of two
Gaussians with the same variance (σ = 0.1) but different means (μ = 0.25 and μ = 0.75).
Distribution (c) was drawn from a single Gaussian of μ = 0.5 and σ = 0.3. The ratio of rapid
to non-rapid responses, using the method suggested by Lleras et al. [10], is shown in the top right
corner of each plot
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1.1.3 An Alternative Approach to Classifying Response Types
During Interrupted Search

One way in which the evaluation of performance in the interrupted search task
could be improved is through the use of an empirical data-driven approach to
classify response types. The following chapter presents a novel method which uses
behavioural data to drive response classification. Considering the data obtained from
the interrupted search task, the overall distribution of responses can be viewed
as being comprised of two separate distributions. When distributions are derived
from two or more distinct processes, the underlying probabilistic structure can be
captured using mixture modelling [13]. Based on the evidence put forward by Lleras
and colleagues [4, 11], there is a strong reason to believe that there are two distinct
response types that occur within the interrupted search paradigm, these being (1)
those responses which involve rapid resumption and (2) responses which don’t
involve rapid resumption.

In terms of the true underlying cognitive mechanisms responsible for the different
response types, there is no direct way of observing which response type occurred in
any given trial. Therefore, the response type can be described as a latent variable (or
a hidden variable), a variable which is not directly observable but can be inferred
from other observed variables. The main observed variable that can be used in
the present study is reaction time. The method used by Lleras and colleagues was
essentially a way of using a simple classification rule to infer the latent variable,
response type, from the observed variable, reaction time. The main concern with
this approach, as outlined earlier, is the suitability of the classification rule used to
infer the latent variable from the observed data. Here, I present a novel data-driven
approach that uses reaction times from trials to infer the most likely response type
for any given trial.

1.1.4 Aims of This Chapter

This chapter aims to clearly present a method of applying the Expectation-
Maximisation algorithm to fit a Gaussian mixture model to behavioural data and
demonstrating how this can then be used to classify response types based on
which generative process they were likely to have been produced by. Here, I will
focus primarily on applying the outcomes from this approach to assessing whether
the original cutoff point suggested by Lleras and colleagues is valid. The results
produced by this novel method will also be compared with the results from the
method used by Lleras et al. to assess whether the classifications produced by
the two methods differ significantly. However, as outlined above, this approach
also has the potential to provide a number of additional advantages such as
individualised modelling of classification criteria as well as potential quantification
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of the confidence of classifications. While I will not apply these approaches in the
present chapter, the additional benefits of such approaches will be considered during
the discussion.

1.2 Methods

1.2.1 Data Collection

The dataset presented here was collected as part of a larger study which used a
reproduced version of the original task presented by Lleras et al. [4]. A summary
of the procedures used for this experiment are presented in the appendix. For the
present analysis, only participant responses that occurred following subsequent
presentations of the search display were included.

1.2.2 Overview of Approach

This alternative approach to estimating the latent variable from the observed data
will be based on extracting the parameters for the separate unimodal distributions
of the different response types and then using these parameters to calculate which
distribution was more likely to have generated each individual response. The
outline of this approach is shown in Fig. 1.2. The overall response distribution for
the combined distributions is assumed to be a bimodal distribution, as illustrated
by Fig. 1.2a. The first step is to estimate the distribution parameters of the two
individual Gaussian distributions that would generate similar data to the observed
bimodal distribution. This step is shown in Fig. 1.2b. Once these parameters have
been estimated, individual data points can be assessed to determine which of the
two Gaussians they were more likely to have been generated by. Two example data
points, xi and xj , are shown in Fig. 1.2c. Both of these example data points are more
likely to have been generated by the rightmost Gaussian distribution, as indicated
in Fig. 1.2d. One additional advantage of the new approach is that the likelihood to
which these data points are expected to have been generated by a given distribution
and not the other can also be quantified. In this instance, xj will be more likely
to have been generated by the highlighted Gaussian than xi . The exact details and
methodology of approach will be outlined in greater detail below.

1.2.3 Gaussian Mixture Models

One particular example of a latent variable model is the Gaussian mixture model. A
mixture model is an example of a hidden model, in which observations are generated
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Fig. 1.2 Demonstration of the procedure used to classify data generated by a bimodal distribution.
Diagram (a) shows a hypothetical binomial distribution. A Gaussian mixture model can be used
to estimate the parameters of the different components of the binomial distribution as shown in
diagram (b). These can be used to label data points such as xi and xj based on which distribution
they were most likely to have been drawn from, as shown in diagrams (c) and (d)

from a mixture of two distinct generative models [14]. A Gaussian mixture model
is a common example of this, which consists of a mixture model comprising of two
or more Gaussian distributions. The Gaussian distribution can be expressed as:

N(x|μ, σ) = 1

σ(2π)1/2 exp−
(
(x − μ)2

σ 2

)
(1.1)

where μ is the expected value of the dataset x, and σ 2 is the variance of the dataset.
A mixture model can be defined as such:

p(x|{θk}) =
K∑
k=1

λkpk(x|θk) (1.2)

Here, λk represents the relative weights of the different components (for a model
with k components) where

∑
λk = 1 and pk(x|θk) represents the respective

components of the subpopulations with θk referring to the parameter set for
component k. Note that this assumes that λk > 0 for all values of k, otherwise the
model contains non-contributive subpopulations which can be ignored. Gaussian
mixture models are a specific case of mixture models in which the distributions for
the subpopulations are Gaussian. This can be written as:
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p(x|{θk}) =
∑

λkN(x|μk,�k) (1.3)

Within the mixture model, each individual Gaussian density N(x|μk,�k) is
referred to as a component of the mixture and has specific values for its mean μk and
covariance �k . The parameters λk are the mixing coefficients, which are the relative
weights of each distribution within the mixture model. Integrating equation (1.3)
with respect to x, while incorporating the fact that both p(x) and each of the
individual Gaussian components are normalised, gives:

K∑
k=1

λk = 1 (1.4)

By definition, both p(x) ≥ 0 and N(x|μk,�k) ≥ 0. This indicates that λk ≥ 0
for all values of k. These statements can be combined with Eq. (1.4) to show that the
mixing coefficients meet the criteria to be probabilities:

0 ≤ λk ≤ 1 (1.5)

It can also be stated across all the components k that:

p(x) =
K∑
k=1

p(k)p(x|k) (1.6)

So, it is clear that λk is equivalent to p(k), which is the prior probability of a data
point coming from the kth component. Additionally, the density N(x|μk,�k) =
p(x|k) can be regarded as the probability of data point x given component k. The
properties of the Gaussian mixture distribution are defined by the parameters λ, μ
and �, which refer to sets containing the parameters of the individual components
λ ≡ {λ1, . . . , λK }, μ ≡ {μ1, . . . , μK } and � ≡ {�1, . . . , �K}.

In the present study, there is no direct information that indicates which of the
two underlying processes generate any given response. In order to be able to
estimate which underlying process is the most likely cause of individual responses,
knowledge of the specific characteristics of the distributions for the different
subpopulations is required. In the case of a Gaussian mixture model, estimates
need to be obtained for the number of subpopulations, k, the characteristics of
each Gaussian, μk and �k , as well as the relative weight of each subpopulation
distribution to the overall population, λk . A standard approach for estimating
parameters such as these is to find the maximum likelihood. This involves finding
values of parameters for which the likelihood function is maximised. The log
likelihood function can be written as:

logp(X|λ,μ,�) =
N∑
n=1

log

{
K∑
k=1

λkN(xn|μk,�k)

}
(1.7)
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This equation includes a summation term within the logarithm. This leads to it
not being possible to solve the derivative of this in closed-form and so it is necessary
to turn to the Expectation-Maximisation algorithm to estimate the parameter values.

1.2.4 Expectation-Maximisation Algorithm

The Expectation-Maximisation algorithm is an iterative method which can be used
to find the maximum likelihood estimate in models that contain latent variables
[15]. It works by starting with initial parameter estimates and then iterates through
an Expectation Step and a Maximisation Step until the estimates for the parameters
converge on a stable solution. The Expectation Step assumes the current parameter
estimates are fixed and uses these to compute the expected values of the latent
variables in the model. The Maximisation Step takes the expected values of the
latent variables and finds updated values for the previous parameter estimates that
maximise the likelihood function.

In the case of a Gaussian mixture model, the Expectation Step assumes that
the values of all the 3 parameters for the Gaussians in the model are fixed and
then computes the probability that each given data point is drawn from each of
the individual Gaussians in the model. This property, the probability that a data
point is drawn from a specific distribution, is referred to as the responsibility of
the distribution to a given data point. Once the responsibility values are calculated,
the Maximisation Step assumes these responsibilities are fixed and then attempts to
maximise the likelihood function across all the model parameters.

The responsibilities are equivalent to the posterior probabilities for a given
component within the model and can be calculated as follows:

γ (zk) = p(zk = 1|x) = p(zk = 1) · p(x|zk = 1)∑K
j=1 p(zj = 1) · p(x|zj = 1)

(1.8)

= λk ·N(x|μk,�k)∑K
j=1 λj ·N(x|μj ,�j )

(1.9)

where
∑K

j=1 λj · N(x|μj ,�j ) is the normaliser term across all components. The
responsibility of a component of the model to a data point is equivalent to the
normalised probability of a given data point belonging to a specific Gaussians within
the mixture model, then weighted by the estimated mixture proportions (λk). This
is the posterior probability for a specific distribution given the observed data, x.
Using this, it is possible to calculate the distribution of the prior mixture weights.
The responsibilities can be summed and normalise to estimate the contribution of
the individual Gaussians to the observed data:
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λk = 1

N

∑
i

γ (zk) (1.10)

The responsibilities of each data point to the different distributions in the model
can be used to estimate the mean and standard deviation of the Gaussians:

μk =
∑

i γ (zk)xi∑
i γ (zk)

(1.11)

and

σk =
∑

i γ (zk)(xi − μk)(xi − μk)∑
i γ (zk)

(1.12)

It would be straightforward to calculate the posteriors for the components within
the model if the distribution parameters were known and, similarly, it would
be easy to calculate the parameters were the posterior know. The Expectation-
Maximisation algorithm overcomes this issue of circularity by alternating between
fixing either the posterior or the parameters while maximising the likelihood.
Initially, the parameters are fixed and then the posterior distribution is calculated
for the hidden variables. Then, the posterior distribution is fixed, and the parameters
are optimised. These steps are repeated in an alternating fashion until the likelihood
value converges.

1.2.5 Estimation of Mixture Model Parameters

I used the Expectation-Maximisation algorithm to estimate the parameters for
the individual distributions of responses where rapid resumption did occur and
responses where rapid resumption did not occur. Once the parameters of these
two distributions had been estimated, I would be able to not only reclassify all
participant responses using an empirically derived criterion but also quantify the
relative likelihood of each individual classification. The Expectation-Maximisation
algorithm was carried out by initialising the parameters and then iterating through
the Expectation and Maximisation Steps until the parameters converged. The
individual steps of the Expectation-Maximisation algorithm are detailed below.

1.2.5.1 Initialisation

The means μk , covariances �k and mixing coefficients λk were initialised by
using the values obtained from the classification method suggested by Lleras and
colleagues [10] to classify data points across all participants and then estimate the
distribution parameters for the two response types based on these classifications.
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1.2.5.2 Expectation Step

The responsibilities (posteriors) for the individual components were evaluated using
the current estimates for the parameter values:

γ (znk) = λk ·N(xn|μk,�k)∑K
j=1 λj ·N(xn|μj ,�j )

(1.13)

1.2.5.3 Maximisation Step

The parameters were then updated by re-estimating them based on the current
values for the responsibilities. This can be done using Eqs. (1.10)–(1.12), giving
the following update equations:

μnew
k = 1

Nk

·
N∑
n=1

γ (znk) · xn (1.14)

�new
k = 1

Nk

N∑
n=1

γ (znk) · (xn − μk) · (xn − μk)
T (1.15)

λnew
k = Nk

N
(1.16)

where:

Nk =
N∑
n=1

·γ (znk) (1.17)

1.2.5.4 Convergence Criteria

Convergence was checked for both the model parameters and log likelihood. The
convergence criteria were all set as 10−15. During each iteration of the Expectation-
Maximisation algorithm, the updated parameter and log likelihood estimates were
compared to the previous estimates to assess whether the change in values met the
convergence criteria. The log likelihood was estimated as follows:

logp(X|μ,�, λ) =
N∑
n=1

log

{
K∑
k=1

λkN(xn|μk,�k)

}
(1.18)
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If any of the parameters or the log likelihood satisfied the convergence criteria,
then the algorithm terminated, otherwise the next iteration was started.

1.2.6 Log Probability Ratio

Once the parameters for the distributions of rapid and non-rapid responses had been
estimated, log probability ratios were calculated for all trials across each participant
individually. The log probability ratios could be used to classify responses as either
rapid or non-rapid which in turn allowed for an updated calculation of the proportion
of rapid responses for all participants. This updated measure will be referred to as
RR-Model which can then be compared to the RR-Basic scores that were calculated
using the cutoff method outlined by Lleras and colleagues [10]. Additionally, the log
probability ratios allow for a measure of the cumulative confidence of classifications
to be calculated for individual participants. For the current dataset, the set of
latent variables (which refer to the components of the Gaussian mixture model)
is Z ≡ {zR, zS} where zR and zS are multinominal vectors such that zR = 1
is a classification of a rapid response and zS = 1 is a classification of a slow
response. For any given response xi , the probabilities of the observed responses
can be formulated as either being classified as a rapid response or a slow response
(non-rapid response). These can be written, respectively, as:

P(zR = 1 | x) = P(x | zR = 1) P (zR = 1)

P (x)
(1.19)

and

P(zS = 1 | x) = P(x | zS = 1) P (zS = 1)

P (x)
(1.20)

As a binary classification (two classes) has been used and slow trials are defined
as any trials in which rapid resumption has not occurred, it can also be stated that:

P(zR = 1 | x)+ P(zS = 1 | x) = 1 (1.21)

Equations (1.19) and (1.20) can then be combined with Eq. (1.21). This gives us
an equation for the normaliser term P(x):

P(x | zR = 1)P (zR = 1)+ P(x | zS = 1)P (zS = 1) = P(x) (1.22)

This can be rearranged to give the probability that data point x will be classified
as a rapid response:
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P(zR = 1 | x) = 1
P(x|zS=1)P (zS=1)
P (x|zR=1)P (zR=1) + 1

(1.23)

All the terms within this equation are computable from the observed data. The
prior probabilities P(zR = 1) and P(zS = 1) can be estimated from the observed
data. The posterior terms P(x|zR = 1) and P(x|zS = 1) can then be calculated by
assuming that:

P(x | zk = 1) = N(x | μk, σ
2
k ) (1.24)

where zk = 1 is the response type (either rapid, zR = 1, or slow, zS = 1) and μk

and σ 2
k are the estimates for the mean and standard deviation of the given response

distribution which were calculated using the Expectation-Maximisation algorithm.
From this it is possible to expand Eq. (1.24) using Eq. (1.1) to calculate the log
probability ratio, which is the ratio of log likelihood probabilities for the Gaussian
components of the model.

log
P(zR = 1|x)
P (zS = 1|x) = −

1

2

(
(x − μr)

2

σ 2
r

− (x − μs)
2

σ 2
s

+ log σ 2
r − log σ 2

s

)

+ logP(zR = 1)− logP(zS = 1) (1.25)

The final form shows the 3 mains components of the log probability ratio:

the variance-weighted Euclidean distances from the means
(
(x−μr)

2

σ 2
r
− (x−μs)

2

σ 2
s

)
,

the log variances
(
log σ 2

r − log σ 2
s

)
and the difference in log prior probabilities

(logP(ωr)−logP(ωs)). A log probability ratio of 0 would suggest that the observed
response was equally likely to have been generated by either distribution, with
positive values suggesting stronger evidence that the response was a rapid response
and negative values suggesting that the observed response was a non-rapid response.
These values can be accumulated across all responses for each individual participant
using a sequential probability ratio test. This approach rests on the assumption
that the outcome on the nth trial is independent of the outcome on the n − 1th
trial. To verify whether this assumption holds, regression analyses can be used to
determine whether previous trial response type has an effect on current trial response
type. Additionally, it is worth considering that the accumulation of directional
log probability ratios is not entirely informative as distributions which are evenly
balanced across the classification boundary will have values close to zero regardless
of the likelihood of the individual trial classifications. Returning to the simulated
distributions in Fig. 1.1, accumulation of the direction log probability ratios would
still not be able to differentiate between these 3 distributions. Therefore, the absolute
values of the log probability ratio for each individual trial could also be considered.
These absolute values of the log probability ratios can be accumulated across both
response types combined, to give an overall measure of classification confidence for
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each participant, or for each of the response types individually, to create 2 distinct
within-subjects measures.

1.3 Results

1.3.1 Parameter Estimation of Response Distributions

The Expectation-Maximisation algorithm was initialised using the values detailed
in the methods section. The algorithm found a two-Gaussian fit for the response
distribution. The parameters for the two Gaussians were μa = 0.324, σa = 0.155
and μb = 0.73, σb = 0.119 with a λ of 0.551. To ensure the parameter estimates
were accurate, the Expectation-Maximisation algorithm was run 100 times. The
algorithm consistently converged on the same values with an average of 631.92
iterations (SD = 30.85) taken to converge. The fit of the estimated Gaussians to the
observed data is shown in Fig. 1.3.

Fig. 1.3 Histogram showing the percentage of responses within different time bins for standard
responses. Data shown for all responses pooled across participants. The two curves show the
estimated distributions from the Gaussian mixture model. The Gaussian for rapid responses is
shown as a dashed line and the Gaussian for slow responses is shown as the solid line
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1.3.2 Evaluation of Previous Classification Criteria

To contrast the current method with the method presented by Lleras et al. [10],
the threshold value between the two response type classifications was calculated
using the parameters obtained here. This value represents the exact within-epoch
reaction time for which faster responses would be classified as rapid responses
and slower responses would be classified as slow responses. This is calculated by
using the model parameters and finding the reaction time for which the absolute
log probability ratio is minimised. The calculated threshold reaction time was
432 ms, which indicates that the difference between the value used by Lleras and
colleagues and the empirically derived value estimated by the model presented here
is a relatively modest 68 ms. While this suggests that the cutoff used by Lleras and
colleagues was a fairly good estimate, it is not clear whether the methods produce
significantly different values for the ratio of rapid to non-rapid responses.

1.3.3 Comparison of Classification Methods

Participant data were then modelled by applying a naïve Bayesian classifier using
the estimated parameters. For each trial, a classification likelihood value was
calculated using the within-epoch reaction time and the estimated parameters for
the underlying Gaussians obtained using the Expectation-Maximisation algorithm.
The log probability ratio was calculated for all responses and was used to classify
the response type for each individual trial. Trials with positive log probability
ratios were classified as rapid responses, and trials with negative log probability
ratios were classified as slow responses. No trials were calculated as having a log
probability ratio of exactly 0 and so there were no ambiguous cases.

Rapid resumption ratios were calculated using the procedure described above
and will be referred to as the RR-Model scores. These scores were then compared
to rapid resumption ratios calculated using the method suggested by Lleras et al.
[10], which will be referred to as the RR-Basic scores. As expected, a Pearson
correlation test revealed a high level of correlation between scores obtained using
the two methods (r = 0.958, p < 0.001). A repeated measures ANOVA was
then conducted, with method of calculation (RR-Basic v RR-Model) as the within-
subject measure and the calculated rapid resumption ratio values as the outcome
variable. There was a significant effect of method (F(1,23) = 178.8, p < 0.001,
η2 = 0.886) indicating that scores obtained by the two methods did statistically
differ from each other. Participant data are displayed as violin plots [16] in Fig. 1.4.
This suggests that, in the present dataset, the Gaussian mixture model approach that
was developed produced results that differed to the method used by Lleras et al.
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Fig. 1.4 Violin plots showing the calculated rapid resumption ratio using the RR-Basic (light grey)
and RR-Model (dark grey) methods. Median values as well as upper/lower quartiles are shown for
each method by the horizontal dashed lines

1.4 Discussion

In this chapter, a Gaussian mixture model was successfully fit to the pooled
participant response data. This allowed for the estimation of the parameters of
the distinct distributions for responses in which rapid resumption occurred and
responses in which rapid resumption did not occur. The Expectation-Maximisation
algorithm converged on a 2-component model, suggesting that the response dis-
tributions for responses in the task that occurred after subsequent presentations of
the search display were indeed bimodal. Importantly, the model parameters that
were found were then used to calculate a more accurate classification threshold
(the exact time at which a response is equally likely to be a rapid response or a
slow response) by minimising the absolute log probability ratio between the two
Gaussian distributions. This classification threshold was found to be moderately
close to the value used by Lleras and colleagues [10]. The value calculated by
the model was 432 ms, which was not dramatically different from the approximate
value (500 ms) suggested by Lleras et al. However, a significant difference between
the ratio scores calculated using the two methods was reported. This suggests that
a slight adjustment to the originally suggested cutoff value of 500 ms should be
adopted.
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One limitation of the approach used by Lleras et al. is that fixed parameters
are used to classify the response types across all participants rather than adopting
an individualised approach. It may be the case that the best estimates for the
parameters of the underlying response distributions vary across individuals and
therefore using an approach that estimates the model parameters based on data
from the entire sample might lead to less accurate modelling of the response types.
The approach presented here could allow for Gaussian mixture models to be fit to
single participant data which could overcome this issue. The modelling approach
developed in this chapter has the added advantage of allowing for the likelihood
of each trial classification to be considered. This method provides a richer set of
measures which could be sensitive to variation in task performance that would be
overlooked by only considering the relative proportions of response types. While
individualised classification or the calculation of classification confidence values
were not explored in this chapter, both of these approaches are viable using the
method that was developed here. The focus of the present chapter was primarily to
assess the cutoff criteria used by Lleras et al., which was achieved. It is hoped that
the procedures outlined in this chapter will provide guidance for others who wish to
apply similar methods to their datasets.

Appendix: Additional Methods

Participants

A total of 27 healthy male participants completed the interrupted visual search task.
All participants were right handed and had normal or corrected-to-normal vision.
The mean age of the group was 30.42(SD = 9.18), and the mean performance IQ
(measured using the WASI [17]) was 114.11(SD = 11.97). These participants were
recruited as the control group in a larger study that was conducted. Participants were
recruited from the Cambridge Psychology Volunteers Database or through classified
adverts on websites such as Gumtree.

Stimuli Presentation

Stimuli were presented using the Psychtoolbox extension [18, 19] in MATLAB [20].
Stimuli were displayed on a 24′′ monitor running at a resolution of 1920 × 1080.
Participants were sat with a viewing distance of 60 cm from the screen in a darkened
room.

Overall the stimuli presented and procedure used in this study closely match the
methods outlined in experiment 1 from Lleras et al. [4]. Participants were required to
locate a target T shape within an array of L shapes. Trials either contained 16 visual
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items (1 target and 15 distractors) or 32 visual items (1 target and 31 distractors). An
even amount of 16 and 32 item trials were presented to each participant in a random
order. The effects of distractor density were not considered as part of the analysis
presented here.

Items were presented within a centrally positioned white square which subtended
a 9◦ visual angle. The area of the screen outside of the central square was coloured
grey. Item positions were generated by randomly placing them inside an invisible
6 × 6 grid. The height and width of each invisible cell within the grid was 1.5◦.
During display generation, items were initially placed centrally within their grid
positions and then a random amount of jitter (±0.2) was applied to this initial
position in order to avoid the objects being collinearly aligned.

After generating item positions, one of the items was selected at random to be
the target item, and the others were presented as distractor items. All items were
generated using two lines of equal length at 90 degrees to each other, with target ‘T’
shapes placing the second line in the middle of the first line and distractor ‘L’ shapes
placing the second line at the end of the first line. Each of the line segments within
the items subtended 0.5◦ of visual angle. The orientation of each item was randomly
selected from four possible options (at 90 degree rotations). Items could be either
blue or red in colour and were balanced to ensure an equal number of items of each
colour in the display.

Procedure

During each trial, a new search display was generated using the methods detailed
above. Trials were preceded by a fixation cross in the centre of the screen for 500 ms.
The search display was shown for 100 ms at a time with a 900 ms blank display
period in between. Blank display periods showed a white square without any of the
search items present. Each cycle of a 100 ms search display presentation and 900 ms
blank display will be referred to as an epoch [21]. Trials terminated after a total of
8000 ms without a response or as soon as the participant responded. This meant
that on each trial the search display would be visible for a maximum of 8 times (8
epochs). Participants were shown feedback on each trial which stayed on the screen
for 1000 ms. This procedure is demonstrated in Fig. 1.5.

Participants were given instructions on the screen which were repeated verbally
by the experimenter. Once the participants were happy with the instructions,
they were given 15 practice trials to do. After completing the practice trials, all
participants completed a control task designed to assess their base reaction time.
The control task consisted of 30 trials in which a target object appeared without the
addition of any distractor objects. Participants were asked to report the colour of the
target shape (red or blue) as quickly as possible by pressing the ‘z’ key for a blue
target or the ‘m’ key for a red target. Coloured stickers were placed on the keys to
indicate which key corresponded to which colour.
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Fig. 1.5 Diagram showing the stimuli sequence for any given trial. At the start of each trial,
participants are presented with a fixation cross for 500 ms. After the fixation cross, the search
display is presented for 100 ms followed by a 900 ms interval with a blank screen. The search
display is shown a maximum of 8 times in total. Feedback is given for 1000 ms (‘Correct’ or
‘Incorrect’) once the participant responds or the trial times out (8000 ms from initial presentation
of the search display)

After completing the control task, participants were given a short break before
starting the main task. In the main task, participants were again required to report the
colour of a target T shape. However, these T shapes were now presented alongside
distractor L shapes. Participants completed a total of 10 blocks of 30 trials. Each
block was followed by a 30 s rest period. The duration of the full session including
the instructions, practice trials, control task and main task was approximately
30 min. Two participants were removed from further analysis for having median
reaction times in the control task that were greater than 2 standard deviations from
the group mean. An additional participant was removed for having an error rate in
the main task that was greater than 2 standard deviations from the group mean. This
left a final sample of 24 subjects for the main analyses. Data for all response trials
were pooled together for all the participants. Only correct responses were included
in this dataset.
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Chapter 2
Interactive Generation of Calligraphic
Trajectories from Gaussian Mixtures

Daniel Berio, Frederic Fol Leymarie, and Sylvain Calinon

Abstract The chapter presents an approach for the interactive definition of curves
and motion paths based on Gaussian mixture model (GMM) and optimal control.
The input of our method is a mixture of multivariate Gaussians defined by the user,
whose centers define a sparse sequence of key-points, and whose covariances define
the precision required to pass through these key-points. The output is a dynamical
system generating curves that are natural looking and reflect the kinematics of a
movement, similar to that produced by human drawing or writing. In particular,
the stochastic nature of the GMM combined with optimal control is exploited to
generate paths with natural variations, which are defined by the user within a simple
interactive interface. Several properties of the Gaussian mixture are exploited in this
application. First, there is a direct link between multivariate Gaussian distributions
and optimal control formulations based on quadratic objective functions (linear
quadratic tracking), which is exploited to extend the GMM representation to a
controller. We then exploit the option of tying the covariances in the GMM to
modulate the style of the calligraphic trajectories. The approach is tested to generate
curves and traces that are geometrically and dynamically similar to the ones that can
be seen in art forms such as calligraphy or graffiti.

2.1 Introduction

The hand-drawn curves that can be observed in art forms such as calligraphy [32]
and graffiti [8] are often the result of skillful and expressive movements that require
years to master. Even after practice, the same trace executed twice will always be
different due to motor variability. Mimicking this type of curves and variability with
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conventional geometric computer aided design (GCAD) methods can be difficult.
These methods typically describe a curve through the concatenation of piecewise
polynomials, which interpolate or approximate the vertices of a control polygon
defined by a user. This approach is well suited for geometric design applications.
However, the manual positioning of control points can become unintuitive and
overly complex when the task at hand requires mimicking the curvilinear patterns
that would be produced by the movements of an experienced artist’s hand. To this
end, we propose a movement centric approach to curve design, in which a curve is
defined through the synthesis of a movement underlying its production rather than
only considering its static geometric trace.

In this chapter, we demonstrate how tools from statistics and optimal control,
together with insights from computational motor control, can be combined into
a curve generation method that produces synthetic traces that are visually and
kinematically similar to the ones made by a human when drawing or writing. The
input of our method is a Gaussian mixture model (GMM)1 describing a spatial
distribution. The output of our method is a distribution of smooth trajectories, with
variations and kinematics that are similar to the ones that typically characterize
human hand motions. We generate smooth trajectories by forcing a dynamical sys-
tem to track the centers of each GMM component with a precision determined by the
respective covariances. The trajectory evolution is determined by an optimization
with a quadratic objective, which is formulated as a trade-off between tracking
accuracy and control effort. The latter is expressed as the square magnitude of a
nth order derivative of position, such as jerk (3rd) or snap (4th), which results in
smooth trajectories that are consistent with known principles from computational
motor control [18, 41]. Accompanying source codes for the chapter are available at
http://doc.gold.ac.uk/autograff/.

2.2 Background

The proposed approach is informed by a number of observations and ideas from
the domain of computational motor control. Target-directed hand movements are
characterized by an archetypal “bell” shaped velocity profile [17, 34, 36]. A
number of mathematical models of handwriting movements describe trajectories as
the time superposition of multiple target-directed sub-movements [16, 37], where
each sub-movement is in turn characterized by a bell-shaped velocity profile. The
speed and curvature of human hand movements tend to show an inverse relation
[15, 21] with this relation taking the form of a power law for certain types of
movements [27, 44]. The duration of hand movements tends to be approximately
invariant to scale, a principle that is also known as isochrony. Also the duration

1We refer the reader to the chapter by O.E. Parsons in this same book [Chapter 1] for an
introduction and in-depth description of GMMs and relevant estimation methods.

http://doc.gold.ac.uk/autograff/
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of sub-movements tends to be approximately equal, a principle that is commonly
referred to as local isochrony [25], and which is consistent with the hypothesis of
central pattern generators [14]. Human hand movements are smooth and appear to
obey optimality principles, which can be well modeled as the minimization of an
objective function [19]. Popular models express this objective as the minimization
of the square-magnitude of higher order positional derivatives [12, 18, 33, 42]
or torque [43]. Human movements show inherent variability [6], which tends to
increase in parts of the movement that are not critical to the required precision of a
task. Todorov and Jordan [41] propose the framework of optimal feedback control
and suggest that deviations from an average (smooth) trajectory are corrected only
when they interfere with the required task precision. Our method allows to model
this principle by explicitly defining the required precision of trajectory segments
with full covariance matrices.

Egerstedt and Martin [13] discuss the equivalence between several forms of
splines and control theoretic formulations of dynamical systems. The authors show
that smoothing splines correspond to the output of a controller found by minimizing
a quadratic cost function similar to the one used in our method. In a related line
of work, Fujioka et al. [22] optimize the placement of B-spline [10] control points
in order to mimic smoothing effects observable in Japanese calligraphy. With our
method we extend these principles to a more generic case, in which movement
precision as well as coordination patterns are encoded as full covariance matrices,
and where the output of the method is a distribution rather than a single trajectory.

In conventional computer graphics applications, hand-drawn curves are usually
specified interactively through a sketch-based interface. A user traces a curve
with a mouse, trackpad, or tablet. The trace is then processed in order to avoid
digitization artefacts and hesitations, with a procedure commonly referred to as
curve “neatening” or “fairing” [2, 30, 31, 40]. However, the output of these methods
is usually a piecewise polynomial curve set with several control points, and this
makes it difficult to later edit or vary the overall trace.

Non photorealistic animation and rendering (NPAR) is the subfield of computer
graphics aimed at the simulation of artistic techniques/styles and at clarity of
representation [26]. A few methods from this domain also target the generation
of curves through the simulation of a hand movement. Haeberli [23] uses a mass-
spring system to generate calligraphic curves from input mouse movements. House
and Singh [24] use a proportional-integral–derivative (PID) controller to generate
sketch-based stylizations of 3D models. AlMeraj et al. [1] mimic the quality of hand-
drawn pencil lines with a model of human movements that minimizes changes in
acceleration [19]. The method we describe in this chapter allows to achieve similar
artistic rendering effects or to generate curves that are similar to the ones produced
by a sketch-based interface. We provide a user-friendly interface to input a sparse
sequence of key-points, bearing similarities to the interfaces used in conventional
GCAD methods.
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2.3 Trajectory Generation

The input to our method is a GMM with M multivariate components N (
μi ,�i

)
defined in a Cartesian space of dimension D. The output is a distribution of smooth
motions N (x,�x), where each motion tracks the centers μi of the input with a
precision defined by the corresponding covariances �i . Considering a sequence
of centers of the mixture components gives a series of key-points (μ1, . . . ,μM),
results in a descriptor that is similar to the control polygon used in conventional
curve generation methods such as Bézier curves or splines. At the same time, the
covariance structure of the GMM provides explicit control over the variability and
smoothness of the trajectory in the neighborhood of each key-point, together with
local or global control of the curvilinear evolution of the trajectory (Fig. 2.1).

Trajectories are generated by optimizing the evolution of a dynamical system that
tracks each GMM component sequentially for a given amount of time. A decrease
in the variance of a component corresponds to an increased precision requirement
and thus forces the trajectory to pass near the component center (Fig. 2.2a). A
sufficiently low variance then produces an interpolatory behavior. An increase in
the variance corresponds with a lower precision requirement and thus produces a
smoothing effect that is similar to the one achieved with approximating splines
(Fig. 2.2b). However, the use of full covariances allows more complex spatial
constraints to be captured such as forcing a movement to follow a given direction
or to pass through a narrow region of space (Fig. 2.2c). The resulting trajectories

Fig. 2.1 The trajectory generation method in a nutshell. An input GMM (a) is considered as a
sequence (b). The ordered components are then used to guide the evolution of a dynamical system
(c)

Fig. 2.2 Variations of a trajectory by manipulating one covariance matrix. (a) Using an isotropic
covariance with low variance (high precision). (b) An increase in variance produces a smoothing
effect. (c) A full covariance can be used to force the trajectory to remain in a restricted (here nearly
flat) region of space
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are smooth and have kinematics that are similar to the ones that would be seen in
a movement made by a drawing hand, with desirable features such as bell-shaped
speed profiles and an inverse relation between speed and curvature.

2.3.1 Dynamical System

The model for our trajectory generation mechanism is a discrete linear time-
invariant system of order n defined with the state equation:

xt+1 = Axt + But , (2.1)

where at each time step t the state,

xt =
[
x�, ẋ�, ẍ� . . . ,

(n−1)
x �

]�
, (2.2)

concatenates the position and its derivatives up to order n−1. The matrices A and B

describe the time invariant response of the system to an input command ut . For the
examples presented here, we utilize a chain of n integrators commanded by its n-th
order derivatives. The system matrices for the continuous version of this system are
then given by:

Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I · · · 0
...
...
...
. . .

...

0 0 0 · · · I
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, Bc =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
I

⎤
⎥⎥⎥⎥⎥⎦
, (2.3)

with I a D × D identity matrix. The discrete time versions of the system matrices
can be computed with a forward Euler discretization:

A = 
tAc + I and B = 
tBc, (2.4)

where 
t is the duration of one time step, or with higher order approximation
methods such as zero order hold (ZOH).

The positions along the trajectory are then given by:

yt = Cxt , where C =[
I , 0, . . . , 0, 0

]
. (2.5)

From a control perspective, the sensor matrix C determines what elements of the
state are observed in a feedback system. For our use case of curve generation, this
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formulation of C limits the parameters of our method to the position components of
the state, which greatly simplifies the user interaction with the method.

2.3.2 Optimization Objective

We generate a trajectory of T time steps by computing an optimal controller that
minimizes a quadratic cost, which penalizes a trade-off between deviations from
a reference state sequence {x̄t }Tt=1 (tracking cost) and the magnitude of a control
command sequence {ut }T−1

t=1 (control cost). The optimization objective is expressed
with the cost:

J =
T∑
t=1

(x̄t − xt )
�Qt (x̄t − xt )+

T−1∑
t=1

u�tRtut , (2.6)

subject to the constraint of the linear system defined in Eq. (2.1), with Qt and Rt

being positive semi-definite weight matrices that determine the tracking and control
penalties for each time step. The linear constraint guarantees that the output of the
method is a trajectory that has continuous derivatives up to order n− 1.

The combination of a linear system with this type of optimization objective is
commonly used in process control and robotics applications, where it is known
as discrete linear quadratic tracking (LQT) and corresponds to the quadratic cost
case of model predictive control (MPC) [45]. This results in a standard optimization
problem that can be solved iteratively or in batch form and produces an optimal
controller or control command sequence. In typical control settings, the optimization
is performed iteratively over a time horizon of observations and is thus commonly
known as receding horizon control. However, for the intended use case of curve
design, we can apply the optimization to the full duration of the desired trajectory.
With the appropriate formulation of the reference, this results in a flexible curve
generation method that can be used similarly to the more conventional ones.

2.3.3 Tracking Formulation

We formulate the reference state and weights for the optimization objective, by
pairing each input Gaussian with an activation function:

hi(t) = φi(t)∑m
j=1 φj (t)+ ε

, with φi(t) = exp

(
− (t − τi)

2

2σ 2

)
, (2.7)
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where τi defines the passage time for the state, σ is a global parameter which defines
the time interval covered by each state, and ε is an arbitrarily small value that avoids
divisions by 0.

With an assumption of local isochrony, we define the passage times for each state
at equidistant time steps with: τi+1−τi = T/(M−1), and with τ1 = 1 and τM = T .

The reference states and weights are then generated by assigning to each time
step the state for which hi(t) > 0.5 (Fig. 2.3, second row) with:

x̄i = C�μi and Qt = C��−1
i C. (2.8)

With this formulation, the derivatives of the trajectory are fully determined by the
optimization procedure, which is expressed by setting the corresponding precision
terms Qt to zero. Intuitively, a zero entry in Qt means that the optimization has no
precision requirements for the corresponding state entry and thus is free to enforce
the smoothness requirement expressed in the second term of the cost function. In
typical applications, the tracking weights Qt are defined as diagonal matrices. This
corresponds to a penalty in terms of the Euclidean distance to a reference state.
In our stochastic formulation, the weights are expressed as full precision matrices,
which correspond to a penalty in terms of the Mahalanobis distance to the reference
state. When it is desirable to force the movement to a full stop, this can be done by
setting QN = I and all the derivative terms in x̄N to zero.

Increasing the value of σ increases the time interval covered by a state, with
σ = T/(4(M − 1)) resulting in a stepwise reference that fully covers the time steps
of the trajectory (Fig. 2.3c). This increases the influence of the GMM covariances on
the resulting trajectory and allows a user to specify curvilinear trends and variability
for longer segments of the trajectory. As the parameter σ tends to zero, φi(t) will
converge to a delta function (Fig. 2.3a), which will result in Qt being non-zero

Fig. 2.3 Effect of three different activation sequences with the same set of Gaussians
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only in correspondence with each passage time τi . This will result in smoother
trajectories that interpolate the key-points. In general, a lower time interval will
result in sparser tracking cost in the objective. This increases the influence of the
control cost and potentially facilitates the addition of objectives and constraints to
the optimization.

2.3.4 Stochastic Solution

The optimal trajectory can be retrieved iteratively using (1) dynamic programming
[4, 7] or (2) in a batch form by solving a large ridge regression problem. Here
we describe the latter, which results in a more compact solution and additional
flexibility such as a straightforward probabilistic interpretation of the result. To
compute the solution, we exploit the time invariance of the system and express all
future states as a function of the initial state x̄1 with:

x = Sxx̄1 + Suu , (2.9)

where

Sx =

⎡
⎢⎢⎢⎢⎢⎣

I

A

A2

...

AN

⎤
⎥⎥⎥⎥⎥⎦

and Su =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0
B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AN−1B AN−2B . . . B

⎤
⎥⎥⎥⎥⎥⎦
. (2.10)

We then express the objective (2.6) in matrix form as:

J = (x̄ − x)�Q (x̄ − x)+ u�Ru , (2.11)

where Q and R are large block matrices with Qt and Rt along their block diagonals,
while x̄, x, and u are column vectors representing the reference, state, and control
commands, this for each time step. Substituting (2.9) into (2.11), differentiating with
respect to u, and setting to zero result in a ridge regression solution of the form:

u =
((

Su
)�

QSu +R
)−1

︸ ︷︷ ︸
�u

(
Su

)�
Q

(
x̄ − Sxx̄1

)
, (2.12)

which is then substituted back into (2.9) to generate a trajectory.
From Eq. (2.12), we can see that R effectively acts as a Tikhonov regularization

term in the least squares solution, resulting in a global smoothing effect on the
generated trajectory.



2 Interactive Generation of Calligraphic Trajectories from Gaussian Mixtures 31

From a probabilistic perspective, R corresponds to a Gaussian prior on the
deviations of the control commands from 0. The minimization of Eq. (2.11) can
then be interpreted as the product of two Gaussians:

N(
u,�u

) ∝ N
((

Su
)†
(x̄ − Sxx̄1),

(
Su

)�
QSu

)
N(0,R) , (2.13)

describing a distribution of control commands with center u and covariance �u. By
using the linear relation (2.9), the distribution in control space can also be interpreted
as a trajectory distribution:

N (
x,�x

)
with �x = Su�u

(
Su

)�
. (2.14)

This formulation results in a generative model of trajectories, which can be
used to generate variations that are similar to the ones that would be seen in
multiple instances of human writing or drawing (Fig. 2.4). Because of its lower
dimensionality, it is preferable to generate variations at the control level, which can
be done by exploiting the eigendecomposition:

�u = V uDu
(
V u

)�
, (2.15)

where V u denotes a matrix with all eigenvectors along the columns and Du

denotes a matrix with the corresponding eigenvalues along its diagonal. We can
then generate samples around the average commands sequence u with:

u′ ∼ u+ V u
(
Du

) 1
2 N (

0, σ uI
)
, (2.16)

Fig. 2.4 Stochastic sampling. (a) GMM with corresponding trajectory (dark thick race) overlaid
together with samples from the trajectory distribution (light gray traces). (b) Corresponding
sampled speed profiles. (c) A few samples selected from the trajectory distribution
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where σu is a user-defined parameter to select the desired sample variation. The
resulting trajectories can then easily be retrieved by fitting in the selected samples
u′ back into Eq. (2.9), see Fig. 2.4 for the results.

2.3.5 Periodic Motions

In order to generate periodic motions (Fig. 2.5), we can reformulate the LQT
objective with the addition of an equality constraint on the initial and final states
of the trajectory. This can be formulated with the linear relation:

Kx = K
(
Sxx̄1 + Suu

) = 0, (2.17)

with K a matrix with zero blocks for each time step apart for the ones corresponding
to the states desired to be equal. Adding this constraint to Eq. (2.11) results in the
Lagrangian:

L (u,λ) = J + λ�Kx. (2.18)

Differentiating for u and the Lagrange multipliers λ and then equating to 0 results
in the following constrained solution, in matrix form:

[
u

λ̂

]
=

[
(�u)−1 (Su)�K�

KSu 0

]−1 [
(Su)�Q (x̄ − Sxx̄1)

0

]
. (2.19)

We observe that in order to generate periodic motions that are symmetric, it is
convenient to utilize a wrapped version of the input components as a new input. To
do so we repeat a subsequence of w components at the start and end of the wrapped
sequence with the indices of the original sequence organized as follows:

[M − w, . . . ,M, 1, . . . ,M, 1, . . . , w] , (2.20)

Fig. 2.5 Periodic motions using Gaussians with different variances. The speed profiles are
repeated (in light gray) to visualize the periodicity of the speed profile
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where M is the selected number of Gaussians. This produces a new sequence of M◦
Gaussians for the periodic motion, giving the following passage time sequence:

[τ−w, τ−w+1, . . . , τM+1+w] . (2.21)

This results in a wrapped reference Q and x̄ that is constructed as described in
Sect. 2.3.3. The linear constraint matrix is then given by:

K =
[

0, . . . , I
τ1
, 0, . . . , −I

τm+1
, 0, . . .

]�
. (2.22)

The periodic trajectory is finally computed by plugging the command sequence u

computed with Eq. (2.19) into Eq. (2.11), and then considering the subset of the
trajectory defined between time steps τ1 and τM+1.

2.4 User Interface

The proposed trajectory generation method is efficient and is well suited for interac-
tive design applications. It is easy to drag the centers of the input Gaussians with a
typical point-and-click procedure, and it is also easy to interactively manipulate the
covariances. For example, this can be done by manipulating an ellipsoid, such that
its center defines the mean μi , and the axes are used to manipulate the covariance
�i through its eigendecomposition. The latter can be described with:

�i = �iS
2
i �
�
i , (2.23)

where �i corresponds to an orthogonal (rotation) matrix, and Si is a scaling matrix.
Here, we describe the 2D case in which the rotation and scaling matrices are
given by:

�i =
[

cosθi −sinθi
sinθi cosθi

]
, θi = tan−1 a2

a1
, Si =

[ ‖a‖
2 0
0 ‖b‖

2

]
, (2.24)

where a and b are the major and minor axes of an ellipse, which can be interactively
dragged to manipulate the shape of the distribution (Fig. 2.6, left). While the
examples given are two dimensional, an extension to three-dimensional ellipsoids is
straightforward to implement with a so-called arc-ball interface [38].

The trajectories generated by our system are sequences of points, the resolution
of which depends on the discretization time step 
t . The distance between
consecutive points is not constant and reflects the smooth and physiologically
plausible kinematics generated by the model. As a result, it is easy to generate
natural looking stroke animations by incrementally sweeping a brush texture along
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Fig. 2.6 Examples of user interactions by the manipulation of ellipsoids representing GMMs, and
resulting in various animated brush rendering effects

Fig. 2.7 Three different stylizations of a letter “Z” using semi-tied covariances with different
shared orientations

the points of the trajectory [5]. To increase the sense of dynamism, we slightly
vary the brush size at a degree inversely proportional to the trajectory speed, which
mimics the effect of more ink being deposited on a surface when the movement is
slower (Fig. 2.6).

2.4.1 Semi-tied Structure

In the previous paragraphs, we have seen that it is possible for a user to easily edit the
shape and position of each Gaussian. For applications aimed at procedural content
generation, it may be desirable to formulate a more parsimonious way of generating
trajectories, in which different stylizations are generated without having to specify
the covariance of each GMM component. We observe that one convenient way to
provide the user this facility is to enforce a shared orientation for all covariance
ellipsoids, which can easily be achieved with the formulation above by having the
orientations �i set to the same value. This results in a semi-tied covariance structure
of the input GMMs, in which all covariances share the same eigenvectors but not
necessarily the same eigenvalues (Fig. 2.7).

From a motor control perspective, the semi-tied formalism can be interpreted
as the alignment of different movement parts/primitives with a shared coordination
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Fig. 2.8 Illustrative example of how an oblique coordinate system could result from fine move-
ments in handwriting, when using fingers and wrist only

pattern [39], which is in line with the hypothesis of postural-synergies at the motor
planning level [9]. This implies a shared non-orthogonal (oblique) basis for all the
covariances, which produces a shear transformation that in the 2D case transforms
a circle into an oriented ellipse. Oblique coordinates have also been suggested to
describe the coordination of handwriting movements made with the fingers and wrist
only [11], which suggests another possible bio-physical interpretation of this result
(Fig. 2.8).

With this simplified interface, it is possible to explore different stylizations
of a key-point sequence with a reduced set of open parameters. The semi-tied
covariances enforce a coupling between the coordinates of the trajectory, which
results in an observable sense of coordination in the movement. At the same time,
minimization of the control command amplitude produces smooth trajectories that
evoke a natural drawing movement.

2.5 Conclusions

We have presented a method for the generation of smooth curves and motion
trajectories with a stochastic formulation of optimal control. The output of our
method is a trajectory distribution, which describes a family of motion paths
that can mimic the appearance and the variability of human-made artistic traces.
Each trajectory generated by our method reflects a movement with physiologically
plausible kinematics. This can be exploited to produce rendering effects, realistic
animations or also to drive the smooth motion of a robotic arm [3]. The input
to the method is a sparse sequence of multivariate Gaussians that determine the
overall shape of the output and explicitly define its variability. This results in a
representation that is similar to the one used in conventional GCAD applications,
and that can be edited interactively in a similar manner.

For our use case, we let the user explicitly define the GMM components.
However, a similar representation can be learned from data with standard maximum-
likelihood estimation methods [7]. Our choice of Gaussians as an input and
output distribution is principally motivated by its effectiveness and simplicity of
representation. From a user-interaction perspective, this allows users to intuitively



36 D. Berio et al.

manipulate the input distributions by modifying the axes of each GMM component
ellipsoid (Fig. 2.6). Furthermore, the straightforward relation of Gaussians to linear
systems quadratic error terms allows us to solve the optimal control problem
interactively and in closed form, while also offering a stochastic interpretation of
the output. Extending the proposed method to non-linear dynamical systems and to
distributions other than Gaussians is an interesting avenue of future research.

The curve generation method presented in this chapter is principally developed
with creative computer graphics applications in mind, especially those that require
mimicking the visual quality of traces observed in artistic applications of calligraphy
and graffiti. There is no specific consensus on a metric that can be used to
aesthetically evaluate the quality of visual traces or marks, and for a human this may
depend on subjective factors such as cultural and educational background. However,
there is growing psychological and neuro-science evidence suggesting that the
observation of a static trace resulting from a human-made movement triggers a
mental recovery of the movement underlying its production [20, 29, 35] and that
such recovery influences its aesthetic appreciation [28]. As a result, we hypothesize
that synthesizing curvilinear traces with kinematics similar to the ones made by
a human may trigger similar responses in an observer. Hence, another promising
line of future work would be to study the responses of human observers to traces
generated with different parameters of the system, as well as evaluate how their
artistic expertise or cultural background may influence aesthetic judgment.

Finally, we note that, while in this chapter we focused on the generation of 2D
trajectories, the proposed method can naturally be generalized to higher dimensions.
We envisage useful future applications, in particular in developing an interface for
3D trajectories, as well as for taking into consideration additional features such as a
drawing tool orientation or the effects of varying the force applied along a trajectory.
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Chapter 3
Mixture Models for the Analysis, Edition,
and Synthesis of Continuous Time Series

Sylvain Calinon

Abstract This chapter presents an overview of techniques used for the analysis,
edition, and synthesis of continuous time series, with a particular emphasis on
motion data. The use of mixture models allows the decomposition of time signals
as a superposition of basis functions. It provides a compact representation that
aims at keeping the essential characteristics of the signals. Various types of basis
functions have been proposed, with developments originating from different fields
of research, including computer graphics, human motion science, robotics, control,
and neuroscience. Examples of applications with radial, Bernstein, and Fourier basis
functions are presented, with associated source codes to get familiar with these
techniques.

3.1 Introduction

The development of techniques to process continuous time series is required
in various domains of application, including computer graphics, human motion
science, robotics, control, and neuroscience. These techniques need to cover various
purposes, including the encoding, modeling, analysis, edition, and synthesis of time
series (sometimes needed simultaneously). The development of these techniques
is also often governed by additional important constraints such as interpretability
and reproducibility. These heavy requirements motivate the use of mixture models,
effectively leveraging the formalism and ubiquity of these models.

The first part of this chapter reviews decomposition techniques based on radial
basis functions (RBFs) and locally weighted regression (LWR). The connections
between LWR and Gaussian mixture regression (GMR) are discussed, based on
the encoding of time series as Gaussian mixture models (GMMs). I will show how
this mixture modeling principle can be extended to a weighted superposition of
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Bernstein basis functions, often known as Bézier curves. The aim is to examine the
connections with mixture models and to highlight the generative aspects of these
techniques. In particular, this link exposes the possibility of representing Bézier
curves with higher order Bernstein polynomials. I then discuss the decomposition of
time signals as Fourier basis functions, by showing how a mixture of Gaussians can
leverage the multivariate Gaussian properties in the spatial and frequency domains.
Finally, I show that these different decomposition techniques can be represented as
time series distributions through a probabilistic movement primitives representation.

Pointers to various practical applications are provided for further readings,
including the analysis of biological signals in the form of multivariate continuous
time series, the development of computer graphics interfaces to edit trajectories
and motion paths for manufacturing robots, the analysis and synthesis of periodic
human gait data, or the generation of exploratory movements in mobile platforms
with ergodic control.

The techniques presented in this chapter are described with a uniform notation
that does not necessarily follow the original notation. The goal is to tie links between
these different techniques, which are often presented in isolation of the more general
context of mixture models. MATLAB codes accompany the chapter [25], with full
compatibility with GNU Octave.

3.2 Movement Primitives

The term movement primitives refers to an organization of continuous motion
signals in the form of a superposition in parallel and in series of simpler signals,
which can be viewed as “building blocks” to create more complex movements, see
Fig. 3.1. This principle, coined in the context of motor control [23], remains valid
for a wide range of continuous time signals (for both analysis and synthesis). Next,
I present three popular families of basis functions that can be employed for time
series decomposition.

3.2.1 Radial Basis Functions (RBFs)

Radial basis functions (RBFs) are ubiquitous in continuous time series encod-
ing [28], notably due to their simplicity and ease of implementation. Most algo-
rithms exploiting this representation rely on some form of regression, often related
to locally weighted regression (LWR), which was introduced by Cleveland [8]
in statistics and popularized by Atkeson [3] in robotics. By representing, respec-
tively, N input and output datapoints as XI = [xI

1, x
I

2, . . . , x
I

N ]� and XO =
[xO

1 , x
O

2 , . . . , x
O

N ]�, we are interested in the problem of finding a matrix A so
that AXI would match XO by considering different weights on the input–output
datapoints {XI ,XO} (namely some datapoints are more informative than others for
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Fig. 3.1 Motion primitives with different basis functions φk , where a unidimensional time series
x̂ =∑K

k=1 wkφk is constructed as a weighted superposition of K signals φk

the estimation of A). A weighted least squares estimate Â can be found by solving
the objective

Â = arg min
A

tr
(
(XO −XIA)

�
W (XO −XIA)

)

= (XI�WXI )
−1

XI�W XO, (3.1)

where W ∈ RN×N is a weighting matrix. Locally weighted regression (LWR) is a
direct extension of the weighted least squares formulation in which K weighted
regressions are performed on the same dataset {XI ,XO}. It aims at splitting a
nonlinear problem so that it can be solved locally by linear regression. LWR
computes K estimates Âk , each with a different function φk(xI

n), classically defined
as the radial basis functions

φ̃k(x
I

n) = exp
(
− 1

2
(xI

n − μI

k)
�
Σ I

k
−1
(xI

n − μI

k)
)
, (3.2)

where μI

k and Σ I

k are the parameters of the k-th RBF, or in its rescaled form1

φk(x
I

n) =
φ̃k(x

I
n)∑K

i=1 φ̃i (x
I
n)
. (3.3)

An associated diagonal matrix

1We will see later that the rescaled form is required for some techniques, but for locally weighted
regression, it can be omitted to enforce the independence of the local function approximators.
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W k = diag
(
φk(x

I

1), φk(x
I

2), . . . , φk(x
I

N )
)

(3.4)

can be used with (3.1) to evaluate Âk . The result can then be employed to compute

X̂
O =

K∑
k=1

W k XI Âk. (3.5)

The centroids μI

k in (3.2) are usually set to uniformly cover the input space, and
Σ I

k=Iσ 2 is used as a common bandwidth shared by all basis functions. Figure 3.2
shows an example of LWR to encode planar trajectories.

LWR can be directly extended to local least squares polynomial fitting by chang-
ing the definition of the inputs. Multiple variants of the above formulation exist,
including online estimation with a recursive formulation [27], Bayesian treatments

Fig. 3.2 Polynomial fitting with locally weighted regression (LWR), by considering different
degrees of the polynomial and by adapting the number of basis functions accordingly. The top
row shows a very localized encoding of the movement with constant values used in (3.1), thus
requiring the use of many basis functions to represent the trajectory. The next rows show that a
reduction of this number of basis functions typically needs to be compensated with more complex
basis functions (polynomial of higher degrees). The bottom row depicts the limit case in which a
global encoding of the movement would require a polynomial of high degree
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of LWR [31], or extensions such as locally weighted projection regression (LWPR)
that exploit partial least squares to cope with redundant or irrelevant inputs [33].

Examples of application range from inverse dynamics modeling [33] to the
skillful control of a devil-stick juggling robot [4]. A MATLAB code example
demo_LWR01.m can be found in [25].

3.2.1.1 Gaussian Mixture Regression (GMR)

Gaussian mixture regression (GMR) is a another popular technique for time
series and motion representations [7, 12]. It relies on linear transformation and
conditioning properties of multivariate Gaussian distributions. GMR provides a
synthesis mechanism to compute output distributions with a computation time
independent of the number of datapoints used to train the model. A characteristic
of GMR is that it does not model the regression function directly. Instead, it first
models the joint probability density of the data in the form of a Gaussian mixture
model (GMM). It can then compute the regression function from the learned joint
density model, resulting in very fast computation of a conditional distribution.

In GMR, both input and output variables can be multidimensional. Any subset of
input–output dimensions can be selected, which can change, if required, at each
time step. Thus, any combination of input–output mappings can be considered,
where expectations on the remaining dimensions are computed as a multivariate
distribution. In the following, we will denote the block decomposition of a datapoint
xt ∈ R

D at time step t , and the center μk and covariance Σk of the k-th Gaussian
in the GMM as

xt =
[
xI
t

xO
t

]
, μk =

[
μI

k

μO

k

]
, Σk =

[
Σ I

k Σ IO

k

ΣOI

k ΣO

k

]
. (3.6)

We first consider the example of time-based trajectories by using xI
t as a time

variables. At each time step t , P(xO
t |xI

t ) can be computed as the multimodal
conditional distribution

P(xO

t |xI

t ) =
K∑
k=1

hk(x
I

t )N
(
μ̂

O

k (x
I

t ), Σ̂
O

k

)
, (3.7)

with μ̂
O

k (x
I

t ) = μO

k +ΣOI

k Σ I

k
−1
(xI

t − μI

k),

Σ̂
O

k = ΣO

k −ΣOI

k Σ I

k
−1

Σ IO

k ,

and hk(x
I

t ) =
πk N (xI

t | μI

k,Σ
I

k)∑K
i=1 πi N (xI

t | μI

i ,Σ
I

i )
,

computed with
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N (
xI

t | μI

k,Σ
I

k

) = (2π)−
D
2 |Σ I

k|−
1
2 exp

(
− 1

2

(
xI

t − μI

k

)�
Σ I

k
−1 (

xI

t − μI

k

))
.

When a unimodal output distribution is required, the law of total mean and
variance (see Fig. 3.3, right) can be used to approximate the distribution with the
Gaussian

P(xO

t |xI

t ) = N
(
xO

t | μ̂O(xI

t ), Σ̂
O(xI

t )
)
, (3.8)

with μ̂O(xI

t ) =
K∑
k=1

hk(x
I

t ) μ̂
O

k(x
I

t ),

and Σ̂O(xI

t ) =
K∑
k=1

hk(x
I

t )
(
Σ̂

O

k +μ̂
O

k(x
I

t ) μ̂
O

k(x
I

t )
�)− μ̂O(xI

t ) μ̂
O(xI

t )
�
.

Figure 3.3 presents an example of GMR with 1D input and 1D output. With the
GMR representation, LWR corresponds to a GMM with diagonal covariances.
Expressing LWR in the more general form of GMR has several advantages: (1) it
allows the encoding of local correlations between the motion variables by extending
the diagonal covariances to full covariances; (2) it provides a principled approach to
estimate the parameters of the RBFs, similar to a GMM parameters fitting problem;
(3) it often allows a significant reduction of the number of RBFs, because the
position and spread of each RBF are also estimated; and (4) the (online) estimation
of the mixture model parameters and the model selection problem (automatically
estimating the number of basis functions) can readily exploit techniques compatible

Fig. 3.3 Left: Gaussian mixture regression (GMR) for 1D input xI and 1D output xO . Right:
Gaussian that best approximates a mixture of Gaussians. The multimodal distributions in dashed
line depict the probability density functions for the mixtures of three Gaussians in gray color
(examples in 1D and 2D are depicted). The Gaussians in green color approximate these multimodal
distributions



3 Mixture Models for Continuous Time Series 45

with GMM (Bayesian nonparametrics with Dirichlet processes, spectral clustering,
small variance asymptotics, expectation-maximization procedures, etc.).

Another approach to encode and synthesize a movement is to rely on time-
invariant autonomous systems. GMR can also be employed in this context to
retrieve an autonomous system P(ẋ|x) from the joint distribution P(x, ẋ) encoded
in a GMM, where x and ẋ are position and velocity, respectively (see [13]
for details). Similarly, it can be used in an autoregressive context by retrieving
P(xt |xt−1, xt−2, . . . , xt−T ) at each time step t , from the joint encoding of the
positions on a time window of size T .

Practical applications of GMR include the analysis of speech signals [15, 32],
electromyography signals [17], vision and MoCap data [30], and cancer progno-
sis [10]. A MATLAB code example demo_GMR01.m can be found in [25].

3.2.2 Bernstein Basis Functions

Bézier curves are well-known representations of trajectories [11]. Their underlying
representation is a superposition of basis functions, which is overlooked in many
applications. For 0 � t � 1, a linear Bézier curve is the line traced by the function
xp0,p1(t), from p0 to p1,

xp0,p1(t) = (1− t)p0 + t p1. (3.9)

For 0 � t � 1, a quadratic Bézier curve is the path traced by the function

xp0,p1,p2(t) = (1− t) xp0,p1(t)+ t xp1,p2(t)

= (1− t)
(
(1− t)p0 + t p1

)
+ t

(
(1− t)p1 + t p2

)

= (1− t)2p0 + 2(1− t)t p1 + t2p2. (3.10)

For 0 � t � 1, a cubic Bézier curve is the path traced by the function

xp0,p1,p2,p3(t) = (1− t) xp0,p1,p2(t)+ t xp1,p2,p3(t)

= (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3. (3.11)

For 0 � t � 1, a recursive definition for a Bézier curve of degree n can be expressed
as a linear interpolation of a pair of corresponding points in two Bézier curves of
degree n− 1, namely

x(t) =
n∑

i=0

bi,n(t)pi , with bi,n(t) =
(
n

i

)
(1− t)n−i t i , (3.12)
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Fig. 3.4 Linear (left), quadratic (center) and cubic (right) Bézier curves constructed as a weighted
superposition of Bernstein basis functions

with bi,n(t) the Bernstein basis polynomials of degree n, where
(
n
i

) = n!
i!(n−i)! are

binomial coefficients.
Figure 3.4 illustrates the construction of Bézier curves of different orders. Practi-

cal applications are diverse but include most notably trajectories in computer graph-
ics [11] and path planning [9]. A MATLAB code example demo_Bezier01.m
can be found in [25].

3.2.3 Fourier Basis Functions

In time series encoding, the use of Fourier basis functions provides useful con-
nections between the spatial domain and the frequency domain. In the context of
Gaussian mixture models, several Fourier series properties can be exploited, notably
regarding zero-centered Gaussians, shift, symmetry, and linear combination. For the
1D case, these properties are:

• If φ(x) = N (
x | 0, σ 2

) = (
2πσ 2

)− 1
2 exp

(
− x2

2σ 2

)
is used to create a periodic

function with period L� σ , the corresponding Fourier series coefficients are of

the form φk = exp
(
− 2π2k2σ 2

L2

)
;

• If φk are the Fourier series coefficients of a function φ(x), exp
(
−i 2πkμ

L

)
φk are

the Fourier coefficients of φ(x − μ), with i the imaginary unit (i2 = −1);
• If φk,1 (resp. φk,2) are the Fourier series coefficients of a function φ1(x) (resp.

φ2(x)), then α1φk,1 + α2φk,2 are the Fourier coefficients of α1φ1(x)+ α2φ2(x).

Well-known applications of Fourier basis functions in the context of time series
include speech processing [15, 32] and the analysis of periodic motions such as
gaits [2]. Such decompositions also have a wider scope of applications, as illustrated
next with ergodic control.
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3.2.4 Ergodic Control

In ergodic control, the aim is to find a series of control commands u(t) so that the
retrieved trajectory x(t) ∈ R

D covers a bounded space X in proportion of a given
spatial distribution φ(x). As proposed in [21], this can be achieved by defining a
metric in the spectral domain, by decomposing in Fourier series coefficients both
the spatial distribution φ(x) and the (partially) retrieved trajectory x(t).2 The goal
of ergodic control is to minimize

ε
(
x(t)

) = 1

2

∑
k∈K

Λk

(
ck

(
x(t)

)− φk

)2
(3.13)

= 1

2

(
c
(
x(t)

)− φ
)�

Λ
(
c
(
x(t)

)− φ
)
, (3.14)

where Λk are weights, φk are the Fourier series coefficients of φ(x), and ck are the
Fourier series coefficients along the trajectory x(t). K is a set of index vectors in
N
D covering the D-dimensional array k = r × r × · · · × r , with r = [0, 1, . . . , K]

and K the resolution of the array. c ∈ R
KD

and φ ∈ R
KD

are vectors composed
of elements ck and φk , respectively. Λ ∈ R

KD×KD
is a diagonal weighting matrix

with elements Λk . In (3.13), the weights

Λk =
(

1+ ‖k‖2
)−D+1

2
(3.15)

assign more importance on matching low frequency components (related to a metric
for Sobolev spaces of negative order). The Fourier series coefficients ck along a
trajectory x(t) of duration t are defined as

ck
(
x(t)

) = 1

t

∫ t

s=0
fk

(
x(s)

)
ds, (3.16)

whose discretized version can be computed recursively at each time step t to build

ck(xt ) = 1

t

t∑
s=1

fk(xs), (3.17)

or equivalently in vector form c(xt ) = 1
t

∑t
s=1 f (xs).

2In [21], cosine basis functions are employed but the approach can be extended to other basis
functions.
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For a spatial signal x ∈ R
D , where xd is on the interval [−L

2 ,
L
2 ] of period L,

∀d ∈{1, . . . , D}, the basis functions of the Fourier series with complex exponential
functions are defined as

fk(x) = 1

LD

D∏
d=1

exp

(
−i 2πkdxd

L

)

= 1

LD

D∏
d=1

cos

(
2πkdxd

L

)
− i sin

(
2πkdxd

L

)
, ∀k∈K. (3.18)

3.2.4.1 Computation of Fourier Series Coefficients φk for a Spatial
Distribution Represented as a Gaussian Mixture Model

We consider a desired spatial distribution φ0(x) represented as a mixture of J

Gaussians with centers μj , covariance matrices Σj , and mixing coefficients αj

(with
∑J

j=1 αj = 1 and αj � 0),

φ0(x) =
J∑

j=1

αj N
(
x |μj ,Σj

)
(3.19)

=
J∑

j=1

αj (2π)
−D2 |Σj |−1

2 exp
(
− 1

2
(x−μj )

�Σ−1
j (x−μj )

)
,

with each dimension on the interval
[
0, L2

]
. φ0(x) is extended to a periodized

function by constructing an even function on the interval X , where each dimension
xd is on the interval X = [−L

2 ,
L
2

]
of period L. This is achieved with mirror

symmetries of the Gaussians around all zero axes, see Fig. 3.5d. The resulting spatial
distribution can be expressed as a mixture of 2DJ Gaussians

φ(x) =
J∑

j=1

2D∑
m=1

αj

2D
N (

x
∣∣ Amμj ,AmΣjA

�
m

)
, (3.20)

with linear transformation matrices Am.3 By exploiting the symmetries and Gaus-
sian distribution properties presented in Sect. 3.2.3, the Fourier series coefficients
φk can be analytically computed as

3Am = diag(H 2D−D+1:2D,m), where H 2D−D+1:2D,m is a vector composed of the last D elements
in the column m of the Hadamard matrix H of size 2D . Alternatively, Am=diag

(
vec(�m)

)
can be

constructed with the array �m, with m indexing the first dimension of the array �=s×s×· · ·×s ∈
Z

2×2×···×2 with s = [−1, 1]. In 2D, we have A1 =
[−1 0

0 −1

]
, A2 =

[−1 0
0 1

]
, A3 =

[
1 0
0 −1

]
and

A2=
[

1 0
0 1

]
, see Fig. 3.5d.
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Fig. 3.5 2D ergodic control problem. In (a)–(c), the left graphs show the spatial distribution (gray
colormap) that the agent has to explore, encoded here as a mixture of two Gaussians. The right
graphs show the corresponding Fourier series coefficients φk in the frequency domain (K = 9
coefficients per dimension), which can be computed analytically by exploiting the shift, symmetry
and linear combination properties of Gaussians. (b) Shows the evolution of the reconstructed
spatial distribution (left graph) and the computation of the next control command u (red arrow)
after one fourth of the movement. The corresponding Fourier series coefficients ck

(
x(t)

)
are shown

in the right graph. (c) Shows that after T iterations, the agent covers the space in proportion to
the desired spatial distribution, with a good match of coefficients in the frequency domain (φk in
(a) and ck

(
x(t)

)
in (c) are nearly the same). (d) Shows how a periodic signal φ(x) (with range

[−L/2, L/2] for each dimension) can be constructed from the original mixture of two Gaussians
φ0(x) (red area). The constructed signal φ(x) is composed of eight Gaussians in this 2D example
(mirroring the Gaussians along horizontal and vertical axes to construct an even signal of periodL).
(e) Depicts the spatial reconstruction of each Fourier series coefficient (for the first four coefficients
in each dimension), corresponding to periodic signals at different frequencies along the two axes
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φk =
∫

x∈X
φ(x) fk(x) dx

= 1

LD

J∑
j=1

2D∑
m=1

αj

2D
exp

(
−i 2πk�Amμj

L

)
exp

(
−2π2k�AmΣjA

�
mk

L2

)

= 1

LD

J∑
j=1

2D−1∑
m=1

αj

2D−1
cos

(
2πk�Amμj

L

)
exp

(
−2π2k�AmΣjA

�
mk

L2

)
.

(3.21)

With this mirroring, we can see that φk are real and even, where an evaluation over
k ∈ K, j ∈ {1, 2, . . . , J } and m ∈ {1, 2, . . . , 2D−1} in (3.21) is sufficient to fully
characterize the signal.

3.2.4.2 Controller for a Spatial Distribution Represented as a Gaussian
Mixture Model

In [21], ergodic control is set as the constrained problem of computing a control
command û(t) at each time step t with

û(t) = arg min
u(t)

ε
(
x(t)+Δt

)
, s.t. ẋ(t) = f

(
x(t),u(t)

)
, ‖u(t)‖ � umax,

(3.22)
where the simple system ẋ(t) = u(t) is considered (control with velocity
commands), and where the error term is approximated with the Taylor series

ε
(
x(t)+Δt) ≈ ε

(
x(t)

) + ε̇
(
x(t)

)
Δt + 1

2
ε̈
(
x(t)

)
Δt2. (3.23)

By using (3.13), (3.16), (3.18) and the chain rule ∂f
∂t
= ∂f

∂x
∂x
∂t

, the Taylor series is
composed of the control term u(t) and∇xfk

(
x(t)

) ∈ R
1×D , the gradient of fk

(
x(t)

)
with respect to x(t). Solving the constrained objective in (3.22) then results in the
analytical solution (see [21] for the complete derivation)

u = ũ(t)
umax

‖ũ(t)‖ , with ũ = −
∑
k∈K

Λk

(
ck

(
x(t)

)− φk

)
∇xfk

(
x(t)

)�

= −∇xf
(
x(t)

)
Λ

(
c
(
x(t)

)− φ
)
, (3.24)

where ∇xf
(
x(t)

) ∈ R
D×KD

is a concatenation of the vectors∇xfk

(
x(t)

)
. Figure 3.5

shows a 2D example of ergodic control to create a motion approximating the
distribution given by a mixture of two Gaussians. A remarkable characteristic of
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such approach is that the controller produces natural exploration behaviors (see
Fig. 3.5c) without relying on stochastic noise in the formulation. In the limit case,
if the distribution φ(x) is a single Gaussian with a very small isotropic covariance,
the controller results in a standard tracking behavior.

Examples of application include surveillance with multi-agent systems [21],
active shape estimation [1], and localization for fish-like robots [22]. A MATLAB
code example demo_ergodicControl01.m can be found in [25].

3.3 Probabilistic Movement Primitives

The representation of time series as a superposition of basis functions can also
be exploited to construct trajectory distributions. Representing a collection of
trajectories in the form of a multivariate distribution has several advantages. First,
new trajectories can be stochastically generated. Then, the conditional probability
property (see (3.7)) can be exploited to generate trajectories passing through
via-points (including starting and/or ending points). This is simply achieved by
specifying as inputs xI in (3.7) the datapoints that the system needs to pass through
(with corresponding dimensions in the hyperdimensional vector) and by retrieving
as output xO the remaining parts of the trajectory.

A naive approach to represent a collection of M trajectories in a probabilistic
form is to reorganize each trajectory as a hyperdimensional datapoint xm =
[x�1 , x�2 , . . . , x�T ]� ∈ RDT , and fitting a Gaussian N (μx,Σx) to these datapoints,
see Fig. 3.6, left. Since the dimension DT might be much larger than the number of
datapoints M , a potential solution to this issue could be to consider an eigendecom-
position of the covariance (ordered by decreasing eigenvalues)

Fig. 3.6 Left: Raw trajectory distribution as a Gaussian of size DT by organizing each of the
M samples as a trajectory vector, where each trajectory has T time steps and each point has
D dimensions (T = 100 and D = 2 in this example). Right: Trajectory distribution encoded
with probabilistic movement primitives (superposition of K basis functions). The right part of the
figure depicts the linear mapping functions φ and Ψ created by a decomposition with radial basis
functions
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Σx = V DV � =
DT∑
j=1

λjvjv
�
j , (3.25)

with V =[v1, v2, . . . , vDT ] and D= diag(λ2
1, λ

2
2, . . . , λ

2
DT ). This can be exploited

to project the data in a subspace of reduced dimensionality through principal
component analysis. By keeping the first KT components, such approach provides
a Gaussian distribution of the trajectories with the structure N (Ψ μw,Ψ Ψ �), where
Ψ =[v1λ1, v2λ2, . . . , vDKλDK ].

The ProMP (probabilistic movement primitive) model proposed in [24] also
encodes the trajectory distribution in a subspace of reduced dimensionality, but
provides a RBF structure to this decomposition instead of the eigendecomposition
as in the above. It assumes that each sample trajectory m ∈ {1, . . . ,M} can be
approximated by a weighted sum of K normalized RBFs with

xm = Ψ wm + ε, where ε ∼ N (0, λI ), (3.26)

and basis functions organized as

Ψ = φ ⊗ I =

⎡
⎢⎢⎢⎣

Iφ1(t1) Iφ2(t1) · · · IφK(t1)
Iφ1(t2) Iφ2(t2) · · · IφK(t2)

...
...

. . .
...

Iφ1(tT ) Iφ2(tT ) · · · IφK(tT )

⎤
⎥⎥⎥⎦ , (3.27)

with Ψ ∈ R
DT×DK , identity matrix I ∈ R

D×D , and ⊗ the Kronecker product. A
vector wm ∈ R

DK can be estimated for each of the M sample trajectories by the
least squares estimate

wm = (Ψ �Ψ )
−1

Ψ �xm. (3.28)

By assuming that {wm}Mm=1 can be represented with a Gaussian N (μw,Σw)

characterized by a center μw ∈RDK and a covariance Σw ∈RDK×DK , a trajectory
distribution P(x) can then be computed as

x ∼ N
(
Ψ μw , Ψ ΣwΨ � + σ 2I

)
, (3.29)

with x ∈ RDT a trajectory of T datapoints of D dimensions organized in a vector
form and I ∈RDT×DT , see Figs. 3.6 and 3.7.

The parameters of the ProMP model are σ 2, μI

k , ΣI

k , μw, and Σw. A Gaussian of
DK dimensions is estimated, providing a compact representation of the movement,
separating the temporal components Ψ and spatial components N (μw,Σw). Simi-
larly to LWR, ProMP can be coupled with GMM/GMR to automatically estimate the
location and bandwidth of the basis functions as a joint distribution problem, instead
of specifying them manually. A mixture of ProMPs can be efficiently estimated by
fitting a GMM to the datapoints wm, and using the linear transformation property of
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Fig. 3.7 Left: Illustration of probabilistic movement primitives as a linear mapping between the
original space of trajectories and a subspace of reduced dimensionality. After projecting each
trajectory sample in this subspace (with linear map Ψ † computed as the pseudoinverse of Ψ ), a
Gaussian is evaluated, which is then projected back to the original trajectory space by exploiting the
linear transformation property of multivariate Gaussians (with linear map Ψ ). Such decomposition
results in a low rank structure of the covariance matrix, which is depicted in the bottom part of
the figure. Right: Representation of the covariance matrix Ψ Ψ � for various basis functions, all
showing some form of sparsity

Gaussians to convert this mixture into a mixture at the trajectory level. Moreover,
such representation can be extended to other basis functions, including Bernstein
and Fourier basis functions, see Fig. 3.7, right.

ProMP has been demonstrated in various robotic tasks requiring human-like
motion capabilities such as playing the maracas and using a hockey stick [24], or
for collaborative object handover and assistance in box assembly [20]. A MATLAB
code example demo_proMP01.m can be found in [25].

3.4 Further Challenges and Conclusion

This chapter presented various forms of superposition for time signals analysis
and synthesis, by emphasizing the connections to Gaussian mixture models. The
connections between these decomposition techniques are often underexploited,
mainly due to the fact that these techniques were developed separately in various
fields of research. The framework of mixture models provides a unified view that is
inspirational to make links between these models. Such links also stimulate future
developments and extensions.

Future challenges include a better exploitation of the joint roles that mixture
of experts (MoE) and product of experts (PoE) can offer in the treatment of time
series and control policies [26]. While MoE can decompose a complex signal by
superposing a set of simpler signals, PoE can fuse information by considering more
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elaborated forms of superposition (with full precision matrices instead of scalar
weights). Often, either one or the other approach is considered in practice, but many
applications would leverage the joint use of these two techniques.

There are also many further challenges specific to each basis function categories
presented in this chapter. For Gaussian mixture regression (GMR), a relevant
extension is to include a Bayesian perspective to the approach. This can take
the form of a model selection problem, such as an automatic estimation of the
number of Gaussians and rank of the covariance matrices [29]. This can also take
the form of a more general Bayesian modeling perspective by considering the
variations of the mixture model parameters (including means and covariances) [26].
Such extension brings new perspectives to GMR, by providing a representation
that allows uncertainty quantification and multimodal conditional estimates to be
considered. Other techniques like Gaussian processes also provide uncertainty
quantification, but they are typically much slower. A Bayesian treatment of mixture
model conditioning offers new perspectives for an efficient and robust treatment of
wide-ranging data. Namely, models that can be trained with only few datapoints but
that are rich enough to scale when more training data are available.

Another important challenge in GMR is to extend the techniques to more diverse
forms of data. Such regression problem can be investigated from a geometrical
perspective (e.g., by considering data lying on Riemannian manifolds [17]) or from
a topological perspective (e.g., by considering relative distance space representa-
tions [16]). It can also be investigated from a structural perspective by exploiting
tensor methods [19]. When data are organized in matrices or arrays of higher
dimensions (tensors), classical regression methods first transform these data into
vectors, therefore ignoring the underlying structure of the data and increasing
the dimensionality of the problem. This flattening operation typically leads to
overfitting when only few training data are available. Tensor representations instead
exploit the intrinsic structure of multidimensional arrays. Mixtures of experts can
be extended to tensorial representations for regression of tensor-valued data [18],
which could potentially be employed to extend GMR representations to arrays of
higher dimensions.

Regarding Bézier curves, even if the technique is well established, there is
still room for further perspectives, in particular with the links to other techniques
that such approach has to offer. For example, Bézier curves can be reframed as
a model predictive control (MPC) problem [5, 9], a widespread optimal control
technique used to generate movements with the capability of anticipating future
events. Formulating Bézier curves as a superposition of Bernstein polynomials also
leaves space for probabilistic interpretations, including Bayesian treatments.

The consideration of Fourier series for the superposition of basis functions
might be the approach with the widest range of possible developments. Indeed, the
representation of continuous time signals in the frequency domain is omnipresent
in many fields of research, and, as exemplified with ergodic control, there are many
opportunities to exploit the Gaussian properties in mixture models by taking into
account their dual representation in spatial and frequency domains.
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With the specific application of ergodic control, the dimensionality issue requires
further consideration. In the basic formulation, by keeping K basis functions to
encode time series composed of datapoints of dimension D, KD Fourier series
components are required. Such formulation has the advantage of taking into account
all possible correlations across dimensions, but it slows down the process when D

is large. A potential direction to cope with such scaling issue would be to rely on
Gaussian mixture models (GMMs) with low-rank structures on the covariances [29],
such as in mixtures of factor analyzers (MFA) or mixtures of probabilistic principal
component analyzers (MPPCA) [6]. Such subspaces of reduced dimensionality
could potentially be exploited to reduce the number of Fourier basis coefficients
to be computed.

Finally, the probabilistic representation of movements primitives in the form of
trajectory distributions also offers a wide range of new perspectives. Such models
classically employ radial basis functions, but can be extended to a richer family
of basis functions (including a combination of those). This was exemplified in the
chapter with the use of Bernstein and Fourier bases to build probabilistic movement
primitives, see Fig. 3.7, right. More generally, links to kernel methods can be created
by extension of this representation [14]. Other extensions include the use of mixture
models and associated Bayesian methods to encode the weights wm in the subspace
of reduced dimensionality.
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Chapter 4
Multivariate Bounded Asymmetric
Gaussian Mixture Model

Muhammad Azam, Basim Alghabashi, and Nizar Bouguila

Abstract In this chapter, bounded asymmetric Gaussian mixture model (BAGMM)
is proposed. In the described model, parameter estimation is performed by max-
imization of log-likelihood via expectation–maximization (EM) and Newton–
Raphson algorithm. This model is applied to several applications for data clustering.
As a first step, to validate our model, we have chosen spambase dataset for
clustering spam and non-spam emails. Another application selected for validation
of our algorithm is object data clustering and we have used two popular datasets
(Caltech 101 and Corel) in this task. Finally we have performed clustering on
texture data and VisTex dataset is employed for this task. In order to evaluate
the clustering, in all abovementioned applications, several performance metrics are
employed and experimental results are further compared in similar settings with
asymmetric Gaussian mixture model (AGMM). From the experiments and results
in all applications, it is examined that BAGMM has outperformed AGMM in the
clustering task.

4.1 Introduction

Modeling data based on probability distributions has become an important research
field in recent years. The use of data has increased over the years and representing
them in an efficient way is of prime importance. Hence, we represent the data
in terms of probability distributions and use it for various applications. This
helps us learn the rudimental patterns within the data and can be used in various
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pattern recognition tasks such as multimedia categorization, storage, retrieval, etc.
[1, 32, 38]. Clustering techniques help a great deal for these type of tasks as the
learning is unsupervised. The idea of clustering is to learn the inherent characteristic
of specific categories within the data and represent them based on this characteristic.
When it comes to clustering, the role of mixture models is inevitable. Various
applications nowadays use mixture models as the core method for clustering tasks
[4, 5]. Mixture models consider the data to be a combination of multiple components
drawn from a probability distribution. The data is modeled based on this assumption.
Given a set of data, there exist a certain number of components that describe the
properties of the data. Due to this reason using finite mixture models assuming
the data has finite number of clusters is a good option. An important part of
mixture model design is the choice of distribution for modeling the data. The use
of Gaussian distribution for this purpose has been predominant in the industry in
recent years. Furthermore, Gaussian mixture models (GMM) have been used in
a lot of industrial applications like speech recognition, multimedia categorization,
industrial automation, fault tolerant systems, etc. [39, 40, 59, 60].

In the case of GMMs, the distribution is symmetric in nature. However, generally
while using real data this is not the case. The data might not be symmetrical, which
means GMM could not provide a good fit to the data. So, using an asymmetric
distribution will be a better choice for our model. Hence in our model, we use an
asymmetric Gaussian distribution which will provide a better fit to the data [11, 12,
27, 56]. Asymmetric Gaussian distribution has two standard deviation parameters on
the left and right side of distribution, which make it possible to model asymmetric
data [11].

All abovementioned distributions are unbounded having a support range of
(−∞,+∞). In many real applications, the observed data always fall in bounded
support regions [15, 22, 34, 48]; hence, it is more appropriate to model the data
with bounded support distribution. Based on the fact that data in many real
applications fall in bounded support, the idea of bounded support mixture models
was presented in [22, 34]. Motivated by observations in [34], we propose the idea of
bounded asymmetric Gaussian mixture model (BAGMM) for data modeling which
also has the ability to model asymmetric nature of data. In the proposed model,
parameter estimation is performed by maximum likelihood with Newton–Raphson
via expectation–maximization algorithm (EM). In order to evaluate the effectiveness
of our model, BAGMM is applied to several data clustering applications. As a first
step, it is applied to categorize spam and non-spam emails and spambase dataset
is employed for this task. The performance of clustering task is examined by 9
different metrics which provide insightful knowledge about the effectiveness of
BAGMM in clustering the spambase dataset. The results of this task are further
compared with AGMM in a similar framework. In second application, BAGMM
is applied to object categorization and two popular image datasets renowned for
object categorization (Caltech 101 and Corel) are employed for this task. The
clustering performance is observed by difference metrics and with a comparison
with AGMM in a similar framework. In the third application for data clustering,
BAGMM is applied to texture image dataset (VisTex) and performance of our
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BAGMM Object Categorization

Texture Data Clustering

Spam and Non-Spam
Email Categorization

Spambase

Cal101 Corel

VisTex

Fig. 4.1 Graphical abstract

proposed algorithm is examined via performance measures and a comparison with
AGMM. In Fig. 4.1, graphical abstract is presented which also provides more clear
understanding of the contributions of this research work.

The rest of the paper is organized as follows: Sect. 4.2 describes the proposed
BAGMM in detail. Section 4.3 is devoted to spam and non-spam email catego-
rization. Section 4.4 presents the object categorization performed by our algorithm.
In Sect. 4.5, texture image clustering is provided and Sect. 4.6 is dedicated to
conclusion.

4.2 Bounded Asymmetric Gaussian Mixture Model

We propose BAGMM as an extension to AGMM for an improved data modeling.
In this section, proposed bounded asymmetric Gaussian mixture model is presented
which uses maximum log-likelihood for the estimation of its parameters. Before
presenting our model, we introduce finite mixture model with EM, asymmetric
Gaussian mixture model, and bounded support mixtures.

4.2.1 Finite Mixture Model and EM Algorithm

Finite mixture models are formed by taking a linear combination of distributions
which are called components of mixture model. If complete likelihood of data X is
represented as p(X|�), where � is complete set of parameters of mixture model,
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then parameters of mixture model are estimated via maximum likelihood (ML)
estimate as follows:

�̂ML = arg max
�
{p(X|�)} (4.1)

The details of complete likelihood of data in mixture model and its parameters are
provided in the upcoming subsections [11, 17, 42, 44, 52]. In order to compute the
parameters of mixture model, ML estimate cannot be found analytically and usual
option for optimizing the parameter estimation is EM algorithm [17, 43, 44, 57],
which is an iterative approach to determine the local maxima of likelihood. In EM
algorithm, parameter estimation is performed in two steps, namely expectation (E-
step) and maximization (M-step). In E-step, conditional expectation of complete
likelihood is computed and in M-Step, new values of all the parameters of mixture
model are estimated [17, 43, 47].

4.2.2 Mixture of Asymmetric Gaussian Distributions

Asymmetric Gaussian mixture model was proposed to handle the asymmetric
properties present in different kind of data [11, 12, 31]. For a univariate data, if
one data sample is represented by X, then asymmetric Gaussian distribution is
represented as follows:

f (X|μ, σl, σr ) = 2√
2π(σl + σr)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
− (X−μ)2

2σ 2
l

]
if X < μ

exp
[
− (X−μ)2

2σ 2
r

]
if X ≥ μ

(4.2)

where parameters of distribution μ, σl , and σr are mean, left standard deviation,
and right standard deviation, respectively. The parameters of AGMM are estimated
using ML estimate and complete parameter estimation is explained in [11, 12, 31].
In Fig. 4.2, graphical representation of AGMM is displayed, where Xi is a data point

Fig. 4.2 Graphical
representation of an
asymmetric Gaussian mixture
model

p

μ

Zi

Xi

N
σr

σl
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with i = 1, . . . , N , μ, σl , and σr , parameters of distribution and p and Zi are mixing
weight and posterior probability in a mixture model and they are explained in detail
in Sect. 4.2.3.

4.2.3 Mixture of Bounded Asymmetric Gaussian Distribution
for Multidimensional Data

Consider that a D-dimensional random variable X = (X1, . . . , XD) follows a K

components mixture distribution if its probability function can be written in the
following form:

p(X|�) =
K∑
j=1

p(X|ξj )pj (4.3)

provided pj ≥ 0,
∑K

j=1 pj = 1, � = (ξ1, ξ2, ξ3, ξ4) with ξ1 = (μ1, . . . ,μK), ξ2 =
(σ l1 , . . . , σ lK ), ξ3 = (σ r1 , . . . , σ rK ), and ξ4 = (p1, . . . , pK). The term p(X|ξj ) is
BAGD for the vector X and defined as:

p(X|ξj ) = f (X|ξj )H(X|�j)∫
∂j
f (u|ξj )du

(4.4)

where H(X|�j) =
{

1 if X ∈ ∂j
0 otherwise

(4.5)

f (X|ξj ) =
D∏
d=1

2√
2π(σljd + σrjd)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
− (Xd−μjd )

2

2σ 2
ljd

]
if Xd < μjd

exp

[
− (Xd−μjd )

2

2σ 2
rjd

]
if Xd ≥ μjd

(4.6)
where μj = (μj1, . . . , μjD), σlj = (σlj1 , . . . , σljD ), and σrj = (σrj1 , . . . , σrjD ) are
the mean, left standard deviation, and right standard deviation of the D-dimensional
BAGD, respectively. The term

∫
∂j
f (u|ξj )du in Eq. (4.4) is the normalization

constant that indicates the share of f (X|ξj ) which belongs to the support region
∂ . The AGD f (X|ξj ) can also be defined as:

f (X|ξj ) =

⎧⎪⎪⎨
⎪⎪⎩

g1(X|ξj ) if Xd < μjd

g2(X|ξj ) if Xd ≥ μjd

(4.7)
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where

g1(X|ξj ) =
D∏
d=1

2√
2π(σljd + σrjd)

exp

[
− (Xd − μjd)

2

2σ 2
ljd

]
(4.8)

g2(X|ξj ) =
D∏
d=1

2√
2π(σljd + σrjd)

exp

[
− (Xd − μjd)

2

2σ 2
rjd

]
(4.9)

Consider the case where the input is set of vectors represented as X =
(X1, . . . ,XN). With a mixture of K BAGDs, the distribution of X can be modeled
by a mixture of K BAGDs:

p(X|�) =
N∏
i=1

K∑
j=1

p(Xi |ξj )pj (4.10)

provided pj ≥ 0 and
∑K

j=1 pj = 1. In Eq. (4.10), � represents the parameters of
mixture model having K classes as � = (ξ1, ξ2, ξ3, ξ4), where ξ1 = (μ1, . . . ,μK),
ξ2 = (σ l1 , . . . , σ lK ), ξ3 = (σ r1 , . . . , σ rK ), and ξ4 = (p1, . . . , pK).

Stochastic indicator vectors Zi = (Zi1, . . . , ZiK), one for each observation are
introduced. The role is to encode the membership of each observation for a relative
component of the mixture model. In other words, Zij , the unobserved variable
in each indicator vector, equals 1 if Xi belongs to class j and 0, otherwise. The
complete-data likelihood is given below:

p(X,Z|�) =
N∏
i=1

K∏
j=1

(
p(Xi |ξj )pj

)Zij (4.11)

where Zij is the posterior probability and can be written as:

Zij = p(j |Xi ) = p(Xi |ξj )pj∑K
j=1 p(Xi |ξj )pj

(4.12)

and Z = {Z1, . . . ,ZN }.

4.2.4 Parameters Learning

The parameters are estimated from the maximization of positive log-likelihood
function. The log-likelihood function can be written as:
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L(X,Z|�) =
N∑
i=1

K∑
j=1

Zij log
(
p(Xi |ξj )pj

)
(4.13)

L(X,Z|�) =
N∑
i=1

K∑
j=1

Zij

{
logpj + log f (Xi|ξj )+ log H(Xi|�j)

− log
∫
∂j

f (u|ξj )du

}
(4.14)

The complete-data log-likelihood can be maximized with respect to the model
parameters. This can be done by taking the gradient of the log-likelihood with
respect to pj , μj , σlj , and σrj . The parameter estimation for bounded support
asymmetric Gaussian mixture model is explained below.

4.2.4.1 Mixing Parameter Estimation

In order to ensure the constraints pj > 0 and
∑M

j=1 pj = 1, a Lagrange multiplier
is introduced while estimating pj . Thus, the augmented log-likelihood function can
be expressed by:

�(X,Z,�,�) =
N∑
i=1

K∑
j=1

Zij log
(
p(Xi |ξj )pj

)+�

⎛
⎝1−

K∑
j=1

pj

⎞
⎠ (4.15)

where � is the Lagrange multiplier. Differentiating the augmented function with
respect to pj we get:

p̂j = 1

N

N∑
i=1

p(j |Xi ) (4.16)

4.2.4.2 Mean Parameter Estimation

The new value of mean μjd can be estimated by maximizing the log-likelihood
function given in Eq. (4.14) with respect to μj .

μ̂jd =
∑N

i=1 Zij

{
Xid −

∫
∂j
f (u|ξj )(u−μjd )dx∫
∂j
f (u|ξj )du

}
∑N

i=1 Zij

(4.17)
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Note that, in Eq. (4.17), the term
∫
∂j
f (u|ξj )(u − μjd)dx is the expectation

of function (u − μjd) under the probability distribution f (Xd |ξj ). Then, this
expectation can be approximated as:

∫
∂j

f (u|ξj )(u− μjd)dx ≈ 1

M

M∑
m=1

(smjd
− μjd)H(smjd

|�j) (4.18)

where smjd
∼ f (u|ξj ) is a set of random variables drawn from the asymmetric

Gaussian distribution for the particular component j of the mixture model. The
set of data with random variables have M vectors with D dimensions. M is a
large integer chosen to generate the set of random variables. Similarly, the term∫
∂j
f (u|ξj )dx in Eq. (4.17) can be approximated as:

∫
∂j

f (u|ξj )dx ≈ 1

M

M∑
m=1

H(smjd
|�j) (4.19)

μ̂jd =
∑N

i=1 Zij

{
Xid −

∑M
m=1(smjd−μjd )H(smjd |�j )∑M

m=1 H(smjd |�j )

}
∑N

i=1 Zij

(4.20)

4.2.4.3 Left Standard Deviation Estimation

The new value of left standard deviation σljd can be estimated by maximizing the
log-likelihood function given in Eq. (4.14) with respect to σ lj .

∂ log[p(X,Z|�)]
∂σljd

= 0 (4.21)

∂L(X,Z|�)
∂σljd

=
N∑

i=1,Xid<μjd

Zij

(
(Xid − μjd)

2

σ 3
ljd

)
(4.22)

−
N∑

i=1,u<μjd

Zij

σ 3
ljd

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
∂j

2√
2π(σljd+σrjd )

(
exp

[
− (u−μjd )

2

2σ 2
ljd

])
(u− μjd)

2dx

∫
∂j

g1(u|ξj )dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

N∑
i=1,Xid<μjd

Zij

(
(Xid − μjd)

2

σ 3
ljd

)
−

N∑
i=1,u<μjd

Zij

σ 3
ljd

{∫
∂j

g1(u|ξj )dx(u− μjd)
2dx∫

∂j
g1(u|ξj )dx

}
=0

(4.23)
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The term
∫
∂j

g1(u|ξj )(u− μjd)
2dx can be approximated as below:

∫
∂j

g1(u|ξj )(u− μjd)
2dx ≈ 1

M

M∑
m=1

(lmjd
− μjd)

2H(lmjd
|�j) (4.24)

where lmjd
∼ g1(Xd |ξj ) is a set of random variables drawn from the asymmetric

Gaussian distribution with u < μjd for the particular component j of the mixture
model. Similarly, the term

∫
∂j
f (u|ξj )dx in Eq. (4.17) can be approximated as:

∫
∂j

g1(u|ξj )dx ≈
1

M

M∑
m=1

H(lmjd
|�j) (4.25)

N∑
i=1,Xid<μjd

Zij

(
(Xid − μjd)

2

σ 3
ljd

)
−

N∑
i=1

Zij

σ 3
ljd

{
1
M

∑M
m=1(lmjd

− μjd)
2H(lmjd

|�j)

1
M

∑M
m=1 H(lmjd

|�j)

}
= 0

(4.26)

It is noticed that Eq. (4.26) is non-linear, Newton–Raphson method is used for the
estimation of σ̂ljd , which requires the computation of second derivative in a similar
manner as we have computed in Eqs. (4.22) and (4.26).

σ̂ljd � σljd −
⎡
⎣

(
∂2 log[p(X,Z|�)]

∂σ 2
ljd

)−1(
∂ log[p(X,Z|�)]

∂σljd

)⎤
⎦ (4.27)

4.2.4.4 Right Standard Deviation Estimation

Right standard deviation σrjd can be estimated by maximizing the log-likelihood
function given in Eq. (4.14) with respect to σ rj .

∂ log[p(X,Z|�)]
∂σrjd

= 0 (4.28)

∂L(X,Z|�)
∂σrjd

=
N∑

i=1,Xid≥μjd

Zij

(
(Xid − μjd)

2

σ 3
rjd

)
(4.29)

−
N∑

i=1,u≥μjd

Zij

σ 3
rjd

⎧⎪⎪⎨
⎪⎪⎩

∫
∂j

2√
2π(σljd+σrjd )

(
exp

[
− (u−μjd )

2

2σ 2
rjd

])
(u− μjd)

2dx

∫
∂j

g2(u|ξj )dx

⎫⎪⎪⎬
⎪⎪⎭
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N∑
i=1,Xid≥μjd

Zij

(
(Xid − μjd)

2

σ 3
rjd

)
−

N∑
i=1,u≥μjd

Zij

σ 3
rjd

{∫
∂j

g2(u|ξj )dx(u− μjd)
2dx∫

∂j
g2(u|ξj )dx

}
= 0

(4.30)

The term
∫
∂j

g2(u|ξj )(u− μjd)
2dx can be approximated as below:

∫
∂j

g2(u|ξj )(u− μjd)
2dx ≈ 1

M

M∑
m=1

(rmjd
− μjd)

2H(rmjd
|�j) (4.31)

where rmjd
∼ g2(Xd |ξj ) is a set of random variables drawn from the asymmetric

Gaussian distribution with u ≥ μjd for the particular component j of the mixture
model. Similarly, the term

∫
∂j

g2(u|ξj )dx in Eq. (4.17) can be approximated as:

∫
∂j

g2(u|ξj )dx ≈
1

M

M∑
m=1

H(rmjd
|�j) (4.32)

N∑
i=1,Xid≥μjd

Zij

(
(Xid − μjd)

2

σ 3
rjd

)
−

N∑
i=1

Zij

σ 3
rjd

{
1
M

∑M
m=1(rmjd

−μjd)
2H(rmjd

|�j)

1
M

∑M
m=1 H(rmjd

|�j)

}
= 0

(4.33)

It is noticed that Eq. (4.33) is non-linear; therefore, Newton–Raphson method is
used for the estimation of σ̂rjd , which requires the computation of second derivative
in a similar manner as computed in Eqs. (4.29) and (4.33).

σ̂rjd � σrjd −
⎡
⎣

(
∂2 log[p(X,Z|�)]

∂σ 2
rjd

)−1(
∂ log[p(X,Z|�)]

∂σrjd

)⎤
⎦ (4.34)

The complete learning of BAGMM is given in Algorithm 1, where tmin is minimum
threshold used to monitor the convergence criteria in each iteration. In the initial-
ization phase, K-means is applied for computation of mean and data assignment in
each cluster. This information is further used for computation of standard deviation
and mixing weight during initialization phase.

4.3 Textual Spam Detection

Email has become the prominent choice of communication, particularly for pro-
fessional purposes [58]. Among the legitimate emails conveying meaningful and
important information, there is an immense amount of spam ones which not only
contain disturbing commercial contents but also deliver scamming schemes such
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Algorithm 1 Model learning for BAGMM
1: Input:Dataset X = {X1, . . . ,XN }, tmin.
2: Output: �, Z.
3: {Initialization}:
4: K-Means Algorithm (Computation of μ1, . . . ,μK & cluster assignment)
5: for all 1 ≤ j ≤ K do
6: Computation of pj
7: Computation of {(σ lj & σ rj )=σ j }
8: end for
9: {Expectation Maximization}:

10: while relative change in log-likelihood ≥ tmin do
11: {[E Step]}:
12: for all 1 ≤ j ≤ K do
13: Compute p(j |Xi ) for i = 1, . . . , N . using Eq. (4.12).
14: end for
15: {[M step]}:
16: for all 1 ≤ j ≤ K do
17: Estimation of mixing parameter pj using Eq. (4.16).
18: Estimation of mean μj using Eq. (4.20).
19: Estimation of left standard deviation σ lj using Eq. (4.27).
20: Estimation of right standard deviation σ rj using Eq. (4.34).
21: end for
22: end while

as phishing [25]. Indeed, the ubiquitous usage of emails has made it the fitting
platform for cyberattacks, which bring about annoyance and unnecessary time or
possibly money loss. Furthermore, unsolicited spams have also been the leading
cause for the productivity and financial cost of various companies due to hiring
cybersecurity specialists and expanding email servers [49]. Therefore, it is crucial
that spam instances be efficiently and accurately detected and removed to avoid
wasting additional efforts.

Recent works applying Gaussian mixture models on spam detection have shown
their efficiency and modeling capabilities [18, 55]. Thus, we propose continuation
of this research via asymmetric Gaussian mixture model. We have applied our
proposed BAGMM for clustering the spam and non-spam emails and it is further
extended with AGMM to have a comparison in order to evaluate the effectiveness
of BAGMM in clustering.

The performance of clustering tasks is usually examined based on the accuracy

computed as:
(

TP+TN
TP+TN+FP+FN

)
, which is the ratio of correctly predicted instances

to all the instances. Here the term TP stands for true positives, TN for true
negatives, FP for false positives, and FN stands for false negatives. However,
for spam detection, accuracy alone is not sufficient to conclude the effectiveness
of clustering approach. In other words, we also need to consider other essential

metrics, namely precision
(

TP
TP+FP

)
meaning the ratio of accurately returned

spams to all the returned ones, sensitivity
(

TP
TP+FN

)
which is the ratio of the
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correctly predicted spams to the total actual spams, specificity
(

TN
TN+FP

)
describing

the proportion of the correctly predicted not-spam to all the actual not-spam,

and false positive rate
(

FP
FP+TN

)
, the ratio of inaccurate predicted spams to

all actual non-spams. In addition, particularly in case of imbalance in clusters’

weights, we must also examine the F1-Score
((

(β2+ 1)×Sens×Prec
Sens+β×Prec

)
, β > 0

)
, which

is the harmonic mean of precision and sensitivity; G-mean 1 (
√
Prec × Sens),

the geometric mean of precision and sensitivity; G-mean 2 (
√
Specs × Sens),

the geometric mean of specificity and sensitivity; Mathew’s correlation coefficient

(MCC)
(

TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

)
: a performance metric to measure the

quality of classification [13, 19, 29, 30].
The spambase dataset [10] is chosen for our experiment, in which each feature

vector represents the occurrences “histograms of words” in emails. There are 3626
emails evenly divided as spams and non-spams. The confusions matrix given in
Fig. 4.3 and results in Table 4.1 show that proposed algorithm outperforms the
AGMM in clustering the spam and non-spam emails. The evaluation of this data
clustering framework is done by choosing all above performance metrics and results
of all metrics are better for BAGMM as compared to AGMM. For spam detection,
low value of FPR is very important and in the results for BAGMM, FPR is improved
as compared to AGMM.
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Fig. 4.3 Confusion matrix of spambase dataset with BAGMM and AGMM, respectively

Table 4.1 Performance of spambase data clustering based on different metrics

Performance metrics (%)

Models Accuracy Sensitivity Specificity Precision FPR F1-score MCC G-mean 1 G-mean 2

BAGMM 85.69 84.23 87.15 86.76 12.85 85.47 71.40 85.48 85.67

AGMM 77.05 73.75 80.36 78.97 19.64 76.27 54.23 76.31 76.98
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4.4 Object Categorization via Bounded Asymmetric
Gaussian Mixture Model

Object clustering, one of the most fundamental topic in computer vision, has
received increasing attention as the rapid development of machine learning tech-
niques and latest machines having good computational capabilities [53]. The
challenging aspects of the aforementioned task are due to the status variation of
the objects in natural environments such as different postures, angles, distances, etc.
Furthermore, objects captured in real-world conditions usually contain other items
in the background which may cause the misclassification with the noises. Recent
clustering analyses using mixture models have shown good results on numerous
categorization problems, namely scenes [26], sport activities [14], medial related
images [61], and 3D objects [2]. Thus, the prospective progress has motivated the
authors to apply the proposed model on this challenging task with two widely used
datasets: Caltech 101 [16] and Corel [35, 36].

An accurate representation of the images is essential for performing efficient
inference process. Excellent outcomes have been achieved by utilizing frameworks
based on bag of visual words (BOVW). The main idea is extracting local features for
each image using SIFT (scale invariant feature transform) [37]. Then, the collection
of all the 128-D descriptors are clustered with K-means in order to build the visual
words vocabulary, in which the dimension of the feature vectors is the number of
centroids.

4.4.1 Experiments and Results

4.4.1.1 Experimental Framework and Results: Caltech 101 Dataset

In this subsection, we used the Caltech 101 dataset for object clustering. This
dataset is popular [16, 20, 23, 24] which has demonstrated its effectiveness for
object categorization using different algorithms [46, 62], techniques [3], and feature
extraction methods [33, 41, 50, 54] and hence, it is well suited for object clustering in
our current research. It contains 101 categories of different objects. It consists of 3D
pose variations along with multiple objects in a single image. The images inside this
dataset are of moderately good quality, the categories are well annotated, selected,
and have pose variation controlled. For the experimentation, we have used 5 classes,
namely “brain,” “bonsai,” “airplane,” “faces,” and “motorbikes” where these classes
contain 98, 128, 800, 435, and 798 images, respectively. Some examples of images
from these classes are given in Fig. 4.4. After several experiments, we examined
that optimal vocabulary size is 50 and hence, BOVW gives a matrix having a size of
2259× 50, where columns represent the frequency of visual words and row is equal
to the number of images. Afterward, this matrix is given as an input to the proposed
mixture model. In order to ensure the performance of our proposed algorithm, we
have used several performance metrics as described in Sect. 4.3. For comparison, we
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Fig. 4.4 Sample images of each class of Caltech 101 dataset
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Fig. 4.5 Confusion matrix of Caltech 101 dataset with BAGMM and AGMM, respectively

Table 4.2 Performance of object data clustering (Caltech 101) based on different metrics

Performance metrics (%)

Models Accuracy Sensitivity Specificity Precision FPR F1-score MCC G-mean 1 G-mean 2

BAGMM 81.41 77.04 95.67 72.08 4.33 72.67 69.43 74.52 85.85

AGMM 73.35 64.11 93.91 61.65 6.09 60.49 56.98 62.87 77.59

have implemented the same framework with AGMM. In this data clustering task,
the distribution of classes is not balanced which makes it difficult to differentiate
between different classes and it is depicted from the confusion matrix provided
for AGMM as shown in Fig. 4.5. By applying BAGMM, same clustering task is
improved a lot and it is worth to note that our proposed algorithm outperformed the
AGMM as presented in Table 4.2.

4.4.1.2 Experimental Framework and Results: Corel Dataset

In this subsection, we discuss the experiment design. We employed the Corel
dataset, which consists of 10,000 images from 100 categories. We have used SIFT
and BOVW methods in order to achieve a good representation of the images in
feature space. In order to conduct the experiments, we have used 5 classes where
each class contains 100 images. The classes chosen in this experiment are “playing
cards,” “paintings,” “Easter eggs,” “beads,” and “cups.” Some examples of images
from these classes are given in Fig. 4.6. After feature extraction, BOVW is a matrix
of dimension 500× 50, where columns represent the frequency of visual words and
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Fig. 4.6 Sample images of each class of Corel dataset

Table 4.3 Performance of object data clustering (Corel dataset) based on different metrics

Performance metrics (%)

Models Accuracy Sensitivity Specificity Precision FPR F1-score MCC G-mean 1 G-mean 2

BAGMM 93.40 93.40 98.35 94.32 1.65 93.45 92.12 93.86 95.84

AGMM 83.80 83.80 95.95 85.37 4.05 84.14 80.41 84.58 89.67
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Fig. 4.7 Confusion matrix of Corel dataset with BAGMM and AGMM, respectively

row is equal to the number of images. The introduced model is applied to perform
the clustering task. In order to validate the performance of our model, we have used
several metrics as described in Sect. 4.3. In order to have a comparison of our model
with AGMM, we also have performed clustering using AGMM. Based on the results
given in Table 4.3 and confusion matrix in Fig. 4.7, it is observed that our proposed
algorithm performed better than AGMM. By applying BAGMM, we have received
very high clustering accuracy in this object categorization task and FPR is reduced
from 4.05% to 1.65%.

4.5 Texture Image Clustering

Texture is a fundamental element of human visual impression towards the world
[28]. Indeed, understanding different textures is very beneficial for further compli-
cated object classification, segmentation analyses, which includes various objects
and surface types [6]. In order to counter issues, namely noise, complexity, slow
convergence, and over-fitting, feature extraction is required. Various types of feature
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extraction methods exist [7]. But, the co-occurrence matrix is a popular feature
extraction technique when it comes to texture data [8, 9, 51]. Thus, co-occurrence
matrix is used to extract the texture characteristics [21]. The co-occurrences are
calculated with respect to their neighbors: (1;0),

(
1; π4

)
,
(
1; π2

)
, and

(
3; π4

)
. Then,

the co-occurrence matrix of each neighborhood is constructed by considering
four features: homogeneity, contrast, correlation, and energy. Thus, each image is
represented as a 16-D feature vector.

4.5.1 Experiments and Results

4.5.1.1 Experimental Framework and Results for VisTex Texture Dataset

This section is dedicated for experiments and results on texture data clustering.
We employed the MIT Vision Texture (VisTex) dataset [45]. It is a collection
of texture images that are representative of real-world conditions. We treated the
original images as parent images and further created offspring images from it.
In our experiment, we are using co-occurrence matrix for feature extraction. For
the experimentation, we divided each 512 × 512 parent image into 64 × 64 off-
springs images, where each parent image is converted to 64 off-springs images from
VisTex dataset. By using co-occurrence matrix for feature extraction, we converted
each offspring image into feature vector of 1 × 16. We have used images from 4
different categories, namely “fabric,” “food,” “paintings,” and “tiles,” where these
classes contain 192, 320, 448, and 128 sub-images. Some examples of images
from VisTex dataset are given in Fig. 4.8. The data matrix after feature extraction
is provided to BAGMM for data clustering. In order to validate our proposed
algorithm, we have used several performance metrics as described in Sect. 4.3. In
order to have a comparison, we have implemented the same clustering framework
with AGMM. From the results provided in Table 4.4, it is observed that our proposed
algorithm outperformed the AGMM. It is necessary to mention that the classes in
this application are not balanced which makes the clustering task very difficult and it
is obvious from the confusion matrix for AGMM in Fig. 4.9. By applying BAGMM,
the clustering accuracy is improved tremendously and FPR is reduced from 10.10%
to 7.20%.

Fig. 4.8 Sample images of each class of VisTex dataset
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Table 4.4 Performance of texture data clustering based on different metrics

Performance metrics (%)

Models Accuracy Sensitivity Specificity Precision FPR F1-score MCC G-mean 1 G-mean 2

BAGMM 81.34 84.93 92.80 85.42 07.20 85.17 77.97 85.17 88.78

AGMM 73.90 79.62 89.90 79.59 10.10 79.60 69.51 79.60 84.60
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Fig. 4.9 Confusion matrix of VisTex dataset with BAGMM and AGMM, respectively

4.6 Conclusion

We have proposed BAGMM which uses maximum likelihood for parameter esti-
mation and Newton–Raphson via expectation–maximization approach. The basic
reason to propose bounded support mixture models is that most of the data lies in
a bounded range. Due to the bounded nature of most of the data in different real
applications, it makes more sense to propose bounded distributions for modeling
the data. To validate the effectiveness of proposed algorithm in data modeling,
we have chosen spam and non-spam email clustering, object categorization, and
texture image clustering applications. For spam and non-spam email clustering,
spambase dataset is employed. For object categorization, Caltech 101 and Corel
datasets are chosen with 5 classes from each dataset. For texture data clustering,
VisTex image texture dataset is used and 4 classes are chosen in our experiments. We
have used several performance metrics to examine the effectiveness of our algorithm
in data clustering. We also have used AGMM for data clustering in all proposed
experiments in order to have a comparison with our approach. From the set of
experiments on all datasets and in the light of results achieved based on performance
metrics, it is concluded that BAGMM has performed better in data modeling and
data clustering as compared to AGMM. Due to great success of BAGMM in image
and spambase datasets, for our future work, we propose the application of BAGMM
in speech and video datasets to explore its modeling capabilities on different kinds
of data.
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Chapter 5
Online Recognition via a Finite Mixture
of Multivariate Generalized Gaussian
Distributions

Fatma Najar, Sami Bourouis, Rula Al-Azawi, and Ali Al-Badi

Abstract The huge amount of data expanding day by day entail creating powerful
real-time algorithms. Such algorithms allow a reactive processing between the
input multimedia data and the system. In particular, we are mainly concerned
with active learning and clustering images and videos for the purpose of pattern
recognition. In this paper, we propose a novel online recognition algorithm based on
multivariate generalized Gaussian distributions. We estimate at first the generative
model’s parameters within a discriminative framework (fixed-point, Riemannian
averaged fixed-point, and Fisher scoring). Then, we propose an online recognition
algorithm in accordance with those algorithms. Finally, we applied our proposed
framework on three challenging problems, namely: human action recognition, facial
expression recognition, and pedestrian detection from infrared images. Experiments
demonstrate the robustness of our approach by comparing with the state-of-the art
algorithms and offline learning techniques.

5.1 Introduction

Online, real-time sequential arrival of data has increased the computer science
community efforts to analyze, understand, and extract information. Despite the
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fact that information is continuously changing in real time and cannot be available
at once, the traditional learning approach remains constant. In fact, when data is
generated in a function of time, we need to incrementally assemble data as long as
they arrive in a time sequence. Besides, when the size of data is out of the memory
limits, it will be computationally infeasible to train over the entire dataset. In order
to meet these necessities, online learning has been emerged to deal with data in an
incremental process, react to new data, and predict the future coming inputs. As the
notation suggests, online learning is an online method that processes information at
a time. The core idea of this learning algorithm is to generate a model from training
on a stored dataset and then using an iterative algorithm like stochastic gradient
descent and recursive least squares to learn new data introduced dynamically to the
model.

Researchers have made interesting progress in developing online approaches in
several research fields including machine learning, pattern recognition, computer
vision, game theory, and information theory. Online learning is important for various
applications such as faster clustering, forecasting times, catastrophic interference,
spam filtering, pattern recognition, and online tracking. Among the extensive related
work in this field, we cite the most interesting approaches proposed in literature.

Recognizing human activity is an active research topic where the need to identify
real-time moves and actions continuously over the time remains a challenging
problem. Authors in [46] propose an online method to recognize human gestures
through discriminative key poses and speed-aware action graphs. In [50], a hidden
Markov model with modified short-time Viterbi algorithm was proposed for online
recognizing human daily activity. In order to deal with the problem of clustering
parallel data streams, the authors in [5] develop an online version of the classical
K-means clustering algorithm. The idea of this method is based on an incremental
computation of distances between streams of data using a DFT approximation. A
probabilistic model was proposed for online clustering in [48] to detect the novel
objects from sequences of data. They used a non-parametric Dirichlet process for
modeling documents in an online fashion and an empirical Bayes method to estimate
model hyperparameters. When features are expensive, authors in [39] proposed
a novel online feature selection allowing the feature to be only available one at
a time. This online framework was based on grafting approach that combines
the speed of filters with the accuracy of wrappers. Applied to spam filtering, an
online model has been presented to filter a sequence of emails using distance-
based kernels and string kernels in [2]. In this paper, we consider particularly the
problem of online recognition which is one of the most important problems that
arises in computer vision, image analysis, information retrieval, data compression,
and pattern recognition. Online cluster analysis is the task of grouping data into
homogeneous clusters as long as they arrive in a temporal sequence. Finite mixture
model is among the most applied approaches in the context of machine learning
applications [11–13, 19, 33], especially for online clustering. In [41], an online
approach was introduced based on a stochastic approximation of the Expectation-
Maximization algorithm for the normalized Gaussian network. Experiments results
showed that this online EM-algorithm for the NGnet is able to manage dynamic
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environments and to deal efficiently with the robot dynamics problem. In video
surveillance application, an adaptive Gaussian mixture model [29] has been used
to model real video data with an incremental EM for the learning update. In
[51], Gaussian mixture models have been proposed in an online fashion based on
description length reducing prior and a MAP estimation procedure for an up-to-
date description of the data. Despite the adoption of this model to various online
clustering because of its simplicity, real-world applications cannot be considered
by the Gaussian assumption which fails to fit the shape of the data. For instance,
recent works have shown that other non-Gaussian models such as the Dirichlet,
the generalized Gaussian, and the Beta Liouville mixtures provide better clustering
results in several applications. In [8], a finite mixture of Dirichlet and a stochastic
approach was proposed in the light of online clustering application, namely the
dynamic summarization of image databases. A more general distribution has been
applied to this type of non-Gaussian data is the generalized Dirichlet. The authors in
[18] have proposed an online variational learning of generalized Dirichlet mixture
models with feature selection to challenging problems, namely text clustering and
image clustering using the bag-of-visual-words representation. Another approach
that can control how the system should perceive new coming data over time is
based on the generalized inverted Dirichlet [4]. For recognizing human facial
expression, an online variational learning based on Beta-Liouville mixture model
was proposed in [17]. A novel approach based on spherical mixtures has been
proposed in [3] to tackle the problem of tracking and detecting news topic trend.
The model in [1], besides, proposes a flexible online clustering algorithm in
order to accurately approximate the non-Gaussian data. This online technique,
based on finite mixture of generalized Gaussian distribution, has been applied to
video foreground segmentation. In fact, generalized Gaussian mixture models have
been the subject of wide applications [16, 26, 40]. However, in many multivariate
statistical processes, generalized Gaussian distribution fails to be as accurate as the
multivariate generalized Gaussian mixture as shown in previous works [32, 34, 35].
In fact, authors have proved that this multivariate mixture model is able to efficiently
recognize human activity. Based on these studies, it is concluded that it is interesting
to build our online framework based on the multivariate generalized Gaussian
mixture model. One of the fundamental tasks of finite mixture model is parameter
estimation, usually related to optimization problem.

The question to ask then is this: how to recursively estimate the parameters
of the mixture of multivariate generalized Gaussian distributions and how to
simultaneously select the number of components? In this paper, we seek to answer
this question by improving our previous deterministic approaches proposed in
[34, 35] and presenting a novel online recognition algorithm based on multivariate
generalized Gaussian mixture model suitable for various applications. We are
mainly interested by recognizing the human actions, facial expression from videos
and detecting pedestrian from infrared images.

This paper is organized as follows: Sect. 5.2 proposes the deterministic frame-
work based on multivariate generalized Gaussian mixture model. In Sect. 5.3, we
introduce our novel online learning algorithm. Next, we applied the proposed algo-
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rithms to the problem of human action recognition, facial expression recognition,
and pedestrian detection from infrared images. Finally, we conclude this paper with
a summary and potential future works in Sect. 5.4.

5.2 Multivariate Generalized Gaussian Mixture Model

5.2.1 Multivariate Generalized Gaussian Distribution

Multivariate generalized Gaussian distribution (MGGD) is defined by the probabil-
ity density functions [25] as follows:

p(X|Σ;β;μ) = Γ (d2 )

π
d
2 Γ ( d

2β )2
d

2β

β

|Σ | 12
exp

[
− 1

2
((X−μ)T Σ−1(X−μ))β

]
(5.1)

where X ∈ Rd , Σ = mM is a d × d symmetric positive definite matrix, called
the dispersion matrix, μ is a d-dimensional mean vector, and β > 0 is the shape
parameter that we assumed to be the same for all the dimensions of the data. Noting
now that if β = 1, the MGGD is equivalent to the multivariate Gaussian distribution.
The shape parameter β controls the peakedness and the spread of the distribution.
The smaller the beta, the more peaked for the probability distribution function (pdf),
and the larger the beta, the flatter will be the pdf just as exposed in Fig. 5.1b. Positive
shape parameter values produce skewed distributions to the left and bounded to the
right. In contrast, negative shape parameter values produce skewed distributions to
the right and bounded to the left.

5.2.2 Finite Mixture and Deterministic Learning

The finite mixture of K multivariate generalized Gaussian distributions is given by:

p(X|Θ) =
K∑
j=1

pjp(X|Θj), (5.2)

where p(X|Θj) is known as the j th component of the mixture defined with its
parameters Θj = (μj ,Σj , βj ). The parameter pj is called a mixing weight
parameter and must satisfy 0 ≤ pj ≤ 1 together with

∑K
j=1 pj = 1.

The main purpose of deterministic techniques is maximizing the likelihood
function with respect to model’s parameters. One of the standard inferential methods
and the powerful tool used to fit Gaussian based-mixture model to an observed data
is the Expectation-Maximization (EM) algorithm [15]. Its aim is to optimize the
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Fig. 5.1 Multivariate generalized Gaussian distributions with different shape parameters. (a) β =
0.5. (b) β = 1. (c) β = 3. (d) β = 5

likelihood function in regard to the model’s parameters. The EM algorithm starts
with initializing parameters Θ0. Then, it iterates between two steps: the expectation
and the maximization and converges to the maximum. In the expectation step (E-
step), the expected likelihood is estimated given the current estimated parameters.
For that purpose, the following posterior probability, named also responsibilities,
for the j-th component of the mixture is computed:

p(j |X) = pjp(X|Θj)∑K
m=1 pmp(X|Θm)

(5.3)
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During the maximization step (M-step), the model’s parameters are updated
using the current responsibilities. In order to maximize the likelihood function,
the log-likelihood function is maximized instead with respect to parameters as it
is a monotone function. Then applying the logarithm to the likelihood function, it
follows for X = (X1, . . . ,XN) that :

L(X |Θ) =
N∑
i=1

logp(Xi |Θ) =
N∑
i=1

log

⎛
⎝ K∑
j=1

pjp(Xi |Θj)

⎞
⎠ (5.4)

The M-step can be formally described as solving directly the following equation:

∂L(X |Θ)

∂Θj

= 0 (5.5)

Given the multivariate generalized Gaussian distribution p(X|μj ,Σj , βj ), we
obtain the following estimates :

• Mixing parameter

p̂j = 1

N

N∑
i=1

p(j |Xi ) (5.6)

• Mean parameter

μ̂j =
∑N

i=1 p(j |Xi)|Xi − μj |βj−1Xi∑N
i=1 p(j |Xi)|Xi − μj |βj−1

(5.7)

As there is no closed form for the covariance matrix and the likelihood estimation
for this parameter is indistinct, the authors in [9, 10, 38] have proven the existence
of the covariance matrix estimator up to certain conditions. We present those
mentioned works in the following section.

5.2.2.1 Fixed-Point Estimation Method

One of the above-mentioned parameters estimation techniques of the MGGD is the
so-called fixed-point method [38]. Indeed, this method guarantees the existence and
uniqueness of the MLE of the covariance matrix for each shape parameter belonging
to [0,1]. The existence was proved by showing that the profile likelihood is positive,
bounded in the set of symmetric positive definite matrices and equals to zero on the
boundary of this set. Regarding the uniqueness, it was proved that for any initial
symmetric positive definite matrix, the sequence of matrices satisfying a fixed point
equation converges to the unique maximum of this profile likelihood.
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Let (X1, X2, . . . , XN) be a random sample of N observation vectors of dimen-
sion d, drawn from a zero-mean MGGD with scatter matrix C = mΣ ; m is the
scale parameter, and β is the shape parameter. The MLE of m,β, and Σ are found
by solving the maximum likelihood equations defined as follows:

m̂ =
[

1

N

N∑
i=1

(ui)
β

] 1
β

, (5.8)

where ui = XT
i Σ
−1Xi .

Assuming first that β is known. By differentiating the likelihood function with
respect to Σ , the MLE of the covariance matrix satisfies the following fixed point
(FP) equation:

f (Σ) =
N∑
i=1

d

ui + u
1−β
i

∑
i �=j u

β
j

XiX
T
i , (5.9)

In other words, the fixed point equation can be written as:

Σ̂k+1 = f (Σk) (5.10)

Indeed, mathematically the solution of fixed point equation is settled using an
iterative proceeding until Σ stabilize (i.e., there is no sensible difference between
Σk and Σk+1).

Afterwards, an iterative algorithm based on a Newton–Raphson technique is then
applied to compute the maximum likelihood estimation of the shape parameter.

β̂k+1 = β̂k − α(β̂k)

α′(β̂k)
(5.11)

where

α(β) = dN

2
∑N

i=1 u
β
i

N∑
i=1

[
u
β
i log(ui)

]
− dN

2β

[
ψ

( d

2β

)
+ log(2)

]

−N − dN

2β
log

( β

dN

N∑
i=1

u
β
i

) (5.12)

where ψ is the digamma function.
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5.2.2.2 Riemannian Averaged Fixed-Point Estimation Algorithm

The second developed algorithm is the named “Riemannian Averaged Fixed Point”
method (RA-FP) [10]. The latter estimator is proposed as a generalization form of
the previous proposed technique fixed-point (FP) estimator [38]. The basic idea of
RA-FP algorithm is to implement successive Riemannian average of fixed point
iterates in order to estimate the covariance matrix for any positive value of the shape
parameter. This process is different from the fixed-point algorithm which estimates
the covariance matrix for only the shape parameter belonging to [0, 1].

The RA-FP uses the Riemannian geometry for estimating the covariance matrix.
The RA-FP based estimation of Σ is determined as follows:

For t ∈ [0, 1], the Riemannian average of Σ̂k+1 is defined as:

Σ̂k+1 = Σk#tk f (Σk) (5.13)

= Σ
1/2
k (Σ

−1/2
k f (Σk)Σ

−1/2
k )tkΣ

1/2
k

where

tk = 1

k + 1
, tk ∈ [0, 1], (5.14)

and f (Σ) is defined as (5.9).
If tk = 1, the RA-FP estimator is reduced to the fixed-point estimator, and

Eq. (5.13) yields to (5.10).
For computing the maximum likelihood of the shape parameter, an iterative

algorithm based on a Newton–Raphson technique [10] is applied as in the fixed-
point algorithm.

5.2.2.3 Fisher Scoring Algorithm

The Fisher scoring algorithm [9] is a maximum likelihood estimator based on the
fixed-point technique also and followed by an optimization through the Fisher
scoring method. The estimators of m,β are given by Eqs. (5.8) and (5.11) as
proposed in [38]. Hence, in this work, the main purpose of the Fisher scoring
algorithm is to optimize the likelihood function based on fixed-point technique and
followed by an optimization iteration through the Fisher information matrix.

The likelihood function of vectors X = (X1,X2, . . . ,XN) is given by:

L(X |Θ) =
N∏
i=1

K∑
j=1

pjp(Xi |Σj ;βj ;μj ) (5.15)
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The gradient of likelihood function with regard to covariance matrix is defined as:

∇L(Σ;Θ) = [F(Σ)]N−2
2 ∇F(Σ), (5.16)

with :

F : SK++ → R+{0} (5.17)

Σ → |Σ |−1
( N∑
i=1

u
β
i

)− d
β

and the gradient of F at a point Σ is given by:

∇F(Σ) = F(Σ)Σ−1[f (Σ)−Σ]Σ−1 (5.18)

where f (Σ) is defined by fixed-point algorithm in [38].
To numerically maximize the likelihood function, the Fisher-scoring iteration is

given by:

Σk+1 = Σk +G−1∇L(Σ;Θ) (5.19)

where the entries of the Fisher information matrix are defined by [45]:

Gii(β) = 1

4

(3d + 6β

d + 2
− 1

)
, (5.20)

Gij (β) = 1

4

(d + 2β

d + 2
− 1

)
, i �= j, (5.21)

for i, j = 1, . . . , K .
Afterwards, an iterative algorithm based on Newton–Raphson technique is

applied to compute the maximum likelihood estimation of the shape parameter as
the two previous estimator algorithms.

We summarize the EM-algorithm for the multivariate generalized Gaussian
mixture model in the following algorithm:

5.3 Online Learning Algorithm

The deterministic framework presented in the above section was based on batch
learning; the parameters are updated on the entire dataset at once. In this section, we
introduce an online EM learning approach. We suppose the dataset was represented
by M multivariate generalized Gaussian distributions with parameters ΘN . Assume
now at time t + 1, a new data XN+1 is inserted to the database, thus, we should
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Algorithm 1 MGGMM learning algorithm
Require: X , K
Ensure: Θ∗

Initialization
Apply the K-Means to obtain the parameters of each component.
Then, apply the Method-of-Moment for each component j
repeat

for j:=1 to K do
E-step: Compute posterior probabilities using Eq. (5.3)
M-step:
Update μj using Eq. (5.7)
Update βj using Eq. (5.11)
Update Σj using FP algorithm ((5.10), (5.9)), RA-FP algorithm (5.13) or FS algo-
rithm (5.19).

end for
until Convergence of Likelihood
Return the model’s parameters Θ∗.

update the different mixture model parameters with the new input vector. For which
reason, a stochastic approximation for obtaining the maximum likelihood of mixture
parameters was considered. Namely, we have used the stochastic ascent gradient
parameter updating proposed in [47] where the updating parameters are given by:

Θ
(t+1)
N+1 = Θ

(t)
N + δN

∂ log(p(XN+1|Θ(t)
N , p

(t)
j ))

∂Θ
(t)
N

(5.22)

In terms of updating the mixing weight, the above updating equation does not ensure
the constraints: 0 ≤ pj ≤ 1,

∑M
j=1 pj = 1. For this aim, a logit parameterization

was presented to overcome this problem.

π
(t)
j = log

pj

pM
, j = 1, . . . ,M − 1 (5.23)

π
(t+1)
j = π

(t)
j + δN

(
Z
(t+1)
N+1,j − p

(t)
j

)
, j = 1, . . . ,M − 1 (5.24)

So that, for j = 1 . . . ,M − 1,the updating mixing weight is given by:

p
(t+1)
j = exp(π(t+1)

j )

1+∑M−1
j=1 exp

(
π
(t+1)
j

) , (5.25)

p
(t+1)
M = 1

1+∑M−1
j=1 exp

(
π
(t+1)
j

) (5.26)
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The updating mean parameter, shape parameter, and covariance matrix are as
follows:

μ
(t+1)
j = μ

(t)
j + δN ∗ Z(t+1)

N+1,j ∗
[
(XN+1 − μj )

T Σ−1
j (XN+1 − μj )

]βj−1
(5.27)

β
(t+1)
j = β

(t)
j + δN ∗ Z(t+1)

N+1,j ∗
[(

1

βj
+ dψ(d/2βj )

2β2
j

+ d log(2)

2β2
j

)

−((XN+1 − μj )
T Σ−1

j (XN+1 − μj )
βj )

log((XN+1 − μj )
T Σ−1

j (XN+1 − μj ))

]
(5.28)

Σ
(t+1)
j = Σ

(t)
j + δN ∗ Z(t+1)

N+1,j ∗
[(
− 1

2
tr(Σ−1

j dΣ)

)

+βj
2
(XN+1 − μj )

T Σ−1
j dΣjΣ

−1
j

((XN+1 − μj )(XN+1 − μj )
T Σ−1

j (XN+1 − μj ))
(βj−1)

]
(5.29)

Thus, the complete online updating MGGMM algorithm was resumed as follows.

Algorithm 2 Online MGGMM learning algorithm

Require: X = {X1, . . . , XN }, Θ(t)
N , K

Ensure: Θ
(t+1)
N+1

At t + 1, new data vector XN+1
repeat

for j:=1 to K do
Compute posterior probability

zN+1j = pjp(XN+1|Θj )∑K
m=1 pmp(XN+1|Θm)

(5.30)

Affect XN+1 to a cluster using the Bayes rule: XN+1 is affected to cluster j1 if zN+1j1 >

zN+1j , ∀j �= j1
Update the weights using Eqs. (5.25) and (5.26)
Update μj using Eq. (5.27)
Update βj using Eq. (5.28)
Update Σj using Eq. (5.29).

end for
until Convergence of Likelihood
Return the model’s parameters ΘN+1.
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5.4 Experiments Results

5.4.1 Datasets

In our experiments, we are using three different datasets to evaluate the performance
of the proposed online mixture model. For human action recognition, we use the
well-known KTH dataset [42]. This human action dataset presents to date the most
tremendous at handset of video sequences for human actions. It contains 2391
sequences categorized in six different human actions: walking, jogging, running,
boxing, hand waving, and hand clapping. Each action is performed in four diverse
scenarios: outdoors, outdoors with scale variations, outdoors with different clothes,
and indoors. We present some examples of frames from video sequences in each
category in Fig. 5.2. For recognizing facial expression, the set of data that we
have used is the Cohn–Kanade dataset [22]. It contains 486 sequences where each
sequence starts with a neutral expression and proceeds to a target expression of
anger, surprise, joy, fear, sadness, or disgust. The sequences are collected from 97
university students ranging in age from 18 to 30 years. Sixty-five percent were
female, 15% were African-American, and 3% were Asian or Latino with one to
six emotions per subject. Sample images from this database with different facial
expressions are shown in Fig. 5.3. In regard to the detecting pedestrian from infrared
images, we make use of a challenging dataset of thermal imagery, namely the OSU
thermal dataset. It is composed of 10 test collections with the total of 284 thermal
images. Those images contain 984 pedestrians captured from Ohio State University
campus using a Raytheon 300D thermal sensor core with 75 mm lens mounted on
an 8-story building. We display an exemplary of different number of pedestrians in
Fig. 5.4.

Fig. 5.2 Examples of frames from the KTH dataset of different human actions within different
scenarios



5 Online Recognition via a Finite Mixture of Multivariate Generalized. . . 93

Fig. 5.3 Sample face expression images from the Cohn–Kanade database

Fig. 5.4 Example of pedestrian images from the OSU-thermal database

5.4.2 Database Preprocessing Approach

The methodology that we have adopted for each application can be summarized
as follows (Fig. 5.5). Basically, we have adopted the bag-of-words approach to
represent our images and video sequences. In this model, each image or video of
the dataset is depicted as a set of features. First, we extracted local spatio-temporal
features from each video sequence from KTH database using space-time interest
point detector [28] and SIFT3D descriptor [43]. From Cohn–Kanade videos dataset,
we extracted dynamic textures features using LBP-TOP descriptor within 9 × 8
blocks [49]. Besides, for the infrared images, we used dense SIFT descriptors [30]
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Fig. 5.5 Database preprocessing approach

of 16 × 16 pixel patches computed over a grid with a spacing of 8 pixels. Second,
we have quantized the extracted features into visual words using K-means algorithm
[14], and each image and video is then represented as a frequency histogram
over the visual words. Finally, we have applied a probabilistic latent semantic
analysis (pLSA) to the obtained histograms in order to represent each image by
a d-dimensional vector where d is the number of latent aspects [6].

5.4.3 Online Human Action Recognition

Recognizing human from videos is a widely studied problem in many applications,
both offline and online. The interest of online processing is motivated by the
promise of many applications. If we take the example of video surveillance
systems for airports, online human recognition plays a key role in protecting
against acts of terrorism and in providing real-time surveillance in various airport
departments. Another application of online human action processing is in smart
environments such as health care and assisted living geared to provide housing
facilities for elderly population and people with disabilities. Accordingly, many
recent researchers have concentrated on online human action recognition. An
approach based on motion data and location information has been adapted in [50]
to indoor human daily activity recognition. A combination between neural network
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and HMM has been proposed to model motion data and location information. A
more recent approach [46] based on semi-supervised learning was proposed to
robustly recognize moves online from unsegmented data. In [24], an online activity
recognition on smart phones using the built-in accelerometers was proposed to
classify the basic movement of the user. This method was performed using the
KNN classifier and evaluated by applying Naive Bayes classification method. To
deal with the problem of continuous activities and personalized learning, an online
multitask learning method for large-scale personalized activity recognition has been
introduced in [44]. Using a dataset obtained from real-home settings, the authors in
[36] have proposed an evolving fuzzy systems to recognize activities of the daily
living (ADLs) from sensor streams.

5.4.4 Online Human Facial Expression Recognition

Recognizing human facial expression is an active research problem in the recent
years. Various works have focused on online facial expression recognition that have
been used for different applications such as smart environment, video surveillance
systems, e-education, and many other interesting utilization. The interest in online
human facial expression recognition is motivated by the promise of automati-
cally categorizing the different types of human face expression used in computer
interaction, medicine, e-learning, access control, monitoring, and marketing. For
example, knowing the client’s emotional state, computer can become a more
effective interface to detect patient feeling about medical treatment. For instance,
interpreting autism’s expressions could help in developing a therapy system. In
tutoring system, detecting the state of the learner may enhance the presentation
style of e-learning program. Another interesting application is to detect drivers’
state, helping the driver monitor their stress level and alert other cars. If we take
the example of video surveillance systems for ATM, facial expression recognition
plays a key role in protecting against acts of terrorism and theft as it doesn’t dispense
money when someone is scared. Many researches have focused on facial expression
recognition but few of them were interested how could we understand the facial
expression in an interactive way. A system built on elastic graph matching [21]
was proposed to track and detect the face of a person in a live video sequence.
In [7], a study on understanding how babies learn to recognize facial expressions
is presented. They have used a cognitive system algebra combined with a neural
network model to online recognize facial expressions. A method for collecting
and analyzing facial responses over the web was introduced in [31]. The proposed
framework was utilized to crowdsource over three million face videos in response
to thousands of media clips ranging from advertisements to movie trailers to TV
shows and political debates.
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5.4.5 Online Pedestrian Detection in Infrared Images

Infrared (IR) thermography is an imaging method for visualizing radiation not
observable by human eye. Analyzing thermal images has occurred growing interest
both in research and in industry with a wide area of applications. In military
surveillance uses, they have the need to mount infrared detection system on vehicles
or towers for border surveillance. Fire-fighters use infrared imaging as a mechanism
to find missing people in buildings on fire. As well, car-pedestrians accidents
which occur at night acquire the use of far-infrared camera in order to discern the
thermal energy. Online detection pedestrians from infrared images has not been
much explored yet. In [27], a real-time online learning was proposed to track
pedestrians using boosted random ferns and using Weber–Fechner’s law to detect
pedestrians according to the season and the weather. Another interesting work on
online pedestrians detection based on particle filters and combination of a local
intensity distribution (LID) with oriented center symmetric local binary patterns was
introduced in [23]. The proposed algorithm was applied to various thermal videos
to detect the most likely target position in the subsequent frame.

5.4.6 Results

In this section, we evaluate our proposed framework in different experiments and we
compare recognition rates with methods from literature and offline methods. After
preprocessing our databases, we used 15 subjects from each activity from KTH
dataset to construct the visual vocabulary and the remaining 10 subjects to test. For
facial expression and pedestrian detection experiments, we selected 70% of the data
to the training and the remaining for the test.

We start by studying the impact of the visual vocabulary sizes on the recognition
accuracy for our online methods onFP-MGGMM, onRA-FP-MGGMM, onFS-
MGGMM, and the other approaches (GMM,GGMM), as depicted in Fig. 5.6a for
KTH dataset, Fig. 5.7a for Cohn–Kanade and in Fig. 5.8a for OSU thermal dataset.
According to these results, the maximum accuracy value is obtained with visual
vocabulary sizes of 200 for KTH, 20 for Cohn–Kanade, and 50 for OSU thermal
dataset. Moreover, we have studied the impact of the number of aspects on the
recognition accuracy as shown in Figs. 5.6b, 5.7b, and 5.8b and we found that the
optimal accuracy was obtained when the number of aspects was set to 20 for KTH
and 6 for Cohn–Kanade and OSU thermal dataset.

We achieved the best performance with human action recognition, facial expres-
sion recognition, and infrared pedestrian detection in different proposed online
learning multivariate generalized Gaussian methods. For instance, for human
action recognition, the online Riemannian averaged fixed-point multivariate gen-
eralized Gaussian mixture achieves the best recognition rates (99.37%) as shown
in Table 5.1. In recognizing facial expression, the online fixed-point MGGMM
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(96.84%) outperforms the other related works, Gaussian-based models, and also
the two proposed online mixture models as indicated in Table 5.2. With respect to
infrared pedestrian detection, experiments results on OSU thermal dataset shown in
Table 5.3 that the Fisher-scoring MGGMM provides the best performance (96.64%)
as compared to other online Gaussian-based models. We notice from those tables
(Tables 5.1–5.3) that our three proposed discriminative online learning methods
reached superior performance where the accuracy increases approximately by 20%
comparing to the basic Gaussian mixture model and the univariate generalized
Gaussian mixture. We display also the confusion matrix for the proposed online
learning methods for KTH database in Tables 5.4, 5.5, 5.6, for Cohn–Kanade in
Tables 5.7, 5.8, 5.9, and for OSU-thermal database in Tables 5.10, 5.11, and 5.12.

Fig. 5.6 (a) Recognition accuracy vs. vocabulary size for the KTH dataset; (b) recognition
accuracy vs. the number of aspects for the KTH dataset
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Fig. 5.7 (a) Recognition accuracy vs. vocabulary size for the Cohn–Kanade dataset. (b) Recogni-
tion accuracy vs. the number of aspects for the Cohn–Kanade dataset

We compare the performance of the offline learning and online learning proposed
in Sect. 5.2.2 on all the three datasets. Tables 5.13, 5.14, and 5.15 illustrate the
accuracy and the running time for each proposed model and for the Gaussian
mixture model and the generalized Gaussian mixture model. According to those
tables, we notice that online learning has improved the quality of the clusters and
decreased the time of running compared to the offline learning.
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Fig. 5.8 (a) Recognition accuracy vs. vocabulary size for the OSU-thermal dataset. (b) Recogni-
tion accuracy vs. the number of aspects for the OSU-thermal dataset

Table 5.1 The average
recognition rates using
different online algorithms
for KTH dataset

Approach Recognition rates

sig min-Hash [20] 91.2

Baseline [20] 44.3

OHAC [37] 82.2

onGMM 91.66

onGGMM 89.16

onFP-MGGMM 99.16

onRA-FP-MGGMM 99.37

onFS-MGGMM 96.25
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Table 5.2 The average
recognition rates using
different online algorithms
for Cohn–Kanade dataset

Approach Recognition rates

onBM [17] 84.57

onDM 79.69

onGDM 83.08

onGMM 77.50

onGGMM 85.85

onFP-MGGMM 96.84

onRA-FP-MGGMM 85.94

onFS-MGGMM 86.62

Table 5.3 The average
recognition rates using
different algorithms for
OSU-thermal dataset

Approach Recognition rates

onGMM 90.76

onGGMM 89.06

onFP-MGGMM 92.06

onRA-FP-MGGMM 94.34

onFS-MGGMM 96.64

Table 5.4 Confusion matrix for KTH dataset using onFP-MGGMM

C1 C2 C3 C4 C5 C6

C1 97.5% 0% 2.5% 0% 0% 0%

C2 0% 100% 0% 0% 0% 0%

C3 0% 0% 100% 0% 0% 0%

C4 0% 0% 0% 100% 0% 0%

C5 0% 0% 0% 0% 100% 0%

C6 0% 0% 0% 0% 2.5% 97.5%

Table 5.5 Confusion matrix for KTH dataset using onRA-FP-MGGMM

C1 C2 C3 C4 C5 C6

C1 92.5% 5% 0% 0% 2.5% 0%

C2 0% 100% 0% 0% 0% 0%

C3 0% 0% 100% 0% 0% 0%

C4 0% 0% 0% 100% 0% 0%

C5 0% 0% 0% 0% 100% 0%

C6 0% 0% 0% 0% 0% 100%

Table 5.6 Confusion matrix for KTH dataset using onFS-MGGMM

C1 C2 C3 C4 C5 C6

C1 90% 2.5% 0% 0% 7.5% 0%

C2 0% 92.5% 2.5% 0% 0% 5%

C3 0% 0% 100% 0% 0% 0%

C4 0% 2.5% 0% 97.5% 0% 0%

C5 0% 0% 0% 2.5% 97.5% 0%

C6 0% 0% 0% 0% 0% 100%



5 Online Recognition via a Finite Mixture of Multivariate Generalized. . . 101

Table 5.7 Confusion matrix for Cohn–Kanade dataset using onFP-MGGMM

C1 C2 C3 C4 C5 C6

C1 100% 0% 0% 0% 0% 0%

C2 0% 91.66% 8.34% 0% 0% 0%

C3 0% 0% 93.75% 0% 6.25% 0%

C4 0% 0% 0% 100% 0% 0%

C5 0% 0% 0% 0% 100% 0%

C6 4.35% 0% 0% 0% 0% 95.65%

Table 5.8 Confusion matrix for Cohn–Kanade dataset using onRA-FP-MGGMM

C1 C2 C3 C4 C5 C6

C1 86.66% 0% 6.6% 0% 6.74% 0%

C2 0% 91.66% 0% 8.34% 0% 0%

C3 6.25% 0% 87.5% 0% 6.25% 0%

C4 0% 14.05% 0% 80.95% 0% 5%

C5 0% 0% 0% 19.05% 80.95% 0%

C6 0% 0% 0% 17.4% 0% 82.60%

Table 5.9 Confusion matrix for Cohn–Kanade dataset using onFS-MGGMM

C1 C2 C3 C4 C5 C6

C1 100% 0% 0% 0% 0% 0%

C2 8.34% 91.66% 0% 0% 0% 0%

C3 6.25% 0% 87.5% 0% 0% 6.25%

C4 3.4% 0% 11.13% 66.66% 18.81% 0%

C5 0% 9.53% 0% 0% 90.47% 0%

C6 8.7% 0% 0% 8.7% 0% 82.60%

Table 5.10 Confusion matrix for OSU-thermal dataset using onFP-MGGMM

C1 C2 C3 C4 C5 C6 C7

C1 94.73% 0% 5.27% 0% 0% 0% 0%

C2 0% 86.66% 0% 13.34% 0% 0% 0%

C3 9.1% 0% 90.90% 0% 0% 0% 0%

C4 0% 7.69% 0% 84.61% 0% 7.7% 0%

C5 11.38% 0% 11.7% 0% 76.92% 0% 0%

C6 0% 36.37% 0% 0% 0% 63.63% 0%

C7 0% 0% 0% 16.67% 0% 0% 83.33%
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Table 5.11 Confusion matrix for OSU-thermal dataset using onRA-FP-MGGMM

C1 C2 C3 C4 C5 C6 C7

C1 94.73% 0% 5.27% 0% 0% 0% 0%

C2 13.3% 80% 0% 6.7% 0% 0% 0%

C3 0% 0% 90.90% 0% 9.1% 0% 0%

C4 0% 7.7% 0% 92.30% 0% 0% 0%

C5 0% 0% 23.08% 0% 76.92% 0% 0%

C6 0% 36.37% 0% 0% 0% 63.63% 0%

C7 0% 0% 0% 8.34% 0% 0% 91.66%

Table 5.12 Confusion matrix for OSU-thermal dataset using onFS-MGGMM

C1 C2 C3 C4 C5 C6 C7

C1 92.10% 0% 0% 7.9% 0% 0% 0%

C2 0% 76.66% 0% 11.6% 0% 11.74% 0%

C3 0% 0% 90.90% 0% 0% 9.1% 0%

C4 11.54% 0% 0% 88.46% 0% 0% 0%

C5 0% 19.24% 0% 0% 80.76% 0% 0%

C6 0% 0% 0% 0% 13.64% 86.36% 0%

C7 0% 16.67% 0% 0% 0% 0% 83.33%

Table 5.13 Performance of human recognition using offline and online algorithms for KTH
dataset

Offline Online

Accuracy (%) Run time (s) Accuracy (%) Run time (s)

GMM 87.14 27.78 91.66 8.63

GGMM 88.33 38.36 89.16 3.39

FP-MGGMM 91.97 19.18 99.16 10.29

RA-FP-MGGMM 94.16 22.71 99.37 10.44

FS-MGGMM 94.58 15.87 96.25 10.03

Table 5.14 Performance of facial expression recognition using offline and online algorithms for
Cohn–Kanade dataset

Offline Online

Accuracy (%) Run time (s) Accuracy (%) Run time (s)

GMM 76.46 14.74 77.50 2.31

GGMM 85.85 9.55 85.85 1.36

FP-MGGMM 88.98 7.1 96.84 2.35

RA-FP-MGGMM 91.61 8.76 85.94 2.61

FS-MGGMM 93.87 3.8 86.62 2.24



5 Online Recognition via a Finite Mixture of Multivariate Generalized. . . 103

Table 5.15 The average recognition rates using offline and online algorithms for OSU-thermal
dataset

Offline Online

Accuracy (%) Run time (s) Accuracy (%) Run time (s)

GMM 79.61 15.17 90.76 1.78

GGMM 84.26 8.56 89.06 1.05

FP-MGGMM 89.32 6.65 92.06 1.7

RA-FP-MGGMM 92.51 6.75 94.34 2.1

FS-MGGMM 89.81 6.21 96.64 2.02

5.5 Conclusion

In this paper, we have proposed an online learning based on deterministic framework
that is able to estimate the multivariate parameters of the generalized Gaussian
mixture model. To this aim, we were motivated by developing a robust maximum
likelihood approach based on recent techniques, namely fixed-point, Riemannian-
averaged fixed-point, and Fisher scoring and a stochastic gradient descent algorithm.
We applied our algorithms on extensive experiments including challenging applica-
tions namely recognizing human action, facial expression and detecting pedestrian
in infrared images. Comparisons revealed that our online methods achieve better
recognition rates with respect to other offline methods, proposed methods in
literature, and other Gaussian-based models. In spite of the promising results
achieved, further enhancement could be done using online variational learning.
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Chapter 6
L2 Normalized Data Clustering Through
the Dirichlet Process Mixture Model of
von Mises Distributions with Localized
Feature Selection

Wentao Fan, Nizar Bouguila, Yewang Chen, and Ziyi Chen

Abstract In this chapter, we propose a probabilistic model based-approach for
clustering L2 normalized data. Our approach is based on the Dirichlet process
mixture model of von Mises (VM) distributions. Since it assumes an infinite number
of clusters (i.e., the mixture components), the Dirichlet process mixture model
of VM distributions can also be considered as the infinite VM mixture model.
Comparing with finite mixture model in which the number of mixture components
have to be determined through extra efforts, the infinite mixture VM model is a
nonparametric model such that the number of mixture components is assumed to
be infinite initially and will be inferred automatically during the learning process.
To improve clustering performance for high-dimensional data, a localized feature
selection scheme is integrated into the infinite VM mixture model which can
effectively detect irrelevant features based on the estimated feature saliencies. In
order to learn the proposed infinite mixture model with localized feature selection,
we develop an effective approach using variational inference that can estimate model
parameters and feature saliencies with closed-form solutions. Our model-based
clustering approach is validated through two challenging applications, namely topic
novelty detection and unsupervised image categorization.

6.1 Introduction

During the last two decades, finite mixture models have shown their effectiveness
in tackling unsupervised learning problems, such as clustering, for both univariate
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and multivariate data. The target of clustering is to automatically partition a data
set into different groups such that data of the same group are as similar as possible
and data of different groups are as different as possible. Finite mixture models have
demonstrated promising performance for clustering and have been widely applied
in many computer vision and pattern recognition applications [1].

In clustering approaches based on finite mixture models, choosing an appropriate
basic distribution that best describes the given data is a crucial problem. Although
the Gaussian distribution has been a popular choice for constructing mixture models,
other distributions may provide better performance for modeling other types of
data. For instance, according to recent studies, the Dirichlet [2], the generalized
Dirichlet [3, 4], and the Beta-Liouville distributions [5, 6] are better alternatives
than Gaussian for modeling proportional data vectors (i.e., normalized histograms).
Recently, several works [7–10] have shown that L2 normalized data are very
important and can be found in various practical applications particularly in the fields
of text, image, and video classification. As discussed in [7], L2 normalized feature
vectors can be naturally modeled using spherical distributions such as the von Mises
(VM) distribution, since they can be visualized as points on a hypersphere after the
normalization.

In this chapter, we propose a probabilistic model based-approach for clustering
L2 normalized data. Our approach is based on VM distributions with a nonpara-
metric framework known as the Dirichlet process mixture model [11–13]. Since the
Dirichlet process mixture model assumes an infinite number of clusters (i.e., the
mixture components), the Dirichlet process mixture model of VM distributions can
also be considered as the infinite VM mixture model. Comparing with finite mixture
model in which the number of mixture components have to be determined through
extra efforts, the infinite mixture VM model is a nonparametric model such that the
number of mixture components is assumed to be infinite initially and will be inferred
automatically during the learning process. To improve clustering performance for
high-dimensional data, a localized feature selection scheme [14] is integrated into
the infinite VM mixture model which can effectively detect irrelevant features
based on the estimated feature saliencies. In order to learn the proposed infinite
mixture model with localized feature selection, we develop an effective approach
using variational inference [15–17] that can estimate model parameters and feature
saliencies with closed-form solutions. Our model-based clustering approach is
validated through two challenging applications, namely topic novelty detection and
unsupervised image categorization.

The remaining part of this chapter can be listed as follows. In Sect. 6.2, we
introduce the Dirichlet process mixture of VM distributions with localized feature
selection. In Sect. 6.3, we develop a learning algorithm based on variational
inference to estimate the parameters of our model. In Sect. 6.4, we provide
experimental results of our model on topic novelty detection and unsupervised
image categorization. Finally, conclusion is given in Sect. 6.5.
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6.2 The Dirichlet Process Mixture of VM Distributions with
Localized Feature Selection

6.2.1 Finite VM Mixture Model with Localized Feature
Selection

If we have a data set X = X1, . . . ,XN that contains N data points, where each Xi is
aL2-normalizedD-dimensional feature vector (i.e., (Xi )

T Xi = 1), then each Xi can
be modeled using a von Mises (VM) distribution V(·) [7, 10] with the assumption
that features of xi are independent

p(Xi |μ,λ) =
D∏
d=1

V(Yid |μd , λd) =
D∏
d=1

1

2πI0(λd)
eλdμ

T
dYid (6.1)

where Yid1 = Xid and Yid = (Yid1, Yid2). Yid2 is used to ensure that the vector Yid

is a spherical (i.e.,L2 normalized) vector. μd = (μd1, μd2) and λd ≥ 0 are the mean
direction and the concentration parameter, respectively, for the VM distribution.
I0(·) denotes the modified Bessel function of the first kind of order 0.

If the vector Xi is distributed according to a VM mixture model with M

components, then we have

p(Xi |π ,μ,λ) =
M∑
j=1

πj

D∏
d=1

V(yid |μjd , λjd) (6.2)

where the vector π = π1, . . . , πM denotes mixing coefficients with the constraints
that

∑M
j=1 πj = 1 and 0 ≤ πj ≤ 1.

In mixture modeling, it is often convenient for a latent variable to indicate the
membership assignment. As in our case, each vector Xi is assigned with a latent
variable zi as the membership indicator variable, such that zij = 1 if Xi is drawn
from the j th component, otherwise it equals 0. Then, the conditional distribution
of the observed data vectors X, given the latent variables and the component
parameters

p(X|Z,μ,λ) =
N∏
i=1

M∏
j=1

( D∏
d=1

V(yid |μjd , λjd)

)zij

(6.3)

where Z = {z1, . . . , zN }. The probability distribution of the latent variable Z is
given by

p(Z|π) =
N∏
i=1

M∏
j=1

π
zij
j (6.4)
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As we may notice that in Eq. (6.3), the finite VM mixture model considers all
features are equally important with equal contribution to the clustering process.
However, this assumption is not realistic in practice, since high-dimensional data
may contain noisy features or features that are irrelevant to the clustering analysis.
To improve the clustering performance, we adopt localized features selection which
has shown promising results in unsupervised clustering in previous research works
[14, 18, 19]. In contrast to performing features selection in a global way (i.e., feature
saliencies are the same for all clusters) [20], localized feature selection assumes that
the importance of a feature is different for different clusters. Motivated by its better
performance, we integrate localized feature selection into our VM mixture model.
Then, the probability distribution of each feature Xid in our model can be defined
by

p(Xid) = V(Yid |μjd , λjd)
φijdV(Yid |μ′jd , λ′jd)1−φijd (6.5)

where the binary variable φijd denotes the feature relevance, such that φijd = 0
if the dth feature of Xi in the j th component is irrelevant and follows a VM
distribution parameterized by μ′jd and λ′jd

Then, for the data set X, the VM mixture model with localized feature selection
is given by

p(X|�) =
N∏
i=1

M∏
j=1

D∏
d=1

(
V(Yid |θjd)φijdV(Yid |θ ′jd)1−φijd

)zij

(6.6)

where � = {Z, θ , θ ′,φ}, θjd = (μjd , λjd) and θ ′jd = (μ′jd , λ′jd).

6.2.2 Infinite VM Mixture Model with Localized Feature
Selection

Although finite mixture models are effective for clustering, the determination of the
number of components is a crucial problem in mixture modeling and often requires
extra efforts to handle. An elegant solution to this problem is to assume that the
number of mixture components is infinite and will be determined automatically
during the learning process. A common way to extend a finite mixture model into its
infinite counterpart is through a Bayesian nonparametric framework known as the
Dirichlet process mixture model [11, 12].

In our work, we extend finite VM mixture model with localized feature selection
into the infinite VM mixture model by assuming that the mixing coefficients π

follows the Dirichlet process mixture model with a stick-breaking representation
[13, 21] as defined by
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πj = π ′j
j−1∏
k=1

(1− π ′k), G =
∞∑
j=1

πjδθj ,

π ′j ∼ Beta(1, ξ), θj ∼ H, (6.7)

where δθj represents the Dirac delta measure centered at θj , G is a random
distribution that follows a Dirichlet process G ∼ DP(ξ,H), and ξ is a positive
real number. The variables {πj } denote the mixing weights where

∑∞
j=1 πj = 1.

Consequently, the infinite VM mixture model is given by

p(Xi |π ,μ,λ) =
∞∑
j=1

πj

D∏
d=1

V(yid |μjd , λjd) (6.8)

By including the latent variable Z and the localized feature selection, we then
have

p(X|�) =
N∏
i=1

∞∏
j=1

D∏
d=1

(
V(Yid |θjd)φijdV(Yid |θ ′jd)1−φijd

)zij

(6.9)

where the probability distribution of Z can be redefined based on the stick-breaking
representation as

p(Z|π ′) =
N∏
i=1

∞∏
j=1

[
π ′j

j−1∏
k=1

(1− π ′k)
]zij

(6.10)

The prior of π ′ follows a Beta distribution as shown in Eq. (6.7)

p(π ′) =
∞∏
j=1

Beta(1, ξj ) (6.11)

For the feature relevance parameter φ, a Bernoulli distribution is introduced as
its prior

p(φ|ε) =
N∏
i=1

∞∏
j=1

D∏
d=1

ε
φijd
jd (1− εjd)

1−φijd (6.12)

where ε = (εj1, . . . , εjD) denotes the probabilities that the features are relevant
(also known as features saliencies) in the j th component.

Then, a von Mises-gamma prior is used as the prior for the parameters μ and λ

of the von Mises components that account for “useful” features
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p(μ,λ) =
∞∏
j=1

D∏
d=1

p(μjd |λjd)p(λjd)

=
∞∏
j=1

D∏
d=1

V(μjd |mjd , βjdλjd)G(λjd |ujd, vjd) (6.13)

where mjd = (mjd1,mjd2).
Similarly, a von Mises-gamma prior is adopted for parameters μ′ and λ′ that

account for “noisy” features

p(μ′,λ′) =
D∏
j=1

D∏
d=1

V(μ′jd |m′jd , β ′jdλ′jd)G(λ′jd |u′jd , v′jd) (6.14)

where m′jd = (m′jd1,m
′
jd2).

6.3 Model Learning via Variational Inference

In this section, a variational inference (VI) algorithm [15, 16] is developed to learn
the proposed infinite von Mises mixture model with localized feature selection. The
VI algorithm is a deterministic approximation framework with the goal to find an
approximation to the true posterior distribution by maximizing the lower bound on
the logarithm of the model evidence. By applying Jensen’s inequality, the lower
bound L of the logarithm of p(X) can be found as

lnp(X) ≥
∫

q(�) ln
p(X,�)
q(�)

d� = L(q) (6.15)

where q(�) is an approximation to the true posterior distribution p(�|X).
In this work, the stick-breaking representation for the infinite VM mixture model

is truncated at a level of M

π ′M = 1,
M∑
j=1

πj = 1, πj = 0 when j > M (6.16)

where M is a variational parameter and will be estimated by the SVI algorithm.
Then, by applying the structured mean-field approximation [17], the variational

posterior q(�) can be factorized into the product of variational distributions as

q(�) = q(Z)q(φ)q(π ′)q(μ,λ)q(μ′,λ′) (6.17)
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By maximizing the variational lower bound L(q) with respect to each variational
variable, we can update the variational posteriors as

q(Z) =
N∏
i=1

M∏
j=1

r
zij
ij (6.18)

q(φ) =
N∏
i=1

M∏
j=1

D∏
d=1

f
φijd
ijd (1− fijd)

(1−φijd ), (6.19)

q(μ,λ) =
M∏
j=1

D∏
d=1

V(μjd |m∗jd , β∗jdλjd)G(λjd |u∗jd , v∗jd) (6.20)

q(μ′,λ′) =
M∏
j=1

D∏
d=1

V(μ′jd |m′∗jd , β ′∗jdλ′jd)G(λ′jd |u′∗jd , v′∗jd) (6.21)

q(π ′) =
M∏
j=1

Beta(π ′j |gj , hj ) (6.22)

where the associated hyperparameters are defined by

rij = exp(r̃ij )∑M
k=1 exp(r̃ik)

(6.23)

r̃ij =
D∑
d=1

〈φijd〉
[
〈λjdμT

jdYid〉 −
(

∂

∂λjd
ln I0(λ̄jd)

)
(〈λjd〉 − λ̄jd)− ln I0(λ̄jd)

]

+
D∑
d=1

〈1− φijd〉
[
〈λ′jdμ′TjdYid〉

−
(

∂

∂λ′jd
ln I0(λ̄

′
jd)

)
(〈λ′jd〉 − λ̄′jd)− ln I0(λ̄

′
jd)

]

+〈lnπ ′j 〉 +
j−1∑
k=1

〈ln(1− π ′k)〉 (6.24)

fijd = exp(f̃ijd)

exp(f̃ijd)+ exp(f̂ijd)
(6.25)
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f̃ijd =
〈
zij

〉[〈λjdμT
jdYid〉 −

( ∂

∂λjd
ln I0(λ̄jd)

)

×(〈λjd〉 − λ̄
(t−1)
jd )− ln I0(λ̄jd)

]
+ (ln εjd) (6.26)

f̂ijd =
〈
zij

〉[〈λ′jdμ′TjdYid〉 −
( ∂

∂λ′jd
ln I0(λ̄

′
jd)

)(〈λ′jd〉

−λ̄′jd
)− ln I0(λ̄

′
jd)

]
+ (ln(1− εjd)) (6.27)

β∗jd = ‖βjdmjd +
N∑
i=1

〈zij 〉〈φijd〉Yid‖ (6.28)

m∗jd =
1

β∗jd

(
βjdmjd +

N∑
i=1

〈zij 〉〈φijd〉Yid

)
(6.29)

u∗jd = ujd + β∗jd λ̄jd
(

∂

∂β∗jdλjd
ln I0(β̂

∗
jd λ̄jd)

)
(6.30)

v∗jd = vjd +
N∑
i=1

〈zij 〉〈φijd〉
(

∂

∂λjd
ln I0(λ̄jd)

)
+ βjd

(
∂

∂βjdλjd
ln I0(βjd λ̄jd)

)

(6.31)

β ′∗jd = ‖β ′jdm′jd +
N∑
i=1

〈zij 〉〈1− φijd〉Yid‖ (6.32)

m′∗jd =
1

β ′∗jd

(
β ′jdm′jd +

N∑
i=1

〈zij 〉〈1− φijd〉Yid

)
(6.33)

u′∗jd = u′jd + β̂ ′∗jd λ̄′jd
(

∂

∂β̂ ′∗jdλ′jd
ln I0(β̂

′∗
jd λ̄
′
jd)

)
(6.34)

v′∗jd = v′jd+
N∑
i=1

〈zij 〉〈1− φijd〉
(

∂

∂λ′jd
ln I0(λ̄

′
jd)

)
+ β ′jd

(
∂

∂β ′jdλ′jd
ln I0(β

′
jd λ̄
′
jd)

)

(6.35)

gj = 1+
N∑
i=1

〈zij 〉 (6.36)
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hj = ξj +
N∑
i=1

M∑
k=j+1

〈zik〉 (6.37)

where ∂
∂λjd

ln I0(λ̄jd) ≡ ∂
∂λjd

ln I0(λjd)|λjd=λ̄jd =
I1(λ̄jd )

I0(λ̄jd )
which is obtained based

on the property I ′0(κ) = I1(κ) of the modified Bessel function [22]. The expected
values in the above formulas are defined as

〈zij 〉 = rij , 〈λjdμT
jdYid〉 =

u∗jd
v∗jd

m∗TjdYid (6.38)

〈φijd〉 = fijd , 〈λ′jdμ′TjdYid〉 =
u′∗jd
v′∗jd

m′∗Tjd Yid (6.39)

〈lnπ ′j 〉 = ψ(gj )− ψ(gj + hj ) (6.40)

〈ln(1− π ′j )〉 = ψ(hj )− ψ(gj + hj ) (6.41)

〈λjd〉 =
u∗jd
v∗jd

, 〈λ′jd〉 =
u′∗jd
v′∗jd

(6.42)

The features saliencies can be obtained by setting the derivative of the variational
lower bound L(q) with respect to εjd to zero as

εjd = 1

N

N∑
i=1

fijd (6.43)

Since the variational solutions are coupled together through the expected values
of other factors, these solutions can be obtained iteratively through an EM-like
algorithm as described in Algorithm 1.

Algorithm 1 Variational inference of the infinite VM model
1: Choose the initial truncation level M = 15.
2: Initialize hyperparameters ξj , mjd , βjd , ujd , vjd , u′jd , v′jd , m′jd , β ′jd .
3: repeat
4: The variational E-step: use the current values of model parameters to evaluate the expected

values in Eqs. (6.38)∼(6.42).
5: The variational M-step: update the variational factors using Eqs. (6.18)∼(6.22).
6: Calculate features saliencies using Eq. (6.43).
7: until Convergence criteria is reached.
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6.4 Experimental Results

In this section, we validate the proposed infinite VM mixture model with local-
ized feature selection through two challenging applications, namely topic novelty
detection and unsupervised images categorization. In our experiments, the initial
truncation level M was set to 15. The prior parameters mjd and m′jd were randomly
initialized from the data such that ‖mjd‖ = 1 and ‖m′jd‖ = 1. The prior parameters
βjd , ujd , vjd , u′jd , v′jd , and β ′jd were initialized as (βjd, ujd, vjd , u′jd , v′jd , β ′jd) =
(0.1, 0.1, 0.01, 0.1, 0.01, 0.1). The parameters of ξj and εjd were set to 0.5.

6.4.1 Topic Novelty Detection

The goal of topic novelty detection in terms of text data is to develop an approach
that can automatically detect novel topics in a given collection of documents (e.g.,
news articles). In our mixture model-based approach, a novel topic is the one that is
classified as a new cluster of our infinite mixture model. In this experiment, follow-
ing [7], four publicly available data sets are adopted for evaluating the performance
of the proposed infinite VM mixture model with localized feature selection (referred
as InVmMM-LFs). The first data set is known as the CNAE-9 data set1 which has
1080 documents of descriptions of Brazilian companies that can be divided into 9
categorizes. The categories of this data set are equally distributed (i.e., 120 instances
in each of nine categories). The other three data sets were taken from the original
20-Newsgroups data set.2 The details of these three data sets are listed as follows.
The first data set is known as “News-Related-3” which contains 300 documents
with 3225 attributes from three newsgroups on related topics (talk.politics.misc,
talk.politics.guns, talk.politics.mideast). The second data set is “News-Similar-3”
which contains 300 documents with 1864 attributes from three newsgroups on
similar topics (comp.graphics, comp.os.mswindows, comp.windows.x). The third
data set is “News-Different-3” which contains 300 documents with 3251 attributes
from three newsgroups on related topics (alt.atheism, rec.sport.baseball, sci.space).

In order to evaluate the novelty detection performance of the proposed
InVmMM-LFs on the four testing data sets, we adopt measures including Accuracy
and F1 as follows

Accuracy = Number of documents that are correctly clustered

Total number of documents
(6.44)

F1 = 2× precision× Recall

Precision+ Recall
(6.45)

1https://archive.ics.uci.edu/ml/datasets/CNAE-9.
2http://qwone.com/~jason/20Newsgroups/.

https://archive.ics.uci.edu/ml/datasets/CNAE-9
http://qwone.com/~jason/20Newsgroups/
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In our approach, we perform topic novelty detection using the proposed
InVmMM-LFs based on the bag-of-words paradigm. The methodology of our
topic novelty detection approach can be summarized as follows: First, we applied
the Rainbow package3 [23] to remove the rare (occurred less than 30 times) and
stop words (such as “the”, “and”, “or”, etc.). Next, each document is represented
by a vector of counts (i.e., a histogram containing the frequency of occurrence of
each word in its vocabulary). Each document is then TF-IDF normalized and thus
a L2 normalized vocabulary is created. These obtained vectors are then modeled
by the proposed InVmMM-LFs. Finally, the classification is performed by applying
Bayes’ decision rule. As new documents are observed, new topics will be discovered
if the number of clusters is increased. We run our method 20 times to investigate its
average performance.

In order to demonstrate the advantages of the proposed approach. We compare
our approach with other topic novelty detection approaches that are based on
mixture models. These approaches include: the infinite VM mixture model with
global feature selection (denoted by InVmMM-Fs), the infinite VM mixture model
without feature selection (denoted by InVmMM), the Gaussian mixture model
with localized feature selection (denoted by GMM-LFs) [14], and the infinite VM
mixture model with feature selection which is learnt using Markov chain Monte
Carlo (MCMC) algorithm (denoted by InVMM-MCMC) [7].

The results by different approaches for each tested data set are shown in
Tables 6.1, 6.2, 6.3, 6.4. Based on these results, it is clear that the proposed
InVmMM-LFs has provided the best novelty detection performance among all
tested approaches in terms of the highest F1 score and the accuracy rate for each
data set. The advantages of using feature selection are verified since InVmMM
has obtained worse performance than approaches adopting either global feature

Table 6.1 Topic novelty
detection performance by
different approaches for the
CNAE-9 data set

Methods F1 Accuracy (%) M∗

GMM-LFs 76.69 77.97 8.23± 1.28

InVMM-MCMC 81.81 83.91 9.04± 1.01

InVmMM 80.12 82.08 9.12± 1.01

InVmMM-Fs 82.44 85.08 9.06± 0.91

InVmMM-LFs 83.56 86.19 9.02± 0.75

Table 6.2 Topic novelty
detection performance by
different approaches for the
News-Related-3 data set

Methods F1 Accuracy (%) M∗

GMM-LFs 83.78 82.23 2.87± 1.02

InVMM-MCMC 87.41 86.59 3.05± 0.45

InVmMM 85.19 84.38 3.25± 0.93

InVmMM-Fs 88.46 87.21 3.07± 0.85

InVmMM-LFs 89.67 89.52 3.04± 0.33

3http://www.cs.cmu.edu/~mccallum/bow.

http://www.cs.cmu.edu/~mccallum/bow
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Table 6.3 Topic novelty
detection performance by
different approaches for the
News-Similar-3 data set

Methods F1 Accuracy (%) M∗

GMM-LFs 80.33 81.57 2.82± 1.21

InVMM-MCMC 84.06 84.58 3.08± 0.60

InVmMM 83.72 83.35 3.17± 0.52

InVmMM-Fs 84.08 85.39 3.21± 0.29

InVmMM-LFs 86.63 87.94 3.11± 0.46

Table 6.4 Topic novelty
detection performance by
different approaches for the
News-Different-3 data set

Methods F1 Accuracy (%) M∗

GMM-LFs 86.52 85.93 2.89± 0.31

InVMM-MCMC 88.99 90.00 3.12± 0.11

InVmMM 87.38 87.29 3.23± 0.63

InVmMM-Fs 88.72 89.64 3.16± 0.45

InVmMM-LFs 90.18 92.09 3.09± 0.51

selection (InVmMM-Fs) or localized feature selection (InVmMM-LFs). Since
InVmMM-LFs outperformed InVmMM-Fs, it also confirms that localized feature
selection has better performance than global feature selection in topic novelty
detection. Among all approaches, GMM-LFs has obtained the worst performance
in terms of the lowest F1 score and the accuracy rate for each data set. This
demonstrates that VM mixture model is better than Gaussian mixture model for
modeling L2 normalized data.

6.4.2 Unsupervised Images Categorization

In this experiment, the proposed InVmMM-LFs is applied to categorize images
based on the bag-of-visual-words representation. We test our image categorization
approach on the Oxford flowers data set [24] which includes 17 different categories
of flowers with 80 images for each category. In our experiment, we adopt a subset
of this data set which contains ten classes: daffodil, snowdrop, lily valley, bluebell,
pansy, tiger lily, tulip, fritillary, sunflower, and daisy. Figure 6.1 demonstrates
several sample images of the Oxford flowers data set.

Our image categorization approach can be summarized as follows. First, the
PCA-SIFT descriptors4 (36-dimensional) [25] are extracted from each image using
the difference-of-Gaussians (DoG) interest point detector [26]. Next, an accelerated
version of the K-means algorithm [27] is used to construct a visual vocabulary by
quantizing these PCA-SIFT vectors into visual words. As a result, each image is
represented as a frequency histogram over the visual words. Then, the probabilistic
latent semantic analysis (pLSA) model [28, 29] is applied to the obtained histograms

4Source code of PCA-SIFT: http://www.cs.cmu.edu/~yke/pcasift.

http://www.cs.cmu.edu/~yke/pcasift
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Fig. 6.1 Sample images from each class in the Oxford flowers data set

Table 6.5 The average
classification accuracy and
the number of components
(M∗) computed over 20 runs
by different algorithms

Method M∗ Accuracy (%)

GMM-LFs 9.29± 0.46 74.93

InVMM-MCMC 9.62± 0.33 79.34

InVmMM 9.51± 0.25 77.26

InVmMM-Fs 9.59± 0.27 80.01

InVmMM-LFs 9.67± 0.31 82.15

to represent each image by a 45-dimensional vector (i.e., the number of latent
aspects) and then L2 normalized. Finally, the proposed InVmMM-LFs is applied
to cluster the testing images by assigning the image to the category which has the
highest posterior probability according to Bayes’ decision rule. In our case, half of
the data set was used to construct the visual vocabulary, and the other half was used
for testing.

We compare the proposed image categorization approach based on InVmMM-
LFs with the ones based on GMM-LFs, InVMM-MCMC, InVmMM, and
InVmMM-Fs. The average categorization accuracy and the number of components
(M∗) computed over 20 runs by different algorithms are shown in Table 6.5. As
we can observe from this table, it is clear that the InVmMM-LFs achieves the
best performance among all tested methods in terms of the highest categorization
accuracy rate (82.15%) and the most accurate estimated number of clusters (9.67).
This result verified the advantages of using VM mixture model and localized feature
selection for categorizing images. We may also notice that both cases InVmMM-
LFs and InVmMM-Fs outperform InVmMM, which demonstrates the merits of
integrating feature selection into mixture models for clustering.
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6.5 Conclusion

In this chapter, a probabilistic model-based approach based on infinite VM mixture
model has been proposed for clustering L2 normalized data. Comparing with finite
mixture model in which the number of mixture components have to be determined
through extra efforts, the infinite mixture VM model is a nonparametric model such
that the number of mixture components is assumed to be infinite initially and will
be inferred automatically during the learning process. In order to improve clustering
performance for high-dimensional data, a localized feature selection scheme is
integrated into the infinite VM mixture model which can effectively detect irrelevant
features based on the estimated feature saliencies. The proposed infinite mixture
model with localized feature selection is learnt through variational inference that can
estimate model parameters and feature saliencies with closed-form solutions. Our
model-based clustering approach is validated through two challenging applications,
namely topic novelty detection and unsupervised images categorization.
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Chapter 7
Deriving Probabilistic SVM Kernels from
Exponential Family Approximations to
Multivariate Distributions for Count
Data

Nuha Zamzami and Nizar Bouguila

Abstract This work aims to propose a robust hybrid probabilistic learning
approach that combines appropriately the advantages of both the generative and
discriminative models for modeling count data. We build new probabilistic kernels
based on information divergences and Fisher score from efficient approximations to
multivariate distributions for support vector machines (SVMs). More precisely, we
drive probabilistic kernels from the mixture of exponential family approximation to
two powerful generative models for count data, namely the multinomial compound
Dirichlet (DCM) and the generalized Dirichlet multinomial (GDM). The developed
hybrid models are introduced as effective SVM kernels able to incorporate prior
knowledge about the nature of data involved in the problem at hand and, therefore,
permits a good data discrimination. We demonstrate the flexibility and the merits
of the proposed frameworks for the problem of analyzing activities in surveillance
scenes.

7.1 Introduction

Clustering is among the significant data mining tasks that have been extensively
studied in the past in order to predict the natural grouping for unlabeled data
[32]. It is generally viewed as a density estimation problem, i.e., the model makes
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inference through probabilistic assumptions of the data distributions [26]. Thus,
they offer a principled effective way for handling uncertainty and they are practical
especially when dealing with missing and incomplete data [55]. A popular model-
based (generative) approach for clustering is finite mixture models which offer a
considerable practical value in modeling heterogeneous data [27, 58], based on
estimating the class-conditional distributions, and the prior probabilities of each
class, which are then used for clustering using Bayes’ rule [7]. On the other
hand, discriminative approaches focus directly on the classification problem via
learning the class boundaries without regard to the underlying class densities [66].
Due to their computational efficiency and good discrimination capabilities, support
vector machines (SVMs) [12, 75] became standard supervised learning tool with
benchmark results. Selecting an appropriate SVM kernel is really a challenging
task for machine learning and data mining applications. Indeed, the classic kernels,
that SVM-based discriminative classifiers often rely on, are not generally suitable
for count data, as such kernels do not take into consideration the nature of data.
A better approach is to generate the kernels directly from the data, which could
be also called generative kernels [1]. Consequently, relevant efforts have been
made recently to combine the advantages of both approaches by developing hybrid
generative/discriminative algorithms (see, for instance, [5, 9, 30, 46, 81]). The idea
is to capture the intrinsic properties of the data to classify, taking into account prior
knowledge of the problem domain. Such algorithms have shown to be powerful
tools that generally provide lower test errors and better accuracies than either fully
generative or discriminative techniques [31, 64].

In this work, we address the problem of classification where the data consists
of bags of count vectors by incorporating efficient mixture models into SVMs.
As choosing the components probability density functions (PDFs) is at the heart
of finite mixture modeling, we suggest the consideration of flexible and accurate
distributions to model count data, namely the exponential approximation to Dirichlet
compound multinomial (EDCM) [25] and the exponential approximation to gener-
alized Dirichlet multinomial (EGDM) [83]. The EDCM and EGDM distributions
are approximations of the DCM [52] and GDM [8], respectively, that bring them
into the family of exponential distributions. Our choice for these approximations
is justified by the fact that the exponential distributions are usually easier to
evaluate and their parameters are simpler to estimate [4, 21]. Moreover, both
EDCM and EGDM have shown to be computationally efficient and have high
flexibility in count data modeling with superior performance in many challenging
applications [25, 37, 82, 83]. We develop several flexible SVM kernels that make
intelligent use of unlabeled count data to achieve accurate classification results.
These kernels are defined on probabilistic generative models learned from the data.
In particular, instead of using EDCM and EGDM mixtures directly for classification,
we build probabilistic kernels based on Fisher scores and information divergence.
We validated the proposed developed hybrid model using publicly available and
widely used datasets for activity analysis in surveillance scenes.

The rest of this chapter is organized as follows: The next section will review
the support vector machines (SVMs). In Sect. 7.3, we present the considered
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mixture models and the deterministic annealing expectation–maximization (DAEM)
algorithm for learning the parameters. Then, in Sect. 7.4 we introduce our statistical
generative/discriminative framework and all related details. Section 7.5 is devoted
to the experimental results. Finally, we conclude this work in Sect. 7.6.

7.2 Support Vector Machines Kernels

Support vector machines (SVMs), as a type of classifiers, are well known for
supervised learning and applicable to both classification and regression problems
[6, 75]. Since SVM classifier was introduced in [75], it gained popularity due to
its good generalization, global solution, number of tuning parameters and their
solid theoretical foundation. The development of efficient SVMs implementations
led to broadening its applications [17, 51, 59]. The SVM is designed for binary-
classification problems, assuming that the training set is separable by a hyperplane
where the complexity of the hyperplane can be bounded in terms of another quantity,
the margin. The margin is defined as the minimal distance of an example to a
decision surface. Thus, if we bound the margin of a function class from below, we
can control its complexity. In the statistical framework, learning means to estimate
a function from a set of examples (the training sets). Thus, a learning machine must
choose one function from a given set of functions, which minimizes a certain risk.
Support vector learning implements this insight that the risk is minimized when the
margin is maximized [70].

Let {(X1, C1), . . . , (Xl , Cl)}, Xi ∈ R
N be a training set of random independent

identically distributed vectors, with labels Ci ∈ {+1,−1} belonging to either of two
linearly separable classes C1 and C2. The decision function of the SVM classifier is
given by [75]:

f (X) = sign

(
l∑

i=1

CiδiK(X.Xi )+ b

)
, (7.1)

where l is the number of support vectors containing the relevant information about
the classification problem, δi are the weights of the support vectors determined by
solving a constrained quadratic programming problem which aims to maximize
the margin between the classes, b is a bias term, and K(X.Xi) is a symmetric
positive definite kernel function. A challenging problem in the case of SVMs is
the choice of the kernel function which is actually a measure of similarity between
two vectors. In case the data are not linearly separable, it can be mapped into a high
dimensional feature space using a kernel function to simplify the computation of
the inner product value of the transformed data in the feature space [6, 70]. The
generally used kernel functions are polynomial, radial basis function (RBF), and
sigmoid [40, 48].
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The Fisher kernel, initially proposed in [31], is an example of previous efforts in
generating more flexible kernels, which has been widely used in the literature. The
main idea is to exploit the geometric structure on the statistical manifold by mapping
a given individual sequence of vectors into a single feature vector, defined in the
gradient log-likelihood space. Given its ability to incorporate prior knowledge about
the data, Fisher kernels have shown excellent performance in [23], for instance,
where Gaussian mixture model-based kernel functions are used for speech emotion
recognition. Moreover, it has been successfully implemented in many applications
that involve discrete data such as handwriting recognition, speech recognition, facial
expression analysis, and bio-informatics based on mixture of multinomials [74],
as well as, spam and text categorization and hierarchical classification of vacation
images based on mixture of Dirichlet compound multinomial (DCM) [10].

An alternative to Fisher kernel is called probability product kernels investigated
in [35], where two special cases were introduced, namely Bhattacharyya and
expected likelihood kernels. Moreover, several SVM kernels have been generated
based on information divergence between distributions, such as Kullback–Leibler
(KL) divergence kernel [16, 60], Reńyi and Jensen–Shannon kernels [47, 65]. These
kernels have been successfully implemented with good results in case of Gaussian
[14, 63] and non-Gaussian data [5, 9, 81].

7.3 Finite Mixtures of Exponential Distributions

Finite mixtures are flexible and powerful probabilistic model-based approach for
unsupervised learning of multivariate data [28, 71]. In mixture modeling, the data
are assumed to be generated from a mixture of subpopulations. Let X to be
an observed dataset with N data instances X = {X1, . . . , XN }, where Xi =
(xi1, . . . , xiD) is drawn from a superposition of M densities of the form:

P(Xi |π, θ) =
M∑
j=1

πj P(Xi |θj ), (7.2)

where πj (0 < πj < 1 and
∑M

j=1 πj = 1) are the mixing proportions. Each
P(X|θj ) represents mixture component j and has its own parameters θj . For
every observed data point Xi , there is a corresponding latent variable Zi . The set
Z = {Z1, . . . ,ZN } denotes the missing group-indicator vectors for data elements
in the j th cluster. The value of zij is satisfying zij ∈ {0, 1}, as a particular
element zij is equal to one and all other elements are equal to 0. The complete
data are considered to be (X,Z|�), where � is the set of all latent variables and
parameters. The complete data log-likelihood corresponding to a mixture model,
with M components, is given by:
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L(X,Z|�) =
N∑
i=1

M∑
j=1

zij

(
logP(Xi |θj )+ logπj

)
. (7.3)

7.3.1 The Exponential Approximation to Dirichlet Compound
Multinomial (EDCM)

The EDCM [25] is an approximation of the DCM (Dirichlet compound multino-
mial) [52]. DCM was introduced based on the fact that the Dirichlet is a conjugate
prior to the multinomial probability distribution which has several computational
advantages [54]. However, it has some limitations which include that it does
not belong to the exponential family, its expression lacks intuitiveness, and its
parameters cannot be estimated quickly. The EDCM, on the other hand, possesses
several useful properties which allow it to perform fast and model well high
dimensional data with bursty behaviors that appear in text [18, 39] and visual
elements [36].

Define X = (x1, . . . , xD) as a vector of counts representing a document or an
image, where xd is the frequency of the word or visual word, d. The probability of
generating the vector X using the DCM with parameter vector α = (α1, . . . , αD) is
given by [52]:

DCM(X|α) = n!
D∏
d=1

(xd)!
�(s)

�(s + n)

D∏
d=1

�(xd + αd)

�(αd)
, (7.4)

where n = ∑D
d=1 xd , and s = ∑D

d=1 αd . Note that comparing to the multinomial,
the DCM retains one more degree of freedom as its parameters are not required to
sum to one.

Elkan [25] proposed the EDCM, noting the sparsity nature of textual data,
as most documents contain only a small subset of the entire vocabulary. In this
approximation, only non-zero word counts xd are used for computation efficiency.
EDCM, as an approximation to DCM, can be made if α � 1, which found to be
true for the majority of documents collections and images databases represented as
bag-of-features (BoF) [20]. The EDCM is formulated as:

EDCM(X|α) = n!∏
d:xd≥1

xd

�(s)

�(s + n)

∏
d:xd≥1

αd. (7.5)
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Thus, re-writing Eq. (7.5) as an exponential density gives:

q(X|α) =
( ∏

d:xd≥1

x−1
d

)
n! �(s)

�(s + n)
exp

[ D∑
d=1

I (xd ≥ 1) logαd
]
, (7.6)

where I (xd ≥ 1) is an indicator equals to 1 if the word d appears at least once in a
vector X, and 0 otherwise.

7.3.2 The Exponential Approximation to Generalized Dirichlet
Multinomial (EGDM)

Although the Dirichlet distribution is commonly used as a prior to the multinomial,
the generalized Dirichlet distribution has shown to be a more appropriate prior
for naive Bayesian classifiers. This is due to the fact that generalized Dirichlet
overcomes several limitations of the Dirichlet including the negative-correlation and
the equal-confidence requirements [78, 79]. Moreover, the independence property of
GD distribution, defined by the ability to sample each entry of the random vector
from independent beta distributions, provides more flexibility than the Dirichlet
distribution [13].

Bouguila [8] introduced the generalized Dirichlet multinomial (GDM), which is
the composition of the generalized Dirichlet and the multinomial in the same way
of DCM. The probability density function of the GDM distribution with parameters
θ = {α1, β1, . . . , αD, βD} is given by:

GDM(X|α, β) = �(n+ 1)∏D+1
d=1 �(xd + 1)

D∏
d=1

�(αd + βd)

�(αd)�(βd)

D∏
d=1

�(α′d)�(β ′d)
�(α′d + β ′d)

, (7.7)

where n = ∑D+1
d=1 xd , α′d = αd + xd , and β ′d = βd + xd+1 + · · · + xD+1, for

d = 1, . . . , D. Note that the Dirichlet compound multinomial (DCM) distribution
is a special case of GDM by taking βd = αd+1 + βd+1. It is important to note that
the generalized Dirichlet is a tree of beta distributions, and the GDM is a tree of 2-D
DCMs [84]. Similar to DCM, GDM does not belong to the exponential family.

Indeed, the generalized Dirichlet multinomial (GDM) has shown to be an
effective alternative to DCM that achieves high clustering accuracy in different
applications [8, 80, 84]. However, it shares similar problems to the ones with DCM
including that its parameters cannot be estimated quickly. To simplify the parameter
estimation process and reduce the computation in high-dimensional spaces, we
proposed, in an earlier work [83], an efficient approximation to the GDM motivated
by the superior performance of EDCM. The approximation, EGDM, is a member of
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the exponential family of distributions and it captures the burstiness phenomenon
successfully and correctly, while being many times faster and computationally
efficient compared to the corresponding GDM. It was possible to reduce GDM
to a member of the exponential family via a suitable transformation and re-
parameterization considering some properties of logarithm and gamma functions.
Moreover, in case of GDM, we found experimentally that αd � βd � 1 for almost
all words w based on different count datasets. The approximation, EGDM, can be
written in the exponential family form as:

EGDM(X) =
( ∏
d:xd≥1

xd

)−1 ∏
d:xd≥1

�(zd)

�(xd + zd)
n!

exp
[ D∑
d=1

I (xd ≥ 1) log
αdβd

(αd + βd)

]
, (7.8)

where zd = xd+1 + · · · + xD+1 is the cumulative sum. As in EDCM, I (xd ≥ 1) is
an indicator that represents whether a word d appears at least once in the vector X.

7.3.3 Mixture Models Parameters Estimation

A widely used method for estimating mixture parameters � is the maximum
likelihood estimate (MLE) solution [22] through expectation–maximization (EM)
approach [56] on the complete likelihood, which is commonly useful in observations
that can be viewed as incomplete data. EM algorithm generates a sequence of
models with non-decreasing log-likelihood on the data, and highly depends on
the initialization, thus, has an issue of poor local maxima. Researchers proposed
different extensions to overcome the EM problems. One of the successful extensions
is the deterministic annealing method (DAEM) [73], which is used in [25] and [83],
to estimate the parameters of EDCM and EGDM, respectively. Some interesting
justifications about using the deterministic annealing procedure can be found in
[25, 73, 83].

DAEM uses multiple phases each with a value of a temperature parameters set,
where the final � parameters in each phase are used as initial values in the next one.
In case of EDCM and EGDM, three phases are considered where each phase runs
EM until convergence. The computational temperature parameter T has been set to
T = 25, T = 5, and lastly T = 1. When applying the deterministic annealing
procedure, the posterior probabilities will be computed in the E-step as:

ẑ
(t)
ij =

(
P(Xi |θ(t)j ) π

(t)
j

)τ
M∑
j=1

(
P(Xi |θ(t)j ) π

(t)
j

)τ , (7.9)
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where τ = 1
T

, and T corresponds to the computational temperature. Then, in the
M-step, the parameters estimates will be updated according to:

�̂(t+1) = arg max
�

L(X,Z|�,�(t)). (7.10)

The interested reader is referred to Elkan’s paper [25] for details of the algorithm for
estimating EDCM parameters, where a similar approach is used in case of EGDM.

7.4 Generative/Discriminative Models for Count Data

In this section, we develop SVM kernels based on EDCM and EGDM finite
mixture models that address certain practical shortcomings of classic kernels.
Let two multimedia objects O and O ′ represent two sequences of count vectors
X = {X1, . . . , XN } and X′ = {X′1, . . . , X′N ′ }, respectively. It is possible to assume
that each sequence has been generated by an M-component finite mixture model
p(X|�) and q(X|�′) defined on � space, where � is the p-dimensional space of
the considered distribution. Each individual object has its own size N as a given
image, for instance, can be represented by a bag of pixel vectors of a set of local
descriptors [29, 33]. In the following subsections, we derive different kernels based
on probabilistic distances and Fisher score to tackle the problem of count data
sequence classification using SVM. An important feature of probabilistic kernels
is the existence of a closed-form expression in order to be able to evaluate directly
the kernel function without the need of expensive Monte Carlo approximations. In
the case of EGDM, however, closed-form expressions exist only for the Reńyi and
Jensen–Shannon kernels.1

7.4.1 Fisher Kernels

The Fisher kernel, proposed in [31], is based on extracting Fisher scores UX(�) =
� log(p(X|�)) from the generative model and converting them into a kernel to
feed SVMs. Each component of UX(�) is the derivative of the log-likelihood of the
sequence X with respect to a particular parameter of the mixture model. The kernel
is then defined as:

K(X,X′) = Utr
X (�)F−1(�)UX′(�′), (7.11)

1Indeed, closed form expressions for the other two kernels (i.e., Bhattacharyya and Kullback–
Leibler) do exist for EDCM, but not for EGDM. In order to provide a fair comparison, we
considered the closed form only if it exists for both models.
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where F−1(�) is the Fisher information matrix which can be approximated by the
identity matrix [31]. Despite the quadratic complexity of Fisher kernel, it is a highly
principled statistical approach as it has been shown in [72]. One drawback, however,
is that Fisher kernel does not generally preserve the nonlinearities implied by the
corresponding generative model [35].

Here, we develop Fisher kernels for the two considered generative models. In the
case of finite mixture model of EDCM (Eq. 7.6), the corresponding feature space is
(M(D+2)−1)-dimensional. By computing the gradient of logp(X|�) with respect
to πj , j = 1, . . . ,M , which is the same for any mixture model, gives:

∂L(X|�)
∂πj

=
N∑
i=1

[ ẑij
πj
− ẑij

π1

]
, j = 2, . . . ,M. (7.12)

Considering the unity constraint on mixing weights, we have only M − 1 free
parameters, which explains the fact that the previous gradient equation is defined for
j ≥ 2 as π1 can be determined knowing the values of the other mixing parameters
(π1 = 1−∑M

j=2 πj ). Furthermore, computing the gradient with respect to the model
parameters αjd, d = 1, . . . , D+ 1, reasonably straightforward manipulations give:

∂L(X|�)
∂αjd

=
N∑
i=1

ẑij

[
�(sj )−�(sj + ni)+ I (xid ≥ 1)

( 1

αjd

)]
. (7.13)

The Fisher kernel based on finite mixture of EGDM (Eq. 7.8) has a corresponding
feature space with size (M(2D + 1)− 1), and in this case we have:

∂L(X|�)
∂αjd

=
N∑
i=1

ẑij

[
I (xid ≥ 1)

( 1

αjd
− 1

αjd + βjd

)]
, (7.14)

∂L(X|�)
∂βjd

=
N∑
i=1

ẑij

[
I (xid ≥ 1)

( 1

βjd
− 1

αjd + βjd

)]
. (7.15)

7.4.2 Probability Product Kernels

An alternative approach is to generate SVM kernels between probabilistic distri-
butions K : P × P → R that injects the domain knowledge and invariance of
generative models to SVMs [16]. In particular, probability product kernels [35] map
data points in the input space to distributions over the sample space and a general
inner product is then evaluated as the integral of the product of pairs of distributions
and defined as:
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K
(
p(X|�), q(X|�′)

)
=

∫ +∞
0

p(X|�)ρq(X|�′)ρdX, (7.16)

where ρ is a positive parameter. An important special case of probability product
kernels (when ρ = 1/2) is the Bhattacharyya kernel, originally proposed by Jebara
and Kondor [34] which, despite its cubic complexity, has a main advantage of
nonlinear flexibility [35]. The Bhattacharyya kernel is defined as follows:

KBH

(
p(X|�), q(X|�′)

)
=

∫ +∞
0

√
p(X|�), q(X|�′)dX. (7.17)

In case of EDCM, we could find a closed form for this kernel (see Appendix 1):

KBH

(
p(X|�), q(X|�′)

)
= �( 1

2 (s + n+ s′ + n))
√
�(s)�(s′)

�( 1
2 s + 1

2 s
′)
√
�(s + n)�(s′ + n)

. (7.18)

However, we note that it is not possible to compute the Bhattacharyya kernel in a
closed form from EGDM mixture density. Thus, in the absence of closed form, we
can approximate the kernel using Monte Carlo simulation [16], as:

KBH

(
p(X|�), q(X|�′)

)
≈ β

N1

N1∑
i=1

p1/2(Xi |�)
Z1

p1/2(Xi |�)

+ 1− β

N2

N2∑
i=1

q1/2(Xi |�′)
Z2

q1/2(Xi |�′), (7.19)

where β ∈ [0, 1], and X1, . . . ,XN1 and X1, . . . ,XN2 are generated from p(X|�)
and q(X|�′) densities, respectively. Z1, and Z2 are normalized factors for p and q

densities after they are taken to the power of ρ.

7.4.3 Kernels Based on Information Divergence

The main idea of information divergence kernel is to replace the kernel computation
in the original sequence space by computation in the probability density functions
(PDFs) space (i.e., the kernel becomes a measure of similarity between probability
distributions) [16, 35]. For instance, researchers have derived a kernel distance
based on the symmetric Kullback–Leibler (KL) divergence [43], which was applied
successfully for speaker identification, image classification, and visual recognition
[60, 62, 76]. The information divergence-based kernels between distributions is
given by:
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K
(
p(X|�), q(X|�′)

)
= exp[−a F(p(X|�), q(X|�′))], (7.20)

where a > 0 is a kernel parameter included for numerical stability, and
F(p(X|�), q(X|�′)) is any information divergence measure as shown below.

7.4.3.1 Kullback–Leibler Divergence Kernels

The Kullback–Leibler kernel is based on the symmetric Kullback–Leibler diver-
gence (KL) [43], that measure the dissimilarity between two probability distribu-
tions p(X|�), and q(X|�′), and is given by:

F(p(X|�), q(X|�′)) =
∫ +∞

0

[
p(X|�) log

p(X|�)
q(X|�′) + q(X|�′) log

q(X|�′)
p(X|�)

]
dX.

(7.21)

The KL divergence has a closed-form expression in case of EDCM distribution and
is given by (see Appendix 2):

KL(p(X|�), q(X|�′))

= log

[
�(s)�(s′ + n)

�(s′)�(s + n)

]
+

D∑
d=1

(
�(s + n)−�(s)

)
(αd − α′d). (7.22)

In the case of EGDM distribution, we cannot find a closed-form expression
for the KL-divergence, thus like the previous kernel we consider Monte Carlo
simulation.

7.4.3.2 Reńyi and Jensen–Shannon Kernels

We will consider two other special probabilistic kernels, the Reńyi and Jensen–
Shannon kernels, which have been introduced in [16], as a generalization of the
symmetric Kullback–Leibler kernel. The Reńyi kernel is based on the symmetric
Reńyi divergence [65], such that:

KR

(
p(X|�), q(X|�′)

)
=

[ ∫ +∞
0

p(X|�)σq(X|�′)1−σ dX

×
∫ +∞

0
p(X|�)σq(X|�′)1−σ dX

]a/(1−σ)
, (7.23)

where σ > 0 and σ �= 1 is the order of Rényi divergence, which control the amount
of smoothing for the distribution. In case of our generative models, closed-form
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expressions exist for the Reńyi divergence. These expressions for the EDCM and
EGDM distributions, respectively, are given by (see Appendix 3):

∫ +∞
0

p(X|�)σq(X|�′)1−σ dX

=
[ �(s)

�(s + n)

]σ [ �(s′)
�(s′ + n)

]1−σ × �(σs + n)�((1− σ)s′ + n)

�(σs)�((1− σ)s′)
(7.24)

∫ +∞
0

p(X|�)σq(X|�′)1−σ dX =
[ D∏
d=1

αdβd

αd + βd

]σ[ D∏
d=1

α′dβ ′d
α′d + β ′d

]1−σ

×
D∏
d=1

(σαd + σβd)(1− σ)(α′d + β ′d)
σ (αdβd)(1− σ)(α′dβ ′d)

.

(7.25)

The other kernel is the Jensen–Shannon (JS) kernel, generated according to the
Jensen–Shannon divergence [47], which is given by:

JSω(p(X|�), q(X|�′)) = H
[
ω p(X|�)+ (1− ω)q(X|�′)]

− ω H [p(X|�)]− (1− ω) H
[
q(X|�′)] , (7.26)

where ω is a parameter, and H [p(X|�)] = − ∫
p(X|�) logp(X|�) dX is the

Shannon entropy.

7.5 Experimental Results

7.5.1 Methodology and Performance Measures

In this section we present, analyze, and discuss the performance of the proposed
approach through a set of experiments that we have performed. The applications
concern activity analysis and action recognition in video surveillance scenes.
There are two main goals in our experiments. The first goal is to investigate and
compare the different generative kernels based on the exponential approximation to
the Dirichlet compound multinomial (EDCM), and the exponential approximation
to the generalized Dirichlet multinomial (EGDM) as we have proposed in the
previous section. The second goal is to compare the proposed hybrid generative
discriminative approaches to their generative counterparts and to the widely used
discriminative approaches. We present experimental evidence that our generative
kernels based on the exponential distributions perform better than their counterparts,
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generated from the DCM and GDM, and better than the mixture models from which
they are generated. In all our experiments we have used the one-vs-all training
approach and the values for all design parameters were obtained by performing five
fold cross-validation and all experimental results were averaged over 20 runs.

Each object (i.e., video sequence or frame), in the considered datasets was
represented as a bag-of-features. For video sequences, we start by detecting
the spatio-temporal interest points (STIP) where the local neighborhood has a
significant variations in both spatial and temporal domains [44]. Then, we used
3D SIFT descriptor [69] that has shown to accurately capture the spatio-temporal
nature of the video data. Moreover, images (frames) were encoded as a bag of scale-
invariant feature transform (SIFT) feature vectors [49] (i.e., we used SIFT to detect
the key points and extract their descriptors). Thus, the generative stage is done by
fitting directly the EDCM, or EGDM, model to the feature vectors extracted from
the images or videos. Consequently, each object in our datasets is represented by a
finite mixture model of distributions. The discriminative stage, on the other hand, is
represented by computing the Fisher, probability product or information-divergence
based, kernel between each of these mixture models giving us kernel matrices to
feed the SVM classifier.

To evaluate obtained results, we have used two measures which are usually used
to evaluate classification models, as follows:

• Accuracy: is a performance metric that gives an indication of overall well
classified elements and is defined as:

Accuracy = TP+ TN

TP+ FP+ TN+ FN
,

where TP, FP, TN, FN denote: true positive, false positive, true negative, and false
negative, respectively.

• AUC: Area under the (receiver operating characteristics (ROC) curve, which
measures the performance of the multi-class classification problem.

7.5.2 Classification Using Generative/Discriminative Approach

7.5.2.1 Classification of Traffic Scene Based on Density

Recently, video monitoring and surveillance systems have been widely used in
traffic management. Due to the high number of cameras in use, developing
intelligent systems that extract useful information such as traffic density and vehicle
classification information from traffic surveillance systems has become a significant
and challenging task. The importance of knowing the traffic density of the roads
is justified by its use for signal control and effective traffic management, time
estimation of reaching from one location to another, and recommendation of
different route alternatives [61]. For traffic scene classification, we used the UCSD
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Fig. 7.1 Classification of traffic congestion in variable lighting conditions: (a) sunny, (b) overcast,
and (c) nighttime

traffic video dataset [15] to categorize videos based on the density of traffic. The
dataset has been partitioned into three classes corresponding to light, medium, and
heavy highway traffic congestion with a variety of weather conditions (see sample
frames in Fig. 7.1). It consists of 254 video sequences of highway traffic in Seattle,
collected from a single stationary traffic camera over 2 days. Each video contains
between 42 and 52 frames of size 320 × 240, which, following common practice
[15], are normalized and downsized to 48× 48 grayscale images.

7.5.2.2 Detection of Unusual Events in Traffic Flows

For detecting unusual events in busy public scenes, we used the junction dataset
[50] by Queen Mary University of London (QMUL). The length of the video is
approximately 1 h (9000 frames) captured with 360 × 288 frame size at 25 fps.
The traffic is regulated by traffic lights and dominated with three traffic flows
(sample frames are shown in Fig. 7.3). Following the practice in [50], the video
was segmented into non-overlapping clips of 50 frames long each, resulting in 1800
clips. Each clip was manually labeled into different event classes as follows:

• Vertical traffic flow (1078 clips)
• Rightward traffic flow (323 clips)
• Leftward traffic flow (355 clips)
• Unusual: Illegal u-turns (29 clips)
• Unusual: Emergency vehicles using an improper lane of traffic (3 clips)
• Unusual: Traffic interruptions by fire engines (12 clips)
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Fig. 7.2 Examples of abnormal events in UCSD ped1 due to the circulation of non-pedestrian
entities in the walkways: (a) small cart, (b) skater, and (c) bike

Fig. 7.3 A traffic scene dominated by three different traffic flows (arranged in order): (a) vertical
flow, (b) rightward flow, (c) leftward flow

7.5.2.3 Anomaly Detection in Crowded Scenes

The analysis of densely crowded environments has recently received much interest
within computer vision (e.g., [2, 42]). Most of the efforts are motivated by the ubiq-
uity of surveillance cameras, the challenges of crowd modeling, and the importance
of crowd monitoring for various applications. In this context, the goal is to detect
deviations from normal crowd behavior (i.e., anomalous or abnormal events). In this
experiment, our concern is to detect anomalies in the video surveillance sequences
(at frame level) of the public UCSD Ped1 and Ped2 dataset [53].

This dataset was acquired with a stationary camera mounted at an elevation, over-
looking pedestrian walkways with variable crowd density ranging from sparse to
very crowded. In the normal setting, the video contains only pedestrians. Abnormal
events are due to either the circulation of non-pedestrian entities in the walkways or
anomalous pedestrian motion patterns. Commonly occurring anomalies examples
include bikers, skaters, and small carts (see samples of abnormal frames in Fig. 7.2).
The data was split into two subsets each with a different camera viewpoint. The
video footage recorded from each scene was split into various clips of around 200
frames. For each clip, the groundtruth annotation includes a binary flag per frame,
indicating whether an anomaly is present in that frame.
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Fig. 7.4 Types of activities in the interaction challenge

7.5.2.4 Human–Human Interaction Recognition

Recognizing human interaction from videos is important in computer vision for
several applications. Indeed, semantic analysis of activity videos enables con-
struction of various vision-based intelligent systems, including smart surveillance
systems, intelligent robots, action-based human–computer interfaces, and moni-
toring systems for children and elderly persons [67]. It is a challenging problem
partially due to the lack of discriminability and expressiveness in single feature
based representation, especially in motion ambiguity and partial occlusion [24]. In
this experiment, we aim at recognizing multiple high level activities from a video
composing several actors performing multiple interactions. We considered the UT
interaction dataset [67], which contains six types of two-person interactions, shake-
hands, point, hug, push, kick, and punch (see Fig. 7.4).

7.5.2.5 Human Action Recognition in Video Sequences

In this experiment, we used one challenging video database, namely the KTH human
action database [45], containing six types of human actions (walking, jogging,
running, boxing, hand waving, and hand clapping) performed several times by 25
subjects in four different scenarios: outdoors s1, outdoors with scale variation s2,
outdoors with different clothes s3 and indoors s4 (see Fig. 7.5). It contains 2391
sequences, all were taken over homogeneous backgrounds with a static camera
with 25 fps frame rate. All sequences were downsampled to the spatial resolution
of 160× 120 pixels and have a length of 4 s on average.
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Fig. 7.5 Different types of outdoor human actions in KTH database

Table 7.1 Performance comparison of different generative kernels in classifying traffic density
scenes

Accuracy (%) AUC

DCM + Fisher Kernel 78.40 0.7552

EDCM + Fisher Kernel 92.31 0.9175

EDCM + Bhattacharyya Kernel 84.00 0.7950

EDCM + Kullback–Leibler 84.62 0.7600

EDCM + Bhattacharyya Kernel (MC) 85.13 0.7777

EDCM + Kullback–Leibler (MC) 85.50 0.7878

EDCM + Rényi Kernel 80.77 0.7530

EDCM + Jensen–Shannon 80.46 0.7389

GDM + Fisher Kernel 92.31 0.9327

EGDM + Fisher Kernel 96.15 0.9722
EGDM + Bhattacharyya Kernel (MC) 87.90 0.8723

EGDM + Kullback–Leibler (MC) 86.50 0.8344

EGDM + Rényi Kernel 88.00 0.7389

EGDM+ Jensen–Shannon 84.00 0.7083

7.5.2.6 Results and Discussion: Comparing Different Generative Kernels

The quantitative performances obtained based on the ground truth and in terms
of AUC and accuracy metrics when deploying different kernels generated from
EDCM and EGDM are presented in Tables 7.1, 7.2, 7.3, 7.4, and 7.5, where bold
font indicates best result obtained for each dataset. According to these tables, we
can see clearly that the SVM based on Fisher kernel generated from the EGDM
mixture model provides the best results for all the considered datasets. Moreover,
all the kernels generated from EGDM perform slightly generally better than those
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Table 7.2 Performance comparison of different generative kernels in detecting unusual event in
traffic flows

Accuracy (%) AUC

DCM + Fisher Kernel 65.96 0.6422

EDCM + Fisher Kernel 76.44 0.6972

EDCM + Bhattacharyya Kernel 64.91 0.5825

EDCM + Kullback–Leibler 66.90 0.6479

EDCM + Bhattacharyya Kernel (MC) 65.44 0.6032

EDCM + Kullback–Leibler(MC) 66.80 0.6411

EDCM + Rényi Kernel 70.18 0.6632

EDCM + Jensen–Shannon 67.92 0.6655

GDM + Fisher Kernel 73.33 0.7101

EGDM + Fisher Kernel 79.66 0.7632
EGDM + Bhattacharyya Kernel (MC) 75.87 0.7323

EGDM + Kullback–Leibler (MC) 75.55 0.7277

EGDM + Rényi Kernel 76.66 0.7473

EGDM+ Jensen–Shannon 78.87 0.7537

Table 7.3 Performance comparison of different generative kernels in detecting anomaly in
crowded scenes

Ped1 Ped2

Accuracy (%) AUC Accuracy (%) AUC

DCM + Fisher Kernel 74.62 0.7245 80.35 0.7207

EDCM + Fisher Kernel 75.85 0.7444 82.59 0.7544

EDCM + Bhattacharyya Kernel 76.53 0.6979 87.57 0.8007

EDCM + Kullback–Leibler 77.36 0.6999 84.83 0.7828

EDCM + Bhattacharyya Kernel (MC) 75.90 0.7212 84.55 0.7765

EDCM + Kullback–Leibler (MC) 76.00 0.7200 83.88 0.7643

EDCM + Rényi Kernel 78.47 0.7167 84.33 0.8134

EDCM + Jensen–Shannon 78.56 0.7038 83.58 0.8184

GDM + Fisher Kernel 82.72 0.7076 86.31 0.8999

EGDM + Fisher Kernel 86.86 0.7513 88.55 0.9000
EGDM + Bhattacharyya Kernel (MC) 85.00 0.7244 84.30 0.8187

EGDM + Kullback–Leibler (MC) 85.50 0.7444 84.50 0.8329

EGDM + Rényi Kernel 85.33 0.7209 84.83 0.8299

EGDM+ Jensen–Shannon 85.28 0.7402 85.80 0.8234

generated from EDCM. This can be interpreted by the flexibility of this recently
proposed finite mixture model and it is ability to fit better the extracted feature
vectors.

For classifying traffic scenes based on density (Table 7.1), the result obtained
using Fisher kernel based on EDCM is, indeed, similar to the one reached by
the SVM approach with GDM Fisher kernel. Table 7.2 displays the classification
results for the QMUL dataset. For this dataset, the Rényi kernel generated from
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Table 7.4 Performance comparison of different generative kernels in recognizing human–human
interaction

Accuracy (%) AUC

DCM + Fisher Kernel 79.63 0.7000

EDCM + Fisher Kernel 80.00 0.7544

EDCM + Bhattacharyya Kernel 80.00 0.7273

EDCM + Kullback–Leibler 79.20 0.7143

EDCM + Bhattacharyya Kernel (MC) 79.50 0.7256

EDCM + Kullback–Leibler (MC) 79.00 0.7173

EDCM + Rényi Kernel 81.67 0.8700

EDCM + Jensen–Shannon 83.33 0.8091

GDM + Fisher Kernel 85.00 0.8166

EGDM + Fisher Kernel 88.35 0.8767
EGDM + Bhattacharyya Kernel (MC) 82.88 0.8093

EGDM + Kullback–Leibler (MC) 83.40 0.8152

EGDM + Rényi Kernel 81.67 0.7800

EGDM+ Jensen–Shannon 83.33 0.8091

Table 7.5 Performance comparison of different generative kernels in recognizing human action
in video sequences

Accuracy (%) AUC

DCM + Fisher Kernel 69.29 0.6257

EDCM + Fisher Kernel 74.07 0.6326

EDCM + Bhattacharyya Kernel 72.62 0.6858

EDCM + Kullback–Leibler 78.24 0.7290

EDCM + Bhattacharyya Kernel (MC) 72.62 0.6858

EDCM + Kullback–Leibler (MC) 76.50 0.7233

EDCM + Rényi Kernel 76.21 0.7014

EDCM + Jensen–Shannon 76.93 0.6905

GDM + Fisher Kernel 70.53 0.6227

EGDM + Fisher Kernel 79.97 0.7500
EGDM + Bhattacharyya Kernel (MC) 76.00 0.6710

EGDM + Kullback–Leibler (MC) 76.49 0.6986

EGDM + Rényi Kernel 75.87 0.6863

EGDM+ Jensen–Shannon 78.20 0.6903

EGDM outperforms the other kernels with a very close result to the one reached
by the SVM approach based on EGDM Fisher kernel. The classification results
related to UCSD ped1 and ped2 sets are summarized in Table 7.3. For both datasets,
we can notice that the different kernels generated from each distribution perform
comparably. It is noteworthy that the Rényi and Jensen–Shannon kernels based
on EDCM perform slightly better on UCSD ped1 than other kernels including the
Fisher kernel generated from the same. For UCSD ped2, considering the accuracy,
the Bhattacharyya kernel generated from the EDCM clearly outperforms the other
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Table 7.6 Comparison
results based on accuracy of
our method to the state of the
art for UCSD traffic dataset

Approach Accuracy

Linear dynamical systems (LDS) [68] 87.50%

Compressive sensing LDS (CS-LDS) [68] 89.06%

Probabilistic kernels (KL-SVM) [15] 95.00%

Spatio-temporal orientation analysis (SOA) [77] 95.20%

NLSSA-RBF kernel [3] 94.20%

DNLSSA-RBF kernel [3] 94.50%

Proposed method: EGDM + Fisher kernel 96.15%

Table 7.7 Comparison
results based on AUC of our
method to the state of the art
for UCSD ped1 dataset

Approach AUC

Social force [57] 0.1790

MPPCA [41] 0.2050

SF-MPPCA [41] 0.2130

Mixture of dynamic texture (MDT) [53] 0.4410

Sparse [19] 0.4610

Sparse + LSDS [19] 0.4870

Proposed method 1: EGDM + Fisher kernel 0.7513
Proposed method 2: EDCM + Fisher kernel 0.7444

kernels despite the fact that the Fisher kernel based on EGDM performs generally
slightly better. The same conclusion is valid for the UT interaction and KTH human
actions datasets as shown in Tables 7.4 and 7.5, respectively. For these two datasets
we can notice that the different kernels generated from each generative model
perform slightly similarly, and the kernels generated from EGDM outperform the
ones generated from EDCM.

Furthermore, we compared the obtained results with other methods from the
literature for UCSD traffic and UCSD ped1 datasets, in Tables 7.6 and 7.7,
respectively. According to the considered measures, i.e., accuracy and AUC, our
approach achieves competitive results to the state of the art as we can notice that the
proposed methods attain the highest metrics.

7.5.3 Results Using Fully Generative Models and
Discriminative Techniques

In this section, the experiments are conducted based solely on our generative
models by fitting different models to the local descriptors directly. The results of
this experiment are shown in Table 7.8. According to the results, it is clear that
hybrid models improve the classification accuracy compared to their fully generative
counterparts. For instance, the accuracy of classifying the QMUL traffic dataset
by fitting EDCM and EGDM directly to the descriptor is 66.43% and 75.19%,
respectively, which have been improved to 76.44% and 79.66% when using SVM
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Table 7.8 Results when
deploying directly the
generative models to the
different datasets

DCM EDCM GDM EGDM

UCSD traffic 76.43 78.14 80.18 88.98

QMUL traffic 63.22 66.43 70.50 75.19

UCSD ped1 70.47 73.94 73.59 79.77

UCSD ped2 65.72 68.51 66.58 71.97

UT interaction 74.31 77.30 76.60 80.00

KTH actions 67.25 70.99 68.26 74.80
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Fig. 7.6 k-nearest neighbors K-NN accuracy for all tested datasets (k = 5)

with a kernel based on EDCM and EGDM Fisher score. This can be explained by
the main idea of the Fisher kernel which is to exploit the geometric structure of the
statistical manifold by mapping a given individual sequence of vectors into a single
feature vector, defined in the gradient log-likelihood space.

Note that the pure discriminative approach, i.e., SVM with classic kernels, cannot
be applied using the previous approach, since each video/frame is represented
now by a set of vectors. Thus, we considered the so-called bag-of-features (BoF)
approach based on the frequency of visual words [20], where each object can be
represented as a histogram of frequent features. In our experiments, each dataset was
randomly splitted into 60:40 to construct the visual vocabulary and representation.
The classification results using two widely used discriminative approaches, namely
k-nearest neighbor and SVM with a classic kernel (i.e., radial basis function (RBF)),
are shown in Figs. 7.6 and 7.7, respectively. According to the results, kernels
generated from the generative models have provided good and promising results
as compared to state-of-the-art discriminative techniques.
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7.6 Conclusion

In this work, we have developed a hybrid generative discriminative framework to
tackle the problem of modeling and classifying count data. In particular, we derived
probabilistic kernels from the exponential approximation to both the Dirichlet com-
pound multinomial (EDCM) and the generalized Dirichlet multinomial (EGDM).
The proposed approaches are motivated by the flexibility and efficiency of these
generative models, as well as the advantages of both SVMs and finite mixture
models. Our experiments concerned classifying video sequences and frames from
surveillance scenes for different purposes. The obtained results have shown that the
developed kernels are promising and could be then applied for other classification
problems that involve count vectors. According to the results, we can say also that
the EGDM has better modeling capabilities than EDCM finite mixtures, and both
outperform their corresponding models.

Appendix 1: Proof of Eq. (7.18)

It is possible to compute the Bhattacharyya kernel in closed form for densities that
belong to the exponential family of distributions, as:

KBH = exp

[
1
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)]
. (7.27)
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In the case of EDCM, we can show that:

KBH = exp
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Appendix 2: Proof of Eq. (7.22)

The KL-divergence between two exponential distributions is given by [38].

KL(p(X|�), p(X|�′)) = �(�)−�(�′)+ [G(�)−G(�′)]trE�[T (X)],
(7.29)

where E� is the expectation with respect to p(X|�). Moreover, we have the
following [11]:

E�[T (X)] = −�′(�). (7.30)

Thus, according to Eq. (7.6), we have:

E�

[ D∑
d=1

I (xd ≥ 1)
]
= −∂�(�)

∂αd
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D∑
d=1

αd + n)−�(

D∑
d=1

αd), (7.31)

where n =∑D
d=1 xd , and�(.) is the digamma function. By substituting the previous

two equations into Eq. (7.29), we obtain:
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Appendix 3: Proof of Eqs. (7.24) and (7.25)

Reńyi kernel is given by:

KR(p(X|�), p′(X|�′)) =
[ ∫ +∞

0
p(X|�)σp′(X|�′)1−σ dX

×
∫ +∞

0
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]A/(1−σ)
. (7.33)

In case of EDCM, we can show that:
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(7.34)

We have the PDF of an EDCM distribution that integrates to one which gives:

∫ +∞
0
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αddX = �(s + n)
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By substituting Eq. (7.35) into Eq. (7.34), we obtain:

∫ +∞
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(7.36)
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Similarly, in case of EGDM, we can show that:
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(7.37)

Then considering that the PDF of an EGDM distribution integrates to one, we have:
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0

n!∏D
d=1 xd

D∏
d=1

�(zd)

�(xd + zd)
dX =

D∏
d=1

αd + βd

αdβd
(7.38)

and by substituting Eq. (7.38) into Eq. (7.37), we obtain:
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Chapter 8
Toward an Efficient Computation of
Log-Likelihood Functions in Statistical
Inference: Overdispersed Count Data
Clustering

Masoud Daghyani, Nuha Zamzami, and Nizar Bouguila

Abstract This work presents an unsupervised learning algorithm, using the mesh
method for computing the log-likelihood function. The multinomial Dirichlet distri-
bution (MDD) is one of the widely used methods of modeling multicategorical count
data with overdispersion. Recently, it has been shown that traditional numerical
computation of the MDD log-likelihood function either results in instability or
leads to long run times that make its use infeasible in case of large datasets. Thus,
we propose to use the mesh algorithm that involves approximating the MDD log-
likelihood function based on Bernoulli polynomials. Moreover, we extend the mesh
algorithm approach for computing the log-likelihood function of a more flexible
distribution, namely the multinomial generalized Dirichlet (MGD). We demonstrate
the efficiency of this method in statistical inference, i.e., maximum likelihood
estimation, for fitting finite mixture models based on MDD and MGD as efficient
distributions for count data. Through a set of experiments, the proposed approach
shows its merits in two real-world clustering problems, namely natural scenes
categorization and facial expression recognition.

M. Daghyani (�)
Department of Electrical and Computer Engineering (ECE), Concordia University, Montreal, QC,
Canada
e-mail: m_daghya@encs.concordia.ca

N. Zamzami
Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, QC, Canada

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi
Arabia
e-mail: n_zamz@encs.concordia.ca

N. Bouguila
Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, QC, Canada
e-mail: nizar.bouguila@concordia.ca

© Springer Nature Switzerland AG 2020
N. Bouguila, W. Fan (eds.), Mixture Models and Applications, Unsupervised
and Semi-supervised Learning, https://doi.org/10.1007/978-3-030-23876-6_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23876-6_8&domain=pdf
mailto:m_daghya@encs.concordia.ca
mailto:n_zamz@encs.concordia.ca
mailto:nizar.bouguila@concordia.ca
https://doi.org/10.1007/978-3-030-23876-6_8


156 M. Daghyani et al.

8.1 Introduction

The analysis of categorical data, or count data, has huge number of applications in
different fields such as machine learning, computer vision, big data analysis, pattern
recognition (e.g., [1, 4, 8, 53]). The Poisson distribution is a primary distribution
for modeling count data that has an equal mean and variance (equidispersion).
However, in many practical situations this assumption is not valid as real data
exhibits the phenomenon of overdispersion (i.e., the variance of the count variable
exceeds its mean) [39]. Consider, for example, an image represented using bag-of-
features approach where some of the features appear too many times and others
appear less frequently or do not appear at all making the variance greater than
the mean. For addressing this issue, the negative-binomial distribution has been
widely used in high-throughput sequencing data [2, 18]. Moreover, multinomial
(MN) distribution is another fundamental model in count data analysis which is
useful for analyzing count proportions between multiple categories. However, in real
data we encounter another phenomenon caused by dependencies or the similarity of
responses of members of the same cluster. This leads to extra-multinomial variation
[17], i.e., overdispersion with respect to the MN distribution. Thus, the multinomial
distribution has been extended to the multinomial Dirichlet distribution (MDD)
[34, 38] to model the overdispersion of the MN distribution. The MDD distribution
has been used in various fields, including topic and magazine exposure modeling
[20, 32, 43], word burstiness modeling [28], and language modeling [27]. The
generalized Dirichlet multinomial distribution (MGD) [4] has been also considered
for more flexible modeling of count data with overdispersion.

On the other hand, given the importance of count data, there have been numerous
efforts for analyzing this kind of data using both supervised and unsupervised
learning approaches. Finite mixture models [30] are among the most widely used
techniques for unsupervised learning, i.e., clustering. In fact, many studies have
proved that the adoption of discrete finite mixture models can have higher perfor-
mance as compared with other common used approaches such as neural networks
and decision trees [45]. Finite Mixtures are popular for modeling univariate and
multivariate data [31]. Novel machine learning applications have changed the
direction of the current research activities from working on mixtures for continues
data to other types of data such as binary or integer-valued features [36] applied in
text classification and binned and truncated multivariate data [7]. In the majority of
the cases, the probability density functions (PDFs) of mixture models are considered
to be Gaussian, which is not the best choice, specially where the partitions are
clearly non-Gaussian [3]. For example, it has been shown that in the case of
modeling discrete data in computer vision, Gaussian assumption is an inadequate
choice, and most of the researchers use the multinomial distribution [36, 46].

To fit finite mixture models to the observed data, the most common method
used is the expectation–maximization (EM) algorithm, for locating a maximum
likelihood (ML) estimation of the mixture parameters [14]. Indeed, the log-
likelihood function plays an essential role in such statistical inference method
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[9, 35]. Thus, Yu and Shaw [52] proposed a novel parameterization of the MDD log-
likelihood function based on a truncated series consisting of Bernoulli polynomials,
and developed a mesh algorithm for computing this log-likelihood to extend its
applicability. In this work, we first adopted this mesh algorithm for the computation
of the MDD log-likelihood within a mixture model framework. Afterwards, we
extended the approach in [52] to reparameterize the MGD log-likelihood function,
along with utilizing the computation of log-likelihood using mesh algorithm in the
parameter estimation process.

The remainder of this chapter is organized as follows: Section 8.2 reviews the
parameterization of the MDD log-likelihood function that allows smooth transition
from the overdispersed to the non-overdispersed case, and Sect. 8.3 discusses
the MGD distribution and proposes its new parameterization. In Sect. 8.4, we
describe the mesh algorithm for computing the log-likelihood functions. In Sect. 8.5
we discuss clustering using finite mixture models. Section 8.6 is devoted to
experimental results, and we end the chapter in Sect. 8.7 with some concluding
remarks.

8.2 Computing the MDD Log-Likelihood Function

In this section, we first discuss the multinomial Dirichlet distribution (MDD) in
details. Later on, the approximation of the paired log-gamma difference of the log-
likelihood function is explained.

8.2.1 The Multinomial Dirichlet Distribution

We assume that O = (O1, . . . , ON) is a finite set of abstract objects and e =
(e1, . . . , eK) the domain of some events. Also, we consider that the counts for each
object Oi are available as a co-occurrence vector Xi = (Xi1, . . . , XiK), where
Xij refers to the number of times events ej happens in the object Oi . Hence, we
represent the object by X supposing that X follows a multinomial distribution.
However, using frequencies for obtaining the probabilities gives a weak estimation,
due to the fact that the events are considered independent, which is not always true
[10, 19]. Several attempts have been made to address this issue. Teevan and Karger
discovered a model that fits discrete vectors in an exponential family of models
[44]. Rennie et al. tried to reduce the impact of dependency by log-normalizing the
counts [41].

Consider the observations (vector of counts) X = (X1, . . . , Xk), satisfying∑K
k=1 Xk = N , and P = (P1, . . . , Pk) satisfying

∑K
k=1 Pk = 1, where Pk is the

probability of seeing the kth feature. The probability mass function (PMF) of K
categories of the MN distribution having N-independent trials is given by:
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M(X|P) = N !∏K
k=1 Xk!

K∏
k=1

P
Xk

k (8.1)

The Dirichlet distribution is a conjugate prior of P. Suppose the random
vector P = (P1, . . . , Pk) follows a Dirichlet distribution with parameters α =
(α1, . . . , αk), the joint density function is equal to [23]:

D(P1, . . . , Pk) = �(A)∏K
k=1 �(αk)

K∏
k=1

P
(αk−1)
k (8.2)

where �(αk) is the gamma function and A =∑K
k=1 αk .

The marginal distribution of X is obtained by taking the integral of the product of
the Dirichlet prior and the multinomial likelihood, with respect to the probabilities
P [34]:

MDD(X|α) = N !∏K
k=1 Xk!

�(A)

�(A+N)

K∏
k=1

�(αk +Xk)

�(αk)
(8.3)

We call this density the MDD (multinomial Dirichlet distribution) and the mean
and variance of this distribution are given by [34]:

E(Xi) = |X|αi
α

(8.4)

V ar(Xi) = |X|(|X| − 1)αi(|α| − αi)

(|α|)2(|α| + 1)
+ |X|αi

α
(8.5)

A special case of the MDD distribution with just two parameters (K = 2)
is named the beta-binomial distribution that has been widely studied by [16, 24].
By taking the logarithm of both sides of the above equation, we achieve the log-
likelihood function:

lnL(P,ψ;X) = −(ln�(1/ψ +N)− ln�(1/ψ))

+
K∑
k=1

(
ln�

(
1/

ψ

Pk
+Xk

)
− ln�

(
1/

ψ

pk

))
(8.6)

where ψ = 1/A and p = ψα. In this work, we call ψ the overdispersion parameter,
which has a direct relation with the variance, and specifies the difference between
a MDD distribution and its corresponding MN distribution in the same probability
category. This formula has some deficiencies including that it is undefined for ψ =
0, also it is unstable when ψ → 0, since each ln� term becomes very large, and
the paired differences become relatively small which result in computation errors.
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The mesh algorithm, proposed in [52], applies a new formula based on a truncated
series consisting of Bernoulli polynomials to solve the instability problem without
incurring long run times.

8.2.2 Approximating the Paired Log-Gamma Difference in
MDD Log-Likelihood Function

As proposed in [52], we use the approximation of the paired log-gamma difference
method and the properties of analytic functions as follows [6, 42]:

ln�(1/x + y)− ln�(1/x) ≈ −y ln x +Dm(x, y) (8.7)

when y is an integer, |x|min(|y − 1|, |y|) < 1, xy ≤ δ and:

Dm(x, y) =
m∑
n=2

(−1)nφn(y)

n(n− 1)
x(n−1) (8.8)

where

φn(y) = Bn(y)− Bn (8.9)

is the old type Bernoulli polynomial [48], Bn(y) and Bn indicate the nth Bernoulli
polynomial, and nth Bernoulli number (Bn = Bn(0)), respectively.

Using floating-point arithmetic, high order polynomials are hard to compute [13].
Hence, we cannot use too large m’s, because the error of each terms of Dm(x, y)

may be large, which eventually makes it inaccurate. Following Yu and Shaw [52],
for computing the log-likelihood of the MDD distribution using the mesh method,
we used m = 20, as it makes φn(y) (n ≤ m) numerically accurate. We also choose
δ = 0.2 that results to an error bound of∼1.30×10−16, which is just little less than
the machine epsilon double precision data type ≈2.22× 10−16.

Let X+ be the vector of the non-zero elements in Xi , P+ be a vector of the
corresponding elements in P , and K+ be the length of X+, then Eq. (8.6) becomes:

lnL(P+, ψ;X+) = −
(

ln�(1/ψ +N)− ln�(1/ψ)︸ ︷︷ ︸
∗

)

+
K+∑
k=1

(
ln�

(
1/

ψ

P+k
+X+k

)
− ln�

(
1/

ψ

P+k

)
︸ ︷︷ ︸

∗∗

) (8.10)
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As mentioned earlier, when condition xy ≤ δ is met, we can use the approxima-
tion in Eq. (8.7) for all K+ + 1 paired log-gamma differences in Eq. (8.10), as [52]:

lnL(P+, ψ;X+) ≈ −(−N lnψ +Dm(ψ,N))

+
K+∑
k=1

(
−X+k ln

(
ψ

P+k

)
+Dm

(
ψ

P+k
, X+k

))

= −Dm(ψ,N)+
K+∑
k=1

(
X+k lnp+k +Dm

(
ψ

P+k
, X+k

))

(8.11)

8.3 Computing the MGD Log-Likelihood

In this section we discuss the MGD distribution in sufficient details. Then, we
propose the approximation of the paired log-gamma differences technique for
computing the MGD log-likelihood function.

8.3.1 The Multinomial Generalized Dirichlet Distribution

Despite its flexibility and its several interesting properties, such as the consistency
of its estimates as a prior, the fact that it is conjugate to the multinomial, and its ease
of use, the Dirichlet distribution has a very restrictive negative covariance structure
that makes its use as a prior in the case of positively correlated data inappropriate.
Another restriction of the Dirichlet distribution is that the variables with the same
mean must have the same variance [22]. Recent works have shown that all these
disadvantages can be handled by using the generalized Dirichlet distribution which
has many convenient properties that make it more useful and practical, as a prior to
the multinomial, than the Dirichlet in real-life applications [4, 50].

Define X = (X1, . . . , XK+1) as an overdispersed vector of counts of K + 1
events. Then, the composition of the generalized Dirichlet and the multinomial gives
the multinomial generalized Dirichlet (MGD), as [4]:

MGD(X|α, β) = �(N + 1)∏K+1
k=1 �(Xk + 1)

K∏
k=1

�(αk + βk)

�(αk)�(βk)

K∏
k=1

�(α′k)�(β ′k)
�(α′k + β ′k)

(8.12)

where α′k = αk + Xk , and β ′k = βk + Xk+1 + · · · + XK+1 for k = 1, . . . , K .
Given that the generalized Dirichlet includes the Dirichlet as a special case, MGD
is reduced to a MDD when βk = αk+1 + βk+1.
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The mean and the variance of the generalized Dirichlet distribution satisfy the
following conditions [11, 49]:

E(Pk) = αk

αk + βk

k−1∏
l=1

βl

αl + βl
, (8.13)

V ar(Pk) = E(Pk)

(
αk + 1

αk + βk + 1

k−1∏
l=1

βl + 1

αl + βl + 1
− E(Pk)

)
(8.14)

and the covariance between Pk1 and Pk2 is:

Cov(Pk1, Pk2) = E(Pk2)

(
αk1

αk1 + βk1 + 1

k1−1∏
l=1

βl + 1

αl + βl + 1
− E(Pk1)

)
(8.15)

Like the Dirichlet, the generalized Dirichlet is conjugate to the multinomial dis-
tribution but has a more general covariance structure than the Dirichlet distribution
and the variables with the same mean do not need to have the same variance [4, 5],
thus, it is more practical to be used in modeling data with overdispersion. Moreover,
it remainsK degrees of freedom, which makes it more flexible for several real-world
applications [21].

8.3.2 Approximating the Paired Log-Gamma Difference in
MGD Log-Likelihood Function

The first term on the right side of Eq. (8.12) does not depend on the parameters
α and β. For the maximum likelihood estimation, we are not interested in the first
term but in the product of the remaining two terms of the MGD likelihood function
in Eq. (8.12):

L(α, β;X) =
K∏
k=1

�(αk + βk)

�(αk)�(βk)

K∏
k=1

�(α′k)�(β ′k)
�(α′k + β ′k)

(8.16)

By taking the logarithm of both sides of Eq. (8.16), we get the log-likelihood
function, as:

lnL(α, β;X) =
K∑
k=1

(ln�(αk + βk)− ln�(αk)− ln�(βk))

+
K∑
k=1

− (
ln�(α′k + β ′k)− ln�(α′k)− ln�(β ′k)

) (8.17)
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Similar to the case of MDD, we consider the parameter ψ as the overdispersion
parameter that gives the MGD distribution the ability to capture data variation.
Using ψ = 1/A, where A = �K

k=1αk and P = ψα, thus, Eq. (8.17) becomes:

lnL(P,ψ, β;X) =
K∑
k=1

(
ln�

(
1/

ψ

Pk
+ βk

)
− ln�

(
1/

ψ

Pk

)
− ln�(βk)

)

+
K∑
k=1

−
(

ln�

(
1/

(
ψ

Pk +Xkψ

)
+ β ′k

)

− ln�

(
1/

(
ψ

Pk +Xkψ

))
− ln�(β ′k)

)

(8.18)
Considering X+, P+, β+, β ′+ vectors of non-zero elements in X, P , β, and β ′,

respectively, where K+ is the length of X+, then, Eq. (8.18) becomes:

lnL(P+, ψ, β+;X+) =
K+∑
k=1

⎛
⎜⎜⎜⎝ln�

(
1/

ψ

P+k
+ β+k

)
− ln�

(
1/

ψ

P+k

)

︸ ︷︷ ︸
∗

− ln�(β+k )

⎞
⎟⎟⎟⎠

+
K+∑
k=1

−
(

ln�

(
1/

(
ψ

P+k +X+k ψ

)
+ β ′+k

)
− ln�

(
1/

(
ψ

P+k +X+k ψ

))
︸ ︷︷ ︸

∗∗

− ln�(β ′+k )

)

(8.19)
Similar to the approach in [52], if the condition xy ≤ δ is met, we can use

the approximation (8.7) for all K+(∗∗) and K+(∗) paired log-gamma differences
in (8.19):

lnL(P+, ψ, β+;X+) =
K+∑
k=1

(
(−β+k ln(

ψ

P+k
)+Dm(

ψ

P+k
, β+k ))− ln�(β+k )

)

+
K+∑
k=1

(
(β ′+k ln

(
ψ

P+k +X+k ψ

)
−Dm

(
ψ

P+k +X+k ψ
, β ′+k

)
+ ln�(β ′+k )

)

(8.20)
Here, we also used the same values for m = 20 and δ = 0.2 used for MDD.
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8.4 The Mesh Algorithm for Computing the Log-Likelihood
Functions

As discussed earlier, when condition xy ≤ δ is met, it is possible to make use of the
approximation in Eq. (8.7) for optimizing the log-gamma difference in computing
the MDD and MGD log-likelihood functions. However, when some of the terms in
Eqs. (8.10) and (8.19) do not meet this condition, we may use the mesh algorithm,
in which we rewrite the vector X into a sum of L terms, choosing the terms to meet
the following condition:

X =
L∑
l=1

X(l) (8.21)

For convenience, we define the choice of X(l) as below:

α(l) = α +
l∑

i=1

X(i), for l = 0, . . . , L (8.22)

β(l) = β +
l∑

i=1

X(i), for l = 0, . . . , L (8.23)

and the following relation between the adjacent α(l)’s and β(l)’s:

α(l−1) +X(l) = α(l), for l = 1, . . . , L (8.24)

β(l−1) +X(l) = α(l), for l = 1, . . . , L (8.25)

or

P (l−1)/ψ(l−1) +X(l) = P (l)/ψ(l), for l = 1, . . . , L (8.26)

and we also have:

1

ψ(l)
= 1

ψ
+

l∑
i=1

N(i), for 0 = 1, . . . , L (8.27)

1

ψ(l)
= 1

ψ(l−1)
+N(l), for l = 1, . . . , L (8.28)
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For all ψ ∈ [0,+∞] we have:

ψ(l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1
ψ
+∑l

i=1 N
(i)

if ψ ≥ 1

ψ

1+ ψ
∑l

i=1 N
(i)

if 0 ≤ ψ < 1

(8.29)

P (l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p
ψ
+∑l

i=1 X
(i)

1
ψ
+∑l

i=1 N
(i)

if ψ ≥ 1

p + ψ
∑1

i=1 X
(i)

1+ ψ
∑1

i=1 N
(i)

if 0 ≤ ψ < 1

(8.30)

Then, for evaluating the log-likelihood function for MDD and MGD, respec-
tively, we use:

L(P,ψ;X) =
L∑
l=1

lnL(P (l−1)+, ψ(l−1);X(l)+) (8.31)

lnL(P,ψ, β;X) =
L∑
l=1

lnL(P (l−1)+, ψ(l−1), β(l−1)+;X(l)+) (8.32)

Each of the L terms in the above formulas can be computed using Eq. (8.11) for
MDD and Eq. (8.20) for the MGD. This method is called the mesh algorithm
[52], since the log-likelihood of the functions (8.31) and (8.32) can be evaluated
incrementally on a mesh. The mesh algorithm for computing MDD and MGD log-
likelihood functions can be described as follows:

• First, we generate the mesh using the following formula:

X
(l)
i = �α(l−1)

i δ� (8.33)

• Next, we select the level of the mesh L, so it would be the smallest integer
satisfying:

L∑
l=1

X
(l)
i ≥ Xi, for i = 1, . . . , k (8.34)
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In this work, we used the level of mesh for MDD model L = 3 as in [52], and
we found experimentally that the best level of mesh for MGD is L = 5.

• Afterwards, we adjust X
L
′
i

i such that
∑L

′
i

l=1 X
(l)
i = Xi , and all the remaining

X
(l)
i (l > L

′
i ) will be set to zero. That is, we end the mesh totals to match Xi

exactly, given L
′
i the smallest number satisfying:

L
′
i∑

l=1

X
(l)
i ≥ Xi, for i = 1, . . . , k (8.35)

• Then, we use Eqs. (8.11) and (8.20) to compute the MDD and MGD log-
likelihood functions, respectively.

8.5 Finite Mixture Models Learning

Finite mixture modeling is one of the formal approaches for clustering. A finite
mixture model with M components can be defined as:

P(X|�) =
M∑
j=1

P(X|j ; θj)P (j) (8.36)

where symbol � is the entire set of parameters that needs to be estimated, θj is the
vector parameter for the j th population, P(j) are the mixing proportions, satisfying
0 < P(j) ≤ 1 and

∑M
j=1 P(j) = 1. The maximum likelihood (ML) technique

has been the most popular method for estimating the parameters which determine
a mixture, within the last two decades [40]. Considering a set of N independent
vectors X = (X1, . . . , XN), the problem of estimating � using the ML estimation
becomes:

�̂ML = arg max
�

, P (X|�) (8.37)

where

P(X|�) =
N∏
i=1

M∑
j=1

P(Xi|j ;αj)P (j) (8.38)

After taking logarithm on both sides of the above equation, we have:
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�(X,�) =
N∑
i=1

log

( M∑
j=1

P(Xi|j ;αj )P (j)
)

(8.39)

For learning the mixture parameters, we use the expectation–maximization (EM)
algorithm, which is an iterative algorithm for obtaining the local maxima of the
likelihood function [14], and it relies on the interpretation of X as incomplete
data [29].

The EM algorithm consists of the following two steps:
1. E-step: in which we compute the posterior probabilities, as:

P (t)(j |Xi;αj) = P (t−1)(Xi|j ;αj)P
(t−1)(j)∑M

j=1 P
(t−1)(Xi|j ;αj)P (t−1)(j)

(8.40)

2. M-step: Updates the parameters estimation as:

�̂(t) = arg max
�

,�(X,�(t−1)) (8.41)

For estimating the parameters αj for MDD, αj and βj for MGD, by setting the
derivatives of the log-likelihood to zero, it can be seen that there are no closed
form solutions, because of the existence of some terms such as �(αi) and �(βi) in
both models. Therefore, we use an iterative gradient descent optimization method
by computing the gradient of the MDD likelihood, along with two bounds in
equations [28, 33]. For the MGD, we use the Newton–Raphson method to estimate
its parameters as proposed in [4].

Our initialization method can be described as follows:

1. Generate the vector of parameters αj and βj randomly, for each component j .
2. Apply the K-means algorithm, to assign each data point to one of the existing

clusters, with the assumption that the current model is correct.
3. Initialize the mixing proportions P(j) such that:

P(j) = number of elements in cluster j

N

where N is the number of data instances.

The summary of the EM algorithm for learning MDD or MGD, finite mixture
model parameters is outlined in Algorithm 1.
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Algorithm 1: EM algorithm for learning the mixture models parameters
Input : K-dimensional data set with N vectors X = {X1, . . . ,XN }, pre-specified number

of clusters M
1 State Initialize the set of parameters �, as discussed above.
2 repeat
3 State {E-step}
4 for i ← 1 to N do
5 for j ← 1 to M do
6 Compute the posterior probabilities:

P (t)(j |Xi;αj) = P (t−1)(Xi|j ;αj)P
(t−1)(j)∑M

j=1 P
(t−1)(Xi|j ;αj)P (t−1)(j)

where P (t−1)(Xi|j ;αj) is computed using the mesh algorithm discussed in
Sect. 8.4.

7 end
8 end
9 until convergence;

10 State {M-step}
11 for j ← 1 to M do
12 Update the model parameters according to Eq. (8.40)
13 end

8.6 Experimental Results

In this section, we validate the performance of the proposed approach in clus-
tering count, multicategorical, and overdispersed data with the MDD and MGD
distributions, via two different applications: natural scenes categorization and facial
expression recognition. In each application, we compare the accuracy of clustering
different datasets, using the normal method and the mesh algorithm for the log-
likelihood calculation.

For pre-processing, we used the SIFT (scale-invariant feature transform) [25]
for feature extraction and the bag-of-features (BoF) [12] for representation. BoF
is based on the frequency of visual words, provided from a visual vocabulary,
which is obtained by the quantization (or histogramming) of local feature vectors,
computed from a set of training images. All the 128D descriptors calculated by
SIFT are binned into a collection of local features. Afterwards, K-means is used
to cluster the extracted vectors to build the visual words vocabulary. Then, every
image in the datasets was represented by a vector, indicating the number of a set
of visual words, coming from the constructed visual vocabulary. Since we used
the iterative EM scheme, the initial parameter values might affect the convergence
and the overall outcome. Hence, we run each model over 100 times with different
random initializations in order to have optimum results.
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8.6.1 Natural Scenes Categorization

Image clustering is one of the most crucial topics in computer vision. In this
experiment, we investigate the mesh algorithm’s performance by scene clustering,
which is a challenging application in the sense that in the real-life environment,
they could be captured in various positions, distances, colors. Moreover, high
probability of misclustering could be caused because of the noises that come from
the background surroundings, which might have similar features as our natural scene
targets.

In our experiments, we considered three different scene image datasets: SUN,
Oliva and Torralba, and Fei-Fei and Perona. Each dataset was split with 80:20 ratio,
to form the visual vocabulary and representation.

SUN dataset is a subset of the extensive Scene UNderstanding (SUN)
database1[51] that contains 899 categories and 130,519 images. We use 1849
natural scenes belonging to six categories (458 coasts, 228 rivers, 231 forests, 247
fields, 518 mountains, and 167 sky/clouds). The average size of the images is 720×
480 (landscape format) or 480× 720 (portrait format). Samples from the considered
subset are shown in Fig. 8.1.

Oliva and Torralba (OT) dataset [37] contains 2688 images clustered as
eight categories: 360 coasts, 328 forests, 374 mountains, 410 open countries, 260
highways, 308 inside of cities, 356 tall buildings, and 292 streets. The average size
of each image is 250× 250 pixels. The last dataset is Fei-Fei and Perona (FP) [15],
which includes 13 categories, only available in gray scale. This dataset consists of
2688 images (eight categories) of the OT dataset plus: 241 suburb residences, 174
bedrooms, 151 kitchens, 289 living rooms, and 216 offices. The average size of each
image is approximately 250 × 300 pixels. Examples of images from these datasets
are given in Fig. 8.2.

Table 8.1 represents the average clustering accuracies, using both the normal
and mesh approach. As we can see, there are considerable improvements when we
implemented our clustering algorithm using the mesh method. Among the tested

Fig. 8.1 Sample images from the six categories in SUN dataset [51]

1https://groups.csail.mit.edu/vision/SUN/.

https://groups.csail.mit.edu/vision/SUN/
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Fig. 8.2 Example images from two of the used datasets. First row from OT [37], the second row
contains the extra categories included in Fei-Fei and Perona dataset [15]

Table 8.1 Clustering
Accuracy using MMD and
MGD with normal and mesh
log-likelihood calculation

Model MDD MGD

Method Normal Mesh Normal Mesh

SUN 86.02% 90.99% 88.82% 91.33%

Oliva and Torallba 75.46% 79.12% 78.14% 80.84%

Fei-Fei and Perona 72.64% 74.23% 75.67% 76.80%

datasets, SUN had the highest accuracy of 86.02% and 90.99%, modeled by MDD,
using normal and mesh methods, respectively, from which we can observe an
improvement of 4.97% in the results when we implemented the mesh algorithm. The
highest clustering accuracy using the same dataset, modeled by MGD, using normal
method was 88.82%, following a 2.51% growth when implemented by the mesh
algorithm. The OT and FP datasets also experiment 3.66% and 1.59%, and 2.7%
and 1.13% increase in the clustering accuracies when applying the mesh method,
modeled by MDD and MGD mixture distributions, respectively.

In addition, Figs. 8.3, 8.4, 8.5 and 8.6 show the confusion matrices when
modeling the SUN dataset, with the MDD and MGD distribution, using the normal
and mesh algorithms, respectively. From these figures, we can see that the best
clustered objects are coast and mountain, which their accuracy has increased by
1.8% and 2.9%, and 2.9% and 0.1%, when using the mesh algorithm, modeled by
MDD and MGD finite mixture models, respectively. Furthermore, we can notice
that the misclassification between coast and river is happened because of having
some similar features. Likewise, for the other scenes with a considerable amount of
incorrectly clustered images: mountain and sky, and forest and field.

8.6.2 Facial Expression Recognition

Facial expression recognition is one of the most important topics in various fields
including computer vision and artificial intelligence. In fact, it is one of the most
challenging tasks in social and interpersonal communication, since it is a natural
way for human being to express emotions and therefore to show their intentions. The
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Fig. 8.3 Confusion matrix for SUN dataset modeled by the MDD mixture, using normal method

Fig. 8.4 Confusion matrix for SUN dataset modeled by the MDD mixture, using mesh method
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Fig. 8.5 Confusion matrix for SUN dataset modeled by the MGD mixture, using normal method

Fig. 8.6 Confusion matrix for SUN dataset modeled by the MGD mixture, using mesh method
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numerous number of expressions recognized in majority of the related databases
makes the task hard as compared with other image categorization applications.

In this experiment, we used two different facial expression datasets: MMI and
extended Cohn–Kanade (CK+). This time, each dataset was split into two halves, to
form the visual vocabulary and representation.

MMI [47] database includes 19 different faces of students and research staff
of 300 members of both genders (44% female), ranging in age from 19 to 62,
having either a European, Asian, or South American ethnic background. Currently
it contains 2894 image sequences where each image sequence has neutral face at
the beginning and the end, and each with a size of 720× 576 pixels. We selected
the sequences that could be labeled as one of the six basic emotions. Removing the
natural faces results in 1140 images.

The extended Cohn–Kanade (CK+) [26] dataset consists of facial behavior
of 210 adults 18–50 years of age. Image sequences were digitized into either
640× 490 or 640× 480 pixel arrays with 8-bit grayscale value. We included all
posed expressions that could be labeled as one of the six basic emotion categories
which is about 4000 images (Table 8.2).

Examples from the used datasets are given in Figs. 8.7 and 8.8.
Table 8.3 demonstrates clustering accuracy, using MMD and MGD with normal

and mesh log-likelihood calculation. By applying the mesh method, we are again
having improvements when clustering both of the datasets as: 3.23% (MDD) and

Table 8.2 Facial recognition expression datasets description

MMI dataset CK+ dataset

Category Number of images Portion Number of images Portion

Anger 150 13.16% 342 9.5%

Disgust 212 18.60% 503 12.58%

Fear 150 13.16% 417 10.43%

Happiness 255 22.37% 993 24.83%

Sadness 192 16.84% 893 22.33%

Surprise 181 15.88% 852 21%

Fig. 8.7 Example images from MMI dataset [47]
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Fig. 8.8 Example images from CK+ dataset [26]

Table 8.3 Clustering
Accuracy using MMD and
MGD with normal and mesh
log-likelihood calculation

Model MDD MGD

Method Normal Mesh Normal Mesh

MMI 78.06% 81.29% 80.64% 82.58%

CK+ 71.08% 73.96% 73.24% 74.96%
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Fig. 8.9 Accuracy comparison of each cluster for the MMI dataset, modeled by MDD mixture
using both normal and mesh methods

1.94% (MGD) for MMI, and 2.88% (MDD) and 1.72% (MGD) for CK+. It is worth
mentioning that both of the applications are experiencing better results, when using
normal and mesh methods, modeled by the MGD mixture distribution.

Furthermore, Figs. 8.9 and 8.10 depict the accuracy comparison of each cluster
for the MMI dataset, modeled by MDD and MGD mixtures, respectively, using
both normal and mesh methods. From Fig 8.9, it can be observed that the
disgust, happiness, and surprise emotions have gained 2.7%, 6.82%, and 3.23% of
accuracy, respectively, when using the mesh algorithm. Moreover, Fig. 8.10 shows
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Fig. 8.10 Accuracy comparison of each cluster for the MMI dataset, modeled by MGD mixture
using both normal and mesh methods

that the happiness and sadness clusters are having 4.54% and 3.02% accuracy
improvements, when mesh algorithm is implemented.

8.7 Conclusion

In this book chapter, we have introduced the usage of a novel method, for the
computation of the log-likelihood functions, when clustering count, multicategorical
data with overdispersion. The proposed approach was highly motivated because
of the huge number of applications that involves such kind of data. The mesh
method generally reduces the error when computing the log-likelihood function,
and therefore increases the clustering accuracy. The effectiveness of this technique
has been shown experimentally through two applications: such as natural scenes
categorization and facial expression recognition. The presented procedure could
be also applicable to other applications such as text document modeling and
clustering, handwritten digit recognition, and bioinformatics including applications
to metagenomics data and protein sequencing.
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Chapter 9
A Frequentist Inference Method Based
on Finite Bivariate and Multivariate Beta
Mixture Models

Narges Manouchehri and Nizar Bouguila

Abstract Modern technological improvement, revolutionized computers, progress
in scientific methods, and other related factors led to generate a massive volume of
structured and unstructured data. Such valuable data has potential to be mined for
information retrieval and analyzed computationally to reveal patterns, trends, and
associations that lead to better decisions and strategies. Thus, machine learning and
specifically, unsupervised learning methods have become the topic of interest of
much recent researches in data engineering. Finite mixture models as unsupervised
learning methods, namely clustering, are considered as capable techniques for
discovery, extraction, and analysis of knowledge from data. Traditionally Gaussian
mixture model (GMM) has drawn lots of attention in previous literature and has
been studied extensively. However, other distributions demonstrate more flexibility
and convenience in modeling and describing data.

The novel aspect of this work is to develop a framework to learn mixture
models based on bivariate and multivariate Beta distributions. Moreover, we
tackle simultaneously the problems of parameters estimation, cluster validation, or
model selection which are principal challenges in deployment of mixture models.
The effectiveness, utility, and advantages of the proposed method are illustrated
through extensive empirical results using real datasets and challenging applications
involving image segmentation, sentiment analysis, credit approval, and medical
inference.
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9.1 Introduction

During the last few decades, scientific and technological advances have created new
challenges as huge amounts of data are produced every day. To deal with large-scale
data which are explosively generated, a great deal of effort has been expended on
developing robust solutions to discover hidden valuable knowledge and recognize
significant facts, relationships, trends, patterns, and anomalies. Machine learning
has been studied extensively as a method to analyze the structure of complex
data and fit it into models that can be understood with the help of statistical and
computational approaches. Clustering as one of its main branches is a continuously
developing field and mixture models provide flexible and convenient classes of
models among the most statistically mature methods for clustering [1, 2]. In this
probabilistic method, each observation belongs to one of some number of different
groups. Despite their successful utilization in wide spectrum of research areas, there
are crucial challenges when deploying this technique such as selecting a flexible
mixture density which demonstrates more efficiency in modeling asymmetric data,
parameter estimation, determination of the proper number of clusters, and defining
model complexity. Most of the literature on mixtures concern Gaussian mixture
model (GMM) [3]. However, GMM is not a proper tool to express the latent
structure of non-Gaussian data. Recently, other distributions which are more flexible
have been considered as a powerful alternative [4–15].

In this work, we introduce unsupervised learning algorithms for finite mixture
models based on bivariate and multivariate Beta distributions which could be
applied in various real-world challenging problems. Our proposed learning frame-
work will deploy deterministic approaches such as maximum likelihood (ML) and
Newton Raphson methods via Expectation Maximization (EM). Furthermore, for
model selection, minimum message length (MML) criterion is validated to find
the optimal number of clusters inherent within real data sets. We evaluated our
clustering approach on different problems. In Sect. 9.2, we describe our framework
by introducing the bivariate and multivariate Beta distributions. Section 9.3 is
devoted to model learning and parameters estimation. In Sect. 9.4, we discuss model
complexity, specifically through minimum message length (MML). The learning
algorithm is summarized in Sect. 9.5. Section 9.6 is dedicated to investigating
the performance of our framework by testing it on real data sets and real-life
applications. Finally, in Sect. 9.6 we conclude our work and highlight some future
challenges.

9.2 Mixture Model

We assume X = {X1,X2, . . . ,XN } is a set of N d-dimensional vectors and each
vector Xn = (Xn1, . . . , Xnd) is generated from a finite but unknown mixture model
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p
(
X|�)

. Considering X as a composition of M different clusters, we can describe
it by a finite mixture model as defined below [2]:

p
(

X|�
)
=

M∑
j=1

pjp(X|aj ) (9.1)

pj denotes the weights of component j or mixing proportions which are all
positive and sum to one. p(X|aj ) is the distribution which in this work will
be multivariate Beta distribution. We introduce bivariate and multivariate Beta
distributions in Sects. 9.2.1 and 9.2.2, respectively. (pj , aj ) represents weight and
shape parameters of component j and the complete model parameters is denoted by
� = {p1, . . . , pM, a1, . . . , aM}.

9.2.1 Bivariate Beta Distribution

The bivariate Beta distribution has been proposed in [3, 16] as follows. Let X and
Y be two random variables following a bivariate Beta distribution which are both
positive real values and less than one. They are derived from U , V , and W as
three independent random variables arise from standard Gamma distribution and
parameterized by their shape parameters a, b, and c, respectively and described by
the following equations:

X = U

(U +W)
, Y = V

(V +W)
(9.2)

E(X) = a

(a + c)
, V ar(X) = ac

(a + c)2(a + c + 1)
(9.3)

E(Y ) = b

(b + c)
, V ar(Y ) = bc

(b + c)2(b + c + 1)
(9.4)

The joint density function of the bivariate distribution is expressed as follows:

f (X, Y ) = Xa−1Yb−1(1−X)b+c−1(1− Y )a+c−1

B(a, b, c)(1−XY)(a+b+c)
(9.5)

B(a, b, c) = �(a)�(b)�(c)

�(a + b + c)

Figures 9.1, 9.2, 9.3 and 9.4 illustrate four examples of one component Beta
mixture models (BBMM) with different values for shape parameters. The mixture
of two, three, four, and five components are displayed in Figs. 9.5, 9.6, 9.7 and 9.8.
According to these figures, it is clear that the BBMM offers various flexible shapes.
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Fig. 9.1 One-component BBMM

Fig. 9.2 One-component BBMM
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Fig. 9.3 One-component BBMM

Fig. 9.4 One-component BBMM
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Fig. 9.5 Two-component BBMM

Fig. 9.6 Three-component BBMM
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Fig. 9.7 Four-component BBMM

Fig. 9.8 Five-component BBMM



186 N. Manouchehri and N. Bouguila

9.2.2 Multivariate Beta Distribution

The multivariate Beta distribution is constructed by generalization of the bivariate
distribution to d variate distribution [3, 16]. Let U1, . . . , Ud and W be independent
random variables each having a Gamma distribution and variable X is defined by
Eq. (9.6) where i = 1, . . . , d.

Xi = Ui

(Ui +W)
(9.6)

The joint density function of X1, . . . , Xd after integration over W is expressed by:

f (X1, . . . , Xd) = c

∏d
i=1 X

ai−1
i∏d

i=1(1−Xi)(ai+1)

[
1+

d∑
i=1

Xi

(1−Xi)

]−a
(9.7)

where 0 ≤ Xi ≤ 1and:

c = B−1(a1, . . . , ad) = �(a1 + · · · + ad)

�(a1) . . . �(ad)
= �(a)∏d

i=1 �(ai)
(9.8)

ai is the shape parameter of each variable Xi and:

a =
d∑
i=1

ai (9.9)

9.3 Model Learning

To learn our model, we first apply k-means to initially cluster our data and with the
help of mean and variance of clusters, the initial shape parameters of distribution
can be approximated using the method of moments. To update the parameters, we
apply deterministic and efficient techniques such as maximum likelihood (ML) and
Newton Raphson.

9.3.1 Maximum Likelihood via EM Algorithm

To tackle the model estimation problem, the parameters which maximize the proba-
bility density function of data are determined using ML [17, 18] via EM framework
[19]. ML is an estimation procedure to find the mixture model parameters that
maximize log-likelihood function [20] which is defined by:
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L(�,X) = logp(X|�) =
N∑
n=1

log
( M∑
j=1

pjp(Xn|αj )
)

(9.10)

Each Xn is supposed to be arisen from one of the components. Hence, membership
vectors are introduced as Z = {Z1, . . . ,ZN }. If Xn belongs to cluster j , Znj = 1
and Znj = 0, otherwise [2]. In Expectation phase, we assign each vector Xn to one
of the clusters by its posterior probability given by:

Ẑnj = p(j |Xn, aj ) = pjp(Xn|aj )∑M
j=1 pjp(Xn|aj )

(9.11)

The complete log-likelihood is computed as:

L(�,Z,X) =
M∑
j=1

N∑
n=1

Ẑnj

(
logpj + logp(Xn|aj )) (9.12)

In maximization step, the gradient of the log-likelihood with respect to parameters
is calculated. To solve optimization problem, a solution for the following equation
should be found.

∂ logL(�,Z,X)
∂�

= 0 (9.13)

However, it doesn’t have a closed-form solution and Newton Raphson as an iterative
approach assists to compute the updated parameters as below:

âj
new = âj

old −Hj
−1Gj (9.14)

where Gj is the vector of first derivatives vector and Hj is the matrix of the second
derivatives, namely Hessian matrix.

For MBMM, Gj as the first derivatives of Eq. (9.12) with respect to aji where
i = 1, . . . , d is given by:

∂L(�,Z,X)
∂aji

=
M∑
j=1

N∑
n=1

Ẑnj

(
log(Xni)− log(1−Xni)+�(|aj |)−�(aji)

− log
[
1+

d∑
i=1

Xni

(1−Xni)

])
(9.15)

Gj and Hj are described as follows:

Gj =
(
G1j , . . . ,Gdj

)T (9.16)
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Hj =

⎡
⎢⎢⎢⎢⎢⎣

∂G1j

∂a1j
. . .

∂G1j

∂adj
...

. . .
...

∂Gdj

∂a1j
. . .

∂Gdj

∂adj

⎤
⎥⎥⎥⎥⎥⎦
=

N∑
i=1

Ẑnj

⎡
⎢⎣
� ′(|aj |)−� ′(aj1) . . . � ′(|aj |)

...
. . .

...

� ′(|aj |) . . . � ′(|aj |)−� ′(adj )

⎤
⎥⎦

(9.17)
where

|aj | = a1 + . . .+ ad (9.18)

�(.) and � ′(.) are digamma and trigamma functions, respectively, defined as:

�(X) = �′(X)
�(X)

,� ′(X) = �′′(X)
�(X)

− �′(X)2

�(X)2
(9.19)

The estimated value of mixing proportion has a closed-form solution and
expressed by:

pj =
∑N

n=1 p(j |Xn, aj )
N

(9.20)

9.4 Selection of Model Complexity with MML

An important challenge of the modeling problem concerns determining the number
of consistent components which best describes the data. In this section, we consider
MML as a method that has been proved to outperform many other model selection
methods. This approach is based on evaluating statistical models according to their
ability to compress a message containing the data. The optimal number of com-
ponents of the mixture is that which minimizes the amount of information needed
to transmit data X efficiently from a sender to a receiver and high compression is
obtained by forming good models of the data to be coded [20–25].

The formula for the message length for a mixture of distributions is given by
Eq. (9.21) where h(�) is the prior probability, p(X|�) is the likelihood, F(�) is
the expected Fisher information matrix, and |F(�)| is its determinant. Np is the
number of free parameters to be estimated and is equal to (M(d + 1)) − 1. κNp is
the optimal quantization lattice constant for RNp . We have κ1 � 0.083 for Np = 1
[20–32].

MessLen � − log(h(�))− log
(
p(X|�))+ 1

2
log(|F(�)|)+ Np

2
(1+ log(κNp))

(9.21)
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The Fisher information matrix is the expected value of the Hessian minus the
logarithm of the likelihood. We use the complete data Fisher information matrix.
The determinant of the complete data Fisher information matrix is:

|F(�)| � |F(P)|
M∏
j=1

|F(aj )| (9.22)

where |F(P)| is the Fisher information with regard to the mixing parameters
vector, and |F(αj )| is the Fisher information with regard to the vector aj of a
single multivariate Beta distribution. For |F(P)|, mixing parameters satisfy the
requirement

∑M
j=1 pj = 1. Consequently, it is possible to consider the generalized

Bernoulli process with a series of trials, each of which has M possible outcomes
for M clusters. The determinant of the Fisher information matrix with respect to the
mixing parameters is given by Eq. (9.23) where N is the number of data elements.

|F(P)| = N∏M
j=1 pj

(9.23)

The Fisher information for our mixture is given as follows:

log |F(�)| = log(N)−
M∑
j=1

logpj +
M∑
j=1

log |F(aj )| (9.24)

where F(aj ) is:

F(aj ) =
(

1−� ′(|aj |)
D∑
d=1

1

� ′(ajd)

)
nDj

D∏
d=1

� ′(ajd) (9.25)

To calculate MML, we need to choose h(�) which can be represented as
follows [33]:

h(�) = h(p)h(a) (9.26)

Considering the nature of the mixing parameters, it can be expressed by a sym-
metric Dirichlet distribution with parameter. It is shown in Eq. (9.27) where η =
(η1, . . . , ηM) is the parameter vector of the Dirichlet distribution:

h(p) = �(
∑M

j=1 ηj )∏M
j=1 �(ηj )

M∏
j=1

pj
ηj−1 (9.27)

The choice of η1 = 1, . . . , ηM = 1 gives a uniform prior over the space p1 + · · · +
pM = 1. Therefore, the prior is given by

h(p) = (M − 1)! (9.28)
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For a, we assume that components of aj are independent:

h(a) =
M∏
j=1

h(aj ) =
M∏
j=1

D∏
d=1

h(ajd) (9.29)

For MBMM, the following simple uniform prior was experimentally found good
results with it [20–32].

h(ajd) = e−6 ajd

‖aj‖ (9.30)

where ‖aj‖ is the norm of the shape vector. The log of prior is given by:

log(h(�)) =
M−1∑
j=1

log(j)− 6MD−D
M∑
j=1

log(‖aj‖)+
M∑
j=1

D∑
d=1

log(ajd) (9.31)

The complete estimation framework is described as follows:

1. INPUT: X and M .
2. Initialization: Apply the k-means and method of moments to obtain

initial M clusters.
3. Apply the moments method for each component j to obtain aj .
4. Expectation step: Compute Ẑnj using Eq. (9.11).
5. Maximization step: Update aj Using Eq. (9.14) and pj Eq. (9.20).
6. If pj < ε, discard component j and go to 4.
7. If the convergence criterion passes terminate, else go to 4.
8. Calculate the associated criterion of MML and select the optimal

number of components.

9.5 Experimental Results

In order to validate the performance of our proposed algorithm, we test bivariate and
multivariate models using real data sets and real-world applications and compare
them with Gaussian mixture model (GMM). As the first step, we normalize our
datasets using Eq. (9.32) as one of the assumptions of our distribution is that the
values of all observations are positive and less than one.

X′ = X −Xmin

Xmax −Xmin

(9.32)
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9.5.1 Experimental Results for BBMM

In this section, we will test the performance of our model on four real datasets from
UCI repository [34] and one real-world application, namely image segmentation
using images from Berkeley dataset [35].

9.5.1.1 Business Mortality Dataset

This dataset is based on the results of a research conducted by R.G. Hutchinson,
A.R. Hutchinson, and M. Newcomer in 1938 about business mortality including
1225 observations. This work focused on survival times of three service firms
including saloons, restaurants, and express services in a period of 5 to 6 years in
Poughkeepsie, New York [34]. The service type and years of activity are considered
as two variables. The dataset is labeled by a binary variable 0 and one. BBMM has
a performance of 91.39% while the accuracy is 89.59% for GMM. The MML result
is presented in Fig. 9.9 which validates this technique.

Fig. 9.9 MML result for business mortality dataset
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9.5.1.2 Grain Diameters of Pollen Dataset

The second data set contains 1650 instances which report grain diameters of pollen
based on five species, with varying numbers of locations within species (13, 6, 5, 19,
12) and 30 measurements per location [34]. The two variables are grain diameter and
species. Moreover, location is considered as the label of dataset. BBMM is 90.27%
accurate while accuracy is 88.95% for GMM. MML was validated for this dataset
as shown in Fig. 9.10.

9.5.1.3 Sailing Speed Optimization Dataset

This data set contains 100 observations as the result of a research about sailing speed
optimization for container ships in a liner shipping network reported in 2012. In
this study, the average speed (knots) and fuel consumption (tons/day) for five ship-
type and voyage leg combinations were measured. We considered speed and fuel
consumption as two variables [34]. Voyage leg combinations is the label of dataset
measured by TEU (20-foot equivalent unit) which has five types: 1: 3000-TEU
Singapore-Jakarta, 2: 3000-TEU Singapore-Kaohsiung, 3: 5000-TEU Hong Kong-
Singapore, 4: 8000-TEU Yantian-Los Angeles, 5: 8000-TEU Tokyo-Xiamen. The

Fig. 9.10 MML result for grain diameter dataset
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Fig. 9.11 MML result for sailing speed optimization dataset

performances of BBMM and GMM are 94.51% and 90.19%, respectively. MML
was validated as shown in Fig. 9.11.

9.5.1.4 Water Levels of Florida Swamps Dataset

This data set contains 243 observations based on studying water depths at 27
locations within each of 9 swamps (3 large, 3 medium, 3 small) in Florida [34]. The
water level and swamp numbers are two variables and swamp size is label. BBMM
outperforms the GMM by an accuracy of 95.12% against 87.26%. Figure 9.12
illustrates the validation of MML.

9.5.2 Color Image Segmentation

Image segmentation is one of the core research topics and high-level tasks in the
field of computer vision. The significance of this application is highlighted by
the fact that it nourishes numerous applications progressively. We validated our
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Fig. 9.12 MML result for water levels of Florida swamps dataset

proposed framework by the well-known publicly available Berkeley segmentation
data set [35]. This database is composed of a variety of natural color images
generally used as a reliable way to compare image segmentation algorithms. It is
noteworthy that the choice of color space is an important problem when dealing
with color images and it is highly desirable that the chosen space be robust
against varying illumination, conditions, and noise. We applied rgb color space [29]
described as below:

r = R

R +G+ B
; g = G

R +G+ B
; b = B

R +G+ B
; (9.33)

As an example, Figs. 9.13, 9.14, 9.15 and 9.16 show original image, one
labeled image by ground truth and a comparison between results obtained by
BBMM and GMM. We compared the segmentation results of BBMM by six
image segmentation evaluation metrics, Adjusted Rand Index (ARI) [36], Adjusted
Mutual Information Score (AMIS) [37–40], Homogeneity Score (HS) [41, 42],
Completeness Score (CS) [41, 42], Calinski-Harabaz Index (CHI) [43], Jaccard
similarity score (JSS)[44–46] and their results are presented in Table 9.1. As it is
shown, our model outperforms the GMM according to all metrics.



9 A Frequentist Inference Method Based on Finite Bivariate and Multivariate. . . 195

Fig. 9.13 Original image 36046

Fig. 9.14 Labeled image
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Fig. 9.15 GMM segmentation result

Fig. 9.16 BBMM segmentation result
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Table 9.1 The results of
testing model performance
via image segmentation based
on six metrics. K is the
number of clusters

Metrics (K=4)

Alg. ARI NMIS MIS HS VM JSS

BBMM 0.52 0.44 0.48 0.42 0.46 0.55

0.57 0.41 0.43 0.45 0.42 0.51

0.55 0.45 0.41 0.41 0.43 0.55

0.58 0.42 0.42 0.47 0.48 0.53

0.56 0.41 0.45 0.48 0.41 0.57

0.53 0.47 0.44 0.46 0.44 0.54

Mean 0.55 0.43 0.44 0.45 0.44 0.54
GMM 0.41 0.4 0.45 0.4 0.41 0.43

0.44 0.4 0.4 0.41 0.4 0.46

0.4 0.41 0.42 0.41 0.4 0.4

0.42 0.4 0.41 0.4 0.42 0.44

0.41 0.41 0.4 0.43 0.4 0.41

0.43 0.42 0.41 0.41 0.4 0.45

Mean 0.42 0.4 0.41 0.41 0.4 0.43

9.5.3 Experimental Results for MBMM

In this section, we will test the performance of our model on four real medical
datasets and two real-world applications, namely sentiment analysis and credit
approval using UCI datasets [34].

9.5.3.1 Haberman Dataset

The first real dataset is a well-known one called Haberman based on a survival
research at the University of Chicago’s Billings Hospital between the years 1958
and 1970. It includes 306 instances of patients who had breast cancer and were
monitored after having surgery. The dataset has three attributes: age of patient at
time of operation, patient’s year of operation, and number of positive axillary nodes
detected [34]. The database is labeled based on survival status. The patients who
survived 5 years or longer were classified in first class and the ones died within 5
years were second class. MBMM has a performance of 93.16% while the accuracy
of GMM is 87.02%. The MML result is presented in Fig. 9.17.
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Fig. 9.17 MML result for Haberman dataset

9.5.3.2 Heart Disease Dataset

The second data set contains 2982 instances and based on the research conducted in
V.A. medical center, Long Beach and Cleveland Clinic Foundation. It contains 76
attributes, but all published experiments refer to using a subset of 14 of them. The
goal field refers to the presence of heart disease in the patient and experiments have
concentrated on simply attempting to distinguish presence (values 1,2,3,4) from
absence (value 0) with the help of angiographic disease status. The 14 attributes are
age in years, sex, chest pain type (typical angina, atypical angina, non-anginal pain,
and asymptomatic), resting blood pressure (in mm Hg on admission to the hospital),
serum cholesterol in mg/dl, fasting blood sugar greater than 120 mg/dl, resting
electrocardiographic results (normal, having ST-T wave abnormality or showing
probable or definite left ventricular hypertrophy by Estes’ criteria ), maximum heart
rate achieved, exercise induced angina, oldpeak as the ST depression induced by
exercise relative to rest, the slope of the peak exercise ST segment (upsloping, flat
or downsloping), number of major vessels (0–3) colored by fluoroscopy and thal
(normal, fixed defect or reversible defect). MBMM has a performance of 92.41%
while the accuracy is 90.83% for GMM. MML validation is displayed in Fig. 9.18.
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Fig. 9.18 MML result for heart disease dataset

9.5.3.3 Hepatitis Dataset

This data set includes 155 instances and 20 attributes including the class. The
attributes are age, presence of steroid, antivirals administered, fatigue, malaise,
anorexia, large liver, firm liver, spleen palpability, presence of spiders, presence of
ascites, presence of varices, bilirubin level, alkaline phosphate level, SGOT level,
albumin level, protein level and histology result [34]. The binary label indicates if
the patient is alive or not. Our mixture model has an accuracy of 91.97% while the
accuracy of GMM is 85.12%. The result of MML is presented in Fig. 9.19.

9.5.3.4 Lymphography Dataset

This lymphography data set was obtained from the university medical centre, Insti-
tute of Oncology, Ljubljana, Yugoslavia including 148 instances and 19 attributes
containing the label to lymphatic diseases [34]. The attributes are lymphatics
(normal, arched, deformed, displaced), block of afferent, block of lymph c (superior
and inferior flaps), block of lymph s (lazy incision), bypass, extravasates (force
out of lymph), regeneration, early uptake, lymph nodes diminish, lymph nodes
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Fig. 9.19 MML result for hepatitis dataset

enlargement, changes in lymph (bean, oval, round), defect in node (lacunar, lacunar
marginal, lacunar central, or no defect), changes in structure (no change, grainy,
drop-like, coarse, diluted, reticular, stripped, faint), special forms (no chalices,
vesicles), dislocation, exclusion of nodes, and number of nodes. The target class
has four values to show normal, metastases, malignant lymph and fibrosis. MBMM
and GMM have accuracies of 95.06% and 92.64 %, respectively. MML is validated
as shown in Fig. 9.20.

9.5.3.5 Sentiments Analysis

There has been a recent tremendous attention in the automatic identification and ex-
traction of feelings, views, and ideas in text. The crucial importance of information
analysis for different sections of society such as scientific, commercial, financial,
and political domains motivates the researchers to propose capable models which
automatically track attitudes and feelings. Moreover, innovations in technology and
digital revolution over the past two decades resulted in generating huge quantities
of data. One of the attention-grabbing fields of research is online sources mining
such as articles in the news, on-line forums, and websites to identify opinions and
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Fig. 9.20 MML result for lymphography dataset

emotions from text. One of the applications that could benefit from this technology
is explicitly recognizing and differentiating of the objective and subjective opinions
and perspectives to lessen distractions from opinionated, speculative, and evaluative
language as subjective sentences represent sentiment and belief in contrast with
objective contents which represent factual information. We evaluate our model on
this fascinating real-world application. Using a dataset from UCI repository, this
work is based on analyzing 1000 sports articles which were labeled using Amazon
Mechanical Turk as objective or subjective and has 60 attributes including total
words count, total number of words in the article, semantic objective score, first
sentence class, last sentence, text complexity score, and frequencies of words with
an objective SENTIWORDNET score, words with a subjective SENTIWORDNET
score, coordinating conjunctions, numerals and cardinals, determiners, existential
there, foreign words, subordinating preposition or conjunction, ordinal adjectives
or numerals, comparative adjectives, superlative adjectives, list item markers,
modal auxiliaries, singular common nouns, singular proper nouns, plural proper
nouns, plural common nouns, pre-determiners, genitive markers, personal pronouns,
possessive pronouns, adverbs, comparative adverbs, superlative adverbs, particles,
symbols, ’to’ as preposition or infinitive marker, interjections, base form verbs,
past tense verbs, present participle or gerund verbs, past participle verbs, present
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tense verbs with plural 3rd person subjects, present tense verbs with singular 3rd
person subjects, WH-determiners, WH-pronouns, possessive WH-pronouns, WH-
adverb, infinitive verbs, quotation pairs in the entire article, questions marks in
the entire article, exclamation marks in the entire article, full stops, commas,
semicolons, colons, ellipsis, first person pronouns (personal and possessive), second
person pronouns (personal and possessive), third person pronouns (personal and
possessive), comparative and superlative adjectives and adverbs, past tense verbs
with first and second person pronouns, imperative verbs, present tense verbs with
third person pronouns and present tense verbs with first and second person [34].
The label indicates subjectivity and objectivity of each article. MBMM has an
accuracy of 89.29% in comparison with GMM with 80.16% accuracy. MML result
is displayed in Fig. 9.21.

9.5.3.6 Credit Approval

Machine learning has been used in banking to automate daily processes such as
fraud detection and risk assessment to make decision about credit cards and loans
for years. Thanks to rapid increases in data generation and computing power,

Fig. 9.21 MML result for sentiments analysis dataset
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financial institutions beneficiate from statistical algorithms to discover a better way
to segment their customers and model credit applications. Using two datasets from
UCI repository, we analyze the performance of our proposed methods in credit
approval [34]. The first one is German credit dataset including 1000 instances in
which the customers are described by a set of attributes and labeled as good or bad
credit risks. The attributes are numerical, qualitative, and categorical. This file has
been edited and several indicator variables added to make it suitable for algorithms
which cannot cope with categorical variables. Several attributes that are ordered
categorical have been coded as integers. The features contain status of existing
checking account, duration in month, credit history, purpose, credit amount, savings
account or bonds, present employment, installment rate in percentage of disposable
income, personal status and sex, other debtors or guarantors, present residence,
property, age in years, other installment plans, housing, number of existing credits at
this bank, job, number of people being liable to provide maintenance for, telephone
and foreign worker. The dataset has a binary label to indicate if the customer is good
or bad. MBMM performs better with an accuracy of 94.12% in comparison with
GMM which is 86.41% accurate. Figure 9.22 demonstrates the MML outcomes.

Fig. 9.22 MML result for credit approval German dataset
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Fig. 9.23 MML result for credit approval Australian dataset

The second dataset is Australian credit approval including 690 observations and
14 attributes containing six numerical and eight categorical features. All of attributes
are changes to nominal values for the convenience of statistical algorithms. The label
is binary in this case also. The accuracy of our model is higher than GMM with an
accuracy of 92.58% versus 84.33%. MML analysis is displayed in Fig. 9.23.

9.6 Conclusion

This work is motivated principally by significant role of unsupervised methods in
machine learning specifically clustering. We have presented two algorithms based
on finite bivariate and multivariate Beta mixture models. GMM has been widely
used in statistical modeling. However, when it comes to dealing with asymmetric
data, other distributions demonstrate more flexibility for appropriate data modelling
as compared with the Gaussian distribution. This characteristic of such distributions
motivated us and we introduced the two new mixture models based on their
ability to tackle the modeling of non-gaussian data. To address the challenge of



9 A Frequentist Inference Method Based on Finite Bivariate and Multivariate. . . 205

parameter estimation, we explored deterministic approaches such as maximum
likelihood using the expectation maximization algorithm framework and Newton
Raphson method to learn our framework and estimate the updated parameters of
our mixture models. Given that in real-world applications, having an idea of the
number of clusters inherent in the dataset is critical, a model selection technique,
namely the minimum message length was implemented to determine the number
of clusters which describes the model complexity. The validity of our proposed
method in terms of parameter estimation and model selection is demonstrated
by experimental results. The usefulness and strength of our method is presented
by testing it on real and pre-labeled datasets and tackling challenging real-world
applications such as image segmentation, sentiment analysis, and credit approval
which have been receiving considerable attention because of their critical role in
science and technology. For each application, we compared the performance of our
approaches with Gaussian mixture models in describing real-world data. The test
results significantly showed greater accuracy and outperformance of BBMM and
MBMM. In other words, we can say that our model produces enhanced clustering
results largely due to its flexibility. Future works could be devoted to proposing
Bayesian inference techniques to learn the developed mixture models.

Appendix

Proof of Eq. (9.12):
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Chapter 10
Finite Inverted Beta-Liouville Mixture
Models with Variational Component
Splitting

Kamal Maanicshah, Muhammad Azam, Hieu Nguyen, Nizar Bouguila,
and Wentao Fan

Abstract Use of mixture models to statistically approximate data has been an
interesting topic of research in unsupervised learning methods. Mixture models
based on exponential family of distributions have gained popularity in recent years.
In this chapter, we introduce a finite mixture model based on Inverted Beta-Liouville
distribution which has a higher degree of freedom to provide a better fit for the
data. We use a variational learning framework to estimate the parameters which
decreases the computational complexity of the model. We handle the problem of
model selection with a component splitting approach which is an added advantage
as it is done within the variational framework. We evaluate our model against
some challenging applications like image clustering, speech clustering, spam image
detection, and software defect detection.

10.1 Introduction

Data categorization has become an important part of data analysis in recent years
as data in all formats have been thriving with the increase in cloud based networks.
Given a set of data it is of prime importance to learn the patterns within the data
which can have valuable information that help in making important decisions. Clus-
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tering of data hence is quintessential in data analysis and inference [20, 30]. Using
mixture models for clustering and unsupervised learning finds wide applications in
industry. Data are assumed to be described by a mixture of components derived
from a particular distribution. The objective is to estimate the parameters of these
components which would provide a proper fit to the data. This is the basic idea
of mixture models [2, 7]. Gaussian mixture models (GMM) have disseminated the
industry and have profound applications in a number of data analysis tasks [31, 35].
Despite widespread use, it is a notable fact that GMMs are not the perfect solution
for all types of data. For example, Dirichlet family of distributions performs better
with proportional data [4, 7]. Recent investigations on inverted Beta-Liouville based
mixture models have shown their effectiveness [1, 15]. In this chapter we consider
finite mixtures of inverted Beta-Liouville distributions.

We use a variational learning framework in our model which is a better choice
when compared to the traditional methods based on maximum likelihood (ML)
and Bayesian estimation techniques. This is because ML based methods do not
provide sometimes good approximation to the data. In contrast to ML based
methods, approaches based on Bayesian techniques such as Markov chain Monte
Carlo (MCMC) tend to be more accurate but they are computationally expensive
and moreover convergence is not guaranteed. Variational learning reduces the
complexity of the Bayesian method and also overcomes the drawbacks of ML based
models. Also, variational methods guarantee convergence. In addition to this, we
imbue a component splitting approach within the variational framework as proposed
in [10] for model selection. The effectiveness of this approach has been reported
in [16] and [6]. According to this idea, we start with two clusters and then go on
splitting each cluster into two based on a split criterion. The splitting continues
until all clusters fail the split test. Since this algorithm works within the variational
framework it improves the efficiency and flexibility of our model. There are many
instances in the industry where there is not much data to explain a particular
category. Our experiments suggest that our model can tackle this kind of imbalance
in data effectively.

The rest of the chapter is classified as follows: Sect. 10.2 describes the mathemat-
ical model; Sect. 10.3 explains the variational learning approach; Sect. 10.4 reports
the results obtained by using our model. The chapter concludes with Sect. 10.5.

10.2 The Statistical Model

In this section we introduce the inverted Beta-Liouville mixture model in
Sect. 10.2.1 and we elaborate on the model selection approach using component
splitting in Sect. 10.2.2.
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10.2.1 Finite Inverted Beta-Liouville Mixture Models

Consider a D-dimensional vector Xi =
(
X1, X2, . . . , XD

)
drawn from a set of N

independent and identically distributed data samples X = (
X1,X2, . . . ,XN

)
gener-

ated from an inverted Beta-Liouville (IBL) distribution [24]. Then, the probability
density function p

(
Xi | α1, . . . , αD, α, β, λ

)
is given by:
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with the conditions Xil > 0 for l = 1, ..,D, α > 0, β > 0 and λ > 0. The mean,
variance, and covariance of IBL distribution are given by:

E(Xil) = λα

β − 1

αl∑D
l=1 αl

(10.2)
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Cov(Xim,Xin) = αmαn∑D
l=1 αl

[
λ2α(α + 1)

(β − 1)(β − 2)(
∑D

l=1 αl + 1)
− λ2α2

(β − 1)2(
∑D

l=1 αl)

]

(10.4)

If we assume that each sample Xi is picked from a mixture of IBL distributions,
then the mixture model is represented as:

p
(X | π ,�) =

N∑
i=1

M∑
j=1

πjp
(
Xi | θj

)
(10.5)

where M is the number of components in the mixture model and � =
(θ1, θ2, . . . , θM). p

(
Xi | θj

)
denotes the conditional probability of the data sample

with respect to each component, θj = (αj1, . . . , αjD, αj , βj , λj ) represents the
parameter with respect to the component j and π = (π1, . . . , πM) is the set of
mixing parameters and follows the conditions

∑M
j=1 πj = 1 and 0 ≤ πj ≤ 1. We

now introduce an indicator matrix Z = (Z1, . . . ,ZN) which indicates to which
component each data sample is assigned to. Here Zi = (Zi1, . . . , ZiM). Zi is
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a binary vector that satisfies the conditions Zij ε{0, 1} and
M∑
j=1

Zij = 1 and is

defined by:

Zij =
{

1, if Xiεj

0, otherwise
(10.6)

The conditional distribution of Z can thus be defined as:

p
(Z | π) =

N∏
i=1

M∏
j=1

π
Zij

j (10.7)

Based on this equation we can write the conditional distribution of a data set X with
respect to the clusters as:

p
(X | Z,�

) =
N∑
i=1

M∑
j=1

p
(
Xi | θj

)Zij (10.8)

As we know that all the parameters are positive it would be good choice to model
them using Gamma priors. Hence the priors are defined by:
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where G( · ) represents a Gamma distribution and all the hyperparameters in the
above priors are positive.

10.2.2 Component Splitting for Model Selection

In our model we use a local model selection approach as proposed in [10]. This
approach has also been successfully deployed in [6, 14, 16]. We propose to follow
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this design for IBL models. The idea is to split the components in the mixture
into two different sets; one called the free components and the other called fixed
components. We constrain the model selection process to the free components
without disturbing the fixed components. If we assume the fixed components to
be a perfect approximation of the data, let’s say M − s components, then we have
to approximate the mixing weights of the s free components. Based on this concept
we can rewrite the prior of Z from Eq. (10.7) as:

p
(Z | π ,π∗) =

N∏
i=1

[ s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
(10.13)

where {πj } indicates the mixing coefficients of the free components and {π∗j }
indicates the mixing coefficients of fixed components. It is to be noted that these
mixing coefficients are always positive and follow the constraint:

s∑
j=1

πj +
M∑

j=s+1

π∗j = 1 (10.14)

According to this condition, though we only estimate the parameters of the free
components {πj } we have to update the fixed parameters {π∗j } as well. Hence, {π∗j }
is more like a random variable. So, we choose a prior distribution for the fixed
components that depends on the free components. We choose the prior to be a
non-standard Dirichlet distribution as it has been found to be optimal in [10]. The
conditional probability of the fixed coefficients given the free coefficients can be
written as:

p
(
π∗ | π) =

(
1−

s∑
k=1

πk

)−M+s �( ∑M
j=s+1 cj

)
∏M

j=s+1 �
(
cj

)
M∏

j=s+1

(
π∗j

1−∑s
k=1 πk

)cj−1

(10.15)
The graphical representation of our model is shown in Fig. 10.1. Based on all the
information we have so far, we can write the joint distribution for our model as:

p
(X,Z,�,π∗ | π) =p(X | Z,�

)
p
(Z | π ,π∗)p(

π∗ | π)
p
(
α
)
p
(
α
)
p
(
β

)
p
(
λ
)

(10.16)

=
N∏
i=1

M∏
j=1

[
�

( ∑D
l=1 αjl

)
�

(
αj + βj

)
�

(
αj

)
�

(
βj

)
D∏
l=1

X
αjl−1
il

�
(
αjl

)

× λ
βj
j

( D∑
l=1

Xil

)αj−∑D
l=1 αjl

(
λj +

D∑
l=1

Xil

)−(αj+βj )]Zij
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Fig. 10.1 Graphical representation of IBL mixture model with component splitting. The circles
indicate the random variables and model parameters, and plates point out the repetitions with
the number in the lower left corners indicating the number of repetitions. The arcs specify the
conditional dependencies of the variables

×
N∏
i=1

[ s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
×

(
1−

s∑
k=1

πk

)−M+s

× �
( ∑M

j=s+1 cj
)

∏M
j=s+1 �

(
cj

)
M∏

j=s+1

(
π∗j

1−∑s
k=1 πk

)cj−1

×
M∏
j=1

D∏
l=1

[
ν
ujl
j l

�
(
ujl

)αujl−1
j l e−νjlαjl × q

pj
j

�
(
pj

)αpj−1
j e−qj αj

× h
gj
j

�
(
gj

)βgj−1
j e−hj βj × t

sj
j

�
(
sj

)λsj−1
j e−tj λj

]
(10.17)

10.3 Variational Inference

In this section, we explain the variational learning approach in Sect. 10.3.1 and
the component splitting approach with the variational algorithm is illustrated in
Sect. 10.3.2.
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10.3.1 Variational Learning

Though the Bayesian approach gives an accurate estimation for the parameters the
complication lies in the calculation of the true posterior distribution p

(
� | X,π)

.
Calculating the integrals of the posterior may be intractable [5]. A wise solution
for this problem would be to approximate the true posterior distribution rather
than compute it. The accuracy by this method might not be as good as Bayesian
estimation but it greatly reduces the computation cost and gives fairly comparable
results. So, we approximate a new distribution Q

(
�

)
to be closer to the true

posterior distribution p
(
� | X,π)

. We do this by calculating the Kullback-Leibler
(KL) divergence between the two distributions. The KL divergence estimates how
much the two distributions are different from each other. The KL divergence
between Q

(
�

)
and p

(
� | X,π)

is given by:

KL
(
Q || P ) = −

∫
Q

(
�

)
ln

(
p
(
� | X,π)
Q

(
�

)
)
d� (10.18)

which can be rewritten as:

KL
(
Q || P ) = ln p

(X | π)−L(
Q

)
(10.19)

where L(
Q

)
is the lower bound defined by:

L(
Q

) =
∫

Q
(
�

)
ln

(
p
(X,� | π)
Q

(
�

)
)
d� (10.20)

We know that KL
(
Q || P ) = 0 when both the distributions are similar. Based on

Eq. (10.19) we can say this criteria can be achieved when L(
Q

)
is maximized. We

cannot calculate the lower bound for Q
(
�

)
altogether. Since all the parameters are

assumed to be identically independent as well, we can use mean field theory [26] to
factorize Q

(
�

)
as:

Q
(
�

) = Q
(Z)

Q
(
α
)
Q

(
α
)
Q

(
β

)
Q

(
λ
)
Q

(
π∗

)
(10.21)

Now, we find the variational solution for each of the parameters. For example, if we
consider some parameter Qk

(
�k

)
the variational solution is given by:

Qk

(
�k

) = exp
〈
ln p

(X,�)〉
�=k∫

exp
〈
ln p

(X,�)〉
�=kd�

(10.22)

where
〈 · 〉�=k is the expectation corresponding to all the parameters other than �k .

The variational approximation involves initiating the variational solutions in the
beginning and iteratively updating the solutions based on Eq. (10.22). Since the
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lower bound is convex apropos to each of the parameters, convergence is always
guaranteed. However, this is not usually the case when it comes to purely Bayesian
approaches. We can derive the variational solutions for our model as shown in
appendix as:

Q
(Z) =

N∏
i=1

[ s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
(10.23)

Q
(
π∗

) =
(

1−
s∑

k=1

πk

)−M+s �( ∑M
j=s+1 c

∗
j

)
∏M

j=s+1 �
(
c∗j

)
M∏

j=s+1

(
π∗j

1−∑s
k=1 πk

)c∗j−1

(10.24)

Q
(
α
) =

M∏
j=1

D∏
l=1

G(
αjl | u∗j l, ν∗j l

)
, Q

(
α
) =

M∏
j=1

G(
αj | p∗j , q∗j

)
(10.25)

Q
(
β

) =
M∏
j=1

G(
βj | g∗j , h∗j

)
, Q

(
λ
) =

M∏
j=1

G(
λj | s∗j , t∗j

)
(10.26)

where:

rij = r̃ij∑s
j=1 r̃ij +

∑M
j=s+1 r̃

∗
ij

, r∗ij =
r̃∗ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

(10.27)

r̃ij = exp

{
lnπj + Rj + Sj +

(
αj −

D∑
l=1

αjl

)
ln

( D∑
l=1

Xil

)
+ βj 〈ln λj 〉

+
D∑
l=1

[(
αjd − 1

)
lnXid

]
− (

α + β
)
Tij

}
(10.28)

r̃∗ij = exp

{
〈lnπ∗j 〉 + Rj + Sj +

(
αj −

D∑
l=1

αjl

)
ln

( D∑
l=1

Xil

)
+ βj 〈ln λj 〉

+
D∑
l=1

[(
αjd − 1

)
lnXid

]
− (

α + β
)
Tij

}
(10.29)
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Rj = ln
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αjl
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(10.30)

S = ln
�(α + β)

�(α)�(β)
+ α

[
ψ(α + β)− ψ(α)

]
(
〈
ln α

〉− ln α)

+ β
[
ψ(α + β)− ψ(β)

]
(
〈
ln β

〉− ln β)

+ 0.5α2[ψ ′(α + β)− ψ ′(α)
]〈
(ln α − ln α)2

〉
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]〈
(ln β − ln β)2

〉
+ αβψ ′(α + β)(

〈
ln α

〉− ln α)(
〈
ln β

〉− ln β) (10.31)

Tij = ln
[
λj +

D∑
l=1

Xil

]
+ λj

λj +∑D
l=1 Xil

[〈
ln λj

〉− ln λj
]

(10.32)

c∗j =
N∑
i=1

r∗ij + cj (10.33)

u∗j l = ujl +
N∑
i=1

〈Zij 〉αjl
[
ψ

( D∑
l=1

αjl

)
− ψ

(
αjl

)
(10.34)

+ψ ′
( D∑
l=1

αjl

) D∑
d �=l

(
〈lnαjl〉 − lnαjl

)
αjl

]

ν∗j l = νjl −
N∑
i=1

〈Zij 〉
[

lnXil − ln
( D∑
l=1

Xil

)]
(10.35)
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p∗j = pj +
D∑
l=1

〈Zij 〉
[
ψ

(
αj + βj

)− ψ
(
αj

)+ βjψ
′(αj + βj

)(〈lnβj 〉 − βj

)]
αj

(10.36)

q∗j = qj −
N∑
i=1

〈Zij 〉 ln
( D∑
l=1

Xid

)
+

N∑
i=1

〈Zij 〉Tij (10.37)

g∗j = gj +
D∑
l=1

〈Zij 〉
[
ψ

(
αj + βj

)− ψ
(
βj

)+ αjψ
′(αj + βj

)(〈lnαj 〉 − αj

)]
βj

h∗j = hj +
N∑
i=1

〈Zij 〉
[
Tij − 〈ln λj 〉

]
(10.38)

s∗j = sj +
N∑
i=1

〈Zij 〉βj (10.39)

t∗j = tj +
N∑
i=1

〈Zij 〉
αj + βj

λj +∑D
l=1 Xil

(10.40)

The first and second derivatives of the Gamma function are given by the digamma
and trigamma functions, ψ(·) and ψ ′(·) respectively. The values of the expectations
mentioned in the above equations are given by:

〈Zij 〉 =
{
rij , forj = 1, . . . , s

r∗ij , otherwise
(10.41)

αjl = 〈αjl〉 = ujl

νjl
, αj = 〈αj 〉 = pj

qj
, βj = 〈βj 〉 =

gj

hj
, λj = 〈λj 〉 = sj

tj
(10.42)

〈lnαjl〉 = ψ(u∗j l)− ln ν∗j l, 〈lnαj 〉 = ψ(p∗j )− ln q∗j , (10.43)

〈lnβj 〉 = ψ(g∗j )− lnh∗j , 〈ln λj 〉 = ψ(s∗j )− ln t∗j (10.44)

〈(
lnαjl − lnαjl

)2
〉
=

[
ψ

(
u∗j l

)− ln u∗j l
]2 + ψ ′

(
u∗j l

)
(10.45)

〈(
lnαj − lnαj

)2
〉
=

[
ψ

(
p∗j

)− lnp∗j
]2 + ψ ′

(
p∗j

)
(10.46)

〈(
lnβj − lnβj

)2
〉
=

[
ψ

(
g∗j

)− ln g∗j
]2 + ψ ′

(
g∗j

)
(10.47)
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〈
π∗j

〉 =
(

1−
s∑

k=1

πk

) ∑N
i=1 r

∗
ij + cj∑N

i=1
∑M

k=s+1 r
∗
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(10.48)

〈
lnπ∗j

〉 = ln
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1−
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πk

)
+ψ

( N∑
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r∗ij+cj
)
−ψ

( N∑
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M∑
k=s+1

r∗ik+ck
)

(10.49)

As mentioned before, since π and π∗ are bound together by the constraint that they
sum up to 1, we have to find a proper update equation of πj with respect to π∗j . We
do this by differentiating the lower bound with respect to πj and equating it to 0.
Hence the update equation can be written as:

πj =
(

1−
M∑

k=s+1

〈
π∗k

〉) ∑N
i=1 rij∑N

i=1
∑s

k=1 rik
(10.50)

Based on the above update equations, we can calculate the lower bound by:

L(
Q

) = 〈lnp(X | Z,�
)〉 + 〈lnp(Z | π ,π∗)〉 + 〈lnp(

π∗ | π)〉 (10.51)

− 〈lnp(
�

)〉 − 〈lnQ(Z)〉 − 〈lnQ(
�

)〉 (10.52)

Our algorithm to maximize the lower bound and estimate the number of components
in the mixture simultaneously follows in the next subsection.

10.3.2 Component Splitting Algorithm

Generally, in the variational approach, we update the variational solutions described
in the previous subsection iteratively until there is no notable change seen between
two consecutive iterations. However, in [10] a split and merge approach is adopted.
According to this approach we start the algorithm with two clusters initially. This
criteria is checked first by running the algorithm without local model selection. We
now split one of the mixture components into two and label them as free component
in our procedure. The remaining components are the fixed components. Now we
run our variational algorithm estimating the parameters of the free components
without estimating the fixed components. In this procedure there are three different
possibilities: (1) the two new components may fit the data appropriately and hence
are retained. In this case, the split is a success and the algorithm is rerun for the
new set of components with the added component. (2) Only one of the components
might have a significant mixing coefficient and the other might be infinitesimal.
This means that the split is a failure and the algorithm moves to the next component
for the splitting. (3) In this case the estimate of the mixing coefficient for both
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the free components goes infinitesimal. This is due to the presence of outliers in
the data. We bar this split from happening as it might end up in an infinite loop.
These components can be later removed as they are just unnecessary outliers. The
algorithm terminates when all the components in the current set fail the split test.
The overall algorithm can be epitomized as:

1. Initialization

• Initialize number of components M to 2
• Initialize values for u,p, g, s and c with 1 and ν,q,h and t with 0.01.

2. Start the variational inference without the local model selection
3. If only one component remains, the algorithm ends
4. Sort all the elements in M in descending order by their mixing coefficients.
5. For each element j in M:

• Split j into jj and j2 as the free components
• set πj1 = πj2 = πj/2, uj l1 = u∗j l, uj l2 = u∗j l, vj l1 = v∗j l, vj l2 = v∗j l, pj l1 =

p∗j l, pj l2 = p∗j l, qj l1 = q∗j l, qj l2 = q∗j l, gj l1 = g∗j l, gj l2 = g∗j l, hj l1 =
h∗j l, hj l2 = h∗j l, sj l1 = s∗j l, sj l2 = s∗j l, tj l1 = t∗j l and tj l2 = t∗j l .

• c∗j =
∑N

i=1 r
∗
ij for each j in the fixed components

• Apply variational inference with component splitting by updating Q (Z),
Q (π∗), Q (α), Q (α), Q (β), Q (λ) until convergence

• Use (10.50) to calculate the mixing coefficients of free components
• Split test fails if only one remaining component left. Move to next component
• If both components are redundant, split test fails. Move on to next component
• If both components remains, then M = M + 1

6. Repeat steps 4, 5 until the splitting test fails for all the components.

10.4 Experimental Results

We present the experimental results we have obtained with our model in this section.
We compare our variational IBL mixture model (IBLMM) with Gaussian mixture
models with maximum likelihood estimation (GMM) and variational Gaussian
mixture models (varGMM) since these are the standard nowadays. We evaluate
our model against four challenging applications: object categorization, speech
categorization, spam image categorization, and software defect categorization. We
try varying combinations involving imbalanced data to check the robustness of our
model even when little data is available. We start with more or less equally weighted
data sets to highly imbalanced data. The results are as follows:
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10.4.1 Speech Categorization

With voice recognition based automation and control taking over in recent time,
efficient categorization of speech signals becomes an important task. To evaluate
our model, we took a simple task of clustering between male and female speakers
in the TSP speech data set [22]. The TSP data set consists of speech utterances
of 10 speakers where five are male and five are female. There are 60 speech
utterances for each of the speakers. We take 500 samples from each category for our
experiment. The pre-processing step for speech data involves removal of non-speech
parts like momentary pauses as a first step. This is done by voice activity detection
(VAD) which removes the empty signals so that our model doesn’t get trained on
unnecessary pause signals. We now extract Mel Frequency Cepstral Coefficients
(MFCC) which has been widely used for speech recognition tasks [29, 33]. The
MFCC feature descriptors are 39 dimensional. Each speech utterance is sampled
with a frame rate of 25 ms with a window shift of 10 ms. By this method a number
of feature descriptors can be obtained from a single speech utterance file. We use bag
of words feature model to create a histogram of the extracted MFCC features. This
data serves as input to our model. The confusion matrix for our model is shown
in Fig. 10.2. Table 10.1 shows the accuracy of IBLMM compared to GMM and
varGMM. It shows that IBLMM improves the accuracy of GMM and varGMM

Fig. 10.2 Confusion matrix
of TSP speech data set with
varIBLMM

Table 10.1 Accuracy of
different models for TSP
speech data set

Method Accuracy(%)

varIBLMM 86.6

varGMM 85.9

GMM 85.2



222 K. Maanicshah et. al

10.4.2 Image Categorization

Pattern recognition from images is an important part of applications related to
computer vision [8, 9, 23, 32]. It plays a major role in image retrieval, automated
machinery, robot navigation, etc. For us to apply our model for image clustering,
we have to extract feature descriptors from the images. Some of the commonly
used methods for feature extraction are: Scale Invariant feature Transform (SIFT)
[25], Histogram of Gaussians (HoG) [12], Speeded-Up Robust Features (SURF)
[3], etc. Once the features are extracted we have to represent each image in terms
of these features. The best way to do that would be to use the bag of visual words
representation [11, 27, 34]. The idea for the bag of visual words approach is to
cluster all the feature descriptors extracted from all the images using k-means
creating a histogram of unique features for each of the image. These data will act as
input to our model.

10.4.2.1 Images Clustering

For our first experiment we use the Ghim dataset1 to evaluate the efficiency of our
model. The Ghim dataset has 20 categories with 500 images in each class. Each
of the images is 400×300 or 300×400. All images are in JPEG format. We use
only four classes for ease of representation. Sample image from each of the four
classes is shown in Fig. 10.3 we choose 500 images from the fireworks class, 150
images from cars, 250 images from Chinese buildings, and 275 from dragon flies
contributing 1175 images on the whole. It should be noted that the data points
belonging to each class are varied over the four classes. We extract SIFT features
from these images and use it to create bag of visual words features. Figure 10.4
shows the confusion matrix obtained by using IBLMM on this data. The comparison
of accuracy with GMM and varGMM model is shown in Table 10.2. It is clearly seen
that the accuracy with our model is higher than the other two.

Fig. 10.3 Sample images from Ghim dataset. (a) Fireworks. (b) Cars. (c) Chinese buildings. (d)
Dragon flies

1http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx.

http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
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Fig. 10.4 Confusion matrix of Ghim data set with varIBLMM

Table 10.2 Accuracy of
different models for Ghim
dataset

Method Accuracy(%)

varIBLMM 82.46

varGMM 74.21

GMM 74.04

10.4.2.2 Spam Images Clustering

Usage of email services has become a quotidian task of everyday life nowadays.
This also leaves us as a target to multiple ad agencies and fraudsters who send
repeated ads and fake ones to trick us to reveal our personal information. Spam
mails have also become a source of threats over the recent years. Hence it is very
important to isolate the spam mails from the legitimate ones. However, it is also a
very challenging task as the amount of spam data available is less when compared
to the real ones in real- world applications due to the presence of repeated images.
Due to this reason detecting Spam images could be a good application to test
the robustness our model. So we choose the spam data set created in [13] which
consisted of three sets of images. One is the ham data which contains normal
images obtained from personal mails of people and considered useful. The other
two sets contain spam images from spam archive created in [18] and a set of spam
images taken from personal spam emails. In addition to this we also use images
from the Princeton spam benchmark data set.2 All the images used are taken from

2http://www.cs.princeton.edu/cass/spam/.

http://www.cs.princeton.edu/cass/spam/
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real emails and hence is a good representation of the real-world scenario. However,
all the three spam data sets contained a number of duplicate images. We took 150
varied spam images between the three spam data sets and 1000 images from the
ham data. Sample images form the spam and ham sets are shown in Figs. 10.5 and
10.6, respectively. We can see that the spam data accounts for only 15% of the total
data. We then extract SIFT features from these images and then create visual bag of
words feature histogram from it. The confusion matrix for this data with our model
is shown in Fig. 10.7. In applications based on security it is important that the false
negative rate (FNR) is low because even if one malicious image is allowed in the

Fig. 10.5 Sample images from the spam collection

Fig. 10.6 Sample images from the ham collection

Fig. 10.7 Confusion matrix
of spam image data set with
varIBLMM
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network it might result in compromising the entire network in the worst case. On
the other hand, it is also important that the important images that are intended for
the user are delivered as well; hence the false positive rates (FPR) should be low.
Due to this reason both FPR and FNR have to be low for a good spam categorization
model. We enforce the following performance measures to evaluate our model:

Precision = T P

T P + FP
(10.53)

Recall = T P

T P + FN
(10.54)

FalsePositiveRate(FPR) = FP

FP + TN
(10.55)

FalseNegativeRate(FNR) = FN

FN + T P
(10.56)

where true positives (TP) is the number of spam images correctly predicted as spam;
false positives (FP) is the number of non-spam images predicted as spam; true
negatives (TN) is the number of non-spam images correctly predicted as not spam
and false negative (FN) is the number of spam images that have been classified as
not spam. Table 10.3 shows the comparison of different performance measures for
IBLMM, GMM, and varGMM, respectively. The FNR and FPR values are both low
compared to GMM and varGMM which highlights the capability of our model to
cluster imbalanced data sets.

10.4.3 Software Defect Categorization

Identification of software defects is an important part of software testing. Using
machine learning techniques helps to identify defects in a short time and helps
reduce the manual workforce for testing [17, 19, 21]. We validate our model against
five data sets from the Promise software engineering repository [28], namely CM
1, JM1, KC1, KC2, and PC1. CM1, JM1, and PC1 are written in C and KC1
and KC2 are written in C++. CM1 is a software written for a NASA spacecraft
instrument, JM1 is a real-time predictive ground system, KC1 and KC2 are storage

Table 10.3 Performance measures of different models for spam image data set

Method Accuracy(%) Precision Recall FPR FNR

varIBLMM 90.96 59.1 99.33 0.10 0.006

varGMM 81.22 40.8 98.00 0.21 0.020

GMM 79.73 39.1 98.66 0.23 0.013
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Table 10.4 Results on defect detection using different models

Data Set Model (%) Accuracy Precision Recall FNR

CM1 varIBL 67.87 17.50 61.22 0.39

varGMM 72.69 1.13 2.04 0.98

GMM 71.29 1.04 2.04 0.98

JM1 varIBL 66.09 0.29 52.16 0.48

varGMM 74.10 0.23 15.59 0.84

GMM 74.10 0.23 15.59 0.84

KC1 varIBL 69.41 30.28 75.15 0.25

varGMM 73.06 32.81 70.85 0.29

GMM 72.68 32.39 70.56 0.29

KC2 varIBL 77.78 47.40 79.43 0.21

varGMM 49.04 4.04 6.50 0.93

GMM 74.90 7.14 1.87 0.98

PC1 varIBL 68.80 11.68 53.24 0.47

varGMM 89.35 2.32 1.3 0.99

GMM 89.35 2.32 1.3 0.99

management systems for processing ground data, and PC1 is a flight software for
earth orbiting satellites. McCabe and Halstead features are considered to describe
the source code of these software to create these data sets. The performance metrics
used are the same as in previous subsection. In the case of software defects we
are more concerned about the false negatives and hence FNR is the most important
measure. From Table 10.4 we are able to see that the False negative rate of IBLMM
is very much higher than GMM and varGMM for all the data sets. The ratio between
the defect and the non-defect class was around 1:10 in some cases and we found in
our experiments that varGMM and GMM are unable to distinguish the data into two
classes in these scenarios.

10.5 Conclusion

We have proposed an efficient mixture model for clustering based on Inverted Beta
Liouville mixtures. The variational framework combined with component splitting
approach is found to be effective in model selection. The robustness of our model
is evident from the experiments which involved data sets with varied weights. The
first experiment with equal weight exhibited good results. The second experiment
for object image clustering showed the effectiveness of our model in terms of
mixed weights and also proved the efficiency of model selection. With spam image
clustering we were able to achieve 90% accuracy against GMM and varGMM which
had only around 80% accuracy along with low FPR and FNR. In the last experiment,
our model proved to be better than the other two models in identifying the defect
class. It is to be noted that some data sets in this experiment had less than 10%
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of total data for the defect class. As the results are encouraging we can introduce
feature selection within the variational framework along with model selection to
improve the efficiency of our model.

Appendix: Proof of Eqs. (10.23), (10.24), (10.25) and (10.26)

From Eq. 10.16 we can write the logarithm of the joint as:
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To derive the variational solutions of each parameter, we consider the logarithm with
respect to each of the parameter assuming the rest of the parameters to be constant.
This is explained in the following subsections.
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Variational Solution for Q(Z) Eq. (10.23)

The logarithm with respect to Q(Zi) on the joint is given by:
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where
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(10.60)
Rj , Sj , and Tij are intractable in the above equations. Due to this reason we use
second order Taylor series approximation for Rj and Sj and first order Taylor series
approximation for Tij . the equations are given in Eqs. (10.30), (10.31), and (10.32),
respectively. It is a notable fact that (10.58) is of the form:

lnQ
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given



10 Variational IBLMM with Component Splitting 229
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By taking the exponentiation of Eq. (10.58) we can write:

Q
(Z) ∝

N∏
i=1

[ s∏
j=1

r̃
Zij

ij

M∏
j=s+1

r̃
∗Zij

ij

]
(10.64)

Normalizing this equation we can write the variational solution of Q
(Z)

as
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where rij and r∗ij can be obtained from Eqs.
(
10.28

)
and

(
10.29

)
. Also, we can say

that
〈
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〉 = rij for j = 1, . . . , s and
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〉 = r∗ij for j = s + 1, . . . ,M

Proof of Eq.
(
10.24

)
: Variational Solution of Q(π∗)

Similarly, the logarithm of the variational solution Q
(
π∗

)
is given as

lnQ
(
π∗j

) =〈
lnp

(X,�)〉
� �=π∗j

=
N∑
i=1

〈
Zij

〉
lnπ∗j +

(
cj − 1

)
lnπ∗j + const

= lnπ∗j
[ N∑
i=1

〈
Zij

〉+ cj − 1

]
+ const (10.66)



230 K. Maanicshah et. al

This equation shows that it has the same logarithmic form as that of Eq.
(
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)
. So

we can write the variational solution of Q
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where
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〉+ cj (10.68)

〈
Zij

〉 = r∗ij in the above equation.

Proof of Eq.
(
10.25

)
: Variational Solution of Q
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As in the other two cases the logarithm of the variational solution Q
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Similar to what we encountered in the case of Rj the equation for J(
αjl

)
is also

intractable. We solve this problem finding the lower bound for the equation by
calculating the first-order Taylor expansion with respect to αjl . The calculated lower
bound is given by
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This approximation is also found to be a strict lower bound of L(
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)
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this equation for lower bound in Eq.
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)
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This equation can be rewritten as

lnQ
(
αjl

) = lnαjl
(
ujl + ϕjl − 1

)− αjl
(
νjl − ϑjl

)+ const (10.73)

where

ϕjl =
N∑
i=1

〈Zij 〉αjl
[
ψ

( D∑
l=1

αjl

)
− ψ

(
αjl

)

+ ψ ′
( D∑
l=1

αjl

) D∑
d �=l

(
〈lnαjl〉 − lnαjl

)
αjl

]
ψ ′

(D+1∑
l=1

αjl

)(〈
lnαjs

〉− lnαjs
)]

(10.74)

ϑjl =
N∑
i=1

〈Zij 〉
[

lnXil − ln
( D∑
l=1

Xil

)]
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Eq.
(
10.73

)
is the logarithmic form of a Gamma distribution. If we exponentiate

both the sides, we get

Q
(
αjl

) ∝ α
ujl+ϕjl−1
j l e

−
(
νjl−ϑjl

)
αjl (10.76)

This leaves us with the optimal solution for the hyper-parameters ujl and νjl
given by
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u∗j l = ujl + ϕjl, ν∗j l = νjl − ϑjl (10.77)

By following the same procedure we can get the variational solutions for
Q(α),Q(β), and Q(λ).
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Chapter 11
Online Variational Learning for Medical
Image Data Clustering

Meeta Kalra, Michael Osadebey, Nizar Bouguila, Marius Pedersen,
and Wentao Fan

Abstract Data mining is an extensive area of research involving pattern discovery
and feature extraction which is applied in various critical domains. In clinical
aspect, data mining has emerged to assist the clinicians in early detection, diagnosis,
and prevention of diseases. Advances in computational methods have led to
implementation of machine learning in multi-modal clinical image analysis. One
recent method is online learning where data become available in a sequential order,
thus sequentially updating the best predictor for the future data at each step, as
opposed to batch learning techniques which generate the best predictor by learning
the entire data set at once.

In this chapter, we have examined and analysed multi-modal medical images by
developing an unsupervised machine learning algorithm based on online variational
inference for finite inverted Dirichlet mixture model. Our prime focus was to
validate the developed approach on medical images. We do so by implementing
the algorithm on both synthetic and real data sets. We test the algorithm’s ability to
detect challenging real world diseases, namely brain tumour, lung tuberculosis, and
melanomic skin lesion.
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11.1 Introduction

In modern era, imaging is increasingly implemented in medical diagnosis and scien-
tific research. Thus, leading to advances in technical and diagnostic improvements
in the field of medical imaging [1]. This has resulted in the emergence of medical
data mining which is an increasingly notable research domain [2]. In medicine,
imaging is a non-invasive biomedical technique applied in clinical contexts to
identify and diagnose diseases [3, 4]. Depending on the medical imaging technique
used, medical imaging can give insights into two categories of biomedical analysis:
structural or functional [5]. For example, MRI can be used to give structural
information of the tumour mass but can also be used to monitor blood flow into the
tumour, thus giving functional insights [6]. Although most medical images represent
anatomical structures of the body, application of data mining on them can give
valuable insights on the physiology and diagnosis for computer-aided diagnosis
[7–9]. However, extraction and analysis of pertinent information from the often
noisy medical images is becoming a more and more pressing issue [4, 10]. The
growth of computational methods and image processing has found its way in clinical
image processing and decision making [11]. These computational methods lead to
different interpretations, medical usefulness and highlight various characteristics of
the diagnosis by implementation of statistical models.

In this chapter, we describe how statistical approach has helped resolve the
problem of noise and increase the amount of information that can be extracted from
an image so as to support the clinician in making critical decisions faster and with
confidence [12]. The differences between Monte Carlo Markov chain (MCMC),
variational learning, and maximum likelihood estimation (MLE) methods have been
succinctly described in [13]. For instance, variational learning and MLE methods
have been described to be more efficient than MCMC. Out of these methods,
maximum likelihood estimation (MLE) has been the most well described and well
known in probabilistic models. It has been extensively applied for estimation of
parameters in modern statistics. In this method, the Expectation Maximization (EM)
algorithm has been generally adopted to be the standard methodology to learn
finite mixture models. One problem which EM faces is the over-fitting and being
unable to determine the model complexity [14]. However, the disadvantage can
be offset by the adoption of Bayesian framework. The Bayesian approach is very
comprehensive since the posterior distribution covers the uncertainty of the process.
In essence, the Bayesian framework goes hand-in-hand with an approximation
scheme. Robert and Cabella [15] describe the utilization of MCMC techniques as
the most significant sampling methods which enabled the application of Bayesian
techniques in wide aspects of studies. However, the critical challenge of MCMC
is limitation to small-scale applications due to the need of high computational
resources to solve it. In addition, convergence diagnosis approaches are not yet well
developed for MCMC methods. Thus, variational inference method was developed
to overcome the limitations of MCMC.
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Variational inference, also known as variational Bayes, is a deterministic approx-
imation method, where the model’s posterior distribution is approximated using
analytical procedures [16]. It has generated a lot of interest in finite mixture
models through the provision of high generalization schemes and high computation
tractability. Model selection and parameter estimation can be performed simultane-
ously through the use of variational inference.

Online mixture learning algorithms have been described to be more efficient in
the modeling of data streams, as compared to batch algorithms. Examples include
online Gaussian mixture models (GMM) considered for instance in [17]. The main
short-coming which has been witnessed in this method is the unrealistic Gaussian
assumption which is not catered for in real life. Most of the recent past research
works have demonstrated that simulations with other methodological approaches
can be better than the GMM when dealing with non-Gaussian data. A notable
example is the Dirichlet mixture which is a better alternative when dealing with
proportional data in several applications. The recent recommendation by a number
of researchers is that other distributions should be considered and adopted for better
results. For example, Bouguila and Ziou [18] developed an online learning approach
in which the MML criterion was utilized and incorporated. An online variational
inference algorithm has been developed in [19], also. In this chapter, we propose
a more elaborated way in which model selection and online learning are examined
simultaneously.

The rest of this chapter is organized as follows: Sect. 11.2 describes significant
approaches of using data mining in the healthcare domain. Section 11.3 describes
the motivation behind medical image segmentation. Sections 11.4 and 11.5 would
describe the way to estimate the model complexity of the finite inverted Dirichlet
mixture model and the parameters involved simultaneously in order to achieve
an online variational inference algorithm. Section 11.6 of the chapter describes
the accuracy and efficiency of the proposed approach on synthetic data sets and
challenging real world medical applications which is followed by conclusion in
Sect. 11.7.

11.2 Data Mining and Its Use in Healthcare

In simple terms, data mining approach uses computational models to extract useful
information from the data. Particularly, in healthcare, the data generated are rich
and multi-directional, e.g., electronic medical records data, medical image data,
proteomic and genomic data, to name a few [20]. Despite the abundance of data,
computer-aided decision support is at its nascency. In this aspect, data mining is
implemented to assist clinicians in the early detection, diagnosis, and prevention
of diseases. This is achieved by establishing models on medical data sets. These
models learn from the data and help predict disease prognosis and progression.
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Basically, data mining models are grouped into two categories; descriptive and
predictive models [21]. As the name suggests, descriptive models define the
associations that are represented in the data by pattern discovery [22]. In contrast,
predictive models are applied to predict a future behaviour or trend as opposed to
giving information of the existing behaviour [23]. Depending on the type of medical
data, a descriptive or predictive model is chosen for. The important data mining
tasks applied in healthcare to associate to patients raw data and extract it to validate
conclusions on the diagnosis and treatment regimens [24, 25] are:

11.2.1 Classification

Classification techniques are largely based on statistical models. As per the name,
classification refers to the concept of assigning data into target classes. Data are
grouped into testing and training sets whenever classification is being implemented.
Training data are used by the classifiers in coming up with conclusive attributes
of the data before they are put in classes whereas the testing data sets are used to
determine the correctness or accuracy of the classifier.
In hospitals or clinics, classification can be applied to determine risk pattern of each
patient depending on the data that are stored about the patient [26]. Since these
classifiers are rule based, they are implemented to classify the patient into low or
high risk populations for a certain diagnosis or disease [27]. In this approach, the
patient cases are known, thus classification can be described as supervised learning.
A practical application of classification is that the hospitals and diagnosing units
determine the cost of treating the patients in the classes of low risk or high risk
diseases [28].

11.2.2 Trend Analysis

Trend analysis is a purely statistical approach where data are temporally examined.
These data sets can be obtained through continuous recording of data of a specific
patient. The statistical approach to this is called time series data analysis [19]. In
this approach, data sets are assigned a “time” attribute such that time dependent
properties of the data sets can be deduced and analysed. This analysis is important
as time patterns and irregularities are critical concerns for the emergence of various
diseases. For example, patients often experience immense pain during and after
operation and require anesthesia. In normal recovery, the requirement of pain
analgesic changes over time. Thus, the analysis of dose delivery information of
the analgesic over time on a patient can help predict the variance of a patient
pain relief condition [29]. Another application of trend analysis is to follow the
population trends of patient populations undergoing a certain treatment for hospital
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visits, medical costs, and lengths of stay of patients [30, 31]. Thus, incurring a trend
in the aspects of treatment cost and effectiveness.

11.2.3 Clustering

Simply put, clustering of data is the placing of similar data together in a cluster and
dissimilar ones in the others. While clustering can be confused with classification,
there is a notable difference among the two. Clustering is an unsupervised learning
technique whereas classification is a supervised learning one. Importantly, in
clustering the data information about classes is not known. Clustering also does
not necessitate the subtle information for the partitioning of the data [32]. A
major challenge in this method is that clusters have to be identified first. Typical
examples of its application are genomic sequence analysis and genetic expression
data analysis [33].

11.2.4 Regression

In regression, data items are analyzed with the motivation of establishing a rela-
tionship in the known dependent variable and unknown and independent estimated
variable. Statistically, regression is the most effective tool for predicting future pat-
terns [34]. In biomedical research regression correlation coefficients are frequently
used to establish a cause and effect relationship. For example, to determine if the
patient has high blood pressure and the relationship of the risk of high blood pressure
to the weight and age of the patient [35].

11.2.5 Association

Association is the criterion in which the data are examined for the similarities or
bonding in which they can be attributed. In examining the data, association rule is
very effective. It reveals the correlations and relationships in which the objects are
portrayed. Association rules are critical factors in medical marketing, advertising,
and commodities management [13]. In essence, association rules make it possible
for grouping items as per their attributes, then generating rules which can be used
conclusively for the data sets. An accurate example is the ranking of hospitals
where data mining techniques facilitate the placing of different hospitals according
to their performance and other attributes by creating the necessary association on
information from various hospitals and then ranking them [14, 36].
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11.2.6 Summarization

Using summarization, data can be examined and abstracted to smaller groups or sets
of data. The smaller group of data gives the overall description or attributes of the
generalized data. The data which are being abstracted can be examined in different
ways or perspectives depending on the scope. For instance, this is effectively applied
on electronic medical records where the data of the patient population are analysed,
categorized based on the data and the insurance providers [16, 37]. By mining the
data this way, patterns and regularities of a data set are easily recognized.

11.3 Motivation for Medical Image Segmentation

Image segmentation has attracted immense amount of interest in the medical domain
because it can computationally discover the morphology inconsistencies embedded
in an image of given organ or a tissue or a cell without relying on a set of
predetermined labels. Conventional unsupervised image segmentation methods such
as k-means, k-medoid, and c-means are typically known for the problem of cluster
centre initialization and determination of optimum number of clusters. Similar
challenges are experienced in probabilistic-based methods such as Gaussian mixture
model (GMM).

These methods are not very suitable for real world classification problems due to
the existence of the many correlated sub-tasks. Recently, online mixture Gaussian
models and their extensions have been developed and also applied in many aspects.
However, the Gaussian’s consideration is rarely met and seems to be unrealistic in
many real life applications.

The number of clusters that describe the data without the effect of over-fitting
or under-fitting is one of the most challenging problems faced in finite mixture
modeling. This problem is traditionally solved by using the maximum likelihood
method with model selection criteria i.e., MDL, BIC, etc. However, using this
approach requires evaluation of the given selection criterion for several number of
components that is computationally demanding.

The two main challenging problems faced when dealing with finite mixtures are
the determination of the number of the mixture components and the estimation
of the mixture’s parameters. With regard to parameters estimation, two families
of approaches could be considered, namely frequentist and Bayesian techniques.
Maximum likelihood (ML) which is the most popular among frequentist estimation
techniques for mixture learning has several shortcomings since it can easily get
caught in saddle points or local maxima and it depends on the initially set
parameters.

In this chapter, we propose an online variational inference framework for finite
inverted Dirichlet mixture model and demonstrate its application to medical image
segmentation to assist medical practitioners in healthcare sector.
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11.4 Model Specification

11.4.1 Finite Inverted Dirichlet Mixture Model

The main reason for using finite inverted Dirichlet method is basically to have
a flexible distribution for our mixture model. Unlike the Gaussian distribution,
it is reasonably flexible and has the property to perform in both symmetric and
asymmetric modes. A graphical model for finite inverted Dirichlet mixture model
is shown in Fig. 11.1. Consider a positive D-dimensional vector that is sampled
from a finite inverted Dirichlet mixture model with M components. Hence, the finite
mixture of inverted Dirichlet distributions can be defined as:

p
(
Xi | π ,α

) =
M∑
j=1

πj ID
(
Xi | αj

)
(11.1)

where α = (α1, . . . ., αM) and π = (π1, . . . ., πM) denote the mixing coefficients
along with the constraints that they are positive and sum to one. Also, the
term ID(Xi|αj) hereby represents the j th inverted Dirichlet distribution with the
parameter (αj) which is defined as [32]:

ID
(
Xi | αj

) = Γ
( ∑D+1

l=1 αjl
)

∏D+1
l=1 Γ

(
αjl

)
D∏
l=1

X
αjl−1
il

(
1+

D∑
l=1

Xil

)−∑D+1
l=1 αjl

(11.2)

where, Xil is positive for l = 1, . . . , D and αj =
(
αj1, αj2, . . . ..αjD+1

)
, αjl > 0

for l = 1, . . . , D + 1. Mean, variance, and co-variance of the inverted Dirichlet
distribution are hereby given as under:

Fig. 11.1 Graphical model
representation for finite
inverted Dirichlet mixture.
Symbols in the circle denote
the random variables;
otherwise, they denote the
model parameters
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E

[
Xl

] = αl

αD+1 − 1
(11.3)

var
(
Xl

) = αl
(
αj + αD+1 − 1

)
(
αD+1 − 1

)2(
αD+1 − 2

) (11.4)

cov(Xa,Xb) = αaαb

(αD+1 − 1)2(αD+1 − 2))
(11.5)

We introduce an M-dimensional binary random vector Zi = {Zi1, . . . ., ZiM }
called the latent variable which is hidden for each of the observed vector Xi in
order to calculate the maximum likelihood where Zij is 1. Furthermore, conditional
distribution of the Z given the mixing coefficients is as under:

p
(Z | π) =

N∏
i=1

M∏
j=1

π
Zij

j (11.6)

Therefore, the conditional distribution of the data set X can be written as:

p
(X | Z,α

) =
N∏
i=1

M∏
j=1

ID
(
Xi | αj

)Zij (11.7)

Assuming that the parameters of the inverted Dirichlet are statistically independent,
and for every parameter αjl , the gamma distribution that is adopted to approximate
the conjugate prior is given as below:

p
(
αjl

) = G(
αjl | ujl, νjl

) = ν
ujl
j l

Γ
(
ujl

)αujl−1
j l e−νjlαjl (11.8)

Here, {ujl} and {νjl} are hyper-parameters which have constraint such that ujl > 0
and νjl > 0. Now considering α we can write,

p
(
α
) =

M∏
j=1

D∏
l=1

p
(
αjl

)
(11.9)

The joint distribution of all the random variables can be written as:

p
(X,Z,α | π) =p(X | Z,α

)
p
(
Z | π)p(

α
)

=
N∏
i=1

M∏
j=1

⎡
⎣πj

Γ
(∑D+1

l=1 αjl

)
∏D+1

l=1 Γ
(
αjl

)
D∏
l=1

X
αjl−1
il
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×
(

1+
D+1∑
l=1

Xil

)−∑D+1
l=1 αjl ]Zij

(11.10)

×
M∏
j=1

D+1∏
l=1

v
ujl
j l

Γ
(
ujl

)αujl−1
j l e−vjlαjl (11.11)

11.5 Online Variational Learning for Finite Inverted
Dirichlet Mixture Model

11.5.1 Variational Inference

Variational inference is used to formulate the computation of conditional probability
in terms of an optimization problem which is basically deterministic approximation.
The main objective of variational inference is to perform an approximation of
conditional density of latent variables based on the observed variables. The best
choice to find this approximation is by doing optimization. In essence, we make
use of a family of densities over the latent variables, which are parameterized by
free “variational parameters”. Therefore, the task of the optimization is to find the
member from this density family, i.e., the setting of the parameters that lie close
to the conditional of interest using KL divergence [38]. In order to estimate the
parameters of the finite inverted Dirichlet mixture model correctly and to select the
appropriate number of components for the model, we adopted an online variational
approach [39]. For simplifying the notation, we define Θ = {Z,α

}
. The main

purpose of variational learning is to find an approximation Q(Θ), that approximates
p(Θ|X,π). To do this, we find the Kullback–Leibler (KL) divergence which is the
distance between the distribution Q

(
Θ

)
and posterior distribution p

(
Θ | X,π)

given by,

KL
(
Q || P ) = −

∫
Q

(
Θ

)
ln

(
p
(
Θ | X,π)
Q

(
Θ

)
)
dΘ (11.12)

Modifying this equation we can write

KL
(
Q || P ) = ln p

(X | π)−L(
Q

)
(11.13)

where, L(Q) is called the variational lower bound, defined as:

L(
Q

) =
∫

Q
(
Θ

)
ln

(
p
(X,Θ | π)
Q

(
Θ

)
)
dΘ (11.14)
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The KL divergence being a similarity measure follows the conditions KL
(
Q ||

P
) ≥ 0 and KL

(
Q || P ) = 0 when Q

(
Θ

) = p
(
Θ | X)

. From
(
11.13

)
we

can say L(
Q

)
is the lower bound of p

(X | π
)
. We maximize the lower bound

which means we are minimizing the KL divergence and hence approximating the
true posterior distribution. However, the true posterior distribution cannot be used
directly for variational inference as it is computationally intractable. Therefore, for
this reason we use the method of mean-field approximation for our algorithm [40–
42] by which we factorize Q

(
Θ

)
into disjoint tractable distributions as below:

Q
(
Θ

) = Q
(Z)

Q
(
α
)

(11.15)

To maximize the lower bound L(Q), we are supposed to make a variational
optimization of L(Q) with respect to each factor. The variational solution for a
specific parameter Qk

(
Θk

)
is:

Qk

(
Θk

) = exp
〈
ln p

(X,Θ)〉
�=k∫

exp
〈
ln p

(X,Θ)〉
�=kdΘ

(11.16)

where
〈
.
〉
�=k is the expectation with respect to all the parameters other than Θk .

We hereby can obtain the following optimal variational solutions for the finite
inverted Dirichlet mixture model (derived in Appendix section Proof of Eq.

(
11.17

)
:

Variational Solution of Q
(Z)

and in Appendix section Proof of Eqs.
(
11.18

)
,(

11.22
)

and
(
11.23

)
)

Q
(Z) =

N∏
i=1

M∏
j=1

r
Zij

ij (11.17)

Q(α) =
M∏
j=1

D+1∏
l=1

G(αjl |u∗j l, ν∗j l) (11.18)

where,

rij = ρij∑M
j=1 ρij

(11.19)

ρij = exp

{
lnπj+R̃j+

D∑
l=1

(
αjl−1

)
lnXil−

D+1∑
l=1

αjl ln
(
1+

D∑
l=1

Xil

)}
(11.20)

R̃j = ln
Γ

( ∑D+1
l=1 αjl

)
∏D+1

l=1 Γ
(
αjl

)
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+
D+1∑
l=1

αjl

[
ψ

(D+1∑
l=1

αjl

)
− ψ

(
αjl

)][〈
lnαjl

〉− lnαjl
]

+ 1

2

D+1∑
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ψ ′

(D+1∑
l=1

αjl

)
− ψ ′

(
αjl
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lnαjl − lnαjl
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〉

+ 1

2

D+1∑
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D+1∑
b=1

αja αjb

[
ψ ′

(D+1∑
l=1

αjl

)(〈
lnαja

〉− lnαja
)
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lnαjb
〉− lnαjb

)]
(11.21)

The estimation equations for u∗j l and v∗j l are given by (derived in Appendix

section Proof of Eqs.
(
11.18

)
,
(
11.22

)
and

(
11.23

)
)

u∗j l = ujl +
N∑
i=1

〈
Zij

〉
αjl

[
ψ

(D+1∑
s=1

αjs

)
− ψ

(
αjl

)

+
D+1∑
s �=l

ψ ′
(D+1∑

s=1

αjs

)
× αjs

(〈
lnαjs

〉− lnαjs
)]

(11.22)

v∗j l = vjl −
N∑
i=1

〈
Zij

〉[
lnXil − ln

(
1+

D+1∑
l=1

Xil

)]
(11.23)

ψ
( · ) and ψ ′

( · ) in the above equations represent the digamma and trigamma
functions. The expectation of values mentioned in the equations above is given by
the equations below,

〈
Zij

〉 = rij (11.24)

αjl =
〈
αjl

〉 = u∗j l
ν∗j l

,
〈
lnαjl

〉 = ψ
(
u∗j l

)− ln ν∗j l (11.25)

〈(
lnαjl − lnαjl

)2
〉
=

[
ψ

(
u∗j l

)− ln u∗j l
]2 + ψ ′

(
u∗j l

)
(11.26)

We therefore maximize the variational lower bound L(Q) to estimate the
coefficient π which is treated as parameter for mixture model. The derivative of this
lower bound with respect to π (derived in Appendix section Proof of Eq. (11.27)) is
given as under:
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πj = 1

N

N∑
i=1

rij (11.27)

Therefore, for the variational learning of inverted Dirichlet mixture model, the
value of the lower bound is calculated as:

L(Q) =
∑
z

∫
Q(Z,α) ln{p(χ,Z,α|π)

Q(Z,α)
}dα

=< lnp(χ |Z,α) > + < lnp(Z|π) > + < lnp(α) > (11.28)

− < lnQ(Z) > − < lnQ(α) >

11.5.2 Online Variational Inference

In this section, we present an online variational inference algorithm for finite
inverted Dirichlet mixture models. In this algorithm we treat variational inference
as a natural gradient which is the inverse of the Riemannian metric multiplied by the
gradient [43]. We do this as it helps to achieve optimal convergence which allows to
have faster online inference.

Online learning is when the data become available in a sequence and later the
previous data are used as a reference to update the best predictor for the new
incoming data at each step since the data are continuously arriving in online fashion.
It is different from batch learning variational technique, in which we know the best
predictor by working on the entire data set at the same time. Online learning is being
commonly used in many areas where it is completely infeasible to train the entire
data set at once since the data set is too large to be trained altogether. Online learning
is also extensively useful in areas such as stock price prediction where it is important
to adapt to the new patterns in the data or even when the data itself are generated
as a function of time. In such a case when the data are continuously arriving in an
online fashion, we have to estimate the variational lower bound to a fixed amount
of data which is N . Considering this, the value expected from the model evidence
p(X) for a data with finite size can be derived as [44]:

〈
lnp(X)

〉
φ
=

∫
φ(X) ln

( ∫
p(X|Θ)p(Θ)d(Θ)

)
dx (11.29)

where φ(X) represents the probability distribution which is unknown for the
data observed. Thus, the corresponding expected variational lower bound can be
computed using [44]:
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〈L(Q)
〉
φ
=

〈 ∑
Z

∫
Q(α)Q(Z) ln

[
p(X,Z|α)p(α)
Q(α)Q(Z)

]
dα

〉
φ

= N

∫
Q(α)dα

〈 ∑
Z

Q(Z) ln

[
p(X,Z|α)
Q(Z)

]〉
φ

+
∫

Q(α) ln

[
p(α)

Q(α)

]
dα

(11.30)

We consider t as the actual amount of data observed, thus for the observed data, the
current lower bound can be estimated by [44]

L(t)(Q) =N
t

t∑
i=1

∫
Q(α)dα

∑
Zi

Q (Zi ) ln

[
p (Xi ,Zi |α)

Q (Zi )

]

+
∫

Q(α) ln

[
p(α)

Q(α)

]
dα

(11.31)

We realize that while N remains fixed, t increases over time. The main reason
for this is the fact that the principal objective of the proposed online algorithm is
the expected log evidence computed for a fixed amount of data. Even if there is an
increase in the observed data, the algorithm basically computes the same quantity.
Now relating this to the context, the former observed data are then used to improve
the quality of estimation of the expected variational lower bound in Eq. (11.30). This
inherently approximates the resulting log evidence as it does not have any previous
knowledge of the former observed data.

With respect to the expectation values we saw in previous section, Eqs. (11.25)
and (11.26) for i = 1, 2, . . . , N and l = 1, 2, . . . , D + 1 get modified to the below
equations as the data are getting updated in online fashion.

αjl =
〈
αjl

〉 = u
(t−1)
j l

ν
(t−1)
j l

,
〈
lnαjl

〉 = ψ
(
u
(t−1)
j l

)− ln ν(t−1)
j l (11.32)

〈(
lnαjl − lnαjl

)2
〉
=

[
ψ

(
u
(t−1)
j l

)− ln u(t−1)
j l

]2 + ψ ′
(
u
(t−1)
j l

)
(11.33)

The fundamental concept of this online algorithm is to enable successful
maximization of the present variational lower bound in Eq. (11.31). Assuming that
the observed data set exists in the form {X1, . . . Xt−1}. For every new observation
Xt , we mainly perform maximization of the present L(t)(Q) with respect to Q

(Zt )

whileQ(α) is set toQ(t−1)(α) and πj is set to π(t−1)
j . Hence, the variational solution

can be computed using:
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Q
(Zt

) =
M∏
j=1

r
Ztj

tj (11.34)

where we substitute Eq. (11.19) and ρij becomes

ρij = exp

{
lnπ(t−1)

j + R̃j +
D∑
l=1
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αjl − 1

)
lnXil −

D+1∑
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(
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D∑
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Xil

)}

(11.35)
where Rj is given by

R̃j = ln
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( ∑D+1
l=1 αjl

)
∏D+1

l=1 Γ
(
αjl

)

+
D+1∑
l=1

αjl

[
ψ

(D+1∑
l=1

αjl

)
− ψ

(
αjl

)][〈
lnαjl

〉− lnαjl
]

+ 1

2

D+1∑
l=1

α2
j l

[
ψ ′

(D+1∑
l=1

αjl

)
− ψ ′

(
αjl

)]− 〈(
lnαjl − lnαjl

)2
〉

+ 1

2

D+1∑
a=1

D+1∑
b=1

αja αjb

[
ψ ′

(D+1∑
l=1

αjl

)(〈
lnαja

〉− lnαja
)

×
(〈
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(11.36)

Later, we maximize the lower bound L(t)(Q) with respect to Q(t)(α) and π
(t)
j

while Q
(Zt ) is fixed. As mentioned before, here we consider variational inference

as a natural gradient method. Therefore, the coefficient matrix for the posterior
parameter distribution gets canceled since the natural gradient of a parameter
is obtained by multiplying the gradient by the inverse of Riemannian metric.
Therefore, the natural gradients for Δujs , Δνjs for j = 1, 2, . . . .,M , and s =
1, 2, . . . ., D + 1 are

Δujs = αjs

[
ψ

(D+1∑
l=1

αjl

)
− ψ

(
αjs

)
(11.37)

+ ψ ′
(D+1∑
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)
× αjl
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lnαjl

〉− lnαjl
)] N∑
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rij
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Δνjs = −
N∑
i=1

rij [lnXis − ln(1+
D∑
l=1

Xil)] (11.38)

Thus, the variational solution to Q(t)(α) is given by

Q(t)(α) =
M∏
j=1

D+1∏
l=1

G(α∗j l |u∗j l, ν∗j l) (11.39)

Therefore, we update the hyper-parameters and optimal variational parameters
as

u
(t)
j l = u

(t−1)
j l + ρtΔujl (11.40)

ν
(t)
j l = ν

(t−1)
j l + ρtΔνjl (11.41)

where ρt is learning rate in which ε ∈ (0,1) and ηo ≥ 0 are defined as

ρt = (ηo + t)−ε (11.42)

The function of the learning rate here is adopted from [45] and is used to forget
the earlier inaccurate estimation effects that contributed to the lower bound and
expedite the convergence of the learning process. Online learning embraces the fact
that learning environments can (and do) change from second to second. The mixing
coefficient π(t)

j l is given by

π
(t)
j l = π

(t−1)
j l + ρtΔπjl (11.43)

where Δπj is

Δπj = 1

N

N∑
i=1

rij − π
(t−1)
j (11.44)

The variational lower bound in case of online variational inference does not
always increase whereas in batch variational it does because in case of online
learning a new contribution is always added to the lower bound for each new
observation. It is very important to choose the hyper-parameters and the learning
rate accurately since it might affect the convergence of the model.
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Algorithm 1 Online Variational learning of the finite inverted Dirichlet mixture
model
1. Choose the initial number of components M .
2. Initialize the value of hyper-parameters values for ujl and νjl .
3. Using K-means algorithm, initialize the value of rij .
4. for t = 1→ N do

i The variational E-step:
ii Update the variational solutions for Q(Zt ) using rij

iii The variational M-step:
iv Compute the learning rate ρt = (ηo + t)−ε
v Calculate the natural gradients Δujs , Δνjs and Δπj using (36), (37) and (43) respectively.

vi Update the variational solution for Q(t)(α) and the mixing coefficient π(t)
j l through (38) and

(42)
vii Repeat the variational E-step and M-step until new data is observed.

5. end for

11.6 Experimental Results

In order to evaluate the performance of our proposed algorithm we first validate it
on synthetic data sets of varied sizes. Once the algorithm is validated, we further
apply it on real world medical image data sets which are available with ground
truth to perform segmentation and analysis of diseases. In our case, we performed
medical image segmentation on three data sets of different diseases and different
medical image testing techniques. We applied the algorithm to detect brain tumour,
skin lesion, and tuberculosis. Furthermore, we have used three different formats of
images to test the applicability of the algorithm on varied output formats, namely
MRI scans, normal photographs, and X-ray images.

In order to have an insight on the accuracy of our algorithm we further compared
it to the implementation of online variational inference of finite Gaussian mixture
model on the data sets. We chose online variational inference of finite Gaussian
mixture model as the comparison algorithm since Gaussian mixtures are widely
applied in medical applications.

11.6.1 Image Segmentation

Image segmentation is a key challenge in image analysis. In medical imaging, it is
a particularly difficult challenge due to high variability in the image data sets. This
variability arises due to two reasons. One, each human itself has variability in the
anatomy of the organ or tissue. Second, there is an additional technical variability
introduced to the images due to the different modalities (e.g., MRI, PET scans, CT
scans, etc.) by which the image is created.
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Let’s say we have an input observed dataframe X which contains N pixels such
that X= {X1, . . . XN }. Each pixel is modeled as a mixture of M inverted Dirichlet
distributions:

p
(
Xi | π ,α

) =
M∑
j=1

πj ID
(
Xi | αj

)
(11.45)

where Xi is the pixel intensity value. We normalize the pixel values of an input
image to unit sum. In all our experiments, we initialize the number of componentsM
to 15. The parameters of the ε and ηo learning rate are set to 0.1 and 64, respectively.
The accuracy of the algorithm was verified by comparison with the ground truth
that was available for each data set. According to our experiments, a good choice
of the initial values of the hyper-parameters ujl and νjl are discovered to be 1 and
0.01, respectively. We can thus detect the optimal number of the components M by
eliminating the components with the small mixing coefficients close to 0.

11.6.2 Synthetic Data

The goal of using synthetic data is to investigate the accuracy of the online
variational approach for both parameter estimation and model selection. Therefore,
we first tested the model accuracy on synthetic data sets. These data sets consisted of
different data sizes, namely 300, 400, 600, 800, and 1000. The effectiveness of the
algorithm was tested by estimating the mixture parameters. Table 11.1 represents a
comparison of the estimation performed by online variational learning of inverted
Dirichlet mixture model versus the real parameters. It is noted that our algorithm
can determine mixing coefficient parameters (α̂j1, α̂j2, α̂j3 and π̂j ) close to the real
data parameters (αj1, αj2, αj3 and πj ).

There are different ways that can be used for estimation of the number of
components. In our case, once the algorithm reached convergence, we removed the
components with very small (less than 10−5) mixing coefficients in each data set.

11.6.3 Medical Image Data Sets

After validating the algorithm on synthetic data sets, we applied it on three
biomedical image data sets. These data sets were used to detect three different
disease morphologies which were created using three different imaging techniques.
These data sets were MRI scan of brain tumours, X-ray scans of lung tuberculosis,
and normal png format pictures of skin lesions. We observed that our algorithm
could detect the morphological and structural anomalies similar to the ground truth
data. We used 25 images in each case and compared the results of our proposed
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Table 11.1 Real and estimated parameters of different data sets

Data set Nj j αj1 αj2 αj3 πj α̂j1 α̂j2 α̂j3 π̂j

S1 100 1 7 25 79 0.33 7.43 25.62 80.28 0.33(
N = 300

)
100 2 11 32 63 0.34 10.41 31.81 62.97 0.34

100 3 22 45 51 0.33 22.37 43.99 51.09 0.33

S2 200 1 7 25 79 0.50 6.89 25.82 81.9 0.49(
N = 400

)
200 2 11 32 63 0.50 11.52 33.9 67.36 0.51

S3 200 1 7 25 79 0.33 7.56 25.62 79.3 0.33(
N = 600

)
200 2 11 32 63 0.34 11.26 31.55 62.78 0.34

200 3 22 45 51 0.33 22.42 46.66 51.55 0.33

S4 200 1 7 25 79 0.25 7.5 25.53 82.88 0.26(
N = 800

)
200 2 11 32 63 0.25 11.32 33.21 68.4 0.24

400 3 22 45 51 0.50 21.2 44.55 50.87 0.5

S5 200 1 7 25 79 0.25 6.98 24.95 78.76 0.24(
N = 800

)
200 2 11 32 63 0.25 10.21 29.43 60.29 0.25

200 3 22 45 51 0.25 22.11 45.11 50.85 0.27

200 4 28 83 90 0.25 28.75 85.4 93.05 0.24

S6 200 1 7 25 79 0.20 7.32 24.95 76.64 0.20(
N = 1000

)
200 2 11 32 63 0.20 11.86 34.79 68.16 0.17

200 3 22 45 51 0.20 23 46.1 51.59 0.21

200 4 28 83 90 0.20 28.71 83.81 88.55 0.22

200 5 40 3 56 0.20 37.94 2.95 55.05 0.20

N denotes the total number of data points, Nj denotes the number of data points in the
cluster j .αj1, αj2, αj3 and πj are the real parameters and α̂j1, α̂j2, α̂j3 and π̂j are the parameters
estimated by our proposed algorithm

algorithm with online variational learning for Gaussian mixture model to determine
the model performance.

11.6.3.1 Brain Tumour Detection

Gliaomas or brain tumours are the most prominent brain malignancies which exhibit
varying degrees of aggressiveness, prognosis, and inherent variability in the MRI
image representation. Due to the heterogeneous nature of the brain anatomy, the
MRI image segmentation and tumor detection is a highly challenging task [46].
For this, the brain tumour data set was obtained from BRATS20151 [47, 48].
The data set consists of four MRI sequence images for each patient. The MRI
sequence images were fluid attenuation inversion recovery (FLAIR), T1c, T1p, and
T2 which all stand for images which are weighted with respect to the relaxation
time of protons in the body tissue during the scanning. FLAIR is widely applied

1https://www.smir.ch/BRATS/Start2015.

https://www.smir.ch/BRATS/Start2015
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to detect clinical malformations related to diseases like multiple sclerosis (MS),
haemorrhages, meningitis, etc. [49]. In our experiment, we used the available
FLAIR images for image segmentation and brain tumour detection.

The resulting accuracy of brain MRI segmentation was measured using Jaccard
and Dice metrics. This is illustrated in Fig. 11.2, and the mean and standard
deviation are illustrated in Fig. 11.3. The Jaccard and Dice for the BRATS20152 data
set were significantly greater for our proposed algorithm than the online variational
Gaussian mixture model helping us conclude that it can be useful to detect tumours.
The mean was 0.5 greater than the compared algorithm, and the standard deviation
was comparatively less showing the robustness of our model.

Representative segmentation results after running our proposed algorithm are
depicted in Fig. 11.4 where the three clusters generated by the algorithm are depicted
against the MRI image. The last image in the panel is the best prediction made by
the algorithm, and it is seen that the algorithm is able to identify the brain glioma.
Further, the post processing images are depicted in Fig. 11.5 where the last image
in the panel is the post processed ground truth image. The predicted image by the
algorithm was compared against the ground truth. We are able to visibly see the
similarities of the detection by the algorithm versus an expert’s opinion.

11.6.3.2 Skin Lesion Diagnosis

Similarly to brain gliomas, skin melanomas are also difficult to detect. Specially
because the naked eye is not able to differentiate between the malignant and
benign skin melanoma [50]. Therefore, digital imaging and lesion detection with
identification can help increase the efficiency in the detection and treatment [51].
Furthermore, since skin is the largest organ of the body and highly visible, taking
photos of the melanomas from smart phones would add convenience in the process.
However, analysis of smart phone medical images is also a challenging task due
to the heterogeneity [52, 53]. For this reason, the data used for assessing the
performance of the proposed algorithm were done on the photos of skin lesion
obtained from International Skin Imaging Collaboration.3 The data set consists of
images of skin melanoma of patients.

The accuracy of the result obtained from skin image segmentation is measured
by Jaccard and Dice metrics as illustrated in Fig. 11.6, and the mean and standard
deviation are shown in Fig. 11.7 by comparing the proposed algorithm with online
variational finite Gaussian mixture model. The Jaccard index and Dice coefficient
for the data set were significantly greater for our proposed algorithm since both
the values for each image were above 0.85. The mean was 0.7 greater than the
compared algorithm, and the standard deviation was 0.05 less for our algorithm

2Same as footnote 1.
3https://isic-archive.com/api/v1.

https://isic-archive.com/api/v1
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Fig. 11.2 Results using Jaccard and dice evaluation metrics for brain tumour detection. (a)
Jaccard metric. (b) Dice metric

proving the robustness of our algorithm. This demonstrates the accuracy of our
model for predicting skin lesions.

Figure 11.8 shows a representative image of skin melanoma from the ISIC
database (left panel, first photo), and the best segmented and detected melanoma
by the algorithm can be seen at the end of the panel in the figure. In this case, the
algorithm was able to detect 14 clusters. Figure 11.9 displays a representative skin
melanoma image achieved after post processing for the ground truth in order to
compare it with the algorithm.
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Fig. 11.3 Mean and standard deviation results for brain tumour detection. (a) Mean. (b) Standard
deviation
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Fig. 11.4 Best segmented brain MRI images: (a) Input image, (b) 3rd Cluster, (c) 6th Cluster, (d)
7th Cluster

Fig. 11.5 Segmented brain MRI images after post processing: (a) Clustered image, (b) Binary
image, (c) Clustered after filling holes, (d) Processed clustered image and (e) Ground truth image.
The data set was taken from BRATS database [47, 48] where the ground truth data were available

11.6.3.3 Lung Tuberculosis Detection

Tuberculosis is caused by Mycobacterium tuberculosis which majorly infects the
lung but can spread rapidly through the body [54]. X-ray is currently the most
common diagnostic tool used to detect tuberculosis. However, a lot of time the
infection goes undetected due to the high intrinsic noise in the X-ray measurements
[55]. Besides, in a low resource setup X-ray interpretations are performed by
non-experts [56]. Here, a digital analysis of detection can lend to computer-aided
decision support. Therefore, the third data set used for this analysis is an X-ray
image selected from collection of data compiled by National Library of Medicine
in collaboration with the Department of Health and Human Services, Montgomery
County, Maryland, USA [57, 58]. The sample set is composed of 58 cases with
manifestation of tuberculosis and 80 normal cases. Each image is gray-scale with
a spatial resolution of 4020 × 4892, or 4892 × 4020. We performed our algorithm
on 25 images and on cases where tuberculosis was detected. It is to be noted that
we compared only the right mask of the lung for the algorithm predictions as the
ground truth was available for that.

The accuracy obtained by performing lung segmentation is given by Jaccard and
Dice metrics as illustrated in Fig. 11.10, and the mean and standard deviation are
shown in Fig. 11.11. The Jaccard and Dice for this data set were significantly higher
for our proposed algorithm since each image had a considerable difference in the
value from the online variational learning of finite Gaussian mixture model. The
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Fig. 11.6 Results using Jaccard and Dice evaluation metrics for skin lesion diagnosis. (a) Jaccard
metric. (b) Dice metric

mean was 0.11 greater than the compared algorithm, and the standard deviation was
comparatively less for our algorithm showing the strength of our model.

Figure 11.12 is a representative image of the algorithm prediction where the top
four clusters are depicted. In the panel the first image is that of the X-ray and the
last image is of the best predicted tuberculosis image by the algorithm. There were
14 clusters generated by the algorithm which are not shown here. Figure 11.13
depicts the images of the same lung X-ray segmentation after post processing on
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Fig. 11.7 Mean and standard deviation results for skin lesion diagnosis. (a) Mean. (b) Standard
deviation

segmentation. It can be clearly seen in the last images of Fig. 11.12 (predicted) and
Fig. 11.13 (ground truth) that the algorithm is able to capture the similar segment of
tuberculosis in the right lung.
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Fig. 11.8 Best Segmented Skin Lesion Images: (a) Input image, (b) 0th Cluster, (c) 9th Cluster,
(d) 14th Cluster (e) 10th Cluster

Fig. 11.9 Segmented Skin lesion images after post processing: (a) Clustered image, (b) Greyscale
image, (c) Binary image, (d) Binary image after filling holes, and (e) Ground truth image. The data
set was taken from ICIS database where the ground truth data were available

11.7 Conclusion

Computational and statistical approaches like the one presented in this chapter
hold a significant impact on medical image analysis and interpretation in both
clinical applications and scientific research. Recent progress in the development of
unsupervised algorithms and their implementation as a method for medical image
analysis has enabled efficient discovery and determination of morphological and
textural patterns in the images solely from the data provided to the algorithm.

This chapter proposed an online variational algorithm for finite inverted Dirichlet
mixture models learning. With the implementation of this method, we depict the
advantages of estimating the full posterior distribution of the model parameters in
contrast with the maximum likelihood approach.

The effectiveness of the proposed approach has been evaluated on both synthetic
data sets and medical image data. In comparison with the online variational
finite Gaussian mixture model algorithm, our online inverted Dirichlet mixture
model algorithm is much more efficient and effective on multi-modal data sets.
The experimental results show the validity of the proposed approach in terms of
parameter estimation and model selection on different data sets.

However, there are certain restrictions in the application of this approach on
medical image data sets. First, as witnessed in this chapter, the application of
this approach would improve its performance by the use of large data sets where
the method can find more generalized feature. Second, although the unsupervised
feature extraction and representation have enhanced accuracy, it is to be noted that
the methodological architecture to achieve this requires domain-specific knowledge
due to the scarce availability of ground truth data [59, 60]. Third, due to the vast
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Fig. 11.10 Results using Jaccard and Dice evaluation metrics for lung tuberculosis detection. (a)
Jaccard metric. (b) Dice metric

expanse of medical imaging instruments and techniques, it is of high importance
to develop algorithms and methods to efficiently acquire the images from these
techniques such that they can be further handled effectively by the use of the
unsupervised algorithms [61]. Finally, it is to be noted that the use of an analysis
where the posterior distribution is of importance can be deemed impractical. This
typically happens when the model and its interaction with the parameters are too
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Fig. 11.11 Mean and standard deviation results for lung tuberculosis detection. (a) Mean. (b)
Standard deviation

complex for posterior distributions to be calculated accurately. In such cases, there
is no option but to revert to methods where point estimates are derived.

The future work can be devoted to include feature selection component with the
proposed model along with an extension of online model to generalized inverted
Dirichlet mixtures which would help us improve the model learning.
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Fig. 11.12 Best segmented Lung images: (a) Input image, (b) 10th Cluster, (c) 7th Cluster, (d)
4th Cluster, (e) 0th Cluster

Fig. 11.13 Lung X-ray after post processing: (a) Clustered image, (b) Binary image, (c) Clustered
after filling holes, (d) Processed cluster and (e) Ground truth image. The data set was taken from
Montgomery County—Chest X-ray Database provided by National Library of Medicine where the
ground truth data were available

Appendix

Proof of Eq.
(
11.17

)
: Variational Solution of Q

(Z)

For the variational solution Qs(Θs), the general expression expressed as:

lnQs(Θs) =
〈
lnp(X,Θ)

〉
j �=s + const (11.46)

where const is an additive term representing every term that is independent of
Qs(Θs). Now consider the joint distribution in Eq. (11.10), the variational solution
for Q

(Z)
can be derived as follows:

lnQ
(Z) = αij

[
lnπj + Rj +

D+1∑
l=1

(αjl − 1) lnXil

]
+ const (11.47)

Where

Rj =
〈

ln
Γ (

∑D+1
l=1 αjl∏

D+1l=1
Γ (αjl)

〉
αjl ,...αjD+1

(11.48)
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and

αjl =
〈
αjl

〉 = ujl

vjl
(11.49)

Since we don’t have a closed form solution for Rj , therefore it is not possible
to directly apply the variational inference. Therefore, in order to provide traceable
approximations, the second-order Taylor’s expansion is used to approximate the
expected values of parameters αj [14]. Hence, considering the logarithm form
of (11.6), Eq. (11.47) can be written as

lnQ
(Z) =

N∑
i=1

M∑
j=1

Zij ln ρij + const (11.50)

where

ln ρij = lnπj + Rj +
D∑
l=1

(αjl − 1) lnXil (11.51)

Since all the term without Zij can be added to the constant, it possible to show that

Q
(Z) ∝

N∏
i=1

M∏
j=1

ρ
Zij

ij (11.52)

To find the exact formula for Q(Z), Eq. (11.53) should be normalized and the
calculation can be expressed as

Q
(Z) =

N∏
i=1

M∏
j=1

r
Zij

ij (11.53)

where

rij = ρij∑M
j=1 ρij

(11.54)

It is noteworthy that
∑M

j=1 rij = 1, thus the result for Q(Z) is

〈Zij

〉 = rij (11.55)
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Proof of Eqs.
(
11.18

)
,
(
11.22

)
and

(
11.23

)

Assuming the parameters αjl are independent in a mixture model with M compo-
nents, we can factorize Q(α) as

Q(α) =
M∏
j=1

D+1∏
l=1

Q(αjl) (11.56)

We compute the variational solution for the Q
(
αjl

)
by using Eq.

(
11.16

)
instead of

using the gradient method. The logarithm of the variational solution Q
(
αjl

)
is given

by,

lnQ
(
αjl

) =〈
lnp

(X,Θ)〉
Θ �=αjl

=
N∑
i=1

〈
Zij

〉J(
αjl

)+ αjl

N∑
i=1

〈
Zij

〉
lnXil − αjl ln

(
1+

D+1∑
l=1

Xil

)

+ (
ujl − 1

)
lnαjl − νjlαjl + const (11.57)

where,

J(
αjl

) =
〈

ln
Γ

(
αjl +∑D+1

s �=l αjs
)

Γ
(
αjl

) ∏D+1
s �=l Γ

(
αjs

)
〉
Θ �=αjl

(11.58)

Similar to what we encountered in the case of Rj , the equation for J(
αjl

)
is also

intractable. We solve this problem finding the lower bound for the equation by
calculating the first-order Taylor expansion with respect to αjl . The calculated lower
bound is given by [44],

J(
αjl

) ≥ αjl lnαjl

[
ψ

(D+1∑
l=1

αjl

)
− ψ

(
αjl

)+
D+1∑
s �=l

αjs

× ψ ′
(D+1∑

l=1

αjl

)(〈
lnαjs

〉− lnαjs
)]+ const (11.59)

Substituting this equation for lower bound in Eq.
(
11.57

)

lnQ
(
αjl

) =
N∑
i=1

〈
Zij

〉
αjl lnαjl

[
ψ

(D+1∑
l=1

αjl

)
− ψ

(
αjl

)
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+
D+1∑
s �=l

αjsψ
′
(D+1∑

l=1

αjl

)(〈
lnαjs

〉− lnαjs
)]

+ αjl

N∑
i=1

〈
Zij

〉
lnXil − αjl ln

(
1+

D+1∑
l=1

Xil

)

+ (
ujl − 1

)
lnαjl − νjlαjl + const (11.60)

This equation can be rewritten as,

lnQ
(
αjl

) = lnαjl
(
ujl + ϕjl − 1

)− αjl
(
νjl − ϑjl

)+ const (11.61)

where,

ϕjl =
N∑
i=1

〈
Zij

〉
αjl

[
ψ

(D+1∑
l=1

αjl

)
− ψ

(
αjl

)

+
D+1∑
s �=l

αjsψ
′
(D+1∑

l=1

αjl

)(〈
lnαjs

〉− lnαjs
)]

(11.62)

ϑjl =
N∑
i=1

〈
Zij

〉[
lnXil − ln

(
1+

D∑
l=1

Xil

)]
(11.63)

Equation
(
11.61

)
is the logarithmic form of a gamma distribution. If we exponenti-

ate both the sides, we get,

Q
(
αjl

) ∝ α
ujl+ϕjl−1
j l e

−
(
νjl−ϑjl

)
αjl (11.64)

This leaves us with the optimal solution for the hyper-parameters ujl and νjl
given by,

u∗j l = ujl + ϕjl, ν∗j l = νjl − ϑjl (11.65)

Proof of Eq. (11.27)

We calculate the mixing coefficients value π by maximizing the lower bound w.r.t
to π . It is essential to include Lagrangian term in the lower bound because of the
constraint

∑M
j=1 πj = 1. Then, solving for the derivative w.r.t πj and setting the

result to zero, we have [44]



266 M. Kalra et al.

∂L(Q)

∂πj
= ∂L(Q)

∂πj

N∑
i=1

M∑
j=1

rij lnπj + λ

( M∑
j=1

πj − 1

)

=
N∑
i=1

rij (1/πj )+ λ = 0 (11.66)

⇒
N∑
i=1

rij = −λπj (11.67)

By taking the sum of both sides of Eq. (11.67) over j, we can obtain λ = −N .
Then substituting the value of λ Eq. (11.66), we can obtain

πj = 1

N

N∑
i=1

rij (11.68)

References

1. Agrawal, J.P., Erickson, B.J., Kahn, C.E.: Imaging informatics: 25 years of progress. Yearb.
Med. Inform. Suppl 1, 23–31 (2016)

2. Sohail, M.N., Jiadong, R., Uba, M.M., Irshad, M.: A comprehensive looks at data mining
techniques contributing to medical data growth: A survey of researcher reviews. In: Patnaik,
S., Jain, V. (eds.) Recent Developments in Intelligent Computing, Communication and Devices.
Springer, Singapore, pp. 21–26 (2019)

3. Ganguly, D., Chakraborty, S., Balitanas, M., Kim, Th.: Medical imaging: A review. In: Kim,
Th., Stoica, A., Chang, R.S. (eds.) Security-Enriched Urban Computing and Smart Grid.
Springer, Heidelberg, pp. 504–516 (2010)

4. Perera, C.M., Chakrabarti, R.: A review of m-health in medical imaging. Telemed. e-Health
21(2), 132–137 (2015)

5. Lester, D.S., Olds, J.L.: Biomedical imaging: 2001 and beyond. Anat. Rec. An Offi. Publ. Am.
Assoc. Anatomists 265(2), 35–36 (2001)

6. Van Beek, E.J., Hoffman, E.A.: Functional imaging: CT and MRI. Clin. Chest Med. 29(1),
195–216 (2008)

7. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and
future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)

8. Petrick, N., Sahiner, B., Armato III, S.G., Bert, A., Correale, L., Delsanto, S., Freedman,
M.T., Fryd, D., Gur, D., Hadjiiski, L., Huo, Z., Jiang, Y., Morra, L., Paquerault, S., Raykar,
V., Samuelson, F., Summers, R.M., Tourassi, G., Yoshida, H., Zheng, B., Zhou, C., Chan,
H.P.: Evaluation of computer-aided detection and diagnosis systems. Med. Phys. 40(8), 087001
(2013)

9. Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T.L.: Machine learning for medical imaging.
Radiographics 37(2), 505–515 (2017)

10. Guadalupe Sanchez, M., Guadalupe Sánchez, M., Vidal, V., Verdu, G., Verdú, G., Mayo,
P., Rodenas, F.: Medical image restoration with different types of noise. In: 2012 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4382–
4385 (2012)



11 Online Variational Learning for Probabilistic Machine Learning. . . 267

11. Sittig, D.F., Wright, A., Osheroff, J.A., Middleton, B., Teich, J.M., Ash, J.S., Campbell, E.,
Bates, D.W.: Grand challenges in clinical decision support. J. Biomed. Inform. 41(2), 387–392
(2008)

12. Chen, T.J., Chuang, K.S., Chang, J.H., Shiao, Y.H., Chuang, C.C.: A blurring index for medical
images. J. Digit. Imaging 19(2), 118–125 (2005)

13. Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture models and
applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762–774 (2012)

14. Tirdad, P., Bouguila, N., Ziou, D.: Variational learning of finite inverted Dirichlet mixture mod-
els and applications. In: Laalaoui, Y., Bouguila, N. (eds.) Artificial Intelligence Applications in
Information and Communication Technologies, vol. 607, pp. 119–145. Springer, Cham (2015)

15. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods (Springer Texts in Statistics).
Springer, Heidelberg (2005)

16. Gultepe, E., Makrehchi, M.: Improving clustering performance using independent component
analysis and unsupervised feature learning. Hum-centric Comput. Inf. Sci. 8(1), 148:1–148:19
(2018)

17. Fan, W., Bouguila, N., Ziou, D.: Variational learning of finite Dirichlet mixture models using
component splitting. Neurocomputing 129, 3–16 (2014)

18. Bouguila, N., Ziou, D.: Online clustering via finite mixtures of Dirichlet and minimum message
length. Eng. Appl. Artif. Intell. 19(4), 371–379 (2006)

19. Zakariya, S.M., Ali, R., Ahmad, N.: Combining visual features of an image at different
precision value of unsupervised content based image retrieval. In: 2010 IEEE International
Conference on Computational Intelligence and Computing Research, pp. 1–4 (2010)

20. Constantinopoulos, C., Likas, A.: Unsupervised learning of Gaussian mixtures based on
variational component splitting. IEEE Trans. Neural Netw. 18(3), 745–755 (2007)

21. Williams, G.: Descriptive and predictive analytics. In: Data Mining with Rattle and R: The Art
of Excavating Data for Knowledge Discovery, pp. 171–177. Springer, New York (2011)

22. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future
directions. Data Min. Knowl. Disc. 15(1), 55–86 (2007)

23. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and
guidelines. Int. J. Med. Inform. 77(2), 81–97 (2008)

24. Swan, M.: Emerging patient-driven health care models: an examination of health social
networks, consumer personalized medicine and quantified self-tracking. Int. J. Environ. Res.
Public Health 6(2), 492–525 (2009)

25. Iavindrasana, J., Cohen, G., Depeursinge, A., Müller, H., Meyer, R., Geissbuhler, A. Clinical
data mining: a review. Yearb. Med. Inform. 121–133 (2018)

26. Chechulin, Y., Nazerian, A., Rais, S., Malikov, K.: Predicting patients with high risk of
becoming high-cost healthcare users in Ontario (Canada). Healthc. Policy 9, 68–79 (2014)

27. Ramezankhani, A., Kabir, A., Pournik, O., Azizi, F., Hadaegh, F.: Classification-based data
mining for identification of risk patterns associated with hypertension in middle eastern
population: A 12-year longitudinal study. Medicine (Baltimore) 95(35), e4143 (2016)

28. Parva, E., Boostani, R., Ghahramani, Z., Paydar, S.: The necessity of data mining in clinical
emergency medicine; a narrative review of the current literature. Bull. Emerg. Trauma. 5(2),
90–95 (2017)

29. Kuo, I.T., Chang, K.Y., Juan, D.F., Hsu, S.J., Chan, C.T., Tsou, M.Y.: Time-dependent analysis
of dosage delivery information for patient-controlled analgesia services. PLoS One 13(3), 1–13
(2018)

30. Lee, M.J., Chen, C.J., Lee, K.T., Shi, H.Y.: Trend analysis and outcome prediction in
mechanically ventilated patients: A nationwide population-based study in Taiwan. PLoS One
10(4), 1–13 (2015)

31. Baek, H., Cho, M., Kim, S., Hwang, H., Song, M., Yoo, S.: Analysis of length of hospital stay
using electronic health records: A statistical and data mining approach. PLoS One 13(4), 1–16
(2018)

32. Tiao, G.G., Cuttman, I.: The inverted Dirichlet distribution with applications. J. Am. Stat.
Assoc. 60(311), 793–805 (1965)



268 M. Kalra et al.

33. Xu, R., Wunsch, D.C.: Clustering algorithms in biomedical research: A review. IEEE Rev.
Biomed. Eng. 3, 120–154 (2010)

34. Wang, H.X., Luo, B., Zhang, Q.B., Wei, S.: Estimation for the number of components in a
mixture model using stepwise split-and-merge EM algorithm. Pattern Recogn. Lett. 25(16),
1799–1809 (2004)

35. Schneider, A., Hommel, G., Blettner, M.: Linear regression analysis: part 14 of a series on
evaluation of scientific publications. Dtsch. Arztebl. Int. 44, 776–82 (2010)

36. Kovalchuk, S.V., Funkner, A.A., Metsker, O.G., Yakovlev, A.N.: Simulation of patient flow in
multiple healthcare units using process and data mining techniques for model identification. J.
Biomed. Inform. 82, 128–142 (2018)

37. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research
applications and clinical care. Nat. Rev. Genet. 13(6), 395–405 (2012)

38. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J.
Am. Stat. Assoc. 112(518), 859–877 (2017)

39. Corduneanu, A., Bishop, C.: Variational Bayesian model selection for mixture distributions.
In: Proceedings Eighth International Conference on Artificial Intelligence and Statistics, pp.
27–34. Morgan Kaufmann, San Francisco (2001)

40. Lawrence, N.D., Bishop, C.M., Jordan, M.I.: Mixture Representations for Inference and
Learning in Boltzmann Machines (2013). CoRR abs/1301.7393. 1301.7393

41. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational
methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

42. Bishop, C.M., Lawrence, N., Jaakkola, T., Jordan, M.I.: Approximating posterior distributions
in belief networks using mixtures. In: Proceedings of the 1997 Conference on Advances in
Neural Information Processing Systems 10, pp. 416–422. MIT Press, Cambridge (1998)

43. Amari, S.I.: Natural gradient works efficiently in learning. Neural. Comput. 10(2), 251–276
(1998)

44. Fan, W., Bouguila, N.: Online variational learning of finite Dirichlet mixture models. Evol.
Syst. 3(3), 153–165 (2012)

45. Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In:
Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in
Neural Information Processing Systems, vol. 23, pp. 856–864. Curran Associates, Inc., (2010)

46. Bakas, S., Kuijf, H.J., Keyvan, F., Reyes, M., van Walsum, T.: Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Berlin
(2018)

47. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y.,
Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M., Arbel, T., Avants,
B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T.,
Delingette, H., Demiralp, Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E.,
Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M.,
Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv,
T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H., Shotton, J., Silva, C.A.,
Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G.,
Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M.,
Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (brats). IEEE
Trans. Med. Imaging 34(10), 1993–2024 (2015)

48. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database:
An open access repository for biomedical research and collaboration. J. Med. Internet Res.
15(11), e245 (2013)

49. Barkhof, F., Scheltens, P.: Imaging of white matter lesions. Cerebrovasc. Dis. 13(Suppl 2),
21–30 (2002)

50. Arroyo-Camarena, S., Domínguez-Cherit, J., Lammoglia-Ordiales, L., Fabila-Bustos, D.A.,
Escobar-Pio, A., Stolik, S., Valor-Reed, A., de la Rosa-Vázquez, J.: Spectroscopic and imaging
characteristics of pigmented non-melanoma skin cancer and melanoma in patients with skin
phototypes iii and iv. Oncol. Ther. 4(2), 315–331 (2016)

http://1301.7393


11 Online Variational Learning for Probabilistic Machine Learning. . . 269

51. Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo,
A., Liopyris, K., Mishra, N.K., Kittler, H., Halpern, A.: Skin Lesion Analysis Toward
Melanoma Detection: A Challenge at the 2017 International Symposium On Biomedical
Imaging (ISBI), Hosted By The International Skin Imaging Collaboration (ISIC) (2017). CoRR
abs/1710.05006, 1710.05006

52. Asaid, R., Boyce, G., Padmasekara, G.: Use of a smartphone for monitoring dermatological
lesions compared to clinical photography. J. Mob. Technol. Med. 1, 16–18 (2012)

53. Wu, X., Marchetti, M.A., Marghoob, A.A.: Dermoscopy: not just for dermatologists.
Melanoma Manag 2(1), 63–73 (2015)

54. Sakamoto, K.: The pathology of mycobacterium tuberculosis infection. Vet. Pathol. 49(3),
423–39 (2012)

55. Huda, W., Abrahams, R.B.: Radiographic techniques, contrast, and noise in x-ray imaging.
AJR Am. J. Roentgenol. 204(2), W126–131 (2015)

56. Brady, A., Laoide, R., McCarthy, P., McDermott, R.: Discrepancy and error in radiology:
concepts, causes and consequences. Ulster Med. J. 81(1), 3–9 (2012)

57. Candemir, S., Jaeger, S., Palaniappan, K., P Musco, J., K Singh, R., Xue, Z., Karargyris,
A., Antani, S., Thoma, G., Mcdonald, C.: Lung segmentation in chest radiographs using
anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33, 577–590 (2014)

58. Jaeger, S., Karargyris, A., Candemir, S., Folio, L., Siegelman, J., Callaghan, F., Xue, Z.,
Palaniappan, K., Singh, R.K., Antani, S., Thoma, G., Wang, Y., Lu, P., McDonald, C.J.:
Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2),
233–245 (2014)

59. Kohli, M.D., Summers, R.M., Geis, J.R.: Medical image data and datasets in the era of machine
learning-whitepaper from the 2016 c-MIMI meeting dataset session. J. Digit. Imaging 30, 392–
399 (2017)

60. Valindria, V.V., Lavdas, I., Bai, W., Kamnitsas, K., Aboagye, E.O., Rockall, A.G., Rueckert,
D., Glocker, B.: Reverse classification accuracy: predicting segmentation performance in the
absence of ground truth. IEEE Trans. Med. Imaging 36, 1597–1606 (2017)

61. Kouanou, A.T., Tchiotsop, D., Kengne, R., Zephirin, D.T., Armele, N.M.A., Tchinda, R.: An
optimal big data workflow for biomedical image analysis. Inform. Med. Unlocked 11, 68–74
(2018)

http://1710.05006


Part V
Image Modeling and Segmentation



Chapter 12
Color Image Segmentation Using
Semi-bounded Finite Mixture Models by
Incorporating Mean Templates

Jaspreet Singh Kalsi, Muhammad Azam, and Nizar Bouguila

Abstract Finite mixture models (FMM) are very popular for image segmentation.
But, FMM assumes that each pixel is independent from each other. Thus, it does not
consider the spatial information of the pixels which makes FMM more sensitive
to noise. Generally, the traditional FMM consists of prior probability (PP) and
component conditional probability (CP). In this chapter, we have incorporated
mean templates, namely weighted geometric mean template (WGMT) and weighted
arithmetic mean template (WAMT) to compute the CP. For estimating PP, the
weighted geometric mean prior probability (WGMPP) and weighted arithmetic
mean prior probability (WAMPP) templates are used. Lastly, the Expectation-
Maximization (EM) algorithm is used to estimate the hyper-parameters of the
FMM. Our models are proposed based on inverted Dirichlet (ID), generalized
inverted Dirichlet (GID), and inverted Beta-Liouville (IBL) mixture models using
the mean templates. For experimentation, the Berkeley 500 (BSD500) and MIT’s
Computational Visual Cognition Laboratory (CVCL) datasets are used. We have
also employed eight image segmentation performance evaluation metrics such as
adjusted Rand index and homogeneity score to validate the image segmentation
results for the BSD500. Additionally, we have also compared the segmentation
outputs for the CVCL dataset which are computed using the traditional RGB
and l1l2l3 color spaces. The results obtained from IBL mixture models (IBLMM)
are more promising than ID mixture models (IDMM) and GID mixture models
(GIDMM).
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12.1 Introduction

In computer vision, image segmentation plays foundational role [1–8]. Innumerable
techniques such as active contour [9–12], graph-cut-based [13–15], model-based
[16–19], machine learning [20–22], and clustering-based [13, 23–29] methods have
been proposed for tackling the image segmentation problem. But, none of them
is universally applicable. Thus, the hunt for optimized and robust models for
image segmentation is still under-process and also an open question [30, 31]. The
challenges faced in image segmentation are the integration of spatial information,
finding the exact number of clusters, and to segment the object smoothly without any
inaccuracy specially when the image possesses noise, a complex background, low
contrast, and inhomogeneous intensity. The use of FMM for image segmentation is
a very popular approach in the field of computer vision [32]. The research on FMM
for image representation and classification is discussed in [33–35]. A survey on the
mixture expert’s history can be found in [36]. The application of image segmentation
using FMM ranges from the segmentation of human brain [37], automatic number
plate recognition [38], content-based image retrieval [39], texture recognition [40],
facial recognition [41], satellite imagery [42], etc. Image segmentation using
FMM undergoes some problems. FMM-based image segmentation considers neither
spatial correlation among the peer pixels nor the prior knowledge that the adjacent
pixels are most likely belong to the same cluster. Also, color images are sensitive to
illumination and noise [43]. To overcome these limitations, abundant techniques
have been proposed to integrate spatial information. Some common approaches
are markov random field (MRF) [44], hidden MRF models [45, 46], etc. But, the
main drawback of using MRF models is that they are computationally expensive
and require additional parameter to control the degree of image smoothness. In
order to solve all the issues discussed above, we have applied mean templates
for CP and PP, proposed in [44]. Furthermore, from the mean template, we
can obtain four methods that are geometric conditional geometric prior (GCGP),
geometric conditional arithmetic prior (GCAP), arithmetic conditional geometric
prior (ACGP), and arithmetic conditional arithmetic prior (ACAP).

The remaining chapter is organized as follows. In Sect. 12.2, the general def-
inition of traditional FMM is presented in detail. In Sect. 12.3, the challenges
faced during the image segmentation using FMM are discussed along with their
solutions. Section 12.4 is devoted to the mean templates for conditional probabilities
where the geometric and arithmetic CP along with geometric and arithmetic PP are
explained in detail. In Sect. 12.5, the integration of four methods (GCGP, GCAP,
ACGP, and GCGP) with IDMM, GIDMM, and IBLMM are presented followed
by their algorithms. Section 12.6 contains the experimental results in which eight
segmentation evaluation metrics, the results in the form of tables for BSD500 dataset
and segmentation outputs in the form of figures for both BSD500 [47] and CVCL
[48] datasets are discussed. Lastly, Sect. 12.7 contains the conclusion.
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12.2 Finite Mixture Model

Consider an image X = {X1, . . . ,XN} consisting of N pixels, where each pixel
Xn has a dimension D such that Xn = (Xn1, . . . , XnD). We assume that X can be
segmented into M clusters and thus it is appropriate to use distribution as:

p(X|�) =
M∑
j=1

πjp(X|θj) (12.1)

where each cluster j has a weight πj ,
∑M

j=1 πj = 1. M is the number of
components in the FMM. p(X|θj) is the density associated with cluster j , and
� = (π1, . . . , πM, θ1, . . . , θM) is the set of all the mixture parameters.

12.3 Problem Description

Consider the binary image given in Fig. 12.1 [44]. The upper-most part of the image
is white in color and has intensity value equal to 1. The lower part of the image is
black in color, having intensity value equal to 0. This image is distorted by noise.
Two 3 by 3 windows are extracted from upper and lower parts of the image, as shown
in Fig. 12.1b and c. For binary image, let the pixels having intensity value equal to
1 and 0 be assigned to classes U and V, respectively. It can be easily observed
that middle pixels of both the windows are corrupted by noise and may result in
mis-classification. A possible solution for this problem has two requirements: First,
the spatial information of each pixel should be incorporated to prior probability
πj , therefore πj should be changed to πij . The πij of the middle pixels for both
the windows should be affected by the prior probability πst where s = i ± 1 and
t = j ± 1. Each pixel inside the window should have same prior probability which
can be calculated using mean prior probability (discussed in later section).

y(30,1)=

y(31,1)=

y(32,1)=

(a) (b) (c)

1

1

1 1 1

10

1 1

y(30,2)=

y(31,2)=

y(32,2)=

y(30,3)= y(76,10)
=0

=0

=0 =0 =0

=0=0

=0 =0

y(77,10) y(77,11) y(77,12)

y(78,10) y(78,11) y(78,12)

y(76,11) y(76,12)

y(31,3)=

y(32,3)=

Fig. 12.1 (a) Original image. (b) White window. (c) Black window. The numbers in parentheses
are the coordinates of the image; 0 and 1 are the binary image intensity values
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Second, given the component j and intensity value y, the FMM satisfies the same
conditional probability p(yn|θj ). Sometimes, this is true but not always. The y of
middle pixel in Fig. 12.1b is same as the pixels around the central pixel in Fig. 12.1c.
These two types of pixels should belong to different clusters. Thus, the traditional
FMM is not capable enough to differentiate among these types of pixels. In order to
counter this issue, the authors of [44] have suggested the mean template for CP.

The authors of [44] have calculated the windows CP values (CPV) for Fig. 12.1b
and c using traditional FMM, GMT, and AMT as illustrated in Fig. 12.2 [44] and
Fig. 12.3 [44]. In Fig. 12.2a, the middle pixels have same CPV (0.606/

√
2π ) as the

pixels around the central pixel in Fig. 12.3a. Similarly, the central pixel of Fig. 12.3a
and surrounding pixels of middle pixel of Fig. 12.2a have the same CPV(1/

√
2π ).

We can observe that the proposed mean templates have removed the effect of noise
from the windows shown in Figs. 12.2a and 12.3a. It is noteworthy that the model
suggested by the authors in [44] is robust to noise.
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Fig. 12.2 CPV of Fig. 12.1b, (a) CPV with traditional FMM. (b) CPV calculated by geometric
template. (c) CPV calculated by arithmetic template
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Fig. 12.3 CPV of Fig. 12.1c, (a) CPV with traditional FMM. (b) CPV calculated by geometric
template. (c) CPV calculated by arithmetic template
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12.4 Mean Templates for Conditional and Prior Probabilities

In order to integrate the spatial information with the PP, Eq. (12.1) can be redefined
as:

p(Xn|�) =
M∑
j=1

πnjp(Xn|θj) (12.2)

where πnj is an updated mixing parameter where j = 1, . . . ,M ,
∑M

j=1 πnj = 1,
and n = 1, . . . , N . In this section, we discuss the geometric and arithmetic CP mean
templates followed by their respective mixture models and complete log-likelihood
equations. Furthermore, the equations of PP for both geometric and arithmetic mean
templates are discussed.

12.4.1 Weighted Geometric Conditional Mean Template

In this section, we are using a weighted geometric conditional mean template
(WGCMT) for calculating the CP of a pixel Xn. Thus, Eq. (12.2) can be rewritten
as:

p(Xn|�) =
M∑
j=1

πnj
∏
r∈Nn

p(Xr|θj)
wr
Rn (12.3)

where Nn is a set of peers of the nth pixel. The conditional probability window is
(CPW) = {Nn,Xn}. Rn is a normalized factor which is defined as

Rn =
∑
r∈Nn

wr (12.4)

In order to integrate the spatial information and pixel intensity value, the strength of
wr is inversely proportional to the distance between pixels r and n. Therefore, the
authors in [44] have defined wr as a function of drn, which is Euclidean distance
between pixels r and n.

wr = 1√
2πρ2

exp

(
− d2

rn

2ρ2

)
(12.5)

ρ = size of CPW− 1

4
(12.6)
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12.4.1.1 Maximum Likelihood Estimation (MLE) for WGCMT

The pixels class labels are considered as the latent variables. Each pixel Xn is the
observed data. The membership vector is defined as Z = {Z1, . . . ,ZN }where Zn =
(Zn1, . . . , ZnM). If Xn belongs to cluster c, then Znc = 1 and Znl = 0 where l =
{1, . . . ,M} − {c}, otherwise Znc = 0. The complete log-likelihood is as follows:

Q =
∑
n

∑
j

Znj

[
logπnj +

∑
r∈Nn

wr

Rn

logp(Xr|θj)

]
(12.7)

EM algorithm consists of two phases: E-Step and M-Step [49]. In E-Step, the
posterior probability (Ẑnj ) can be calculated as:

Ẑ
(t+1)
nj =

π
(t)
nj

∏
r∈Nn

p(Xr|θ(t)
j )

wr
Rn

∑M
h=1 π

(t)
nh

∏
r∈Nn

p(Xr|θ(t)
h )

wr
Rn

(12.8)

In M-Step, we have to maximize the complete log-likelihood and solve:

∂Q

∂θj
= 0 (12.9)

12.4.2 Weighted Arithmetic Conditional Mean Template

In this part, we are using a weighted arithmetic conditional mean template
(WACMT) to calculate the CP of a pixel Xn. Thus, Eq. (12.2) can be rewritten
as:

p(Xn|�) =
M∑
j=1

πnj
∏
r∈Nn

wr

Rn

p(Xr|θj) (12.10)

12.4.2.1 Maximum Likelihood Estimation (MLE) for WACMT

The complete log-likelihood is as follows:

Q =
∑
n

∑
j

Znj

[
logπnj + log

( ∑
r∈Nn

wr

Rn

p(Xr|θj)

)]

=
∑
n

∑
j

Znj

[
logπnj +G

]
(12.11)
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G cannot be calculated directly. It is important to note that wr

Rn
always follows

the condition wr

Rn
≥ 0 and

∑
r∈Nn

wr

Rn
= 1. Therefore, we can apply the Jensen’s

inequality rule which is defined as, given a set of numbers τ ≥ 0 and
∑

n τ = 1, we
have log(

∑
n τxi) ≥

∑
n τ log(xi). Then, the G can be modified and the complete

log-likelihood is:

Q =
∑
n

∑
j

Znj

[
logπnj +

∑
r∈Nn

wr

Rn

logp(Xr|θj)

]
(12.12)

In E-Step, Ẑnj can be calculated as

Ẑ
(t+1)
nj =

π
(t)
nj

∏
r∈Nn

wr

Rn
p(Xr|θ(t)

j )∑M
h=1 π

(t)
nh

∏
r∈Nn

wr

Rn
p(Xr|θ(t)

h )
(12.13)

The M-Step can be computed using Eq. (12.9).

12.4.3 Weighted Prior Probability Estimation

The prior probability for FMM is as follows:

πj =
∑N

n=1 Znj∑N
n=1

∑M
j=1 Znj

(12.14)

According to the authors of [44], the weighted geometric prior mean template
(WGPMT) is given as:

π
(t+1)
nj = π

(t)
nj

∏
r∈ρn Znj

wr
Rn

∑M
h=1 π

(t)
nh

∏
r∈ρn Znj

wr
Rn

(12.15)

The weighted arithmetic prior mean template (WAPMT) is defined by:

π
(t+1)
nj = π

(t)
nj

∏
r∈ρn

wr

Rn
Znj∑M

h=1 π
(t)
nh

∏
r∈ρn

wr

Rn
Znj

(12.16)
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12.5 Integration of Mean Templates with IDMM, GIDMM,
and IBLMM

In this section, we propose our mixture models based on three probability density
functions including ID, GID, IBL with incorporation of WGCMT and WACMT.

12.5.1 Incorporation of Mean Template with IDMM

In this subsection, we explain the integration of mean template with IDMM.

12.5.1.1 The Probability Density Function of ID

If X is a positive vector which consists of D dimensions and following an ID
distribution, then it has a joint density function given as follows [50]:

p(X|α) = �(|α|)∏D
d=1 �(αd)

D+1∏
d=1

X
αd−1
d

(
1+ |X|

)−|α|
(12.17)

where |X| =∑D
d=1 Xd , each Xd > 0. The parameter of ID is α = [α1, . . . , αD+1],

|α| = ∑D+1
d=1 αd , αd > 0 where d = 1, . . . , D + 1. The mean and the variance of

ID are given as follows:

E(Xd) = αd

αD+1 − 1
(12.18)

V ar(Xd) = αd(αd + αD+1 − 1)

(αD+1 − 1)2(αD+1 − 2)
(12.19)

12.5.1.2 Incorporation of IDMM with WGCMT

By substituting Eq. (12.17) into Eq. (12.7), the complete log-likelihood is as follows:

Q =
∑
n

∑
j

Znj

[
logπnj

+
∑
r∈Nn

wr

Rn

log

(
�(|α|)∏D
d=1 �(αd)

D+1∏
d=1

X
αd−1
d

(
1+ |X|

)−|α|)]

(12.20)
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In E-Step, Ẑnj can be calculated using Eq. (12.8). In M-step, we need to maximize
the complete log-likelihood. From Eq. (12.9), the partial derivative ofQwith respect
to αjd where j = 1, . . . ,M and d = 1, . . . , D is as follows:

∂Q

∂αjd
=

N∑
n=1

M∑
j=1

Ẑnj

{
�|αj | −�|αjd | +

∑
r∈Nn

wr

Rn

log

(
Xrd

1+ |Xr |
)}

(12.21)

where �(.) is the digamma function.
The partial derivative of Q with respect to αjD+1 is as follows:

∂Q

∂αjD+1
=

N∑
n=1

M∑
j=1

Ẑnj

{
�|αj | −�|αjd+1| +

∑
r∈Nn

wr

Rn

log

(
Xrd

1+ |Xr |
)}

(12.22)
Considering Eqs. (12.21) and (12.22), it can be observed that no closed solution
exists for αj . Therefore, we have used Newton–Raphson method as follows:

α
(k+1)
j = αj

(k) −GjH
−1
j (12.23)

where α
(k+1)
j is the updated hyper-parameter, αj

(k) is the old hyper-parameter, Gj is

the gradient followed by H−1
j , which is the inverse of Hessian matrix. The gradient

is the first partial order derivative of Q and described as follows:

Gj =
(
∂Q

∂αj1
, . . . ,

∂Q

∂αjD+1

)
(12.24)

To find the Hessian of Q, we have to calculate the second and mixed derivatives:

∂2Q

∂2αjd
=

N∑
n=1

Ẑnj

(
� ′(|αj|)−� ′(αjd)

)
, d = 1, . . . , D + 1 (12.25)

∂2Q

∂2αjd1αjd2

= � ′(|αj|)
N∑
n=1

Ẑnj , d1 �= d2, d1, d2 = 1, . . . , D + 1 (12.26)

where � ′(.) is the trigamma function. The Hessian can be described as:

Hj =
N∑
n=1

Ẑnj

⎡
⎢⎢⎢⎣
� ′(|αj|)−� ′(αj1) � ′(|αj|) . . . � ′(|αj|)

� ′(|αj|) � ′(|αj|)−� ′(αj2) . . . � ′(|αj|)
... . . .

. . .
...

� ′(|αj|) . . . � ′(|αj|)−� ′(αjD+1)

⎤
⎥⎥⎥⎦

(12.27)
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Thus, Hj can be written as:

Hj = Dj + ρjAj
T Aj (12.28)

where Dj is a diagonal matrix and described by:

Dj = diag

(
−

N∑
n=1

Ẑnj�
′(αj1), . . . ,−

N∑
n=1

Ẑnj�
′(αjD+1)

)
(12.29)

The constant ρj is defined as:

ρj =
[(

(� ′(|αj|)
D+1∑
d=1

1

� ′(αjd)

)
− 1

]
� ′(|αj|)

N∑
n=1

Ẑnj (12.30)

AT
j = (a1, . . . , aD+1), ad = 1 where d = 1, . . . , D + 1. In order to find H−1

j , a
matrix inverse theorem given in [51] can be used [52]:

H−1
j = D−1

j + ρ∗jA∗Tj A∗j (12.31)

D−1
j can be easily computed. Aj

∗ and ρ∗j are expressed by two following
equations:

Aj
∗ = −1∑N

n=1 Ẑnj

[
1

� ′(αj1)
, . . . ,

1

� ′(αj,D+1)

]
(12.32)

ρ∗j = � ′(|αj|)
N∑
n=1

Ẑnj

[
� ′(|αj|)

N∑
n=1

1

� ′(αjd )
− 1

]
(12.33)

12.5.1.3 Incorporation of IDMM with WACMT

In E-Step, the Ẑnj can be calculated using Eq. (12.13). The M-Step can be
calculating using Eq. (12.23).

12.5.1.4 IDMM’s Algorithm

We have two conditional probabilities that are WGCMT, WACMT and two prior
probabilities that are WGPMT, WAPMT. Therefore, we can have four models as
following:
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1. GCGP: the application of weighted geometric conditional mean template to
weighted geometric prior mean template.

2. GCAP: the application of weighted geometric conditional mean template to
weighted arithmetic prior mean template.

3. ACGP: the application of weighted arithmetic conditional mean template to
weighted geometric prior mean template.

4. ACAP: the application of weighted arithmetic conditional mean template to
weighted arithmetic prior mean template.

The algorithm is as follows:

1. INPUT: An image X and M .
2. Apply K-means clustering algorithm to group pixels into M clusters.
3. Apply method of moments to calculate the initial value for α parameter.
4. E-Step:

• Calculate π using Eq. (12.15) for GCGP and ACGP, and using Eq. (12.16) for
GCAP and ACAP.

• Calculate Ẑnj using Eq. (12.8) for GCGP and GCAP, and using Eq. (12.13)
for ACGP and ACAP.

5. M-Step: Calculate the updated value of α parameter for each cluster j , using
Eq. (12.23).

6. Iterate through E-Step and M-Step until convergence.

12.5.2 Mean Template Incorporation with GIDMM

The second mixture model is GIDMM and we are integrating the mean template
with it.

12.5.2.1 The Probability Density Function of GID

If X is a positive vector which consists of D dimensions and following a GID, then
its joint density function is given by:

p(X|αj ,βj ) =
D∏
d=1

�(αjd + βjd)

�(αjd)�(βjd)
T
αjd−1
nd

(
1+ |X|

)−�jd

(12.34)

where αj = [αj1, . . . , αjD], βj = [βj1, . . . , βjD]. |X| = ∑D
d=1 Xd . We define �

such that �jd = αjd + βjd − βjd+1 for d = 0, . . . , D with βjD+1 = 0. The GID
possesses a property which makes its estimation simple. If there exists a vector X
that follows GID, then we can create another vector Wn = [Wn1, . . . ,WnD] where
elements follow inverted beta (IB) distributions via the following transformation:
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f (Xnd) =
{
Xnd d = 1

Xnd

1−Xn1−,...,−Xnd−1
d = 2, . . . , D

(12.35)

The pdf of IB is defined as:

piBeta(Wnd |αjd, βjd) = �(αjd + βjd)

�(αjd)�(βjd)
W

αjd−1
nd (1+Wjd)

−(αjd+βjd ) (12.36)

The mean of inverted beta (IB) is given by:

E(Wd) = αd

βd − 1
(12.37)

The variance of IB is as follows:

Var(Wd) = αd(αd + βd − 1)

(βd − 2)(βd − 1)2
(12.38)

12.5.2.2 Incorporation of GIDMM with WGCMT

By substituting Eq. (12.36) into Eq. (12.7), the complete log-likelihood is given by:

Q =
N∑
n=1

M∑
j=1

Znj

[
logπnj

+
∑
r∈Nn

wr

Rn

log

(
�(αjd + βjd)

�(αjd)�(βjd)
W

αjd−1
nd (1+Wjd)

−(αjd+βjd )
)]

(12.39)

In E-Step, the Ẑnj can be calculated using Eq. (12.6), and in M-Step, the partial
derivatives of Q with respect to αjd and βjd are as follows:

∂Q

∂αjd
=

N∑
i=1

Ẑnj

{
�(αjd + βjd)−�(αjd)+ log

(
Wnd

1+Wnd

)}
(12.40)

∂Q

∂βjd
=

N∑
i=1

Ẑnj

{
�(αjd + βjd)−�(βjd)+ log

(
Wnd

1+Wnd

)}
(12.41)

From Eqs. (12.40) and (12.41), it can be observed that no closed-form solution exists
for θjd. Therefore, we have to use Newton–Raphson method as follows:
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θjd
(k+1) = θjd

(k) −H−1
jd Gjd (12.42)

where Hjd is the Hessian matrix [53] and given as:

Hjd =
⎡
⎣ ∂2Q

∂2αjd

∂2Q

∂2αjdβjd
∂2Q

∂2αjdβjd

∂2Q

∂2βjd

⎤
⎦ (12.43)

The second and mixed derivatives of Q are as follows:

∂2Q

∂2αjd
=

N∑
n=1

Ẑnj

(
� ′(αjd + βjd)−� ′(αjd)

)
, d = 1, . . . , D + 1 (12.44)

∂2Q

∂2βjd
=

N∑
n=1

Ẑnj

(
� ′(αjd + βjd)−� ′(βjd)

)
(12.45)

∂2Q

∂2αjdβjd
= � ′(αjd + βjd)

N∑
n=1

Ẑnj (12.46)

Gjd is defined as follows:

Gjd =
(

∂Q

∂αjd
,
∂Q

∂βjd

)
(12.47)

12.5.2.3 Incorporation of GIDMM with WACMT

In E-Step, the Ẑnj can be calculated using Eq. (12.13). The M-Step is based on
Eq. (12.42).

12.5.2.4 GIDMM’s Algorithm

In this section, we propose an algorithm for the four models that are GCGP, GCAP,
ACGP, and ACAP.

1. INPUT: An image X and M .
2. Apply K-means clustering algorithm to group pixels into M clusters.
3. Apply method of moments to calculate the initial value for α parameter.
4. E-Step:

• Calculate π using Eq. (12.15) for GCGP and ACGP, and using Eq. (12.16) for
GCAP and ACAP.
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• Calculate Ẑnj using Eq. (12.8) for GCGP and GCAP, and Eq. (12.13) for
ACGP and ACAP.

5. M-Step: Calculate the updated value of θ parameter for each cluster j , using
Eq. (12.42).

6. Iterate through E-Step and M-Step until convergence.

12.5.3 Incorporation of Mean Template with IBLMM

In this subsection, we integrate the mean template with IBLMM.

12.5.3.1 The Probability Density Function of IBL

If X is a positive vector which consists of D dimensions and following an IBL
distribution, then it has a joint density function which is given in [54] as:

p(X|α1 . . . αd, α, β, λ) = �(|α|)�(α + β)

�(α)�(β)

×
D+1∏
d=1

X
αd−1
d

�(αd)
λβ

(
|X|

)α−∑D
d=1 αd

(
λ+ |X|

)−(α+β)

(12.48)

where |X| =∑D
d=1 Xd , each Xd > 0, α > 0, β > 0, and λ > 0. The mean and the

variance of IBL are given by:

E(Xd) = αd

αD+1 − 1
; (12.49)

Var(Xd) = αd(αd + αD+1 − 1)

(αD+1 − 1)2(αD+1 − 2)
(12.50)

12.5.3.2 Incorporation of IBLMM with WGCMT

By substituting Eq. (12.48) into Eq. (12.7), the complete log-likelihood is as follows:

Q =
∑
n

∑
j

Znj

[
logπnj +

∑
r∈Nn

wr

Rn

log

(
�(|α|)�(α + β)

�(α)�(β)

D+1∏
d=1

X
αd−1
d

�(αd)
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× λβ
(
|X|

)α−∑D
d=1 αd

(
λ+ |X|

)−(α+β))]
(12.51)

In E-Step, Ẑnj can be calculated using Eq. (12.8). In M-step, we need to calculate
the partial derivative of Q with respect to the parameters of IBL [55].

The partial derivative of Q with respect to αj where j = 1, . . . ,M is as follows:

∂Q

∂αj
=

N∑
i=1

Ẑnj

{
log

D∑
d=1

Xnd − log
(
λj +

D∑
d=1

Xnd

)
+�(αj + βj )−�(αj )

}

(12.52)
The partial derivative of Q with respect to βj is given by:

∂Q

∂βj
=

N∑
i=1

Ẑnj

{
log λj−log

(
λj +

D∑
d=1

Xnd

)
+�(αj + βj )−�(βj )

}
(12.53)

The partial derivative of Q with respect to αjd is defined as:

∂Q

∂αjd
=

N∑
i=1

Ẑnj

{
logXnd − log

D∑
d=1

Xnd +�

( D∑
d=1

αjd

)
−�(αjd)

}
(12.54)

The partial derivative of Q with respect to λj is expressed as follows:

∂Q

∂λj
=

N∑
i=1

Ẑnj

{
βj

λj
− αj + βj

λj + ∑D
d=1 Xnd

}
(12.55)

From Eq. (12.52) to Eq. (12.55), it can be observed that a closed-form solution does
not exist for θj.

In order to estimate these parameters, the Newton–Raphson method can be used.

θj
(k+1) = θj

(k) −H−1
j Gj (12.56)

12.5.3.3 Incorporation of IBMM with WACMT

In E-Step, the Ẑnj can be calculated using Eq. (12.13). The M-Step is performed via
Eq. (12.56).
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12.5.3.4 IBLMM’s Algorithm

In this section, we propose an algorithm for the four models, namely GCGP, GCAP,
ACGP, and ACAP.

1. INPUT: An image X and M .
2. Apply K-means clustering algorithm to group pixels into M clusters.
3. Apply method of moments to calculate the initial value of θ parameters.
4. E-Step:

• Calculate π using Eq. (12.15) for GCGP and ACGP, and using Eq. (12.16) for
GCAP and ACAP.

• Calculate Ẑnj using Eq. (12.8) for GCGP and GCAP, and using Eq. (12.13)
for ACGP and ACAP.

5. M-Step: Calculate the updated value of θ parameter for each cluster j , using
Eq. (12.56).

6. Iterate through E-Step and M-Step until convergence.

12.6 Experimental Results

To investigate the performance of our proposed framework, we test the models on
two different datasets that are BSD500 and CSCV. The BSD500 dataset is known
as a reliable source to compare different image segmentation algorithms, contains
500 color images, and has at least five ground-truth segments for each image. The
CSCV dataset is composed of many categories such as Coast and Beach, Highway,
etc. Each category contains few hundred images. All the images are in color, in
jpeg format, and are 256 × 256 pixels. Their sources vary from digital cameras,
websites, and commercial databases. This section is composed of two experiments.
In first one, we tested the proposed models on BSD500 and evaluated the results
using segmentation evaluation metrics. In second experiment, we employed CSCV
dataset and compared our models using two color spaces that are rgb and l1l2l3,
which are explained below.

12.6.1 Metrics for Segmentation Performance Evaluation

In order to compare the performances of the proposed algorithms, we have used
eight image segmentation evaluation metrics. From BSD500, we have ground truth
labels (actual labels) of each image and also have class labels, predicted from the
proposed algorithms (predicted labels). The performance evaluation metrics are as
follows:
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12.6.1.1 Adjusted Rand Index (ARI)

It is defined as the level of similarity among the actual labels and predicted labels.
In ARI, the permutations are not considered. The ARI’s value will tend to 0, if the
predicted labels are arranged randomly. ARI has a range of [−1, 1], and values
closer to zero are considered as bad clustering and values closer to 1 means good
clustering. The ARI [56] is given as:

ARI = RI− E[RI]
max(RI)− E[RI] (12.57)

where E[RI] is expected value of RI (Rand index). The RI is defined as:

ARI = a + b

C
nsamples
2

(12.58)

where K and C are the actual and predicted labels, respectively. The a is the number
of element pairs having same class labels in K and C. b is the number of element
pairs having different class labels in K and C.

12.6.1.2 Adjusted Mutual Information Score (AMIS)

The mutual information (MI) is defined as the level of agreement of actual labels and
predicted labels, without permutation. The AMIS [57–59] is the adjusted version of
MI and is defined as:

AMIS = MI(T , U)− E[MI(T , U)]
mean(H(T ),H(U))− E[MI(T , U)] (12.59)

where T andU are two class labels assignments,H(T ) andH(U) define the entropy
for T and U , respectively. E[MI(T , U)] is the expected value of MI(T , U).

12.6.1.3 Normalized Mutual Information Score (NMIS)

The NMIS [57–59] is the normalized version of MI and given as:

NMIS(T , U) = MI(T , U)

mean
(
H(T ),H(U)

) (12.60)
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12.6.1.4 Homogeneity Score (HS)

HS [60, 61] uses a criteria related to analysis of the conditional entropy. HS is
defined as each cluster contains only members of the single class. It has a range
of [0, 1], where 1 means each cluster only contains members of just one class. On
the other hand, 0 means that almost every data inside a cluster contains different
class labels. It is given by:

HS = 1− H(C|K)

H(C)
(12.61)

where H(C|K) is the conditional entropy of the classes given the cluster assign-
ments:

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nck

n
log

(
nck

nk

)
; H(C) = −

|C|∑
c=1

nc

n
. log

(
nc

n

)

(12.62)

where H(C) is the entropy of the classes, n is the number of pixels in the image,
nc is the number of pixels that belong to class c, and nk is the number of pixels that
belong to cluster k.

12.6.1.5 Completeness Score (CS)

CS [60, 61] is also a criteria related to analysis of the conditional entropy. CS is
defined as all the members of a given class that belong to the same clusters. It has a
range of [0, 1], where 0 means worst clustering and 1 means perfect clustering.

CS = 1− H(K|C)
H(K)

(12.63)

where H(K|C) and H(K) can be computed in a symmetric manner.

12.6.1.6 V-Measure Score (VMS)

The VMS [60, 61] is defined as the harmonic mean of HS and CS. It is symmetrical
in nature. It is as follows:

VMS = 2×
(

HS× CS

HS+ CS

)
(12.64)
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12.6.1.7 Calinski-Harabaz Index (CHI)

It is one of the most flexible metrics for image segmentation. If the human
segmentations are not available, then CHI can be used for model evaluation, where
the higher value signifies that the clusters are well defined. For M clusters, the CHI
[62] is defined as the ratio of the between-clusters dispersion mean and the within-
cluster dispersion:

CHI(M) = Tr(BM)

Tr(WM)
× n−M

M − 1
(12.65)

where WM is the within-cluster dispersion matrix and BM is defined as the between-
group dispersion matrix:

WM =
M∑
m=1

∑
x∈Cm

(x−Cm)(x−Cm)
T ; BM =

∑
m

nm(cm−c)(cm−c)T (12.66)

Cm: set of pixels in cluster m, cm: the center of the cluster m, nm: number of pixels
in cluster m.

12.6.1.8 Jaccard Similarity Score (JSS)

JSS [63–65] is also called Jaccard index. It is defined as the ratio of intersection
(of predicted labels and actual labels) and the union (of predicted labels and actual
labels). It also ranges between 0 and 1 where 0 means very bad score and 1 means
the segmentation output is perfect.

12.6.2 Color Spaces for Image Segmentation

The selection of color space is crucial for image segmentation. It is desirable to have
a color space robust against varying illumination. Few color spaces are assessed,
dissected, and examined in [66]. Out of many color spaces, we have selected the rgb
and l1l2l3 color spaces which are as follows:

r(R,G,B) = R
R+ G+ B (12.67)

g(R,G,B) = G
R+ G+ B (12.68)
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b(R,G,B) = B
R+ G+ B (12.69)

l1(R,G,B) = (R− G)2
SUM(RGB)

(12.70)

l2(R,G,B) = (R− B)2
SUM(RGB)

(12.71)

l3(R,G,B) = (G− B)2
SUM(RGB)

(12.72)

where SUM(RGB) = (R− G)2 + (R− B)2 + (G− B)2. The l1l2l3 and rgb
outperform the traditional RGB color space and hence used in our experiments also.

12.6.3 Experiment 1

Here, we present some results of testing our models on images from the BSD500
using l1l2l3 color space. Figure 12.4 contains the segmentation outputs of image
29030 (obtained by using ID, GID, and IBL versions of GCGP, GCAP, ACGP, and
ACAP models). Considering the second, third, and fourth columns of Fig. 12.4, it
can be observed that IBL is able to detect car as an object properly, followed by
GID and ID. Tables 12.1 and 12.2 verify our visual analysis by means of qualitative
approach using the image segmentation evaluation metrics. Images in BSD500 may
contain upto six human segmentations. The output of each model is compared with
each human segmentation by using evaluation metrics. By incorporating 3 pdfs
with 4 mean template models, we have 12 models. Each result of these models
is compared with 6 human segments which led to have upto 72 comparisons. In
order to reduce the complexity in understanding, we have compared the mean of
each model with the human segmentations.

Figure 12.5 contains the segmentation outputs of image 118035. Again, from the
second, third, and fourth columns of Fig. 12.5, it can be observed that IBLMM is
able to detect the different components of a building much accurately as compared
to GIDMM and IDMM. Tables 12.3 and 12.4 contain the qualitative analysis of
outputs from image 118035.

Similarly, Fig. 12.6 contains the segmentation results of 124084. From the
second, third, and fourth columns of Fig. 12.6, it can be seen that IBLMM is able to
detect the flower petals pretty smoothly as compared to its competitors. Tables 12.5
and 12.6 contain the qualitative analysis of outputs from image 124084.

Figure 12.7 contains the segmentation results of image 376086. From the second,
third, and fourth columns of Fig. 12.7, it can be seen that IBLMM is able to detect
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Fig. 12.4 Column 1: Contains the original image (29030) followed by the three ground-truths.
Column 2: Contains the segmentation outputs from ID version of GCGP, GCAP, ACGP, and ACAP
models, Column 3: Contains the segmentation outputs from GID version of GCGP, GCAP, ACGP,
and ACAP models, Column 4: Contains the segmentation outputs from IBL version of GCGP,
GCAP, ACGP, and ACAP models

Table 12.1 Performance evaluation of the 29030 image with the ARI, AMIS, NMIS, MIS and HS
metrics

Algorithm Model K
ARI’s
mean

AMIS’s
mean

NMIS’s
mean

MIS’s
mean

HS’s
mean

ID GCGP 2 0.092 0.063 0.135 0.078 0.063

GCAP 2 0.111 0.052 0.099 0.065 0.052

ACGP 2 0.042 0.039 0.104 0.048 0.039

ACAP 2 0.112 0.061 0.119 0.075 0.061

Mean 0.089 0.054 0.114 0.067 0.054
GID GCGP 2 0.084 0.059 0.129 0.073 0.059

GCAP 2 0.081 0.057 0.126 0.071 0.057

ACGP 2 0.079 0.056 0.124 0.069 0.056

ACAP 2 0.077 0.055 0.123 0.068 0.055

Mean 0.080 0.057 0.126 0.070 0.057
IBL GCGP 2 0.662 0.420 0.587 0.520 0.420

GCAP 2 0.664 0.419 0.585 0.519 0.419

ACGP 2 0.650 0.412 0.578 0.511 0.412

ACAP 2 0.651 0.412 0.578 0.510 0.412

Mean 0.6569 0.4158 0.5821 0.5151 0.4158
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Table 12.2 Quality analysis of the 29030 image with the CS, VM, JSS, and CHI metrics

Algorithm Model K CS’s mean VM’s mean JSS’s mean CHI

ID GCGP 2 0.289 0.103 0.001 73962.307

GCAP 2 0.190 0.081 0.013 54791.895

ACGP 2 0.281 0.068 0.000 42512.321

ACAP 2 0.236 0.096 0.007 64281.498

Mean 0.249 0.087 0.005 58887.006
GID GCGP 2 0.285 0.098 0.001 71021.648

GCAP 2 0.282 0.095 0.001 67895.016

ACGP 2 0.279 0.092 0.001 65785.996

ACAP 2 0.277 0.091 0.001 64006.640

Mean 0.281 0.094 0.001 268709.300
IBL GCGP 2 0.826 0.553 0.003 262224.285

GCAP 2 0.823 0.552 0.004 259172.527

ACGP 2 0.817 0.545 0.003 265561.038

ACAP 2 0.815 0.544 0.003 264630.709

Mean 0.8202 0.5487 0.0031 262897.140

Fig. 12.5 Column 1: Contains the original image (118035) followed by the three ground-truths.
Column 2: Contains the segmentation outputs from ID’s version of GCGP, GCAP, ACGP, and
ACAP models, Column 3: Contains the segmentation outputs from GID’s version of GCGP, GCAP,
ACGP, and ACAP models, Column 4: Contains the segmentation outputs from IBL’s version of
GCGP, GCAP, ACGP, and ACAP models
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Table 12.3 Performance evaluation of the 118035 image with the ARI, AMIS, NMIS, MIS and
HS metrics

Algorithm Model K
ARI’s
mean

AMIS’s
mean

NMIS’s
mean

MIS’s
mean

HS’s
mean

ID GCGP 2 0.157 0.174 0.372 0.258 0.174

GCAP 2 0.158 0.174 0.371 0.258 0.174

ACGP 2 0.171 0.174 0.351 0.260 0.174

ACAP 2 0.318 0.223 0.345 0.334 0.223

Mean 0.201 0.186 0.360 0.278 0.186
GID GCGP 2 0.179 0.143 0.249 0.217 0.143

GCAP 2 0.159 0.130 0.232 0.198 0.130

ACGP 2 0.162 0.133 0.236 0.201 0.133

ACAP 2 0.165 0.134 0.237 0.204 0.134

Mean 0.166 0.135 0.238 0.205 0.135
IBL GCGP 2 0.589 0.438 0.631 0.644 0.438

GCAP 2 0.589 0.438 0.632 0.644 0.438

ACGP 2 0.589 0.438 0.631 0.644 0.438

ACAP 2 0.588 0.436 0.629 0.641 0.436

Mean 0.5887 0.4376 0.6308 0.6432 0.4376

Table 12.4 Quality analysis of the 118035 image with the CS, VM, JSS, and CHI metrics

Algorithm Model K CS’s mean VM’s mean JSS’s mean CHI

ID GCGP 2 0.810 0.283 0.453 184910.025

GCAP 2 0.810 0.283 0.453 184682.459

ACGP 2 0.722 0.277 0.452 163659.995

ACAP 2 0.543 0.311 0.452 68588.861

Mean 0.721 0.288 0.452 150460.335
ID GCGP 2 0.810 0.283 0.453 184910.025

GCAP 2 0.810 0.283 0.453 184682.459

ACGP 2 0.722 0.277 0.452 163659.995

ACAP 2 0.543 0.311 0.452 68588.861

Mean 0.721 0.288 0.452 150460.335
IBL GCGP 2 0.927 0.586 0.452 133485.637

GCAP 2 0.928 0.586 0.452 133528.359

ACGP 2 0.927 0.585 0.452 133460.767

ACAP 2 0.923 0.583 0.452 133191.467

Mean 0.9262 0.5850 0.4521 133416.557
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Fig. 12.6 Column 1: Contains the original image (124084.jpg) followed by the three ground-
truths. Column 2: Contains the segmentation outputs from ID’s version of GCGP, GCAP, ACGP,
and ACAP models, Column 3: Contains the segmentation outputs from GID’s version of GCGP,
GCAP, ACGP, and ACAP models, Column 4: Contains the segmentation outputs from IBL’s
version of GCGP, GCAP, ACGP, and ACAP models

the two men more accurately as compared to GIDMM and IDMM. Tables 12.7
and 12.8 contain the image segmentation results for image 376086.

12.6.4 Experiment 2

Considering Figs. 12.8 and 12.9, the first image is the original one (n291030),
followed by eight outputs, out of which the first four outputs are computed using
rgb color space and the remaining four outputs are obtained by using l1l2l3 color
space.

Also, Figs. 12.10 and 12.11 contain the segmentation output of images n291030
and art255, respectively. In Figs. 12.10 and 12.11, the first image is the original one,
followed by eight outputs, out of which in the first four image, rgb color space is
used and for rest segmentation outputs, l1l2l3 color space is used.

Similarly, Figs. 12.12 and 12.13 contain the segmentation output of image
n291030 and art255, respectively. In Figs. 12.12 and 12.13, the first image is the
original one, followed by eight outputs, out of which the first four segmentation
output, rgb color space is used and for remaining four outputs, l1l2l3 color space is
used.
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Table 12.5 Performance evaluation of the 124084 image with the ARI, AMIS, NMIS, MIS and
HS metrics

Algorithm Model K
ARI’s
mean

AMIS’s
mean

NMIS’s
mean

MIS’s
mean

HS’s
mean

ID GCGP 2 0.046 0.030 0.084 0.044 0.030

GCAP 2 0.134 0.085 0.162 0.126 0.086

ACGP 2 0.053 0.035 0.092 0.052 0.035

ACAP 2 0.065 0.042 0.104 0.062 0.042

Mean 0.075 0.048 0.110 0.071 0.048
GID GCGP 2 0.112 0.071 0.150 0.104 0.071

GCAP 2 0.112 0.071 0.150 0.104 0.071

ACGP 2 0.112 0.071 0.150 0.104 0.071

ACAP 2 0.112 0.071 0.150 0.104 0.071

Mean 0.112 0.071 0.150 0.104 0.071
IBL GCGP 2 0.502 0.354 0.511 0.519 0.354

GCAP 2 0.500 0.352 0.508 0.516 0.352

ACGP 2 0.500 0.353 0.510 0.517 0.353

ACAP 2 0.501 0.353 0.510 0.517 0.353

Mean 0.5007 0.3529 0.5097 0.5171 0.3529

Table 12.6 Quality analysis of the 124084 image with the CS, VM, JSS, and CHI metrics

Algorithm Model K CS’s mean VM’s mean JSS’s mean CHI

ID GCGP 2 0.239 0.053 0.454 5717.493

GCAP 2 0.313 0.132 0.454 15553.412

ACGP 2 0.249 0.061 0.454 6769.251

ACAP 2 0.264 0.071 0.454 8221.494

Mean 0.266 0.079 0.454 9065.413
GID GCGP 2 0.327 0.115 0.000 47850.229

GCAP 2 0.326 0.115 0.000 47616.519

ACGP 2 0.326 0.115 0.000 47471.541

ACAP 2 0.326 0.114 0.000 47390.939

Mean 0.326 0.115 0.000 190329.228
IBL GCGP 2 0.759 0.472 0.427 592730.642

GCAP 2 0.754 0.469 0.427 589902.293

ACGP 2 0.756 0.471 0.427 587628.857

ACAP 2 0.756 0.471 0.427 591670.571

Mean 0.7562 0.4707 0.4268 590483.091
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Fig. 12.7 Column 1: Contains the original image (376086) followed by three ground-truths.
Column 2: Contains the segmentation outputs from ID’s version of GCGP, GCAP, ACGP, and
ACAP models, Column 3: Contains the segmentation outputs from GID’s version of GCGP, GCAP,
ACGP, and ACAP models, Column 4: Contains the segmentation outputs from IBL’s version of
GCGP, GCAP, ACGP, and ACAP models

Table 12.7 Performance evaluation of the 376086 image with the ARI, AMIS, NMIS, MIS and
HS metrics

Algorithm Model K
ARI’s
mean

AMIS’s
mean

NMIS’s
mean

MIS’s
mean

HS’s
mean

ID GCGP 2 -0.004 0.047 0.109 0.097 0.047

GCAP 2 -0.003 0.040 0.091 0.084 0.041

ACGP 2 -0.006 0.023 0.071 0.049 0.023

ACAP 2 -0.004 0.047 0.112 0.098 0.047

Mean −0.004 0.039 0.096 0.082 0.039
GID GCGP 2 -0.004 0.046 0.107 0.095 0.046

GCAP 2 -0.004 0.047 0.110 0.097 0.047

ACGP 2 -0.004 0.048 0.112 0.098 0.048

ACAP 2 -0.004 0.048 0.112 0.098 0.048

Mean −0.004 0.047 0.110 0.097 0.047
IBL GCGP 2 0.064 0.103 0.180 0.208 0.103

GCAP 2 0.061 0.102 0.178 0.206 0.102

ACGP 2 0.062 0.102 0.178 0.206 0.102

ACAP 2 0.064 0.103 0.179 0.208 0.103

Mean 0.0627 0.1027 0.1788 0.2070 0.1028
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Table 12.8 Quality analysis of the 376086 image with the CS, VM, JSS, and CHI metrics

Algorithm Model K CS’s mean VM’s mean JSS’s mean CHI

D GCGP 2 0.267 0.078 0.000 197432.441

GCAP 2 0.212 0.066 0.003 165708.431

ACGP 2 0.231 0.041 0.000 71589.989

ACAP 2 0.274 0.079 0.000 197429.295

Mean 0.249 0.066 0.001 158040.039
GID GCGP 2 0.260 0.076 0.001 195016.547

GCAP 2 0.268 0.078 0.000 198092.848

ACGP 2 0.273 0.079 0.000 198893.445

ACAP 2 0.273 0.079 0.000 198893.445

Mean 0.269 0.078 0.000 790896.285
IBL GCGP 2 0.324 0.153 0.136 54345.372

GCAP 2 0.322 0.151 0.136 54980.749

ACGP 2 0.322 0.151 0.136 56306.326

ACAP 2 0.324 0.152 0.136 54602.056

Mean 0.3229 0.1516 0.1359 55058.626

Fig. 12.8 Original image (n291030) followed by the eight output images from ID’s version of the
GCGP, GCAP, ACGP, and ACAP models, out of which the first four images, have used rgb color
space and remaining four have used l1l2l3 color space
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Fig. 12.9 Contains the original image (art255) followed by the eight output images from ID’s
version of the GCGP, GCAP, ACGP, and ACAP models. Out of which the first four images, have
used rgb color space and remaining four have used l1l2l3 color space

Fig. 12.10 Original image (n291030) followed by the eight output images from GID’s version of
the GCGP, GCAP, ACGP, and ACAP models out of which the first four images, have used rgb
color space and remaining four have used l1l2l3 color space
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Fig. 12.11 Original image (art255) followed by the eight output images from GID’s version of the
GCGP, GCAP, ACGP, and ACAP models, out of which the first four images, have used rgb color
space and remaining four have used l1l2l3 color space

Fig. 12.12 Original image (n291030) followed by the eight output images from IBL’s version of
the GCGP, GCAP, ACGP, and ACAP models, out of which the first four images, have used rgb
color space and remaining four have used l1l2l3 color space
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Fig. 12.13 Original image (art255) followed by the eight output images from IBL’s version of the
GCGP, GCAP, ACGP, and ACAP models, out of which the first four images, have used rgb color
space and remaining four have used l1l2l3 color space

12.7 Conclusion

The main aim of this chapter is to develop sophisticated algorithms for image
segmentation. We have used an approach proposed [44] in which the authors have
suggested the incorporation of traditional FMM with CP and PP mean templates.
These methods ensure the integration of spatial information by using peer pixels
information and thus makes the FMM more robust to noise. We explained how the
mean templates integrate spatial information by introducing the pixel’s weight in
mixture model estimation. We have implemented the IDMM, GIDMM, and IBLMM
versions of GCGP, GCAP, ACGP, and ACAP models. These semi-bounded FMM
are chosen precisely because of their flexibility that allow to describe many shapes.
We have used BSD500 and CVCL dataset for experimentation. It has been found
that out of the proposed algorithms IBLMM outperformed the GIDMM and IDMM.
Also, the l1l2l3 color space is far better than the rgb and the traditional RGB color
space. Future works could be devoted to the application of the proposed models and
approaches for object detection and tracking as well as video segmentation.
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Chapter 13
Medical Image Segmentation Based on
Spatially Constrained Inverted
Beta-Liouville Mixture Models

Wenmin Chen, Wentao Fan, Nizar Bouguila, and Bineng Zhong

Abstract In this chapter, we propose an image segmentation method based on a
spatially constrained inverted Beta-Liouville (IBL) mixture model for segmenting
medical images. Our method adopts the IBL distribution as the basic distribution,
which can demonstrate better performance than commonly used distributions (such
as Gaussian distribution) in image segmentation. To improve the robustness of our
image segmentation method against noise, the spatial relationship among nearby
pixels is imposed into our model by using generalized means. We develop a
variational Bayes inference algorithm to learn the proposed model, such that model
parameters can be efficiently estimated in closed form. In our experiments, we use
both simulated and real brain magnetic resonance imaging (MRI) data to validate
our model.

13.1 Introduction

Image segmentation is a fundamental task in image analysis and has been applied to
various fields include medical imaging, face recognition, and pedestrian detection
[1–3]. The purpose of image segmentation is to divide an image into several different
regions according to the characteristics of regions within that image. Usually the
effect of segmentation is related to the noise level, the sharpness, the brightness,
the shadows, the illumination in the images. These factors increase the difficulty
of image segmentation and sometimes may result in poor segmentation. With
the upgrade of medical imaging equipment, image segmentation has been widely
used in medical image analysis [4, 5]. Through medical image segmentation, the
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efficiency of doctor diagnosis can be significantly improved. Thus, in this chapter
we focus on developing an efficient medical image segmentation method through
spatially constrained mixture models.

Many image segmentation methods have been previously proposed, such as
edge-based methods [6, 7], region-based methods [8–10], graph-based methods
[11–13], cluster-based methods [14, 15], and so on. Among the existing methods,
the model-based segmentation methods, especially finite mixture models, have
attracted more and more attention. Finite mixture model is composed of linear
combinations of a finite number of basic distributions. It is a powerful tool in
clustering analysis and has demonstrated its effectiveness in image segmentation.
Nevertheless, image segmentation methods based on conventional finite mixture
models are very sensitive to noise since they do not take the prior knowledge
that neighboring pixels most probably belong to the same segment into account.
In order to include the spatial dependency between pixels into mixture models,
several works based on spatially constrained finite Gaussian mixture models have
been successfully developed for image segmentation [16–19]. In these methods,
since the spatial dependence of pixels in an image is considered, they are more
robust against noise than conventional mixture models. However, one disadvantage
of these spatially constrained mixture models is that they were learnt using the
expectation maximization (EM) algorithm, which may be significantly affected by
the initial values of parameters and can easily converge to a local maximum with
an inappropriate initialization. Moreover, as shown in several recent works, mixture
models based on non-Gaussian distributions (such as Dirichlet [20, 21], inverted
Dirichlet [22, 23], generalized inverted Dirichlet [24–27], or Beta-Liouville distri-
butions [28, 29]) may provide better clustering performance than those methods
based on Gaussian mixture models, particulary in image segmentation [30–32].

In this work, we propose an image segmentation method based on spatially
constrained non-Gaussian mixture models. Our mixture model is constructed by
considering inverted Beta-Liouville (IBL) as the basic distribution. The motivation
of choosing the IBL distribution to build our mixture model for image segmentation
is that it contains inverted Dirichlet distribution as a special case and therefore can
provide more flexibility [33]. Also, compared to Gaussian that can only approximate
symmetric distributions, IBL allows both symmetric and asymmetric distributions.
In addition, we add the spatial relationship between nearby pixels in our model
by using generalized means (GM) [34]. Thus, the prior knowledge that neighboring
pixels most probably belong to the same segment is taken into account in our model.
In order to learn the proposed model for image segmentation, we develop a learning
method based on variational Bayes (VB) with mean-field assumption [35–37], such
that model parameters can be effectively estimated in closed form. The effectiveness
of the proposed image segmentation method is validated though experiments with
both simulated and real MRI brain images.

The remaining part of this chapter can be listed as follows. In Sect. 13.2, we
introduce the spatially constrained IBL mixture model. In Sect. 13.3, we develop
a learning algorithm based on variational Bayes to estimate the parameters of our



13 Medical Image Segmentation Based on Spatially Constrained Inverted. . . 309

model. In Sect. 13.4, we provide experimental results of our model in segmenting
the simulated and real MRI brain images. Finally, conclusion is given in Sect. 13.5.

13.2 The Spatially Constrained Inverted Beta-Liouville
Mixture Model

13.2.1 Finite IBL Mixture Model

Finite IBL mixture model is composed of a finite number of IBL distributions, where
each distribution has a certain proportion. Given a D-dimensional positive random
vector X = (X1, . . . , XD) that is distributed according to an IBL mixture model
with M components, the probability density function (pdf) is given by

p(X|π ,�) =
M∑
j=1

ξj IBL(X|�j), (13.1)

where ξj is the coefficient of the M components with the constrains that ξj > 0 and∑M
j=1 ξj = 1. IBL(X|�j) is an IBL distribution of the j th component with its own

parameters �j and is defined by

IBL(X|�j) = �(
∑D

d=1 αjd)�(αj + βj )

�(αj )�(βj )

D∏
d=1

X
αjd−1
d

�(αjd)

×λβjj
( D∑

d=1

Xd

)αj−∑D
d=1 αjd

(
λj +

D∑
d=1

Xd

)−(αj+βj )
(13.2)

where �j = {αj , αj , βj , λj } denotes the set of IBL parameters associated with the
j th component.

Then, a binary latent variable Zi is added for each Xi, such that if the data Xi
belong to the j th component, then Zij equals to 1, otherwise it equals to 0. If we
assume that each Zij is independent of each other, we can write the probability
distribution of Zi as

p(Zi) =
M∏
j=1

π
Zij

j (13.3)

Though finite mixture models have been widely used in solving many computer
vision problems, but they cannot get good performance in image processing,
especially in image segmentation. The problem of finite mixture model is that it
deals with each pixel individually and does not consider the relationship between
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the current pixel and its neighbors. As a result, conventional finite mixture model
is not robust to noise. In addition, conventional finite mixture models assume that
each pixel Xi in the component j has the same coefficient ξj , which clearly is not
a practical prior assumption since pixels may vary in their locations and intensity
values for different components.

13.2.2 Finite IBL Mixture Model with Spatial Constraints

In order to make the finite IBL mixture model more robust against noise for image
segmentation, we propose a spatially constrained IBL mixture model based on
contextual mixing proportions and generalized means. If each pixel Xi follows an
IBL mixture model, then its probability density function is given by

p(Xi |π i , �) =
M∑
j=1

πij IBL(Xi |�j). (13.4)

where π i = (πi1, . . . , πiM) is the vector that contains the contextual mixing
proportions. Here, each πij > 0 represents the probability that the ith pixel belongs
to the j th segment with the constraint that

∑M
j=1 πij = 1.

Next, we impose the spatial relationship between nearby pixels into our model
through generalized mean. Compared with other spatial constrained models such as
MRF [38], the method of incorporating generalized mean is more simpler and easier
to implement. The generalized mean is a family of functions for aggregating sets of
numbers. By including the generalized mean into the IBL mixture model, we have

p(Xi |πi,�) =
∏
mεNi

[ M∑
j=1

πmj IBL(Xm|θj )
] 1

Ni

. (13.5)

where Ni is the neighboring pixel of the ith pixel. After adding the spatial
constraints, the probability distribution of latent variable Z can be defined in terms
of the contextual mixing proportions π :

p(Z|π) =
N∏
i=1

M∏
j=1

π
Zij

ij . (13.6)

Then, the likelihood function of data set X is defined by

p(X|Z,�) =
N∏
i=1

∏
mεNi

[ M∏
j=1

IBL(Xm|θj )Zmj

] 1
Ni

(13.7)
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The way of integrating generalized mean in the IBL mixture model forces our model
to consider the neighborhood of the ith pixel rather than just the ith pixel itself in
image segmentation.

Similar to [32], we define the prior distribution of π using a Dirichlet distribu-
tion as

p(π) =
N∏
i=1

Dir(π i |�i ) =
N∏
i=1

�(
∑M

j=1 aZ̄
b
ij )∏M

j=1 �(aZ̄
b
ij )

M∏
j=1

π
aZ̄b

ij−1

ij (13.8)

where �ij = aZ̄b
ij . Based on [32], Z̄ij is defined by

Z̄ij =
(

1

N

N∑
i=1

r
p
ij

) 1
p + 〈πij 〉

σ
(13.9)

where σ is the parameter that controls the smoothing contribution from the expected
value 〈πij 〉. In this work, we set the value of σ as 2.

Next, we use Gamma distribution G(·) as the priors for the following parameters:

p(α) = G(α|u, v) =
M∏
j=1

D∏
d=1

α
ujd−1
jd e−vjdαjd

�(ujd)
, (13.10)

p(α) = G(α|g,h) =
M∏
j=1

α
gj−1
j e−hjαj

�(gj )
, (13.11)

p(β) = G(β|s, t) =
M∏
j=1

β
sj−1
j e−tj βj

�(sj )
, (13.12)

p(λ) = G(λ|c, f) =
M∏
j=1

λ
cj−1
j e−fj λj

�(cj )
. (13.13)

13.3 Model Learning via Variational Bayes

In this part, following [33], we adopt variational Bayes to learn the proposed
spatially constrained IBL mixture model. The main idea of variational Bayes is
based on finding a lower bound on p(X|π) via Jensen’s inequality. The lower bound
L(q) can then be defined as:
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log p(X) = log
∫

p(X,�)d� = log
∫

q(�)
p(X
q(�)

d�

≥
∫

q(�)log
p(X,�)
q(�)

d� = L(q), (13.14)

where � = {Z,�,π} represents all random and latent variables. q(�) is an
approximation for the posterior distribution p(�|X).

Then, we adopt the mean-field assumption to restrict the approximated posterior
distribution q(�) by factorizing it into the product of different factors as

q(�) = q(Z)q(�)q(π) = q(Z)q(α)q(α)q(β)q(λ)q(π) (13.15)

Variational solutions are obtained by maximizing the lower bound L(q) with
respect to each factor in turn. The variational posterior q(Z) can be updated by

q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij , (13.16)

where

rij =
r∗ij∑M
k=1 r

∗
ik

, (13.17)

r∗ij = exp

{
〈lnπij 〉 +

∑
mεNi

1

Ni

[
Sj + Tj + (ᾱj −

D∑
d=1

ᾱjd)log(
D∑
d=1

Xmd)

+β̄j 〈logλj 〉 +
D∑
d=1

(ᾱjd − 1)logXmd)− (ᾱj + β̄j )Hmj

]}
(13.18)

The expected values in (13.18) are given by

ᾱj =
g∗j
h∗j

, β̄j =
s∗j
t∗j
, ᾱjd =

u∗jd
v∗jd

, λ̄j =
c∗jd
f ∗jd

(13.19)

〈Zij 〉 = rij , 〈lnπij 〉 = �(�∗ij )−�(

M∑
j=1

�∗ij ) (13.20)

Hij =
〈
log(λj +

D∑
d=1

Xid)

〉
, 〈logλj 〉 = �(c∗j )− log(f ∗j ), (13.21)
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Sj =
〈
log

�(
∑D

d=1 αjd)∏D
d=1 �(αjd)

〉
, Tj =

〈
log

�(αj + βj )

�(αj )�(βj )

〉
. (13.22)

The expectations Hij , Sj , and Tj cannot be found in closed form solutions, we use
second-order Taylor series expansion as in [33] to calculate lower bounds.

The variational solution to the factor q(α) is given by

q(α) =
M∏
j=1

D∏
d=1

G(αjd |u∗jd , v∗jd), (13.23)

where we have

u∗jd = ujd +
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

ᾱjd

[
�(

D∑
d=1

ᾱjd)−�(ᾱjd)

+� ′(
D∑
d=1

ᾱjd)

D∑
l �=d

(〈logαjl〉 − logᾱj l)ᾱj l

]
, (13.24)

v∗jd = vjd −
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

[
logXid − log

(
D∑
d=1

Xid

)]
, (13.25)

with expected values

〈logαjl〉 = �(u∗j l)−�(v∗j l). (13.26)

The optimal solution to the factor q(α) is obtained by

q(α) =
M∏
j=1

G(αj |g∗j , h∗j ), (13.27)

where hyperparameters g∗j and h∗j are given by

g∗j = gj +
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

[
�(ᾱj + β̄j )−�(ᾱj )

+β̄j� ′(ᾱj + β̄j )(〈logβj 〉 − logβ̄j )

]
ᾱj , (13.28)
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h∗j = hj −
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

log

( D∑
d=1

Xid

)
+

N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

Hij , (13.29)

and

〈logβj 〉 = �(s∗j )− log(t∗j ). (13.30)

Then, the variational optimal solution to q(β) can be defined by

q(β) =
M∏
j=1

G(βj |s∗j , t∗j ), (13.31)

where

s∗j = sj +
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

[
�(ᾱj + β̄j )−�(β̄j )

+ᾱj� ′(ᾱj + β̄j )(〈logαj 〉 − logᾱj )

]
β̄j (13.32)

t∗j = tj +
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

[
Hij − 〈logλj 〉

]
, (13.33)

The variational solution to q(π) can be obtained by

q(π) =
N∏
i=1

M∏
j=1

Dir(πij |�∗ij ) (13.34)

where

�∗ij = 〈Zij 〉 +�ij (13.35)

with

〈Zij 〉 = rij (13.36)

Consequently, the expected value of πij in posterior distribution is given by

〈πij 〉 =
�∗ij∑M
k=1 �

∗
ik

(13.37)
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Finally, the optimal solution to q(λ) is given by

q(λ) =
M∏
j=1

G(cj |f ∗j , t∗j ), (13.38)

where the hyperparameters are given by

c∗j = cj +
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

β̄j , (13.39)

f ∗j = fj +
N∑
i=1

Ni∑
m=1

〈Zmj 〉
Ni

ᾱj + β̄j

λ̄j +∑D
d=1 Xid

. (13.40)

In our case, the lower bound L(q) can then be calculated by

L(q) =
∑
Z

∫
q(Z,�,π)log

{
p(X,Z,�,π)

q(Z,�),π

}
d�

= 〈log p(X|Z,�,π)〉 + 〈log p(Z|π)〉 + 〈logp(π)〉 + 〈log p(�)〉
−〈logq(Z)〉 − 〈logq(π)〉 − 〈log q(�)〉. (13.41)

The complete algorithm of estimating the parameters of the proposed spatially
constrained IBL mixture model with variational Bayes can be summarized as
follows

Algorithm 1
1: Initialize the number of components M .
2: Initialize values of hyperparameters ujd , vjd , gj , hj , sj , tj , cj , fj .
3: Initialize the values of rij by using K-means.
4: repeat
5: Variational E-step:

Calculate the expected values (13.19), (13.20), (13.21), (13.22) and (13.26).
6: Variational M-step:

Update the variational solutions by using (13.16), (13.23), (13.27), (13.31), (13.34)
and (13.38).

7: until convergence is reached
8: Calculate the 〈πij 〉 using (13.37).
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13.4 Experimental Results

In our experiments, we use both simulated and real brain MRI images to validate
the proposed image segmentation method that is based on the spatially constrained
IBL mixture model (denoted by IBLMM-SC). We compare IBLMM-SC with other
well-formulated image segmentation methods based on mixture models, such as the
conventional Gaussian mixture model (GMM) [39], the fast and robust spatially
constrained Gaussian mixture model (FRSCGMM) [18], the spatially constrained
Dirichlet mixture model (SC-DMM) [30], the spatially constrained Student’s t
mixture model (SMM-SC) [40], the spatially constrained inverted Dirichlet mixture
model (IDMM-SC) [31], and the spatially constrained Beta-Liouville mixture
model (BLMM-SC) [32].

Our experiments can be divided into two parts: First, we test our method on
simulated brain MRI images with different levels of noise. Second, we test our
method with real MRI brain images. We employ the misclassification ratio [41]
(MCR) to measure the performance of the segmentation result which is defined by

MCR = number of misclassified pixels

total number of pixels
× 100 (13.42)

13.4.1 Synthetic MRI Brain Images

In this experiment, we test the proposed image segmentation method on a publicly
available simulated brain database (SBD), namely the BrainWeb1 [42]. The main
target of this application is to segment the simulated brain MRI image into three
segments including: cerebrospinal fluid (CSF), gray matter (GM), and white matter
(WM). It is noteworthy that all non-brain tissues are removed from original images
as a preprocessing step.

To begin with, we use a simulated image with 9% noise (index = 50) as shown in
Fig. 13.1a, the size of the image is 181× 217. The segmentation results by different
segmentation methods are demonstrated in Fig. 13.1 with the ground truth that is
shown in Fig. 13.1b. The segmentation results of the proposed method and other
tested ones are shown in Fig. 13.1c–i. Based on these results, we can see that the
proposed IBLMM-SC can provide more visually appealing segmentation result with
less noise as shown in Fig. 13.1c, and with the lowest MCR value 4.87% among all
tested methods.

Next, we conduct experiment on another simulated MRI image with 7% noise
(index = 100) as demonstrated in Fig. 13.2a. The ground truth of the segmentation
result can be seen in Fig. 13.2b. The segmentation result of the proposed method
is shown in Fig. 13.2c. As compared with other tested methods as illustrated

1http://brainweb.bic.mni.mcgill.ca/brainweb/.

http://brainweb.bic.mni.mcgill.ca/brainweb/
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Fig. 13.1 (a) Original image with 9% noise. (b) Ground truth. (c) IBLMM-SC (MCR = 4.87%).
(d) GMM (MCR = 8.10%). (e) FRSCGMM (MCR = 6.95%). (f) SMM (MCR = 7.23%). (g) DMM-
SC (MCR = 5.23%). (h) IDMM-SC (MCR = 5.38%) (i) BLMM (MCR = 8.87%)

in Fig. 13.2d–i, the proposed IBLMM-SC can provide better segmentation both
qualitatively (with less noise) and quantitatively (with the smallest MCR rate
2.12%).

To better validate our segmentation method, we conduct experiments on all
simulated images with 7%, 9% noise levels. The average segmentation results under
different noise levels are shown in Table 13.1. From this table, it is clear that the
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Fig. 13.2 (a) Original image with 7% noise. (b) Ground truth. (c) The proposed IBLMM-
SC (MCR = 2.12%). (d) GMM (MCR = 13.20%). (e) FRSCGMM (MCR = 8.37%). (f) SMM
(MCR = 5.21%). (g) DMM-SC (MCR = 3.87%). (h) IDMM-SC (MCR = 4.07%). (i) BLMM
(MCR = 4.44%)

proposed IBLMM-SC is more robust to noise and has obtained the best performance
among all applied methods in terms of the lowest MCR for both tested noise levels.
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Table 13.1 The average
MCR(%) for comparison with
other segmentation methods
with 7% and 9% noise levels

Method Noise=7% Noise=9%

GMM 10.54 13.89

FRSCGMM 8.22 8.7

SMM 7.53 9.23

DMM-SC 6.20 7.23

IDMM-SC 6.84 8.23

BLMM 4.64 5.87

IBLMM-SC 3.62 4.73

Bold values indicate the best performance
in terms of the lowest MCR rates

Table 13.2 The average
MCR (%) for comparison
with other methods for the
IBSR02 data set and the
whole IBSR data set

Method IBSR02 Whole IBSR

GMM 13.25 15.83

FRSCGMM 6.48 8.70

SMM 7.62 10.05

DMM-SC 5.65 7.58

IDMM-SC 5.17 8.03

BLMM 4.80 6.14

IBLMM-SC 3.71 5.35

Bold values indicate the best performance
in terms of the lowest MCR rates

13.4.2 Real MRI Brain Images

In this section, we conduct experiments on real medical images using the Internet
Brain Segmentation Repository (IBSR),2 which contains real magnetic resonance
brain image data along with manually guided expert segmentation results. The MCR
is used in this experiment to measure the segmentation performance. In the first
experiment, we show the segmentation performance of the proposed method using
two real MRI brain images as demonstrated in Figs. 13.3a and 13.4a, respectively.
The first tested image can be seen in Fig. 13.3a with segmentation ground truth
that is shown in Fig. 13.3b. In the preprocessing step, we removed all non-brain
tissues. The segmentation results obtained by all methods are shown in Fig. 13.3c–
i. According to these results, we can observe that the proposed IBLMM-SC can
provide better performance with the lowest MCR (2.22%) than other tested methods.

The second tested image is shown in Fig. 13.4a with the ground truth segmenta-
tion result can be seen in Fig. 13.4b. The segmentation results of different methods
are provided in Fig. 13.4c–i. Once again, the best segmentation performance was
obtained by the proposed IBLMM-SC among all methods in terms of the lowest
MCR value (3.96%).

2http://www.nitrc.org/projects/ibsr/.

http://www.nitrc.org/projects/ibsr/
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Fig. 13.3 (a) Original image. (b) Ground truth. (c) IBLMM-SC (MCR = 2.22%). (d) GMM
(MCR = 9.80%). (e) FGFCM (MCR = 6.10%). (f) SMM (MCR = 5.92%). (g) DMM-SC
(MCR = 5.49%). (h) IDMM-SC (MCR = 6.56%). (i) BLMM-SC (MCR = 3.53%)

Next, we test our image segmentation method using all real MRI brain images in
IBSR02 and the whole IBSR data set by reporting average performance shown in
Table 13.2. Clearly, the proposed method has obtained the best segmentation results
with the lowest MCR values for all tested data sets.
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Fig. 13.4 (a) Original image. (b) Ground truth. (c) IBLMM-SC (MCR = 3.96%). (d) GMM
(MCR = 14.68%). (e) FGFCM (MCR = 9.12%). (f) SMM (MCR = 8.91%). (g) DMM-SC
(MCR = 7.26%). (h) IDMM-SC (MCR = 4.93%). (i) BLMM-SC (MCR = 6.82%)

13.5 Conclusion

In this chapter, we proposed a new image segmentation method for segmenting
medical MRI brain images. The proposed method is based on finite inverted
Beta-Liouville mixtures which demonstrated better performance than commonly
used mixture models (such as Gaussian mixture model) in image segmentation.
To improve the robustness of our image segmentation method against noise, the
spatial relationship among nearby pixels was incorporated into our model by using
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generalized means. In order to learn the proposed spatially constrained mixture
model, a variational Bayes inference algorithm was developed, such that model
parameters can be efficiently estimated in closed form. Both simulated and real brain
MRI data were used to validate our model.
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Flexible Statistical Learning Model for
Unsupervised Image Modeling and
Segmentation
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Abstract We propose in this work to improve the tasks of image segmentation
and modeling through an unsupervised flexible learning approach. Our focus
here is to develop an alternative mixture model based on a bounded generalized
Gaussian distribution, which is less sensitive to over-segmentation and offers more
flexibility in data modeling than the Gaussian distribution which is certainly not the
best approximation for image segmentation. A maximum likelihood- (ML) based
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algorithm is applied for estimating the resulted model parameters. We investigate
here the integration of both a spatial information (a prior information between
neighboring pixels) and a minimum description length (MDL) principle into the
model learning step in order to deal with the major problems of finding the optimal
number of classes and also selecting the best model that describes accurately the
dataset. Therefore, the proposed model has the advantage to maintain the balance
between model complexity and goodness of fit. Obtained results on a large database
of medical MR images confirm the effectiveness of the proposed approach and
demonstrate its superior performance compared to some conventional methods.

14.1 Introduction

Data modeling and image segmentation are two of the most difficult and challenging
problems in image processing. Their importance is highlighted by the large number
of applications that include image or video segmentation step. Among these applica-
tions, content-based image retrieval [16, 50], visual scene interpretation [60], object
recognition [57], remote sensing [6, 35, 59, 74], and so forth. In these applications,
the adoption of a specific segmentation algorithm is the most difficult problem to
enhance the final results. For this reason, various approaches have been proposed
in literature and adopted in the above-mentioned applications. Among the different
approaches which have been widely used, statistical models [6, 13, 22, 25, 30, 45,
67, 70, 71] are often used in image segmentation according to their simplicity when
describing images features and their ability for data classification. Among these
statistical-based techniques, the Gaussian mixture model (GMM) has been widely
used and it has shown its importance through many applications from machine
learning, pattern recognition, and image processing [9, 34, 43, 67]. An advantage
of GMM is that it requires a small number of parameters for learning which can
be accurately estimated by adopting the expectation maximization (EM) algorithm
[23, 68] to maximize the log-likelihood function. However, this kind of model is
often very sensitive to outliers and is certainly not the best approximation for image
segmentation. As well, for many problems, the tail of the Gaussian distribution is
shorter than what is required. In order to enhance the robustness and accuracy of
this model, the generalized Gaussian mixture model (GGMM) has been proposed
as an alternative solution to overcome the above limitations [20, 24, 36, 39, 46–
48]. The GGMM has been successfully used according to its flexibility to model
data with different shapes. It has been used in image and video coding [6, 43],
texture discrimination and retrieval [20], and so on. This distribution has one more
parameter λ than the Gaussian distribution which controls the tails of the distribution
and decides whether the latter is peaked or flat. The Gaussian distribution is
considered as a particular case for the generalized Gaussian distribution, where λ=2.
Thus, the generalized Gaussian mixture model provides a flexibility to fit the shape
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of the data better than the Gaussian mixture model. However, it is important to
note that conventional Gaussian-based models (GMM and GGMM) have a common
issue related to their supports which are unbounded. In fact, in many applications,
the observed data are digitalized and have bounded support and this statement
can be exploited to select the appropriate model shape. Fortunately, the bounded
Gaussian distribution and the bounded generalized Gaussian distribution have been
developed in [5, 17–19, 38, 49] as an alternative generalized model which includes
Gaussian model (GMM), Laplacian model (LMM), and generalized Gaussian model
(GGMM) as special cases. This new distribution has the advantage to fit different
shapes of observed non-Gaussian data defined within a bounded support. Moreover,
it is possible to model the observed data in each component of the model with
different bounded support regions. On the other hand, several developed approaches
in the literature for image segmentation are facing another common problem that
concerns the automatic determining of adequate components (clusters or classes)
which best describes the data. In order to deal with this issue, some approaches have
been suggested with relative success (see, for instance, [11, 43, 56]). In particular,
the spatial information was used as a prior information about the expected number of
regions in [11]. The minimum description length (MDL) criterion was also used for
the same purpose in [10, 43, 56]. Motivated by all these observations, we introduce
in this work an alternative flexible mixture model based on the bounded generalized
Gaussian distribution (BGGMM) which incorporates a spatial information and
the MDL penalty to overcome the previous limitations and to improve image
segmentation and data modeling tasks. It is noteworthy that the proposed framework
has never been proposed before.

The remainder of this paper is organized as follows. Our statistical model
is proposed in Sect. 14.2. The model parameters estimation and the complete
segmentation algorithm are described in the next section. In Sect. 14.4, we present
and discuss the experimental results. Finally, we end with conclusions of this work
in Sect. 14.5.

14.2 Bounded Generalized Gaussian Mixture Model

Let X be an image characterized by a set of pixels X = {X1, . . . , XN }, where N is
the number of pixels. Since an image is composed of several regions, so it could be
described using a mixture model with K components:

p(Xi |�) =
K∑
j=1

πjf (Xi |θj ) (14.1)
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provided that πj ≥ 0 and
∑K

j=1 πj = 1. In Eq. (14.1), f (Xi |θj ) is the
probability density function associated with the region j , θj represents the set
of parameters defining j th component, πj are the mixing proportions, � =
{θ1, . . . , θK, π1, . . . , πK } is the complete set of parameters to characterize the
mixture model, and K ≥ 1 is the number of components in the mixture model
[43]. With a mixture of K components, likelihood of data X with N independent
and identically distributed data points (pixels in our case) can be expressed as:

p(X|�) =
N∏
i=1

K∑
j=1

πjf (Xi |θj ) (14.2)

The main aim of using statistical modeling consists of adopting a model which
can describe accurately the statistical properties of the underlying source. In order
to model the distributions, the mixture models are based on the probability density
function f (Xi |θj ) mentioned in Eqs. (14.1) and (14.2). The problem here is the
choice of mixture probability density functions. In general, the Gaussian distribution
is considered one of the most appropriate used distributions. This model has been
widely adopted in machine learning, pattern recognition, and speech processing
applications. In Gaussian mixture model (GMM), f (Xi |θj ) is Gaussian distribution
as follows:

f (Xi |θj ) = 1

(2πσj 2)1/2 exp

{
− 1

2σj 2 (Xi − μj )
2
}

(14.3)

where θj = (μj , σj ) represents the set of parameters defining j th component. Note
that μ and σ are the mean and standard deviation, respectively. However, in order
to develop this mixture model and to control the tail of the distribution, another
proposed distribution could provide better modeling capabilities which is based
on the integration of the shape parameter λ. This distribution is called generalized
Gaussian distribution (GGD). For its flexibility to model data with different shapes,
this model has been widely used, especially in signal processing, speech modeling,
and image and video coding. In generalized Gaussian mixture model (GGMM), the
probability density function f (Xi |θj ) is GGD as:

f (Xi |θj ) =
λj

√
�(3/λj )
�(1/λj )

2σj�(1/λj )
exp

(
−A(λj )

∣∣∣∣Xi − μj

σj

∣∣∣∣
λj

)
(14.4)

with

A(λj ) =
[
�(3/λj )

�(1/λj )

]λj /2

(14.5)
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where �(.) represents gamma function and θj = (μj , σj , λj ) is the set of parame-
ters of j th component. Note that μ, σ , and λ are the mean, the standard deviation,
and the shape parameters, respectively. The above-mentioned distributions are
unbounded with support range (−∞,+∞). However, many real applications have
their data within a bounded support regions. In order to deal with this problem,
the bounded generalized Gaussian mixture model (BGGMM) is proposed. This
model has the flexibility to fit different shapes of observed data. If we represent the
probability distribution given in Eq. (14.4) as notation fggd(Xi |θj ), then proposed
bounded generalized Gaussian distribution (BGGD) for BGGMM is given as
follows:

f (Xi |θj ) = fggd(Xi |θj )H(Xi |�j)∫
∂j
fggd(u|θj )du

(14.6)

where H(Xi |�j) is called indicator function which defines ∂j to be the bounded
support region in # for each component �j as:

H(Xi |�j) =
{

1 if Xi ∈ ∂j
0 Otherwise

(14.7)

The term
∫
∂j
fggd(u|θj )du in Eq. (14.6) is the normalization constant which

indicates the share of fggd(Xi |θj ) which belongs to the support region ∂j . As
presented in [49], the proposed distribution in Eq. (14.6) allows more flexibility in
order to fit the data (pixels in our case) with the limited range more efficiently than a
Gaussian distribution or a generalized Gaussian distribution. By employing bounded
generalized Gaussian distribution (From Eq. (14.6)) in Eq. (14.2), the complete data
likelihood function for BGGMM can be described as follows:

p(X|�) =
N∑
i=1

K∑
j=1

πj

{
fggd(Xi |θj )H(Xi |�j)∫

∂j
fggd(u|θj )du

}
(14.8)

where the complete set of parameters to fully characterize the mixture is described
by � = (μ1, . . . , μK, σ1, . . . , σK, λ1, . . . , λK, π1, . . . , πK). As mentioned in
Eq. (14.8), each component in the proposed model has the ability to model the data
with different bounded support regions ∂j . In order to compare the mathematical
expressions according to this model with those proposed with GMM or GGMM we
can conclude that for example if we set λj = 2 and H(xi |�j) = 1 for each �j ,
the method will be similar to GMM. Therefore, we could say that BGGMM is a
generalization of GMM and GGMM models (Fig. 14.1).
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Fig. 14.1 Illustration of different distributions: (a) GMM distribution; (b) GGMM distribution
with different values of λ = 1, 2, 4, 6, 10; (c) BGMM distribution, the observed data in the interval
(−1.5,6); (d) BGGMM distribution with different values of λ = 1, 2, 4, 6, 10 and the observed data
in the interval (−2,4)

14.3 BGGMM Learning Using EM, SI and MDL for Image
Segmentation

In the following, we present our unsupervised learning method for image segmenta-
tion. In particular, we incorporate both spatial information (SI) and MDL criterion
into the EM algorithm to estimate the model’s parameters and to find the optimal
number of model components.

14.3.1 Integration of the Spatial Information

In this work, we incorporate the spatial information (SI) as a prior information
between neighboring pixels in our developed model. It is useful as an implicit prior
information about the probable number of regions as indicated in [59]. For each



14 Flexible Statistical Learning Model for Unsupervised Image Modeling and. . . 331

pixel Xi ∈ X its immediate neighbor X̂i ∈ X, which we call the peer of Xi and is
supposed to have arisen from the same cluster of Xi . Thus, we can use this spatial
information as indirect information in order to estimate the number of clusters,
since we suppose that the peers stay in the same cluster. As though each region
is composed by similar adjacent pixels, when we integrate spatial information, this
enables us to find out accurate and smooth segments. For example, if a large value
is fixed for K , there would be a conflict with the provided spatial information. This
means that a true segment is wrongly divided into two sub-segments which have to
be merged to a new segment that we should re-estimate its related parameters. Thus,
the number of segments will decrease to reach its true number.

14.3.2 Mixture Model’s Parameters Estimation Using EM

In this section, we develop the equations that learn the parameters of the BGGMM
using the common EM approach. First, we suppose that the number of components
M is known. Many approaches have been developed in order to deal with mixture
models parameters estimation [43]. One of the most popular and used estimation
methods is the maximum likelihood approach in which the main idea is to find
parameters that maximize the joint probability density function. This task can be
performed using the expectation maximization (EM) algorithm which is widely
used in the case of missing data. In our case, the missing data are the knowledge
of the pixel classes. Let X and the set of peers X̂ = {

X̂1, . . . , X̂N

}
be our observed

data. The set of group indicators for all pixels Z = {Z1, . . . ,ZN } correspond to
the unobserved data, where Zi = {Zi1, . . . , ZiK } is the missing group indicator and
Zij is equal to one if Xi belongs to the same cluster j as X̂i and zero otherwise. By
taking into account the spatial information and missing group indicator, complete
data likelihood function referring to Eqs. (14.2) and (14.8) can be described as
follows:

p(X, X̂, Z|�) =
N∏
i=1

K∏
j=1

[
πjf (Xi |θj )πjf (X̂i |θj )

]Zij

(14.9)

Thus, the complete log-likelihood function can be written as:

L(X, X̂, Z|�) = log

⎧⎨
⎩

N∏
i=1

K∏
j=1

[
πjf (Xi |θj )πjf (X̂i |θj )

]Zij
⎫⎬
⎭ (14.10)

= log

⎧⎨
⎩

N∏
i=1

K∏
j=1

[
πjB(Xi)πjB(X̂i)

]Zij
⎫⎬
⎭



332 I. Channoufi et al.

where: B(Xi) =
{
fggd (Xi |θj )H(Xi |�j )∫

∂j
fggd (u|θj )du

}
and B(X̂i) =

{
fggd (X̂i |θj )H(X̂i |�j )∫

∂j
fggd (u|θj )du

}
.

Now, in order to adjust the parameters � = {
πj , μj , σj , λj

}
, we should

maximize the likelihood function in Eq. (14.10) which is equivalent to maximize
the following:

L(X, X̂, Z|�) =
N∑
i=1

K∑
j=1

Zij

(
2 logπj + log fggd(Xi |θj )+ log fggd(X̂i |θj )

− 2 log
∫
∂j

fggd(u|θj )+ log H(Xi |�j)+ log H(X̂i |�j)

)

(14.11)

Using the EM algorithm, the parameters � = {
πj , μj , σj , λj

}
will be estimated

according to two different steps. In E-step, conditional expectation of the complete
data log-likelihood is calculated as:

E[L(X, X̂, Z|�)] = Q(X, X̂, Z|�) (14.12)

=
N∑
i=1

K∑
j=1

p(j |Xi, X̂i, θ
(t)
j )(2 logπj + log fggd(Xi |θj )

+ log fggd(X̂i |θj )− 2 log
∫
∂j

fggd(u|θj )

+ log H(Xi |�j)+ log H(X̂i |�j))

where p(j |Xn, X̂n, θj ) denotes the posterior probability which indicates the proba-

bility that Xi and X̂i are assigned to cluster j :

p(j |Xi, X̂i, θj ) = πjf (Xi |θj )πjf (X̂i |θj )
K∑

j ′=1
πj ′f (Xi |θj ′)πj ′f (X̂i |θj ′)

(14.13)

The next step is the maximization (M) step, in which Eq. (14.12) will be maximized
which leads to the estimation of parameters of mixture model. In order to present
conveniently, we divide this section into four subsections.

14.3.2.1 Mean Parameter Estimation

We consider the derivation of log-likelihood given in Eq. (14.12) with respect to μj

at (t+1) iteration step as follows:
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∂Q
(X, X̂, Z|�)
∂μj

=−A(λj ) λj

σj
λj

N∑
i=1

p
(
j |Xi, X̂i, θj

){
|Xi−μj |λj−2 (−Xi+μj

)

(14.14)

+ |X̂i − μj |λj−2
(−X̂i + μj )

− 2

∫
∂j
fggd(u|θj )sign(μj − u)|u− μj |λj−1

du∫
∂j
fggd(u|θj )du

}

By approximating operations, the above given function in Eq. (14.14) is rewritten
as:

∂Q(X, X̂, Z|�)
∂μj

= −A(λj ) λj

σj
λj

N∑
i=1

p(j |Xi, X̂i , θj )
∣∣Xi − μj

∣∣λj−2 (14.15)

×
{
(−Xi + μj )+ (−X̂i + μj )− 2Rj∣∣Xi − μj

∣∣λj−2

}

where

Rj =
∑M

m=1 sign(μj
(t) − Smj )

∣∣Smj − μj
(t)

∣∣λj (t)−1

H(Smj |�j)∑M
m=1 H(Smj |�j)

(14.16)

The term Smj ∼ fggd(u|θj ) represents the random variables drawn from probability
distribution fggd(u|θj ), and M is number of random variables Smj . Now, the

solution of ∂Q(X,X̂,Z|�)
∂μj

= 0 generates the solutions of μj at (t+1) iteration as
follows:

μj
(t+1) =

∑N
i=1 p(j |Xi, X̂i, θj )(

∣∣Xi − μj

∣∣λj−2
Xi +

∣∣X̂i − μj

∣∣λj−2
X̂i + 2Rj )∑N

i=1 p(j |Xi, X̂i, θj )
(∣∣Xi − μj

∣∣λj−2 + ∣∣X̂i − μj

∣∣λj−2
)

(14.17)

14.3.2.2 Standard Deviation Estimation

Setting the derivative of log-likelihood given in Eq. (14.12) with respect to σj at
(t+1) iteration step, we have:
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∂Q(X, X̂, Z|�)
∂σj

= −σj−1
N∑
i=1

p
(
j |Xi, X̂i, θj

) {
− 2+ A(λj )λjσj

−λj

(14.18)

×
[
|Xi − μj |λj + |X̂i − μj |λj

]

−2

∫
∂j
fggd(u|θj )(−1+ A(λj )|u− μj |λj λjσj−λj )du∫

∂j
fggd(u|θj )du

}

By approximating operations, above given function in Eq.(14.18) is rewritten as:

∂Q(X, X̂, Z|�)
∂σj

= −σj−1
N∑
i=1

p(j |Xi, X̂i, θj ) (14.19)

×
{
−2+ A(λj )λjσj

−λj
[∣∣Xi − μj

∣∣λj + ∣∣X̂i − μj

∣∣λj ]− 2Gj

}

where

Gj =
∑M

m=1

(
−1+ A

(
λj

(t)
) ∣∣Smj − μj

(t)
∣∣λj (t)(σj (t))−λj (t)

)
H

(
Smj |�j

)
∑M

m=1 H
(
Smj |�j

)
(14.20)

Similarly, the solution of ∂Q(X,X̂,Z|�)
∂σj

= 0 generates the solutions of σj at the (t+1)
step as follows:

σj
(t+1) =

⎛
⎜⎜⎜⎝
λjA(λj )

N∑
i=1

p
(
j |Xi, X̂i, θj

) [∣∣Xi − μj

∣∣λj + ∣∣X̂i − μj

∣∣λj ]

2
N∑
i=1

p
(
j |Xi, X̂i, θj

)
(1+Gj)

⎞
⎟⎟⎟⎠

1
/
λj

(14.21)

14.3.2.3 Shape Parameter Estimation

To achieve the estimation of this parameter λj , each iteration requires the calculation
of the first and the second derivatives of the function in Eq. (14.12) with respect to
the parameter λj as following:
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λj
(t+1) = λj

(t) − ∂Q(X, X̂, Z|�)
∂λj

(
∂2Q(X, X̂, Z|�)

∂λ2
j

+ γ

)−1
∣∣∣∣∣∣
λj=λj (t)

(14.22)
where γ represent a scaling factor. Thus, the derivative of the error function is given
by:

∂Q(X, X̂, Z|�)
∂λj

= −
N∑
i=1

p(j |Xi, X̂i , θj )×
⎧⎨
⎩fggd

′
(Xi |θj )+ fggd

′
(X̂i |θj )

−2

∫
∂j
fggd(u|θj )fggd ′(u|θj )du∫

∂j
fggd(u|θj )du

⎫⎬
⎭ (14.23)

where

fggd
′
(X|θj ) = ∂fggd (X|θj )

∂λj
(14.24)

The calculation of the terms ∂2Q(X,X̂,Z|�)
∂λ2

j

is obtained as:

∂

∂λj

(
∂Q(X, X̂, Z|�)

∂λj

)
= −

N∑
i=1

p(j |Xi, X̂i, θj )

{
fggd

′′
(Xi |θj )+ fggd

′′
(X̂i |θj )

+ 2

(∫
∂j
fggd(u|θj )fggd ′(u|θj )du

)2

(
∫
∂j
fggd(u|θj )du)2

− 2

∫
∂j
fggd(u|θj )(fggd ′(u|θj ))2 + fggd

′′
(u|θj )du∫

∂j
fggd(u|θj )du

}

(14.25)

where

fggd
′′
(X|θj ) = ∂fggd

′
(X|θj )

∂λj
(14.26)

The computation of fggd
′
(X|θj ), fggd ′′(X|θj ), fggd

′
(u|θj ), and fggd

′′
(u|θj ) is

followed from [6].
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14.3.2.4 Prior Probability Estimation

The updated estimate of the prior probability πj which is positive and sum to one
(
∑K

j=1 πj = 1 ) is given as follows:

π
(t+1)
j = 1

N

N∑
i=1

p(j |Xi, X̂i , θj )
(t)

(14.27)

14.3.3 Model Selection Using MDL

We recall that the maximum likelihood (ML) favors generally for higher values
of the number of components, and this issue leads easily to over fitting. Thus,
in order to estimate the number of components, we have used the minimum
description length (MDL) criterion given by [10, 56]. Therefore, the optimal number
of components in the developed mixture model BGGMM is obtained by minimizing
the following function:

MDL ≈ − log p(X|�)+ 1

2
Nl log(N) (14.28)

where Nl = M(2d+1) denotes the number of free parameters in the mixture model.

14.3.4 The Proposed Complete Algorithm

We summarize here the main steps of the proposed algorithm used for the bounded
generalized Gaussian mixture model’s parameters estimation and model selection.

14.4 Experimental Results

14.4.1 Experiment Design

The main goal of this section is to evaluate the performance of the proposed bounded
generalized Gaussian mixture model with spatial information and MDL (BGGMM
+ SI + MDL) as compared to some conventional Gaussian-based methods such
as Gaussian-based (GMM), generalized Gaussian-based (GGMM), and bounded
Gaussian-based (BGMM). Evaluation is performed on the basis of several real
world images. To perform a comparison between image segmentation approaches,
different measures are proposed in literature that allow us to determine the quality
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Model learning using EM + SI + MDL

1. Input: Image to be segmented X
2. Initialization:

– Model’s parameters � are initialized with the K-means algo-
rithm.

– Choose an initial high value for K = Kmax (number of regions).

3. While (K ≤ Kmax ) Do
4. Repeat (Update parameters by alternating the following steps)

• Expectation-Step:
– Compute the posterior probabilities according to Eq. (14.13).
• Maximization-Step:
– Update the means μj using Eq. (14.17)
– Update the standard deviation σj using Eq. (14.21)
– Update the parameter λj using Eq. (14.22)
– Update the prior distribution πj using Eq. (14.27)

While (algorithm not converging)

– Calculate the associated MDL criterion using Eq. (14.28).
– Remove the component j with the smallest πj (K = K - 1)

End While
– Select the optimal model M∗ such that: M∗ = arg minM MDL(M).

Then, return the model parameters with the optimal model.
– The segmented image is determined according to the optimal model.

of the segmentation results according to one or more reference segmentation. In our
case, we propose to use the following measures: sensitivity, specificity, accuracy,
recall, F1-measure, and MCC (Matthews correlation coefficient). They are often
used in the context of image segmentation and classification in order to quantify the
quality of the segmentation result.

• Sensitivity = T P
T P+FN

• Specificity = TN
TN+FP

• Precision = T P
T P+FP

• Accuracy = T P+TN
T P+FP+TN+FN

• Recall = T P
T P+FN

• F1-measure = 2∗T P
(2∗T P+FP+FN)

• MCC = T P∗TN√
(T P+FN)(T P+FP)(T N+FP)(T N+FN)



338 I. Channoufi et al.

14.4.2 Experiment 1: Real World Image Segmentation

We start by evaluating the performance of our proposed approach using various
examples from real world images which are publicly provided by the Berkeley seg-
mentation dataset (BSD) [42]. The Berkeley benchmark is a public database consists
of 300 images of a wide variety of natural scenes. Ground truth segmentations of
these images are also provided. Quantitative performances are obtained based on the
ground truth and using the accuracy, the precision, and the boundary displacement
error (BDE) metrics. The latter metric measures the average displacement error
of one boundary pixels and its closest boundary pixels in the other segmentation
[27]. Figure 14.2 shows obtained results for some samples chosen randomly from
the BSD dataset. A comparative study between different models is depicted in
Tables 14.1 and 14.2. According to these results, it is clear that our approach denoted
by (BGGMM+ SI+MDL) outperforms other methods. Indeed, the accuracy value
is about 92.9% for BGGMM + SI + MDL against 88.6% for GGMM and 84.3%
for GMM. In addition, the minimum boundary displacement error is found with
our method. It should be emphasized also that more accurate number of clusters
(or regions) are obtained with our model thanks to the integration of the spatial

Fig. 14.2 Image segmentation results of some samples selected from the BSD dataset. First
column: Original Image, second, third fourth, and fifth columns correspond to results obtained
using GMM, GGMM, BGMM, and BGGMM+SI+MDL respectively
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Table 14.1 Results obtained for five different images chosen randomly from the BSD dataset (see
Fig. 14.2)

Method Precision Accuracy BDE M M̂

GMM 88.70 90.11 0.241 3 2

GGMM 91.23 92.58 0.234 3

BGMM 90.21 91.13 0.229 3

BGGMM+SI+MDL 95.97 94.43 0.109 2

GMM 78.21 77.53 0.321 5 3

GGMM 86.54 82.36 0.280 5

BGMM 88.08 83.48 0.266 5

BGGMM+SI+MDL 91.36 89.76 0.237 4

GMM 76.10 90.13 0.296 6 5

GGMM 88.61 94.90 0.209 6

BGMM 88.96 95.01 0.213 6

BGGMM+SI+MDL 89.88 95.30 0.183 4

GMM 82.16 78.14 0.344 7 5

GGMM 85.34 81.02 0.281 6

BGMM 86.29 81.97 0.274 6

BGGMM+SI+MDL 89.20 82.34 0.246 5

GMM 79.76 80.07 0.401 14 10

GGMM 85.31 83.22 0.385 13

BGMM 84.90 81.47 0.391 13

BGGMM+SI+MDL 91.19 87.21 0.291 11

M and M̂ denote the obtained and the real number of regions, respectively

Table 14.2 Average metrics for all images in the BSD dataset produced by the algorithms: GMM,
GGMM, BGMM, and BGGMM+SI+MDL

Method Precision Accuracy BDE

GMM 81.39 84.30 31.06

GGMM 86.23 88.64 28.67

BGMM 87.20 87.62 27.04

BGGMM+SI+MDL 91.33 92.96 20.39

information and the MDL criterion into the learning model (see two last columns
in Table 14.1). In other word, these constraints help to avoid over-segmentation and
provide more accurate segmentation results.

14.4.3 Experiment 2: MR Brain Images Segmentation

Precise brain tissues segmentation in magnetic resonance (MR) images has been the
topic of extensive research in the past and is a crucial step in several applications
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such as surgical and radiotherapy planning, analysis of neuroanatomical variability,
image guided therapy, abnormality detection, and many other for medical studies
[2, 14, 53, 58, 64]. In particular, some results are presented for segmenting the white
matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and modeling the cortex
anatomy. Various promising works have been proposed that offering a diversity
of methods such as atlas-based methods [4, 7, 15, 29, 31, 55, 63, 69], variational
approaches [28, 32, 33, 61, 65, 72], and pattern classification-based techniques
[1, 3, 4, 28, 44, 55, 66]. Several methods suppose that the anatomical tissue intensity
can be modeled as a mixture of Gaussians. Unfortunately, this assumption leads to
erroneous results since these tissues have overlapping spectral properties. Despite
the good results obtained in the literature; the achievement of MRI brain segmenta-
tion task has proven problematic due to the poor contrast, the inhomogeneity, and
the unknown noise. In this section, we experimentally evaluate our proposed model
on real MR brain images provided by the Internet Brain Segmentation Repository
(IBSR) database. These images and their manual segmentations are provided and
publicly available1 by the Center for Morphometric Analysis at Massachusetts
General Hospital. The IBSR provided 20 real T1-weighted coronal MRI scans
(3D volumes) of normal subjects with gray/white/cerebral-spinal-fluid/other expert
segmentations. Each volume is of size 63 scans, and each scan is of size 256× 256
pixels. In our study, we propose to identify the three main structures: white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). Thus, we choose as initial
value for the number of classes K = 4 (WM, GM, CSF, other). If a pixel does not
belong to WM nor to GM or CSF, it will be affected to the cluster “other”. We note
also that in some scans the CSF does not appear in the image, so the number of
classes is automatically reduced to 3 instead of 4 and all pixels in this image will
be assigned to WM or to GM or to “other” component. Some samples of original
images (chosen randomly from the dataset IBSR) and their segmentation obtained
by our method (BGGMM+SI+MDL), and other algorithms GGMM and GMM
are depicted in Fig. 14.3. Quantitative measures are also determined on the basis
of the above metrics (presented in the previous section) and given in Table 14.3
for different methods. Under the assumption cited in [73], the accuracy value gives
a score of one for perfect agreement and 0 for complete disagreement, and any
accuracy value above 0.7 indicates a strong agreement. According to this study, it is
clear that our model is capable to provide strongly acceptable results compared to
the ground truth and also it is able to provide better results w.r.t the rest of methods
(GGMM and GMM). On the other hand, values obtained with GGMM are more
better than GMM’s values. Sometimes, the results provided by our model are equal
or slightly higher than the other two models. We interpret and justify this result by
the fact that only the value of the grayscale is considered as information and no more
other features are taken into account in the segmentation process. Thereby, more
relevant features are definitely needed to improve the expected results for many
cases especially when the image is blurred and highly textured.

1http://www.cma.mgh.harvard.edu/ibsr/.

http://www.cma.mgh.harvard.edu/ibsr/
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Fig. 14.3 Segmenting main tissues in MRI images (GM, WM, CSF) for some scans from IBSR.
First column: original image. Second, third, fourth, and fifth are the results with GMM, GGMM,
BGGMM+SI+MDL, respectively

Table 14.3 Average metrics for MRI brain images (IBSR dataset) segmentation produced by
different algorithms: GMM, GGMM, and BGGMM+SI+MDL

Method Sensitivity Specificity Precision Recall Accuracy F1 MCC

GMM 73.89 95.65 62.79 73.89 92.87 63.15 62.01

GGMM 75.76 95.79 63.83 75.76 93.29 64.81 63.50

BGGMM
+SI+MDL

76.94 95.95 65.90 76.94 93.44 66.35 65.57
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14.4.4 Experiment 3: Left Ventricle (LV) Segmentation in a
Sequence of Images

Accurate segmentation of the left ventricle (LV) in cardiac magnetic resonance
imaging sequences is another important application to analyze the cardiac function,
to assess the myocardial mass, the stroke volume, and the ejection fraction. The
left ventricle in short axis (SAX) cine MR image looks like a circular and appear
bright, and all their surrounding organs are dark (i.e., lung, myocardium, and
liver), as shown in Fig. 14.4. Manual segmentation is particularly impractical, non-
reproducible, and time-consuming task for cardiac radiologists, so a fully automatic
accurate segmentation of left ventricle is highly required and still attracting research.
Nevertheless, this task faces many challenges due to the LV shape variability,
the overlap between the intensity distributions, the low contrast between the
myocardium and surrounding tissues, etc. In recent years, quite a number of
techniques have been proposed for cardiac segmentation including: image-driven
method [21], multidimensional dynamic programming [62], EM + probabilistic
atlas [40], variational approaches [8, 26, 41, 51], pyramid and fuzzy clustering [54],
model-based graph cut [37].

In this work, we assess the performance of our algorithm on the basis of the
dataset of cardiac cine MRI images provided by the clinical database of Sunnybrook
Health Sciences Centre [52] and published on the Internet.2 It consists of 45 cases
containing 12 heart failure with ischemia (HF-I) cases, 12 heart failure without
ischemia (HF-NI) cases, 12 hypertrophy (HYP) cases, and nine normal (N) cases.
In this experiment, we focus on identifying the ROI corresponding to the LV. To this
end, we start by locating the region of interest (ROI) in the current image which is
performed by selecting a rectangular that englobes the LV organ. Then, we applied
the developed method to refine the final segmentation. Subsequently, the output of

Fig. 14.4 Illustration of a
part of cardiac MR image

2http://sourceforge.net/projects/cardiac-mr/files.

http://sourceforge.net/projects/cardiac-mr/files
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Table 14.4 Average metrics for Left ventricle cardiac images segmentation produced by the
algorithms: GMM, GGMM and BGGMM+SI+MDL

Method Sensitivity Specificity Precision Recall Accuracy F1 MCC

GMM 40.72 99.76 96.24 40.72 97.94 53.83 59.85

GGMM 41.73 99.76 96.26 41.73 97.96 55.14 60.90

BGGMM
+SI+MLL

42.72 99.77 96.34 42.72 98.00 56.26 61.78

the current segmentation is used as initialization step for the following image in the
sequence and so that. Some illustrations of the obtained results with GMM, GGMM,
and BGGMM+SI+MDL are given in Fig. 14.5. We evaluate also all obtained results
w.r.t the two other methods on the basis of the metrics described above. The average
values for the dataset are depicted in Table 14.4. According to these results, we
can conclude that our proposed algorithm outperforms the rest of methods. This
conclusion confirms again that the integration of both spatial information and MDL
criterion in the new developed mixture model based on the bounded generalized
Gaussian distribution leads to more smooth and precise results.

14.5 Summary

In this paper, we have presented a new flexible mixture model based on the bounded
generalized Gaussian distribution for data modeling and image segmentation. In
order to increase the accuracy of the expected results and to estimate accurately the
appropriate number of components, the proposed method integrates both a spatial
information (a prior knowledge) and a minimum description length criterion (MDL).
We evaluated also the performance of the proposed model based on different
challenging applications such as the segmentation of MRI brain images and the
cardiac left ventricle. Obtained results show the merits of our proposed framework
which outperforms conventional Gaussian-based models. Future works are devoted
to the involving of more relevant visual features (shape, texture, color, etc.) in the
whole segmentation process to better characterizing the ROI and to improve results.
Moreover, we plan to use an enhanced extension of the EM algorithm which is the
ECM method [12] to avoid some problems related to EM.
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Fig. 14.5 Segmenting the Left ventricle cardiac on some scans from the dataset in [52]. First
column: Original image. Second, third, fourth, and fifth are the results with GMM, GGMM,
BGGMM+SI+MDL, respectively
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