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Preface

Many structures operate in high-temperature environment and must be able to with-
stand complex mechanical loadings over a long period of time. Examples include
components of power plants, chemical refineries, heat engines and microelectronics.
Design procedures and residual life assessments for pipework systems, rotors, turbine
blades, etc., are required to take inelastic deformation, creep and fatigue damage
processes into account. The aim of “Mechanics ofHigh-TemperatureMaterials” is the
development of theoretical and experimental methods to analyze time-dependent
changes of stress and strain states in engineering structures up to the critical stage of
rupture.

During the last decades, many advances and new results in the field of high-
temperature materials behavior were presented in conference proceedings and sci-
entific papers. Examples include: the development and analysis of new alloys for
(ultra)high-temperature applications; interlinks of mechanics with materials science
in multi-scale analysis of deformation and damage mechanisms over a wide range of
stresses and temperature; the development and calibration of advanced constitutive
models for the analysis of inelastic behavior under transient loading conditions; the
development of procedures for a stable identification of material parameters in
advanced constitutive equations; the introduction of gradient-enhanced state variables
to account localized deformation and damage processes; the development and veri-
fication ofmaterial subroutines for the use in general-purposefinite element codes; the
application of the finite element method to the inelastic analysis of engineering
structures under complex thermo-mechanical loading profiles; and application of new
experimental methods, such as digital image correlation, for analysis of inelastic
deformation under multi-axial stress state.

This volume of the Advanced Structured Materials Series contains a collection of
contributions on advanced approaches of mechanics of high-temperature materials.
Most of them were presented in the Session on High-Temperature Materials and
Structures at the 28th International Workshop on Computational Mechanics of
Materials (IWCMM) inGlasgow,UK, September 10–12, 2018.We thankConference
Chairs Dr. Selda Oterkus, Dr. Erkan Oterkus and Prof. Siegfried Schmauder for
inviting us to organize this session and for a big support during the workshop.

v



We would like to acknowledge Series Editors Profs. Holm Altenbach and
Andreas Öchsner for giving us the opportunity to publish this volume. We would
like to acknowledge Dr. Christoph Baumann from Springer Publisher for the
assistance and support during the preparation of this book.

Magdeburg, Germany Konstantin Naumenko
Jülich, Germany Manja Krüger
May 2019
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Analysis of a Power Plant Rotor Made
of Tempered Martensitic Steel Based
on a Composite Model of Inelastic
Deformation

Johanna Eisenträger, Konstantin Naumenko, Yevgen Kostenko
and Holm Altenbach

Abstract Power plant components are subjected to high temperatures up to 903K,
which induce creep deformations. Furthermore, power plants are frequently started
and shut-down, thus resulting in cyclic loads on the components. Since they pro-
vide adequate mechanical and thermal properties, tempered martensitic steels are
ideal candidates to withstand these conditions. The contribution at hand presents a
phasemixturemodel for simulating themechanical behavior of temperedmartensitic
steels at high temperatures. To provide a unified description of the rate-dependent
deformation including hardening and softening, the model makes use of an iso-strain
approach including a hard and a soft constituent. The model is implemented into the
finite element method, using the implicit Euler method for time integration of the
evolution equations. In addition, the consistent tangent operator is derived. As a final
step, the behavior of an idealized steam turbine rotor during a cold start and a subse-
quent hot start is simulated bymeans of a thermo-mechanical finite element analysis.
First, the heat transfer analysis is conducted, while prescribing the instationary steam
temperature and the heat transfer coefficients. The resulting temperature fields serve
as input for the subsequent structural analysis, which yields the stress and strain
fields in the rotor.
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2 J. Eisenträger et al.

1 Introduction

In service, power plant components are subjected to challenging conditions, such as
high temperatures and intermittent loads. Steam temperatures should be as high as
possible to increase the efficiency of power plants, such that temperatures up to 903K
are common [1–4]. In addition, frequent start-ups and shut-downs induce cyclic loads,
which is due to the increasing popularity of renewable energy sources such as solar
and wind energies. Since this type of energy production strongly depends on the
ambient conditions, conventional power plants are started and shut-down in order
to compensate gaps or surpluses in energy production. These cyclic loads feature
long holding times (typically several hours up to one month) [3, 5–8], as depicted
schematically in Fig. 1.

Tempered martensitic steels with high chromium content (9–12%) are commonly
usedmaterials for power plant components [9–13], cf. Fig. 1. Due to their outstanding
thermo-mechanical properties, such as high tensile and creep strength, a low coeffi-
cient of thermal expansion, and high corrosion resistance [5, 11, 13–17], tempered
martensitic steels are ideal candidates for operations in power plants. The contribu-
tion at hand presents a constitutive model, which is calibrated with material tests on
the alloy X20CrMoV12-1, a typical representative of tempered martensitic steels.
From the 1950s, this steel has been utilized for forged components of turbine shafts
for high-pressure applications as well as tubes and pressure vessels [18].
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Siemens steam turbine SST-3000 Turbine wheel

Fig. 1 Power plant components and a typical temperature profile with day–night cycles, cf. [19].
Picture of turbine wheel according to [20]
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Fig. 2 Material tests on X20CrMoV12-1 at 873K. Strain ε versus time t for one cycle during
fatigue tests with prescribed strain amplitudes ε̂ (top left), stress amplitude σ̂ versus number of
cycles NC as result of fatigue tests [8] (top right), absolute inelastic strain rate |ε̇in| versus absolute
inelastic strain |εin| for creep tests under constant compressive stress σ [9] (bottom left), stress σ

versus strain ε for high temperature (HT) tensile tests at constant strain rates ε̇ (bottom right), cf.
[19, 21]

Nevertheless, tempered martensitic steels suffer from softening under creep and
fatigue loads [3, 6–10, 22–25]. Under creep conditions, the softening effect results
in an increase of the strain rate with time and deformation [26], as it can be observed
in the bottom left diagram of Fig. 2, where the results of creep tests under constant
compressive stress levels are presented. It has been found that softening is based
on the coarsening of microstructural elements, such as subgrains and carbides [9,
22–24]. This softening effect occurs also under cyclic loads [8], as it is shown in
the top diagrams of Fig. 2. Here, the input and the results of strain-controlled fatigue
tests at 873K are presented. Note that the total strain ε is prescribed as a triangular
function of time with a frequency of f = 5Hz. The top right diagram depicts the
stress amplitude σ̂ with respect to the number of cycles NC for different prescribed
amplitudes of total strain ε̂. It becomes obvious that the stress amplitude reduces
over time, which is due to cyclic softening [8]. Several papers confirm the cyclic
softening effect for tempered martensitic steels, and this phenomenon is attributed
to the coarsening of subgrains [3, 6, 7, 10, 25, 27]. In addition, softening can also
be observed during high temperature (HT) tensile tests [14–16, 28]. At elevated
temperatures and low strain rates, the stress decreases steadily as the strain increases,
as it is also shown in the bottom right diagram of Fig. 2, where stress-strain curves
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are shown for HT tensile tests under constant strain rates and temperature. According
to [14], this effect is based on the annihilation of subgrain boundaries and mobile
dislocations.

During the last years, severalmodels have been developed to simulate themechan-
ical behavior of temperedmartensitic steels and to account for the softening effect. In
general, these approaches can be divided into two categories: macromechanical and
micromechanical approaches. The first category provides a macroscopic description
of the mechanical behavior. Usually, the results of classical tests, such as HT tensile,
creep, or fatigue tests, are required for the calibration. Based on the definition of
strains, these models are classified into unified and nonunified approaches. Unified
models introduce only one time-dependent inelastic strain [29], whereas nonunified
models define separate variables for instantaneous plastic strains and time-dependent
inelastic deformation. Typical examples of nonunified viscoplastic models for tem-
pered martensitic steels are presented in [30–33]. Often, as for example in [30], the
Chaboche model with several backstresses is used to model nonlinear kinematic
hardening. One of the first attempts to account for this phenomenon goes back to
the backstress concept introduced by Armstrong and Frederick [34]. Afterwards,
Chaboche suggested to superpose several Armstrong–Frederick-type backstresses
to obtain a more accurate description of the cyclic behavior [35].

However, nonunified models exhibit several drawbacks, such as a vague def-
inition of “instantaneous” strains, numerical difficulties while implementing dif-
ferent flow rules for instantaneous plastic strains and time-dependent inelastic
strains, and the disregard of interactions between instantaneous plasticity and time-
dependent creep [29]. As an alternative, unified models have been suggested to
model rate-dependent inelasticity in combination with nonlinear kinematic harden-
ing of Chaboche type, e.g. [36–42]. These contributions often employ the Chaboche
model in conjunction with several backstresses, which results in a large number of
parameters, i.e. usually more than 10 temperature-dependent material parameters.
One should bear in mind that during the calibration, additional parameters need to be
determined in order to account for the temperature dependence of the primary param-
eters such that the actual number of required material parameters is at least twice as
much. Consequently, making use of the Chaboche model with several backstresses
increases the number of parameters, especially if wide temperature ranges should be
taken into account. Additionally, physical interpretations should be provided for all
quantities, which is a difficult task, if several backstresses have been introduced.

Contrarily to the macromechanical approaches, micromechanical models make
use of parameters which are explicitly related tomicrostructural properties, e.g. grain
sizes or dislocation densities [31]. Several models for tempered martensitic steels
incorporating microstructural quantities like subgrain widths or dislocation densities
are available in literature [10, 28, 43–47]. Note that the calibration of these models
is usually a complex procedure because it is based on microscopic observations.

Furthermore, material scientists have established so-called phase mixture models
[9, 18, 48]. In their original formulations, these models are related to the microstruc-
ture since hardening and softening effects are incorporated based on an iso-strain
composite [49] with soft and hard constituents [9, 18]. The alloy under considera-



Analysis of a Power Plant Rotor Made of Tempered Martensitic … 5

0.5µm0.5µm

AA

BB

CC

0.25µm

Subgrain structure (TEM)Subgrain structure (TEM) Subgrain (TEM)Subgrain (TEM)

Subgrain (scheme)

Fig. 3 Microstructure of martensitic steels (A carbides, B dislocations, C boundary), cf. [9, 18]

tion is assumed to consist of soft subgrains separated from each other by relatively
hard boundaries [26]. Note that the volume fraction of the hard constituent is related
to microstructural quantities such as the mean subgrain size. In order to account
for softening based on the coarsening of subgrains, the volume fraction of the hard
constituent is assumed to decrease towards a saturation value [50]. Usually, results
from microstructural observations are required to calibrate this class of constitutive
models [9, 18, 48], cf. Fig. 3.

Nevertheless, using microscopy such as transmission electron microscopy (TEM)
or scanning electron microscopy (SEM) to calibrate micromechanical models often
demands for significant effort, time, and financial resources. On the other hand, mate-
rial tests like creep or HT tensile tests are straightforward and less time-consuming
to conduct. Because of this, Naumenko et al. transform a micromechanical phase
mixture model into a macroscopic mixture model and introduce a softening variable
and a backstress of Armstrong–Frederick-type as internal variables [50, 51]. Further-
more, the model is calibrated with respect to a relatively narrow temperature range
(773K≤ T ≤873K). The simulation of a creep test with intermittent loads reveals
the good performance of the model although only 11 material parameters (of which
only 2 are temperature-dependent) are required.

To sum up, the introduced phase mixture model exhibits two principal benefits
compared to other approaches. Firstly, a small number of material parameters is
involved since only two internal variables—a backstress and a softening variable—
are introduced. Secondly, macroscopic tests are used for the calibration of the model
such that time-consuming microscopy is not required for parameter identification.
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Therefore, the contribution at hand uses the phase mixture model to describe the
mechanical behavior of the tempered martensitic steel X20CrMoV12-1, which pro-
vides the basis for the analysis of power plant components. Based on the well-known
alloy X20CrMoV12-1, which has been examined in detail such that an elaborated
experimental database is available, the applicability and performance of the phase
mixture model are demonstrated. The extension of the presented approach to newly
developed alloys is straightforward.

In the following, let us outline the structure of the contribution at hand. Section2
presents the governing equations of the phase mixture model. In a first step, this
is done in close connection to the microstructure of the material, and in a second
step, the model is referred to the macroscale by introduction of internal variables.
Since the overall aim of this contribution is the analysis of power plant components
with complex geometries under realistic boundary conditions, the constitutive model
is implemented into the finite element method, which is based on implicit time
integration. Therefore, Sect. 3 provides a description of the stress update algorithm
as well as the derivation of the consistent tangent operator. Finally, the thermo-
mechanical finite element analysis of a steam turbine rotor is presented in Sect. 4.
The first part of the section discusses the heat transfer analysis, where the steam
temperature and heat transfer coefficients serve as input. Afterwards, the second
part presents the results of the structural analysis with the phase mixture model,
whereas the instationary temperature field is provided as input. Note that the analysis
accounts for the influence of the different starting procedures. The final section of
this contribution gives a brief summary, and areas for further research are identified,
cf. Sect. 5.

2 Phase Mixture Model

This section presents the governing equations for the phase mixture model, which
serves as basis for simulating the mechanical behavior of the tempered marten-
sitic steel X20CrMoV12-1. In a first step, the microscopic model is introduced, cf.
Sect. 2.1. Next, the microscopic approach is transformed into a macroscopic model
by introduction of internal variables, cf. Sect. 2.2.

2.1 Microscopic Model

Within themicroscopic phasemixturemodel, thematerial is represented by amixture,
composed of two distinct constituents. We presume that the constituents exhibit
an identical elastic behavior, whereas their inelastic behavior differs. Note that the
identical elastic behavior of the constituents is a significant, but realistic assumption,
which substantially simplifies the governing equations [52]. In order to distinguish
both constituents with respect to their inelastic behavior, one should actually make
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Fig. 4 Representation of the microstructure by means of the binary phase mixture model, cf. [19]

use of the terms “inelastic-soft” and “inelastic-hard”. Nevertheless, in the following,
we only utilize the terms “soft” and “hard” to refer to both constituents; usually we
will indicate this by employing the index�k∀ k ∈ {s, h}. The following derivation of
the governing equations is based on [19, 50, 53], where further information can be
found. Note that the hard phase refers to the subgrain or grain boundaries, i.e. regions
with a high dislocation density and a large number of carbides, while the soft phase
is related to the subgrain interior, i.e. regions with a low dislocation density and a
small number of carbides. Figure4 illustrates this division of the real microstructure
into the two phases.

Since the model will be used to simulate the mechanical behavior of real power
plant components, we only consider geometrically linear processes. This restriction
reduces the computational effort significantly compared to geometrically nonlinear
models. Nevertheless, if the model is used for large-strain applications, alternative
approaches to model rate-dependent inelasticity with kinematic hardening and soft-
ening are available in literature, e.g. [54, 55].

Because of the limitation to geometrically linear processes, the linear strain ten-
sor εεεεεεεεεεεεεεεεε is used in the remainder of the current treatise. Applying the iso-strain assump-
tion, we assume equal strain states in both constituents:

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεh = εεεεεεεεεεεεεεεεεs (1)

with the strain tensor εεεεεεεεεεεεεεεεε.Within the framework of the applied unified description of the
material behavior, the inelastic strain tensor εεεεεεεεεεεεεεεεεin

k comprises both instantaneous plastic
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strains and time-dependent creep strains [29]. The strains are splitted additively
into elastic and inelastic parts, which are marked with the superscripts �el and �in,
respectively:

εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεel
k + εεεεεεεεεεεεεεεεεin

k . (2)

Hooke’s law is applied to describe the identical linear elastic behavior of both con-
stituents:

εεεεεεεεεεεεεεεεεel
k = σmk

3K
I + σσσσσσσσσσσσσσσσσ ′

k

2G
(3)

or:
σσσσσσσσσσσσσσσσσ k = K εelVk

I + 2Gεεεεεεεεεεεεεεεεεel′
k (4)

with the stress tensor σσσσσσσσσσσσσσσσσ , the bulk modulus K , and the shear modulus G. Note that
the volumetric strain εV = tr (εεεεεεεεεεεεεεεεε) is determined as the trace of the strain tensor, and
σm = 1

3 tr (σσσσσσσσσσσσσσσσσ ) is the mean stress. The prime �′ = � − 1
3 tr (�) I represents the devi-

atoric part of a second-order tensor, and I = ei ⊗ ei is the second-order identity
tensor.

Amixture rule is applied to compute the overall stress σσσσσσσσσσσσσσσσσ based on the stress tensors
of the individual constituents:

σσσσσσσσσσσσσσσσσ = ηsσσσσσσσσσσσσσσσσσ s + ηhσσσσσσσσσσσσσσσσσ h, (5)

while the following restriction holds for the volume fractions ηk of the constituents:

ηs + ηh = 1 ∀ 0 ≤ ηk ≤ 1. (6)

After applying the trace operator to Eqs. (1), (2), and (3), one obtains:

εV = εVh = εVs , (7)

εV = εelVk
+ εinVk

, (8)

εelVk
= σmk

K
. (9)

Within the framework of classical plasticity, one presumes that the inelastic strains
are not influenced by the spherical part of the stress tensor, i.e. εinVk

=0 ⇒ εεεεεεεεεεεεεεεεεin
k =εεεεεεεεεεεεεεεεεin′

k .
Taking this assumption into account and inserting Eqs. (8) and (9) into Eq. (7) yield:

σm = σmh = σms = K εV. (10)

Because of identical elastic properties of both constituents, the mean stresses do not
differ in the whole mixture such that Eqs. (1) and (5) can be applied to the deviatoric
parts of the tensors only:

εεεεεεεεεεεεεεεεε′ = εεεεεεεεεεεεεεεεε′
h = εεεεεεεεεεεεεεεεε′

s, (11)
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σσσσσσσσσσσσσσσσσ ′ = ηsσσσσσσσσσσσσσσσσσ
′
s + ηhσσσσσσσσσσσσσσσσσ

′
h. (12)

In order to formulate constitutive equations for the entire mixture, we transform
Eq. (3) such that the deviatoric stresses σσσσσσσσσσσσσσσσσ ′

k for the constituents can be determined.
The resulting expressions are inserted into Eq. (12), which yields the constitutive law
for the mixture after some transformations:

εεεεεεεεεεεεεεεεε = σm

3K
I + σσσσσσσσσσσσσσσσσ ′

2G
+ εεεεεεεεεεεεεεεεεin, (13)

where εεεεεεεεεεεεεεεεεin denotes the inelastic strain of the mixture:

εεεεεεεεεεεεεεεεεin = (1 − ηh) εεεεεεεεεεεεεεεεεin
s + ηhεεεεεεεεεεεεεεεεε

in
h . (14)

In the following, we specify evolution equations for the inelastic strain rates ε̇εεεεεεεεεεεεεεεεin
k based

on the suggestions in [50, 56]:

ε̇εεεεεεεεεεεεεεεεin
s = 3

2
ε̇invMs

σσσσσσσσσσσσσσσσσ ′
s

σvMs

, (15)

ε̇εεεεεεεεεεεεεεεεin
h = 3

2
ε̇invM

σσσσσσσσσσσσσσσσσ ′
h − σσσσσσσσσσσσσσσσσ ′

σvM�

(16)

with the von Mises equivalent inelastic strain rate in the soft constituent ε̇invMs
and in

the mixture ε̇invM as well as the vonMises equivalent stress in the soft constituent σvMs

and the von Mises equivalent saturation stress σvM�
:

ε̇invMs
=

√
2

3
ε̇εεεεεεεεεεεεεεεεin
s : ε̇εεεεεεεεεεεεεεεεin

s , (17)

ε̇invM =
√
2

3
ε̇εεεεεεεεεεεεεεεεin : ε̇εεεεεεεεεεεεεεεεin, (18)

σvMs =
√
3

2
σσσσσσσσσσσσσσσσσ ′
s : σσσσσσσσσσσσσσσσσ ′

s, (19)

σvM�
=

√
3

2

(
σσσσσσσσσσσσσσσσσ ′
h�

− σσσσσσσσσσσσσσσσσ ′) : (
σσσσσσσσσσσσσσσσσ ′
h�

− σσσσσσσσσσσσσσσσσ ′). (20)
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elastic element

Hooke’s law:
σk = Eεel

k

with
E = Eh = Es = E (T )

inelastic soft element

constitutive law w.r.t.
inelastic strain rate:

ε̇in
s = fεs(σs, T )

inelastic hard element

constitutive law w.r.t.
inelastic strain rate:

ε̇in
h = fεh(σh, T )

one-dimensional iso-strain concept for binary mixture

Eh

Es

εinsε
in
s

εinhε
in
h

σ σ

Fig. 5 Iso-strain concept for binary mixture with constant volume fractions of constituents, cf. [21]

The tensor σσσσσσσσσσσσσσσσσ ′
h�
represents the saturation stress deviator of the hard constituent. We

make use of the following evolution equation for the equivalent inelastic strain rate
in the soft constituent ε̇invMs

:

ε̇invMs
= fσ

(
σvMs

)
fT (T ) . (21)

Additionally, an evolution equation for the volume fraction of one constituent should
be formulated, cf. Eq. (6):

η̇h = fη
(
σσσσσσσσσσσσσσσσσ h, ε̇εεεεεεεεεεεεεεεε

in
h , T

)
. (22)

The one-dimensional phasemixturemodel is illustrated in Fig. 5, whereas the volume
fractions of the constituents are assumed as constant.

2.2 Macroscopic Model

The model presented in the previous section is closely connected to microstructural
processes such that results from microscopic observations would be required for the
calibration. But since in this case only results from macroscopic tests, such as HT
tensile tests or creep tests, are available, the model is referred to the macroscale by
introducing two internal variables: the backstress βββββββββββββββββ and the softening variable �.
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The following definitions hold for the backstress tensor βββββββββββββββββ and the corresponding
equivalent von Mises variable βvM:

βββββββββββββββββ = ηh0

1 − ηh0

(
σσσσσσσσσσσσσσσσσ ′
h − σσσσσσσσσσσσσσσσσ ′) ∀ 0 < ηh0 < 1, (23)

βvM =
√
3

2
βββββββββββββββββ : βββββββββββββββββ∀ 0 ≤ βvM ≤ βvM�

(24)

with the saturation values:

βββββββββββββββββ� = ηh0

1 − ηh0

(
σσσσσσσσσσσσσσσσσ ′
h�

− σσσσσσσσσσσσσσσσσ ′) , (25)

βvM�
=

√
3

2
βββββββββββββββββ� : βββββββββββββββββ�. (26)

The variable ηh0 =ηh (t =0) denotes the volume fraction of the hard constituent in
initial state. Furthermore, the tensor βββββββββββββββββ can be interpreted as a backstress similar to
the backstress introduced by Armstrong and Frederick [34], which is shown in [50].
In addition, we define the softening variable � and the corresponding saturation
value �� based on the volume fractions of the hard constituent:

� = ηh

1 − ηh

1 − ηh0

ηh0
∀ �� ≤ � ≤ 1, (27)

�� = ηh�

1 − ηh�

1 − ηh0

ηh0
∀ 0 < ηh� < 1. (28)

Note that the parameter ηh� represents the saturation value for the volume fraction
of the hard constituent. In order to obtain expressions for the stresses and inelastic
strain rates of the constituents based on the new internal variables, we make use of
the definitions (23)–(28), Eqs. (12), (15), (16), and (21):

σσσσσσσσσσσσσσσσσ ′
h = σσσσσσσσσσσσσσσσσ ′ + 1 − ηh0

ηh0
βββββββββββββββββ, (29)

σσσσσσσσσσσσσσσσσ ′
s = σ̃σσσσσσσσσσσσσσσσ

′
, (30)

ε̇εεεεεεεεεεεεεεεεin
h = 3

2
ε̇invM

βββββββββββββββββ

βvM�

, (31)
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ε̇εεεεεεεεεεεεεεεεin
s = 3

2
fσ (σ̃vM) fT (T )

σ̃σσσσσσσσσσσσσσσσ
′

σ̃vM
, (32)

whereas the effective stress σ̃σσσσσσσσσσσσσσσσ
′ as well as the corresponding von Mises stress σ̃vM are

introduced:

σ̃σσσσσσσσσσσσσσσσ
′ = σσσσσσσσσσσσσσσσσ ′ − �βββββββββββββββββ, (33)

σ̃vM =
√
3

2
σ̃σσσσσσσσσσσσσσσσ

′ : σ̃σσσσσσσσσσσσσσσσ
′
. (34)

Next, Eq. (13) is differentiated with respect to the time t :

ε̇εεεεεεεεεεεεεεεεin = ε̇εεεεεεεεεεεεεεεε − ∂

∂t

(
σm

3K
I + σσσσσσσσσσσσσσσσσ ′

2G

)
. (35)

Equation (2) with respect to the individual constituents is processed similarly, while
Eq. (3) is taken into account:

ε̇εεεεεεεεεεεεεεεε = ∂

∂t

(
σm

3K
I + σσσσσσσσσσσσσσσσσ ′

k

2G

)
+ ε̇εεεεεεεεεεεεεεεεin

k . (36)

We evaluate above equation with respect to the soft constituent and insert it into
Eq. (35). Additionally, the stress deviator σσσσσσσσσσσσσσσσσ ′

s and the inelastic strain rate ε̇εεεεεεεεεεεεεεεεin
s are

substituted based on Eqs. (30) and (32). Further transformations yield an evolution
equation for the inelastic strain εεεεεεεεεεεεεεεεεin:

ε̇εεεεεεεεεεεεεεεεin = 3

2
fσ (σ̃vM) fT (T )

σ̃σσσσσσσσσσσσσσσσ
′

σ̃vM
− ∂

∂t

(
�βββββββββββββββββ

2G

)
. (37)

Since it is discussed in [50, 57] that the last term affects the inelastic strain rate only
at the very beginning of inelastic deformation, this term is neglected in the remainder
such that the evolution equation for the inelastic strain is simplified as follows:

ε̇εεεεεεεεεεεεεεεεin = 3

2
fσ (σ̃vM) fT (T )

σ̃σσσσσσσσσσσσσσσσ
′

σ̃vM
. (38)

In the following, a similar procedure is applied to the hard constituent: Equation (36)
is formulated with respect to the hard constituent and inserted into Eq. (35). We
replace the stress deviator σσσσσσσσσσσσσσσσσ ′

h and the inelastic strain rate ε̇εεεεεεεεεεεεεεεεin
h using Eqs. (29) and

(31), such that one obtains an evolution equation for the backstress βββββββββββββββββ:

β̇ββββββββββββββββ = 1

G

dG

dT
Ṫβββββββββββββββββ + 2G

ηh0

1 − ηh0

(
ε̇εεεεεεεεεεεεεεεεin − 3

2
ε̇invM

βββββββββββββββββ

βvM�

)
. (39)
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Furthermore, we make use of the following evolution equation for the softening
variable, since it is suggested in [50]:

�̇ = C� [�� (σvM) − �] ε̇invM. (40)

The softening variable � replaces the volume fraction of the hard constituent, cf.
Eq. (27), such that Eq. (40) describes the decrease of the softening variable towards
its saturation value�� with increasing inelastic deformation. Thus, softening based on
the coarsening of subgrains can be accounted for. Note that the evolution equation is
restricted to proportional loading. For highly nonproportional loading, one can resort
to refined approaches, e.g. [58].

The calibrationof thephasemixturemodelwith respect to the alloyX20CrMoV12-
1 is discussed extensively in [19, 57]. Based on this, the following stress and tem-
perature response functions have been determined:

E (T ) = C1 + C2T 3, (41)

G (T ) = C3 + C4T 3, (42)

fT (T ) = exp

(
− Q

RT

)
, (43)

fσ (σ̃vM) = aσ sinh

(
σ̃vM

bσ

)[
1 +

(
σ̃vM

cσ

)mσ
]

, (44)

βvM�
(σvM) = 2aβ

1 + exp
(−bβσvM

) − aβ, (45)

�� (σvM) = a�

1 + exp [−b� (σvM − c�)]
(46)

with the Young’s modulus E of the mixture. Note that the bulk modulus K can be
easily determined based on the Young’s modulus and the shear modulus:

K = GE

3 (3G − E)
. (47)

All constants and identified parameters are listed in Table 1. The applicability and
precision of the calibrated phase mixture model have been carefully examined
based on experimental results for HT tensile and creep tests, cf. [19, 57]. It was
found that the model adequately described rate-dependent inelasticity, hardening,
and softening over large temperature and stress ranges, i.e. 673K≤ T ≤ 923K and
100MPa≤σvM ≤ 700MPa, whereas the calibration is restricted to relatively high
strain rates ε̇vM ≥10−7 s−1. To sum up, the presented approach is based on five gov-
erning equations:

• Hooke’s law for linear isotropic elastic behavior of the mixture

σσσσσσσσσσσσσσσσσ = K εelV I + 2Gεεεεεεεεεεεεεεεεεel′ , (48)
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Table 1 Used constants and identified material parameters for the phase mixture model, cf. [57]

Variable Value Unit Meaning Equation

C1
C2

2.23×105

−1.64×10−4
MPa
MPa K−3

Parameters in the temperature response
function for the Young’s modulus

(41)

C3
C4

82.6×103

−2.87×10−5
MPa
MPa K−3

Parameters in the temperature response
function for the shear modulus

(42)

Q 540.6×103 Jmol−1 Activation energy in the temperature
response functions for the inelastic
strain rate

(43)

R 8.317 J (molK)−1 Universal gas constant in the
temperature response functions for the
inelastic strain rate

(43)

aσ

bσ

cσ

mσ

1.54×1024

25.8
483.6
35.7

s−1

MPa
MPa
−

Parameters in the stress response
function for the inelastic strain rate

(44)

ηh0 0.17 − Reference value for the volume fraction
of the hard constituent

(39)

aβ 80.0 MPa Maximum value for the saturation
backstress

(45)

bβ 2.70×10−2 MPa−1 Parameter in the evolution function for
the saturation backstress

(45)

C� 5.0 − Parameter in the evolution equation for
the softening variable

(40)

a�

b�

c�

1.0
1.30×10−2

520.0

−
MPa−1

MPa

Parameters in the stress response
function for the saturation softening
variable

(46)

• the additive split of strains
εεεεεεεεεεεεεεεεε = εεεεεεεεεεεεεεεεεel + εεεεεεεεεεεεεεεεεin, (49)

• the evolution equation for the inelastic strain, cf. Eq. (38),
• the evolution equation for the backstress, cf. Eq. (39),
• the evolution equation for the softening variable, cf. Eq. (40).

In addition, initial conditions (ICs) must be taken into account. For the simulation
of the mechanical behavior of a virgin material, the following ICs hold:

σσσσσσσσσσσσσσσσσ (t =0) =0, βββββββββββββββββ (t = 0) = 0, � (t =0) =1. (50)
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3 Implementation into the Finite Element Method

Since this contribution aims at analyzing the mechanical behavior of real power
plant components, the current section focuses on the implementation of the calibrated
phasemixturemodel into the finite elementmethod (FEM). For this purpose, Sect. 3.1
presents the stress update algorithm, in analogy to the derivations presented in [53].
Additionally, the derivation of the consistent tangent operator (CTO) is discussed in
Sect. 3.2.

3.1 Stress Update Algorithm

As has been shown in Sect. 2.2, the phase mixture model requires the solution of
three evolution equations with respect to the inelastic strain εεεεεεεεεεεεεεεεεin, the backstress βββββββββββββββββ,
and the softening variable �, cf. Eqs. (38)–(40). Usually, displacement increments
are prescribed in finite element analyses, such that the strains are easily obtained
based on the first derivatives of the displacements, whereas the stress and internal
variables are determined based on the employed constitutive model. This process
is often referred to as the stress update algorithm, cf. [59]. Thus, we formulate an
evolution equation with respect to the stress σσσσσσσσσσσσσσσσσ by differentiating Eq. (13) once with
respect to time and rearranging the resulting expression with respect to the time
derivative of the stress tensor:

σ̇σσσσσσσσσσσσσσσσ = K ε̇V I + 2G
(
ε̇εεεεεεεεεεεεεεεε − ε̇εεεεεεεεεεεεεεεεin

) +
(
dK

dT
+ 2

3

dG

dT

)
Ṫ

σm

K
I + 1

G

dG

dT
Ṫσσσσσσσσσσσσσσσσσ ′. (51)

Note that the inelastic strain rate ε̇εεεεεεεεεεεεεεεεin is determined based on Eq. (38). The resulting
system of evolution equations, i.e. Eqs. (39), (40), and (51) must be integrated with
respect to time for prescribed displacement or strain increments, respectively. For
this purpose, two general classes of numerical methods are available: explicit and
implicit methods. Explicit methods determine an unknown equilibrium state at the
time step tn+1 only by using quantities with respect to the previous time step tn [60],
such that these methods are straightforward to implement. Though explicit methods
are only conditionally stable, i.e. their stability depends on the selected time step
size [61]. Deploying the Courant–Friedrichs–Lewy condition, one can compute a
critical time step size for an explicit time integration method [62].

As a remedy, one can make use of implicit methods. In this case, quantities with
respect to a new equilibrium state tn+1 are computed not only based on the previous
time steps, but also taking the current and future time steps into account. Therefore,
a nonlinear system of equations must be solved at every time step [60]. Implicit
methods feature unconditional stability, i.e. their stability is independent from the
increment size. For these reasons, the backward Euler method as an implicit method
is used in the contribution at hand for the numerical integration. Because of its
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straightforward formulation, this implicit method is commonly employed for the
implementation of nonlinear material models, cf. for example [42, 63–65]. Suppose
that one searches a solution for the ordinary differential equation Ż=F(Z, t) with
respect to the unknown variable Z. We prescribe the time increment 	t and assume
that the variable Zn at the time step tn is known. Then, the backward Euler method
approximates the solution at the time step tn+1 = tn + 	t in the following way [60]:

Zn+1 = Zn + 	t F(Zn+1, tn+1) . (52)

Let us apply the approximation according to Eq. (52) to the governing equations of
the phase mixture model. Assume that all quantities, i.e. the stress, the backstress,
the softening variable, and the strains, are known with respect to an equilibrium state
at the time step tn . Next, temperature, strain, and time increments	Tn+1,	εεεεεεεεεεεεεεεεεn+1, and
	tn+1 are prescribed and all other quantities with respect to the unknown equilibrium
state at the time step tn+1 must be computed. With the backward Euler method, the
strains, the temperature, the stress, and the internal variables can be updated as
follows [59]:

�n+1 = �n + 	 �n+1 ∀ � = {
εεεεεεεεεεεεεεεεε, εεεεεεεεεεεεεεεεεin, T, σσσσσσσσσσσσσσσσσ ,βββββββββββββββββ, �

}
. (53)

In the following, all variables refer to the time step tn+1, if not indicated otherwise.
We apply the backward Euler method to the evolution Eqs. (38)–(40):

	εεεεεεεεεεεεεεεεεin
n+1 = 3

2
	t fσ (σ̃vM) fT (T )

σ̃σσσσσσσσσσσσσσσσ
′

σ̃vM
, (54)

	βββββββββββββββββn+1 = 1

G

dG

dT
	Tβββββββββββββββββ+2G

ηh0

1 − ηh0

(
	εεεεεεεεεεεεεεεεεin − 3

2
	εinvM

βββββββββββββββββ

βvM�

)
, (55)

	�n+1 = C� [�� (σvM) − �]	εinvM. (56)

In order to update the stress based on the strains and internal variables, we exploit
Hooke’s law and reformulate Eq. (48):

σσσσσσσσσσσσσσσσσ n+1 = Cn+1 : εεεεεεεεεεεεεεεεεel
n+1 (57)

with the elastic stiffness tensor C and the fourth-order identity tensor:

C = 1

3
(3K − 2G) I ⊗ I + 2GI, (58)
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I = 1

2

(
ei ⊗ e j ⊗ e j ⊗ ei + ei ⊗ e j ⊗ ei ⊗ e j

)
. (59)

Furthermore, one can replace the elastic strain in Eq. (57) based on the additive split
of strains, cf. Eq. (49), considering Eq. (53):

σσσσσσσσσσσσσσσσσ n+1 = Cn+1 : (
εεεεεεεεεεεεεεεεεn + 	εεεεεεεεεεεεεεεεεn+1 − εεεεεεεεεεεεεεεεεin

n − 	εεεεεεεεεεεεεεεεεin
n+1

)
. (60)

To conclude, Eqs. (60) and (53)–(56) constitute a nonlinear system of equations
which has to be solved. In order to implement the solution of this system of equations
into a finite element code, we utilize matrix notation according to Voigt. Based on
the introduced symmetric second-order tensors σσσσσσσσσσσσσσσσσ =σi j ei ⊗ e j , σ̃σσσσσσσσσσσσσσσσ = σ̃i j ei ⊗ e j , βββββββββββββββββ =
βi j ei ⊗ e j , and εεεεεεεεεεεεεεεεε=εi j ei ⊗ e j , the corresponding vectors s, s̃, b, and e are defined
as follows:

s = [
σ11 σ22 σ33 σ12 σ13 σ23

]	
, (61)

s̃ = [
σ̃11 σ̃22 σ̃33 σ̃12 σ̃13 σ̃23

]	
, (62)

b = [
β11 β22 β33 β12 β13 β23

]	
, (63)

e = [
ε11 ε22 ε33 2ε12 2ε13 2ε23

]	
. (64)

Note that the vectors of the deviatoric stresses, inelastic or elastic strains, and other
incremental entities are formulated and labeled analogously. For the solution of the
nonlinear system of equations using the Newton–Raphson method, we reformulate
the system:

riσ = 0, (65)

riβ = 0, (66)

r i� = 0 (67)

with the residual quantities riσ , r
i
β , and r

i
�

riσ = −en+1 + einn + C−1
n+1s

i
n+1 + 	ein

i

n+1, (68)

riβ = −bn + bi
n+1 − 	bi

n+1, (69)

r i� = −�n + �i
n+1 − 	�i

n+1 (70)

as well as the iteration index �i . Based on Eq. (58), the stiffness matrix C and its
inverse C−1 are determined:
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C = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎣

3K+4G 3K−2G 3K−2G 0 0 0
3K−2G 3K+4G 3K−2G 0 0 0
3K−2G 3K−2G 3K+4G 0 0 0

0 0 0 3G 0 0
0 0 0 0 3G 0
0 0 0 0 0 3G

⎤
⎥⎥⎥⎥⎥⎥⎦

, (71)

C−1 = 1

18KG

⎡
⎢⎢⎢⎢⎢⎢⎣

2 (3K+G) 2G−3K 2G−3K 0 0 0
2G−3K 2 (3K+G) 2G−3K 0 0 0
2G−3K 2G−3K 2 (3K+G) 0 0 0

0 0 0 18K 0 0
0 0 0 0 18K 0
0 0 0 0 0 18K

⎤
⎥⎥⎥⎥⎥⎥⎦

. (72)

Since we make use of the Newton–Raphson method, Eqs. (65)–(67) are linearized,
cf. [60]:

Ai
n+1	pi+1

n+1 = −rin+1 (73)

with the vector pi+1
n+1 and the residual vector rin+1:

pi+1
n+1 = [

si+1
n+1 b

i+1
n+1 �i+1

n+1

]	
, (74)

rin+1 = [
riσ riβ r i�

]	
. (75)

By solving Eq. (73), one obtains the vector of increments	pi+1
n+1, such that the stress,

the backstress, and softening variable are updated:

pi+1
n+1 = pi

n+1 + 	pi+1
n+1. (76)

The derivatives of the residuals are summarized in the matrix Ai
n+1:

Ai
n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂riσ
∂s

∂riσ
∂b

∂riσ
∂�

∂riβ
∂s

∂riβ
∂b

∂riβ
∂�

∂r i�
∂s

∂r i�
∂b

∂r i�
∂�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (77)

We introduce the following abbreviations to shorten the expressions for the deriva-
tives of the residuals:

c1 = 3

2
	t fT (T ) , c2 = fσ (σ̃vM)

σ̃vM
, c3 = ∂ fσ (σ̃vM)

∂σ̃vM
, (78)
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c4 = σ̃σσσσσσσσσσσσσσσσ
′ : βββββββββββββββββ = σ̃ ′

i j β j i , c5 = ηh0

1 − ηh0
. (79)

In addition, the auxiliary matrices A1 and A2 are defined:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (80)

Based on above abbreviations, one obtains the following expressions for the deriva-
tives of the residuals:

∂riσ
∂s

= C−1 + c1

[
−3

2

c2 − c3
σ̃ 2
vM

s̃′s̃′	 + c2

(
A1 − 1

3
A2

)]
, (81)

∂riσ
∂b

= c1

[
3

2
(c2 − c3)

�

σ̃ 2
vM

s̃′s̃′	 − c2�A1

]
, (82)

∂riσ
∂�

= c1

[
3

2

(c2 − c3) c4
σ̃ 2
vM

s̃′ − c2b
]

, (83)

∂riβ
∂s

= 3Gc1c5

[
c2 − c3

σ̃ 2
vM

s̃′s̃′	 − 2

3
c2

(
A1 − 1

3
A2

)
+ c3

σ̃vM βvM�
(σvM)

s̃′b	

− fσ (σ̃vM)

σvM β2
vM�

(σvM)

∂βvM�
(σvM)

∂σvM
s′b	

]
, (84)

∂riβ
∂b

=
[
1 − 1

G

dG

dT
	T + 2Gc1c5

(
fσ (σ̃vM)

βvM�
(σvM)

+ c2�

)]
A1

− 2Gc1c5

[
3

2
(c2 − c3)

�

σ̃ 2
vM

s̃′s̃′	 + 3

2

c3�

σ̃vM βvM�
(σvM)

s̃′b	
]

, (85)

∂riβ
∂�

= −3Gc1c5

[
(c2 − c3) c4

σ̃ 2
vM

s̃′ +
(

c3c4
σ̃vM βvM�

(σvM)
− 2

3
c2

)
b
]

, (86)

∂r i�
∂s

= c1C�

[
c3 [� − ��(σvM)]

σ̃vM
s̃′	−c2

∂��(σvM)

∂σvM
s′	

]
, (87)

∂r i�
∂b

= c1C� [�� (σvM) − �]
c3�

σ̃vM
s̃′	

, (88)

∂r i�
∂�

= 1 + c1C�

[
2

3
fσ (σ̃vM) + c3c4 [�� (σvM) − �]

σ̃vM

]
. (89)
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Based on Eqs. (81)–(89), the matrix Ai
n+1 in Eq. (77) can be computed. We solve the

system of equations (73) using the Newton–Raphson method, cf. [60], within the
following iteration loop, cf. [53]:

1. set initial values (i=0):

s0n+1= sn b0
n+1= bn �0

n+1= �n (90)

2. iterate i = 0, 1, . . . , imax

a. compute residual vector rin+1 based on Eqs. (75) and (68)–(70)

b. calculate matrix Ai
n+1 and its inverse

(
Ai

n+1

)−1
based on Eq. (77)

c. determine the incremental change in the residual vector:

	pi+1
n+1 = −

(
Ai

n+1

)−1
rin+1 (91)

d. update all variables:

�i+1
n+1 = �i

n+1 + 	 �i+1
n+1 ∀�={p,s,b, �} (92)

2. check for convergence: ‖rin+1‖
?
< 10−6

• criterion fulfilled exit loop
• criterion not fulfilled i �→ i + 1, go to Step 2

where the symbol ‖�‖ stands for the Euclidean norm of a vector. Note that the inver-
sion in Step 2b is performed analytically based on the inversion rules for partitioned
matrices, cf. [66]. If the iteration is converged, the current values of the stress sn+1,
the backstress bn+1, and the softening variable �n+1 at time tn+1 are known.

3.2 Consistent Tangent Operator

In addition to the update of the stress and internal variables, the consistent tangent
operator (CTO) needs to be computed [60, 64]. For the derivation of themathematical
expression, wemake use of tensor notation in a first step and switch tomatrix notation
afterwards. Applying tensor notation, the CTO is represented by the fourth-order
tensor D:

D = ∂σσσσσσσσσσσσσσσσσ

∂εεεεεεεεεεεεεεεεε

∣∣∣∣
n+1

. (93)

In order to compute the derivative of the stress with respect to the strain, we exploit
the implicit function theorem [67]. Thus, Eq. (60) is transformed in the following
way:



Analysis of a Power Plant Rotor Made of Tempered Martensitic … 21

F(
σσσσσσσσσσσσσσσσσ n+1,βββββββββββββββββn+1, �n+1, εεεεεεεεεεεεεεεεεn+1

) = 0 (94)

with the implicit function F :

F(
σσσσσσσσσσσσσσσσσ n+1,βββββββββββββββββn+1, �n+1, εεεεεεεεεεεεεεεεεn+1

) = σσσσσσσσσσσσσσσσσ n+1 − Cn+1 : (
εεεεεεεεεεεεεεεεεn+1 − εεεεεεεεεεεεεεεεεin

n − 	εεεεεεεεεεεεεεεεεin
n+1

)
. (95)

The inelastic strain increment	εεεεεεεεεεεεεεεεεin
n+1 is computed based on Eq. (54), taking Eqs. (53),

(55), and (56) into account. Exploiting the implicit function theorem [67], the CTO,
i.e. the derivative of the stress with respect to the strains, is determined as follows:

D = ∂σσσσσσσσσσσσσσσσσ

∂εεεεεεεεεεεεεεεεε

∣∣∣∣
n+1

= −
(

∂F
∂σσσσσσσσσσσσσσσσσ n+1

)−1

: ∂F
∂εεεεεεεεεεεεεεεεεn+1

. (96)

Note that the arguments of the implicit function F have been dropped for the sake
of brevity. Based on Eq. (95), the implicit function F is derived with respect to the
stress tensor:

∂F
∂σσσσσσσσσσσσσσσσσ n+1

= I + Cn+1 : ∂	εεεεεεεεεεεεεεεεεin
n+1

∂σσσσσσσσσσσσσσσσσ n+1
, (97)

while the derivative of the inelastic strain increment with respect to the stress is
determined using Eq. (54):

∂	εεεεεεεεεεεεεεεεεin
n+1

∂σσσσσσσσσσσσσσσσσ n+1
=3

2

	t fT (T )

σ̃vM

[
3

2

(
1

σ̃vM

∂ fσ (σ̃vM)

∂σ̃vM
− fσ (σ̃vM)

σ̃ 2
vM

)
σ̃σσσσσσσσσσσσσσσσ

′ ⊗ σ̃σσσσσσσσσσσσσσσσ
′

+ fσ (σ̃vM)

(
I − 1

3
I ⊗ I

)]
. (98)

Deriving Eq. (95) with respect to the strain results in a significantly shorter expres-
sion:

∂F
∂εεεεεεεεεεεεεεεεεn+1

= −Cn+1. (99)

Next, we insert Eqs. (97) and (99) into Eq. (96) to obtain the final expression for the
CTO in tensor notation:

D =
(
I + Cn+1 : ∂	εεεεεεεεεεεεεεεεεin

n+1

∂σσσσσσσσσσσσσσσσσ n+1

)−1

: Cn+1. (100)

Above expression is transferred to matrix notation:

D =
(
A1 + Cn+1

∂	einn+1

∂sn+1

)−1

: Cn+1 (101)
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with the corresponding derivative of the inelastic strain increment with respect to the
stress, cf. Eq. (98):

∂	einn+1

∂sn+1
=3

2

	t fT (T )

σ̃vM

[
3

2

(
1

σ̃vM

∂ fσ (σ̃vM)

∂σ̃vM
− fσ (σ̃vM)

σ̃ 2
vM

)
s̃′ (s̃′)	

+ fσ (σ̃vM)

(
A1 − 1

3
A2

)]
. (102)

The presented stress update algorithm as well as the CTO have been implemented
into the commercial FE code ABAQUS via a user material subroutine (UMAT). In
[19, 53], the performance and accuracy of this implementation are examined based
on several benchmark problems considering uniaxial as well as multiaxial stress and
deformation states.

4 Analysis of an Idealized Rotor

The phase mixture model has been implemented into the FEM since this contribu-
tion aims at analyzing complex power plant components under realistic boundary
conditions (BCs). Therefore, this section discusses the simulation of the mechanical
behavior of a steam turbine rotor. Similar analyses have been conducted before, cf.
[42, 68]. In [42], the cyclic thermo-mechanical behavior of an industrial gas turbine
rotor is simulated with a viscoplastic constitutive model using an axisymmetric finite
element mesh. Thereby, the thermo-mechanical analysis is divided into two steps.
As a starting point, the temperature distribution in the rotor is computed during a
heat transfer analysis. For this purpose, the gas temperatures are prescribed as ther-
mal BCs, and the corresponding heat transfer coefficients are provided as input. In
a second step, the temperature field serves as input for the structural analysis. Addi-
tionally, Zhu et al. present the results of a similar thermo-mechanical analysis based
on a three-dimensional finite element model.

Nevertheless, both publications provide insufficient or normalized information
with respect to the precise geometry of the rotors or the applied BCs. Therefore, this
contributionmakes use of a differentmodel, i.e.we analyze an idealized steam turbine
rotorwith an inlet groove. This procedure is based on [12], where the authors examine
the behavior of the rotor subjected to a hot start, a subsequent holding stage, as well as
a cool-down. Though, the consideration of cold starts is of crucial importance since
the temperature gradients are expected to exceed the thermal loads during a hot start
significantly, thus resulting in a higher impact on the rotor. In contrast to previous
calibrations of the phase mixture model, e.g. [50], which are restricted to relatively
narrow temperature ranges, i.e. 773K≤ T ≤ 873K, the currentmodel is applicable to
a wider temperature range (673K≤ T ≤923K), which allows for the consideration
of cold starts. Thus, we examine the influence of a cold start and a subsequent hot start
on the mechanical behavior of the rotor. In analogy to the approaches suggested in
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[42, 68], the thermo-mechanical analysis is only partly coupled since the influence
of the thermal loads on the mechanical behavior is taken into account, whereas
the inverse phenomenon, i.e. the influence of the mechanical deformations on the
temperature field, is neglected. This procedure results in a significant reduction of
the computational effort compared to a fully coupled thermo-mechanical analysis.
In summary, the thermal analysis (described in Sect. 4.1) will yield the temperature
distribution, which will serve as input for the subsequent structural analysis, cf.
Sect. 4.2.

4.1 Heat Transfer Analysis

In the following, the model, the BCs, as well as the results of the heat transfer
analysis are presented. The upper pictures of Fig. 6 illustrate the idealized geometry
and the employed axisymmetric finite element mesh. Note that we make use of the
heat transfer element DCAX8, which is an axisymmetric quadrilateral element with
8 nodes and quadratic shape functions. The notch induces stress and strain gradients,
which are accounted for by refining the mesh near the notch root. Furthermore,
several partitions have been used in order to obtain a structured regular mesh. The
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Fig. 6 Geometry, mesh, and loads for the heat transfer analysis of a steam turbine rotor with an
inlet groove based on [12, 19]
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bottom left diagram in Fig. 6 presents the dependence of the steam temperature on
the longitudinal coordinate z. As can be seen, the steam temperature is assumed
to depend linearly on the longitudinal coordinate, and it is constant near the notch,
i.e. T (L1 ≤ z≤ L2) = T2. Furthermore, the rotor is equally heated from the left and
the right side, i.e. T (z=0) = T (z= L3) = T1. Changes in the steam parameters are
taken into account by different heat transfer coefficients κ th

1 and κ th
2 , which depend

on the steam temperatures. Note that the heat transfer coefficients are reasonable
experience values and have been derived according to [69].

The temporal change in the steam temperatures T1 and T2 is depicted in the
bottom right diagram of Fig. 6. Since the complex thermo-mechanical loads in power
plants are instationary and difficult to measure, it is a challenging task to obtain
specific information on the temperature fields during the start-ups and shut-downs.
Leyzerovich classified start-ups into three categories, i.e. cold, warm, and hot starts
[70]. Considering a cold start, the previous shut-down must have taken place at least
three days ago or the maximum pre-start temperature of the components must be
lower than 393–433K. In [71], similar limits are given for the steam temperatures.
The outage before a hot start should not exceed 8–10 h, and all intermediate start-ups
are denominated as warm starts [70]. Bearing these limits in mind, we define the pre-
start steam temperatures T1(t =0 h) =433K and T2(t =0 h) = 523K for the heat
transfer analysis. In a first step, the rotor is heated up to a maximum temperature of
873K. Then, the steam temperature is held constant over 23 h, which is followed by
a decrease in temperature to 623–673K. Finally, the rotor is restarted after a holding
time of 12 h and the constant maximum temperature of 873K is prescribed during
23 h before the final cool-down. A wide artificial temperature range for the loading
profile has been chosen to demonstrate the characteristics of the model.

The results of the transient thermal analysis are summarized in Fig. 7. Note that the
temperatures are evaluated at two specific points: pointA at the notch root and point B
on the axis of rotation. The temporal evolution of both temperatures is shown in Fig. 7,
while the results with respect to the cold start are located at the left-hand side and
the corresponding data for the hot start is shown at the right-hand side. Additionally,
vertical lines indicate the points in time with respect to the maximum absolute tem-
perature differences |TA − TB| during the warm-up and the cool-down, respectively.
Contour plots visualize the corresponding temperature fields. In agreement to the
findings in [42], one observes the absolutely highest temperature differences during
the start-ups. As one would expect, the maximum temperature difference (≈227K)
occurs during the cold start, thus significantly exceeding the highest temperature dif-
ference during the hot start (≈166K). Because the rotor is heated externally by the
steam, the temperature TA at the surface is higher than the internal temperature TB dur-
ing heating-up. In contrast, while cooling down, the temperature in point B decreases
more slowly than the surface temperatures, e.g. in point A. Consequently, the internal
temperatures are higher than the temperatures at the surface. Furthermore, it is worth
noticing that the maximum temperature difference during cool-down is relatively
low (≈72K). The temperature difference is even lower during the holding stage and
accounts for only ≈27K.
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Fig. 7 Temperature distributions within the rotor and the temperatures TA and TB in points A and
B versus time. Cold start (left) and hot start (right), cf. [19]

4.2 Structural Analysis

This section presents the structural analysis with the phase mixture model, starting
with the obtained temperature fields as input. For this purpose, we make use of the
continuumelement CAX8,which is also an axisymmetric quadrilateral finite element
with 8 nodes and quadratic shape functions. As can be seen in the upper pictures of
Fig. 8, the finite element mesh from the heat transfer analysis is reused, which is due
to the fact that the elements DCAX8 and CAX8 are both 8-node quadrilateral finite
elements with quadratic shape functions, thus providing an identical description
of the geometry and the field of unknowns in both cases. In addition, the applied
mechanical BCs are depicted in the bottom left diagram in Fig. 8. Since the model is
axisymmetric and rigid body motions must be prohibited, we set the displacements
normal to the edges r =0 and z=0 to zero. The steam pressure p(t) acts on the
upper edge of the rotor (marked in red), and the time-dependent frequency f (t) is
prescribed such that the body rotates along the z axis (indicated in blue). Since the
start-up and shut-down procedures are simulated, both the steam pressure as well as
the frequency are time-dependent, cf. the bottom right diagram in Fig.8.

In the following, selected results of the structural analysis are presented. The
mechanical strains and stresses in point A are depicted over the time scale in Fig. 9.
Thereby, a vector basis has been introduced, including the unit orthogonal vectors n,
et , and eϕ , cf. the bottom right diagram in Fig. 9. Note that these vectors also rep-
resent the principal directions of both the mechanical strain tensor and the stress
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tensor [12]. The absolute minimum tangential strain |εt tmin | is used to normalize the
strains, which are shown over time in the upper diagrams of Fig. 9. The corresponding
stress components are normalized with respect to the absolute minimum tangential
stress |σt tmin |, and these results are summarized depending on time in the lower dia-
grams of the same figure. As in the previous figures, we locate the results of the cold
and hot start at the left and right-hand side, respectively.

Due to theBCs, the normal stress equals the negative steampressure, i.e.σnn =−p.
When the rotor is heated up, i.e. at t ≈ 6 h and t ≈ 45 h, compression occurs and the
circumferential and tangential stresses and strains are minimized. It becomes obvi-
ous that the tangential and circumferential stresses and strains attain their absolute
maximum values during the cold start. In addition, the tangential strain increases
continuously, which is due to creep during the holding stages. Contrarily, the cir-
cumferential and tangential stresses decrease over time, thus stress relaxation can be
observed. The rotor is subjected to tension during the cool-down since the tangential
and circumferential stresses and strains are positive.

As it is shown in Fig. 9, the tangential stress and strain feature the highest absolute
values throughout both cycles. For this reason, we focus on these two components
in the following, cf. Fig. 10. The upper diagrams of this figure show both compo-
nents, i.e. the normalized tangential strain and the corresponding stress, in point A
depending on the time. In addition, the lower diagrams illustrate the dependence of
the normalized tangential stress on the normalized tangential strain. We mark dis-
tinct points in red and assign numbers to each point to highlight the different stages
during the temperature cycle, cf. Fig. 7 and 10. Between points 1 and 3, the rotor
is heated up, whereas two stages can be distinguished: a warm-up with increasing
temperature difference TA−TB (1–2 during the cold start and 6–7 during the hot start)
and a phase with decreasing temperature difference (2–3 and 7–8 for cold and hot
start, respectively). With increasing temperature difference, the tangential stress and
strain decrease, i.e. the rotor is compressed. In analogy, if the temperature difference
decreases in the second stage, the lower temperature differences result in a reduc-
tion of the absolute strain and stress values. Afterwards, the holding stage follows
between points 3–4 and 8–9, respectively. Here, creep and relaxation processes take
place such that the strain increases continuously, whereas the stress is reduced at the
same time. Applying a similar procedure as for the warm-up, the cool-down (4–6
and 9–11) can be divided into two different stages. Between the points 4–5 and 9–10,
one can observe the decrease in the temperature difference up to TA−TB ≈ −72K.
Here, tensile stresses and strains occur. Within the last range, i.e. 5–6 and 10–11,
the cool-down is completed and followed by a short holding stage. Due to the low
absolute temperature difference |TA−TB|, both the tangential stress and strain are
reduced.

In what follows, let us examine the behavior of the normal and circumferen-
tial stresses and strains in detail. In the upper diagrams of Fig. 11, the normalized
circumferential and normal strains are depicted depending on the normalized tan-
gential strain in point A. Note that as before the diagrams on the left-hand side refer
to the cold start, while the diagrams on the right-hand side show the results with
respect to the hot start. The diagrams at the top reveal that the ratios of the principal
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strains change during the cycles, i.e. one can observe nonproportional loading in
point A [72]. Nevertheless, the principal directions n, et , and eϕ are still fixed. Addi-
tionally, the lower diagrams of Fig. 11 present the hysteresis loops with respect to the
tangential and circumferential components. It becomes obvious that the hysteresis
loops of the circumferential components are of a similar size as the corresponding
loops of the tangential components, such that the influence of the circumferential
components should definitely be taken into account when evaluating the mechanical
work dissipated during the cycles [12].

The presented simulation results in this section agree well with published results
for a hot start, cf. [12]. Note that cold starts have been simulated as well, which
is possible due to the applicability of the current calibration to wide temperature
ranges, i.e. 673K≤ T ≤ 923K. The simulation of a cold start followed by a hot start
highlights the differences between the two starting procedures and the influence of
the inhomogeneous temperature field on the stresses and strains.

5 Summary and Outlook

The contribution at hand presents a phase mixture model, the implementation of this
model into the FEM, and the final analysis of a steam turbine rotor. Thereby, we focus
on the tempered martensitic steel X20CrMoV12-1, whose mechanical behavior at
elevated temperatures is modeled via the phase mixture approach.

The first part of the contribution, cf. Sect. 2, introduces the governing equations of
the phase mixture model, which accounts for inelastic deformations as well as soft-
ening and hardening processes by modeling the material as an iso-strain composite
consisting of a soft and a hard constituent.While the soft constituent refers to the sub-
grain interior, i.e. regionswith lowdislocation density, the hard constituent comprises
the subgrain boundaries, i.e. regions with higher dislocation density. After introduc-
ing two internal variables—a backstress and a softening variable—one obtains a
coupled system of three evolution equations with respect to the inelastic strain of the
mixture and the two internal variables.

In a previous paper, this model is calibrated based on creep and HT tensile
tests on the alloy X20CrMoV12-1. It has been demonstrated that the model accu-
rately predicts the experimental data for wide ranges of temperature and stress, i.e.
673K≤ T ≤ 923K and 100MPa≤σ ≤ 700MPa, respectively. As can be seen, the
applicability of the phasemixturemodel has been significantly extended compared to
previous attempts, cf. [50], which are applicable to smaller ranges of stress and tem-
perature (150MPa≤σ ≤ 200MPa, 773K≤ T ≤873K). Note that the model should
only be applied to relatively high strain rates ε̇vM ≥10−7 s−1. After all, the presented
constitutive model requires only 16 material parameters for robust simulations of
hardening and softening behavior over wide ranges of stress and temperature, which
constitutes a major advantage of the present approach. Note that the majority of the
proposed models for tempered martensitic steels demands for 20 parameters and
more, as already discussed in Sect. 1.
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The next part of this contribution focuses on the implementation of the constitutive
model into the FEM. For this purpose, the resulting system of evolution equations is
implicitly integrated with respect to time based on the backward Euler method. Note
that this procedure results in a nonlinear system of equations, which is solved by
means of the Newton–Raphson method. In addition, the consistent tangent operator
is derived analytically based on the system of evolution equations, while exploiting
the implicit function theorem. To implement this model into the commercial finite
element code ABAQUS, a UMAT subroutine has been written.

Finally, the implemented phase mixture model is used to simulate the mechani-
cal behavior of a steam turbine rotor. Although similar analyses have already been
conducted, cf. [12, 42, 68], the influence of the different starting procedures has
not been examined yet. Therefore, a thermo-mechanical analysis for a cold start and
a subsequent hot start is conducted using an axisymmetric model. In a first step,
we prescribe the instationary steam temperature and heat transfer coefficients for a
heat transfer analysis, which yields the resulting temperature field in the rotor. One
observes that the largest temperature difference of 227K occurs during the cold start.
In contrast, the maximum temperature difference during cool-down is relatively low
and accounts for only 72K. Next, the computed temperature field is used as input for
the subsequent structural analysis with the phase mixture model. It is worth noticing
that the highest absolute stresses and strains occur during the cold start. In addition,
the holding stages of both cycles exhibit creep and stress relaxation, such that the
strains increase steadily while the stresses decrease over time. Generally speaking,
these results highlight the differences in the temperature, stress, and strain fields
depending on the start-up procedure under consideration, i.e. a cold or a hot start.
The results clearly show that it is of crucial importance to consider cold starts as
well during the simulation of power plant components. In a subsequent analysis,
one could use these obtained stress and strain tensors to evaluate creep and fatigue
damage, cf. [73], and to predict the lifetime of power plant components.

As a starting point, this contribution investigates a rotor with relatively simple
geometry subjected to idealized thermo-mechanical loads. These simplifications
and assumptions are due to the lack of precise data with respect to the geometry
and the loads of real parts in literature. For this reason, power plant components
under service-type loads should be analyzed with the phase mixture model in future
studies. These analyses demand for the publication of additional experimental data
concerning the thermo-mechanical loads on the components, such as the resulting
temperature distribution on the surface of steam turbine rotors. Furthermore, the
set-up of an axisymmetric finite element model, as it is also done in [42], is an
acceptable simplification, but it would be beneficial to employ a three-dimensional
model to account for the influence of the rotor blades, cf. Fig. 1.

In order to precisely predict the lifetime of power plant components, one should
focus on simulating the effect of cyclic loads, i.e. the analysis should account for
a large number of cycles. Then, a fine resolution of the temporal scale is required,
such that the computational effort increases exponentially, considering also complex
geometries and realistic BCs. Therefore, the numerical performance and efficiency
of the current numerical implementation should be examined in detail. In case of
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high computational costs, one could replace the full Newton–Raphson method by
less expensive approaches, such as the discretized or modified Newton–Raphson
methods, cf. [60]. Nevertheless, the rate of convergence often deteriorates applying
these methods, which should be checked carefully.

If the integration of other iteration approaches does not reduce the computational
costs adequately, one can resort to explicit integrationmethods since the discrete con-
stitutive equations are considerably easier to derive compared to implicit methods
and a nonlinear system of equations must not be solved. However, explicit methods
are only conditionally stable, such that automatic time stepping should be imple-
mented including a critical time step size, cf. for example [74]. In this way, one
could examine if the computational costs can be reduced by using explicit integra-
tion methods with automatic time stepping. Note that these possible improvements
of the implementation of the phase mixture model are proposed in order to enable an
efficient in-service assessment of power plant components, such that one can deduce
measures to improve their design and extend their lifetime.
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24. Orlová, A., Buršík, J., Kuchřoavá, K., Sklenička, V.: Microstructural development during high
temperature creep of 9% Cr steel. Mater. Sci. Eng. A 245, 39–48 (1998)

25. Fournier, B., Sauzay, M., Barcelo, F., Rauch, E., Renault, A., Cozzika, T., Dupuy, L., Pineau,
A.: Creep-fatigue interactions in a 9 Pct Cr-1 Pct mo martensitic steel: Part II. Microstructural
evolutions. Metall. Mater. Trans. A 40(2), 330–341 (2009)

26. Blum, W.: Mechanisms of creep deformation in steel. In: Abe, F., Kern, T.-U., Viswanathan,
R. (eds.) Creep-Resistant Steels, pp. 365–402. Woodhead Publishing Limited, Sawston (2008)

27. Verma, P., Srinivasa, N.S.C., Singha, V.: Low cycle fatigue behavior of modified 9Cr-1Mo steel
at 300 ◦C. Mater. Sci. Eng. A 715, 17–24 (2018)

28. Giroux, P.-F.: Experimental study and simulation of cyclic softening of tempered martensite
ferritic steels. Ph.D. Thesis, École Nationale Supérieure des Mines de Paris (2011)

29. Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations: Part II:
application of internal variable concepts to the 316 stainless steel. J. Press. Vessel. Technol.
105(2), 159 (1983)

30. Wang, J., Steinmann, P., Rudolph, J., Willuweit, A.: Simulation of creep and cyclic viscoplastic
strains in high-Cr steel components based on a modified Becker–Hackenberg model. Int. J.
Press. Vessel. Pip. 128, 36–47 (2015)

31. Velay, V., Bernhart, G., Penazzi, L.: Cyclic behavior modeling of a tempered martensitic hot
work tool steel. Int. J. Plast. 22(3), 459–496 (2006)

32. Farragher, T.P., Scully, S., O’Dowd, N.P., Leen, S.B.: Thermomechanical analysis of a pressur-
ized pipe under plant conditions. J. Press. Vessel. Technol. 135, 011204–1–011204–9 (2013)



Analysis of a Power Plant Rotor Made of Tempered Martensitic … 33

33. Farragher, T.P., Scully, S., O’Dowd, N.P., Hyde, C.J., Leen, S.B.: High temperature, low cycle
fatigue characterization of P91 weld and heat affected zone material. J. Press. Vessel. Technol.
136(2), 021403–1–021403–10 (2014)

34. Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial bauschinger
effect. Technical report, Berkeley Nuclear Laboratories (1966)

35. Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J.
Plast. 5(3), 247–302 (1989)

36. Koo, G.-H., Kwon, J.-H.: Identification of inelastic material parameters for modified 9Cr-1Mo
steel applicable to the plastic and viscoplastic constitutive equations. Int. J. Press. Vessel. Pip.
88, 26–33 (2011)

37. Wang, P., Cui, L., Lyschik, M., Scholz, A., Berger, C., Oechsner, M.: A local extrapolation
based calculation reductionmethod for the application of constitutivematerial models for creep
fatigue assessment. Int. J. Fatigue 44, 253–259 (2012)

38. Saad, A.A., Sun, W., Hyde, T.H., Tanner, D.W.J.: Cyclic softening behaviour of a P91 steel
under low cycle fatigue at high temperature. Procedia Eng. 10, 1103–1108 (2011)

39. Saad, A.A.: Cyclic plasticity and creep of power plant materials. Ph.D. Thesis, University of
Nottingham, Nottingham (2012)

40. Barrett, R.A., O’Donoghue, P.E., Leen, S.B.: An improved unified viscoplastic constitutive
model for strain-rate sensitivity in high temperature fatigue. Int. J. Fatigue 48, 192–204 (2013)

41. Zhang, S.-L., Xuan, F.-Z.: Interaction of cyclic softening and stress relaxation of 9–12% Cr
steel under strain-controlled fatigue-creep condition: experimental and modeling. Int. J. Plast.
1–20 (2017)

42. Benaarbia, A., Rae, Y., Sun,W.: Unified viscoplasticitymodelling and its application to fatigue-
creep behaviour of gas turbine rotor. Int. J. Mech. Sci. 136, 36–49 (2018)

43. Estrin, Y., Braasch, H., Brechet, Y.: A dislocation density based constitutive model for cyclic
deformation. J. Eng. Mater. Technol. 118(4), 441–447 (1996)

44. Sauzay,M., Brillet, H.,Monneta, I.,Mottot,M., Barcelo, F., Fournier, B., Pineau, A.: Cyclically
induced softening due to low-angle boundary annihilation in a martensitic steel. Mater. Sci.
Eng. A 400–401, 241–244 (2005)

45. Sauzay, M., Fournier, B., Mottot, M., Pineau, A., Monnet, I.: Cyclic softening of martensitic
steels at high temperature: experiments and physically based modelling. Mater. Sci. Eng. A
483–484, 410–414 (2008)

46. Barrett, R.A., O’Donoghue, P.E., Leen, S.B.: A dislocation-based model for high temperature
cyclic viscoplasticity of 9–12Cr steels. Comput. Mater. Sci. 92, 286–297 (2014)

47. Barrett, R.A., O’Donoghue, P.E., Leen, S.B.: A physically-based constitutive model for high
temperaturemicrostructural degradation under cyclic deformation. Int. J. Fatigue 100, 388–406
(2017)

48. Barkar, T., Ågren, J.: Creep simulation of 9–12% Cr steels using the composite model with
thermodynamically calculated input. Mater. Sci. Eng. A 395(1–2), 110–115 (2005)

49. Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper.
Ann. Phys. 274(12), 573–587 (1889)

50. Naumenko, K., Altenbach, H., Kutschke, A.: A combined model for hardening, softening, and
damage processes in advanced heat resistant steels at elevated temperature. Int. J. Damage
Mech. 20(4), 578–597 (2011)

51. Naumenko, K., Gariboldi, E.: A phase mixture model for anisotropic creep of forged Al–Cu–
Mg–Si alloy. Mater. Sci. Eng. A 618, 368–376 (2014)

52. Raj, S.V., Iskovitz, I.S., Freed, A.D.: Modeling the role of dislocation substructure during class
M and exponential creep. In: Krausz, A.S., Krausz, K. (eds.) Unified Constitutive Laws of
Plastic Deformation, pp. 343–439. Academic Press Inc., Cambridge (1996)

53. Eisenträger, J., Naumenko, K., Altenbach, H.: Numerical implementation of a phase mixture
model for rate-dependent inelasticity of tempered martensitic steels. Acta Mech. 229, 3051–
3068 (2018)

54. Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T.: Logarithmic stress rate based constitutive model for
cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014)



34 J. Eisenträger et al.

55. Shutov, A.V., Kreißig, R.: Finite strain viscoplasticity with nonlinear kinematic hardening:
phenomenologicalmodeling and time integration.Comput.MethodsAppl.Mech.Eng.197(21–
24), 2015–2029 (2008)

56. Naumenko, K., Altenbach, H.: Modeling High Temperature Materials Behavior for Struc-
tural Analysis. Part I: ContinuumMechanics Foundations and Constitutive Models. Advanced
Structured Materials, vol. 28. Springer International Publishing, Berlin (2016)

57. Eisenträger, J., Naumenko, K., Altenbach, H.: Calibration of a phase mixture model for hard-
ening and softening regimes in tempered martensitic steel over wide stress and temperature
ranges. J. Strain Anal. Eng. Des. 53, 156–177 (2018)

58. Silbermann,C.B., Shutov,A.V., Ihlemann, J.:Modeling the evolution of dislocation populations
under non-proportional loading. Int. J. Plast. 55, 58–79 (2014)

59. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures.
Wiley, New York (2000)

60. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)
61. Luccioni, L.X., Pestana, J.M., Taylor, R.L.: Finite element implementation of non-linear elasto-

plastic constitutive laws using local and global explicit algorithms with automatic error control.
Int. J. Numer. Methods Eng. 50(5), 1191–1212 (2001)

62. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathe-
matischen Physik. Math. Ann. 100, 32–74 (1928)

63. Hartmann, S., Haupt, P.: Stress computation and consistent tangent operator using non-linear
kinematic hardening models. Int. J. Numer. Methods Eng. 36(22), 3801–3814 (1993)

64. Hartmann, S., Lührs, G., Haupt, P.: An efficient stress algorithmwith applications in viscoplas-
ticity and plasticity. Int. J. Numer. Methods Eng. 40(6), 991–1013 (1997)

65. Kobayashi, M., Mukai, M., Takahashi, H., Ohno, N., Kawakami, T., Ishikawa, T.: Implicit
integration and consistent tangentmodulus of a time-dependent non-unified constitutivemodel.
Int. J. Numer. Methods Eng. 58(10), 1523–1543 (2003)

66. Harville, D.A.: Matrix Algebra From a Statistician’s Perspective. Springer, New York (1997)
67. Ghorpade, S.R., Limaye, B.V.: A Course in Multivariable Calculus and Analysis. Springer,

New York (2010)
68. Zhu, X., Chen, H., Xuan, F., Chen, X.: Cyclic plasticity behaviors of steam turbine rotor

subjected to cyclic thermal and mechanical loads. Eur. J. Mech. A/Solids 66, 243–255 (2017)
69. Stephan, P., Kabelac, S., Kind, M., Martin, H., Mewes, D., Schaber, K.: VDI Heat Atlas.

Springer, Berlin (2010)
70. Leyzerovich, A.S.: Steam Turbines for Modern Fossil-fuel Power Plants. Fairmont Press, Lil-

burn, GA, USA (2008)
71. Strauß, K.: Kraftwerkstechnik zur Nutzung fossiler, nuklearer und regenerativer

Energiequellen. Springer, Berlin (2009)
72. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (2006)
73. Meng, Q., Wang, Z.: Creep damage models and their applications for crack growth analysis in

pipes: a review. Eng. Fract. Mech. 205, 547–576 (2019)
74. Sloan, S.W.: Substepping schemes for the numerical integration of elastoplastic stress-strain

relations. Int. J. Numer. Methods Eng. 24(5), 893–911 (1987)



Computational Assessment
of the Microstructure-Dependent
Thermomechanical Behaviour
of AlSi12CuNiMg-T7—Methods
and Microstructure-Based Finite
Element Analyses

Carl Fischer, Axel Reichenbacher, Mario Metzger and Christoph Schweizer

Abstract In this paper, the influence of the microstructure of a cast aluminium alloy
used for pistons in combustion engines on the local and global deformation behavior
is investigated by means of microstructure-based cell models and the finite element
method. Therefore, a representative microstructure is digitized using nano computer
tomography. In the digitized and segmented data, the aluminiummatrix, silicon parti-
cles, pores and two intermetallic phases are distinguished. Microstructure-based cell
models are created and linear-elastic, thermal and viscoplastic material properties are
assigned for the finite element simulation in ABAQUS/Standard. The elastic, macro-
scopic nearly isotropic material behavior is shown for 64 different microstructure-
based cell models with 200 × 200 × 200 elements with microstructure-dependent
material properties at room temperature. A microstructure cell is subjected to a ther-
mal cycle with zero macroscopic loading in order to examine the influence of the
thermal mismatch between the individual microstructure phases on the resulting
stresses and strains on the micro level. High stresses at interfaces of silicon particles
and the aluminium matrix occur in the linear-elastic simulation, whereas an elastic-
viscoplastic material behavior of the aluminiummatrix leads to a overall stress relief
in the microstructure cell.
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1 Introduction

In the current discussion regarding the emission of vehicleswith combustion engines,
the focus lies on the reduction of carbon dioxides and nitrogen oxides. The reduction
ofmileage is achieved bymore efficient and highly loaded engines as well as by those
of lighter vehicle design. However, severe emission standards and safety aspectsmust
be maintained. Simply reducing the weight of the passenger cab or the car body is
insufficient, meaning that other components, i.e. the combustion engine must also
be designed with a lightweight construction. Preferably aluminium materials are
used in many parts of the combustion engine that exhibit low density, high thermal
conductivity, very good castability and high corrosion resistance.

Eutectic cast aluminium alloys (e.g. AlSi12) are currently used for pistons and
hypo-eutectic cast aluminium alloys (e.g. AlSi7Mg or AlSi10Mg) for cylinder heads
in diesel and gasoline engines. These components are exposed to severe temperature
cycles during service, leading to low-cycle fatigue (LCF). Because the stresses are
mainly caused by the temperature cycles, one speaks of thermomechanical fatigue
(TMF). Since extreme thermal and mechanical loads involve time-dependent plastic
deformation, short fatigue cracks are formed after relatively few thermal cycles and
the fatigue crack growth limits the lifetime expectancy of the components. Due to the
piston stroke, high-cycle fatigue (HCF) is superimposed to the thermal cycles, so that
TMF/HCF loadings act on these components. Additionally, thermal fatigue interacts
due to the combustion process and the impact of cold fuel on top of the piston bowl. In
engine bench tests, a given design is investigated for its TMF/HCF behavior usually
undermore severe conditions than the engine is exposed to in service. However, these
tests are still expensive and time consuming and uncertainties in the given design
remain due to the fact that the test results must be extrapolated to typical service
conditions.

The finite element method is a powerful tool to computationally analyze and opti-
mize a component at low financial burden and thus reduce the overall development
costs. Therefore, suitable material models for cyclic plasticity and mechanism-based
lifetimemodels must be applied in a finite element (FE) simulation in order to predict
reliable stresses and (in)elastic strains as well as lifetime. Downsizing concepts com-
bined with new combustion processes, new supercharging concepts and advanced
injection and ignition systems increase thermal and mechanical loads in the com-
ponents. Because the materials are brought even closer to their load capacity under
TMF/HCF, the quality of the underlying models for plasticity and lifetime must be
even improved in the FE analysis.

In this paper, detailed microstructure-based FE analyses of an aluminiummaterial
are presented in order to determine the influence of the microstructure on local plas-
ticity and possible (initial) fatigue cracking behavior. Based on these first FE analyses
it is intended to develop a new mechanism- and microstructure-based lifetime model
for the reliable lifetime prediction of aluminium materials. The paper is structured
as follows: In Sect. 2, the materials microstructure and its mechanical properties are
characterised. Section3 describes the reconstruction of the FE model and the assign-
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Fig. 1 Microstructure of the
cast aluminium alloy
AlSi12CuNiMg-T7

ment of microstructure-based material properties. Macroscopic anisotropic material
behavior for a microstructure-dependent linear-elastic material law is investigated
in Sect. 4. In Sect. 5 a microstructure-dependent plasticity model is applied and the
resulting stress distribution in the FE model is analyzed under thermal loading. The
paper is summarised in Sect. 6.

2 Microstructure and Material Characterization

In this paper, the cast aluminium alloy AlSi12CuNiMg-T7 is investigated, which
is used for pistons in diesel combustion engines. The alloy is eutectic with 12%
silicon, which ensures high-temperature strength at operating temperatures up to
420 ◦C. Before service, pistons are usually tempered to a strength enhancing T6 heat
treatment by solution annealing, water quenching and artificial ageing. Due to the
high service temperatures, the piston becomes overaged at near-surface areas already
after a few hours of operation. The alloy is therefore additionally overaged to a T7
state for 100h at 350 ◦C after the T6 heat treatment.

A typical sectionof thematerialsmicrostructure is shown inFig. 1.Themicrostruc-
ture consists of α-aluminium matrix, large primary silicon particles up to a size of
100µm, several intermetallic phases and isolated pores. The microstructure mor-
phology of pistons is determined due to local very different solidification conditions.
According to Gao et al. [1] the porosity, the secondary dendrite arm spacing, the
aluminium matrix, silicon particles and rich iron-containing intermetallic phases
have a major influence on the lifetime of cast aluminium alloys. The lifetime of the
investigated AlSi12CuNiMg-T7 alloy depends, besides on the applied mechanical
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Fig. 2 LCF and TMF
lifetime behavior of the cast
aluminium alloy
AlSi12CuNiMg-T7

load, on the applied temperature, which is shown in the Wöhler diagram in Fig. 2 for
strain-controlled LCF tests under fully reversed cyclic loading.

The LCF tests with a mechanical strain amplitude of εmech
a = 0.4% exhibit a

shorter lifetime at low temperatures (i.e. at room temperature and 150 ◦C) than at
temperatures above 250 ◦C. This inverse temperature dependency is also existent, but
less pronounced, at a strain amplitude of εmech

a = 0.2%. For many metallic materials,
i.e. nickel-based superalloys, the lifetime reduces with increasing temperature due to
a drop of themechanical properties, i.e. Young’smodulus E or cyclic yield stressσCY,
that is also observed for the aluminium alloy at a strain amplitude of εmech

a = 0.15%.
In addition, anisothermal out-of-phase (OP) TMF tests between 150 and 420 ◦C are
investigatedwithout andwith a dwell time of 60s atmaximum temperature. TheTMF
lifetimes are found to lie at the lower scatter band, whereas the applied dwell time in
the TMF tests slightly reduces the lifetimes. Since the isothermal lifetime behavior
can not be explained solely by means of the mechanical material properties, it can
be assumed that the material’s specific microstructure influences the mechanism of
crack initiation and growth and thus the lifetime in dependence of the temperature.

Under HCF loading at room temperature, cracks are initiated by the partial
debonding of the silicon particles from the aluminium matrix, while under LCF
conditions crack initiation and crack growth is determined by the brittle fracture of
the silicon particles [2]. At low temperatures, the mechanical stress is carried by the
hard phases, that exhibit a higher strength than the aluminiummatrix [2]. Due to high
stress concentrations and the brittle fracture behavior of the silicon particles, small
micro cracks are formed in the material [3], whereas the fracture surface is mostly
perpendicular to the loading direction [4]. At elevated temperatures, the strength of
the aluminium matrix is decreased significantly and the silicon particles detach from
the aluminium matrix [3–5]. The fatigue crack growth is now determined mainly by
the properties of the matrix, the shape of the crack tip front [2] and the circumjacent
microstructure morphology [6]. The cracks preferably grow along cavities between
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of debonded particles, while with appropriate crack length or sufficient crack tip
driving force, a crack might also cut particles and intermetallic phases [5–7].

The crack growth behavior was assessed with fracture mechanics parameters, i.e
the cyclic crack-tip opening displacementΔCT OD in [7, 8] for a dualAl-Si alloys or
the J -integral in [9] for a ductile, porous solid material. The interaction between the
material matrix and microstructural features such as hard phases or pores in terms
of deformation, crack initiation and fatigue crack growth has often been studied
for various metallic materials with two- or three-dimensional microstructure-based
models by means of the finite element method. For particle reinforced metal matrix
composites the reader is referred to [10–12],materialswithmetallographic structures,
e.g. sintered steels to [13], lamellar cast iron to [14] and cast aluminium alloys, i.e.
A356 to [2, 7, 15] and AlSi12 to [3, 16].

For the numerical analyses of stresses and strains of heterogeneous materials, e.g.
by means of the finite element method, the microstructure must be digitized first,
which is usually done by serial sectioning [10, 11] and X-ray computer tomography
[2, 15, 17], single scanning electron [12, 13] or light microscopy [3, 16]. The dig-
itized microstructure must then be prepared to establish microstructure-based cell
models for the finite element analyses. The cell models can either be discretized
with tetrahedron elements or voxel-based with hexahedron elements. With these two
methods, the transfer of the digitized data into a robust finite element mesh is quite
simple. However, a large number of finite elements are generated and hence long
calculation times and also large computing capacities are required. Approaches to
reduce the number of finite elements are i.e. the octree-based meshing method pro-
posed in [18] or an overlay grid procedure as presented in [19]. In voxel-basedmeshes
the interfaces between different microstructures are zig-zag shaped and especially
in linear-elastic analyses, high local stresses and strains can occur at points with
complex geometry shapes [2]. The interface between different microstructures can
be modelled more precisely using a tetrahedron mesh, however the discretization
might becomes very fine for an automatized meshing.

For hypo-eutectic cast aluminium alloys, the influence of pores as the origin for
fatigue cracks is often studied in literature. In [15], crack initiation spots from exper-
imental observations at pores with complex shaped geometries are reproduced in a
microstructure-based FEmodel. The crack path is determined by a three-dimensional
stress state and the respective plastic strain fields around the crack tip [15]. Further-
more, damage in silicon particles at the advancing crack tip front is considered [15].
According to Teranishi et al. [2], the stress concentration and the three-dimensional
stress state of the silicon particles are the main reasons for the damage of particles
of the investigated A356 alloy. Fan et al. [20] figured out, that fatigue cracks in a
cast A356-T6 alloy develop preferentially from silicon particle clusters, pores, oxide
films and locations with damaged or detached particles due to plastic shear strain and
strongly activated slip bands. The influence of the particle or pore size and distance,
the aspect ratio and particle clusters, as well as the distance of a pore to the surface
is investigated in [20] with two-dimensional FE simulations.

The cast AlSi12CuNiMg alloy is analyzed in [3, 16] by means of temperature-
dependent two-dimensional FE simulations. In both publications, the metallic matrix
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is modelled with an elastic-plastic material law, whereas the hard phase (in particular
silicon particles) is assumed to behave linear-elastic. In [16], the inhomogeneous
distribution of plastic strain is mentioned as the significant damage factor for the
aluminium matrix, which is oriented in slip bands at 45◦ to the uniaxial loading
direction. The comparison of finite element simulations with real shaped particles
and with a simplified ellipsoidal shape shows almost no influence in the macroscopic
material behavior, but the local stress concentration at the simplified shaped silicon
particles is significantly diminished [16]. The local stresses in the metallic matrix
depend hardly on the particle geometry [16]. At low temperatures, the stress ismainly
received by the hard phase, while at high temperatures plastic yielding occurs in the
metallic matrix around the particles [3].

Because of the complex microstructure morphology of cast aluminium alloys,
two-dimensional FE simulations are limited to examine local stresses and plastic
strains accurately. Therefore, a three-dimensional microstructure-based cell model
is created for the FE simulation in ABAQUS for the AlSi12CuNiMg-T7 cast alu-
minium alloy. The focus lies on the thermal mismatch between the primary silicon
particles and the aluminium matrix, that is responsible for thermal fatigue (TF).
The influence of the microstructure and thermal fluctuations on the TF life can be
experimentally analyzed. However, the experimental test set-up is rather complex
and challenging, so that numerical simulations can be used instead to understand TF
for the considered material. Therefore, microstructure-based cell models are created
and elastic, viscoplastic and thermal material properties are assigned in the following
sections.

3 Microstructure-Based Cell Model for FE Analysis

In this section, the numerical homogenization method for the computation of macro-
scopic quantities is described in Sect. 3.1. The digitization of the microstructure
follows in Sect. 3.2, the reconstruction of the microstructure-based cell model in
Sect. 3.3 and the assignment of the material properties in Sect. 3.4.

3.1 Numerical Homogenization Method for the Computation
of Macroscopic Quantities

For the evaluation of the macroscopic quantities, i.e. of stresses and strains, it is
necessary to homogenize the local results of the microstructure cells. According to
Hill [21], the macroscopic quantity Ψ can be calculated by the volume average of
the local varying quantities ψ :

Ψ = 〈ψ〉 = 1

V

∫
ψdV . (1)
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The integrated work-rate over the micro level ẇ has to be equal to the work-rate
calculated on the macro level Ẇ :

〈ẇ〉 = 〈σ : ε̇〉 = Ẇ = Σ : Ė . (2)

Therefore, one of the following boundary conditions fromHill [21] has to be fulfilled
on the outer free surfaces of the volume element:

1. the fields of velocity are linear: u̇ = Ė · x ,
2. the vectors for the force are linear: t = σ · n = Σ · n,
3. a combination of these twoboundary conditions: (u̇ − Ė · x) · ((σ − Σ) · n) = 0,

where u̇ is the velocity vector, t the force vector, x the position vector, and n the
normal vector of the surface. σ and ε is the stress, respectively strain tensor on the
microscale and Σ and E on the macroscale. In the following different macroscopic
uniaxial stress states are applied to the cells. Therefore, two opposite surfaces of
the microstructure cell are loaded displacement controlled perpendicularly to the
respective surface whereas the other four surfaces remain without force. Admissible
periodic boundary conditions, i.e. according to Suquet [22], are not applied in this
work.

3.2 Digitization of the Microstructure

A sample of the aluminium alloy’s microstructure was digitized using nano com-
puter tomography (nano-CT) technology. This technology is non-destructive and
comparatively fast, but the subsequent segmentation of the microstructure features is
time consuming and sometimes difficult, especially between silicon and aluminium.
The digitized microstructure volume has a diameter of approximately 870µm and a
length of 1410µm with a respective voxel edge length of 0.67µm. A masked grey
scale image of the digitized microstructure is shown in Fig. 3.

The grey scale value contains the information about the microstructure phase:
Pores (0, black), silicon (1, dark grey), aluminium (2, grey) and two intermetallic
phases (3/4) subdivided by weaker (3, light grey) and stronger (4, white) X-ray
absorption. However, the investigated cast aluminium alloy includes more than two
intermetallic phases (see in [3]). Since the composition of the intermetallic phases is
not specified more precisely, the phases are named as intermetallic phase 1 and
intermetallic phase 2. In a first step, the volume fractions of the microstructure
features are analyzed for a volume of 800 × 800 × 2000 voxels. In this volume,
the microstructure consists of 0.17% pores, 79.63% aluminium, 13.58% silicon,
5.59% intermetallic phase 1 and 1.03% intermetallic phase 2.
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Fig. 3 With nano-CT
technology digitized
microstructure of the cast
aluminium alloy
AlSi12CuNiMg-T7

3.3 Reconstruction of the FE Model

For an automatized reconstruction of different microstructure-based cell models the
Python [23] interface of ABAQUS/Standard [24] is used. Therefore, the cell size and
its position in the overall digitized volume is defined first (see Fig. 4). The FE mesh
is generated using the voxel-based meshing technique. Each voxel is converted to a
hexahedron finite element with linear interpolation functions and reduced integration
scheme (element type C3D8R according to the ABAQUS/Standard manual [24]).

Thus, the discretized cell size corresponds directly to the number of voxels of the
digitized data. To generate a three-dimensional cell model, a whole stack of images
is processed. A three-dimensional microstructure cell with a cell size of 200 × 200
× 200 finite elements is shown in Fig. 5.

3.4 Determination and Validation of
Microstructure-Dependent Linear-Elastic,
Viscoplastic and Thermal Material Properties

For the FE analysis of the cell models, reliable, temperature-dependent material
properties must be assigned to the individual microstructural phases.
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Fig. 4 Reconstruction of a FEmeshbased ongrey scale pictures. Left:Grey scale picture fromnano-
CT scan, right top: detail of selected area, right bottom: FE mesh with microstructure information

Fig. 5 Discretized
three-dimensional cell model
with microstructure
information

3.4.1 Linear-Elastic Properties

Material properties from the literature are used to describe the linear-elastic material
behavior of the respective phases. The Young’s modulus E for the AlSi12CuNiMg-
T7 alloy is 80GPa at room temperature, which was determined from the LCF tests
in Fig. 2 at half lifetime. Values for aluminium of 69GPa [1], 70.3GPa [25] and
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84.6GPa [26] are given in the literature. Based on the literature values, E = 71.7GPa
is assigned to the aluminium matrix at room temperature.

For single crystal silicon, the Young’s modulus according to Hopcroft et al. [27]
is 169GPa for the 〈110〉-direction and 130GPa for the 〈100〉-direction. The value for
the 〈110〉-direction is almost confirmed byAng et al. [28]with 163GPa.According to
Ang et al. [28], the modulus of elasticity decreases slightly with temperature, which
is also reported in [29–31]. Chen [26] determined a Young’s modulus of 148GPa
using nano indentation, which approximately corresponds to the value of 140.3GPa
given in [25]. In [3], literature data in a range between 120 and 165GPa are reported.
Based on the data found in the literature, a value of 148GPa is applied for silicon at
room temperature according to Chen [26]. A slight temperature dependence is taken
into account as described in [28].

A list of potential intermetallic phases of the Al–Cu–Fe–Mg–Ni–Si system is
given in [32]. The intermetallic phases for comparable AlSi12 alloys are investigated
in [6, 26]. According to thermodynamic simulations by Chen [26], three stable inter-
metallic phases, namely Al3Ni2, Al9FeNi and Al5Cu2Mg8Si6 are formed at a tem-
perature of approximately 540 ◦C and the Al7Cu4Ni phase at approximately 370 ◦C.
In [26], seven intermetallic phases were observed by differential scanning calorime-
try tests, which are, in addition to the already mentioned phases, α-AlFeMnSi, the
strengthening phaseMg2Si and Al2Cu. Moffat [6] traced AlCuNi phases, Mg2Si and
Al2Cu. Based on energy-dispersive X-ray spectroscopy analyses, the aluminides
Al3(CuNi)2, Al9FeNi, Al15(CuFeMn)3Si2, Al7Cu4 and Al2Cu and the magnesium
compound Mg2Si are detected in [3].

Since only two intermetallic phases are separated in the digitized data, the inter-
metallic phases detected byChen [26] are split into two groupswith differentYoung’s
modulus: In the group of “soft” intermetallic phases, the phases Al2Cu (0.3wt%)
and Al5Cu2Mg8Si6 (1.6wt%) are described with a modulus of elasticity of 114GPa.
In the group of “hard” intermetallic phases, Al9FeNi (6.4wt%), Al7Cu4Ni (5.8wt%)
and AlFeMnSi (0.2wt%) are described with a Young’s modulus of 170GPa. The
determined volume fractions of the two phases according to Chen [26] are very
similar to what is found in this work.

In order to capture the temperature-dependent material properties of the cast
AlSi12CuNiMg-T7 alloy bymeans of themacroscopic response of the cellmodel, the
microstructure-dependent material properties need to be temperature-dependent too.
The slight temperature dependence of silicon is taken into account with the formula
given in [28]. The Young’s modulus of the aluminium matrix is scaled for elevated
temperatures according to the experimentally found relation of the aluminium alloy:
i.e. E(T )/E20 ◦C. For simplicity reasons, the intermetallic phases are assumed to
behave temperature-independent.

For themicrostructure-based analysis of themacroscopic elastic response, a voxel
based cell of size 200 × 200 × 200 finite elements is calculated. The volume frac-
tions in the cell are very similar to the overall measured volume fractions in the
nano-CT scan. The microstructure-based cell is loaded uniaxially in each principal
direction perpendicularly to the outer free surface. Thus, three different uniaxial stress
states are obtained for which the respective Young’s modulus is evaluated. The mean
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Fig. 6 Results for the
temperature-dependent
Young’s modulus from
experiments and
microstructure-based cell
simulations

values, compared to the experimental results, are shown in Fig. 6. For all considered
temperatures, the modulus of elasticity in the simulation is slightly higher than in
the experiment and the deviation increases with increasing temperature. Because the
numerical results correspond quite well to the experimental observations no further
curve fitting is carried out.

3.4.2 Thermal Properties

In the following, the microstructure-dependent coefficient of thermal expansion is
determined for the described cell model. In [26], partially non-isotropic thermal
expansion coefficients αth are determined for the different phases of the cast alu-
minium alloy. In this work, a thermal expansion coefficient of αth = 3.7 · 10−6 1/K
is assumed for silicon, which agrees well with the results in [26]. For the defined
intermetallic phase 1, the values given in [26] for intermetallic phases AlFeMnSi,
Al9FeNi and Al7Cu4Ni are averaged, that is αth = 14.3 · 10−6 1/K. Averaged values
determined by Chen [26] for Al2Cu phase (αth = 17.7 · 10−6 1/K) are applied to the
intermetallic phase 2. The thermal expansion coefficient of the aluminium matrix is
considered as an adjustable parameter. The experimental results of the thermophys-
ical analysis of the AlSi12CuNiMg-T7 alloy are shown in Fig. 7 (blue curve).

In order to investigate the thermal expansion of the microstructure-based model,
a homogeneous temperature distribution is applied to the cell with an initial temper-
ature of 150 ◦C and a maximum temperature of 420 ◦C. The computed macroscopic
coefficient of thermal expansion of a first FE simulation is shown in Fig. 7 (orange
curve). In a second FE simulation with a slight modification of the thermal expansion
coefficient of the aluminium matrix the green curve is obtained that fits very well
with the experimental data.
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Fig. 7 Thermal expansion
coefficients of the reference
alloy and the microstructure
cell for different
temperatures

3.4.3 Viscoplastic Properties

In order to describe the time- and temperature-dependent plasticity of the alu-
minium matrix, a viscoplastic Chaboche model [33] is used. The model is able to
describe the major deformation phenomena at elevated temperatures such as harden-
ing, stress relaxation and recovery processes during dwell times as well as strain
rate dependency. For adjusting the parameters of the time-dependent Chaboche
model, a triangular, fully reversed loading cycle with a mechanical strain ampli-
tude of εmech

a = 0.4% with a constant strain rate of dε/dt = 10−3 1/s is applied to
the microstructure cell with its 200 × 200 × 200 finite elements. The macroscopic
stresses and strains are evaluated and compared with the experimental hysteresis
loops of different LCF tests (see Wöhler curve in Fig. 2). The results of the five
investigated temperatures (20, 150, 250, 350 and 420 ◦C) are shown in Fig. 8.

For all temperatures, the experimental stress-strain-hystereses can be described
very well with the microstructure-based material model. For room temperature and
150 ◦C the strength of the alloy is nearly the same. However, the stresses between
150 and 250 ◦C reduce significantly. At 420 ◦C, stresses of only about 40MPa are
reached for the applied strain amplitude and the material tends to loose its hardening
behavior. Although the isothermal test results are described very well, there is a
significant difference between the experimental results and the FE analysis for the
TMF cycle, see Fig. 8f. The elastic parts of the hysteresis loop at the beginning and
at the point of load reversal are described well. Thus, the temperature-dependent
parameters of the Chaboche model need to be optimised in future works.

4 Microstructure-Dependent Anisotropic Elastic Material
Behavior

In this section, the elastic, macroscopic anisotropic material behavior is investi-
gated by means of microstructure-dependent material properties at room tempera-
ture. Therefore, 64 different microstructure cells with a respective cell size of 200
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Comparison of the elastic-viscoplastic deformation behavior between the reference material
and the microstructure cell for a room temperature, b 150 ◦C, c 250 ◦C, d 350 ◦C, e 420 ◦C and
f TMF between 150 and 420 ◦C

× 200 × 200 finite elements are reconstructed from the digitized nano-CT scan (see
Fig. 3). Linear-elastic material properties are assigned according to Sect. 3.4. Again,
each cell is loaded in the three directions in space normal to its outer surface so that a
uniaxial stress state is obtained. The Young’s modulus is then evaluated by means of
the computed macroscopic uniaxial stress-strain curve. The results of the analyzes
are shown in Fig. 9. It is found that the elastic response of the cells is almost inde-
pendent of the loading direction. The averaged Young’s modulus of E = 82687MPa
agrees well with the experimental value (E = 80000MPa). The standard deviation
of the presented results in Fig. 9 is 1288MPa, which is about 1.5% of the averaged
value of Young’s modulus and the maximum deviation that was found in the analyses
is 5%.
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Fig. 9 Young’s modulus as
a function of the loading
direction and the
microstructure cell

Fig. 10 Correlation of the
volume fraction of the
microstructure phases with
the Young’s modulus

Only the results for cell number 25 deviate significantly from the other results.
The deviation can be explained by means of Fig. 10, where the volume fractions of
the microstructure phases are plotted against the cell number. The averaged Young’s
modulus is shown on the right axis and the magenta line marks the mean value
for all cells. Cell 25 contains a porosity of approximately 2.6%, while the average
value is only 0.17% and thus, a lower value for Young’s modulus is obtained in the
analyses. Figures 9 and 10 indicate, that a high percentage of hard phases (i.e. cells
61 and 64 with >15% silicon and >7% intermetallic phase 1) leads to an increased
macroscopic Young’s modulus, while the porosity (i.e. cells 51, 52, 55 and 56 with
porosity between 0.72 and 0.95% ) and a high percentage of aluminium matrix (i.e.
cells 18 and 36 with>82% aluminiummatrix) lead to a reduction of the macroscopic
Young’s modulus.
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5 Microstructure-Dependent Thermal FE Analyses

Due to the mismatch in the thermal expansion behavior of the individual phases,
mechanical (in)elastic strains and stresses can arise locally. In this section, the recon-
structed microstructure-dependent cell is loaded with a homogeneous temperature
distribution between 150 and 420 ◦Cwith a temperature rate of 10 K/s at zero macro-
scopic stresses. Two simulations are performed: One with microstructure-dependent
linear-elastic material behavior and one with additionally elastic-viscoplastic mate-
rial behavior for the aluminium matrix. In Fig. 11, the locally resolved maximum
principal stress state of the microstructure-dependent cell from Fig. 5 is plotted after
heating up from 150 to 420 ◦C in Fig. 11a for linear-elastic material behavior and
in Fig. 11b for elastic-viscoplastic material behavior. For the linear-elastic material
properties, high stresses localize around the complex shaped microstructure phases
and in the near surrounding aluminium matrix. The local arising stresses in the
microstructure phases are reduced significantly in the simulation with the elastic-
viscoplastic material behavior.

Figure 12 shows the microstructure (upper figure) and the respective stress dis-
tribution for the linear-elastic analysis (lower left figure) and the simulation with
the elastic-viscoplastic material law (lower right figure) for the aluminium matrix at
420 ◦C. The stresses are highly concentrated in a silicon particle with a rather bottle-
neck like geometry. In the linear-elastic simulation, the hard phases are consistently
higher and uniformly loaded than in the simulationwith the elastic-viscoplasticmate-
rial behavior for the aluminiummatrix due to the fact that the surrounding aluminium
matrix is able to transfer also higher stresses. In themore realistic elastic-viscoplastic
simulation, the particle stresses in the linear-elastic analysis of about 800MPa are
significantly reduced to approximately 400MPa due to the plastic deformation of
the matrix. In the elastic-viscoplastic simulation the particle stress is centered more
locally, which leads to higher maximum principal stress values at the bottleneck than
in the linear-elastic simulation.

The distribution of the accumulated plastic strain in Fig. 13 shows that the plastic
strain in the aluminium matrix localizes in the surrounding of the hard particles and
in dependence on their local morphology.

The first results indicate that the thermalmismatch between silicon and aluminium
yields to not negligible stresses in thematerial,which are localized at pointswith com-
plex microstructure morphology. In the following, the distribution of the stresses in
the aluminium matrix and the silicon particles is analyzed for the whole microstruc-
ture cell statistically. As characteristic quantity the computed von Mises stress is
evaluated at each integration point for the aluminium matrix and the maximum prin-
cipal stress for the silicon particles. In Figs. 14 and 15, the computed stresses are
compared at three different temperatures during the thermal cycle. Figure 14 shows
the results of the FE simulation with the linear-elastic material model. The stresses in
the silicon particles increase with the temperature (see Fig. 14a). At 250 ◦C, the max-
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Fig. 11 Comparison of the
macroscopic behavior of the
microstructure cell at a
temperature of 420 ◦C:
a linear-elastic material
behavior and
b elastic-viscoplastic
material behavior
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imum frequency occurs at a principal stress of 200MPa, at 350 ◦C nearly at 400MPa
and at 420 ◦C at almost 500MPa. The frequency distribution is shifted to higher
stresses for higher temperatures. The plot of the cumulative frequency distribution in
Fig. 14b shows that the overall stress level is increased with temperature. Maximum
stresses above 1000MPa are reached at a temperature of 420 ◦C. This means, that
the mismatch in the coefficient of thermal expansion between the individual phases
dominates the drop in Young’s modulus with increasing temperature. The stress dis-
tribution in the aluminium matrix is shown in Fig. 14c, d. Higher stresses in the alu-
miniummatrix occur with increasing temperature. The maximal frequency is almost
independent of the temperature and is located at approximately 50MPa (see Fig. 14c).
In comparison to the computed stresses in the silicon phase, the stresses in the alu-
miniummatrix are equally distributed for 350 ◦C and 420 ◦C (see Fig. 14d). Since the
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Fig. 12 Comparison of the maximal principal stress fields for the linear-elastic and elastic-
viscoplastic simulation at 420 ◦C

Fig. 13 Distribution of the
accumulated plastic strain at
420 ◦C

stresses exceed the temperature-dependent yield stress σY of the AlSi12CuNiMg-T7
alloy significantly (i.e. 58MPa at 250 ◦C, 40MPa at 350 ◦C, 29MPa at 420 ◦C) a
simple linear-elastic FE analysis is not sufficient to study microstructure-dependent
resulting stresses in the individual phases due their thermal mismatch.
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(a) (b)

(c) (d)

Fig. 14 Stress distribution in the silicon particles (a/b) and in the aluminiummatrix (c/d) at different
temperatures for the linear-elastic FE analyses

If the deformation behavior of the aluminium matrix is described with the vis-
coplastic Chaboche model, the stresses in the silicon particles are generally reduced.
The maximum frequency in Fig. 15a has a corresponding stress value of 120MPa
for all three investigated temperatures. The stresses increase slightly with higher
temperature (Fig. 15b), with hardly any difference between 350 and 420 ◦C. How-
ever, at these two temperatures, maximum stresses above 800MPa are reached at
some integration points of the silicon phase in the considered microstructure cell.
Figure15c, d show the stress distribution in the aluminium matrix. The stress level
is now bounded and thus significantly reduced in comparison to the linear-elastic FE
simulation. Furthermore, the stresses are now even reduced with increasing temper-
ature. At 250 ◦C, the maximal frequency occurs at 45MPa and at 25MPa for 420 ◦C.
This trend is also shown in the cumulative plot in Fig. 15d.

Finally, the results of the linear-elastic and the elastic-viscoplastic simulation are
compared for 420 ◦C in Fig. 16. Figure16a shows the results for the silicon particles
and Fig. 16b for the aluminium matrix. Both graphs demonstrate that the stress level
is significantly reduced due to the viscoplastic material behavior that is used for the
aluminium matrix. In addition, the distribution is shifted to lower stresses for both
phases.
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(a) (b)

(c) (d)

Fig. 15 Stress distribution in the silicon particles (a/b) and in the aluminiummatrix (c/d) at different
temperatures for the elastic-viscoplastic FE analyses

(a) (b)

Fig. 16 Comparison of the stress distribution in the a silicon particles and in the b aluminium
matrix at 420 ◦C for the linear-elastic and elastic-viscoplastic FE analyses

6 Summary and Conclusions

In this paper, microstructure-based analyses of the cast aluminium alloy
AlSi12CuNiMg-T7 are presented. This alloy exhibits a complex microstructure
morphology consisting of aluminium matrix, large primary silicon particles, vari-
ous intermetallic phases and pores. A representative microstructure is digitized with
nano-CT technology. In the nano-CT scan, the aluminium matrix, silicon particles,
pores and two intermetallic phases are detected. With the digitized data, three-
dimensional, microstructure-based cell models are reconstructed for the FE sim-
ulation in ABAQUS/Standard. Linear-elastic and thermal material properties for the
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microstructure phases from literature are assigned and viscoplastic material prop-
erties for the aluminium matrix are adapted to experimental half lifetime hysteresis
loops of LCF and TMF tests.

Microstructure cells with 200 × 200 × 200 elements show nearly isotropic mate-
rial behavior. The macroscopic deformation behavior of the aluminium alloy can be
described very well with the microstructure-dependent microscopic material behav-
ior. The microstructure cell is subjected to a thermal cycle between 150 and 420 ◦C.
During heating and cooling under zero force, high stresses at the interfaces of silicon
particles and the aluminium matrix occur due to the thermal mismatch of the two
phases. In the linear-elastic simulation, high stress levels appear in all microstructure
features. Elastic-viscoplastic material behavior of the aluminium matrix leads to a
stress relief in the silicon particles and inelastic deformation occurs in the aluminium
matrix. Thus, it can be concluded, that advanced plasticity models are necessary for
reliable FE analyses.

The simulations predict significant high stresses in the silicon particles preferen-
tially at points with complex shaped geometries. A significant amount of the particle
areas is loaded beyond the fracture stress of 200MPa given in [34]. The debonding
of silicon particles at high temperatures is not considered yet, which is observed
in fractographical investigations. Debonding between the silicon particles and the
aluminium matrix could release the overall stresses and thus predict an even more
realistic stress distribution in the microstructure.

The next step is to optimize the Chaboche model parameters, so that also TMF
experiments can be described well. In order to analyze the damage caused by ther-
mal fatigue, the heat transfer from the combustion process into the material has
to be investigated more in detail. The gained knowledge about the temperature-
dependent crack growth interaction between the aluminium matrix and the other
microstructural phases can then be hopefully transferred establishing a mechanism-
and microstructure-based lifetime model for the presented class of cast aluminium
alloys.
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Problems of Thick Functionally Graded
Material Structures Under
Thermomechanical Loadings

Artur Ganczarski and Damian Szubartowski

Abstract The present work is an extensive overview of several aspects of thick
FGM structures subjected to thermomechanical loadings. The concept of reducing
the full 3D thermo-mechanical FGM problem to the plane stress one is demon-
strated in case of both classical and quasi- polar continua. Theorem on the stress
free deformation accompanying linear gradation of thermomechanical properties of
the material staying in constant temperature condition is presented. The influence
of several approximations of FGM thermal barrier coatings on the temperature and
stress distributions in thick-walled cylinder including FGM Thermal Barrier Coat-
ing is considered. A special graded finite element to discretize FGM properties is
introduced.

1 Introduction

Functionally graded materials are special composite materials that have continuous
and smooth spatial variations of physical and mechanical properties. An essential
improvement of their thermomechanical properties such as coefficient of thermal
conductivity, coefficient of thermal expansion or Young’s modulus and simultaneous
removal of thermomechanical mismatch allow for application in many fields such as
high performance engines for aerospace vehicles, turbine blades and heat-resisting
tools.

Numerous closed-form solutions of thermo-elastic plane problems of FGMs take
advantage of specific power or exponential function in approximation methods of
multi-layered composite plates. All above limitations can be overcome with general-
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ization of a theorem on the plane stress state in an isotropic thermo-elastic thick plate
as is done by Sneddon and Lockett [27]. The authors presented convinced proof for a
problem of semi-infinite thermo-elastic medium bounded by two parallel planes and
loaded by an arbitrary temperature field on one surface. The method of employed
solution was the double Fourier transforms. The results confirmed solution of anal-
ogous problems, being inspiration to their work, received earlier by Sternberg and
McDowell [28], based on Green’s function, and by Muki [17], who used method
combining the theory of Fourier series and the Hankel transforms of integral order.

Contrary to aforementioned broad streamof papers, the number ofworks concern-
ing fully 3D problems, like thick plate, semi-space or thick-walled vessels, is rather
limited. Hence, let us mention several of them in chronological order. Senthil and
Batra [26] analyzed 3D thermomechanical deformation of simply supported rectan-
gular plate loaded by a temperature impulse. Authors applied Laplace’s transform in
order to reduce set of uncoupled and quasi-static equations of linear thermo-elasticity
to the set ordinary differential equations containing power functions of effective ther-
momechanical constants. Magnitudes of aforementioned constants (bulk and shear
modules, coefficients of thermal conductivity and expansion) were described by
Mori–Tanaka or Self-Consistent rules and were directly dependent on a volume
fraction of components (Al/SiC).

Next work by Batra [2] deals with functionally graded cylinders and spheres made
of incompressible linearly elasticmaterial. Author proved that the optimalmagnitude
of circumferential stress refers to the linear function of Kirchhoff’s modulus along
radial direction.

Dai et al. [6] applied theMeshlessMethod to active control and dynamic response
of a plate supplied with piezoelectric sensors and actuators. Authors considered
functionally graded plates made of ZrO2 and aluminium alloy for which the volume
fraction was changed along their thickness according to a power law. In order to
determine shape functions the Meshless Galerkin Method was used.

Problem of transversely isotropic, functionally graded, piezoelectric half-space
was presented by Pan and Han [20]. Authors introduced original concept based
on graded Green’s functions in order to better capturing of displacement, stress
and electric potential fields in following functionally graded structures: PZT-4 half-
space, functionally graded PZT-4 layer deposed on homogeneous substrate made of
BaTiO3. This work can be treated as a perfect generalization of paper by Sternberg
and McDowell [28] since full analogy between electric potential and temperature
fields appears.

Wang et al. [33] considered problem of functionally graded half-space subjected
to a point heat source. In order to describe thermal conductivity, which changes in
exponential manner along arbitrary direction, authors introduced 3D Green’s func-
tions.
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Exact solution of thermo-elastic, thick, circular FGM plate was published by
Jabbari et al. [12]. All material constants except Poisson’s ratio were considered
as exponential functions of thickness direction. Assuming rotational symmetry of
the problem, authors presented exact analytical solution that comprised: temperature
distribution, displacement and stress component fields for metallic phase Ti-6Al-4V
and ceramic ZrO2.

Yang et al. [36] presented new approach to 2D and 3D analyses of thermal stress
in FGM’s by use of analytical terms in Boundary Element integration. Application
of fundamental Kelvin’s solutions led to integral equations which comprised both
inhomogeneity and temperature change. Next authors demonstrated efficiency of this
approach solving problem of hexagonal prism. Discussed method, mainly based on
BEM, is competitive to conventional FEM since saves over 60% computational time.

Kulikov and Plotnikova [14] presented newmethod of Sampling Surfaces applied
to 3D multi-layered, FG plates under thermomechanical loadings. Aforementioned
method is based on a choose of sampling surface for each laminate layer, at which
temperature and displacement are treated as fundamental variables. Uniform con-
vergence of the method is guaranteed by location of discussed surfaces inside each
laminate layer, directly in nodes of Chebyshev’s polynomials. Among authors whose
works have been published recently or will be published in the nearest future it is
worth to mention following: Seifi [25], Sburlati et al. [23], Popovych and Kalynyak
[22], Manthena [16], Wang and Qin [34].

2 Technological and Numerical Problems of FGM’s

The concept of FGM is based on a spatial gradient of physical and mechanical prop-
erties that allows to eliminate stress mismatch at the interface. The spatial gradient is
achieved by mixture of composite constituents, the volume fraction of which varies
spatially such that the effective thermo-mechanical properties change smoothly from
one material (ceramic) to the other (metal). In this way, in the case of a Thermal Bar-
rier Coating deposited on a metallic substrate, the heat-resistant ceramic layer and
the solid metal are separated by functionally graded FG layer, the composition of
whichvaries frompure ceramic to puremetal.As regardsFG layer processing, Plasma
Spray Thermal Barrier Coating leads to lamellar microstructures, whereas columnar-
lamellar micro-structures are produced when using Electron Beam Physical Vapour
Deposition, see Fig. 1a. Two other methods of fabrication FGMs share common base
material, which is of the granular nature. In the first one, subsequent layers of FGM
powder material are superimposed one onto another, and next all consolidated in
conditions of high pressure and elevated temperature. Typical limitations accom-
panying an application of this method are necessity of forming complete element
and requirement of different temperatures applied to subsequent layers of powder,
see Fig. 1b. Aforementioned method is mainly used in manufacturing of electronic
part based on silicon. In the other one, called 3D printing, printing heads spread
functional inks containing nanoparticles, see Fig. 1c. Both methods give FGMs of
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Fig. 1 Methods of fabrication FGMs: amicrostructure of chemically graded electron beamphysical
vapour deposition thermal barrier coating, see Schulz et al. [24], b hot pressing, see Trumble [31],
c 3D printing, see [35]

specific microstructure, in which sintered grains of powder or bounded nanoparticles
may exhibit deformation typical for quasi-polar continuum.

When the classical FEM based on homogeneous elements is used for FGMs,
the material properties stay the same for all integration points belonging to one
finite element. This means that material properties may vary in a piecewise continu-
ous manner, from one element to the other, and a unique possibility to model FGM
structure is approximation by use of appropriately finemesh. On the other hand, a too
coarse mesh may lead to unrealistic stresses at the interface between the subsequent
layers. To overcome this difficulty a special graded element has been introduced by
Kim and Paulino [13] to discretize FGM properties. The material properties at Gauss
quadrature points are interpolated there from the nodal material properties by the use
of isoparametric interpolation functions. Contrary to the classical FEM formulation,
the stiffness matrix of an element is expressed by the integral, in which constitutive
matrix is a function of the coordinates. In the original formulation the same shape
functions are used for approximation of the displacement field and material inho-
mogeneity. However, from the numerical point of view nothing stands in the way of
implementation of shape functions referring directly to the individual character of
inhomogeneity, for instance power functions or exponential functions.

3 Conditions of Plane Stress State

3.1 Classical Thermo-Elastic Continuum

A thermo-elastic three-layer plate under a temperature field T + θ(x3), where T is
the temperature of the solid corresponding to zero stress and strain is considered, see
Fig. 2. The FGM interface of thermomechanical properties such as α, k,G and E are
arbitrary functions of x3. Surfaces of the plate are free from tractions and there are
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Fig. 2 Thermo-elastic
three-layer plate with FGM
interface under thermal
loading

no body forces. The system of equations of uncoupled thermo-elasticity expressed
in displacements format
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where ui denotes the displacement vector, Θ = divui is the dilatation, whereas θ

stands for temperature change. To solve Eqs. (1) the following potential, originally
proposed by Iljushin et al. [11], is introduced
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where function of displacement potential φ is of harmonic type ∇2φ = 0 and A, B,
and C are constants. Simple introducing of definitions (2)–Eqs. (1)2−3 shows that
only equations of mechanical state
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are satisfied as identity, contrary to the case of homogeneous material when also the
equation of thermal state is satisfied as identity. The stress components referring to
the plane stress state with respect to axis x3
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are also identically equal to zero when B = 0 for any point xi , what proves that
Eqs. (2) transform original mechanical problem Eq. (1)2−3 into plane stress one (see
Ganczarski and Szubartowski [10])

∇2φ + 2(1 − ν)Ax3 − (1 + ν)αθ = 0 (5)

The general solution of Eq. (5) can be written in a form which is more suitable to
plate problems, in which the thermo-elastic solid is bounded by two parallel planes
x3 = z and exhibits axial symmetry
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Differentiation of Eq. (6) with respect to r and next substitution u = ∂φ

∂r , according
to Eqs. (2)1, lead to the classical Euler-type differential equation describing thermo-
mechanical membrane state
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Unique solution of equation (7) that satisfies homogeneous boundary conditions
u(0) = 0, σr (R) = 0 takes well known form
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which in case of constant temperature θ =const and linear gradation of coefficient of
thermal expansion α(z) = a0 + a1z leads to purely linear (stress-less) deformation
u(r, z) = αθ(z)r, σr = σϕ ≡ 0, what will be proven by use of stress formulation in
Sect. 4.

3.2 Quasi-micro-polar Continuum

Methods of FGM fabrication, like high pressure consolidation of powder or 3D print-
ing, reveal the granular nature of material. In other words, the classical deformation
may be accompanied by additional rotation of a local particle equal to an average
rotation of the displacement field. A system of the governing equations is as follows
(see Szubartowski and Ganczarski [29])
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It is easy to notice that: symbol L(u) = μ∇2ui + (λ + μ)grad(divu) stands for
the partial differential operator of classical continuum, additional term 1/4(γ +
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ψ)∇2rot(rotu) directly results from quasi-micro-polar nature whereas terms in
brackets, preceding by partial derivatives

∂μ

∂x3
= 0,

∂λ

∂x3
= 0

correspond to functional gradation of Kirchhoff’s μ = G and bulk modules, respec-
tively. Stationary heat flux equation takes format of (1)1. Again, to solve Eqs. (9)
the Iljushin potential (2) is applied transforming original thermo-mechanical quasi-
micro-polar problem into plane stress one (5). In other words, quasi-micro-polar
continuum under consideration reduces to classical continuum, that stays in the plane
stress state.

3.3 Example—Thick Plate Made of FGM Al/ZrO2 + Y2O3

Unique solution of equation (7) that satisfies boundary conditions

u(0) = 0, lim
r→∞ σr,ϕ = 0

takes format
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Additionally, in case when temperature is bounded:
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solution (10) reduces to
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and it is clear that its dependence with respect to depth co-ordinate z comes from
the functional gradation of Young’s modulus E(z) and thermal expansion coeffi-
cient α(z) as well the temperature field non-homogeneity θ(r, z), exclusively. The
boundary value problem is formulated as follows: find temperature distribution θ ,
that fulfils Eq. (1)3 and boundary conditions
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and accompanying plane stress components satisfying Eq. (11) for a semi-infinite
axially symmetric three-layer thick platemade of FGMcompositeAl/ZrO2 stabilized
byY2O3. Themagnitudes of bothmaterials being constituents of FGM, afterWang et
al. [32] andLee et al. [15], are presented inTable 1.Assume that all thermomechanical
properties of three-layer FGM depend on local magnitude of volume fraction of both
constituents, which is subjected to the tangent hyperbolic approximation

p(z) = pc + pm
2

+ pc + pm
2

tanh(az + b)

where p(z) stands for respective property k(z), α(z) or E(z), indices “c” and “m”
refer to ceramic or metallic materials, parameters a and b define location and thick-
ness of interface layer. Applying finite difference method to Eq. (1)1 and boundary
conditions (12) discrete format of difference operator

Table 1 Selected properties of constituents of FGM after Wang et al. [32] and Lee et al. [15]

Material E [GPa] ν k [W/mK] α · 10−6 [1/K]

Al 73 0.3 154 23

Al/ZrO2 205 – 2.0 9.8
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Fig. 3 Distribution of temperature field in thick plate
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(13)
is spanned over the mesh of 161 × 81 square elements Δr = Δz. The thermal
load applied to the upper surface of the plate is subjected to the following relation
θ0 = 300[1 − tanh2(2r)]. Temperature distribution is shown in Fig. 3. The tempera-
ture field exhibits a drastic decrease in temperature at top layer in comparison with
the temperature distribution obtained for homogeneous material. This is a conse-
quence of application of ceramic material having coefficient of thermal conductivity
77 times lower than analogous coefficient of metallic substrate. Hence, one may
clearly observe effect of thermal barrier coating with characteristic strong tempera-
ture gradients in it and simultaneous homogenization of temperature field in middle
and bottom layers.

Solution of mechanical problem is illustrated by distribution of hoop stress, which
turns out to be the dominant component of stress, in Fig. 4. Application of func-
tionally graded composite leads to the concentration of compressive stress in top
layer, being ceramic material of high toughness. This convenient effect is accom-
panied by simultaneous unloading of middle and bottom layers built of metallic
substrate. Nevertheless, another effect of tensile stress zone in ceramic layer occurs.
This phenomenon is strictly associated with the structure of equations defining stress
components (11).



Problems of Thick Functionally Graded Material Structures … 67

Fig. 4 Distribution of hoop stress field in thick plate

4 Conditions of Stress Free Deformation

Analogous problem to the presented in Sect. 3 is considered, but now the system of
equations of uncoupled thermo-elasticity expressed in stress format is as follows

σi j | j = 0, ∈ikl∈ jmn (Cknpqσpq + αknθ)|lm = 0, (ki jθ |i )| j = 0. (14)

Assuming constant temperature θ = const, one can insert θ |i = 0 into (14)3, hence
the Fourier equation is satisfied as identity whereas thermal expansion term in (14)2
simplifies to (αknθ)|lm = αkn|lmθ .Assuming additionallyσpq = 0, satisfying (14)1 as
identity,we look for such a distribution of thermal expansionαkn that solves equations
∈ikl∈ jmn αkn|lmθ = 0. This turns out to be true only if covariant differential along
direction of functional gradation reduces to the partial differential, or other words
can be written down in format

αi j,kl + αkl,i j − αik, jl − α jl,ik = 0 (15)

and simultaneously gradation of thermal expansion tensor is linear with respect to
x3, see Fung [8], Nowacki [18], Ganczarski and Szubartowski [9]. According to
above proof the generally anisotropic material of linear gradation of thermal expan-
sion coefficient, subjected to constant temperature exclusively, is not stressed. In
case of axial symmetry and transverse isotropy αr = αϕ = α �= αz the stress free
deformation can be expressed by following equations

εr = ∂u

∂r
= αrθ, εϕ = u

r
= αϕθ, εz = ∂w

∂z
= αzθ. (16)

If structure composed of homogeneous metallic substrate (Al) and ceramic layer
(Al2O3), joined by FGM interface, shown in Fig. 5a, and thermo-elastic proper-
ties presented in Table2, such that linearly graded coefficient of thermal expansion
exhibits polygonal function
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(a) (b)

Fig. 5 Three layer FGM structure (a), stress-free but incompatible thermal deformation: initial
mesh-black lines, deformed mesh-red lines (displacement magnified ×100) (b)

Table 2 Properties of constituents of alumina-based composite Al-Al2O3 after Chen and Tong [4],
Cho and Shin [5], Wang et al. [32], Dusza [7]

Material E [MN/cm2] ν k [W/cmK] α · 10−6 [1/K] Ratio αz/α

Al 7.3 0.3 1.54 23 –

Al2O3 38 – 0.46 8.5 1.194

αr,z =

⎧⎪⎨
⎪⎩

αm
r,z 0 ≤ z < zi

αm
r,z − (αm

r,z − αc
r,z)

z − zi
hi

zi < z < zi + hi

αc
r,z zi + hi ≤ z < H

(17)

and one easily arrive at following of solution Eqs. (16) for u

u =
∫

αrθdr =

⎧⎪⎪⎨
⎪⎪⎩

αm
r θr 0 ≤ z < zi[
αm
r − (αm

r − αc
r )
z − zi
hi

]
θr zi < z < zi + hi

αc
r θr zi + hi ≤ z < H

(18)

and for w respectively

w = ∫
αzθdz =

⎧⎪⎪⎨
⎪⎪⎩

αm
z θ z 0 ≤ z < zi[
αm
z z − (αm

z − αc
z )

(z − zi )2 − r2

2hi

]
θ zi < z < zi + hi

αc
zθ z zi + hi ≤ z < H

(19)
The displacement field corresponding to stress free deformation defined byEqs. (17)–
(19) is spanned over the mesh of 80 × 40 square elements and shown in Fig. 5b. It is
well visible that both substrate and ceramic layers exhibit homogeneous deformation,
whereas deformation of interface is curvilinear. Although all three deformations
satisfy individually stress less state they are not compatible.
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5 FGM Cylinder

5.1 Governing Equations

A thermo-elastic rotationally-symmetric cylinder including FGMTBC is considered.
The cylinder is loaded by temperature field θ(r) + T as well as internal pressure p,
see Fig. 6. The system of equations of uncoupled thermo-elasticity expressed by
stress function formulation is as follows

θ ′′ +
(
k ′

k
+ 1

r

)
θ ′ = 0

F ′′ +
(
1

r
− E ′

E

)
F ′ +

(
ν

1 − ν

E ′

E
− 1

r

)
F

r
= − E(αθ)′

1 − ν2

(20)

Stress components as well as heat flux are expressed by conventional relations

σr = F

r
σϕ = F ′

σz = ν(σr + σϕ) − Eαθ q = −kθ ′
(21)

All thermomechanical properties of the FGM TBC such as α, k and E are arbitrary
functions of radius r . Following five approximations are considered (Szubartowski
and Ganczarski [30]):
benchmark problem of a ceramic layer deposed directly on metallic substrate

f1(r) = fc (22)

conventional power function

Fig. 6 FGM cylinder under
thermo-mechanical loading
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Fig. 7 Subsequent approximations of thermo-mechanical properties: a Youngs modulus, b coeffi-
cient of thermal conductivity

f2(r) = ( fm − fc)
rn

rnf − rn1
where n =

log
(

fm
fc

)

log
(
rf
r1

) (23)

linear function
f3(r) = ( fm − fc)

r − r1
rf − r1

+ fc (24)

tangent hyperbolic (one step smooth) function

f4(r) = fm + fc
2

+ fm − fc
2

tanh(ar + b) (25)

multiple tangent hyperbolic (multi-step smooth) function

f5(r) = fm + fc
2

+ fm − fc
2

4∑
i=1

tanh(air + bi ) (26)

where fi (r) stand for respective property α(r), k(r) or E(r), parameters ai and bi
define location and thickness of TBC sub-layer, see Fig. 7.

5.2 Example

A system of four first-order ordinary differential equations, corresponding to
Eqs. (20), is numerically integrated from r1 = 0.5 cm to r2 = 1.0 cm by use of
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Fig. 8 Distributions of: a temperature, b hoop stress, for subsequent approximations of thermo-
mechanical properties

shootf.for routine, being shooting to a fitting point rf = 0.7 cm implementation of
multidimensional, globally convergent Newton-Raphson method. Thermomechani-
cal boundary and continuity conditions are assumed as follows:

θ(r1) = θ1, qc(rf) = qm(rf), θ(r2) = θ2

σrc(ρ1) = −p, σrc(rf) = σrm(rf), σrc(r2) = 0
(27)

where p = 0.55 kN/cm2, θ1 = 25 ◦C and θ2 = 0 ◦C. Complete material data of both
materials constituents of FGM, after Wang et al. [32], are presented in Table 2. Tem-
perature distributions corresponding to all five types of TBC, described by Eqs. (22)–
(26), are shown in Fig. 8a. In comparison with the temperature obtained for the
benchmark problem (ceramic layer deposed directly over the metallic substrate),
the temperature fields referring to subsequent types of TBC represent smooth and
monotonously decreasing functions. All curves are located rather close each to other,
although corresponding distributions of thermal conductivity (see Fig. 7b) essentially
differ. This is a consequence of both Dirichlet’s type of boundary conditions imposed
on temperature Eq. (20)1. Solution of mechanical problem is illustrated by distribu-
tion of hoop stress, which is the dominant component of stress, in Fig. 8b. In case of
the benchmark problem, hoop stress exhibits strong discontinuity mainly caused by
thermo-mechanical mismatch Ec � Em, αc  αm. This inconvenient effect is suc-
cessively eliminated by application of subsequent types of TBC’s. Detailed analysis
of subsequent distributions of hoop stress allows to distinguish two groups of TBC’s.
First one, represented by conventional power and linear functions, combines curves
of rather monotonous character that are located relatively close each to other. Second
one, represented by one-step and multi-step smooth functions, combines curves of
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oscillating character that profiles differ essentially. Detailed qualitative and quantita-
tive analysis of hoop stress referring to subsequent types of TBC reveals that another
inconvenient effect of tensile stress zone in ceramic layer occurs.

6 Concept of FGM Axisymmetric Finite Element

6.1 Formulation of FGM Thermo-Elastic Cylinder

The system of equations (20) takes the operator format (see Szubartowski and
Ganczarski [30])

L1 [θ(r)] = 0, L2 [F(r)] = − E

1 − ν2
(αθ)′ (28)

where the Poisson ratio ν is not subjected to any change. All thermomechanical
properties of the FGM are arbitrary functions of radius r , subsequent global approx-
imations are considered

f6(r) = ( fm − fc)
rnf − rn1
rn − rn1

+ fc (29)

Voigt for n = 1, Reuss for n = −1, and Hashin-Shtrikman (separate formulas for
bulk modulus K and coefficient of thermal conductivity k)

KHS− = Km + (Kc − Km)Vf

1 + ζm(1 − Vf)

(
Kc

Km
− 1

)

KHS+ = Kc + (Km − Kc)(1 − Vf)

1 + ζcVf

(
Km

Kc
− 1

) , ζc/m = 1 + νc/m

3(1 − νc/m)

kHS− = kmkc + 2kc[kmVf + kc(1 − Vf)]
2kc + kcVf + km(1 − Vf)

kHS+ = kmkc + 2km[kmVf + kc(1 − Vf)]
2km + kcVf + km(1 − Vf)

, Vf = r − r1
rf − r1

(30)

see Pobedria [21], Aboudi et al. [1], Calvo-Jurando and Parnell [3].
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6.2 FEM Formulation

From the FEM point of view both the Fourier equation (28)1 and the mechanical state
equation (28)2 are treated as differential equations of variable coefficients describing
isotropic material, which inhomogeneity is subjected to smooth change form one
element to other due to the global FGM approximation functions. In order to save
Euler’s type of both Eqs. (28) the following material inhomogeneity shape functions,
that approximate the global FGM functions at a level of element, are assumed

k(e) = k0r
n, E (e) = E0r

m, α(e) = α0r
s (31)

Transformation of Eqs. (28) to FEM form is done by discretization, use of the
Galerkin weighted residual process Kim and Paulino [13], Owen and Hinton [19],
Zienkiewicz [37] ∫

V

[L1,2(Φ) + Q]WdV = 0 (32)

and approximation of unknown function by Ni global shape functions Φ = ∑n
i=1

NiΦi . The weighting functions Wi corresponding to node i are conveniently chosen
such that Wi = Ni , hence substituting for Φ and W in Eq. (32) and assembling all
elements results in Hi jΦ j = Qi , in which typical element components of the element
stiffness matrices h(e)

i j and the element nodal force vectors q(e)
i are

h(e)
i j = k0

n + 2

rn+2
l+1 − rn+2

l

R2

[
1 −1

−1 1

]
q(e)
i = k0

[ −rn+1
l θ ′(rl)

rn+1
l+1 θ ′(rl+1)

]

h(e)
i j =

⎡
⎢⎢⎣

(
1 − mν

1 − ν

)
R

3r̄
+ r̄

R
− m

2

(
1 − mν

1 − ν

)
r̄

6R
− r̄

R
+ m

2(
1 − mν

1 − ν

)
r̄

6R
− r̄

R
− m

2

(
1 − mν

1 − ν

)
R

3r̄
+ r̄

R
+ m

2

⎤
⎥⎥⎦

q(e)
i =

⎡
⎢⎢⎣
−rl F ′(rl) + A

α0E0

1 − ν
rm+s

[(
r

2
+ sR

6

)
θl+1 −

(
r

2
− sR

3

)
θl

]

rl+1F ′(rl+1) + A
α0E0

1 − ν
rm+s

[(
sR

3
+ r

2

)
θl+1 −

(
r

2
− sR

6

)
θl

]
⎤
⎥⎥⎦

(33)

for thermal and mechanical problems, respectively, and r stands for mid radius of an
element. For the case of a two-node element with a linear variation of Φ the shape
functions are

N (e)
1 = rl+1 − ξ

R
, N (e)

2 = ξ − rl
R

where R is the length of an element.
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6.3 Examples

This subsection comprises results obtained for the FGM cylinder by use of special
finite elements defined in the previous subsection. The results are compared with
results of other methods such numerical integration and conventional finite elements,
without gradation of material properties, supplied by ANSYS.

In the first of numerical tests, a convergence of the new finite element, described
in Sect. 6.2, is checked. All geometrical, material and loading parameters of the
cylinder remain unchanged if comparewith example shown in Sect. 5.2.Distributions
of temperature and stress function are shown in Fig. 9.

Good convergence requires application of fine mesh for interface (40 elements)
and relatively coarse mesh for homogeneous part of cylinder (15 elements). Such a
mesh includes minimal number of elements and simultaneously guarantees conver-
gence of the mechanical problem. It is worth to notice, that application of staggered
algorithm (first the thermal problem is solved and next temperature is treated as right
hand side in the mechanical problem) results in cumulative error in the second step
of algorithm, usually ten times bigger than the error form the first step. Detailed
qualitative and quantitative analysis of results confirms good convergence of FEM
FGM and numerical integration but simultaneous lack of convergence in case of
conventional FEM.

Aforementioned positive results are a starting point for further investigations
when the FG modified FEM is applied to other types of interfaces. As it is shown
in Sect. 6.2 following three interfaces are considered: Voigt’s, Reuss’ and Hashin-
Shtrikman’s. Results, comprising distributions of temperature, stress function and
stress components in case of Voigt’s versus Reuss’ interface and lower versus upper
Hashin-Shtrikman’s interface, are presented in Fig. 10.

(a) (b)

Fig. 9 Comparison of temperature and stress function distributions in case of FGM cylinder
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(a)

(b)

(c)

Fig. 10 Comparison of results for Voigt’s, Reuss’ and Hashin–Shrikman’s interfaces: a tempera-
ture, b stress function, c stress components
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The following general tendencies can be formulated: Voigt’s and upper Hashin-
Shtrikman’s interfaces lead to lower average temperatures and higher levels of stress,
contrary to Reuss’ and lower Hashin-Shtrikman’s interfaces resulting in higher aver-
age temperatures and lower levels of stress. This is logical consequence of assumed
definitions of element stiffness matrices and element nodal force vectors (33), being
integrals of appropriate approximation (29)–(30) and shape functions.

7 Conclusions

Following concluding remarks may be formulated:

• Thermal loading applied to the FGMplate treated as both classical and quasi-polar
continua results in the plane stress state if only force-type boundary conditions are
homogeneous and there are no body forces.

• Application of functionally graded composite Al/Al2O3 is very efficient since
FGM layer works like thermomechanical barrier, successively protecting metallic
cylinders from both high-temperature gradients and high stress concentration.

• Lack of compatibility makes stress free deformation of the FGM plate subjected
to constant temperature impossible.

• Special graded FEM is very attractive tool to analyse thermomechanical structures
built of FGMs.
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Structural Analysis of Gas Turbine
Blades Made of Mo-Si-B Under
Stationary Thermo-Mechanical Loads

Olha Kauss, Konstantin Naumenko, Georg Hasemann and Manja Krüger

Abstract This study focuses on the mechanical analysis of high temperature gas
turbine blades based on finite element method. The aim is to evaluate the feasibility
of a Mo-based alloy Mo-12Si-8.5B as a possible candidate as a new type of turbine
blade material. For that purpose, the numerical analysis of typical turbine blades
under common stationary load was carried out based on the finite element method.
The alloy Mo-12Si-8.5B was compared to the state-of-the-art Ni-based superalloy
CMSX-4. The creep deformation is taken into account, so that the stationary load
under high temperatures could be represented.

1 Introduction

For further increase of the thermodynamic efficiency of gas turbines a significant
increase of the gas inlet temperatures is required. This leads, nevertheless, to an
increase of strains caused by material’s creep especially in the turbine blades, which
drastically reduces their service life. The application temperatures of state-of-the-art
Ni-based superalloys cannot be further increased significantly [1]. Currently, they
canwithstand temperatures up to about 1150 °C,which is approximately 90%of their
melting temperature [2]. Due to the advanced cooling systems and thermal barrier
coatings the gas inlet temperature can reach up to 1600–1700 °C. The problem is
that any further temperatures increase by using state-of-the-art Ni-based superalloys
would lead to a significant lifetime reduction of the components [2]. This problem
can probably be solved by the development of new alloys based on refractory metals
with melting temperature several hundred degrees higher as compared to Ni-based
materials. Therefore, new heat-resistant materials with high melting points are in the
focus of current material’s research.
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Ni-based superalloys combine excellent fracture toughness, creep resistance and
oxidation resistance at elevated temperatures [1]. The reason for the superior creep
properties of these alloys is a cube-shaped microstructure of γ′ phases in a γ matrix
phase [1]. A typical example for materials with this microstructure is CMSX-4. It
represents a second-generation single-crystal superalloy, which is of great interest
for applications as high temperature gas turbine blades [1, 2] and will be used as a
reference material in the present study.

Heat-resistant Mo-Si-B alloys have the potential to substitute Ni-based alloys
for high-temperature applications in gas turbines in future. Their microstructures
are mostly based on a Mo solid solution phase (Moss) and two silicides, namely
Mo3Si and Mo5SiB2 [2]. Although they have higher density compared to Ni-based
superalloys, their melting temperatures and their excellent mechanical properties
allow operating temperatures up to 1300 °C and they can be further developed [2].

Nevertheless, several questions about the feasibility of Mo-based alloys under
realistic turbine blade operating conditions remain unsolved. Experimental data of
turbine blades under real thermal and mechanical loading conditions are in great
demand but extremely challenging. Some problems of the complex thermal and
mechanical analyses can partially be solved with numerical analysis based on the
finite element method (FEM). Although any FEM calculations of gas turbine com-
ponents require simplifications of the model and loading conditions, it still provides
an efficient method to estimate the materials performance compared to expensive
component tests. As a result of the FEM analysis, the stress-strain state can be exam-
ined with sufficient accuracy. These data could be used to showcase the potential and
give first ideas on the feasibility of the newly developed Mo-Si-B alloys.

The numerical study of a turbine blade modeled under stationary loads is an
important step in determining the feasibility of Mo-based alloys in gas turbine mate-
rials. In this study, the three-phase alloy Mo-12Si-8.5B is considered as a potential
blade material in a comparative numerical analysis to the already used superalloy
CMSX-4.

2 Requirements for Gas Turbine Blade Materials

The gas turbine blades are critical components of gas turbine engines, since a large
part of all gas turbine failures (25.5–28%) are related to turbine blades [3, 4]. These
blade failures are mainly caused by two basic types of loads: angular velocity that
leads to huge centrifugal forces (and hence tensile stresses) and extreme temperatures
(or temperature gradients). These two loads define themultiaxial stress state in turbine
blades.

Creep deformation resistance is a very important point in the design of the blades,
especially for industrial turbines. The reason for this is that they are used under con-
stant centrifugal load at extremely high and relatively homogeneous temperatures for
a very long operating time. It is assumed, that technically relevant creep processes
generally occur at homologous temperatures >0.3 TM of the blade material [5]. In
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Fig. 1 Reduction of creep life due to temperature increase, reprinted after [6]

industrial gas turbines the damage costs due to creep failure of the rotating compo-
nents can reach up to 24% of the whole turbine system value [6]. This is particularly
dangerous for the first rows of high pressure turbine blades, which are exposed to
the highest temperatures compared to medium and low pressure turbines. The creep
failure can be due to initiation and growth of cracks [7] or extension of the blades
which leads to contact with the turbine casing [8].

The increase of the temperature always serves as a hindering factor. For example
raising the operating temperature of the turbine by 10–15 K using the same material
and cooling system reduces the service life by half [6, 8, 9]. This effect is shown in
Fig. 1.

The transition from combustion to gas turbine engines has required newmaterials
due to the demanding thermal and mechanical conditions. In combustion engines,
the materials operate at temperatures up to 800 °C (mostly under pressure). On the
other hand, in gas turbine engines structural materials for disks and blades operate
under static and dynamic tensile stresses as well as under varying thermal stress. In
addition, onlyfirst turbine engineswere operating at temperatures of 700–800 °C.The
operating temperature was significantly increased during their further development.

Depending on the application as a blade or as a vane, the requirements for certain
material properties are different. Besides this, there is also a drastic difference of
working conditions in the first turbine stages as compared to the following sections.
Vanes operate at significantly higher temperatures compared to blades. They operate
under bending forces due to the gas flow and thermal loads, which are determined by
an uneven temperature field under both stationary and transient loads. Vanes undergo
significantly lower alternating loads. The stresses in the vanes are lower than in the
blades, which operate under strong influence of centrifugal forces. One of the most
common ways of vanes damage is oxidation due to lack of resistance against high
temperature corrosion of the alloys. Therefore, the main requirements for alloys that
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are used for vanes are both high heat and corrosion resistance and fatigue resistance
at high temperatures.

Even higher demands are placed on the alloys for blade applications in the high-
temperature section of gas turbines. They are exposed to static, vibration, thermocy-
cling, corrosion and erosion loads, which lead to numerous possible damage scenar-
ios. Typical damage of the blades results from a lack of fatigue strength of the alloys
used. During mechanical surface treatment of blades, overheating may occur, which
causes plastic compression of the outer layers of the metal. This leads to significant
residual stresses after such processing, which promotes the initiation of cracks. In
uncontrolled surface grinding, residual stresses reach up to 350 MPa [10]. Since the
strength limit of the cast Ni-based superalloys is 700–1000 MPa, cracking in the
cold-worked metal at low temperatures may already occur at loads of 350–650 MPa,
which is much lower than the normal strength limit [10]. Thus the tensile strength
of samples, which were ground after casting, is 15–27% lower than the fracture
stresses of samples with as-cast surfaces. At the same time, the cold-formed metal is
characterized by a higher diffusion permeability. This leads to an intensification of
the recrystallization processes on the surface layer and faster coagulation of the γ′
phase. Thereby softening of the surface layer occurs, which leads to conditions that
facilitates the nucleation and development of cracks [10].

The requirements for the heat-resistant cast alloys of the cooled blades are becom-
ing more and more complex. One reason is a sharp temperature drop that occurs in
the thin walls of the cooled blade, which leads to a high temperature gradient. This
inevitably generates thermal tensile stresses, which reach up to 200–300 MPa under
certain operating conditions on the inner surface of the blades [10]. Therefore, cracks
may be induced as a result of the overall effect of thermal tensile stresses in addition
to centrifugal forces on the inner surface of the hollow blades cast with equiaxed
structure.

Another type of possible damage is fatigue. In endurance tests, fatigue damage
mostly occurs in the blade root due to insufficient fatigue and creep strength.

However, both types of damage, described above, are sufficiently studied. The
reasons and appropriate methods of their elimination as well as the calculation stage,
during and after operation, are already developed (i.e. during construction, mainte-
nance and repair).

New generations of gas turbine engines have higher gas inlet temperatures of
about 1300 °C. Therefore, the used materials must ensure a higher thermal fatigue
resistance. Besides the high maximum temperature, modern aircraft engines are
characterized by high variation of their operating temperatures between start-up,
stationary operation and shut-down. This results in a huge difference in the heating
and cooling rates of the thick parts of the airfoil and their thin edges, leading to
considerable thermal loads, in combination with the influence of the gas flow and
the centrifugal loads. The increase of the gas inlet temperature in new turbines is
not only attributed to the development of materials that are more heat resistant, but
also to the improvement of cooling technology and resulting cooling efficiency. One
critical condition is higher uniformity of the cooling filmover the entire blade surface,
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because if this film is destructed, local temperature peaks occur on the blade’s surface,
which results in significant thermal stresses.

Another typical blades failure may occur in the area of the housing, which is
caused by the increasing of its run-out and generating a gap in the housing gasket.
The run-out depends on the run-out resistance, heat resistance and creep properties
of the blade material.

In modern gas turbines, the blades of the first stages are cooled. Their internal
hollow consists of a large number of pins and jumpers that form a cooling system,
providing stiffness of the blade and guide the flow of cooling air. However, the
connection of pins and pads with the inner surface of the airfoil is an area with a
high stress concentration, which in some cases leads to failure. This damage can
be prevented by reducing the roughness of the inner surface of the blade, pins and
jumpers, as well as by increasing the transition radius (with a sharp change in cross
sections) [10]. In addition, the materials should have high plasticity and fracture
toughness. The problem of high stability of turbine blades to gas corrosion is partic-
ularly relevant with increasing operating temperatures. Therefore, a sufficiently high
heat resistance is one of the most important requirements [10].

3 Methods and Computational Details

An idealized three-dimensional geometry of a high pressure jet turbine bladewith the
height of 58 mm was created (Fig. 2). The bottom surface of the blade was clamped
for all types of movements (Fig. 2a). The blade was loaded with the centrifugal
rotation for 100 h (rotation radius 170 mm, rotational velocity 10,200 min−1). For
the calculations a mesh with mostly hexahedral square mesh elements with 20 nodes
was generated (Fig. 2). The calculation model consists of 6,280 elements and 30,796
nodes.

The deformation induced by secondary creep was considered using the Norton
creep law to define a creep strain rate:

ε̇cr = A · σ n · e−Q/RT , (1)

where σ is stress; A—material specific coefficients; n—creep exponent; Q—activa-
tion energy, T—temperature.

3.1 Materials

In this study turbine blades made of Ni-based alloy CMSX-4 and Mo-based Mo-
12Si-8.5B alloy are compared. CMSX-4 is a widely used Ni-based superalloy
for turbine blades.Mo-12Si-8.5B is an alloy designed for the substitution of Ni-based
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Fig. 2 a Boundary conditions, b Turbine blade geometry with mesh

superalloys in future, which possess improved creep resistance [11]. The CMSX-4
blade was analyzed under centrifugal load at 1100 °C. The blade made of alloy
Mo-12Si-8.5B was considered in the range of 1100–1200 °C.

CMSX-4 is a monocrystalline Ni-based superalloy developed by Cannon
Muskegon with γ′ precipitations in a γ-matrix (Fig. 3) [1]. The blade made of
the monocrystalline Ni-based alloy was assumed to be isotropic and the proper-
ties of this alloy, determined in the <100> direction, were used. Such a simplification
is permissible because the load acts in the direction of <100> . The good agree-
ment of such assumptions with experimental results has already been confirmed
by Fokin and Semenov [12]. In the <100> direction the elastic modulus of this
alloy is 94 GPa and the Poisson’s ratio 0.44 at 1100 °C [13]. The yield stress at
1100 °C is 420 MPa [14]. The parameters for Eq. 1 for CMSX-4 at 1100 °C were
derived from the experimental data by Hasemann et al. [15] and are n = 5.2 and
A × e−Q/RT = 6.8 × 10−50 s−1 Pa−5.2. The density of this alloy is 8.7 g/cm3 [1].

Mo-12Si-8.5B has a microstructure composed of an intermetallic Mo3Si matrix
with inclusions of Moss and Mo5SiB2 (Fig. 3), which provides excellent creep
resistance [11, 16]. The Mo-based alloy do not have a texture in its microstruc-
ture and can be considered as isotropic [16]. The density of the Mo-12Si–8.5B alloy
was calculated from the weight proportion of the phases and is ≈9.4 g/cm3. The
Young’s modulus of the Mo-12Si-8.5B alloy is 274 GPa at 1100 °C and 269 GPa at
1200 °C [17]. The Poisson´s ratio is 0.309 at 1100 °C and 0.312 at 1200 °C [17].
The relation of elastic constants of this alloy to the temperature from RT to 1200 °C
is almost linear [17]. Schneibel and Lin [11] reported following parameters for the
Eq. 1 for this alloy: n = 2.7, A = 1.8 × 10−18 s−1 Pa−2.7 and Q = 338 kJ/mol.
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Fig. 3 Microstructure of a Mo-12Si-8.5B alloy [18] and b CMSX-4 alloy [19]

Fig. 4 a The three-point flexure strength of Mo-12Si-8.5B, b three-point flexure test of Mo-12Si-
8.5B at 1200 °C in air, according to [20]

Schneibel et al. [20] determined the three-point flexure strength forMo-12Si-8.5B
at three different temperatures in air (Fig. 4a). Moss phase induces significant ductile-
phase toughening. Fracture toughness increases with the temperature. This causes
a significantly higher strength at 500 °C comparing to room temperature with the
increased ductility of the Moss phase at 500 °C and the associated reduction in notch
sensitivity of the specimen, but the total alloy is still rather brittle. Nevertheless, the
strength at 1200 °C is lower than that at 500 °C because of softening mechanisms
dominance. In the air at 1200 °C the load-displacement curves showed only a slight
plasticity (Fig. 4b). However, the fracture of this alloy in tensile tests in flowing
nitrogen at 1200 °C occurs in a brittle manner. The brittle behavior of Mo-12Si-8.5B
alloy is caused by the brittleness of the intermetallic phases.

4 Results

In the considered model, the stresses arise because of the centrifugal force and are
therefore tensile stresses. The highest stresses (and thus, strains) arise in the blade
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root (Fig. 5). For the bladewith the same cross sections internal force can be described
by the following equation:

N (r) = 0.5ρ Aω2
(
b2 − r2

)
,

where b is the outer radius (rotation radius 170 mm + blade length 58 mm =
228 mm); r—radial coordinate (varies from 170 mm to 228 mm); A—cross-section;

Fig. 5 Calculated stress and strain of Mo-12Si-8.5B and CMSX-4 alloy after 100 h operation
considering creep deformation
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ρ—material density; ω—angular velocity [21]. The material density and the angular
velocity in every cross-section over the blade are the same, so the internal force and
also the stress depends only on the difference (b2 – r2) and are therefore highest at
the bottom cross-section and smallest at the upper cross-section. The calculations
have also confirmed that the blade root is the most critical area, which corresponds
to the crack initiation points during the blade operation. Using a power law stress
function f (x) = xn for the creep deformation, the maximum displacement can be
computed as follows [21]:

u̇max = ε̇0

(
ρω2

2σ0

)n b∫
a

(
b2 − r2

)n
dr

Figure 5 shows a comparison of the resulting strain and stress of CMSX–4 and
Mo-12Si-8.5B at 1100 °C.

In the Mo-12Si-8.5B blade stresses are higher as compared to CMSX-4 blade
(Fig. 5). The maximum stress after 100 h in CMSX-4 blade is 89 and 110 MPa
in Mo-12Si-8.5B. This correlates well with Eq. 2, because using the same blade
geometry, radius of rotation and angular velocity, the stresses depend only on
the density of the material and the Mo-based alloy has a higher density than
CMSX-4 (9.4 vs. 8.7 g/cm3). All calculated stresses are significantly lower than
the yield strengths of the investigated materials (see Sect. 3.1). In this way, it is
permissible not to consider plastic deformation at the initial point. Thus, the only
considered inelastic deformation is creep, which takes place at high temperatures
also at stresses below the yield stress and causes cracks.

When evaluating the strains, it should be taken into account that in the Mo-based
blade higher stresses occur. Nevertheless, at 1100 °C due to a higher Young’s mod-
ulus and lower creep rate they lead to a lower strain. Thus, the elastic strains, which
occur right after the load is applied, and the strains after 100 h of loading are lower in
the Mo-12Si-8.5B blades in comparison to CMSX-4 blade. The maximum values of
the immediate elastic strains are 0.19% for CMSX-4 and 0.06% for Mo-12Si-8.5B
blades. The strain values after 100 h at 1100 °C are 0.77% and 0.51%, respectively.
With increasing temperature the creep rate rises exponentially, which leads to higher
strain values. Hence, the strain distribution in the Mo-12Si-8.5B blades is almost
the same at different temperatures, but the values slightly increase with increasing
temperature. The strain rate in the Mo-12Si-8.5B blades at 1110°C are similar to
those in CMSX-4 at 1100 °C, but the strain values are lower (maximum value after
100 h is 0.61%). This result shown in Fig. 6 means, that using Mo-12Si-8.5B the
temperature can be increased to 1110 °C with benefit to CMSX-4 alloys. The ability
to apply polycrystalline Mo-Si-B alloy instead of monocrystalline Ni-based alloy at
temperatures increased by 10 K with equal strain rate and lower deformation is very
promising, because such temperature increase would lead otherwise to significant
reduction of creep life of state-of-the-art alloys (s. paragraph 2, Fig. 1). Further-
more, the producing technology of polycrystalline alloys is much easier than that
of monocrystalline ones. A further increase of the temperature leads to exponen-
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tial increase of the creep rate. So, after 100 h load at 1200 °C Mo-12Si-8.5B blade
reaches the maximum calculated strain value of 3.1%.

When the body is at a high temperature under a given load system, the stress redis-
tributes in that body with time. One reason for this is that immediately after loading,
the material is not in equilibrium, because the external energy cannot immediately
be distributed over the entire volume in accordance with the system’s minimum total
energy principle. It results in local spots with increased energy, whose redistribu-
tion over the sample volume requires time, but occurs faster at higher temperatures.
Figure 7 shows the decrease of the maximum stress values. Another illustration of

Fig. 6 Change of the maximum strain in the Mo-12Si-8.5B blades and CMSX-4

Fig. 7 Change of the calculatedmaximum stress in the bladesmade ofMo-12Si-8.5B andCMSX-4
with time
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Fig. 8 Stress redistribution at 1100 °C for Mo-12Si-8.5B material

the stress redistribution is shown in Fig. 8 for Mo-12Si-8.5B blade at 1100 °C. The
redistribution of the stresses in other calculated cases is similar. The highest stress
occurs in the blade root at the starting point, which distributes through the blade with
time with the decreasing speed. The highest stress value for the CMSX-4 blade is
177 and 169 MPa for the Mo-12Si-8.5B blade. The redistribution rate is higher at
higher temperatures.

5 Conclusions

In this study calculations were performed for stationary operation of high tempera-
ture turbine blade considering creep deformation. Two alloys, Mo-12Si-8.5B and the
monocrystalline Ni-based superalloy CMSX-4, were considered at 1100 °C. Addi-
tionally, the stress-strain states in a Mo-12Si-8.5B blade were calculated in a border
temperature range between 1100 and 1200 °C. Due to the higher density ofMo-12Si-
8.5B, higher stresses occur in this blade as compared to CMSX-4. Nevertheless, the
elastic and creep properties are beneficial and thus, an application of Mo-12Si-8.5B
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is preferred at temperatures up to 1110 °C. Since the alloyMo-12Si-8.5B has a better
creep resistance in the polycrystalline state than the single-crystalline CMSX-4, the
class of Mo-Si-B alloys appear promising for the application as a possible new type
of turbine blade material. However, further alloy development will be necessary in
terms of the ductility and toughness at low temperatures and the oxidation behavior
of multi-phase Mo-Si-B alloys.
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Effects of Second Phases in Mo-Zr
Alloys-A Study on Phase Evolution
and Mechanical Properties

Julia Becker, Heiko F. Siems and Manja Krüger

Abstract In this study the microstructure evolution and the mechanical properties
of different cast Mo-XZr (X= 5, 10, 15, 20 at.%) alloys were investigated. It focuses
on the effect of Zr concentrations on the second phase formation in binary Mo-Zr
alloys. All alloys exhibit polycrystalline Mo2Zr precipitations as well as a (Mo, Zr)
solid solution phase, which in most cases forms the matrix phase. Microhardness
measurements were carried out by the Vickers indentation method. The Mo2Zr pre-
cipitations show a strengthening effect in addition to the solid solution hardening.
Additionally, constant displacement tests in the compressive mode at room tempera-
ture confirm these findings. However, the homogeneously distributed Mo2Zr phases
offer an extraordinary potential to improve the strength of Mo-based alloys without
decreasing the ductility.

1 Introduction

In terms of preserving resources and reducing environmental impacts, improving
the efficiency of turbines for power plants and aircraft engines is an increasingly
important research subject. A comparably slight increase of the gas inlet temperature
would already improve the efficiency of turbines significantly [1].

However, currently used nickel-based superalloys are limited in their maximum
operating temperatures due to theirmelting point of about 1400 °C.Therefore, despite
complex cooling systems and coatings, the turbine’s efficiency cannot be substan-
tially improved using nickel-based superalloys [2]. Molybdenum-based materials
are predestined for such high temperature applications because of their high melting
point above 2000 °C as well as their excellent mechanical properties, and are thus
promising candidates to replace nickel-based superalloys. Especially multi-phase
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Mo-Si-B alloys are focused in current research studies since they combine good
ambient and high temperature mechanical properties as well as a satisfying oxida-
tion resistance [3–5]. It is well known that the materials properties are significantly
correlating to the microstructural features.

Therefore, the approach of Berczik [6] is the most constructive development for
Mo-Si-B alloys, aiming in a microstructure in which the hard, but brittle silicide
particles are embedded in a continuous Mo solid solution (Moss) matrix. Such a
microstructure helps to improve the mechanical properties, particularly the fracture
toughness at ambient temperatures and simultaneously to ensure sufficient oxidation
properties and creep resistance at ultra-high temperatures [3, 7, 8].

Another important issue for the potential application of Mo-Si-B alloys as turbine
blade materials in jet engines is to reduce their density. Previous research shows,
that comparatively lightweight alloying elements like Ti, V and Zr can be solved
in the Moss phase (up to their individual solubility limits) and therefore, affect the
fracture toughness, the ductility and the strength of this microstructural constituent
and, additionally, the density [9]. Especially for Zr doped samples, excellent high
temperature properties were reached. In this regard, the alloy Mo-5Zr benefits from
theMo2Zr particles as effective strengthening phases in addition to the solid solution
hardening effect. Therefore, this type of alloy provides a significantly improved
strength level compared to single-phase Moss alloys. Based on these findings the
present study shows systematic investigations on the effects of Zr alloying on the
phase formation and resulting mechanical properties in binary Mo-Zr alloys.

2 Effect of Zr in Mo-Based Alloys

In terms of density reduction ofMo alloys, Zr (ρ= 6.5 g/cm3) [10] is a very promising
alloyingpartner.Additionally,Zr operates as getter for oxygen and thus, seems tohave
a ductilizing effect in powder metallurgically (PM) processed Mo-based materials.
Experiments showed that the addition of 1 at.% Zr to the base alloy composition
Mo-1.5Si led to a fourfold increase of strength and, simultaneously, an increase
of ductility even at room temperature was recognized. Different reasons could be
found for these improvements: (I) Zr works as getter for the detrimental oxygen and
forms nm-sized ZrO2 particles, (II) a reduced grain size during PM processing which
reduces the overall concentration of interstitial impurities at grain boundaries [11],
and (III) the segregation of Si to grain boundaries is reducedwhich alleviates the grain
boundary embrittlement [12, 13]. A computational screening evaluating the Rice-
Thomson parameter predicts a more fundamental effect of Zr in terms of ductilizing
Mo [14]. However, the solubility of Zr in Mo at room temperature is quite low, i.e.
< 1 at.% according to Fig. 1 [15]; higher alloying additions lead to the formation of
the secondary phase Mo2Zr, having a bcc crystal structure as described by Blazina
et al. [16, 17]. So, the phase diagram provides a two-phase region composed of (Mo,
Zr)ss and Mo2Zr.
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Fig. 1 Binary alloy phase diagram of Mo-Zr, reprinted according to [15]; the compositions chosen
for this study are marked by red lines

Microstructural investigations by Mousa et al. [18] have shown the additional
Mo2Zr and MoZr2 nano-phase formation in a Mo-1.5Si-1Zr alloy which might con-
tribute to an extra strengthening beyond the effect of the ZrO2 particles, which was
demonstrated in [9, 19, 20]. Even for three-phase Mo-Si-B alloys a positive effect
of Zr alloying (≤ 1at.%) on the strength and ductility was shown [21]. However,
for multi-phase Mo-Zr alloys, no systematic investigations were carried out so far
regarding the influence of higher concentrations of Zr beyond the results described
above.A fundamental understanding is essential to identify theworkingmechanisms,
which can be used for technical relevant multi-phase Mo-based alloys. Therefore,
the aim of this work is to systematically investigate the phase formation in binary
Mo-Zr alloys which will be discussed in the context of data from alloy Mo-5Zr
[9]. Accordingly, the effect of gradually increased Zr concentrations (5, 10, 15, 20
at.%) in Mo alloys is investigated regarding the phase evolution and the resulting
mechanical properties of two-phase alloys.
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3 Materials and Methods

Since previous research demonstrated the potential of Zr additions to Mo (about 1–5
at.% Zr), higher concentrations of Zr are subject of the present study to observe
relevant effects on the mechanical properties of Mo-Zr alloys. Therefore, the Zr
additions were chosen as follows: 5 at.% [9], 10 at.%, 15 at.% and 20 at.%.

The alloys were fabricated via arc-melting (AM) in an argon atmosphere to pro-
duce the binary alloys having compositions of Mo-5Zr, Mo-10Zr, Mo-15Zr and
Mo–20Zr (at.%). All compositions used for this study are marked in the phase dia-
gram in Fig. 1. The pure metal sheets with purities of 99.95% for Mo and 99.2% for
Zr were cut into flakes and mixed to obtain the target alloy composition.

After remelting the samples five times on a water-cooled copper mold they solid-
ify typically drop-shaped. Due to the high cooling rates of the arc-melting process
disequilibrium conditions could remain after solidification. Therefore, the ingots
were subsequently homogenized in an argon atmosphere for 24 h at 1400 °C. The
investigation of the microstructure was carried out by scanning electron microscopy
(SEM—FEI ESEM XL30 FEG equipped with EDS) on ground and polished sam-
ples. Therefore, the compact samples were hot mounted, ground, wet-grinded using
SiC paper with a grit of 500, 800, 1200 and polished with a 3 and 1 μm diamond
suspension.

The concentration of Zr in the Moss was measured using energy dispersive X-ray
analysis (EDS). Electron backscatter diffraction (EBSD) analysis was performed
to identify the crystal structure of the precipitations and the matrix phase using
a Zeiss Merlin SEM equipped with a Nordlys EBSD camera and Aztec software
package (Oxford Instruments). Grain sizes of the alloys were evaluated by means
of optical microscopy (OM) via linear intercept method (DIN EN ISO 643 [22]).
Due to differences of the grey values in the SEM micrographs, the fractions of
phases were evaluated using the program Image J. Additionally, the phase fractions
were measured using EBSD analyses. Density measurements of the specimens were
carried out according to the Archimedes’ method.

X-ray diffraction (XRD) measurements were performed using an X’Pert X-ray
diffractometer (PANalytical) with Cu Kα1,2 radiation. The phase identification was
performed using the analyzing software X’Pert HighScore Plus (PANalytical).

Vickers microindentation tests referring to DIN EN ISO 6507–1 [23] were con-
ducted with a force of 0.1 N (HV 0.01) and a hold period of 5 s. The microhardness
measurements were performed by generating a series of 30 indents set within the
grains by considering a defined minimum distance between the indents and grain
boundaries. Themechanical behavior was determined by constant displacement tests
at a nominal strain rate of 1 : 10−4 s−1 in uniaxial compression at room tempera-
ture. The specimens with dimensions of (2 × 2 × 3.5) mm, prepared by electro-
discharge machining, were tested using a Zwick/Roell Z100 electro-mechanical test-
ing machine. The yield stresses were measured by the 0.2% offset method.
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4 Results and Discussion

4.1 Microstructures

The microstructures were observed via OM and SEM coupled with EDS as well
as EBSD analysis. According to the phase diagram the Mo-Zr alloys show a two-
phase microstructure (Fig. 2) with the (Mo, Zr)ss phase as the main phase and the
intermetallic phase Mo2Zr as homogeneously distributed second phase particles. A
comparison of the Mo-Zr alloys indicates that the amount of secondary phases rises
with increasing Zr additions in agreement with the phase diagram (Fig. 1).

In contrast to the Mo-5Zr alloy, in which finely distributed individual particles
were formed (Fig. 2a), the microstructure of Mo–Zr alloys with higher Zr concentra-
tions reveals extended phase dimensions of Mo2Zr (Fig. 2b–d). Accordingly, there
is an enormous increase of secondary phase proportions from 9 vol.% for Mo–5Zr
to 44 vol.% for Mo-20Zr (Table 1), which corresponds quite well with the phase
diagram. The appearance of the Mo2Zr phase changes from individual particles in
Mo-5Zr to a network-like structure in Mo-20Zr (Fig. 2).

Fig. 2 SEM images of a Mo-5Zr [9] bMo-10Zr c Mo-15Zr and d Mo-20Zr alloy
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Table 1 Microstructural parameters of Mo-XZr alloys compared to pure Mo

Nominal alloy composition, at.% Mo −5Zr −10 Zr −15 Zr −20 Zr

Calculated density after [24], g/cm3 10.21 9.91 9.83 9.50 9.21

Measured density, g/cm3 10.19 9.95 9.87 9.51 9.23

Median grain size, μm – 176 59 56 32

Concentration of Zr in Moss, at.% – 4.1 4.4 6.5 8.9

Amount of Mo2Zr phases, vol.% – 9 12 22 44

A summary of the microstructural properties and the density of the alloys is given
in Table 1, which represents the significant impact of increasing Zr additions. It can
clearly be seen that not only rising amounts of Zr, which is dissolved in Moss, but
also the increased fraction of Mo2Zr phase with a density of 8.63 g/cm3 (calculation
based on [24]) contributes to the density reduction of the Mo alloys.

Additionally, the grain size decreases with increasing Zr concentrations due to
the nucleation of Mo2Zr grains, limiting the grain growth of the Moss phase during
solidification and heat treatment. Hence, the Hall-Petch theory as well as second
phase hardening have to be considered when discussing the mechanical properties.
EDS measurements show that the concentration of dissolved Zr in the (Mo, Zr)ss
phase tends to increase despite of forming Mo2Zr particles (Table 1). However,
based on the phase diagram, presented in Fig. 1, lower concentrations of dissolved
Zr in the Moss phase would be expected. This might be due to a still incomplete
equilibrium state of the alloys even after heat treatment or to ambiguous solubility
ranges in the phase diagram at lower temperatures.

TheXRDdiffractograms in Fig. 3 (left) verify the presence of the (Mo, Zr)ss phase
in all alloys. There is just a weak peak of the Mo2Zr phase detectable in the alloy
Mo-5Zr andMo-10Zr, whereas for higher Zr-dopedMo alloys this phase was clearly
identified. A more detailed depiction of one of the respective (Mo, Zr)ss reflexes
(Fig. 3, right) represents the shifting of the (Mo, Zr)ss peaks to smaller diffraction
angles with respect to that one of pure Mo, which indicates changes in the lattice
parameters. This is based on the Bragg’s equation [26]. The site occupation by Zr
atoms in the Mo lattice leads to lattice distortion, which is due to deviations of the
atomic radii (Mo: 145 pm; Zr: 155 pm) [25].

The EDS measurements (Table 1) showed the following trend: the higher the Zr
addition in the alloy the higher the concentration of Zr dissolved in the Mo lattice.
This is confirmed by the shifting of the (Mo, Zr)ss reflexes as visible in Fig. 3. The
higher intensities of the reflexes of Mo-5Zr as compared to Mo-Zr with 10, 15 and
20% Zr are due to longer settings at each single step during the measurement.

All alloys were investigated by EBSD analyses as shown in Fig. 4. A phase
mapping clearly identified the phases Moss and Mo2Zr and corresponds very well
with the results of XRD measurements (Fig. 3). Additional EDS analyses confirm
that the last-mentioned phase consists of about 66 at.%Mo and 34 at.% Zr according
to the stoichiometric composition of Mo2Zr.
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Fig. 3 XRD data in (left) standardized representation and (right) direct comparison visualizing the
shifting of reflexes in comparison to pure Mo

Figure 4a gives an impression on the finely distributed Mo2Zr precipitations in
the microstructure of Mo-5Zr. It also reveals that the Mo2Zr phases appear at the
grain boundaries, but also within the grains (Fig. 4b). It is assumed, that the high
cooling rates in the arc melting process could hinder a peritectic reaction (according
to Fig. 1). Due to this reason a supersaturated (Mo, Zr)ss phase could remain after
cooling, so that the Mo2Zr precipitations inside the grains could be formed during
the subsequent heat treatment procedure, so that they appear next to the Mo2Zr
precipitations decorating the grain boundaries.

The occupation of the grain boundaries with the Mo2Zr phase becomes more
dense in the alloys with 10 at.% Zr and 15 at.% Zr (Fig. 4c, d). For the Mo-20Zr
alloy, EBSD orientation mappings show that the extended Mo2Zr phases appear in
a network-like structure at the grain boundaries (Fig. 4e, f). Due to the pronounced
precipitation of the Mo2Zr phase during solidification, grain growth is limited which
results in a decreasing grain size by an increasing fraction of Mo2Zr (Table 1).

The EBSD orientation mappings of the Mo2Zr phases shown in Fig. 4 indicate
that the precipitated phases are polycrystalline. Polycrystalline phases exhibit a huge
advantage by acting as effective obstacles to dislocations while still allowing some
degree of deformation. In other words, in case of alloy Mo-20Zr, small grain sizes
of (Mo, Zr)ss combined with a high amount of Mo2Zr phases at the grain boundaries
show promising potential for high strength while keeping the plastic deformability
at an acceptable level (Sect. 4.3).
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Fig. 4 Results of EBSD orientation mappings: IPF color-coded images of Mo2Zr phases in aMo-
5Zr, c Mo-10Zr, d Mo-15Zr and e Mo-20Zr and additional IPF color-coded images of (Mo, Zr)ss
phase in bMo-5Zr and f Mo-20Zr
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Fig. 5 Hardness of Mo-XZr
alloys compared to pure Mo

4.2 Microhardness

The microhardness measurements were performed using a pyramidal Vickers inden-
ter. To avoid the effect of dislocation pile-up at the grain boundaries it is necessary
to consider a defined minimum distance between the indents and grain boundaries.
According to [23] the minimum interval between the center of neighboring indents
as well as the distance between the indent and the grain boundary should be the three-
fold of the diagonal length. This requirement has been fulfilled. Although the present
materials are two-phase alloys, only indents in the (Mo, Zr)ss phase are considered for
the hardness data to analyze only the solid solution effects. The results compared to
data of pureMo are shown in Fig. 5, which demonstrate the improvement of hardness
of the (Mo, Zr)ss phase by increasing Zr additions. In general, this effect is mainly
due to solid solution hardening, since the hardness increase corresponds very well
with the dissolved Zr concentration in the solid solution (Table 1). In previous studies
[9] we already demonstrated that Zr is a very effective solid solution strengthener as
compared to Ti and V, which is due to an effective lattice distortion.

The hardness values of all alloys especially in Mo-20Zr are significantly higher
than the reference of pure Mo and can be understood as an increasing level of solid
solution strengthening in dependence on the dissolved Zr concentration. Calculated
strengthening contributions based on the model of Labusch [27] show that additional
strengthening from 0.17 GPa (Mo-5Zr) up to 0.5 GPa (Mo-20Zr) is possible in the
solid solution phase. It is noticeable that the total hardness of the alloys will be
additionally influenced by Hall-Petch hardening and precipitation or second phase
hardening.
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Fig. 6 Results of compression tests at room temperature: (left) maximum compressive (σm) and
yield (σp0.2) strength, (right) plastic strain depending on the Zr additions

4.3 Uniaxial Compression Tests

By using constant displacement tests at a nominal strain rate of 1 : 10−4 s−1 in uni-
axial compression at room temperature (RT), the influence of Zr on the compressive
strength and plastic deformability was analyzed. The results are presented in Fig. 6,
depending on the Zr concentration in the respective alloys.

Regarding the maximum compressive and yield strength (left), all Mo alloys
show an increase of strength with rising Zr additions. So the general tendency of the
microhardness measurements (Fig. 5) is validated by the uniaxial compressive tests.
For detailed understanding of the measured data it is necessary to have a closer look
at the microstructural parameters as presented above. Following the approach of Hall
and Petch [28, 29] the contribution of the grain size (GS) effect must be considered as
follows: �GSMo-5zr, 176μm < �GSMo-10Zr, 59μm < �GSMo-15Zr, 56μm < �GSMo-20Zr, 32μm

(Table 1). Hence, the Mo2Zr precipitations cause the stabilization of a small grain
size during solidification, which means that a smaller grain size was generated by
increasing Zr concentrations and results in an increased strength according to the
Hall-Petch theory. Not only the grain size but also the concentration of Zr dissolved
in the Mo phase plays a major role. After Northcott [30], investigations onMo alloys
containing up to 3% Zr showed that the lattice parameter increases linearly with
Zr additions, indicating that at least 3% is soluble in Mo. For the present alloys the
dissolvedZr concentrations are higher than expected by the literature data. Thismight
be due to a not completely achieved equilibrium state of the alloys after annealing.
Thus, the additionally dissolved Zr causes an extra distortion within the Mo lattice
leading to a more pronounced solid solution strengthening effect.

An additional effect on the strength is given by the secondary Mo2Zr phases. In
general, the homogeneous distribution of this phase has an improving effect on the
strength level, since this second phase acts as obstacles for the dislocation motion.
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Especially for alloy Mo-20Zr which exhibits the highest amount of Mo2Zr phases,
the strength level is significantly improved (Fig. 6). This effect may also be due to
the continuous formation (network-like) of Mo2Zr phase.

On the other hand, all Mo-XZr alloys provide plastic strains between 2 and 4% in
compressive mode (Fig. 6, right), showing the potential of materials’ deformability,
even though hard and brittle Mo2Zr is present in comparably high concentrations.
Surprisingly, the plastic strainwas not significantly decreasedwith increasing amount
of Mo2Zr.

5 Conclusions

The effects of Zr additions on the mechanical properties of the Mo solid solution
(Moss) phase and two-phase Moss-Mo2Zr alloys were investigated using different
compositions of Mo-XZr (X = 5, 10, 15, 20 at.%). These alloys were characterized
bymicrostructure analysis, Vickers microhardness measurements as well as constant
displacement tests in uniaxial compression at room temperature. According to the
experimental results described above, the following conclusions can be drawn:

1. TheMo-Zr alloys exhibit a two-phasemicrostructure as expected from the binary
phase diagram. The secondary phases were identified asMo2Zr, which are homo-
geneously embedded in a (Mo, Zr)ss phase, occurring as precipitations at the grain
boundaries and within the grains. The amount of second phases increase with
rising Zr additions whereas the grain size is decreased.

2. Detailed EBSD analyses indicate that the phase regions of Mo2Zr are poly-
crystalline. In case of Mo-20Zr the Mo2Zr phase decorates the grain boundaries
completely and forms large and continuous network-like structures.

3. Zr causes effective distortion of the Mo lattice. The significant contribution of
solid solution strengthening is due to the high concentration of dissolved Zr in
Mo, which is beyond the solubility limits as given in the phase diagram.

4. In general, Zr has a positive effect on the mechanical properties, which is rep-
resented by the results of microhardness and compression tests. This is mainly
due to the following reasons: First, higher amounts of Mo2Zr phases lead to a
smaller grain size, which results in an increased strength according to the Hall-
Petch theory. Second, significant concentrations of Zr dissolved in the Mo phase
cause a strong solid solution strengthening effect. Third, an additional increase of
strength is given by the second phaseMo2Zr particles, which are homogeneously
distributed.

5. The alloys investigated offer a constant level of plastic deformability at room
temperature, even though the amount of Mo2Zr varies significantly from 9 to
44%.
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Investigating the Effect of Creep
Properties Mismatch in Very Thin Pipes
Within High-Temperature Facilities

Martin Packham and Daniele Barbera

Abstract Most industrial structures are affected by material mismatch effects, due
to the design necessity that leads to the use of dissimilar materials like welding
of different parts. In other circumstances, this mismatch is introduced by material
transformation like radiation embrittlement, hydrogen attack or carburisation, which
can drastically change the material response of a restricted area of the component.
Such an outcome can have an unpredicted effect on the behaviour and endurance of
the component. Carburisation has been identified within the thin stainless steel pipes
of UK Advanced Gas-cooled Reactors (AGR). This carburisation is known to affect
crack initiation and creep-fatigue properties, ultimately impacting on service life. The
current assessment procedure for UK AGRs has several limitations when addressing
carburisation and is believed in some circumstances to be overly conservative and in
other conditions non-conservative. The work of this study aims to aid in clarifying
the effect of creep properties mismatch due to carburisation in thin pipes within such
high-temperature facilities. A numerical study is undertaken to investigate the effect
of creep properties mismatch in a thin pipe subjected to a combination of primary
(load controlled) and secondary (displacement controlled) cyclic loading. In order
to perform an extensive parametric study, a special numerical procedure based on
the finite element commercial code Abaqus is used to predict the cyclic behaviour
of the structure. The effect of creep properties mismatch on global shakedown and
creep ratcheting will be investigated providing new insight in the field of structural
integrity of pressurised components.
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1 Introduction

EDF Energy currently operate 14 Advanced Gas-cooled Reactors (AGRs) across
six sites in the UK. The majority of these AGRs have been in operation for around
35 years, with the first site, Hinkley Point B, starting operation in 1976. The UK’s
commitment to an increasing energy demand as well as environmental targets have
called for numerous life time extension plans. These have been both announced and
implemented allowing for considerable extension over the original intended service
lives of 25–30 years.

There are two major limiting factors in the service lives of UK Advanced Gas-
cooled Reactors (Fig. 1), the first of these being cracking and damage to the graphite
components associated with the reactor core and the second, creep-fatigue damage
to irreplaceable stainless steel pipework. The AGR’s boilers contain many stainless
steel components that are exposed to temperatures as high as 650 ◦Cwhilst operating
over hundreds of thousands of hours.Waterwithin the pipes is heated via a coolant gas
mixture primarily consisting of carbon dioxide with carbon monoxide, methane and
water vapour also present. This gas in turn cools the reactor core. This investigation

Fig. 1 Advanced gas cooled reactor schematic [1]
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Fig. 2 Etched 316H stainless steel sample after exposure to AGR coolant gas [1]

will focus on the hottest regions of the boiler, generally associated with the re-heater.
Here, components are subject to a wide range of loading conditions resulting from
high internal pressures and variations in temperature. This leads to a combination of
primary, load controlled, and secondary, displacement controlled, cyclic loading. At
temperatures greater than 480 ◦C it has been observed that exposure to the coolant
gas may lead to carburisation of the austenitic 316H stainless steel of which boiler
components are fabricated [1]. Oxidation occurs rapidly at temperatures higher than
480 ◦C. Initially a thin chromia (Cr2O3) layer forms; in most cases this gives way to
the formation of a duplex oxide consisting of an outer magnetite (Fe3O4) layer and
an inner spinel layer rich in chromium and nickel [2]. This oxidation process leads to
carburisation of the austenitic stainless steel via diffusion, with diffusion occurring
more rapidly along the grain boundaries as shown in Fig. 2 [1].

At temperatures greater than 600 ◦C, the initial duplex oxide formation may
be very rapid, however a chromium-silicon rich healing layer may form providing
a protective barrier at the interface of the metal and oxide [3]. This oxide layer
prevents further carburisation occurring, whereas at temperatures in the region of
480–600 ◦C carburisation may continue throughout the material life. Carburisation
leads to a considerable increase in the hardness of the material due to the ingress
of carbon and the formation of carbides. The depth of carburisation can be assessed
using micro hardness tests where an exponentially decaying curve can be fitted to



110 M. Packham and D. Barbera

the test data until the bulk material is reached at a particular depth. The extent of
carburisation is generally defined as the depth until the hardness falls to a value of
110% of the bulk material [1]. After an exposure to the coolant gas for more than
approximately 12 years a carburised layer depth of 0.2–0.8mm may be expected,
resulting in a material mismatch. This depth will be heavily dependent on several
factors including temperature, surface finish and proximity to welded joints.

Damage and structural defects in the UK AGRs are both predicted and assessed
using the R5 defect assessment procedures, which have been developed and revised
over many years [4]. It is written as a series of step-by-step instructions in a series of
five volumes with the purpose of assessing damage at high temperature [5]. The five
volumes are Volume 1: Overview, Volume 2/3: Creep-fatigue initiation procedure for
defect free structures, Volume 4/5: Procedure for assessing defects under creep and
creep-fatigue loading, Volume 6: Assessment procedure for dissimilar metal welds
and Volume 7: Behaviour of similar welds: guidance for steady creep loading of
CrMoV pipework components [4]. It is Volume 2/3 that relates specifically to the
work of this study and involves assessment of damage via shakedown analysis.

At present the R5 [6] does not directly consider carburisation but rather makes
a series of assumptions and relies on conservatism to account for it, as described
by Chevalier [1]. For a start, as carburisation is likely to occur within the first few
years of operation and given a healing layer is likely to form preventing further
carburisation. Following this assumption, the depth of the carburised layer may be
treated as metal loss. Alternately, the presence of carburisation may be ignored on
the provision that a full creep fatigue crack initiation assessment is carried out.
The simplifying assumptions of the R5 assessment procedure can in some cases be
conservative and in other cases non-conservative. This is dependent on the extent of
carburisation, the magnitude of the loading and the nature of the loading (primary
or secondary). It is understood that the conservatism or non-conservatism is directly
related to the presence of surface cracking in the carburised layer. The brittle nature
of the hard carburised layer makes it particularly susceptible to cracking at higher
levels of loading. Should cracking initiate, then a perceived increased creep rate
would be expected, leading to a reduced time to failure as cracking effectively leads
to metal loss. However, at lower levels of loading the carburised layer may not crack.
In this case the higher yield stress of the carburised material may be of benefit and an
increased creep rate would be observed, ultimately increasing the material life. This
work aims to investigate the effects of a creep properties mismatch, as a result of
carburisation, on a section of thin walled stainless steel pipe found in an AGR. The
simulated pipe section, represented as a Bree cylinder, is subjected to cyclic thermal
gradient and a constant mechanical load. The model is subject to a creep dwell when
the temperature across the pipe section is constant and at its maximum temperature.
The numerical study is performed for several models with increasing thickness of
the carburised material. The effects of various magnitudes of mechanical loading are
also investigated. This paper details the simulation and modelling approaches before
providing and discussing results of the study.
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2 Cyclic Response of Structures at Elevated
and High-Temperature

Over the last 50 years one of the most intuitive and reliable method of classifying
the cyclic behaviour of a structure has been the famous Bree diagram [7]. Within
his research work Bree identified the relationship between the cyclic behaviour and
the level of combined mechanical and thermal load. In accordance with his diagram
the following mechanisms can be exhibited: elastic shakedown, plastic shakedown
or ratcheting. To represent the interaction between the cyclic and constant load, he
proposed an interaction diagram as shown in Fig. 3. Within the diagram (Fig. 3) the
thermal stress and the constant mechanical load are normalised for the yield stress
and limit load respectively and are reported on the vertical and horizontal axes. If the
combined loads applied are small enough, the entire component will remain elastic
during the operating life. However, if the load is increased the component can exhibit
elastic shakedown. If the cyclic thermal load is increased, the component can fall
in plastic shakedown domain. In this region the cyclic response is characterized by
the typical closed hysteresis loop, which is responsible for subsequent low cycle

Fig. 3 Classical Bree type diagram for a cylinder subjected to cyclic thermal load and constant
mechanical load
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Fig. 4 Different material responses due to cyclic loading with creep dwell period at the tensile peak
a elastic response, b elastic shakedown, c creep enhanced reversed plasticity and d creep enhanced
plastic shakedown

fatigue cracking. If mechanical load is increased, leaving the thermal load level
constant, ratcheting occurs. This behaviour is particularly detrimental, since it causes
a continuous accumulation of plastic strain at each cycle that can lead to premature
collapse of the structure. Finally, if the mechanical load is increased further, the limit
load can be reached causing the instantaneous plastic collapse of the structure.

However, due to the interaction between creep and fatigue, the application of the
Bree diagram becomes less accurate when high temperature creep occurs during the
cycle. The presence of creep dwell can change drastically the cyclic behaviour of a
structure, and a schematic representation is given in Fig. 4.

In this representation, for simplicity, a single creep dwell is considered which acts
at the end of the tensile peak. If the load at this point is within the elastic limit, no
plastic strain is accumulated during the first cycle (Fig. 4a). Due to the creep dwell,
a progressive stress relaxation occurs, and unloading also remains purely elastic. A
similar behaviour can occur in the presence of a small initial plastic strain (Fig. 4b),
but also in this case the progressive stress relaxation leads to elastic behaviour.

In some case the stress relaxation can promote a plastic response during the
unloading phase (Fig. 4c), known creep enhanced plasticity. This mechanism is par-
ticularly dangerous because it introduces low cycle fatigue in conjunction with creep.
In addition, if the applied load is over the shakedown limit, the hysteresis loop
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response shows plasticity during both the loading and unloading phases, causing
more severe fatigue damage which interacts with the creep damage (Fig. 4d). In both
Fig. 4c and Fig. 4d, the accumulated creep damage is larger than that obtained by
a monotonic load, due to the higher stress level which cyclically occurs during the
creep dwell. For this reason, this response is known as “Cyclically Enhanced Creep”.
In some particular conditions, an open hysteresis loop response is possible and it is
known as “Creep ratcheting”.

As mentioned before creep dwell is capable of altering the cyclic response of a
structure introducing a closed loop response (Fig. 4c, d) for cyclic loading conditions
within the shakedown limit. The closure of the hysteresis loop is due to the balance
of all the inelastic strains within the entire cycle. However, the non-closed hysteresis
loop would still be possible, when an inelastic strain accumulation occurs due to the
dominant creep or reversed plastic strains [8]. For example, a large dwell time could
produce a creep strain greater than the limited plastic strain, leading to an inelastic
strain accumulation dominated by creep. In other loading conditions a large stress
relaxation, which results in a low level of overall creep stress, leads to insignificant
creep strain but large plastic strain during the unloading phase. This could produce an
open hysteresis loop dominated by the reversed plastic strain. Hence creep ratcheting
is instead a much more complex mechanism, and it is dependent on the dwell time,
the type of load applied and load levels [9].

3 Numerical Model

The geometry of this study was based upon the well-established Bree cylinder, which
was originally used to study cyclic behaviour of nuclear fuel casing behaviour [7].
The model geometry is shown in Fig. 5, due to the type of problem an axisymmetric
model has been used. The cylinder has been also divided into two domains, one
modelled with the bulk material (316H), and the other one on the external side as
the carburised material. The presence of two different materials had impact also
on the mesh strategies, which is depicted in Fig. 5 for different cases. The mesh is
composed of quadratic quadrilateral elements CAX8R, with a reduced integration
scheme. The pipe features a wall thickness of 2.4mm and an internal diameter of
13.8mm. After initial analysis, carburisation is introduced to the outer side of the
pipe at a thickness of 0.1mm and then 0.4mm. The initial mesh featured 16 elements
across the thickness of the pipe. This is increased to 24 for the 0.1mm carburised
model with a bias ratio of 10 towards the carburisation. The number of elements
is then increased for the 0.4mm carburised model with a total of 36, again with
biasing towards the carburisation. For this particular case study due to the symmetry
of boundary conditions and bothmechanical and thermal load applied the aspect ratio
of the element do not represent a crucial factor. However, it is important to ensure
a good number of elements at the interface between the two materials. It is worth
noting that despite this approach a numerical discontinuity will be always present.
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Fig. 5 Classical Bree’s like diagram for a cylinder subjected to cyclic thermal load and constant
mechanical load

The model is constrained from motion at the bottom. When required a constant
axial tensile load is applied to the top of the model. This simulates the axial effect
of static mechanical loading due to the internal pressure. For simplicity, radial or
hoop stresses are not considered. Temperature is varied cyclically from a reference
of 600 ◦C with higher temperatures occurring externally and propagating inwards
through the wall thickness.

The bulk material considered is the 316H and material properties are obtained
from the NIMS database [10]. Yield stress, thermal conductivity and coefficient of
thermal expansion are taken as functions of temperature. For simplicity, Young’s
modulus is assumed to be temperature dependent with linear trend between data
points available (Table1 in Appendix), and a constant Poisson’s ratio is considered.
High-temperature creep is modelled using Norton’s law neglecting primary and ter-
tiary phase. The plastic behaviour of thematerial has beenmodelled as elastic perfect
plastic and no hardening rule is considered.

Poor access to material data for the carburised layer meant a number of assump-
tions had to be made. Firstly, properties are assumed constant across the thickness of
the layer. Then based on the work of Chevalier [1] Young’s Modulus is increased by
30% from the bulk material value and yield point is increased by 50.6% over the full
temperature range. Conflicting information on the effect of carburisation on strain
creep rate lead to firstly assuming the creep rate reduced by a factor of 10 for the
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carburised layer. Following this the problem is remodelled with creep rate increased
by a factor of 10. All the data used within this work are reported in tabulated form
in the Appendix.

4 Results

4.1 Bree Like Diagram for Non-carburised Cylinder

Before introducing creep and carburisation effects, a detailed study of cyclic response
of the structure has been undertaken. This involved determining the reference limit
load PL , which is found to be approximately 115MPa at 600 ◦C. A reference thermal
load of 50 ◦C is selected to be applied on the datum temperature of 600 ◦C.

During this research work along with traditional finite element analysis a well-
established direct method, known as the Linear Matching Method (LMM) has been
used. The LMM is capable of calculating shakedown, ratcheting and plastic collapse
limits, more efficiently than other numerical procedures such as the Direct Cyclic
Analysis (DCA) for a wide range of problems [11]. Within this work it has been used
for providing an efficient solution to particular calculation like the shakedown limit
calculation and the assessment of the steady state response due to cyclic loading
at high-temperature. To calculate a fully shakedown limit a series of step by step
analysis has been carried out, trialling values for mechanical and thermal loading
ratios. At the same time for verification purpose the Linear Matching Method has
been used to calculate the same limit.

The limit is depicted in Fig. 6, which shows a typical behaviour when a cyclic
temperature and a constant mechanical load is applied.

By analysing the plastic strain accumulated over time, the type of cyclic responses
could be determined and hence points added to the Bree diagram for the selected
loading ratios. From these points, a boundary line could be interpolated that divides
the plot up into the regions as shown in Fig. 6.

The step by step results are also verified using the linear matching method with
results shown as a dashed red line in Fig. 6. The verification of the limit calculated
is depicted in Fig. 7, where three cyclic load points just inside the shakedown limits
A1(0.0, 0.9), B1(0.4, 0.9), C1(0.65, 0.3), and three outside A2(0.0, 1.1), B2(0.4, 1.1),
C2(0.65, 0.5) as shown in Fig. 6. By comparing plastic strain histories, as shown
in (Fig. 7), firstly, it is observed that elastic shakedown behaviour occurs for load
point A1, B1 and C1. These points are predicted to lie inside the limit. Instead when
they are taken outside reversed plasticity is predicted for A2 and B2. For the cyclic
point C2 a well defined ratcheting mechanism is visible (Fig. 7). The results obtained
demonstrates that the limit calculated with a temperature dependent yield stress is
accurate. On the basis of this shakedown limit specific cyclic load points are going
to be analysed with the presence of a carburised layer.
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Fig. 6 Bree’s like diagram for the non-carburised cylinder subjected to cyclic thermal load and
constant mechanical load

4.2 Creep-Fatigue Analyses of the Non-carburiesed Cylinder

In order to study the effect of the carburisation on the cyclic behaviour at high
temperature of the cylinder a reference case is constructed considering only the
bulk material. The cyclic history has been modified considering the presence of a
creep dwell at constant temperature and constant primary load. The creep dwell
length considered has been 500h, and the maximum temperature considered is 650
◦C, which is consistent with the operating temperature in the AGR reactor. Three
different mechanical loading situations are simulated, firstly with no mechanical
load, and then the other two with an incremental increased mechanical loading. This
is important to study the effect on the cyclic response and the possible presence of
creep-ratcheting.

The type of response, at the inner side of the cylinder, obtained from the three
load case with increasing mechanical load are shown in Fig. 8. Figure8a shows the
response without any mechanical load applied. The absence of any primary load
makes it impossible to obtain creep-ratcheting [9]. In addition, in all the responses
reported the creep dwell is always compressive and for this reason no creep damage



Investigating the Effect of Creep Properties Mismatch … 117

Fig. 7 Verification through step-by-step analysis of the shakedown limit for the cylinder structure
by comparing plastic strain histories

is expected to occur. During the first step the strain-stress response is caused by
the thermal gradient across the thickness. Then the thermal gradient is removed
and the entire section is at the highest temperature, consequently stress relaxes and
redistributes due to the change of flow stress caused by the associated change in
temperature field.At this point the creep dwell starts and once concluded it is followed
by unloading to return to datum temperature (600 ◦C), forming a closed loop.

When the mechanical load is introduced, creep-ratcheting occurs as shown in
Fig. 8b, c. This mechanism is caused by the type of the load applied that promotes
creep-ratcheting in the direction of the applied load. Despite this the ratchet strain
per cycle accumulated is relatively small, but not insignificant, as it is depicted
in Fig. 8b. In addition, the direction of the ratchet strain is negative. This type of
mechanism is dramatically affected by the length of the creep dwell and by the
magnitude of the mechanical load. Figure9 shows the cyclic responses across the
thickness, from left to right, without the carburised layer on the right side. In all
plots a well-defined ratcheting is defined. The creep dwell at the mid-wall and at
outer-wall positions occurs with tensile stresses. In particular, at the mid-wall elastic
shakedown is associated with an increase in inelastic strain due to the accumulation
of creep deformation. However, in this case as it is shown in Fig. 9 the accumulated
strain per cycle is not significant.

The von-Mises stress across the pipe wall is shown in Fig. 10a, b. It is clear how
the stress increases with the thermal gradient before redistributing as the material



118 M. Packham and D. Barbera

Fig. 8 Cyclic response of the non-carburised cylinder subjected to cyclic thermal load and constant
mechanical load. a Zero mechanical load, b 0.15 times the limit load, c 0.3 times the limit load

relaxes, before again decreasing during the creep dwell. When the mechanical load
is applied (Fig. 10b) it can be seen how it interacts with the thermal gradient causing
an asymmetric stress field. Furthermore, also the minimum stress at the core of the
wall is increased.

4.3 Creep-Fatigue Analyses of a Cylinder with Carburised
Layer

In order to investigate the effect of the carburised layer, firstly a 0.1mm layer is
considered, and for simplicity, the interface area between the parent material and the
carburised one is considered straight and homogeneous. Due to the discrepancies in
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Fig. 9 Cyclic stabilised responses across the thickness, at the inner side (a), at the centre (b) and
on the outer side (c) without a carburised layer

the literature on the creep properties, two cases have been considered. It has been
decided to simulate the creep behaviour for the carburised layer with an increased
and then a decreased creep multiplier, leaving the exponent constant.

In Fig. 11 the cyclic response predicted is shown for both cases on the inner side of
the pipe away from the carburisation. The results correspond to the final loading cycle
of simulation with firstly an increased creep rate (Fig. 11a, b, c) and then secondly
with a decreased rate (Fig. 11d, e, f). For the case with a decreased creep rate the
cyclic response does not change remarkably, and only a slight creep ratcheting can
be observed. In fact, all the effects of creep are less significant than when there
is no carburisation. This would suggest a carburised layer is beneficial in terms of
preventing creep ratcheting. In addition, at this stage, the total strain range remains
almost constant.

However, a significant change in the response is obtained if the carburised layer
is assumed to have an increased creep strain rate. For the case, without mechanical
load, the total strain range is significantly larger, as expected due to the contribution
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Fig. 10 von Mises stress along the cylinder thickness for a no mechanical load and b with a
mechanical load 0.3 times the limit load

of the creep strain accumulated over the dwell time. Indeed, the larger stress relax-
ation occurring during the creep dwell enhance the subsequent phase, generating
more plastic strain. The results obtained with the mechanical load shows a different
mechanism, as it is shown in Fig. 11e, f. The results then become a little unusual
when the mechanical loading is applied. The mechanism affects the stress relaxation
during the creep dwell. An unusual creep relaxation occurs, it as the direction of the
creep changes from compressive to tension. This mechanism is known as structural
creep strain recovery [12]. When this occurs, it has been demonstrated that a large
stress relaxation can be identified during the start of the creep dwell. This process
is caused by the rapid relaxation of thermally induced stress. In this work, the rule
of sign or Dominant Principal direction is used to determine the sign to be assigned
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Fig. 11 Steady state cyclic response at the inner surface of the cylinder for decreased creep strain
rate and increasing mechanical load (a No mechanical load, b 0.15 PL , c 0.3 PL ) and for decreased
creep strain rate and increasing mechanical load (d No mechanical load, e 0.15 PL , f 0.3 PL )
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to the equivalent stress [13]. To do this the three principal components are evalu-
ated, estimating which gives the largest stress range. Within this work, the maximum
principal stress has been found to be the largest one.

As it is shown in Fig. 11e, f, the transition is very rapid and only few data points
are currently available to show the transition, but the overall behaviour of principal
stress and von-Mises stress are in line with the observation of Cho et al. [12]. As
the mechanical load increases the total strain range also increases, as does the rate
of ratcheting. Clearly, in this case, the carburised layer would be detrimental. It is
worth noting that the stress reached during the stress relaxation is close to the level
of stress caused by the mechanical load. This is caused by the progressive relaxation
of secondary loads caused by the thermal gradient

Themechanismat the origin of this behaviour is the creep propertiesmismatch that
allows a significant stress redistribution and a different creep deformation between
the bulk and carburised material. All the behaviours identified have the potential to
decrease significantly the fatigue life of the pipe.

Figure12a, b depict the effect of the carburised layer on the stress distribution
across the thickness of the pipe wall, without mechanical load. In both the cases
when the carburised creep rate is increased and decreased relative to the bulkmaterial
it can be seen clearly that the harder carburised material is associated with higher
stress. This allows the presence for low stress, well within the elastic limit, in the
central cylinder core. In both cases, the Linear Matching Method has been used for
further verification of the stress field determined using the non-linear analyses. The
agreement between the two methods is very good especially the creep area.

It can be concluded that the stresses occurring at the start and end of the cycle, at
the edges of the pipe wall, are higher for the case where the creep rate is decreased
and lower for when it is increased. This is likely because in this scenario the stresses
are completely displacement driven due to it only being thermally loaded and so the
final stress will be dependent on the creep multiplier factor of the Norton’s law.

Lastly, the effect of the thickness of the carburised layer has been investigated
by considering a layer of 0.4mm. Since the most critical response occurs for an
increased creep strain rate, this case has been investigated due to its importance. In
Fig. 13a, b, c the cyclic response of the stabilised cycle at the inner side is shown
for a mechanical load of 0.15 times the limit load respectively and for a carburised
layer of 0, 0.1 and 0.4mm thick respectively. The introduction of the carburised
layer drastically changes the response and introduces the creep strain recovery. The
increase in carburised layer thickness does not further change the cyclic response as
it can be seen in Fig. 13b, c.

For the external pipe surface (Fig. 13d, e, f) it is clear that once carburisation is
introduced, the amount of ratcheting considerably increases. Due to a large amount of
creep strain accumulated the overall cycle width increases remarkably. In addition,
the stress at the start of the creep dwell is always positive, causing damage that
could lead to failure (cracking) of the carburised layer. At the same time, the creep-
ratcheting is very large and increases with the thickness of the carburised layer. In
addition, it can be seen that the total strain range is less than for the inner side elements
and this is due to the greater hardness of the carburised material.
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Fig. 12 von Mises stress along the cylinder thickness without mechanical load a for decreasing
and b increasing creep strain rate
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Fig. 13 Steady state cyclic response at the inner surface (top) and outer surface (bottom) of the
cylinder for an increasing thickness of carburised layer, 0, 0.1 and 0.4mm. All the responses area
obtained for a mechanical load of 0.15 PL
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5 Conclusion

In this work, a numerical study on the cyclic response at high-temperature of a
structure containing a progressively thicker carburised layer has been carried out. The
model has been analysed accounting for temperature dependent material properties
and considering different possible creep behaviours of the carburised material. The
main results obtained within this research work are as follow:

1. A comprehensive study on the effect of creep properties mismatch has been
achieved, demonstrating how the presence of a carburised material can alter
largely the cyclic behaviour of the associated bulk material. It is therefore impor-
tant to pay particular attention when considering if the presence of carburisation
can be simply neglected.

2. The most detrimental mechanisms have been observed when considering a creep
softer carburised layer. In this case the cyclic response is highly sensitive to the
applied internal pressure (primary load). A progressive increase of inelastic strain
is predicted to occur due to creep-ratcheting.

3. When considering the effect of increased carburised layer thickness on both the
bulk and carburised material, a significant increase in creep-ratcheting strain per
cycle is observed. In addition, should the carburised layer be subject to a partic-
ularly harmful tensile dwell, with the potential to produce additional cracking,
this would greatly enhance the penetration of coolant gas via the newly formed
cracks.

4. Most of the observed mechanisms are due to the complex stress redistribution
caused by the presence of several material properties mismatch, including yield
stress and creep properties. It is worth noting, that in this study the coefficient of
thermal expansion of the two materials has been kept constant. However, studies
are undergoing to evaluate this assumption. A mismatch also in this property
would increase the interface stress between the two materials.
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See Tables1, 2, 3, 4 and 5.
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Table 1 Temperature
dependent yield stress

Temperature (◦C) Bulk material
yield stress (MPa)

Carburised
material yield
stress (MPa)

20 251.12 378.1845

40 244.48 368.1913

60 238.02 358.4622

80 231.73 348.9901

100 225.61 339.7683

120 219.65 330.7902

140 213.84 322.0493

160 208.19 313.5395

180 202.69 305.2544

200 197.34 297.1883

220 192.12 289.3354

240 187.05 281.6899

260 182.10 274.2465

280 177.29 266.9998

300 172.61 259.9445

320 168.04 253.0757

340 163.60 246.3884

360 159.28 239.8778

380 155.07 233.5392

400 150.97 227.3681

420 146.99 221.3601

440 143.10 215.5108

460 139.32 209.8161

480 135.64 204.2719

500 132.05 198.8742

520 128.57 193.6191

540 125.17 188.5029

560 121.86 183.5218

580 118.64 178.6724

600 115.51 173.9512

620 112.45 169.3546

640 109.48 164.8796

660 106.59 160.5228

680 103.77 156.2811

700 101.03 152.1515

720 98.36 148.131

740 95.76 144.2168

760 93.23 140.406

780 90.77 136.6958

800 88.37 133.0838
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Table 2 Temperature
dependent young’s modulus

Temperature (◦C) Bulk material
yield stress (MPa)

Carburised
material yield
stress (MPa)

20 251.12 378.1845

40 244.48 368.1913

60 238.02 358.4622

80 231.73 348.9901

100 225.61 339.7683

120 219.65 330.7902

140 213.84 322.0493

160 208.19 313.5395

180 202.69 305.2544

200 197.34 297.1883

220 192.12 289.3354

240 187.05 281.6899

260 182.10 274.2465

280 177.29 266.9998

300 172.61 259.9445

320 168.04 253.0757

340 163.60 246.3884

360 159.28 239.8778

380 155.07 233.5392

400 150.97 227.3681

420 146.99 221.3601

440 143.10 215.5108

460 139.32 209.8161

480 135.64 204.2719

500 132.05 198.8742

520 128.57 193.6191

540 125.17 188.5029

560 121.86 183.5218

580 118.64 178.6724

600 115.51 173.9512

620 112.45 169.3546

640 109.48 164.8796

660 106.59 160.5228

680 103.77 156.2811

700 101.03 152.1515

720 98.36 148.131

740 95.76 144.2168

760 93.23 140.406

780 90.77 136.6958

800 88.37 133.0838
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Table 3 Temperature
dependent coefficient of
thermal expansion

Temperature (◦C) Coefficient of thermal
expansion (1/◦C)

20 15.42

40 15.72

60 16.02

80 16.32

100 16.62

120 16.92

140 17.21

160 17.51

180 17.81

200 18.11

220 18.42

240 18.72

260 19.02

280 19.32

300 19.62

320 19.92

340 20.22

360 20.53

380 20.83

400 21.13

420 21.43

440 21.74

460 22.04

480 22.34

500 22.65

520 22.95

540 23.25

560 23.56

580 23.86

600 24.17

620 24.47

640 24.78

660 25.08

680 25.39

700 25.70

720 26.00

740 26.31

760 26.61

780 26.92

800 27.23
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Table 4 Temperature
dependent thermal
conductivity

Temperature (◦C) Thermal conductivity
[W/(mm*C◦)]

20 1.335E-02

40 1.368E-02

60 1.402E-02

80 1.435E-02

100 1.468E-02

120 1.501E-02

140 1.533E-02

160 1.566E-02

180 1.598E-02

200 1.630E-02

220 1.662E-02

240 1.694E-02

260 1.726E-02

280 1.757E-02

300 1.788E-02

320 1.820E-02

340 1.851E-02

360 1.881E-02

380 1.912E-02

400 1.942E-02

420 1.973E-02

440 2.003E-02

460 2.033E-02

480 2.063E-02

500 2.092E-02

520 2.122E-02

540 2.151E-02

560 2.180E-02

580 2.209E-02

600 2.238E-02

620 2.267E-02

640 2.295E-02

660 2.324E-02

680 2.352E-02

700 2.380E-02

720 2.408E-02

740 2.435E-02

760 2.463E-02

780 2.490E-02

800 2.517E-02
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Table 5 Norton law creep parameters for different temperatures and stress levels

550 ◦C A [MPa−1h−1] n

LS – –

HS (123 MPa) 6.64E-23 7.7039

600 ◦C A [MPa−1h−1] n

LS 2.67E-11 2.3

HS (98 MPa) 4.22E-22 7.5

650 ◦C A [MPa−1h−1] n

LS 1.05E-10 2.3

HS (76 MPa) 1.62E-20 7.5

700 ◦C A [MPa−1h−1] n

LS 7.75E-10 2.3

HS (50 MPa) 2.58E-19 7.5

750 ◦C A [MPa−1h−1] n

LS 4.19E-09 2.3

HS (38 MPa) 7.17E-18 7.5
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Cohesive Zone Models—Theory,
Numerics and Usage
in High-Temperature Applications
to Describe Cracking and Delamination

Joachim Nordmann, Konstantin Naumenko and Holm Altenbach

Abstract This treatise deals with Cohesive Zone Models which were developed
around 1960 through Barenblatt and Dugdale. At first, we present an overview about
these models and the numerical treatment of these models in the sense of the Finite
Element Method. Further on, a rate-dependent Cohesive Zone Model is presented
and tested through a simulation of a Four-Point-Bend-Test with a metal compound.
The required material parameters are determined through numerical optimisation by
using a neural network which is explained, as well.

1 Introduction

In the past decades it was ascertained that metal alloys are not capable to sustain
complex loading collectives for a long time, like it is the case in combustion engines
or steam and gas turbines. In these units the parts are subjected to very complex and
high loadings, especially in the combustion chamber where thermal and mechanical
loads interact cyclic (TMF) and next to that corrosion, oxidation and wear occur
which reduce the strength of the material, constantly and finally the durability is
reduced. As a result of this used metal alloys are improved, permanent. But at the
same time the loadings increased, hence, the limits of the materials were reached
again and the durability did not increase much.

For further improvement the used alloys are coated to protect them against some
influences, for example a coating to increase thewear resistance or a coating to reduce
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the temperature influence on the alloy (thermal-barrier-coating). However, the design
process and the simulation of these components is more difficult and additionally it
is necessary to simulate the failure, now.

In this treatise we use the Cohesive Zone Model (CZM) to analyse and simulate
the failure behaviour of an aluminium specimen coated with iron aluminide which
is tested in a Four-Point-Bend-Test (4PBT) at 400 ◦C. At first, we present the the-
ory of CZMs and the Traction-Separation-Law (TSL) which describes the failure
behaviour. After this it follows the description how a novel rate-dependent TSL is
derived with the capability to simulate heat conduction through the interface. Sub-
sequently, it follows a section which explains how a CZM is treated in the Finite
Element Method (FEM). After all these explanations the simulation of the afore-
mentioned compound is presented. Required material parameters are determined
through numerical optimisation by using a neural network and the software tool
ABAQUS2MATLAB [1]. The simulation is performed until the coating fails and
starts to delaminate. To be able to simulate the cracking and the delamination the
model is equipped with cohesive zones. The failure of the coating is modelled with a
standard TSL and the delamination is modelled with the novel rate-dependent TSL.

We conclude with a summary and an outlook for future work.

2 Preliminaries and Notation

Throughout thewhole text, the direct tensor notation is preferred. Scalars are symbol-
ised by italic letters (e.g. a), vectors by italic lowercase bold letters (e.g. a = ai ei ),
second order tensors by italic uppercase bold letters (e.g. A = Alm el ⊗ em), and
fourth order tensors by italic uppercase bold calligraphic letters (e.g.A = Apqrs ep ⊗
eq ⊗ er ⊗ es), where Einstein’s summation convention is applied. Considering a
Cartesian coordinate system and orthonormal bases, e.g. ei with i ∈ {1, 2, 3}, basic
operations for tensors used in this paper are the scalar product of two vectors

a · b=ai b j ei · e j =ai bi =α α ∈ R ,

the dyadic product

a ⊗ b=ai b j ei ⊗ e j =C ,

the composition of a second and a first order tensor

A · a= Alm ai el ⊗ em · ei = Ali ai el =d ,

the composition of two second order tensors

A · B= Alm Bno el ⊗ em · en ⊗ eo= Alm Bmo el ⊗ eo= D ,
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the double scalar product between a fourth and a second order tensor

A : B= Apqrs Bno ep ⊗ eq ⊗ er ⊗ es : en ⊗ eo
= Apqrs Bsr ep ⊗ eq = F

and the definition of a transposed second order tensor A

A� = A ji ei ⊗ ej = Ai j ej ⊗ ei .

In the following equation, the Kronecker delta δi j is used to represent the second
order unit tensor

1 = δi j ei ⊗ e j = ei ⊗ ei with δi j =
{
1 if i = j

0 if i �= j

Using the tensor notation, Latin indices run through the values 1, 2, and 3, while
Greek indices represent the normal and the two tangential directions of the local
coordinate system (n, t1, t2). The vector valued nabla operator is defined as ∇=
ei ∂/∂Xi at three dimensions. ∇· � is the divergence, and ∇⊗� is the gradient of
a tensor. The transposed gradient is defined as � ⊗∇ = [∇⊗ �]� where � holds
for all first and second order tensors. An extended overview of tensor algebra and
analysis is given in basic textbooks on continuummechanics featuring mathematical
propaedeutics, e.g. in Altenbach [2], Lai, Rubin and Krempl [3], Bertram [4] or
Lebedev, Cloud and Eremeyev [5].

In vector-matrix notation, vectors are denoted as upright lowercase sans serif bold
letters (e.g. displacement vector u= [u1 u2 u3]�) and matrices as upright uppercase
sans serif bold letters (e.g. stiffness matrix K).

3 Basics of a Cohesive Zone Model and the
Traction-Separation-Law

This section is divided into two subsections. In the first one we give a brief overview
over CZMs, mention important works in this field and present the main assumptions
of these models. The second subsection is dedicated to the different types of TSLs
which can be used in a CZM and in which situation a specific law is applied.

3.1 The Cohesive Zone Model

ACZM is a phenomenological framework to model crack evolution and crack nucle-
ation in solid bodies. The advantages of CZMs are that the existence of a pre-crack,
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Dugdale Barenblatt

Fig. 1 Stress distribution at a crack in the sense of Dugdale (left) and Barenblatt (right) after [6]

like it is in classical fracture mechanics, is not necessary and that no stress singularity
at the crack tip occurs, any more.

All CZMs are based on the pioneering works of Barenblatt [7] and Dugdale [8].
Through the cracking of the solid new surfaces �+ and �− are created (see Fig. 1)
which are unconnected, stress-free and the behaviour of them depends only on local
quantities and not on global ones. This is the stress-free zone of a crack. The second
zone of a crack is the crack tip which is called process or cohesive zone in which
damage and fracture occurs. To avoid an infinite stress in this zone the stress is
prescribed through the introduction of a TSL. Further on, it is assumed that the crack
tip is small compared to the size of the crack (ltip � lcrack). Dugdale assumed that the
stress at the crack tip is the yield strength Ty and that this stress is constant (see Fig. 1,
left-hand side) to analyse the yielding of a steel sheet containing slits. In contrast to
that Barenblatt analysed crack evolution in a perfect brittle solid. A schematic stress
distribution in his sense is presented in Fig. 1 on the right-hand side.

State of the art is to formulate the traction acting in the cohesive zone as a function
of the distance between the surfaces �+ and �− (separation). However, Barenblatt
formulated his TSL as a function of the distance x from the end of the crack to the
end of the cohesive zone.

After introducing this theory to the scientific community nearly two decades
nothing happened on this field because the effort to solve the arising problem was
too high. But with the advance of the numerical solution techniques, especially the
Finite Element Method (FEM), it got possible to solve the arising systems of partial
differential equations what led to a big interest in CZMs to describe cracking and
crack evolution in a solid. The CZM is added to a FE mesh by introducing cohesive
or interface elements. From this follows that it is necessary to know the crack path.
This is one disadvantage of CZMs. Further disadvantages are that a length scale is
added to the model [9] and that the stress starts to oscillate. But this is the topic of
Sect. 4, next to the destabilisation of the Newton–Raphson procedure due to a strong
softening behaviour.

From our knowledge one of the first users of this theory was Hillerborg [10] in
1976 to describe failure of concrete.
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3.2 The Traction-Separation-Law

The TSL is the key part of every CZM, therefore, we dedicate one section to this
topic. The TSL has a strong influence on how the crack will open and how the crack
will propagate. Next to that the choice of TSL depends on the failure mechanism
(e.g. brittle or ductile), the opening mode (Mode I, II, III), the material of which
the solid is made and to which problem the TSL is applied. Further on, the crack
propagation could depend on the crack opening velocity or it could exist a coupling
between the different opening modes. All these information can have an influence
on the crack growth and have to be considered when the TSL is formulated. That is
the reason why a lot of different TSLs were formulated from researchers to analyse
their specific problems. Here, we can only present an overview of frequently used
TSLs. They are shown in Fig. 2 for pure Mode I opening.

Brittle cracking can be modelled with simple linear TSLs which were presented
and used by Hillerborg or Bažant to model cracking of concrete for example (Fig. 2
top, left and bottom, left). These TSLs have no elastic range because for brittle failure
it can be assumed that any inelastic deformation is material separation [6], but the
introduction of a small elastic zone is useful for the numerical treatment.

In contrast to that smooth TSLs with an elastic range are used to describe ductile
failure mechanisms. Some examples for these TSLs are presented in the diagrams

Fig. 2 Types of TSLs foreMode I opening after: Bažant [11] (top, left); Needleman [12, 13] blue—
exponential TSL, red—polynomial TSL (top, centre); Scheider [14] (top, right); Hillerborg [10]
(bottom, left); Tveergard and Hutchinson [15] (bottom, centre); ABAQUS [16] blue—linear soft-
ening, red—exponential softening (bottom, right)
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in Fig. 2 top, centre and right position and in Fig. 2 bottom, centre position. The
bottom, right diagram in Fig. 2 presents schematically the two possible shapes of
TSLs which are implemented in the commercial software tool ABAQUS. Both TSLs
can be adjusted in that way that it gets possible to model brittle or ductile failure.
However, application of these TSLs is limited because of their simplicity.

All presented TSLs have in common that they are characterised through two
parameters because all other usually depend or are formulated with a dependence on
them. The area below the TSL is the cohesive energy which is the work needed to
create a unit area of fracture surface. It is calculated as

G i =
gmax∫
0

Tn dgn (1)

In reality not only Mode I cracking occurs, especially not without another mode
and in general the modes influence each other. To consider this in the TSL descrip-
tion a mix-mode behaviour is introduced. This is done by introducing and effective
separation which is a combination of normal and tangential separation and finally
the TSL is formulated with the effective separation.

Next to that it is necessary to guarantee that the TSL fulfils thermodynamic restric-
tions. To ensure this it is state of the art to derive the traction formulation from a
potential (see [17]), similar to the procedure in standard continuum mechanics.
Hence, the TSL is usually prescribed (e.g. [18, 19]) and then the global behaviour is
analysed, of course the inverse way is possible (see e.g. [20]) but then it is difficult
to fulfil thermodynamics, therefore, it is uncommon.

If someonewants tomodel unloading of theTSL, respectively the cohesive zone, it
is important to add a contact formulation to the TSL andmaybe a friction formulation
for the tangential directionwhen required. Formore detailed informations concerning
TSLs and for what problems they are used we refer to the book of Schwalbe [6] or
the reviews of Needleman [9] and Chandra [21].

4 Development of the Novel Traction-Separation-Law
for High-Temperature Applications

4.1 Equations of Balance for an Arbitrary Body with a Thin
Interface

Figure3 shows an arbitrary body�which is homogeneous and isotopicwith constant
density ρ and constant volume V in reference and current configuration which is
separated by an interface � into two parts �+ and �−. Hence, interface is split into
�+ and �−, as well as the boundary of the body ∂� where the body is subjected to a
load t∂�. At the beginning of separation the surfaces �+ and �− are in contact. But
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Fig. 3 Arbitrary body with a thin (zero thickness) interface in the Euclidian space E3 in reference
and current configuration subjected to a mechanical load and a TSL for pure Mode I opening
(Tn-traction in normal direction, gn-separation in normal direction)

evolving separation leads to failure of this connection and as result a crack starts to
propagate along the interface �. The connection between the interface surfaces �+
and �− is described by a TSL. One feasible shape of a TSL is presented in Fig. 3
for pure Mode I opening. This TSL is applied to every point P which is placed on
the interface to describe crack propagation. In Fig. 4 the vectors are presented which
act on upper and lower surface of the interface when the body � is subjected to a
mechanical load and a temperature field. Next to that, Fig. 4 presents the resulting
vectors which act on the midsurface of the interface. This midsurface is introduced to
simplify resulting equations to describe the body. Here, we just give a brief overview
how the basic equations are derived and refer the interested reader to Naumenko and
Altenbach [22], Fagerström and Larsson [23] and others for further informations.
All equations are derived in the context of large deformations and with respect to
the current configuration. First equation which must be valid for the body is the
balance of linear momentum. The equation is derived by neglecting inertia effects
(quasi-static) and body forces. It follows∫

∂�

t∂� da +
∫
�+

t+ da +
∫
�−

t− da = o (2)

The vectors t+ and t− are the tractions acting on the deformed interface surfaces
(see Fig. 4). With the force equilibrium for the interface tractions

∫
�+

t+ da +
∫
�−

t− da = o ,

Cauchy’s theorem andGauss’ divergence theorem, it results the common formulation
for the balance of linear momentum in the global form for the whole deformed body
�
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Fig. 4 Definition of the vectors acting on the interface (Cohesive Zone) when the arbitrary body
� is subjected to mechanical and thermal boundary conditions

∫
�

T · ∇ dv = o (3)

The second equation is the balance of angular momentum which for a Cauchy con-
tinuum leads to the restriction that the stress tensor T is symmetric

T = T� (4)

The first law of thermodynamics or balance of energy is the third equation which
is necessary for the formulation of an interface constitutive model. First law of
thermodynamics states that the rate of kinetic Ėkin and internal energy Ėint is equal
the mechanical Pmech and non-mechanical power Pnon supplied to a body

Ėkin + Ėint = Pmech + Pnon . (5)

Whereby, kinetic energy of the body � is zero because only quasi-static processes
are considered. The internal energy is assumed to be the sum of a bulk (index “b”)
and an interface part (index “i”) with the specific internal energy e, see [23] as well

Eint =
∫
�

ρeb dv +
∫
�

ei da (6)

Additionally, the split into a bulk and an interface part is used for the mechanical
and non-mechanical power but without a heat source r for the interface. The vector
qb in the non-mechanical power represents the heat vector of the bulk material
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Pmech =
∫
�

T : D dv +
∫
�

t i · ġi da

Pnon =
∫
�

(
ρr − ∇· qb

)
dv −

∫
�

qi da

qi = ni · q i

(7)

In these equations t i, q i and ni are the natural traction, heat and normal vector of
the interface which act on the midsurface (see Fig. 4) and D represents the work-
conjugate strain rate tensor corresponding to the Cauchy stress tensor T . Separation
vector is defined as

gi = u+ − u−

and heat vector as
q i = q+ − q−

After inserting internal energy, mechanical and non-mechanical power into Eq. (5)
and rearrange the terms, final form is derived with one contribution for the bulk
material and another one for the interface.∫

�

(
ρėb − T : D − ρr + ∇· qb

)
dv

︸ ︷︷ ︸
bulk

+
∫
�

(
ėi − t i · ġi + qi

)
da

︸ ︷︷ ︸
interface

= 0 (8)

The last equation required is the second law of thermodynamics or entropy
inequality. This inequality states that entropy production of a process is non-negative.
It follows

0 � Ḣη − qη

θ
with

qη

θ
=

∫
�

ρ
r

θ
dv −

∫
∂�

n∂� · qb

θ
da −

∫
�

qi
θ

da
(9)

In this equation Hη is the entropy and
qη

θ
is the entropy flux. Required interface

temperature is determined through the heat conduction equation for the interface
which is determined in the subsequent section.

The entropy is divided into a bulk and an interface part, similar as it is done for
the internal energy, with η as the specific entropy

Hη =
∫
�

ρηb dv +
∫
�

ηi da

By using Gauss’ divergence theorem, the final form is obtained which is divided into
a bulk and an interface part, as well
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�

[
ρη̇b − ρ

r

θ
+ ∇·

(qb

θ

)]
dv

︸ ︷︷ ︸
bulk

+
∫
�

[
η̇i + qi

θ

]
da

︸ ︷︷ ︸
interface

� 0 (10)

Bulk and interface part of derived balance equations are used independently to
develop constitutive models of bulk material and interface.

4.2 The Novel Traction-Separation-Law

The basic equations of continuum mechanics for an arbitrary body with an interface
were presented in the foregoing section. Now, the deductive development of the TSL
begins. Therefore, only interface parts of derived equations are considered. As a first
step, Helmholtz free energy [24] for the interface is introduced

ψi = ei − θηi (11)

The time derivative of this variable yields

ψ̇i = ėi − θ̇ηi − θη̇i (12)

Combining balance of energy and entropy inequality as well as replacing specific
internal energy by Helmholtz free energy yields the global form of Clausius [25],
Duhem [26] inequality

∫
�

t i · ġi −
(
ψ̇i + ηiθ̇

)
da � 0 (13)

for the interface. The name of Eq. (13) was introduced by Truesdell [27, 28]. This
equation is valid for the whole interface. Hence, it can be localised

t i · ġi −
(
ψ̇i + ηiθ̇

)
� 0 (14)

The Clausius–Duhem inequality must be fulfilled for any arbitrary process, hence,
this equation is the origin of a thermodynamic consistent constitutive model. At first,
the separation is additive decomposed into an elastic and an inelastic part

gi = gel + gin (15)

This is done to account for a viscous behaviour of the interface because the bulk
material shows a strong creep behaviour which influences the cohesive zone, too. In
general, the overall rate dependence can arise as a consequence of rate dependence
of the bulk material’s behaviour, of the interface response itself, or of both [29].



Cohesive Zone Models—Theory, Numerics and Usage in High-Temperature … 141

Next to that the experiment shows a relaxation behaviour during the delamination
process (see Fig. 10) which is captured by the inelastic part. Further on, the additive
decomposition is valid although large deformations are considered becausemetals are
investigated and hence the strains keep small. Large deformations are only considered
to capture the effects of large rotations.

The free energy depends on the temperature θ , an isotropic damage variable d
and the elastic separation gel

ψi = f
(
gel, d, θ

)
(16)

Next to that split of separation into elastic and inelastic part acts like a viscous
regularisation (see [30, 31]) for the numerical solution scheme, later on.

Only one isotropic damage variable is introduced which captures the effects of
creep as well as fatigue damage. This has the advantage that no further equation is
necessary to describe the interaction between creep and fatigue damage, which is the
case when independent damage variables for these two damage types are defined.

By applying the chain rule, the time derivative of Helmholtz free energy follows
as

ψ̇i = ∂ψi

∂ gel
· ġel +

∂ψi

∂d
ḋ + ∂ψi

∂θ
θ̇ (17)

Inserting Eq. (17) into Clausius–Duhem inequality while considering the additive
split of separation at the same time and rearrange terms leads to

(
t i − ∂ψi

∂ gel

)
· ġel −

(
ηi + ∂ψi

∂θ

)
θ̇ + t i · ġin − ∂ψi

∂d
ḋ � 0 (18)

This equation must be fulfilled for any process, thus, it follows directly the relation
for traction and specific entropy

t i = ∂ψi

∂ gel
, (19)

ηi = −∂ψi

∂θ
, (20)

These results follow from the rate independence of Eq. (16). For further informations
we refer to [22]. It remains the dissipation inequality

t i · ġin + YEḋ � 0 , YE = −∂ψi

∂d
(21)

which is used to develop evolution equations for the inelastic separation and the
damage, later on. For specification of free energy this one is split into a mechanical
and a pure thermal part

ψi = ψmech
i + ψ therm

i (22)
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Themechanical part of Helmholtz free energy is specified first. This part is formu-
lated as a quadratic function of elastic separation in combination with a degradation
function fd which is introduced with the effective stress concept [32]

ψmech
i = 1

2
fd(d) gel · CTSL · gel with fd(d) = (1 − d)p (23)

Dependence of degradation function fd to parameter p leads to a finite value for the
thermodynamic driving force when p > 1 and d = 1 [33].

Thermal part is specified in such a way that heat capacity λi is a linear function
of the temperature (λi = Cλ1θ + Cλ2). This is done due to the fact that for metals
thermal material parameters (heat capacity, thermal expansion, density, etc.) depend
linearly on the temperature in the range from room to near melting temperature,
approximately [34, 35]. By integrating this function with the relation

λi = −θ
∂2ψi

∂θ2

one gets following thermal part of Helmholtz free energy

ψ therm
i = Cλ2 (θ − θ0) − Cλ1

2

(
θ2 + θ2

0

) + Cλ1θθ0 − Cλ2θ ln

(
θ

θ0

)
(24)

Herein, θ0 is the reference temperature. The last part of the interface model are
the evolution equations for the inelastic separation and the damage. To derive these
Eq. (21), the dissipation inequality is used because this equation must be fulfilled at
every time. For inelastic separation a power-law type is defined with extension to
damage [36, 37], hence, secondary and tertiary stages of inelastic separation can be
described

ġin = a

(1 − d)N1

[ |t i|
T0

]N2 t i
|t i| if |t i| > Ty (25)

Therein, evolution of inelastic separation starts when traction t i is bigger as the
threshold Ty. This equation fulfils Eq. (21) because the term t i · ġin is always positive
or zero with this evolution equation.

Damage evolution equation follows from dissipation inequality after introducing
the damage driving force or elastic energy release rate YE and assume that the damage
rate is always positive (ḋ � 0), hence, healing effects of the material are excluded.
Next to that damage can only evolve from 0 to 1

t i · ġin + YE ḋ � 0 , YE = −∂ψi

∂d
(26)

A suitable damage evolution equation which fulfils this inequality is

ḋ = (1 − d)s1
(
YE
S0

)s2
∣∣ ġin∣∣
gdim

(27)
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This form is similar to an evolution equation used by Bouvard [19]. Damage evolves
when the normal separation is positive (no contact), material is under loading, elastic
energy release rate is bigger as the thresholdYE0 and an inelastic evolution takes place

gel · ni > 0 , YE > YE0 , ẎE � 0, ġin �= 0

With Eqs. (25) and (27) each term of the dissipation inequality is fulfilled at every
time, thus, the complete dissipation inequality is fulfilled, as well. Finally, we present
the complete set of equations in a close form.

t i = (1 − d)p CTSL · gel , (28)

gel = gi − gin , (29)

ġin = a

(1 − d)N1

[ |t i|
T0

]N2 t i
|t i| , (30)

YE = p

2
(1 − d)p−1 gel · CTSL · gel , (31)

ḋ = (1 − d)s1
(
YE
S0

)s2
∣∣ ġin∣∣
gdim

, (32)

ηi = Cλ2ln

(
θ

θ0

)
+ Cλ1 (θ − θ0) − ∂ψmech

i

∂θ
, (33)

λi = Cλ1θ + Cλ2 − θ
∂2ψmech

i

∂θ2
(34)

4.3 Heat Transfer Through an Arbitrary Body with a Thin
Interface

The heat conduction equation follows from Eq. (8)

∫
�

ρėb − T : D − ρr dv −
∫
∂�

qb da +
∫
�

ėi − t i · ġi + qi da = 0 (35)

Up next, Helmholtz free energy [24] for the arbitrary body is introduced. It is assumed
that the free energy is additively composed of a bulk and an interface portion

ψ = ψb + ψi (36)

Further on, the bulk portion is a function of temperature and the elastic part of
Almansi strain tensor

ψb = f
(
Eel
A , θ

)
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and the interface portion is a function of temperature, elastic separation and a scalar
damage variable

ψi = f
(
gel, d, θ

)
The relations between internal energy, free energy, temperature and entropy are

eb = ψb − ηbθ

ei = ψi − ηiθ

From Clausius–Duhem inequality the following relations for the bulk and interface
portion are derived

t i = ∂ψi

∂ gel
, ηi = −∂ψi

∂θ
, YE = −∂ψi

∂d
,

T = ρ
∂ψb

∂Eel
A

, ηb = −∂ψb

∂θ

With these relations, the time derivative of the internal energy and the time deriva-
tive of the entropy it follows the heat conduction equation for a fully coupled thermo-
mechanical problem

∫
�

ρλbθ̇ − ρr − θ
∂T
∂θ

: D +
[
θ
∂T
∂θ

− T
]
: Din dv −

∫
∂�

qb da

+
∫
�

λiθ̇ + qi − θ
∂ t i
∂θ

· ġi +
[
θ
∂YE
∂θ

− YE

]
ḋ +

[
θ
∂ t i
∂θ

− t i

]
· ġin da = 0

(37)

Wherein, the external and internal work of the bulk material are

Wb,ext = θ
∂T
∂θ

: D Wb,int =
[
θ
∂T
∂θ

− T
]
: Din

and the external and internal work of the interface are

Wi,ext = θ
∂ t i
∂θ

· ġi Wi,int =
[
θ
∂YE
∂θ

− YE

]
ḋ +

[
θ
∂ t i
∂θ

− t i

]
· ġin

Heat flux qb is determined after the common procedure

qb = − n∂� · qb (38)

The negative sign ensures that a heat flux pointing into the body increases the internal
energy and not vice versa. The heat flux vector qb is determined after Fourier’s
law [38]
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qb = − κb (∇θ) (39)

With these considerations and Gauss divergence theorem it follows from Eq. (37)

∫
�

ρλbθ̇ − κb∇· (∇θ) − ρr − Wb,ext + Wb,int dv

+
∫
�

λiθ̇ + qi − Wi,ext + Wi,int da = 0
(40)

Coming to the end it is necessary to determine the heat flux through the interface
qi, as well. This flux is based on heat conduction and the temperature difference of the
two interface surfaces andmakes it possible to simulate a discrete temperature jump in
the interfacewhich occurs because of cracking and crack propagation (delamination),
respectively.

qi = q+ + q− = −ni · q i = κi(d) (θ+ − θ−) (41)

Due to damage evolution the heat conductivity of the interface changes. This is
considered through the dependence of heat conductivity κi on the damage variable.
Thus, when damage starts to evolve heat conductivity begins to change from the
value of the bulk material in direction of the value of air. This value is reached when
the CZM fails

κi(d) = dκair + (1 − d) κb (42)

The fluxes of the interface surfaces are

q+ = −ni · q+ = κi (θ − θ+)

q− = ni · q− = κi (θ− − θ)

It follows the final form of heat conduction equation by replacing the interface
heat flux in Eq. (40) with Eq. (41) and neglecting internal heat supply.

∫
�

ρλbθ̇ − κb∇· (∇θ) − Wb,ext + Wb,int dv

+
∫
�

λiθ̇ + κi(d) (θ+ − θ−) − Wi,ext + Wi,int da = 0
(43)
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5 Numerics of Cohesive Zone Models and the Novel
Traction-Separation-Law

This section is about how CZMs are treated numerically and how they are imple-
mented in a Finite Element (FE) model.

5.1 Deriving Basic FEM Equations

The starting point to derive the FE formulation is to formulate the balance of linear
momentum of the body � (see Fig. 1) without an interface as a global equation, add
Cauchy’s relation and multiply this equation with the test function δu. All equations
are written for the current configuration. In contrast to Sect. 4 the acceleration of the
body is considered for the beginning. For detailed informations about the procedure
we refer to Holzapfel [39], Wriggers [40] and Allix and Corigliano [41].

∫
�

δu ·
(
ρ ü − T ·∇

)
dv +

∫
∂�

δu ·
(
T · n∂� − t∂�

)
da = 0 (44)

In the next step the interface is introduced through the split of Eq. (44) into two parts
and add the variation of interface tractions to the balance of linear momentum. One
part reads

∫
�+

δu ·
(
ρ ü − T ·∇

)
dv +

∫
∂�+

δu ·
(
T · n∂� − t∂�

)
da +

∫
�+

δu+ · t+ da = 0

and the other one∫
�−

δu ·
(
ρ ü − T ·∇

)
dv +

∫
∂�−

δu ·
(
T · n∂� − t∂�

)
da +

∫
�−

δu− · t− da = 0

Combine these two equations, introduce a displacement jump, use the equilibrium
of interface forces and neglect inertia effects yields

∫
∂�

δu ·
(
T · n∂�

)
da −

∫
�

δu ·
(
T ·∇

)
dv

−
∫
∂�

δu · t∂� da +
∫
�

(
δu+ − δu−

)
· t+ da = 0

The final form of the variation of balance of linear momentum is achieved through
the transformation of the second integrand with the product rule for the divergence,
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Gauss’ divergence theorem and a pull-back from the current into the reference con-
figuration. Next to that is the interface traction vector replaced by the traction vector
of the interface midsurface.∫

�

δEG : T 2PK dV

︸ ︷︷ ︸
δWb

+
∫
�

δgi · t i da
︸ ︷︷ ︸

δWi︸ ︷︷ ︸
δWint

=
∫
∂�

δu · t∂� da

︸ ︷︷ ︸
δWext

(45)

In Eq. (45) EG represents the Green–Lagrange strain tensor and T 2PK the second
Piola–Kirchhoff stress tensor. The pull-back is not performed on the other two inte-
grands, thus, Eq. (45) corresponds to the formulationwhich is used in the commercial
FE software package ABAQUS [16]. In Eq. (45) it is necessary to reformulate the
internal work of the interface, thus, this term is a variation of the displacement vector
and not the separation vector. This yields

δWi =
∫
�

δu · ∂ gi
∂u

· t i da (46)

Generally, a zero-thickness cohesive element is formulated without the ability to
model heat conduction. We overcome this problem. In Sect. 4.3 the equation of heat
conduction for a body with an interface is derived. We start with Eqs. (37)–(39) and
perform the variation

∫
�

δθ
[
ρλbθ̇ − ρr − Wb,ext + Wb,int

]
dv −

∫
∂�

δθqb da

+
∫
�

δθ
[
λiθ̇ + qi − Wi,ext + Wi,int

]
da

+
∫
∂�

δθ
[
qb + n∂� · qb

]
da = 0

Internal heat production is neglected andwith the product rule of divergence it follows

∫
�

δθ
[
ρλbθ̇ − Wb,ext + Wb,int

] + κb (∇θ) · (∇δθ) dv

︸ ︷︷ ︸
δHb

+
∫
�

δθ
[
λiθ̇ + qi − Wi,ext + Wi,int

]
da

︸ ︷︷ ︸
δHi

=
∫
∂�

δθqb da

︸ ︷︷ ︸
δHext

(47)
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The short form of Eq. (47) is

δHint = δHb + δHi = δHext

5.2 Discretisation of the Variational Statements
of the Interface

In a cohesive element all quantities are referred to a midsurface (see Fig. 2), to
determine the position of this midsurface in the current configuration the average
position of the positive (�+) and the negative (�−) surface is calculated

x̄ = 1

2
(x+ + x−) (48)

From Eq. (48) the local coordinate system (et1 , et2 , en) of the cohesive element is
determined. At first, the two tangential directions of the midsurface are determined
through the calculation of the derivatives of the midsurface with respect to the curvi-
linear coordinates ζ1 and ζ2

z1 = ∂ x̄
∂ζ1

, z∗
2 = ∂ x̄

∂ζ2

With the cross product between these two vectors the normal vector z3 is determined

z3 = z1 × z∗
2

In a general curvilinear coordinate system the two tangential vectors z1 and z∗
2 must

not be perpendicular to each other, to overcome this a new tangential vector z2 is
determined

z2 = z3 × z1

Finally, this set of vectors is normalised to form the base of the local coordinate
system

eα = zα

|zα| ∀ α ∈ {1, 2, 3} (49)

The area of the midsurface in the current configuration is determined as the norm of
the normal vector

da = |z3| dζ1dζ2 (50)

TSLs for a cohesive element are formulated in the local coordinate system because
of this fact it is necessary to transform all global quantities of the problem into the
local coordinate system. This is done by a orthogonal rotation tensor which is defined
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as follows for one node.

R =
⎡
⎣e3
e1
e2

⎤
⎦ (51)

The continues variables displacement, node coordinates and temperature are approx-
imated by discrete nodal values through the use of shape functions, which order
depends on the choice of element type. Therefore, we do this in general and do not
specify the sizes

u ≈ ũ = N · ue ,

δu ≈ δũ = N · δue ,

x ≈ x̃ = N · xe ,

x0 ≈ x̃0 = N · xe0 ,

θ ≈ θ̃ = N · θ e ,

δθ ≈ δθ̃ = N · δθ e

(52)

The upper index (·)e at the vectors u, x and θ is introduced to denote this variable
as a discrete element variable and tilde over a variable ˜(·) denotes the approximated
variable of the problem.

Up next, it is necessary to approximate the separation vector gi. At first, the global
displacement vector is rotated from the global into the local coordinate system with
a rotation tensor Q. This rotation tensor depends on R. Further on, a separation-
displacement-relation tensor Lu is introduced which subtract the displacement val-
ues of nodes which are placed on opposite surfaces. It follows the approximated
separation vector as

g̃i = Nu · Lu · Q · ue = Zlin · ue , Zlin = Nu · Lu · Q (53)

The differentiation with respect to the displacement vector from Eq. (53) yields

∂ g̃i
∂ue

= Z = Zlin + Znl · ue , Znl = Nu · Lu · ∂ Q
∂ue

(54)

The second term is usually neglected but we want to present the full formulation of
the principle of virtual work for a cohesive element. The approximated midsurface
is determined through the introduction of a second relation tensor Mu. It yields

˜̄x = 1

2
Nu · Mu · (

xe0 + ue) = Xu · (
xe0 + ue) with Xu = 1

2
Nu · Mu (55)

The derivatives of Eq. (55) with respect to the natural element coordinates (ξ1, ξ2)
lead to the approximated tangential vectors for the local coordinate system



150 J. Nordmann et al.

z̃1 = ∂ ˜̄x
∂ξ1

= 1

2
B1 · Mu · (

xe0 + ue) , B1 = ∂Nu

∂ξ1

z̃∗
2 = ∂ ˜̄x

∂ξ2
= 1

2
B2 · Mu · (

xe0 + ue
)

, B2 = ∂Nu

∂ξ2

(56)

and the cross product leads to the approximated normal vector

z̃3 = z̃1 × z̃∗
2 (57)

Again, to ensure that all vectors are perpendicular to each other the second tangential
vector is redetermined

z̃2 = z̃3 × z̃1

Now, all quantities are approximated, thus, Eq. (46) yields

δWi = δue ·
∫
�

Z�· t i | z̃3| dξ1dξ2 = δue · rei,u (58)

The discretisation of δHi from Eq. (47) leads to the thermal part for the interface

δHi = δθ e ·
∫
�

X�
θ ·

[
λiNθ · θ̇

e + κiNθ · Lθ · θ e − Xθ · θ e

[
∂ t i
∂θ

· ġi
]

+ Xθ · θ e

[
∂YE
∂θ

+ ∂ t i
∂θ

· ġin
]

− YEḋ − t i · ġin
]

| z̃3| dξ1dξ2

= δθ e · rei,θ with Xθ = 1

2
Nθ · Mθ

(59)

Equations (58) and (59) are arranged in a global residual vector for the interface
which is varied with the global degrees of freedom (DOF) vector.

δPi = δ pe · rei (60)

This is the starting point to derive the stiffness tensor of the interface K i for the
thermo-mechanical problem which is explained in detail in the subsequent section.

5.3 Deriving the Cohesive Element Stiffness Matrix

The stiffness tensor of the cohesive element is one part of the varied global residual
vector r of the whole problem with respect to the global DOF vector

δP = δ pe · re
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The global residual vector is additively composed of a bulk and an interface portion.
This residual vector follows from the statement that the global test function (δ pe) is
arbitrary and non-zero, hence, the residual vector should be zero

re = reb + rei = o

Thederivationof the interface residual vector is explained in the foregoing sections
and for the bulk portion we skip this derivation because later on for this portion a
standard ABAQUS model is used. However, the residual vector of the bulk portion
consists of a displacement and a temperature part, as well. The solution is obtained
by performing the linearisation of the residual vector what leads to

r̃e ≈ re + (
K e

b + K e
i

)
︸ ︷︷ ︸

K e

· � pe = o , K e
b = ∂ reb

∂ pe
, K e

i = ∂ rei
∂ pe

(61)

with K e
i as the stiffness tensor of the interface, K

e
b as the stiffness tensor of the bulk

material and K e as the stiffness tensor of the whole problem. The global stiffness
tensor consists of four sub-parts and consequently the bulk and interface stiffness
tensors, as well. The structure of the global stiffness tensor is

K e =
[
K e

b,uu K e
b,uθ

K e
b,θu K e

b,θθ

]
+

[
K e

i,uu K e
i,uθ

K e
i,θu K e

i,θθ

]

To simplify this highly non-linear problem it is assumed that the coupling between
the mechanical and thermal problem is weak, hence, all sub-tensors are zero

K e
b,uθ = K e

b,θu = K e
i,uθ = K e

i,θu = 0

It remains

K e =
[
K e

b,uu 0

0 K e
b,θθ

]
+

[
K e

i,uu 0

0 K e
i,θθ

]

Now, it is usually possibly to solve the mechanical and thermal problem separately.
Here, this is not the case because damage evolution in the interface influences the heat
conduction through the interface. Thus, the problems must be solved and integrated
in time together.

At last, for finite element implementation it is necessary to determine the sub-
tensors K e

i,uu and K e
i,θθ which represent the derivatives of the displacement and

thermal part of the interface residual vector with respect to the displacement and
temperature DOF , respectively. We begin with the displacement part. This stiffness
tensor is very complex because all quantities inside the integral depend on the dis-
placement vector. Only the second derivative of the rotation tensor Q with respect
to the displacement vector is neglected because this tensor depends linearly on the
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displacement vector

K e
i,uu = ∂ rei,u

∂ue
=

∫
�

2 Z�
nl · t i | z̃3| + Z�· C i · Z | z̃3| + Z�· t i · ∂ |z̃3|

∂ue
dξ1dξ2

The variable C i represents the material tangent stiffness tensor of the cohesive
element and is defined as

C i = ∂ t i
∂ g̃i

The assumption that the separation is small leads to the common formulation of the
stiffness tensor for a cohesive element

K e
i,uu =

∫
�

Z�
lin· C i · Zlin |z̃3| dξ1dξ2 (62)

and the residual vector

rei,u =
∫
�

Z�
lin· t i | z̃3| dξ1dξ2 (63)

which are used in commercial FE software (ABAQUS, ANSYS, . . . ), as well. The
thermal part follows from Eq. (59). But before, we neglect internal and external work
contributions and introduce a heat capacity tensor Cλ and a heat conduction tensor
Cκ. With this Eq. (59) is rearranged to

δHi = δθ e ·
∫
�

[
Cλ · θ̇

e + Cκ · θ e
]
| z̃3| dξ1dξ2 = δθ e · rei,θ

Cλ = λiX�
θ · Xθ , Cκ = κiX�

θ · Nθ · Lθ

(64)

With the approximation of the temperature rate vector by the backward Euler
scheme it follows the thermal part for the interface stiffness tensor with the time
increment �t

K e
i,θθ = ∂ rei,θ

∂θ e =
∫
�

[
∂Cλ

∂θ e · θ̇
e + 1

�t
Cλ + ∂Cκ

∂θ e · θ e + Cκ

]
| z̃3| dξ1dξ2

The influence of the temperature derivatives of heat capacity and heat conduction
tensor are usually benign and are neglected due to this fact [42]. It results the final
form

K e
i,θθ =

∫
�

[
1

�t
Cλ + Cκ

]
| z̃3| dξ1dξ2 (65)
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Fig. 5 2D linear cohesive element with global and local quantities after [43]; and position of
integration points for Newton–Cotes integration

with the corresponding residual vector

rei,θ =
∫
�

[
Cλ · θ̇

e + Cκ · θ e
]
|z̃3| dξ1dξ2 (66)

5.4 2D Cohesive Element Formulation

In this section we present the formulation of a 2D cohesive element with four nodes.
All equations are written down in a vector-matrix notation. The element is then
used in the simulation which is presented in Sect. 5. Further on, we introduce the
abbreviation NN for number of nodes.

At first, a node numbering scheme is required. We use the scheme of ABAQUS,
hence, we number the corner nodes first and then the middle nodes, if they exist.
The numbering begins in the lower left corner and ends in the upper left corner
rotating counter clockwise. Every node has three DOF , two displacement DOF and
one temperature DOF . This results in a number of twelve DOF for the four node
element in the fully coupled thermo-mechanical case. The arranging of the vectors
and matrices can be seen in the Appendix and the element is presented in Fig. 5.

In the three-dimensional case the cohesive zone is represented by a zero-thickness
surface which reduces in the two-dimensional case to a line. Hence, it remains only
the element coordinate ξ1 and the stiffness matrix of the displacement part follows
as

Ke
i,uu = b

1∫
−1

Z�
lin· Ci · Zlin

∣∣z̃3∣∣ dξ1 , Zlin = Nu · Lu · Q (67)

and the residual vector to
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rei,u = b

1∫
−1

Z�
lin· ti

∣∣z̃3∣∣ dξ1 (68)

with the element width b. The thermal part gives the following stiffness matrix

Ke
i,θθ = b

1∫
−1

[
1

�t
Cλ + Cκ

] ∣∣z̃3∣∣ dξ1 (69)

Cλ = λiX
�
θ · Xθ , Cκ = κiX

�
θ · Nθ · Lθ , Xθ = 1

2
Nθ · Mθ

with the residual vector

rei,θ = b

1∫
−1

[
Cλ · θ̇

e + Cκ · θe
] ∣∣z̃3∣∣ dξ1 (70)

5.5 Algorithm to Solve the Novel Traction-Separation-Law

The solution of the TSL is obtained by applying the backward Euler scheme to the
equations and obtain the solution through a Newton–Raphson procedure. At first,
it is assumed that the influence of the derivatives with respect to the temperature is
slight and can by neglected. With this the equations simplify to

ti = (1 − d)p CTSL · gel , (71)

gel = gi − gin , (72)

ġin = a

(1 − d)N1

[ |ti|
T0

]N2 ti
|ti| , (73)

YE = p

2
(1 − d)p−1 gel · CTSL · gel , (74)

ḋ = (1 − d)s1
(
YE
S0

)s2
∣∣ġin

∣∣
gdim

, (75)

λi = Cλ1θ + Cλ2 (76)

in vector-matrix form. Up next, the backward Euler scheme is applied to discretise
the equations and then we arrange these equations in a residual vector. For a more
compact notation we introduce the following abbreviations and normalise the sepa-
ration gi with the parameter gdim = 1mm and get a strain ei which has the magnitude
of the separation (see e.g. [16]).
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c1 = �t
a(

1 − d j+1
)N1 |ti, j+1| gdim

[ |ti, j+1|
T0

]N2

,

c2 = (
1 − d j+1

)s1 [
YE, j+1

S0

]s2

,

c1 = ei, j+1 − ein, j+1 ,

c2 = ein, j+1 − ein, j ,

C1 = 1 + (N2 − 1)

|ti, j+1|2 ti, j+1 · t�i, j+1

Notice that through the matrix C1 a coupling between normal and tangential
separation occurs, hence, mix-mode occurs when N2 > 1. It is a result of the creep
behaviour. This coupling can be avoided by assume that the interface behaves linear
visco-elastic (N2 = 1), see [44]. Additionally, from this follows that the constitutive
matrix of the cohesive zone CTSL (see Appendix) has a diagonal structure only for
the beginning, so long no inelastic separation occurs. The traction part of the residual
vector is

rt = 1(
1 − d j+1

)pC−1
TSL · ti, j+1 − ei, j+1 + ei, j + c1ti, j+1 = o (77)

and the damage part yields

rd = d j+1 − d j − c2|c2| = 0 (78)

These parts form the residual vector rTSL which is linearised

rTSL ≈ rkTSL + ∂rkTSL
∂yk

j+1

· �yk
j+1 = rkTSL + Jkj+1 · �yk

j+1 = o (79)

and the resulting system of equations is solved by applying the common Newton–
Raphson procedure with iteration index k

�yk
j+1 = −

[
Jkj+1

]−1 · rkTSL (80)

Followed is this by the update of the unknown vector y for the next iteration until
the residual reaches a user specified tolerance

yk+1
j+1 = yk

j+1 + �yk
j+1 (81)

The Jacobian matrix consists of four sub-matrices which are
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J11 = ∂rt
∂ti, j+1

= 1(
1 − d j+1

)pC−1
TSL + c1C1

J12 = ∂rt
∂d j+1

=
[

p(
1 − d j+1

)p+1C
−1
TSL + c1(

1 − d j+1
)1

]
· ti, j+1

J21 = ∂rd
∂ti, j+1

= c1c2

[
ps2S0

(
1 − d j+1

)p−1 |c2|
YE, j+1

c�
1 · CTSL − 1

|c2|c
�
2

]
· C1

and

J22 = ∂rd
∂d j+1

= 1 − c1|c2|(
1 − d j+1

)[
c1N1

|c2|2 c
�
2 · ti, j+1

+ s1 p
(
1 − d j+1

)p−2 c�
1 · CTSL ·

[
p − 1

2
c1 + c1N1ti, j+1

] ]

which are aligned as followed

Jkj+1 =
[
J11 J12

J21 J22

]

After the successful solution the inelastic separation and the elastic energy release
rate for the next time increment are recalculated

ein, j+1 = ein, j + c1ti, j+1 (82)

YE, j+1 = p

2

(
1 − d j+1

)p−1 c�
1 · CTSL · c1 (83)

Because of this implementation of the TSL the material tangent stiffness matrix
for the element stiffness matrix follows from the inversion of J11 (see [40] for more
details)

Ci = J−1
11 (84)

5.6 Numerical Problems Arising Through the Use
of Cohesive Elements

The simulation of crack propagation along a predefined path by using cohesive
elements leads to two main problems. First, the numerical solution scheme gets
unstable due to strain localisation resulting from a softening behaviour [30, 45]
and second, spurious traction oscillations occur orthogonal to the crack propagation
direction because of a high cohesive zone stiffness [46–49].
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At first, we comment on the unstable solution scheme and then the latter problem.
To stabilise the solution scheme, which is usually the Newton–Raphson procedure,
an additional damping term is added to the quasi-static residual vector. This addi-
tional term consumes the released energy due to crack propagation and leads to a
finite separation between the interface surfaces. This is called viscous regularisa-
tion and is common for many unstable analysis [30, 50]. The problem with viscous
regularisation is that the user has to make an initial guess for the damping factor
because, if the damping factor is too high no deformation will take place because
all energy is consumed. In contrast to that, if the damping factor is too low the pro-
cedure will not converge. Hence, to find a proper damping factor a trial and error
procedure is applied. Another possibility is to use other solution schemes like the
Riks method. But other numerical solutions scheme suffer from the problem that
they do not converge quadratically and are more complex, as the Newton–Raphson
procedure, which leads in the end to higher calculation times. The user has to decide,
if it is worth it to use another solution scheme, or start a trial and error procedure to
find a suitable damping factor.

Now, the latter mentioned problem is discussed, the spurious traction oscillations.
Many author mentioned and investigated these oscillations and found out that these
oscillations result from the high stiffness of the cohesive zone which is necessary to
ensure that the cohesive zone is not present in the virgin body until the crack starts to
propagate. The occurrence of these oscillations can be influenced by the numerical
integration scheme for the element stiffness matrix. Usually, full Gauss integration
is used to evaluate the stiffness matrix, which results in a stiffness matrix with the
following structure in the local coordinate system for a four node plane element with
two displacement DOF

Ke
i,uu = 1

3

⎡
⎢⎢⎢⎢⎣

2Ci Ci −Ci −2Ci

Ci 2Ci −2Ci −Ci

−Ci −2Ci 2Ci Ci

−2Ci −Ci Ci 2Ci

⎤
⎥⎥⎥⎥⎦

Hence, this matrix is fully coupled. In contrast to that it results following stiffness
matrix by using Newton–Cotes integration

Ke
i,uu =

⎡
⎢⎢⎢⎢⎣

Ci 0 0 −Ci

0 Ci −Ci 0

0 −Ci Ci 0

−Ci 0 0 Ci

⎤
⎥⎥⎥⎥⎦

The difference in these two schemes is that, through the use of Newton–Cotes
integration for the element, only nodes placed at opposite sides influences each other
and hence, the oscillations are reduced. By using Gauss integration all nodes of the
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element influences each other. Therefore, it is recommended to use Newton–Cotes
integration for cohesive elements.

6 Application of the Cohesive Zone Model to Describe
Cracking and Delamination of a Coating
at High-Temperature

In this section we demonstrate the application of cohesive elements to a FE simu-
lation to describe the cracking of a coating, at first and later on, the delamination
of this cracked coating from the substrate material at high temperature. With high
temperature we mean applications where the material is subjected to a homologous
temperature of 30–90%. Thus, creep phenomena can occur.

6.1 Experimental Setup and Numerical Model

The tested specimen is a beam which is made of aluminium (AlSi10MgT6) and
coated on one side with an iron aluminde (Fe24Al0.6Nb). This compound is then
tested in a 4PBT at 400 ◦C which leads to a strong creep behaviour in the substrate
material. The coating behaves at this temperature linear-elastic. This experiment is

Fig. 6 Dimensions and loading of the specimen in a 4PBT with the assumed strain distribution and
shifting of the neutral axis through inelastic deformations
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Table 1 Material parameters and dimensions of the specimen after [51] (i ∈ {s, c})
Ei (MPa) νi (–) ai (MPa−Ni s−1) Ni (–) hi (mm) bi (mm)

Substrate 32979.9 0.33 4.4356E−11 4.0317 3.015 3.485

Coating 54784.8 0.30 − − 1.240 3.485

in detail explained and analysed in [51] by using layer-wise theory until the coating
starts to fail. Here, we want to use this setup (see Fig. 6), create a FEmodel and apply
CZMs through the use of cohesive elements to this model and simulate the cracking
of the coating and subsequently the delamination. Also, the material parameters of
the substrate and the coating material are determined from experiments in [51]. They
are summarised in Table 1 with all dimensions of the specimen, additionally.

The distance from themiddle of the beam to an inner support is l1 = 10mm and to
an outer support is l2 = 20mm. Because a load is only in z-direction applied on the
specimen, only a plane simulation is performed under the plane stress assumption.
Further on, because of the symmetry of the experiment with respect to the y-z-
plane only the right half is modelled. Figure7 shows the resulting FE model with
boundary conditions, contact and cohesive zones. The contact interaction between
supports and the specimen is modelled as hard contact with sliding, but friction is not
considered. The creep behaviour of the substrate material is modelled with Norton’s
power law and the linear-elastic behaviour is modelled with Hooke’s law. For the
coating Hooke’s law is used, additionally. Bothmaterials are assumed to be isotropic.
All these constitutive laws exist in ABAQUS, already. Then the discretisation is
performed by using a quadratic plane stress element with reduced integration to
prevent locking effects. The ABAQUS name for this element is CPS8R. Further
on, a large displacement analysis is performed because the ratio between applied
displacement and total height of the specimen is too large. Up next, a convergence
study is performed to see how many elements are required to determine the stresses
in the specimen, accurately. But without the cohesive zones because the parameters
of the cohesive zones are not known for now. The results are presented in Fig. 8. The

Fig. 7 FE model with boundary conditions, contact and cohesive zones
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Fig. 8 Results of the convergence study

reference solution for this study is shown in red inFig. 8.This solution is obtainedwith
the model of [51]. The top left diagram in Fig. 8 presents the stress distribution over
the cross section of the beamafter 1845 s. The distribution looks like it is expected and
fits very well to the reference solution. Due to the creep deformation in the substrate
the stress reduces there and increases in the coating. Further on, a discrete jump in
the stress occurs at the interface between substrate and coating which results from
the difference of the Young’s moduli. The bottom left and right diagrams of Fig. 8
present the stresses at the top and bottom of the substrate, respectively, the coating
over the number of elements (NE). It can be seen, like in the top left diagram, that
the stresses have already converged for all investigated NE . The top right diagram
shows the calculation times for the different NE . For the highest NE the calculation
time is half an hour, approximately.

From the convergence study, it can be concluded that all further calculations
could be performed with the model of NE = 306. The stresses will be accurately
calculated.We choose themodelwith NE = 2142 because later on cohesive elements
are added to this model and due to localisation effects a finer mesh is necessary.
And usually a much finer mesh has to be used but this is here impossible because
we need this model to perform a numerical optimisation procedure to determine
material parameters. Hence, the calculation time of half an hour for one model can
easily increase to a week for the optimisation procedure. Besides, it is possible to
do simulations which involve cohesive elements with a coarser mesh [52–54]. This
leads to adjusted material parameters. We will see this in the following section.
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Table 2 Prescribed cohesive zone parameters (i ∈ {n, t})
Ci (MPa) p (–) a (mms−1) N1 (–) N2 (–) T0 (MPa) s1 (–) s2 (–)

�1 54784.8 − − − − − − −
�2 43882.4 2 2.2178E−11 1 2.0158 1 1 1

The first cohesive zone �1 is used to describe the cracking of the coating and the
second �2 to describe the delamination of the coating. Because of the linear elastic
behaviour of the coating, it is expected that the coating shows more brittle failure
behaviour. Therefore, the ABAQUS TSL with exponential degradation without mix-
mode behaviour is used (see [16] for more informations) with the four parameters
maximum normal traction Tmax,n, maximum tangential traction Tmax,t , maximum
separation to failure gmax and alpha α. Due to the fact that ABAQUS normalises the
separation which was mentioned earlier, already, the cohesive zone stiffness is set
to the value of the Young’s modulus of the coating. The second cohesive zone is
equipped with the novel TSL of Sect. 4.2. Also, some parameters for this zone are
prescribed. These are the creep parameters and the cohesive stiffness plus the damage
exponents. These parameters are determined as mean values from the substrate and
coating parameters. All parameters are summed up in Table 2.

6.2 Determination of the CZM Parameters by Numerical
Optimisation

All cohesive zone parameters are determined simultaneously. In the experiment the
force and the time for the middle of the beam is measured. From this we can derive
a moment-time curve (M − t curve). To get a similar curve from the simulation
we have to integrate over the axial stress T11 along the z-direction. But because the
neutral axis of the beam shifts as a result of the creep deformation, this shifting β

has to be considered in the integration. This leads to

M = b

ztop∫
zbot

T11(z − β) dz (85)

When this shifting is not considered in the integration the amount in the resulting
moment coming from the coating is overestimated and the amount from the sub-
strate is too low. But interestingly the resulting moment is correct calculated. This
integration is later on performed by using the trapezoidal rule.

Now, we can begin with the optimisation process. Therefore, we connect the
commercial software packages ABAQUS and MATLAB by using the tool
ABAQUS2MATLAB [1]. The optimisation procedure is described in Fig. 9 in detail.
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Fig. 9 Flowchart of the optimisation algorithm
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Table 3 Determined cohesive zone parameters

Tmax,n (MPa) Tmax,t (MPa) gmax (mm) α (–) S0 (MPa) YE0 (MPa)

�1 290.98 33.38 1.0344E−2 1.03 − −
�2 − − − − 4.3901E−5 6.5815E−3

At first, initial sets of the parameters are defined which should be determined. Then
is a FE simulation for every initial set performed and the M − t curve is obtained by
integrate the moment of the beam with Eq. (85). These initial sets and curves are the
input for the optimisation process. For the optimisation we use the neural network
toolbox of MATLAB. After every training of the network and estimating the new set
of parameters it is at first checked if the estimated set is in the expected range and
if every parameter is greater as zero, otherwise, the set is forgotten and the training
starts again. When the set of parameters fulfills all requirements a new FE simulation
is performed and the M − t curve is calculated. The training algorithm is repeated
until the change in the parameters is less than 1% or the error of the M − t curve
is less than the specified tolerance. Finally, the algorithm gives as output the deter-
mined set of parameters and the belonging M − t curve. The determined parameters
are summed up in Table 3. In Sect. 6.1 we mentioned the fact that cohesive zone
parameters are adjusted to compensate the effects due to a coarse mesh. This can be
seen by comparing the determined cohesive strength Tmax,n with the experimental
determined strength of the interface which is 381MPa [51]. Usage of a fine mesh
would have led to a cohesive strength near the experimental determined value.

6.3 Comparison Between Experiment and Simulation

In Fig. 10 the result of the final simulation is presented and compared to the experi-
ment of [51]. The simulation is performed for 2100 s with a final displacement of the
upper support of u (t = 2100 s) = 1.749mm. The displacement is increased from
0mm to 1.749mm linearly over this time period. The diagram in Fig. 10 shows the
experimental curve and the simulated one. It can be seen that the onset of cracking
of the coating is simulated very well. But after this the simulation has a deviation to
the experiment which is a consequence of the missing hardening of the compound
after the coating has failed. But for this complex simulation the result is acceptable.

The missing hardening of the compound after the cracking of the coating (see
Fig. 10; t ≈ 1750 s) is a result of the early onset of the delamination and that the crack
through the coating propagates to slow. But because the comparison between the
experimental delamination curve and the simulated one is very similar (just shifted)
we suppose that the false cracking behaviour of the coating is the main problem
which causes the difference between experiment and simulation. Therefore, this will
be investigated in the future.
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Fig. 10 Comparison between experiment and simulation and visualisation of the simulation at
specific time points; red—smallest displacement, blue—highest displacement

Further on, Fig. 10 presents some pictures of the deformed specimen at specific
time points to visualise the cracking and the delamination of the coating. The colors
represent the displacement distribution over the specimen, red is the smallest dis-
placement in every picture and blue the highest one. Due to the fact that the specimen
ismade of aluminium and iron aluminde, it is stiff and consequently the deformations
are small. Therefore, a zoom is presented in Fig. 10 to see the delamination.
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7 Summary and Outlook

In this treatise we presented an overview on CZMs and TSLs. Further on, we pre-
sented a rate-dependent TSL with mix-mode behaviour and explained the imple-
mentation into the FEM. Finally, the result of a 4PBT simulation is presented and
compared to an experiment. Slight deviations between simulation and experiment
occurred but they are acceptable.

Up next, the presented thermal model is implemented and tested and afterwards a
thermal-mechanical simulation is performed. After this we want to analyse the influ-
ence of different TSLs on the failure behaviour of the coating to see if it is possible
to simulate the hardening of the compound and finally get a better approximation of
the experiment (see Sect. 6.3).

Acknowledgements The financial support rendered by theGermanResearch Foundation (DFG) in
context of the research training group ‘Micro-Macro-Interactions of Structured Media and Particle
Systems’ (RTG 1554) is gratefully acknowledged.

Appendix

Arranging of displacement, position and temperature vector for a 2D cohesive ele-
ment

ue = [
u1x u1y u2x . . . uny

]�
, n = NN

xe = [
x1x x1y x2x . . . xny

]�
, n = NN

θe = [
θ1 θ2 . . . θn

]�
, n = NN

Arranging of total DOF and residual vector for a 2D cohesive element

pe =
[
ue

θe

]

rei =
[
rei,u
rei,θ

]

Shape functions for a 2D cohesive element

N1 = 1

2
(1 − ξ1)

N2 = 1

2
(1 + ξ1)

Arranging of the displacement and temperature shape function matrix
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Nu =
[
N1 0 N2 0
0 N1 0 N2

]
Nθ = [

N1 N2
]

Arranging of the displacement and temperature mean value matrix

Mu =

⎡
⎢⎢⎣
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0

⎤
⎥⎥⎦

Mθ =
[
1 0 0 1
0 1 1 0

]

Arranging of the displacement and temperature separation relation matrix

Lu =

⎡
⎢⎢⎣

−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0

⎤
⎥⎥⎦

Lθ =
[−1 0 0 1

0 −1 1 0

]

Arranging of the elasticity matrix

CTSL =
[
Cn 0
0 Ct

]
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Stability of Parameter Identification
Using Experiments with a Heterogeneous
Stress State

Alexey V. Shutov and Anastasiya A. Kaygorodtseva

Abstract We analyze different strategies used for the identification of material
parameters, which appear in a certain model of finite strain viscoplasticity. The main
focus is set on the sensitivity of the parameters with respect to measurement errors.
In different strategies we combine experimental data obtained from various torsion
tests with a heterogeneous stress state. A direct problem is solved using the non-
linear FEM. To estimate the stability of a certain identification strategy we perform
Monte Carlo simulations for a series of noisy experimental data. A distance between
two sets of material parameters is measured using a special mechanics-based metric.
Both the identification of material parameters and the estimation of their stability are
illustrated by an example. In this example we employ a set of synthetic experimental
data obtained for the steel 42CrMo4. As a material model, we choose a model of
finite strain plasticity with a combined isotropic-kinematic hardening.

1 Introduction

Advanced phenomenological models describe the elasto-visco-plastic behaviour of
high-temperature materials with a good accuracy, accounting for a number of non-
linear phenomena. A substantial progress has been achieved in the simulation of
stress response under non-monotonic loading conditions, including ductile damage
(cf. [21]), creep damage (cf. [8, 19]), and viscoplasticity under thermo-mechanical
loading (cf. [13]). Unfortunately, the phenomenological models contain numerous
material parameters, which can not be measured in the experiment directly. The
situation may become even more difficult: models suitable for thermo-mechanical
loadings may contain twice as much parameters when compared to their isother-
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mal counterparts. A common approach is to identify these parameters by solving an
inverse problem. Herein, an error functional reflecting the average deviation of the
simulation results from the experimental data is minimized [2]. In order to gain more
freedom in choosing the experimental setup one may go beyond experiments with
a homogeneous distribution of stresses and strains in the gage area (cf. [1]). Apart
from gaining a greater freedom in experimental setup, heterogeneous tests may carry
more information than the homogeneous ones, since different parts of the sample
experience various loadings. In order to solve a direct problem involving a hetero-
geneous deformation of the sample, the nonlinear finite element method is typically
employed as a universal tool (cf. [7]). In the current study, we focus on torsion tests
since they allow for large stable deformations without undesired influence of friction;
hot torsion tests can be carried out in a robust way [1].

An important issue is the sensitivity of the identified material parameters with
respect to the inevitable measurement errors. For instance, dealing with overparam-
eterized models, a very good correspondence between simulation and experiment
can be achieved, but even a smallest change in the experimental data may cause a
finite variation of the identified material parameters. In the current study we estimate
the sensitivity of the parameters by Monte Carlo simulations considering a large
number of noisy experimental data. Motivated by the central limiting theorem of
the probability theory, we consider the so-called white noise. As a result, a cloud
of points in the space of material parameters is obtained. The size of this cloud is
estimated using a special mechanics-based metric, which is advantageous over the
conventional Euclidean metric.

For demonstration purposes, only two types of torsion samples are considered:
circular rods and thick-walled tubes. In both cases the stress-strain state is heteroge-
neous. As a material model, constitutive equations proposed by Shutov and Kreißig
[17] are used. This model accounts for a combined nonlinear isotropic-kinematic
hardening in the finite strain range. For simplicity, isothermal conditions are con-
sidered. As the experimental basis, synthetic experimental data on non-monotonic
torsion of heterogeneous samples made from the steel 42CrMo4 are employed. The
synthetic data are obtained by using an accurate version of the material model with
two evolving back-stresses. The parameter identification, in turn, is carried out using
a simplified version of the model with only one back-stress.

2 Material Model

As alreadymentioned, the material model from [17] is implemented here. It accounts
for the nonlinear isotropic hardening of Voce type and the nonlinear kinematic hard-
ening according to Armstrong and Frederick. The rheological motivation of the
model is shown in Fig. 1. The rheological model comprises one friction element (St.-
Venant body), one elastic spring (Hooke body) and a number of rate-independent
Maxwell bodies: only one body within a simplified model (Fig. 1, left) and two bod-
ies in a refined model (Fig. 1, right). Each of the rate-independent Maxwell bodies,
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Fig. 1 Rheological explanation of the viscoplastic material model with nonlinear kinematic hard-
ening. Left: simplified model with a single rate-independent Maxwell body. Right: refined model
employing two Maxwell bodies

in turn, consists of an elastic spring and a modified (rate-independent) dashpot. Rate-
independent dashpots are depicted as boxes in Fig. 1. They differ from the classical
(rate-dependent) dashpots in that the physical time t is replaced by the monotoni-
cally increasing Odqvist parameter s. The stresses in each of the rate-independent
Maxwell bodies are understood as back-stresses, which are used to account for the
shift of the yield surface in the stress space (Bauschinger effect). In other words, a
single back-stress tensor appears in the simplified model and two back-stress tensors
are used in the refined model.

The geometrically nonlinear kinematics of the model is based on the nested mul-
tiplicative split of the deformation gradient, suggested by Lion in [6]. An example of
practical application of this model is given in [10]. Modifications of this model to the
high-temperature creep [19], ductile damage [21], and thermo-mechanical loading
[13] are known.

We briefly recall the constitutive equations of the refined model, which uses two
backstresses. Let C := FTF be the right Cauchy–Green tensor at a certain material
point. Three tensor-like state variables of the same type are introduced: Ci for the
current inelastic strain and C1i, C2i for the current inelastic strain of substructure.
QuantitiesC,Ci,C1i, andC2i are symmetric and strictly positive definite. To capture
the isotropic hardening, two scalar-valued quantities are used: Odqvist parameter
(accumulated plastic arc-length) s and its dissipative part sd.

Let ψ be the Helmholz free energy per unit mass. Assume that (cf. [18]):

ψ = ψel(CC−1
i ) + ψkin1(CiC−1

1i ) + ψkin2(CiC−1
2i ) + ψiso(s − sd), (1)

where ψel(CC−1
i ) stands for the energy storage associated to macroscopic elastic

strains; ψkin1(CiC−1
1i ), ψkin2(CiC−1

2i ) and ψiso(s − sd) are parts of the free energy
stored in defects of crystal lattice. Contributions ψkin and ψiso are related to mech-
anisms of kinematic and isotropic hardening, respectively. The functions ψel, ψkin1,
and ψkin2 are assumed to be isotropic. To be definite, we set in this study

ρRψel(A) = k

2
(ln

√
detA)2 + μ

2
(trA − 3), (2)



172 A. V. Shutov and A. A. Kaygorodtseva

ρRψkin1(A) = c1
4

(trA − 3), ρRψkin2(A) = c2
4

(trA − 3), (3)

ρRψiso(se) = γ

2
(se)

2, A := (detA)−1/3A, (4)

for any A and se. Here, k, μ, c1, c2, γ are constant material parameters; ρR stands
for the referential mass density. Following the Coleman–Noll procedure, the second
Piola-Kirchhoff stress ˜T is computed through

˜T = 2ρR
∂ψel(CC−1

i )

∂C
|Ci=const . (5)

In Sect. 5 we will also need the Cauchy stress (true stress) T:

T = 1

det(F)
F ˜T FT. (6)

Backstresses ˜X1 and ˜X2 and the overall backstress ˜X are employed in the refined
model to capture the Bauschinger effect:

˜X1 = 2ρR
∂ψkin1(CiC−1

1i )

∂Ci
|C1i=const , ˜X2 = 2ρR

∂ψkin2(CiC−1
2i )

∂Ci
|C2i=const , (7)

˜X = ˜X1 + ˜X2. (8)

By R ∈ R we denote a hardening variable which is responsible for isotropic expan-
sion of the yield surface:

R = ρR
∂ψiso(s − sd)

∂s
|sd=const . (9)

Within viscoplastic models, stress states beyond the elastic domain are possible due
to occurrence of a viscous overstress f which depends on the applied strain rate. The
overstress is defined by

f := F −
√

2

3
(K + R), F :=

√

tr[(C˜T − Ci˜X)D]2, (10)

where K stands for the initial uniaxial quasi-static yield stress, (·)D denotes the devi-
atoric part, F stands for the driving force of the viscoplastic flow (equivalent stress).
The inelastic strain rate λi equals the norm of the inelastic strain rate tensor; λi is
computed employing the Perzyna lawof viscoplasticity using the current overstress f

λi = 1

η

〈 f

k0

〉m
, 〈x〉 := max(x, 0). (11)
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Here, η and m are fixed material parameters; k0 equals 1 MPa (it is not a mate-
rial parameter). The temporal changes of the internal variables are governed by the
constitutive relations

Ċi = 2
λi

F
(C˜T − Ci˜X)DCi, (12)

Ċ1i = 2λiκ1(Ci˜X1)
DC1i, Ċ2i = 2λiκ2(Ci˜X2)

DC2i, (13)

ṡ =
√

2

3
λi, ṡd = β

γ
ṡ R. (14)

Here, κ1, κ2 are parameters related to the saturation of the kinematic hardening; β

is responsible for the saturation of the isotropic hardening; ˙(·) stands for the material
time derivative. Here we assume that at t = 0 the material is isotropic, undeformed,
and stress free, which yields the following initial conditions

Ci|t=0 = C1i|t=0 = C2i|t=0 = 1, s|t=0 = sd|t=0 = 0. (15)

The model exhibits the following properties:

• It is suitable for large elastic and inelastic strains. Various isotropic hyperelastic
potentials can be implemented for the description of elastic properties and kine-
matic hardening.

• The model is thermodynamically consistent (the Clausius-Duhem inequality is
satisfied for arbitrary processes) [17].

• The model is objective (thus providing a correct transformation of the Cauchy
stress under superimposed rigid body motion).

• The model is w-invariant under the change of the reference configuration (cf. [14,
20]).

• Efficient numerical schemes are available in case of neo-Hookean hyperelastic
potentials (cf. [11]).When the kinematic hardening ismodelled using theMooney-
Rivlin potential, efficient algorithm from [12] can be used as well.

Some of the material parameters can be identified from experiments in a relatively
simple way [18]. The elastic properties are captured by the shear modulus μ and the
bulk modulus k. These parameters can be restored from the experimental data in the
elastic mode. The initial yield stress under uniaxial tension K is identified from the
uniaxial stress-strain curve. The parameters of the Perzyna-type viscosity η and the
exponentm can be identified froma series of dynamic tension tests. The pre-identified
values are taken from [18] and listed in Table1.

Table 1 Pre-identified parameters for the steel 42CrMo4

k [MPa] μ [MPa] η [s] m [-] K [MPa]

135 600 52000 5 × 105 2.26 335
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The remaining material parameters need to be identified simultaneously. Dealing
with simplified model (employing a single Maxwell body) they are: the parameters
of the isotropic hardening γ and β as well as the ones of the kinematic hardening c
and κ. Here, γ /β gives the saturation value of the isotropic hardening and 1/β gives
the characteristic saturation strain. The parameter c can be seen as the stiffness of
the elastic spring within the Maxwell body and 1/κ corresponds to its generalized
viscosity. Thus, the saturation level of the backstress is proportional to 1/κ and the
saturation strain is proportional to 1/(cκ).

3 Synthetic Experimental Data

We analyze two types of torsion samples: a solid rod of the radius 10 mm and a
thick-walled tube with the inner and outer radii of 5 and 10mm, respectively. In both
samples the length of the gage area equals 25mm. The loading consist of monotonic
torsion up to the maximum angle φmax followed by a reverse torsion bringing the
sample back to the undeformed state finally followed by the second torsion up to the
φmax. Two different amplitudes are considered: φmax = 0.75 rad and φmax = 1.5 rad.

Unfortunately, real experimental data are missing for these samples and load-
ing conditions. Therefore, in order to test the stability of the parameter identification
strategy,we employ so-called synthetic experimental data. The synthetic data are gen-
erated by means of an FEM computation using the refined model (with twoMaxwell
bodies). Thematerial parameters correspond to the high-strength steel 42CrMo4. The
parameters are taken from the previous study [16]; they are shown in Table2. Since
the refined model describes the real stress response very accurately (see. Fig. 1 in
Ref. [16]), the generated synthetic data are believed to be a reasonable representation
of the real test results.

The FEM analysis is carried out using MSC.Marc. Isoparametric elements with
a quadratic approximation of the geometry and displacements are used (element
type Hex20) with a full integration scheme. The constitutive model is implemented
using the Hypela2 interface as a user-defined material subroutine. In this, a robust
and efficient numerical algorithm from [11] is employed. The overall deformation
process is subdivided into 150 steps: 50 steps for the initial torsion up to φmax, 50
steps for the reduction of the torsion angle back to zero, and, finally, 50 steps for
the second loading up to φmax. In order to speed-up the computations, the “cyclic
symmetry” option is activated. Only a 10-degree sector is analyzed. The synthetic
experimental data generated by FEM are shown in Fig. 2. Since the modelled sector

Table 2 Material parameters for the steel 42CrMo4 used to generate synthetic data

γ [MPa] β [-] c1 [MPa] c2 [MPa] κ1 [1/MPa] κ2 [1/MPa]

141.18 0.037501 1692.6 23255.0 0.0038419 0.0045175
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Fig. 2 Synthetic experimental data corresponding to torsion of samples made from 42CrMo4
steel. Top left: rod with φmax = 0.75 rad (test number 1); top right: rod with φmax = 1.5 rad (test
number 2); bottom left: thick-walled sample with φmax = 0.75 rad (test number 3); bottom right:
thick-walled sample with φmax = 1.5 rad (test number 4)

represents only 1/36 of the real sample, the torque must be multiplied by the factor
36 to obtain the overall torque applied to the sample.

In the following, the synthetic data will be used to identify thematerial parameters
pertaining to the simplified material model with a single rate-independent Maxwell
body. Since the simplified model is less accurate, it cannot reproduce the synthetic
data exactly, even for a well-identified set of material parameters. Thus, a real-life
situation is reproduced that there is an unrecoverable discrepancy between simulation
and experiment.

4 Identification Strategies and Optimization Results

In this section we consider all possible strategies of parameter identification which
include exactly two different tests from the set shown in Fig. 2. In order to designate
each identification strategy we introduce its signature as a 4-tuple (x1, x2, x3, x4).
We set xi = 1 if the test number i is included and xi = 0 otherwise. For instance,
strategy signature equals (1, 0, 1, 0) if it includes tests 1 and 3.

Based on the synthetic experimental data we identify the four hardening param-
eters of the simplified material model which employs only one rate-independent
Maxwell body (see Fig. 1(left)). All the torsion tests are simulated using FEM com-
bined with the simplified model. For consistency, exactly the same FEM mesh is
employed as the one used in the previous section to generate the synthetic data.
Just as for the synthetic data, the loading process is subdivided into 150 time steps.
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Fig. 3 Optimization results showing the best possible fit of the (synthetic) experimental data by a
simplified model. Top: optimization strategy (1, 1, 0, 0); bottom: optimization strategy (0, 1, 1, 0)

Thus, we have exactly 300 data points pertaining to two tests. Following the stan-
dard approach we build the following error functional Φ, which reflects an average
deviation of the simulation from the (synthetic) experiment:

Φ(γ, β, c, κ) =
300
∑

i=1

[Expi − Modi (γ, β, c, κ)]2. (16)

Here, Expi is the i-th experimental (synthetic) torque and Modi (γ, β, c, κ) is
the corresponding model prediction, which depends on the (unknown) material
parameters. The error functional is minimized using the gradient-based Levenberg–
Marquardt method. The identified vector of material parameters will be denoted as
p∗. For all 6 possible strategies, a good (but not perfect) correspondence between
simulation and synthetic experiment can be observed. For example, the optimization
results are shown in Fig. 3 for the strategies (1, 1, 0, 0) and (0, 1, 1, 0). The identified
material parameters are listed in Table3.

5 Mechanics-Based Metric

In order to measure a distance between two sets of material parameters we introduce
a local strain-controlled loading programm. Let T be the duration of the deformation
process, F(t) be the deformation gradient explicitly prescribed as a function of time
t ∈ [0, T ]. Since the analyzed material model represents a simple material of Noll’s
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Table 3 Material parameters of the simplifiedmodel pertaining to different identification strategies

Strategy γ [MPa] β [-] c [MPa] κ [1/MPa]

(1, 1, 0, 0) 19951 94.361 3893.2 0.0032882

(1, 0, 1, 0) 30237 155.09 4172.9 0.0035359

(1, 0, 0, 1) 21019 99.340 3878.5 0.0032836

(0, 1, 1, 0) 20346 94.433 3814.4 0.0033129

(0, 1, 0, 1) 14207 67.174 4093.1 0.0032441

(0, 0, 1, 1) 21889 101.52 3801.2 0.0033082

type [9], the local history of the true (Cauchy) stressT(t) depends on the deformation
history F(t) and the material parameters p = (γ, β, c, κ)T:

T(t,p) = T
0≤t ′≤t

(

F(t ′),p
)

, for all t ∈ [0, T ]. (17)

The dependence of the stress on the initial conditions is assumed but omitted for
brevity. The mechanics-based distance between two sets of material parameters
p (1) = (γ (1), β (1), c (1), κ

(1)) and p (2) = (γ (2), β (2), c (2), κ
(2)) is introduced as

distF(p (1),p (2)) := max
t∈[0,T ] ‖T(t,p (1)) − T(t,p (2))‖. (18)

The idea behind themechanics-basedmetric is to test the stress response predicted
by the material model for a rather general deformation history. While computing the
stress response which appears in (18), the viscous part of the model is switched off.
For additional details regarding the definition of the metric as well as its advantages
over the conventional Euclidian norm, the reader is referred to [15].

To be definite, the following deformation history is used here. In the time interval
t ∈ [0, 4] (t is non-dimensional) we set

F(t) = F′(t), (19)

where F′(t) is a linear interpolation between key-points F1, F2, F3, and F4:

F′(t) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − t)F1 + (t)F2 if t ∈ [0, 1]
(2 − t)F2 + (t − 1)F3 if t ∈ (1, 2]
(3 − t)F3 + (t − 2)F4 if t ∈ (2, 3]
(4 − t)F4 + (t − 3)F1 if t ∈ (3, 4]

,

F1 := 1, F2 := 1.2 e1 ⊗ e1 + (1.2)−1/2 (e2 ⊗ e2 + e3 ⊗ e3),

F3 := 1 + 0.2e1 ⊗ e2, F4 := 1.2 e2 ⊗ e2 + (1.2)−1/2 (e1 ⊗ e1 + e3 ⊗ e3).
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6 Analysis of Stability with Respect to Measurement Errors

In order to estimate the dependence of identified material parameters on the experi-
mental errors the following procedure is employed. Recall that for each identification
strategy the optimal vector ofmaterial parameters is denoted by p∗ (cf. Table3). Now,
the used experimental data Expi are replaced by the noisy ones Expi + Noisei (cf.
[3, 4]). In the current contribution the white noise is used, which corresponds to
uncorrelated normally distributed noise with a zero expectation:

Noisei ∈ N (μ, σ 2), μ = 0. (20)

Then, following the Monte Carlo approach, for the j-th instance of the noisy data
the corresponding vector p ( j) of material parameters is identified. In the current
study, the applied noise is relatively small. Therefore the parameter vector p ( j)

is expected to be close to p∗. Thus, a simplified identification procedure can be
used, which is based on the linearization of the model response (see Eq. (24) in
Ref. [16]). In total, we use Nnoise = 10000 realizations of the noisy data with the
standard deviation σ = 0.3 N · m. Finally, the average size of the cloud of material
parameters is computed through

Size = 1

Nnoise

Nnoise
∑

j=1

distF(p∗,p ( j)). (21)

The strategy is assumed to be reliable if for realistic standard deviation σ the size
of the cloud is sufficiently small. The computed sizes of the clouds for six different
strategies are listed in Table4. Note that the distance has a dimension of pressure
(or mechanical stress); here its is measured in MPa. An interesting result is as fol-
lows: Although the analyzed strategies operate with essentially different (synthetic)
experimental data, the parameter sensitivity is nearly the same. The computed sizes
of the clouds are sufficiently small: in most applications involving the high-strength
steel, an error below 3 MPa is acceptable. The strategy (1, 1, 0, 0) is the most stable
with respect to the applied noise. Surprisingly, the size of the parameter cloud per-
taining to the strategy (1, 1, 0, 0) is somewhat smaller than for the (0, 0, 1, 1). One
explanation is as follows: For both strategies, the stochastic model (20) introduces
the same noise in terms of absolute values. But in terms of relative values, the noise
for the strategy (0, 0, 1, 1) is larger than for (1, 1, 0, 0).

Table 4 Sizes of the clouds of material parameters in terms of mechanics-based metric

Strategy: (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1)

Cloud size: 2.336 MPa 2.598 MPa 2.433 MPa 2.445 MPa 2.818 MPa 2.515 MPa
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7 Discussion and Conclusion

In the current study, a simple procedure is demonstrated which allows us to esti-
mate the impact of measurement errors on the resulting vector of material param-
eters p. Various strategies involving different sets of heterogeneous experiments
are compared in terms of their sensitivity. For the considered material model, the
possibility of material parameter identification based on heterogeneous test data is
tested. An important conclusion is that all the strategies exhibit nearly the same sen-
sitivity, which lies in the acceptable range. In the follow-up publication, the set of
torsion experimentswill be extended by introducing sampleswith non-circular cross-
sections thus bringing us to the problem of optimal experimental design (cf. [5]). The
use of different types of samples seems to be promising in obtaining a big variety
of loading scenarios. This, in turn, would yield more reliable/stable identification
strategies.
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Short Term Transversally Isotropic
Creep of Plates Under Static and Periodic
Loading

Holm Altenbach, Dmitry Breslavsky, Volodymyr Mietielov
and Oksana Tatarinova

Abstract The statement and solution method of the two-dimensional problem of
orthotropic creep under static and periodic loadings are presented. Experimental
investigations of short-term deformation under uni-axial and plane stress states are
carried out. Short-term creep curveswere obtained for uni-axial specimens and plates
with holes. Constitutive equations are developed for steel characterized by the first
stage of unsteady creep with orthotropic properties under static and periodic load-
ing. The calculation method in general was verified by comparing numerical and
experimental results under the uni-axial and plane stress states.

Keywords Short-term creep · Orthotropic properties · Plane stress state · FEM ·
Experimental investigations

1 Motivation

Creep in metallic materials can occur at all temperatures and stress levels. As it
was pointed out by Lemaitre and Chaboche [1], some alloys exhibit visco-plasticity
(creep) at room temperatures (300 K), despite the fact that their melting temperatures
can reach 1400 K.
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With a significant level of stress, which in most cases exceeding the yield limit,
and at room temperature, varying in time strains can reach significant values in
structural steels. Because of the general rather high level of stresses, creep cannot
run too long: either tertiary creep occurs with damage increase, resulting in fracture,
or saturation occurs, at which the creep rate drops significantly. In both considered
cases, the so-called short-term creep takes place.

Rabotnov andMileiko [2] define short-term creep as a process ofmetal creepwhen
a significant deformation, that limits the service function of the structural element and
runs over a relatively short period of time. The authors emphasize that under such a
significant stress the strain value 5% can be accepted. In the case of short-term creep,
the deformation time is from tens to 1000 s. In [2] is noted, that approaches to the
solution of short-term creep problems should be applied in the cases where the effect
of sufficiently significant loads presents within a short time, and the accumulated
creep strains are commensurate with instantaneous elastic-plastic deformations.

Examples of experimental studies of short-term creep as well as methods of its
numerical simulation are given in [2–6] among others. As in [2] is emphasized, the
models and methods traditionally used in creep calculations can also be used for the
description of short-term processes. In this case, in almost all situations, the use of
numerical methods of calculation is necessary.

In many cases, short-term creep occurs during cyclic deformation at low and
room temperatures. In [7, 8] the results of experimental studies of cyclic creep at
room temperatures of titanium alloys are considered. In [9] the similar behavioir of
carbon steels was studied. Short-time creep under vibration loading, which leads to
processes of dynamic creep in materials [3], was studied for alloys of non-ferrous
metals and solders [10, 12, 13] as well as and for heat-resistant alloys [11].

In various technological processes due to the non-uniform mechanical actions,
materials with anisotropic mechanical properties, including creep properties, are
obtained. When rolling sheet materials, transversal isotropy of the plasticity and
creep properties is often realized [14–16]. The models of Hill, Malinin – Khazhinsky
and others are used for its description [1, 3, 4, 15, 16].

Also in technological processes sheet materials are subjected to the joint action of
static and periodically (i.e. cyclically with the same cycle shape) varying loads. For
the case of the same loading cycles for solving the initial-boundary value problem and
formulating the governing equations, it is effective to use themulti-scalemethodwith
subsequent averaging over the period of stress variation. In [17, 18] this approach
was applied to materials with isotropic creep properties, and in [19] a model for
describing creep and damage of transversely isotropic materials is presented.

The problem statement describing the creep of transversally isotropic materials
under conditions of a plane stress state and periodic loading is presented in this
chapter. The formulation of the method for solving initial-boundary value problems
based on using the methods of asymptotic expansions and averaging on a time period
is given. The govering system of differential equations is solved using the finite
element and differencemethods in the time domain. The cases of static and combined
static and periodically varying loading under uniaxial and two-dimensional plane
stress state are considered. The results of an experimental study of the creep of
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specimens and plates with holes allow verifying the constitutive equations and the
calculation method.

2 Problem Statement and Method of Solution

Let us consider the mathematical statement of a two-dimensional creep problem for
the area Ω with boundary curve Γ . The Cartesian coordinate system xi (i = 1, 2) is
used. We assume that the displacements ui |�1

= ũi are specified on the part of the
boundary Γ 1. The part of the boundary Γ 2 is loaded by tractions pi(x,t), and we do
not consider the volume forces. The elastic and plastic properties of the material are
considered as isotropic as well as the creep properties as transversally isotropic. The
case of constant temperature is assumed.

We apply the Lagrange approach and the case of small strains is considered. The
following notations are used: u = u(xi , t) is the displacement vector, ε = ε(xi , t),
εpl = εpl(xi , t), εc = εc(xi , t) are the tensors of total strains, plastic and creep
strains, respectively; σ = σ(xi , t) is the stress tensor, t denotes the time variable.
The basic system of equations of the creep theory for the two-dimensional case has
the following form [1]

σi j, j = γ üi ; σi j n j = pi (x); x ∈ �2

εi j = 1
2

(
ui, j + u j,i

)
, x ∈ �; ui |�1

= ũi ; x ∈ �1; i, j = 1, 2

σi j = Ci jkl

(
εi j − ε

pl
i j − εci j

)
;u(xi , 0) = u0(x); εci j (xi , 0) = 0.

(1)

Here, n(n1,n2) is the unit vector of the normal to the contour, γ is the density of
the material. The system (1) has to be added by a creep law.

The initial conditions are presented by the vector u0, determined by the solution
of the system (1) in the initial elastic (εpl = εc = 0) or elastic-plastic (εc = 0)
stress-strain states.

As is known [20], the most effective way for solving the problem is the expansion
of the time-varying load component acting on the part of the contour Γ 2, in the
Fourier series and subsequent representation of pi(x,t) in the following form

pi (xi , t) = p0i (xi ) + pmax
i (xi )	

(1)(t), i = 1, 2. (2)

Here the following notations are used:
p0i (xi ) is the time-independent load component; 	(1)(t) = ∑∞

k=1 	k =∑∞
k=1 Ak sin( p̃k t + βk) is the component of the load, which varies in time with the

period T;

	k(t) = ak cos

(
2πk

Tp
t

)
+ bk sin

(
2πk

Tp
t

)
;
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Ak = (
a2k + b2k

)1/2; p̃k = 2πk

Tp
;βk = arctg(ak/bk);

ak, bk are coefficients of the Fourier series; pmaxi are amplitude values of load com-
ponents.

Following the approaches proposed in [17–19], the solution of the system (1),
taking into account the acting variable load (2), can be found by the application of
the method of multi-time scales with subsequent time averaging [21]. According to
these approaches, the solution of system (1) can be determined by the solution of
such a similar system, in which only unvaried load is taking into account. In this
case, the amplitude values of the components of the stress-strain state, which are
determined by the action of the variable component 	(1), are included into the creep
law of special form.

To determine the components of the strain-stress state under creep, which occurs
as a result of the action of constant and periodically varying loads, the solution of
the following system of equations is necessary:

σi j, j = 0, xi ∈ �; i = 1, 2
σi j n j = p0i , xi ∈ �2;

σi j = Ci jkl

(
εi j − ε

pl
i j − εci j

)
; εi j = 1

2

(
ui, j + u j,i

)
, x ∈ �; ui |�1

= ũi ; x ∈ �1;
u(xi , 0) = u0(x); εci j (xi , 0) = 0.

(3)

Now let us consider the creep law of transversally-isotropic material for the case
of primary creep. For the case of static load, it is given in [19, 22]:

ε̇c = B̃
(
εcvM

)−α
σn−1
v

[
B

]
σ. (4)

The plane stress state is considered, and the following notations are introduced:
εc is the vector of creep strain; σ is stress vector;

[
B

]
is a matrix containing creep

constants for transversally isotropic material in the case of two-dimensional stress
state. bijkl are the components of the tensor containg the creep properties of the mate-

rial; εcvM =
√

2
3ε

c
i jε

c
i j is the von Mises creep strain; σv = σT [B]σ is the equivalent

stress, which is a common invariant of the stress tensor and the tensor of material
parameters

σv = (
b1111σ

2
11 + 2b1122σ11σ22 + b2222σ

2
22 + 4b1212σ

2
12

)1/2;

B̃, α, n are creep parameters.
Equation (4) is formulated for the casewhen themain axes of anisotropy (transver-

sal isotropy in this case) coincide with the axes of the Cartesian coordinate system.
In the case when they are rotated one to another by the angle θ, the relations (3) can
be modified by converting the components of stress tensors and creep strain rates. In
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this case, the matrix of the coordinate transformation, which is dependent from the
angle θ [23], should be added to the right-hand side of (3) as a factor.

Let us present the way of the creep equation deriving for the case of periodic
loading [22]. First, we consider the case of uniaxial stress state when a combined
cyclic stress σ = σ 0 + σ 1 operates on a point (or specimen). Here, the constant stress
denotes as σ 0 and stress σ 1 varies with the cyclic frequency f1 = 1/Tp over the
period of the cycle Tp (f 1�1 Hz). In the general case, the stress σ 1 is determined by
the parameters of the operating cycle with amplitude, which periodically increases
and decreases.

We present the form of the stress σ 1 by expansions in the periodic Fourier series
with coefficients ak and bk (k = 1, 2, …):

σ 1 = σmax
( ∞∑

k=1

(
ak cos

(
2πk
Tp

t
)

+ bk sin
(
2πk
Tp

t
)))

=
∞∑

k=1
σ ak sin

(
2πk
Tp

t + βk

)
,

σ ak =
√(

σmaxak
)2 + (

σmaxbk
)2

, βk = arctg(ak/bk),

(5)

For a combined load, the law of periodic stress varying can be written in such
form:

σ = σ 0 + σ 1 = σ 0

(

1 +
∞∑

k=1

Mk sin

(
2πk

Tp
t + βk

))

, (6)

where Mk = σ ak

σ 0 are the stress cycle amplitude coefficients, σ 0 �= 0.
Let us rewrite Eq. (4) for a uniaxial stress state:

ε̇c = B̃
(
εc

)−α
σ n. (7)

We will use the method of multi- (two in the considered problem) scales and
asymptotic expansion of the basic unknowns on small parameterμ = Tp/t. We apply
this approach to Eq. (7). Let us introduce the process of creep strain growth in two
time scales (slow t and fast ξ = τ / Tp, where τ = t/μ) using the form of asymptotic
expansion:

εc ∼= εc0(t) + μεc1(ξ), (8)

where εc0(t), εc1(ξ) are the functions corresponding to the basic process of creep
in slow (0) and fast (1) scales of time. We limit us only by the first approximation,
assuming in (8) the members with higher degrees of the parameter μ are too small.
Further, we can obtain

(
εc0 + μεc1

)α = εc0
(
1 + μ

εc1

εc0

)α

∼= εc0. (9)
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Taking into account the dependence of the creep strain only on the “slow” time
[17, 18], after averaging over a period on the “fast” scale, we obtain:

〈
εc0(ξ)

〉 =
1∫

0

εc0(t) dξ ∼= εc0(t),
〈
εc1(ξ)

〉 =
1∫

0

εc1(ξ)dξ ∼= 0. (10)

Thus, using the method of asymptotic expansion with a subsequent averaging
over the cyclic load period (10), for a uniaxial stress state we obtain the law of creep
during periodic loading for materials with transversally isotropic creep properties:

ε̇c = B̃
(
σ 0)nK

(
M (n)

)(
εc

)−α
, (11)

where K (M (n)) = ∫ 1
0

(
1 + ∑∞

k=1 M
(n)
k sin(2πkξ + βk)

)n
dξ , M (n) = σ ak

σ 0 is the

coefficient of asymmetry of the stress cycle.
We generalize Eq. (11) for the case of a complex stress state, proceeding from the

traditional postulate of creep theory, which establishes the correspondence between
the values of stresses and strain rates at uniaxial and complex stress states [1, 3].
Then Eq. (4), taking into account (11), is rewritten in the following form:

ε̇c0 = B̃
(
εc0vM

)−α
σ 0n−1
v K

(
M (n)

)[
B

]
σ 0 (12)

where εc0vM =
√

2
3ε

c0
i j ε

c0
i j is the von Mises strain and σ0

v = σ0T [B]σ0 is the equivalent
stress, which is a common invariant of the stress tensor and the tensor of material
parameters. It is determined by the components of the stress tensor in the “slow”

process; M(n) = σakv
σ0v

is the stress cycle asymmetry coefficient; σak
v = σakT [B]σak is

an invariant of amplitude stresses. In the widespread case, when the components of
the stress tensor are varyied in time by stepped law, the Eq. (5) will take the following
form:

σ = σ0 + σ1 = σ0

(

1 +
∞∑

k=1

Mk sin

(
2πk

Tp
t + βk

))

,

σak =
√(

σmaxak
)2 + (

σmaxbk
)2

, βk = arctg(ak/bk),

ak = 1

πk
sin

(
2Ts
Tp

πk

)
, bk = 1

πk

(
1 − cos

(
2Ts
Tp

πk

))
. (13)

Here Ts is the value of time of the action of the larger stress σ 0 + σ max; Tp is the
value of time of less stress σ 0 action.

As was obtained [17, 18], for the case of a plane stress state, the components of
amplitude stress tensors are determined by the solution of the following system (k
= 1, 2, … ..)
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σ ak
i j, j = −γ ( p̃k)

2uaki , xi ∈ �;
σ ak
i j n j = pmax

i Ak, xi ∈ �2;
εaki j = 1

2

(
uaki, j + uakj,i

)
= Ci jmnσ

ak
mn, xi ∈ �;

uaki (0) = 0, xi ∈ �1;
(14)

By solution of the system (14), for each kth harmonic, the components of ampli-
tude stresses can be found. This determines the coefficients included in the constitu-
tive Eq. (11).

In the case when the initial von Mises stresses are greater than the yield limit of
material, the problem of elastic-plastic deformation is necessary to solve in order to
determine the initial conditions for the systems (1) or (3):

σi j, j = 0i ; σi j n j = pi (x); x ∈ �2

εi j = 1
2

(
ui, j + u j,i

)
, x ∈ �; ui |�1

= ũi ; x ∈ �1; i = 1, 2

σi j = Ci jkl

(
εi j − ε

pl
i j

)
;

f
(
σi j

) = 3
2 si j si j − �

(∫
d ε̄

pl
i

)2; ε
pl
i = �

(∫
d ε̄

pl
i

)
; dε

pl
i j = 3

2
d ε̄

pl
i

σi
si j .

(15)

3 Numerical Solution

As a method of solution of systems (3), (14) and (15), the finite element method
(FEM) is used. Applying the main approaches of FEM, we arrive to a system of
differential equations [24] for a finite element

⎛

⎝
∫

V

[B]T [C][B]dV

⎞

⎠u̇γ =
∫

V

[B]T [C]ε̇cβdV+
∫

S1

[N ]T ṗdS (16)

σ̇β = [C]
(
ε̇β − ε̇cβ

)
, (17)

ε̇β = [B]u̇γ , (18)

where [B] is the deformation matrix of the element with number β; [C] is the matrix
containing elastic properties of the material (matrix of elasticity); uγ is the vector of
the nodal displacements of the element, γ is a number of node; σβ , εβ are the vectors
of stress and strains in the element; [N] is the matrix of shape functions values; p is
a traction vector. The complete system of equations for the whole model is obtained
by ensembling the element’s stiffness matrices into the global stiffness matrix [K]
as well as the vector of nodal forces {F} [25]. Finally, for creep problems it has the
following form

[K ]U̇ = Ḟ + ḞC. (19)
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Here U is the global vector of nodal displacements; Fc is the vector obtained by
the values of forces, caused by creep strains. The solution of system (14) is obtained
for the values of the nodal displacements in the same way (without creep strains).

The considered finite element formulation was implemented into the software
complex FEM CREEP [24] and used for calculations. In the calculations, a triangu-
lar three-node finite element with a linear approximation of the displacements per
element was used. The obtained systems of differential Eq. (19) are solved by the
predictor-corrector method of third order or by the Euler method [20]. According to
the generally acceptedproblemstatement [26] for integrating the physically nonlinear
creepproblems, at each time step thevector of creep strain rates ε̇c = (

ε̇c11, ε̇
c
22, 2ε̇

c
12

)T

is calculated using the stress vector σ = (σ 11, σ 22, σ 12)T, obtained in the previous
time step, and the creep law (11):

ε̇c = B̃
(
εcvM

)−α
σn−1
v

[
B

]
σ. (20)

We have added for the case of a static load and for the case of a periodic load the
expression of the influence function:

ε̇c = B̃
(
εcvM

)−α
σn−1
v K

(
M(n)

)[
B

]
σ (21)

At each integration step, the system of linear algebraic equations is solved by the
Cholesky decomposition [25].

In many cases, the initial load value is such that the von Mises stress exceeds the
yield limit and the strain vector in the finite element consists of elastic and plastic
components:

ε = e + εpl . (22)

A schematic stress-strain diagram in one-dimensional case is shown at Fig. 1,
where 1 corresponds to elastic strains, 2 to yield plateau and 3 to plastic strains with
hardening.

To determine the values of the initial plastic strain components, themethod known
as “increment-initial strain” method [25] was used.

At first, let us consider the algorithm for materials with hardening (linear or power
law), when the yield plateau is absent, εP= 0, and after the first part of the curve
the third occurs [4]. We apply the Hencky-von Mises theory [1]. According to this
theory, we assume that the increment of the strain vector components {�ε}pl =
{�εx, �εy, �γ xy} is proportional to the effective stress, and the factor depends on
the growth of the effective stress σ vM

⎡

⎢
⎣

�ε
pl
x

�ε
pl
x

�γ
pl
xy

⎤

⎥
⎦ = 3

2
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⎤
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⎡

⎣
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⎤

⎦, (23)
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Fig. 1 Schematic stress-strain diagram

where d p̄i =
√
2
3

√
(�ε

pl
x − �ε

pl
e )2 + (�ε

pl
x )2 + (�ε

pl
y )2 + 3

2 (�γ
pl
xy )2. Further we

calculate the nodal forces that correspond to the plastic strains considered at the
current stage �εpl, and a system of linear algebraic equations for a finite element is
solved

⎛

⎝
∫

V

[B]T [C][B]dV

⎞

⎠{�uγ } =
∫

V

[B]T [C]
{
�ε plβ

}
dV+

∫

S1

[N ]T {�p}dS (24)

{
�σβ

} = [C]
(
εβ − εplβ

)
, (25)

εβ = [B]uγ . (26)

At each step the recalculation of the stiffness matrix of the element according to
the stress-strain diagram (Fig. 1) with the correspondent tangent module Et should
be performed. It is considered [25, 26] that the load is added in small increment. The
relations (24)–(26) are applied from the moment of approaching the vonMises stress
σ i the value of the yield limit σ T . With each small load step, the required values of
the strain components are calculated as
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ε
plβ
i j = ε

plβ
i j + �ε

plβ
i j (27)

The calculations are performed until the “moment” when the external load value
is given by the conditions of the considered problem.

This algorithm can bemodified formaterials, which stress-strain diagramhas a so-
called “yield plateau”. This behavior is classified as an ideal plastic solid [1, 4]. The
problem is to determine the accumulated total strain in the solid at the “moment”
when the accumulated value of the von Mises strain εvM is approached and the
transition to the zone 3 of the diagram begins (Fig. 1). A direct iterative method is
used for calculations [25]. This method is based on the sequence of approximations,
which is presented for the uniaxial stress-strain state in this way

E(σ ) = E0, σ < σT ,

E(σ ) = E0ε0

ε
, σ > σT . (28)

Here the index «0» indicates the current values on the yield plateu.
In the case of a biaxial stress state, the current (tangential) module E(Et) depends

on the invariants of the strain or stress tensor. The algorithm for solving this can be
formulated as follows:

1. The problem of “elastic” strains, described by the system (19) is considered. The
components of the stress-strain state are determined using the initial values of
the elastic modulus E and the Poisson’s coefficient ν.

2. For each finite element new values of E and ν are determined, depending on the
strain values obtained in the previous step (von Mises strains and stresses are
used in Eq. (28)).

3. An “elastic” calculation again is made in which the parameters E and ν defined
in the previous step are used.

Steps 2 and 3 are repeated until convergence is achieved, for example, for n and
n + 1 steps the condition

∣∣εn+1
i − εni

∣∣ < δ is used.
For materials in which the stress-strain diagram after the yield plateau is of hard-

ening type (Fig. 1), the algorithms considered are combined: after the calculation of
the ideal plastic solid, the distribution of components of the stress-strain state is used
as the initial values for calculations based on the hardening model.

4 Short-Term Creep of Uniaxial Specimens

To verify the developed method of calculation and constitutive equations, several
experimental investigations were realized. Creep of uniaxial specimens and plates
with holes under tension made from steel 3 (its chemical composition in %: 0.58 –
0.67 C, 0.22 – 0.45 Si, 0.5 – 0.9 Mn, max 0.02 S, max 0.03P, 0.08 – 0.15 V, the rest is
Fe; closest analogues areA107 orUSt 37–2)was considered. This steel iswidely used
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inmanufacturing and in construction, for example, in form of complex profiles which
was bent from it. This technological operation can run for a rather long time (tens of
seconds) with a high level of stress. Steel sheets are produced by rolling, which leads
to the transversal isotropy of the creep properties. Therefore, for computer simulation
of technological processes it is necessary to have a proven method of calculation and
constitutive equation that are implemented in the corresponding software.

The results of the experimental study at room temperature of uniaxial specimens
from steel 3 under tension are given in [22]. In experiments with static loading 27
samples were tested at three stress levels: 378.7 MPa, 366.8 MPa and 352.3 MPa.
All exceed the yield limit σ y = 295.8 MPa. Specimens were cut from the sheets in
three directions—along, across the rolling direction and at an angle of 45° to the lat
one direction.

The results of the investigations confirmed the hypothesis of transversal isotropy
of the creep properties of this material at room temperature. Then the parameter’s
values for Eq. (4) were determined. Its integrated form was used:

εci = biσ
mtk . (29)

where: bi = ((α + 1)Bi )
1

α+1 , i = 1, 2, 3, m = n
α+1 , k = 1

α+1 . After processing the
experimental data, we obtained:

m = 18.305, k = 0.1887;
(
(α + 1)B̃

) 1
α+1 = b1 = 3.166.10−31 (10 MPa)−m/h, b2

= 0.75b1, b3 = 0.42b1, n = 96.99, α = 4.3, b1111 = 6.9 · 10−4, b1122 = −3.45 ·
10−4, b2222 = 6.7 · 10−4, b1212 = 1.85 · 10−4, (10 MPa)–2m/m+1/h2/m+1.

As an example, the curves of static short-term creep for specimens which were
cut in the rolling direction are presented in Fig. 2. Experimental data are presented
by points. Solid lines correspond to calculated data. The curves are built for tensional
stress values: curve 1: 378.7 MPa; curve 2: 366.8 MPa; curve 3: 352.3 MPa. In all
cases, the difference between the experimental and estimated data did not exceed
15%.

Experiments were also carried out according to the stepped periodic loading pro-
gram (Fig. 3).

In experiments, it was specified: Ts = 60 s. (0.0166 h), Tp = 240 s. (0.0066 h).
Experiments were done for 10 load cycles (total time 2400 s.). The stress values were
σ = 352.3MPa, σmax = 26.4MPa. During the first 60 s in a cycle, the specimenswere
loaded with a stress σ = 352.3MPa, then 180 s with the stress σ = 378.7MPa. These
stress values are the minimum and maximum load values used in static experiments.

The derived creep law for the periodic loading Eq. (11) was verified using com-
parison with the experimental curves. The calculation of the creep curves, which
corresponds to the cycle load applied in the experiment, was performed by devel-
oped computer program based on C-language. The results of calculations are shown
on Fig. 4. Here, curve 1 corresponds to the data for the specimens cutted in the
longitudinal direction, curve 2: transversal direction; curve 3 at an angle of 45° to
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Fig. 2 Static loading. Comparison of numerical and experimental creep curves (specimens cutted
in the rolling direction)

Fig. 3 Program of periodic
loading
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Fig. 4 Periodic loading. Comparison between calculated and experimental data

the rolling direction. Experimental data averaged by three specimens are marked by
points, calculated data presented by solid curves.

Figure 4 shows that the proposed creep equations for the case of periodic stress
action describe in a satisfactory manner the experimentally obtained curves starting
from the 4–5th cycle. The maximum error is obtained in first cycles and is equal to
35%. This takes place because for a small number (1–3) of load cycles, where the
value of the parameter μ cannot be considered as small, the averaged equation is not
entirely correct. The greater number of load cycles, the less error. Its value in 4–10th
cycles does not exceed 10%. It can be seen from the graphs that for the considered
creep time the application of the developed averaged equation is acceptable: starting
from the fourth load cycle, the difference in experimental and numerical results is
insignificant.

The testing of the method’s efficiency and the developed software for modeling
of transversally isotropic creep under assumption of plane stress state was performed
with numerical simulations of plane specimens cutted in different directions. In this
case, the specimens are modeled as plane rectangles, loaded with a traction along
the axis, which is parallel to their long side. Because the results of experiments were
obtained on plane specimens from steel 3, the same typical location of FE models
with orientation of 0°, 45° and 90° to the rolling direction was considered. Three FE
schemes corresponding to the specified directions are shown in Fig. 5

All three FE models were used for calculations up to 0.5 h, which correspond to
the time of the experiments. It was assumed in all calculations, that the models were
loaded by tensile traction equal to 378.7 MPa.
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Fig. 5 The location of finite element models of specimens under tension

The results of calculations for the case of static load are presented in Figs. 6, 7
and 8, where the comparison of experimental (points), calculated by Eq. (4) (dotted
lines) and FE results (solid lines) are presented. Figure 6 corresponds to the data
for the rolling direction, Fig. 7—transverse direction; Fig. 8—at an angle of 45° to
rolling direction. The results show that the calculated and FE data coincide with the
accuracy of 1–2%, which demonstrates the correctness of all algorithms, including
those related to the implementation of the creep law and time integration, and the
entire software as a whole. Differences in experimental and FE data are the same as
those when comparing them with the calculated ones.

Let us analyze now the results of the experimental data in the case of periodic
loading with the results of numerical creep modeling with Eq. (11), which were
obtained by asymptotic and averaging methods.We use the same FEmodels (Fig. 5).
The results are presented in Figs. 9, 10 and 11. The numerical results are shown by
solid lines and the experimental data by points.

The diagrams show that the developed software tool allows in general a satis-
factorying modeling of creep processes at periodic loading in steel 3. The differ-
ence between experimental and numerical results does not exceed 10–15% for time
domains which are after the first four loading cycles, which is similar to the prevoious
static case.At lownumber of cycles (2–4) the error is 25–30%.For all three directions,
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Fig. 6 Comparison of experimental, calculation and finite element data (rolling direction)

Fig. 7 Comparison of experimental, calculation and finite element data (transverse direction)
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Fig. 8 Comparison of experimental, calculation and finite element data (direction at an angle of
45° to the rolling direction)

Fig. 9 Comparison of experimental and finite element results (periodic load, rolling direction)
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Fig. 10 Comparison of experimental and finite element results (periodic load, transverse direction)

Fig. 11 Comparison of experimental and finite element results (periodic load, direction at an angle
of 45° to the rolling direction)
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the accuracy of modeling of one-dimensional experiments and two-dimensional cal-
culation schemes can be considered quite satisfactory.

5 Short-Term Creep of Plates with Holes. Experimental
Investigations

From the sheets of steel 3 (same material that was used for producing plane spec-
imens) rectangular plates with dimensions 160 × 34 mm were cut out. Each plate
was made with 5 holes: one central with diameter 10 mm, and four lateral ones with
a diameter 8 mm. Such a scheme was chosen to implement at certain plate’s points
the stress state, which corresponds to the range of values from creep experiments in
specimens. Plates were cut from sheets along the rolling direction. To fix the plates in
the AIMA-5-2 test machine, which is designed for tensile testing in creep conditions,
the upper and lower technological holes with a diameter of 10 mm were made. The
sheme of the plate is shown in Fig. 12. Seven plates were produced. A measuring
grid with a step in the longitudinal direction of 1 mm, and with step of 2 mm for
transversal one was mechanically added. Video recording was used to obtain data
for different moments of time.

The plates with 5 holes were tested at static and periodic tensile loading. In
the latter case the program of experiments included partly periodic unloading and
loading. Three plates were tested at static loading as well as 4 at periodic. Results of
measurements were averaged.

At first let us consider the case of static load. Plates were loaded by weight
of 3000 kg (which is equal to tension stress 135 MPa in plate’s net section is far
from loading hole) during 60 s. Experimental results for different time moments are
shown in Fig. 13a–c. From the analysis of photographs it is evident that there is a
significant plate’s deformation over the time, when circular holes turned into elliptic,
and with decreasing the width of the plate in the vicinity of their location. After an
instantaneous growth of the strains, their increasing continues in time.

The numerical data of the deformed state were determined by analyzing the resiz-
ing of the cells of the dimensional grid. Moment of time t= 3 s was considered as the
moment of obtaining plastic strains, then the data was analyzed with time steps up to
the moment t= 30 s. We did not succeed experimentally with a satisfactory accuracy
to determine the change in the values of displacement u (x, y) in the direction x, which
is transverse the direction of tension. Thus, the longitudinal displacements v(x, y)
were analyzed.

Below, we give the data defined by the measurements in some points of the plates,
in which there was the most significant strain increasing (Fig. 14). The data were
averaged for three plates. Due to the symmetry of the holes, the data for the left and
right halves were also analyzed and added for averaging.

Figure 14 shows the location of the points in which measurements were made for
different moments of time. Such points were chosen in the regions on the borders
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Fig. 12 Plate with 5 holes

of holes and between them, where the the most significant change in the grid was
determined.

Experimental data of varying the displacements in time are shown in Fig. 15,
where the points indicate the measured values. The analysis of the obtained results
shows the correspondence of character of the curves running in the case of primary
creep.Also, let us note their similarity to the curves obtained for specimens in uniaxial
tests.

As can be seen from Fig. 15, all the curves for the plate points are qualitatively
similar: they have first rapid growth regions at first 20 s, and then their rates decrease.
The curve 3 is an exception. It was built for point A, located at the boundary of the
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(а) t=3s (b) t=30s (c) t=60s

Fig. 13 Deformed plate at static load at different moments of time

Fig. 14 The location of the plate points in which the measurements of displacements were done (t
= 0 s)
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Fig. 15 Varying in time of displacements at the points of the plate, marked by symbols in Fig. 14
(static load)

Fig. 16 Periodic load of
plates with holes σ

tTs Tp

σ0

σmax

central hole, in which at approximately 50th second, the acceleration of creep begins.
According to these data, it is possible to conclude that in this moment the beginning
of the third section of the creep curve takes place. It corresponds to accelerated creep,
accompanied by a hidden damage. As is well known [3], just in this area, the stress
concentration takes place and creep fracture occurs.

Next, we consider the results of an experimental study of the deformation of plates
during periodic (cyclic) loading according to the scheme of Fig. 16.
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Fig. 17 Varying in time of displacement at the points of the plate, marked by the symbols in Fig. 14
(periodic load)

It was given as follows: for the time Ts = 10 s the plate was loaded by stress
135 MPa, as well as next 20 s by stress 121.5 MPa, thus Tp = 30 s. During the
experiments, it became clear that on the fifth load cycle there was a fracture of the
plates in the area of the technological hole designed to organize the load. However,
in the areas of transition from the central hole to the small one, as well as from the
small hole to the side of the plate, there was a characteristic clouding of the metal,
which may indicate a significant damage and close fracture in these places [3, 27].
The analysis of character of deformation showed that there were no fundamental
differences in strain running in comparison with experiments at static loading.

Let us consider the results of measurements of longitudinal plate displacements.
To obtain this data, a technique similar to that discussed above for static loading was
used. Data of measurements obtained by video processing of experiments, for the
same points of the Fig. 14 are shown in Fig. 17.

As can be seen from Fig. 17, all obtained curves for plate points are qualitatively
similar: with growth in the first 10 s the curves correspond to the curves of purely
static load, further due to partial unloading there is a significant deceleration of the
growth of displacements.

When plotting the time dependence for longitudinal displacements (Fig. 17), their
changes during periods of cycles with lower load values (from 11th to 30th s) were
fixed only at points A, B, E, and K, in which maximal displacements took place also
in the static experiments. At other points, varying of displacements in the indicated
parts of the periods was so small that it could not be determined. It can be explained
by the limitations of measurement technique.
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As it was already noted, in the places of transition from the central to the lateral
holes, characteristic changes of the metal were found, which can be regarded as
a evidence of close fracture. This conclusion is also confirmed by the graphs of
displacement for those points A and E located in those places. It these points starting
from 120th s the accelerated growth of displacement was experimentally obtained.

In general, according to results of experiments with periodic loading of plates it
is possible to conclude that there is a significant slowdown in the growth of displace-
ments compared with creep at static loading. The reason is partly unloading. So, for
example, at point A for 60 s the value of static displacement is 1 mm, and with a
periodic load −0.8 mm; at point E for 60 s. also it is equal 1 mm, and with periodic
loading −0.85 mm.

6 Short-Term Creep of Plates with Holes. Numerical
Simulation

The results of experimental studies of the deformation of a plate with five holes were
compared with numerical data have been obtained by use the developed method and
software. As a result of the load’s and plate’s symmetry, a half-plate model of 17
× 160 mm was used as a calculation scheme, and the plate on the upper side was
considered to be loaded with a uniform tension load p = 135 MPa (Fig. 18a). The
exact loading of the plate through the hole was also simulated numerically. The lower
boundary of the plate was considered to be rigidly fixed. The calculation scheme of
the plate with the finite element grid, numbering 838 nodes and 1474 elements, is
shown in Fig. 18a. This gridwas selected after preliminary elastic-plastic calculations
that were performed both in the FEM CREEP software and in ANSYS with the same
grids. It was established that the stress state is determined approximately the same,
with a difference of 10–15 MPa and qualitatively close zones with the same level
of stress. Distribution of von Mises stress is shown in Fig. 18b. The results of the
calculations show a significant stress concentration in the zones between the holes
and at an angle of approximately 45° to the holes in the directions to the outer sides
of the plates, the maximum value of von Mises stress is 394 MPa, which is close to
the material strength limit of 395.3 MPa.

Further, the modeling of the plate’s creep for 30 s was considered. In the calcula-
tions, the values of creep constants of the plate material, obtained by experimental
data processing, were used. Numerical simulations are carried out with a variable
integration step, from the initial value of 1 × 10−9 to 1 × 10−4 h.

The results of calculations using the FEM CREEP software were compared with
the data obtained after processing the video of experiments. Let us consider the
results of this comparison. The data of the deformation of plates near holes, where
a two-dimensional stressed state is realized, are analysed. The measurements were
compared for different moments of time up to 30 s. The values of the displacement
components v, mm were compared with the values obtained for the corresponding
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Fig. 18 FE model of the half of a plate (a), initial von Mises stress distibution, σ vM ·10−1MPa
(b) and deformed FE mesh, t = 30 s, scale 1:60 (c)

nodes of the finite element grid. The displacement components u with a given defor-
mation pattern have significantly lower values that could not be determined by the
used method of grids comparison.

A finite element grid, which is deformed due to calculation data for the time t =
30 s, is presented in Fig. 18c. Comparing it with Fig. 13b, where the photo of the
deformed plate is located for the same moment, allows us to draw a conclusion on a
qualitatively correct description of deformation under creep.

Let us consider quantitative estimates. Table 1 shows the results of the comparison
of experimental and numerically determined values of short-time creep displacement
for points located between the three holes in which there is a significant deformation
under creep running. The locations of points marked with symbols are presented in
Fig. 14. These points in finite element model correspond to the numbers of nodes,
shown in Fig. 19. Point K corresponds to the 424th node, which due to the applied
scale is not shown in Fig. 19.
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Table 1 Comparison of experimental and numerically determined displacements [mm] for t= 30 s

Point/
Node number

A/
44

B/
37

C/
270

D/
286

E/
250

F/
169

G/
258

H/
194

K/
424

Experimental
data

0.4 0.35 0.23 0.15 0.45 0.17 0.17 0.17 0.5

Numerical
data

0.32 0.34 0.25 0.21 0.3 0.2 0.13 0.19 0.34

Error, % 20 3 9 29 33 15 24 11 32

Fig. 19 Location of nodes of a finite element grid near three holes
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Fig. 20 Displacements versus time in points B, F (a) and in points C, G (b)

Analysis of the data from Table 1 shows that in the regions with the highest
displacement level, the maximum difference between numerical and experimental
data is 32–33%, but at other points, the errors are much lower.

Comparison of numerical (solid lines) and experimental data (points) for different
moments of time is shown in Fig. 20.

Analyzing the data of Fig. 20, which gives a comparison the displacement’s cal-
culation and experimental data at different points of the plate, we conclude that
numerical simulation qualitatively reflects the process of deformation in time. Quan-
titative differences range from 3 to 40% for various plate fragments. The latter value
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Table 2 Data on the stress redistribution in the vicinity between two holes, σ i, MPa

№ el. 1324 1309 1340 1361 1381 1404 1405 1429 1430 1454 1455

t = 0 s 254 268 331 332 340 338 349 340 367 358 385

t = 30 s 322 301 334 333 348 330 331 317 306 298 313

Fig. 21 The location of the elements for Table 2 in the applied finite element grid

is quite large, but it must be taken into account that the experimental data are also
determined with a certain error in the measurement.

Numerical simulation of the short-term creep of the plate also provides a quali-
tatively correct estimate of stress varying: there is a redistribution of stresses in the
vicinity between the holes, and between the holes and free side of the plate. The
qualitative character of the stress distribution does not change, and the most loaded
zones remain the same. As an example, let us consider the data of stress redistribution
in the zone between two holes (Table 2). The elements selected for comparison are
located between the upper and central holes, their numbers are shown in Fig. 21.
In the table, the elements are given starting with numbers at the upper holes and
finishing at the lower ones.
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Fig. 22 Comparison of numerical and experimental data (periodic load, points A, B and G)

It is evident from the analysis of Table 2 that for a short period of time (30 s) there
is a certain redistribution of von Mises stresses in the area between the holes. Near
the central hole there is a relaxation (from 385 to 313 MPa), and near the upper one
a certain growth presents.

Next, let us consider the periodic loading of these plates, comparing the experi-
mental and numerical creep results. According to the analysis of experimental data,
it can be seen that for comparison it is possible to use the data for four load cycles
of 2 min. If you analyze the data shown in Figs. 4, 9, 10 and 11, you can see that 4
is the limiting value of the cycles number, in which in uniaxial case the values with
a satisfactory error are obtained. Unfortunately, the peculiarities of the experiment
and the creep properties of used steel 3 did not provide the opportunity to increase
the number of cycles.

The analysis of the experimental study of creep of the considered plates shows
that there is no qualitative difference between the distribution of displacement and
the running of the deformation process in the case of static and periodic loading.
In this regard, as an example, we give in Fig. 22 only data from the comparison of
experimental and numerical results in some characteristic points (Fig. 14), selected
for analysis. Point B corresponds to the zone with maximum displacements, point A
is a characteristic point for the zone between the upper holes, and point G is located
between the lower ones. The calculated data are presented in Fig. 22 by solid lines
and the points correspond to experimental results. Experimental data for point A is
indicated by triangles, for a point B by squares, and for a point G by diamonds.

As can be seen from the results of the comparison, the varying of displacements
in creep process at complex two-dimensional stress state is qualitatively correctly
described by the calculated data. Their form, similar to the case of static loading,
corresponds to the form of primary creep cyrves. Reducing the creep rate compared
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Fig. 23 Comparison of calculated and experimental data for static and periodic loads (point B)

to the static load data, which takes place due to the load decreasing in the second
part of the period, is also described qualitatively correct.

Maximum error between numerical and experimental data was determined for the
first 10 s at all points, and the largest (at the point G) is 35%. The values for 120 s. (at
points C and F) are 25% and 27% respectively. The creep rate, which can be analyzed
by the slope of the curves, is evaluated satisfactorily, with an error of 10–15%. As
can be seen from the figures, there is an overestimation for numerical data for the first
periods. This can be explained by not very exact measurement technique, but also
by the insufficient number of load cycles for completely satisfactory experimental
conditions, which would require their greater number.

A comparison between calculated displacement curve at point B for cases of static
(curve 1) and periodic loading (curve 2) is presented in Fig. 23. As can be seen from
the graph, the errors are not very big. For the first ten seconds the experimental points
coincide, this occurred because in both cases the loading is the same. Differences of
5–8% between the numerical and experimental data are much smaller than the differ-
ence of 30% between the data of static and periodic loading, which can demonstrate
the possibility of numerical determination of the influence of periodic loading effect
in the complex stress state.

Numerical studieswhichwere done, comparison of their resultswith experimental
data, obtained at the same timewith a sufficient error degree, provides the opportunity
to use the developed software for solving the practical problems.
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7 Conclusions

The chapter provides a description of themethod for solving the plane creep problems
for structural elements made of materials with transversally isotropic creep proper-
ties. The case in which the instantaneous load leads to the appearance of plastic
deformations is considered.

The creep law for the case of periodic loading at primary short-term creep for
cases of uniaxial and plane stress states is experimentally verified. The values of the
constants for the equation describing the transversally isotropic creep are obtained.
It is established that:

• the creep curves in all directions (along the width, across and at an angle of 45º to
the direction of rolling) of steel sheets are similar;

• the maximum creep rate is realized in the direction along the rolling, and the
minimum takes place at the direction determining by an angle of 45° to rolling;
the form of the creep curves corresponds to the primary creep;

• the main part of the deformation is obtained in the first minutes of creep, which
gives the possibility to classify the curves by the type of short-term creep;

• creep almost stops after 30 min of deformation.

The verification study of the calculated method was carried out by comparing
the numerical and experimental results of uniaxial and plane stress conditions that
occurs in investigated plates with five holes. The satisfactory for physically nonlinear
two-dimensional problems deviation of calculated and experimental data within the
limits of 25–30%, with the exception of two points in the case of periodic loading,
in which the level of displacement is smaller than more than twice as much as the
maximum, is found. The differencemay be explained by themeasurement technique.

The proposedmethod for the periodic load case due to its similarity to the standard
method for static problems as well as due to decreasing of calculation time can be
recommended for the analysis of practical problems with the similar forms of the
cycle, which number has not be less than four.
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