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14.1 Introduction

A theory of connections is very important part of modern differential geometry.
The discovery of interconnection between this theory and the gauge field theories
has given a powerful impetus to development of the entire theory. In the present
paper we track the development of a concept of connection from the simplest
case of the canonical connection in the n-dimensional Euclidean space R

n to its
generalizations in non-commutative geometry. The present paper is written on the
basis of lectures delivered to the doctoral level students of Division of Applied
Mathematics of University of Mälardalen within the framework of NordPlus Higher
Education Program 2017.

In the first subsections of Sect. 14.2 we describe the structures of elementary
differential geometry of n-dimensional Euclidean space R

n such as vector fields
and differential 1-forms. We lay particular stress on algebraic aspects of these
structures and bring a reader to an idea of algebraic structure which is called a
first order differential calculus over an algebra. Then we explain a basic idea of
non-commutative geometry, where the commutative algebra of smooth functions
C∞(R)n on R

n is replaced by a non-commutative algebra. We show that in order
to construct the differential 1-forms on a non-commutative space we should have a
coordinate first order differential calculus with right partial derivatives over a non-
commutative algebra. As an example of a coordinate first order differential calculus
with right partial derivatives we consider the differential calculus on the quantum
hyperplane. In Sect. 14.3 we describe the algebra of differential forms with exterior
differential in the n-dimensional Euclidean space R

n and its generalization in an
approach of non-commutative geometry, which is called a higher order differential
calculus over an algebra. Particularly we explain the notion of the universal
differential graded algebra. In Sect. 14.4 we describe the canonical connection
in n-dimensional Euclidean space and derive its Cartan’s structure equations. In
Sect. 14.5 we develop a generalization of the theory of connection on modules with
the help of the concept of q-differential graded algebra, where q is a primitive N th
root of unity.

14.2 Vector Fields, Differential 1-Forms in R
n

and Non-commutative First Order Differential Calculus

In this section we describe the Lie algebra of smooth vector fields in n-dimensional
Euclidean space R

n and an approach of non-commutative geometry to a first order
differential calculus in a non-commutative space. In what follows we will use the
Einstein summation convention over repeated subscript and superscript.
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14.2.1 Vector Fields in the n-Dimensional Euclidean Space Rn

Consider the n-dimensional space Rn. This space has the structure of n-dimensional
vector space with the component-wise addition of two vectors and the component-
wise multiplication by real numbers. If we consider an element (v1, v2, . . . , vn)

of R
n as a vector then it will be denoted by �v = (v1, v2, . . . , vn). For any two

vectors �v = (v1, v2, . . . , vn), �w = (w1, w2, . . . , wn) we have the inner product
< �v, �w >= ∑

i vi wi , which determines the Euclidean structure of Rn. If we do not
use the vector space structure of Rn then an element (p1, p2, . . . , pn) will be called
a point of Rn and denoted by p = (p1, p2, . . . , pn). The coordinate functions of
R

n will be denoted by x1, x2, . . . , xn and by definition xi(p) = pi . The canonical
basis for the Euclidean vector space Rn will be denoted by �e1, �e2, . . . , �en, where the
ith component of �ei is 1 and the others are zeros.

Let U ⊂ R
n be an open subset. A real-valued function f : U → R is called

a smooth function if it has continuous partial derivative of any order. The set of
all smooth functions on the n-dimensional Euclidean space R

n will be denoted
by C∞(Rn). The set C∞(Rn) endowed with the pointwise addition of smooth
functions and the multiplication of a smooth function by a real number is the
infinite dimensional vector space. We remind that a vector space A is said to be
a unital associative algebra if A is equipped with a product a · b, where a, b ∈ A ,
such that a · (b · c) = (a · b) · c (associativity), and this product has the identity
element e satisfying a · e = e · a = a. If, in addition to associativity, the product
a · b of any two elements is commutative, i.e. a · b = b · a, a unital associative
algebra A is called commutative. The vector space C∞(Rn) of smooth functions
endowed with the product fg of two smooth functions f, g, which is defined by
(fg)(p) = f (p) g(p), is the commutative unital associative algebra, where the
identity element is the function, whose value at any point of the space is 1. If
we ignore the multiplication of smooth functions by scalars (real numbers) then
C∞(Rn) is the commutative unital associative ring.

A tangent vector to the n-dimensional Euclidean space R
n at a point p ∈ R

n is
a pair (p; �v) ∈ R

n × R
n, which will be denoted by �vp , i.e. �vp = (p; �v). A tangent

space of all tangent vectors to R
n at a point p will be denoted by TpR

n. The vector
space and Euclidean structure of Rn can be extended to any tangent space TpR

n in
the natural way

�vp + �wp = (p; �v + �w), a�vp = (p; a�v), < �vp, �wp >=< �v, �w >, a ∈ R.

Then any tangent vector �vp = (p; �v) = (p; v1, v2, . . . , vn) can be expressed as
�vp = vi �ep,i , where �ep,i = (p; �ei). The disjoint union of tangent spaces

TRn = ∪p∈RnTpR
n, (14.2.1)

will be referred to as the tangent bundle over the n-dimensional Euclidean spaceRn.
The projection π : TRn → R

n is defined by π(�vp) = p. A section of the tangent
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bundle TRn is a smooth mapping X : Rn → TRn such that π ◦X = idRn . A smooth
section X of the tangent bundle TRn is called a vector field in the Euclidean space
R

n. Obviously any vector field X is uniquely determined by n smooth functions
X1,X2, . . . , Xn such that

X : p ∈ R
n 	→ Xp = (p; X1(p),X2(p), . . . , Xn(p)) ∈ TpR

n.

The functions X1,X2, . . . , Xn will be called the components of a vector field
X. The vector space structure of a tangent space TpR

n induces the vector space
structure in the set D of all vector fields.

Let M be an Abelian group and A be a unital associative ring. We remind that
M together with a mapping (a, u) ∈ A × M 	→ a · u ∈ M satisfying

(a + b) · u = a · u + b · u, a · (u + v) = a · u + a · v, (ab) · u = a · (b · u), e · u = u,

where a, b ∈ A , u, v ∈ M and e is the identity element of A , is called a left A -
module. A notion of right A -module is defined in a similar manner. A -bimodule is
an Abelian groupM , which is both left and rightA -module and (a·u)·b = a·(u·b).
One can extend the notion of a module (left, right or bimodule) over a ring to a
notion of a module over a unital associative algebra assuming that in this case A ,M
are vector spaces and scalars commute with everything. A left A -module M is
referred to as finitely generated if there is a set {u1, u2, . . . , un} of elements of M
such that any element u of M can be written as u = a1 u1 + a2 u2 + . . . + an un,
where a1, a2, . . . , an ∈ A . If {u1, u2, . . . , un} are linearly independent (over A )
then a finitely generated left A -module M is called a free module with a basis. If a
ring A has an invariant basis number then the cardinality of any basis for free left
A -module is called the rank of a free module.

It turns out that the concept of a module is applicable to the algebra of smooth
functions C∞(Rn) and the vector space of vector fields D, and plays an important
role in constructing noncommutative generalizations of vector fields. Indeed given
a smooth function f and a vector field X one can define the product fX (left
multiplication of vector fields by smooth functions) as the vector field fX : p 	→
f (p) Xp . It is easy to check that this product defines the structure of left C∞(Rn)-
module in D. Analogously one can define a structure of right C∞(Rn)-module in
D, and then from f (p) Xp = Xp f (p) (numbers commute with vectors) it follows
that in the case of the Euclidean space R

n functions commute with vector fields
fX = Xf .

Let us define the vector fields Ei, i = 1, 2, . . . , n by the formula Ei(p) = �ep,i ,
where p ∈ R

n. Making use of the left multiplication of vector fields by smooth
functions one can express any vector field X, whose components are functions
X1,X2, . . . , Xn, in the form X = Xi Ei . Evidently the vector fields Ei, i =
1, 2, . . . , n are linearly independent (over the ring of smooth functions). The ring of
smooth functions C∞(Rn) is commutative, hence it has an invariant basis number,
and consequently the formula X = Xi Ei shows that D is the free left C∞(Rn)-
module of rank n. We can consider the basis {E1, E2, . . . , En} for the free left
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C∞(Rn)-module D as the frame field, i.e. as the mapping which attaches to each
point p of the Euclidean space the frame {�ep,i}ni=1 of tangent space TpR

n. We
will denote this frame field by E and call it the canonical frame field for the
tangent bundle TRn. Obviously the canonical frame field E is orthonormal, i.e.
< Ei,Ej >= δij .

14.2.2 Vector Field as the Directional Derivative

Let f be a smooth function and X be a vector field in R
n. A vector field X at a

point p is the tangent vector Xp = (p; �v) ∈ TpR
n. How we can measure a rate

of change of a function f at a point p in the direction of tangent vector Xp? For
this purpose we can use the directional derivative of a function. Evidently there is
a parametrized curve α : I → R

n, where I ⊂ R is an open interval, such that
α(0) = p (curve passes through a point p), and �α′(0) = Xp (the tangent vector to a
curve at a point p is Xp). For instance one can take the straight line α(t) = p + t �v.
Then the directional derivative Xf at a point p is defined by

Xf (p) = d

dt
(f ◦ α(t))|t=0. (14.2.2)

The directional derivative of a function f determines a new smooth function Xf ,
whose value at any point of the Euclidean space is defined by (14.2.2). Hence a
vector field X induces the directional derivative and can be considered as a linear
mapping X : C∞(Rn) → C∞(Rn), which satisfies the Leibniz rule X(fg) =
(Xf ) g + f (Xg). An approach to a vector field X as the directional derivative is
very useful because it makes clear an algebraic nature of a vector field. We remind
that a linear mapping δ : A → A of an algebra A is said to be a derivation if it
satisfies δ(ab) = δ(a) b + a δ(b), where a, b ∈ A . Thus a vector field considered
as a directional derivative of a function is a derivation of the algebra C∞(Rn). It can
be proved that the vector space of all derivations of the algebra C∞(Rn) coincides
with the vector space of vector fields D, but generally if we consider the algebra of
N th order differentiable functions this is not the case.

It can be shown that if we consider a vector field X in the Euclidean space R
n as

the derivation of the algebra C∞(Rn) then we can identify a vector field X with the
first order differential operator

X = Xi ∂

∂xi
. (14.2.3)

This formula is equivalent to X = Xi Ei , because the constant vector field Ei ,
considered as the directional derivative, can be identified with partial derivative ∂

∂xi .

Consequently the vector fields ∂

∂x1 , ∂

∂x2 , . . . , ∂
∂xn form the basis for the free left

C∞(Rn)-module D of vector fields. From this it follows that at any point p of the
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n-dimensional Euclidean space there is the canonical basis ∂

∂x1 |p, ∂

∂x2 |p, . . . , ∂
∂xn |p

for the tangent space TpR
n.

Next algebraic structure, which plays an important role in the theory of vector
fields, is a Lie algebra. We remind that a vector space g is said to be a Lie algebra
if it is equipped with a Lie bracket [ , ] : g × g → g, which for any x, y, z ∈ g
satisfies

• [x, y] = −[y, x] (skew-symmetry),
• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity).

Consider the commutator of two vector fields [X,Y ] = X ◦ Y − Y ◦ X. It is easy
to verify that because of the symmetry (Schwarz’s theorem) of second order partial
derivatives the commutator of two vector fields is the vector field. Indeed if X =
Xi ∂

∂xi and Y = Y j ∂
∂xj then

[X,Y ] = (Xi ∂Y j

∂xi
− Y i ∂Xj

∂xi
)

∂

∂xj
. (14.2.4)

Clearly the commutator is skew-symmetric, and it can be checked by straightfor-
ward calculation that it satisfies the Jacobi identity. Hence the commutator of two
vector fields is the Lie bracket, and it determines the structure of Lie algebra in D.
It should be pointed out that this Lie algebra is infinite-dimensional.

14.2.3 Differential 1-Forms in the Euclidean Space R
n

A calculus of differential forms is dual to the calculus of vector fields. Let T∗
pR

n be
the dual or cotangent space of the tangent space TpR

n at a point p. We remind that
in the case of finite dimensional vector spaces the dual space V ∗ of a vector space V

is the vector space of all linear R-valued functions on V . We will call the elements of
dual space covectors. We write an element of the cotangent space T∗

pR
n at a point p

as the pair (p; φ), where p is a point of Euclidean space and φ : Rn → R is a linear
function, and define (p; φ)(�vp) = φ(�v), where �vp = (p; �v) ∈ TpR

n. Consider the
disjoint union

T∗
R

n = ∪p∈RnT∗
pR

n,

which will be referred to as the cotangent bundle over the Euclidean space R
n.

Define the projection π̃ : T∗
R

n → R
n by π̃(p; φ) = p. Then a differential form of

degree 1 or 1-form ω is a smooth section of the cotangent bundle ω : Rn → T∗
R

n,
i.e. it satisfies π̃ ◦ ω = idRn . Hence a differential 1-form is a smooth mapping
ω : p 	→ ωp ∈ T∗

pR
n.

The vector space structure of T∗
pR

n induces the vector space structure in the

set of all 1-forms, and this vector space will be denoted by �1(Rn). The infinite-
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dimensional vector space of 1-forms can be considered as a bimodule over the
algebra of smooth functions. Indeed given a smooth function f and a 1-form ω

one can define the product f · ω (left multiplication of 1-forms by functions) as
the 1-form such that (f · ω)p = f (p) ωp , where p is a point of Rn. Since real
numbers commute with covectors the right-hand side of this formula can be written
as ωp f (p), which means that we can define the product ω · f (right multiplication
of 1-forms by functions) by simply setting it equal to f ·ω. These two products f ·ω
and ω ·f determine the C∞(Rn)-bimodule structure of �1(Rn). Next we define the
value of differential 1-form ω on a vector field X as the function f = ω(X), whose
value at a point p is defined by f (p) = ωp(Xp). Evidently for any functions g, h

and any vector fields X,Y it holds ω(gX + hY ) = f ω(X) + g ω(Y ). This shows
that a differential 1-form ω determines the homomorphism ω : D → C∞(Rn) of
C∞(Rn)-bimodules. Two differential forms ω1, ω2 are equal ω1 ≡ ω2 iff for any
vector field X it holds ω1(X) = ω2(X). Hence a 1-form ω is uniquely determined
if we show how to compute its value on any vector field X (this dependence on
a vector field should be C∞(Rn)-linear). We can apply this way of constructing
differential 1-forms to functions. Indeed given a function f ∈ C∞(Rn) we can
define the differential 1-form df by means of the formula

df (X) = Xf, (14.2.5)

where X is a vector field. Hence any smooth function f induces the differential 1-
form df , i.e. we have the linear mapping f ∈ C∞(Rn) → df ∈ �1(Rn). Because
a vector field X is the derivation of the algebra of smooth functions, it holds

d(fg)(X) = X(fg) = (Xf ) g + f (Xg) = df (X) g + f dg(X),

or, omitting a vector field X and making use of C∞(Rn)-bimodule structure of
�1(Rn), we can write

d(fg) = df · g + f · dg. (14.2.6)

We see that the formula df (X) = Xf defines the linear mapping d : C∞(Rn) →
�1(Rn) from the algebra to bimodule over this algebra, which satisfies (14.2.6).

Now our aim is to find an expression for a 1-form ω in the coordinates xi of the
n-dimensional Euclidean space Rn. For this purpose we remind that if V ∗ is the dual
space of a finite dimensional vector space V , �ei is a basis for V then the elements ei

of the dual space V ∗ defined by ei(�ej ) = δi
j form the basis for V ∗, which is called

the dual basis of �ei . Any element (covector) φ of the dual space V ∗ can be expressed
in terms of dual basis as φ = φi ei , where φi are real numbers. We also remind that
xi are regarded as the coordinate functions on the Euclidean space R

n. Hence each
coordinate function xi induces the 1-form dxi , and, according to the definition, we
have

dxi(
∂

∂xj
) = ∂xi

∂xj
= δi

j .
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This shows that at any point p the covectors dx1
p, dx2

p, . . . , dxn
p form the

basis for the cotangent space T∗
pR

n, which is dual to the canonical basis
∂

∂x1 |p, ∂

∂x2 |p, . . . , ∂
∂xn |p. From this it is easy to conclude that any 1-form ω can

be expressed as follows ω = ωi dxi , where ωi are smooth functions. This also
shows that the 1-forms dxi form the basis for the bimodule of 1-forms �1(Rn)

over the algebra C∞(Rn). Hence �1(Rn) is free left (or right) C∞(Rn)-module of
rank n.

14.2.4 Non-commutative First Order Differential Calculus

Now we can draw some conclusions from the previous considerations. The impor-
tant conclusion is that the algebra of smooth functions C∞(Rn) is the basic structure
for the calculus of vector fields and differential 1-forms. Indeed we see that a vector
field can be identified with the derivation of this algebra and differential 1-forms
�1(Rn) can be considered as elements of the bimodule over this algebra. This
observation underlies an approach used in non-commutative geometry. The algebra
C∞(Rn) is commutative, but we can consider a non-commutative algebra, which by
its properties should be close, in a sense, to C∞(Rn). This non-commutative algebra
will mimic an algebra of functions on our space, and, making use of this algebra,
we can then develop structures of differential geometry such as a calculus of vector
fields, differential forms and so on. Peculiar property of this approach to geometry
is that we do not need a notion of a point of our space because the only thing which
we use to develop a differential geometry is an algebra of functions. It is worth to
mention that our main goal is the algebraic aspect of noncommutative geometry
approach, that is, we ignore the topological questions of functional spaces.

Let A be a unital associative algebra, which is not necessarily commutative. In
order to be able to model the algebraic aspect of the calculus of differential forms
developed in the previous subsection, we should have a bimodule over this algebra.
We will denote this A -bimodule by M . Now we can give a general definition of
a first order differential calculus over a unital associative algebra [14]. A triple
(A , d,M ), where A is a unital associative algebra, M is an A -bimodule and
d : A → M is a linear mapping, is said to be a first order differential calculus
over an algebra A if d satisfies the Leibniz rule d(ab) = da · b + a · db, where
a, b ∈ A . If A is a commutative (non-commutative) algebra then a first order
differential calculus (A , d,M ) is called a commutative (non-commutative) first
order differential calculus. Particularly the triple (C∞(Rn), d,�1(Rn)), where d

is defined by (14.2.5), is the commutative first order differential calculus over the
algebra of smooth functions in the n-dimensional Euclidean space R

n.
Given a unital associative algebra A one can construct a universal first order

differential calculus. Indeed the tensor product A ⊗2 = A ⊗A is the A -bimodule,
where the left and right multiplications by elements of A are defined by

a · (b ⊗ c) = (ab) ⊗ c, (b ⊗ c) · a = b ⊗ (ca).
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For any a ∈ A define the linear mapping d : A → A ⊗2 by da = e ⊗ a − a ⊗ e,
where e is the identity element of A . Applying this mapping to product of two
elements

d(ab) = e ⊗ (ab) − (ab) ⊗ e = e ⊗ (ab) − a ⊗ b + a ⊗ b − (ab) ⊗ e

= (e ⊗ a − a ⊗ e) b + a (e ⊗ b − b ⊗ e) = da · b + a · db,

we see that d satisfies the Leibniz rule and thus (A , d,A ⊗2) is the first order
differential calculus, which is referred to as the universal first order differential
calculus over A [7].

A first order differential calculus over an algebra is very general algebraic
concept and in order to make it more close to differential 1-forms in the n-
dimensional Euclidean space we can use the fact that �1(Rn) is the free left (or
right) C∞(Rn)-module of rank n and the set {dxi}ni=1 of 1-forms can be taken as the
basis for this module. Let (A , d,M ) be a non-commutative first order differential
calculus over an algebra A . Assume that the right A -module M is free module
of rank n and ξ i , i = 1, 2, . . . , n is a basis for this module. In analogy with the
differential calculus in the Euclidean space R

n one can define the right partial
derivatives ∂i : A → A by da = ξ i ∂ia. In this case a first order differential
calculus (A , d,M ) is called a first order differential calculus with right partial
derivatives (r.p.d.). Now the left A -module structure of M induces the mappings
Hi

j : a ∈ A 	→ Hi
j (a) ∈ A defined by the formula a ξi = ξj H i

j (a), where a is an
element of algebra A . It can be proved [4] that the right partial derivatives ∂i satisfy
the twisted Leibniz rule

∂i(ab) = (∂ia) b + H
j
i (a) (∂jb), a, b ∈ A . (14.2.7)

We can compose the nth order matrix H(a) = (H
j

i (a)) over A by positioning the

element H
j

i (a) at the intersection of j th column and ith row. It can be proved that
H(ab) = H(a) H(b), which shows that H is the homomorphism from an algebra
A to the algebra of nth order matrices Matn(A ) over A .

Next assume that a unital associative algebra A is generated by variables xi, i =
1, 2, . . . , n which obey the relations fα(x1, x2, . . . , xn) = 0, α = 1, 2, . . . ,m,
where each fα(x1, x2, . . . , xn) is the finite polynomial of variables x1, x2, . . . , xn

and dxi = ξ i . In this case a first order differential calculus (A , d,M ) with r.p.d.
is called a coordinate first order differential calculus [4]. Clearly in this case the
generators x1, x2, . . . , xn can be viewed as analogs of coordinate functions.

14.2.5 Two Dimensional Quantum Space

A well known example of first order non-commutative differential calculus can
be constructed in the case of the quantum hyperplane [13]. As it was mentioned
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before, in non-commutative geometry approach one constructs and studies various
structures of differential geometry in a non-commutative space by means of algebra
of functions on this space. The algebra of functions on the quantum hyperplane
is the algebra of finite polynomials over C generated by variables x1, x2, . . . , xn,
which obey relations

xixj = q xjxi, (14.2.8)

where q is a non-zero complex number. The generators of the algebra x1, x2, . . . , xn

can be considered as the coordinate functions on the quantum hyperplane. Partic-
ularly if n = 2 then the algebra of functions generated by x, y, which obey the
relations

xy = q yx, (14.2.9)

will be referred to as the algebra of functions on the quantum plane and denoted
by Cq . Our aim in this subsection is to construct a first order differential calculus
over the algebra of functions on the quantum plane. It is useful to write the
relation (14.2.9) in the form r(x, y) = 0, where r(x, y) = xy − q yx.

According to the notion of first order differential calculus over an algebra
explained in the previous subsection, we have to construct a Cq -bimodule Mq

together with a differential d : Cq → Mq , which satisfies the Leibniz rule. For this
purpose we consider the right Cq -module Mq freely generated by ξ, η. We define
the Cq -bimodule structure of Mq by putting

xξ = ξ H 1
1 (x) + η H 1

2 (x), xη = ξ H 2
1 (x) + η H 2

2 (x), (14.2.10)

yξ = ξ H 1
1 (y) + η H 1

2 (y), yη = ξ H 2
1 (y) + η H 2

2 (y), (14.2.11)

where

H : x 	→
(

H 1
1 (x) H 2

1 (x)

H 1
2 (x) H 2

2 (x)

)

, H : y 	→
(

H 1
1 (y) H 2

1 (y)

H 1
2 (y) H 2

2 (y)

)

, (14.2.12)

is a homomorphism from the algebra of functionsCq to the algebra of 2×2-matrices
over Cq defined on the generators. Hence for any two functions f, g ∈ Cq it holds
H(fg) = H(f )H(g). Now we can define a differential d : Cq → Mq . Since
differential is a linear mapping and it satisfies the Leibniz rule, it suffices to define it
on the generators x, y. In order to have a coordinate first order differential calculus
with r.p.d. we put dx = ξ, dy = η. As it is shown in the previous subsection the
differential d induces the right partial derivatives

df = dx ∂xf + dy ∂yf, f ∈ Cq, (14.2.13)
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which satisfy the twisted Leibniz rule (14.2.7)

∂x(fg) = (∂xf ) g + H 1
1 (f ) ∂xg + H 2

1 (f ) ∂yg, (14.2.14)

∂y(fg) = (∂yf ) g + H 1
2 (f ) ∂xg + H 2

2 (f ) ∂yg. (14.2.15)

Thus our first order differential calculus is coordinate differential calculus with r.p.d.
Since we defined the differential d by dx = ξ, dy = η, the relations (14.2.10)

and (14.2.11) can be considered as commutation relations between coordinate
functions x, y and their differentials dx, dy. It is worth to mention that two
matrices H(x),H(y) completely determine the coordinate first order differential
calculus with r.p.d. over the algebra of functions on the quantum plane. Hence
the matrices (14.2.12) can be considered as parameters of a possible differential
calculus. Obviously these matrices should be compatible with the defining relation
of quantum plane r(x, y) = xy − q yx = 0. Hence the matrices H(x),H(y) have
to satisfy the following conditions

∂xr(x, y) = 0, ∂yr(x, y) = 0, H(r(x, y)) = 0. (14.2.16)

We find

∂x(xy − q yx) = y +H 2
1 (x)− q H 1

1 (y), ∂y(xy − q yx) = H 2
2 (x)− qx − q H 1

2 (y).

Hence the conditions ∂xr(x, y) = 0, ∂yr(x, y) = 0 imply

H 2
1 (x) = qH 1

1 (y) − y, H 2
2 (x) = qH 1

2 (y) + qx, (14.2.17)

which can be written as

H 2(x) = qH 1(y) +
(−y

qx

)

, (14.2.18)

where Hi(x)(H i(y)) is the ith column of the matrix H(x) (H(y)).
From H(r(x, y)) = 0 it follows

H 2(y) H i
2(x) = q−1H(x) H i(y) − H 1(y) H i

1(x), i = 1, 2. (14.2.19)

The simplest case is when the matrices H(x),H(y) depend linearly on the
coordinates x, y. Hence we assume

H(x) = Ax + By, H(y) = Cx + Dy,
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where A,B,C,D are complex matrices. It follows from (14.2.18) that these
matrices must satisfy

A2 = q C1 +
(

0
q

)

, B2 = q D1 +
(−1

0

)

. (14.2.20)

From (14.2.19) it follows that

C2Ai
2 − q−1ACi + C1Ai

1 = 0, (14.2.21)

D2Ai
2 − ADi + D1Ai

1 + qC2Bi
2 − q−1BCi + qC1Bi

1 = 0, (14.2.22)

D2Bi
2 − q−1BDi + D1Bi

1 = 0. (14.2.23)

Since H(y) = Cx + Dy it is natural to seek a solution on the assumption C = 0.

Then the first condition in (14.2.20) immediately gives

A2 =
(

0
q

)

.

Thus A2
1 = 0, A2

2 = q . Now the condition (14.2.21) is identically satisfied and the
condition (14.2.22) takes the form

D2Ai
2 − ADi + D1Ai

1 = 0. (14.2.24)

The second natural assumption is that the matrices A,D are diagonal, i.e.

A =
(

q2 0
0 q

)

, D =
(

γ1 0
0 γ2

)

,

where α1, α2, γ1, γ2 are different from zero. Then from the second formula
in (14.2.20) we get B2

1 = qγ1 − 1, B2
2 = 0. It is easy to verify that now the

condition (14.2.24) is identically satisfied, while Eq. (14.2.24) gives

(1 − q−1)γ1B
1
1 = 0, (γ2 − q−1γ1)B

1
2 = 0, (γ1 − q−1γ2)B

2
1 = 0. (14.2.25)

Since we assume γ1 �= 0, it follows from the first relation that B1
1 = 0. The second

and third relations have a symmetric form and we can solve them either by putting
γ2 − q−1γ1 = 0, B2

1 = 0 or γ1 − q−1γ2 = 0, B1
2 = 0 (other choices lead either

to restriction of q , which is unacceptable, or to B = 0, which makes the whole
construction very indeterminate). In order to be more specific, we take γ1−q−1γ2 =
0, B1

2 = 0 and fix γ1 = q . Then γ2 = q2, and we finally obtain the well known first
order coordinate differential calculus with r.p.d. on the quantum plane

x dx = q2dx x, x dy = (q2 − 1) dx y + q dy x, (14.2.26)

y dx = q dx y, y dy = q2 dy y. (14.2.27)
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14.3 Algebra of Differential Forms and Differential Graded
Algebra

In this section we describe the higher order differential forms in the n-dimensional
Euclidean space. We lay particular stress on an algebraic structure of differential
forms and bring a reader to idea of a notion of differential graded algebra. We
analyze in details the structure of differential graded algebra by pointing out that
it contains the first order differential calculus. We explain the notion of universal
differential graded algebra over a first order differential calculus.

14.3.1 Algebra of Differential Forms in R
n

In the previous section we showed how one can construct the calculus of differential
1-forms in the n-dimensional Euclidean space and its possible generalizations
within the framework of noncommutative geometry. In order to continue this
construction to higher degree differentials forms in R

n we attach to each point p

of the Euclidean space a vector space of totally skew-symmetric multilinear real-
valued k-forms ∧k(T∗

pR
n). The disjoint union ∧k(T∗

R
n) = ∪p ∧k (T∗

pR
n) is

referred to as the vector bundle of exterior k-forms over the Euclidean space R
n.

An element of this bundle can be written in the form (p; ϕ), where p is a point of
the Euclidean space and ϕ is a totally skew-symmetric multilinear k-form on the
vector space Rn, that is

ϕ : Rn × R
n × . . . × R

n (k times) → R,

which for any permutation σ = (i1, i2, . . . , ik) of integers (1, 2, . . . , k) satisfies

ϕ(�vi1 , �vi2 , . . . , �vik ) = (−1)|σ | ϕ(�v1, �v2, . . . , �vk),

where |σ | is the parity of a permutation. We consider the pair ϕp = (p; ϕ) ∈
∧k(T∗

pR
n) as the k-form on the tangent space TpR

n, where

ϕp(�vp;1, �vp;2, . . . , �vp;k) = ϕ(�v1, �v2, . . . , �vk), �vp;i = (p; �vi).

The projection π(k) : ∧k(T∗
R

n) → R
n is defined in the natural way π(k) ϕp = p.

A smooth section θ : R
n → ∧k(T∗

R
n) of the vector bundle of exterior k-

forms is referred to as a differential k-form. The vector space of all differential
k-forms will be denoted by �k(Rn) and the degree of a differential k-form θ

will be denoted by |θ |, i.e. |θ | = k. Similar to differential 1-forms we can
define the products f θ, θf , where f is a smooth function, by means of point-
wise multiplication and since scalars commute with vectors we have f θ = θf .
Hence the vector space �k(Rn) can be regarded as the bimodule over the algebra
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C∞(Rn). The value of a differential k-form on vector fields X1,X2, . . . , Xn is
the function f = θ(X1,X2, . . . , Xn), whose value at a point p is defined by
f (p) = θp((X1)p, (X2)p, . . . , (Xk)p).

Let ω be a differential k-form and θ be a differential l-form. The wedge product
ω∧ θ of two differential forms ω, θ is the differential (k + l)-form, which is defined
by

ω ∧ θ(X1,X2, . . . , Xk+l ) =
∑

σ

(−1)|σ |ω(Xi1 ,Xi2 , . . . , Xik )

× θ(Xj1 ,Xj2, . . . , Xjl ), (14.3.1)

where σ = (i1, i2, . . . , ik, j1, j2, . . . , jl) is a permutation of integers (1, 2, . . . , k +
l) such that i1 < i2 < . . . < ik, j1 < j2 < . . . < jl and sum is taken over all such
permutations. It can be proved that the wedge product of differential forms has the
following properties:

(i) ω ∧ θ = (−1)|ω||θ |θ ∧ ω,
(ii) (ω ∧ θ) ∧ χ = ω ∧ (θ ∧ χ), i.e. the wedge product of differential forms is

associative.

It is useful to add the algebra of smooth functions C∞(Rn) to the sequence �k(Rn),
k = 1, 2, . . ., of the vector spaces of differential forms by assigning degree zero to
functions. Hence we identify the vector space of differential 0-forms with C∞(Rn),
i.e. �0(Rn) ≡ C∞(Rn). In order to complete the construction of algebra of
differential forms we introduce the direct sum of vector spaces �(Rn) = ⊕i�

i(Rn).
Evidently �(Rn) is closed under the wedge product of differential forms and hence
it is the associative unital algebra, which is called the algebra of differential forms in
the n-dimensional Euclidean space. By unital we mean that the constant function 1,
whose value at any point is one, can be taken as the identity element of the algebra
of differential forms.

Now we remind the notion of a graded algebra. A unital associative algebra A is
called a graded algebra if A = ⊕k∈ZA k and for any elements u ∈ A i , v ∈ A j it
holds u · v ∈ A i+j . If u ∈ A i then u is an element of degree i and we will denote
its degree by |u|. An element of graded algebra, which has the certain degree, is
called homogeneous. A graded algebra is said to be a graded commutative if for any
two homogeneous elements u, v ∈ A it holds u · v = (−1)|u||v|v · u. It is useful
to introduce the graded commutator [u, v] of two homogeneous elements u, v by
[u, v] = u · v − (−1)|u||v|v · u. Then the condition of graded commutativity can be
given in the form [u, v] = 0.

Making use of the notion of graded algebra, we can say that the algebra of
differential forms is the graded algebra because for any two homogeneous forms
ω, θ it holds |ω ∧ θ | = |ω| + |θ |. Moreover, because of the first property of the
wedge product, the algebra of differential forms is graded commutative.

A differential 1-form ω can be expressed in terms of coordinate functions xi of
the n-dimensional Euclidean space as ω = ωi dxi , where the coefficients ωi are the



14 Connections in Euclidean and Non-commutative Geometry 293

smooth functions and the 1-forms dxi form the basis for the bimodule �1(Rn). It
follows from the properties of the wedge product that dxi ∧ dxj = −dxj ∧ dxi or,
equivalently, dxi ∧ dxi = 0. It is easy to show that differential 2-forms dxi ∧ dxj ,
where i < j , form the basis for the bimodule of 2-forms �2(Rn) and any differential
2-form θ can be written as follows

θ = 1

2
θij dxi ∧ dxj ,

where indices i, j run independently from 1 to n and the functions θij satisfy θij =
−θji . Analogously any differential k-form can be written as follows

θ = 1

k!θi1i2...ik dxi1 ∧ dxi2 ∧ . . . dxik , (14.3.2)

where the functions θi1i2...ik are totally skew-symmetric under permutations of
subscripts. From the expression for a differential k-form (14.3.2) and the property
dxi ∧ dxi = 0 it follows that the highest degree of non-trivial differential form in
the n-dimensional Euclidean space is n. Hence �(Rn) = ⊕n

k=0 �k(Rn).
Finally we would like to point out that at any fixed point p of the Euclidean space

the wedge product of differential forms induces the wedge products of covectors
dx1|p, dx2|p, . . . , dxn|p, which are subjected to the commutation relations

dxi |p ∧ dxj |p = −dxj |p ∧ dxi |p.

These relations show that dxi |p are the generators of Grassmann algebra
∧(T∗

pR
n) = ⊕k ∧k (T∗

pR
n), which is called the exterior algebra of the cotangent

space T∗
pR

n.
The exterior differential d of the algebra of differential forms is defined as

follows:

(i) if f is a smooth function then the exterior differential df is the 1-form defined
for any vector field X by df (X) = Xf ,

(ii) for any differential k-form θ the exterior differential dθ is the differential (k +
1)-form defined by the formula

dθ(X1,X2, .., Xk+1) =
k+1∑

i=1

(−1)i+1Xiθ(X1,X2, .., X̂i , .., Xk+1)

+
∑

i<j

(−1)i+j θ([Xi,Xj ],X1,X2, .., X̂i , .., X̂j , .., Xk+1),

where hat over Xi means that this vector field is omitted.



294 V. Abramov and O. Liivapuu

It can be proved that the exterior differential has the following properties:

1. the exterior differential has the degree 1, i.e. d : �k(Rn) → �k+1(Rn),
2. for any homogeneous forms ω, θ it holds d(ω ∧ θ) = dω ∧ θ + (−1)|ω|ω ∧ dθ ,

and this property is referred to as the graded Leibniz rule,
3. d2 = 0.

It should be mentioned that the exterior differential d is uniquely determined by the
above properties. The last property is very important and it is the key property for a
concept of de Rham cohomology.

14.3.2 Non-commutative Higher Order Differential Calculus

In the previous subsection it was shown that the triple (C∞(Rn), d,�1(Rn)) is
the commutative first order differential calculus in the Euclidean space R

n and
this calculus was included as the subalgebra of the algebra of differential forms
�(Rn) by assigning degree zero to smooths functions, i.e. �0(Rn) ≡ C∞(Rn).
Hence we can look at the algebra of differential forms with exterior differential d as
the extension of the first order differential calculus (C∞(Rn), d,�1(Rn)) to higher
degree differentials forms, which satisfies the listed above properties of exterior
differential.

A general approach to this kind of extensions of first order differential calculus
is provided by the notion of differential graded algebra. A differential graded
algebra (DGA) G is a graded algebra G = ⊕kG k endowed with a linear mapping
d : G k → G k+1 of degree 1, which satisfies the graded Leibniz rule d(uv) =
du v + (−1)|u|u dv, where u, v ∈ G , |u| is the degree of u, and d2 = 0. Hence
the algebra of differential forms in the Euclidean space R

n is the commutative
differential graded algebra.

Firstly it follows from the definition of a DGA that the subspace of elements
of degree zero G 0 is the subalgebra of G . Indeed for u, v ∈ G 0 we have |uv| =
|u| + |v| = 0, which means that the product of two degree zero elements uv is the
element of degree zero, hence uv ∈ G 0. Secondly any subspace G k of elements of
degree k ≥ 0 is the G 0-bimodule. Indeed if we multiply an element w ∈ G k of
degree k by an element u of degree zero either from the left or from the right then
the degree of products is |w|+|u| = |w| = k, and thus the products are the elements
of G k . Consequently the multiplication by elements of degree zero determines the
mappings G 0 × G k → G k , G k × G 0 → G k , and it is easy to verify that all
axioms of bimodule are fulfilled. Thirdly the triple (G 0, d,G 1) is the first order
differential calculus over the algebra of elements of degree zero G 0, because the
graded Leibniz rule in the case of zero degree elements reduces to ordinary Leibniz
rule. This suggests the following definition: If (A , d,M ) is a first order differential
calculus and G is a DGA with differential d ′ such that G 0 ≡ A ,G 1 ≡ M and
d ′ coincides with d , when restricted to G 0, then a DGA G will be referred to as a
higher order differential calculus over a first order differential calculus (A , d,M ).



14 Connections in Euclidean and Non-commutative Geometry 295

Assume (A , d,M ) is a first order differential calculus and G is a higher order
differential calculus over A . A first order differential calculus, where A -bimodule
M does not contain unnecessary elements, is of most interest in a theory of higher
order calculus over an algebra. Hence we are most interested in the case, where
M is generated by elements of A and their differentials, i.e. M = A dA A .
But it immediately follows from the Leibniz rule that M = A dA A = dA A .
Indeed we have a db = d(ab) − da b, which implies a db c = (d(ab) − da b) c =
d(ab) c−da (bc). It can be proved [12] that if (A , d,M ) is a first order differential
calculus, where M = dA A , then there exists a DGA G generated by G 0 = A
such that its differential coincides with d , when restricted to A . This DGA is usually
referred to as the universal differential graded algebra of (A , d,M ).

The structure of the universal differential graded algebra of a first order differ-
ential calculus (A , d,M ) with right partial derivatives, where A is generated by a
set of variables xi, i ∈ I (with relations fα = 0) and the right A -module is freely
generated by ωk, k ∈ K , is of interest because it is similar to algebra of differential
forms in the Euclidean space Rn. Hence we have for the generators xi of A and for
the A -bimodule structure of M the following relations

fα(xi) = 0, (14.3.3)

xiωk = ωl H ik
l , (14.3.4)

where fα(xi) are finite polynomials and Hik
l = Hk

l (xi). Now let Ḡ be the
algebra generated by variables xi, ωk , which obey relations (14.3.3), (14.3.4).
In order to consider a case more general than a coordinate calculus we assume
dxi = ωkgi

k , where ωk ∈ dA , i.e. dωk = 0 (ωk are closed “differential 1-
forms”). Extending a differential d to elements of M by the graded Leibniz rule
and differentiating (14.3.4) and dxi = ωkgi

k we get

ωlωm
(
Hk

m(gi
l ) + ∂mH ik

l

) = 0, ωkωm ∂mgi
k = 0. (14.3.5)

Now consider the algebra G generated by xi, ωk , which are subjected to the
relations (14.3.3), (14.3.4), (14.3.5). This algebra is endowed with differential
d : A → M . From (14.3.4) it follows that any element of G can be expressed
as follows

ωk1ωk2 . . . ωknhk1k2...kn, hk1k2...kn ∈ A . (14.3.6)

This implies that G is the graded algebra with the degree of a homogeneous element
determined by the number of ωk in the expression (14.3.6). Now it can be proved
[4] that if we extend a differential d : A → M to the algebra G by means of the
formula

d(ωk1ωk2 . . . ωknhk1k2...kn ) = (−1)nωk1ωk2 . . . ωknωk ∂khk1k2...kn , (14.3.7)
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then G is the universal differential graded algebra over coordinate first order
differential calculus (A , d,M ).

14.4 Connection in Euclidean Space

A concept of connection arises when we consider the problem of parallel translation
of a vector in the n-dimensional Euclidean space R

n. Assume α : I → R
n, I ⊂ R

is a parametrized curve which passes through a point p = α(0). Let �vp = (p; �v) ∈
TpR

n be a tangent vector at a point p ∈ R
n of the space and our goal is to move this

vector in parallel way along a curve to some other point of a curve q = α(t0), t0 ∈ I .
Because we know what does it mean the parallelism in the Euclidean space R

n the
solution is easy. In order to extend a tangent vector �vp in parallel way along a curve α

we construct the constant vector field V (α(t)) = (α(t); �v) along α. But this problem
becomes less trivial and leads to interesting geometric structure if we consider
this problem of parallel translation of a vector in curvilinear coordinates. Let us
assume that U is an open subset of the Euclidean space R

n and x ′1, x ′2, . . . , x ′n
are curvilinear coordinates determined in U . We also assume that these curvilinear
coordinates can be expressed in terms of the Cartesian coordinates x1, x2, . . . , xn

by means of smooth functions, i.e. x ′i = x ′i (x1, x2, . . . , xn), and vice versa the
Cartesian coordinates can be expressed in terms of curvilinear coordinates by means
of smooth functions xi = xi(x ′1, x ′2, . . . , x ′n). We also assume that the coordinate
lines of curvilinear coordinates are orthogonal and hence we can construct the
orthonormal frame field E′ = {E′

1, E
′
2, . . . , E

′
n} by means of the vector fields

∂

∂x ′i (normalizing them if necessary). This orthonormal frame can be expressed in

terms of the canonical frame field E = {E1, E2, . . . , En} as follows E′
i = g

j
i Ej ,

where the matrix G = (g
j
i ) depends on a point of U and for any G ∈ SO(n), i.e.

G GT = I, Det G = 1 and I is the unit matrix.
Now we can write the constant vector field V (α(t)) as follows

V (α(t)) = V i(α(t)) E′
i (α(t)),

and our aim is to find unknown functions V i(α(t)). Differentiating both sides with
respect to t we get zero at the left-hand side because V (α(t)) is the constant vector
field. The right-hand side can be written as follows

d

dt

(
V i(α(t)) E′

i (α(t))
) = d

dt

(
V i(α(t))

)
E′

i (α(t)) + V i(α(t))
d

dt

(
E′

i (α(t))
)
.

Making use of the definition of directional derivative of a function we can interpret
the coefficients d

dt

(
V i(α(t))

)
in the first sum as the directional derivatives of

functions V i(α(t) in the direction of the tangent vector field X(α(t)) = (α(t); �α′(t))
along a curve, i.e. we can write them as XV i . The derivatives in the second sum
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d
dt

(
E′

i (α(t))
)

can be regarded as analogs of directional derivatives for vector fields,
and this suggests us to introduce a new derivative for vector fields, which is called a
covariant derivative.

Let X,Y be two vector fields, p ∈ R
n be a point, α : I → R

n be a curve such that
α(0) = p, �α′(0) = Xp. The covariant derivative of a vector field Y with respect to
a vector field X at a point p is the tangent vector (DXY )p ∈ TpR

n, which is defined
by

(DXY )p = d

dt

(
Y |α(t)

)|t=0.

Hence the covariant derivative determines the vector field p 	→ (DXY )p, which will
be denoted by DXY . From this definition it follows that in any curvilinear coordinate
system x ′i and at any point p we have

(DXY )ip = ∂Y i

∂x ′j |p dx ′j

dt
|t=0 = Xj (p)

∂Y i

∂x ′j |p = (XY i)(p). (14.4.1)

Hence DXY is the vector field which in curvilinear coordinates x ′i can be written as
follows

DXY = (XY i)
∂

∂x ′i . (14.4.2)

From (14.4.2) it follows that covariant derivative has the following properties:

(i) DX1+X2Y = DX1Y + DX2Y , Df XY = f DXY ;
(ii) DX(Y1 + Y2) = DXY1 + DXY2, DX(f Y ) = (Xf ) Y + f DXY ;

(iii) DXY − DY X = [X,Y ];
iv) X < Y,Z >=< DXY,Z > + < Y,DXZ >.

The property (i) shows that the covariant derivative DXY depends linearly on a
vector field X, and this clearly suggests that we can describe the structure of
covariant derivative in the terms of differential 1-forms. Indeed the formula (14.4.2)
can be written in the form

DXY = dY i(X)
∂

∂x ′i , (14.4.3)

where dY i is the exterior differential of the function Y i . Now our aim is to get rid of
a vector field X in the above formula and to use differential 1-forms. For this purpose
we consider the right-hand side of (14.4.3) as a vector field valued differential 1-
form. In order to assign a geometric meaning to these words we attach to each point
p of the space R

n the tensor product ∧k(T∗
pR

n) ⊗ TpR
n and consider the vector

bundle ∧k(T∗
R

n) ⊗ TRn = ∪p ∧k (T∗
pR

n) ⊗ TpR
n with obvious projection. A

smooth section of this bundle is referred to as a vector field valued differential k-
form in the Euclidean space R

n. The vector space of vector field valued differential
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k-forms will be denoted by �k(Rn,D). It is worth to point out that this vector space
can be considered as the left C∞(Rn)-module, i.e. we can multiply vector field
valued forms by functions from the left. For instance any vector field valued 1-form
ω can be written in the form

ω = ωi
j dx ′j ⊗ ∂

∂x ′i = ωi ⊗ ∂

∂x ′i = dx ′j ⊗ Xj,

where ωi
j are smooth functions, ωi = ωi

j dx ′j are R-valued differential 1-forms

and Xj = ωi
j

∂
∂x ′i are vector fields. If X is a vector field and a vector field valued

differential 1-form is written as ω = ωi ⊗ ∂
∂x ′i then its value on a vector field X is

the vector field defined by

ω(X) = ωi(X)
∂

∂x ′i .

Now making use of vector field valued differential forms we can omit a vector field
X in the formula (14.4.3) and write it in the equivalent form

DY = dY i ⊗ ∂

∂x ′i . (14.4.4)

Clearly for any vector field X we have DY(X) = DXY . Thus starting with the
covariant derivative DXY we constructed the mapping Y 	→ DY , which assigns to
any vector field the vector field valued differential 1-form. What are the properties
of this mapping? Now the property (i) of the covariant derivative is obvious, because
DY is the differential 1-form. The property (ii) of covariant derivative shows that
D : D → �1(Rn,D) is the linear mapping of vector spaces. The second part of this
properties gives

D(f Y ) = df ⊗ Y + fDY. (14.4.5)

In order to write the property (iv) in the terms of D we must extend the scalar
product of vector fields to vector field valued differential form and we can do this
by means of the formula

< ω ⊗ X, θ ⊗ Y >=< X,Y > ω ∧ θ.

Particularly the scalar product of vector field valued 1-form ω⊗X and a vector field
Y is the 1-form < ω ⊗ X,Y >=< X,Y > ω. Now the property (iv) implies

d < Y,Z >=< DY,Z > + < Y,DZ >, (14.4.6)

and this property is usually referred to as the condition of consistency of the
covariant derivative with the metric (inner product) of the Euclidean space R

n. Till
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now we used the frame field { ∂
∂x ′i }ni=1 for the module of vector fields and the basis

{dx ′i}ni=1 for the module of differential forms to obtain formulae for the covariant
derivatives. Now our aim is to study the structure of covariant derivative with the
help of the frame field E′ = {E′

i}ni=1. Let {θ i}ni=1 be the dual basis, where θ i are
differential 1-forms, which satisfy θ i(E′

j ) = δi
j . We can easily find the expression

for these differential forms in the terms of Cartesian coordinates dxi . Indeed if we
denote θ i = θ i

j dxj then

δi
k = θ i(E′

k) = θ i(g
j
k Ej ) = θ i

m g
j
k dxm(Ej ) = θ i

m gm
k .

Thus θ i
m = (G−1)im and θ i = (G−1)im dxm.

Given a vector field X we can write it in the frame field E′ induced by curvilinear
coordinates as follows X = Xi E′

i . Making use of the properties of covariant
derivative we find

DX = D(Xi E′
i ) = dXi ⊗ E′

i + Xi DE′
i . (14.4.7)

The covariant derivative DE′
i is the vector field valued 1-form and hence it can be

expanded as ω
j

i ⊗ E′
j , where ω

j

i are the differential 1-forms. The matrix ω = (ω
j

i ),
whose elements are differential 1-forms, is referred to as the matrix of connection.
Thus if we fix a frame field (a basis for the module of vector fields) then the covariant
derivative induces the matrix of connection, which depends on a choice of a frame
field. Before we compute the matrix of connection, we can derive its very important
property from the consistency with the Euclidean metric (14.4.6). For two vector
fields E′

i , E
′
j of the frame field the consistency condition (14.4.6) takes on the form

d < E′
i , E

′
j >=< DE′

i , E
′
j > + < E′

i , DE′
j > .

Taking into account that < E′
i , E

′
j >= δij and substituting DE′

i = ωk
i ⊗ E′

k ,

we obtain ωi
j + ω

j

i = 0. Thus the matrix of connection is the skew-symmetric

matrix ω + ωT = 0. If we analyze the origin of this property of the matrix of
connection we can see that the reason lies in the orthogonality of the attitude matrix
G = (gi

j ), which determines the transformation of the canonical frame field E into
the orthonormal frame field E′, induced by curvilinear coordinates. We remind that
the Lie algebra so(n) of the special orthogonal group SO(n) is the vector space of
skew-symmetric matrices, i.e.

so(n) = {h ∈ Matn(R) : h + hT = 0}.

Consequently we conclude that if we use the matrix group SO(n) for a transition
from one frame field to another, or, by other words, we consider the action of the
matrix group SO(n) on the set of orthonormal frames of the tangent space TpR

n at
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any point p ∈ U then the matrix of connection is so(n)-valued differential 1-form,
i.e. Lie algebra valued 1-form.

The matrix of connection depends on a choice of a frame field. Let us find how
the matrix of connection transforms when we pass from one frame field to another.
Let {E′

i}, {E′′
i } be two orthonormal frame fields and an orthogonal matrix G =

(g
j
i ) ∈ SO(n) be a transition matrix from {E′

i} to {E′′
i }, i.e. E′′

i = g
j
i E′

j . We will
write this symbolically as E′′ = G · E′. It is worth to mention that if we consider
the previous formula at a fixed point p, i.e. (E′′

i )p = g
j

i (p) (E′
j )p (symbolically

E′′
p = G(p)·E′

p), then it determines the action of the orthogonal group SO(n) on the
set of all orthonormal frames of the tangent space TpR

n. This suggests us to attach
to each point p of the Euclidean space the set Fp of all orthonormal frames for
TpR

n and to consider the disjoint union F (U) = ∪pFp. We will refer to F (U) as
the bundle of orthonormal frames over an open subset U of the Euclidean space Rn,
and to Fp as the fiber of this bundle at a point p. The projection π : F (U) → U

is defined in the obvious way and any orthonormal frame field is a smooth section
of the bundle F (U). The special orthogonal group SO(n) acts on the bundle of
orthonormal frames from the left as it is shown above, i.e. Ep → G·Ep, and we will
denote this left action by L : (G,Ep) 	→ G ·Ep, i.e. L : SO(n)×F (U) → F (U).
This action is

(i) transitive, i.e. for any two E′
p,E′′

p ∈ Fp there exists G ∈ SO(n) such that
E′′

p = G · E′
p,

(ii) effective, i.e. G · E′
p = E′

p implies G = I .

Now let E′, E′′ be two orthonormal frame fields, i.e. two sections of the bundle of
orthonormal frames, and G = (g

j
i ) : U → SO(n) be the SO(n)-valued function

such that E′′ = G·E′. Following the terminology used in a gauge field theory we can
call this transformation (from one frame field to another) the gauge transformation
of first kind. Hence E′′

i = g
j
i E′

j , where g
j
i depend smoothly on a point x ∈ U .

Let ω̃, ω be the matrices of connection in a frame fields E′′, E′ respectively. Then
DE′′

i = ω̃k
i ⊗ E′′

k ,DE′
i = ωk

i ⊗ E′
k . On the one hand DE′′

i = ω̃k
i ⊗ (gm

k E′
m) =

(gm
k ω̃k

i ) ⊗ E′
m. On the other hand

DE′′
i = dgm

i ⊗ E′
m + g

j
i DE′

j = (dgm
i + ωm

j g
j
i ) ⊗ E′

m,

and we get

gm
k ω̃k

i = dgm
i + ωm

j g
j
i ,

or, written in the matrix form

ω̃ = G−1ω G + G−1dG. (14.4.8)
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We derived the transformation rule of the matrix of connection and this is usually
called in a gauge field theory the gauge transformation of second kind.

Particularly in the case of E′ = G · E, where E is the canonical frame field,
let us denote the connection matrix in the frame field E′ by ω and the connection
matrix in the canonical frame field E by ω0. Since the canonical frame field E

consists of constant vector fields, the gauge transformation (14.4.8) takes the form
ω = G−1d G, because in the case of the canonical frame field DEi = 0 (Ei is the
constant vector field) and hence ω0 = 0. In a gauge field theory the connection ω =
G−1d G is referred to as the pure gauge. It is easy to show that ω = G−1d G is the
so(n)-valued differential 1-form. Indeed we have G−1 G = I and, differentiating
both sides, we obtain

dG−1 G + G−1dG = 0. (14.4.9)

But the first term can be written dG−1 G = (dG)T (G−1)T = (G−1dG)T = ωT

and we conclude ω + ωT = 0.
We remind that the dual 1-forms θ i for E′

i are θ i = (G−1)ij dxj . Differentiating

and making use of (14.4.9) written in the form dG−1 = −G−1dG G−1, we get

dθi = d(G−1)ij ∧dxj = −(G−1dG G−1)ij ∧dxj = −(G−1dG)ik∧((G−1)kj ∧dxj ),

or

dθi = −ωi
k ∧ θk. (14.4.10)

Equation (14.4.10) is called the first Cartan’s structure equation. Analogously
computing the exterior differential of the matrix of connection dω, we obtain

dω = d(G−1dG) = dG−1 ∧ dG = −(G−1dG) ∧ (G−1dG),

or

dωi
j = −ωi

k ∧ ωk
j ⇔ dω = −ω ∧ ω. (14.4.11)

Equation (14.4.11) is called the second Cartan’s structure equation. Remind that
the matrix of connection ω can be considered as the so(n)-valued differential 1-
form. Let fα , where α = 1, 2, . . . , n(n−1)

2 , be a basis for the Lie algebra so(n). Then
ω = ωα fα or ωi

j = ωα(f)ij , where ωα is the differential 1-form. Define

[ω,ω] = ωα ∧ ωβ [fα, fβ ]. (14.4.12)

From this it follows

[ω,ω]ij = ωα ∧ ωβ
(
(fα)ik(fβ)kj − (fβ)ik(fα)kj

) = 2 ωi
k ∧ ωk

j .
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Now the second Cartan’s structure equation can be written in the matrix form as
follows

dω = −1

2
[ω,ω]. (14.4.13)

14.5 q-Differential Graded Algebra and N -Connection

In this section we describe a generalization of the notion of connection which arises
in the framework of non-commutative geometry. First of all we would like to remind
a reader that the notion of a connection in the Euclidean space R

n, described in
the previous section, can be extended to a vector bundle over a smooth manifold.
A smooth n-dimensional manifold M is a Hausdorff topological space, which is
locally homeomorphic to open subset of the n-dimensional Euclidean space Rn (this
is called a local chart), and the smooth structure of M is determined by the condition
that the transition functions of any two local charts must be smooth. A vector bundle
V over a manifold M is a triple (V, π,M), where V is a (n + r)-dimensional
manifold, π : V → M is a differentiable map, which is called a projection, such that
for any point x of a manifold M the fiber π−1(x) is an r-dimensional vector space.
Additionally it is required that locally a vector bundle is trivial, i.e. for any point
x ∈ M there exists its neighborhood U ⊂ M such that π−1(U) is diffeomorphic
to U × R

r . A section of a vector bundle V is a differentiable map s : M → V
such that π ◦ s = idM . Let C = C∞(M) be the algebra of smooth functions on M ,
�(M) = ⊕i�

i(M) be the algebra of differential forms on M , E (V) be the vector
space of smooth sections of a vector bundle V. This vector space of sections E (V)

and the algebra of differential forms �(M) can be endowed with the structure of
module over the algebra of functions C by means of pointwise multiplication. Now
we can extend the notion of a vector field valued differential form to a notion of
vector bundle valued differential form by considering the tensor product �(V) =
�(M)⊗C E (V). It is important here that the first factor in this tensor product is the
DGA. Now in accordance with the formula (14.4.5) we can define a connection in
a vector bundle V as a linear mapping D : E (V) → �1(V), which assigns to each
section of a vector bundle the vector bundle valued 1-form and satisfies

D(f · s) = df ⊗ s + f · Ds.

Hence we see that important ingredient in the structure of connection is the DGA of
differential forms �(M). In this section we describe a generalization of the notion
of connection which can be constructed if instead of a DGA we consider a more
general structure, which is called a q-differential graded algebra (q-DGA), where q

is a primitive N th root of unity.
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14.5.1 q-Differential Graded Algebra

A basic algebraic structure used in the theory of connections on modules is a DGA.
Therefore if we consider a generalization of a DGA, where the basic property of
differential d2 = 0 is given in a more general form dN = 0, N ≥ 2 and the graded
Leibniz rule is replaced by the graded q-Leibniz rule, where q is a primitive N th root
of unity, we can develop a generalization of the theory of connections on modules.

A notion of q-differential graded algebra was introduced in [5] and studied in the
series of papers [1, 6, 9, 11]. Let N ≥ 2, q be a primitive N th root of unity and
Gq = ⊕kGq

k be an associative unital ZN -graded algebra over a field of complex
numbers. An algebra Gq is said to be a q-differential graded algebra (q-DGA) if it
is endowed with a linear mapping d of degree one, satisfying the graded q-Leibniz
rule

d(u v) = d(u) v + qku d(v), (14.5.1)

where u ∈ Gq
k, v ∈ Gq , and the N-nilpotency condition

dN = 0. (14.5.2)

A concept of q-DGA is related to a monoidal structure introduced in [11] for a
category of N-complexes. It is proved in [8] that the monoids of the category of
N-complexes can be determined as the q-DGA. In agreement with the terminology
developed in [5] we shall call d the N-differential of q-DGA Gq .

Clearly in the case N = 2 and q = −1 we get a notion of DGA, which allows us
to consider a concept of a q-DGA as a generalization of a DGA.

Let Gq be a q-DGA and A be an unital associative algebra over the field of
complex numbers. The subspace G 0

q ⊂ Gq of elements of degree zero is the

subalgebra of an algebra Gq . Obviously the triple (A, d,G 1
q ) is the first order

differential calculus over the the algebra A provided that A = G 0
q . The triple

(A, d,Gq) is said to be an N-differential calculus over the algebra A. Every
subspace G k

q can be viewed as the bimodule over the algebra G 0
q if we determine

the structure of a bimodule with the mappings G 0
q ×G k

q → G k
q and G k

q ×G 0
q → G k

q

defined by (u,w) 	→ uw and (w, v) 	→ wv, where u, v ∈ G 0
q and w ∈ G k

q . Hence

we have the following sequence of bimodules over the algebra G 0
q

. . .
d→ G k−1

q

d→ G k
q

d→ G k+1
q

d→ . . . (14.5.3)

The sequence (14.5.3) can be considered as a cochain N-complex of modules or
simply N-complex with N-differential d [6]. The generalized cohomologies of this
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N-complex are defined by the formula Hk
m(Gq) = Zk

m(Gq)/Bk
m(Gq), where

Zk
m(Gq) = {u ∈ G k

q : dmu = 0} ⊂ G k
q ,

Bk
m(Gq) = {u ∈ G k

q : ∃ v ∈ G k+m−N
q , u = dN−mv} ⊂ Zk

m(Gq).

Given a q-DGA Gq one can associate to it the generalized homologies Hm(Gq) =
⊕k∈ZN

Hk
m(Gq) of the corresponding N-complex (14.5.3).

Next we give the statement of theorem which allows us to construct various N-
complexes. Let G = ⊕k∈ZN

G k be an associative unital ZN -graded algebra over the
field of complex numbers and e be the identity element of this algebra. The graded
subspace Z (G ) ⊂ G generated by homogeneous elements u ∈ G k , which for any
v ∈ G l satisfy uv = (−1)klvu, is called a graded center of an algebra G .

Let us generalize the notions of graded commutator and graded derivation of a
graded algebra with the help of q-deformations. In general q may be any complex
number different from one but for the structures we construct we need q to be a
primitive N th root of unity. The graded q-commutator [ , ]q : G k ⊗ G l → G k+l is
defined by

[u, v]q = uv − qklvu,

where u ∈ G k, G l are homogeneous elements and q is a primitive N th root of unity.
A graded q-derivation of degree m of a graded algebra G is a linear mapping δ :
G → G of degree m with respect to the graded structure of G , i.e. δ : G k → G k+m

satisfying the graded q-Leibniz rule

δ(u v) = δ(u) v + qmlu δ(v),

where u ∈ G l .

The following theorem [2] can be used to construct the structure of a q-DGA for
a certain class of graded associative unital algebra.

Theorem 14.5.1 If there exists an element v ∈ G 1 of degree one which satisfies the
condition vN ∈ Z (G ), where N ≥ 2, then an algebra G equipped with the linear
mapping d : G → G defined by the formula d(u) = [v, u]q , u ∈ G is the q-DGA
and d is its N-differential.

14.5.2 Connection on Module

In this section we propose a notion of N-connection, which can be viewed as a
generalization of a concept of connection on modules. In our generalization we
use an algebraic approach based on the concept of q-DGA to define a notion of
N-connection and show that in the case of N = 2 we get the algebraic analog
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of a classical connection. A theory of connection on modules can be found in an
review [7]. We study the structure of an N-connection, define its curvature and
prove the Bianchi identity [1, 2]. We begin this section by recalling the notion of
connection on modules given in [7] and called �-connection. Suppose that A is an
unital associative algebra over the field of complex numbers and E is a left module
over A. Let � be a DGA with differential d, such that �0 = A, it means that the
triple (A, d,�1) is the first oder differential calculus over A. Since an subspace of
elements of grading one can be viewed as a (A,A)-bimodule, the tensor product
�1 ⊗A E clearly has the structure of left A-module.

A linear map ∇ : E → �1 ⊗A E is called an �-connection if it satisfies

∇(us) = du ⊗A s + u∇(s)

for any u ∈ A and s ∈ E . Similarly to the case of connections on vector bundles,
this map has a natural extension ∇ : � ⊗A E → � ⊗A E by setting

∇(ω ⊗A s) = dω ⊗A s + (−1)pω∇(s),

where ω ∈ �p and s ∈ E .

We will generalize a notion of �-connection taking q-DGA �q instead of DGA
�. Let A be an unital associative algebra over a field of complex numbers, �q is a
q-DGA with N-differential d and A = �0

q . Let E be a left A-module. Considering
algebra �q as the (A,A)-bimodule we take the tensor product of left A-modules
�q ⊗A E which has the structure of left A-module. To minimize the notation, we
denote this left A-module by F. Taking into account that an algebra �q can be
viewed as the direct sum of (A,A)-bimodules �k

q we can split the left A-module F
into the direct sum of the left A-modules Fk = �k

q ⊗A E , i.e. F = ⊕kF
k, which

means that F inherits the graded structure of algebra �q, and F is the graded left
A-module. It is worth noting that the left A-submoduleF0 = A⊗A E of elements of
grading zero is isomorphic to a left A-module E, where isomorphism ϕ : E → F0

can be defined for any s ∈ E by ϕ(s) = e ⊗A s, where e is the identity element of
algebra A. Since a graded q-DGA �q can be viewed as the (�q,�q)-bimodule, the
left A-module F can be also considered as the left �q -module and we will use this
structure to describe a concept of N-connection. Let us mention that multiplication
by elements of �k, where k �= 0, does not preserve the graded structure of the left
�q -module F.

The tensor product F = �q × E as the tensor product of two vector spaces has
also the structure of the vector space over C. Obviously F has a graded structure, i.e.
F = ⊕kF

k , where Fk = �k
q ⊗C E . Due to the structure of vector space of F we can

introduce the notion of linear operator on F. We denote the vector space of linear
operators on F by Lin(F). The structure of the graded vector space of F induces the
structure of a graded vector space on Lin(F), and we shall denote the subspace of
homogeneous linear operators of degree k by Link(F).
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An N-connection on the left �q-module F is a linear operator ∇q : F → F of
degree one satisfying the condition

∇q(ω ⊗A s) = dω ⊗A s + q |ω| ω ∇q(s), (14.5.4)

where ω ∈ �i
q, s ∈ E , and |ω| is the grading of the homogeneous element of algebra

�q.

It is worth to mention that if N = 2 then q = −1, and in this particular case we
get the algebraic analog of a classical connection. A connection on vector bundle
can be viewed as a linear map on a left module of sections of vector bundle, taking
values a algebra of differential 1-forms with values in this vector bundle, which
clearly has a structure of a left module over an algebra of smooth functions on a base
manifold. Therefore a concept of a N-connection can be viewed as a generalization
of a classical connection.

We use the following proposition proved in [1] to define the curvature of N-
connection.

Proposition 14.5.2 The N-th power of any N-connection ∇q is the endomorphism
of degree N of the left �q -module F.

The endomorphism F = ∇N
q of degree N of the left �q -module F is said to be

the curvature of an N-connection ∇q .
Let us show that the curvature of an N-connection satisfies Bianchi identity.

We proceed to show that the graded vector space Lin(F) has a structure of graded
algebra. To this end, we take the product A ◦ B of two linear operators A,B of
the vector space F as an algebra multiplication. If A : F → F is a homogeneous
linear operator than we can extend it to the linear operator LA : Lin(F) → Lin(F)

on the whole graded algebra of linear operators Lin(F) by means of the graded q-
commutator: LA(B) = [A,B]q = A◦B −q |A||B|B ◦A, where B is a homogeneous
linear operator. It makes allowable to extend an N-connection ∇q to the linear
operator on the vector space Lin(F)

∇q(A) = [∇q,A]q = ∇q ◦ A − q |A| A ◦ ∇q, (14.5.5)

where A is a homogeneous linear operator. N-connection ∇q is the linear operator
of degree one on the vector space Lin(F), i.e. ∇q : Link(F) → Link+1(F), and ∇q

satisfies the graded q-Leibniz rule with respect to the algebra structure of Lin(F).
Consequently the curvature F of an N-connection can be viewed as the linear
operator of degree N on the vector space F, i.e. F ∈ LinN(F). Therefore one can act
on F by N-connection ∇q , and it holds that for any N-connection ∇q the curvature
F of this connection satisfies the Bianchi identity

∇q(F ) = 0. (14.5.6)
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14.5.3 Local Structure of N -Connection

Connection on the vector bundle of finite rank over a finite dimensional smooth
manifold can be studied locally by choosing a local trivialization of the vector
bundle and this leads to the basis for the module of sections of this vector bundle.

In order to construct an algebraic analog of the local structure of an N-connection
∇q we assume E to be a finitely generated free left A-module. Let e = {eμ}rμ=1
be a basis for a left module E . This basis induces the basis f = {fμ}rμ=1, where

fμ = e ⊗A eμ, for the left A-module F0 ∼= E . For any ξ ∈ F0 we have ξ = ξμfμ.
Taking into account that F0 ⊂ F and F is the left �q -module we can multiply the
elements of the basis f by elements of an q-DGA �q. It is easy to see that if ω ∈ �k

q

then for any μ we have ωfμ ∈ Fk. Consequently we can express any element of the
Fk as a linear combination of fμ with coefficients from �k

q . Indeed let ω ⊗A s be an

element of Fk = �k ⊗A E . Then

ω ⊗A s = (ω e) ⊗A (sμeμ) = (ω e sμ) ⊗A eμ

= (ωsμ e) ⊗A eμ = ωsμ (e ⊗A eμ) = ωμfμ,

where ωμ = ωsμ ∈ �k
q .

Let F0 be a finitely generated free module with a basis f = {fμ}rμ=1, and s =
sμfμ ∈ F0, where sμ ∈ A. Since N-connection ∇q is a linear operator of degree
one, it follows that ∇q(s) ∈ F1, and making use of q-Leibniz rule we can express
the element ∇q(s) as follows: ∇q(s) = ∇q(sμfμ)

Denote by Mr (�q) be the vector space of square matrices of order r whose
entries are the elements of an q-DGA �q . If each entry of a matrix � = (θν

μ) is
an element of a homogeneous subspace �k

q , i.e. θν
μ ∈ �k

q then � will be refereed
to as a homogeneous matrix of degree k and we shall denote the vector space of
such matrices by Mk

r (�q). Obviously Mr (�q) = ⊕kM
k
r (�q). The vector space

Mr (�q) of r×r-matrices becomes the associative unital graded algebra if we define
the product of two matrices � = (θν

μ),�′ = (θ ′ν
μ ) ∈ Mr (�q) by (� �′)νμ = θσ

μ θ ′ν
σ .

If �,�′ ∈ Mr (�q) are homogeneous matrices then we define the graded q-
commutator by [�,�′]q = � �′ − q |�||�′|�′ �. We extend the N-differential d of
an q-DGA �q to the algebra Mr (�q) as follows d� = d(θν

μ) = (dθν
μ).

Since any element of a left A-module F1 can be expressed in terms of the basis
f = {fμ}rμ=1 with coefficients from �1

q, we have

∇q(fμ) = θν
μ fν, (14.5.7)

where θν
μ ∈ �1

q . An r × r-matrix � = (θν
μ), whose entries θν

μ are the elements of

�1
q i.e. � ∈ Mat1r (�q), is said to be a matrix of an N-connection ∇q with respect to
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the basis f of the left A-module F0. Using the definition of N-connection we obtain

∇q (s) = (dsμ + sνθμ
ν ) fμ. (14.5.8)

Let f′ = {f′μ}rμ=1 be another basis for the left A-module F0 with the same
number of elements (this will always be the case if A is a division algebra or if
A is commutative). Then f′μ = gν

μfν, where G = (gν
μ) ∈ Mat0r (�q) is a transition

matrix from the basis f to the basis f′. It is well known [10] that in the case of finitely
generated free module transition matrix is an invertible matrix. If we denote by θ ′μ

ν

the coefficients of ∇q with respect to a basis f′ and g̃
μ
ν are the entries of the inverse

matrix G−1 then

θ ′μ
ν = dgσ

ν g̃μ
σ + gσ

ν θτ
σ g̃μ

τ ,

and this clearly shows that the components of ∇q with respect to different bases of
module F0 are related by the gauge transformation.

Our next aim is to express the components of the curvature F of a N-connection
∇q in the terms of the entries of the matrix � of an N-connection ∇q . Computation

in successive steps allows us to introduce polynomials ψ
l,μ
ν ∈ �l

q on the entries of
the matrix of N-connection and their differentials. We have

∇q(s) = (dsμ + sνθμ
ν ) fμ,

ψ1,μ
ν := θμ

ν ,

∇2
q (s) = (d2sμ + [2]qdsνθμ

ν + sν(dθμ
ν + qθσ

ν θμ
σ ))fμ,

ψ2,μ
ν := dθμ

ν + q θσ
ν θμ

σ , (14.5.9)

∇3
q (s) =

(
d3sμ + [3]qd2sνθμ

ν + [3]qdsν(dθμ
ν + qθσ

ν θμ
σ )

+ sν(d2θμ
ν + (q + q2)dθσ

ν θμ
σ + q2θσ

ν dθμ
σ + q3θτ

ν θσ
τ θμ

σ )
)
fμ,

ψ(3,k)μ
ν := d2θμ

ν + (q + q2) dθσ
ν θμ

σ + q2 θσ
ν dθμ

σ + q3 θτ
ν θσ

τ θμ
σ (14.5.10)

Therefore, the kth power of N-connection ∇q has the following form

∇k
q (s) =

k∑

l=0

[
k

l

]

q

dk−lsμ ψl,ν
μ fν

= (dksμ ψ0,ν
μ + [k]q dk−1sμ ψ1,ν

μ + . . . + sμ ψk,ν
μ ) fν, (14.5.11)
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We can calculate the polynomials ψl,ν
μ by means of the following recursion formula

ψl,ν
μ = dψl−1,ν

μ + ql−1 ψl−1,σ
μ θν

σ , (14.5.12)

or in the matrix form

�l = d�l−1 + ql−1 �l−1 �, (14.5.13)

We begin with the polynomial ψ0,ν
μ = δν

μ e ∈ A, and e is the identity element of

A ⊂ �q . From (14.5.11) it follows that if k = N then the first term dNξμ ψ
(0,N)ν
μ

in this expansion vanishes because of the N-nilpotency of the N-differential d , and
the next terms corresponding to the l values from 1 to N − 1 also vanish because of
the property of q-binomial coefficients. Hence if k = N then the formula (14.5.11)
takes on the form

∇N
q (s) = sμ ψ(N,N)ν

μ fν . (14.5.14)

In order to simplify the notations and assuming that N is fixed we shall denote
ψν

μ = ψ
(N,N)ν
μ .

An (r × r)-matrix � = (ψν
μ), whose entries are the elements of degree N

of a graded q-differential algebra �q , is said to be the curvature matrix of a N-
connection ∇q .

Obviously � ∈ MN
r (�q). In new notations the formula (14.5.14) can be written

as follows ∇N
q (s) = sμ ψν

μ fν , and it shows that ∇N
q is the endomorphism of degree

N of the left �q-module F.
Let us consider the expressions for curvature in the case when N = 2. If N = 2

then q = −1, and a graded q-differential algebra �q is a graded differential algebra
with differential d satisfying d2 = 0. This is a classical case, and if we assume
that �q is the algebra of differential forms on a smooth manifold M with exterior
differential d and exterior multiplication ∧, E is the module of smooth sections of
a vector bundle E over M , ∇q is a connection on E, e is a local frame of a vector
bundle E then � is the matrix of 1-forms of a connection ∇q and we have for the
components of curvature ψν

μ = dθν
μ − θσ

μθν
σ . In this case �q is super-commutative

algebra and we can put the expressions for components of curvature into the form
ψν

μ = dθν
μ+θν

σ θσ
μ . or by means of matrices � = d�+� ·� in which we recognize

the classical expression for the curvature.
From the previous section it follows that the curvature of a N-connection satisfies

the Bianchi identity. If θ
μ
ν , ψ

μ
ν are the components of an N-connection ∇q and its

curvature F with respect to a basis f for the module F then the Bianchi identity takes
on the form

dψμ
ν = θσ

μψν
σ − ψσ

μθν
σ .
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Let us consider now the structure of N-connection forms and their curvature. We
apply the algebra of polynomials P[d, a] over C, constructed in the paper [3] to
study the structure of N-curvature. Let �q be an q-DGA We will call an element
of degree one � ∈ �1

q an N-connection form in a graded q-differential algebra �q .
The linear operator of degree one ∇q = d + � will be referred to as a covariant
N-differential induced by a N-connection form �.

We remind that d is an N-differential which means that dk �= 0 for 1 ≤ k ≤ N−1
and if we successively apply it to an N-connection form � we get the sequence of
elements �, d�, d2�, . . . , dN−1�, where dk� ∈ �k+1

q . Let us denote

�1 = �

�2 = d�

...

�N = dN−1�.

We denote by �q [�] the graded subalgebra of �q generated by elements
�1,�2, . . . ,�N . For any integer k = 1, 2, . . . , N we define the polynomial
Fk ∈ �q [�] by the formula Fk = ∇k−1

q (�). Evidently the subalgebra �q [�]
is isomorphic to the q-DGA Pq [a] of [3] if we identify �k → ak. Then the
polynomials Fk are identified with the polynomials fk and we can apply all formulae
proved in the case of Pq [a] to study the structure of �q [�].

It follows from [3] that for any integer 1 ≤ k ≤ N the k th power of the covariant
N-differential ∇q can be expanded as follows

(∇q)k =
k∑

i=0

[
k

i

]

q

F(i) dk−1 = dk + [k]qF1d
k−1 + . . . + [n]qFk−1d + Fk,

where Fk = (∇q )k−1(�). Particularly if k = N then the N th power of the covariant
N-differential ∇q is the operator of multiplication by the element FN of grading
zero. It makes possible to define the curvature of an N-connection form � : the N-
curvature form of an N-connection form � is the element of grading zero FN ∈ A.

We get the explicit power expansion formula for N-curvature form of an N-
connection

Fk =
∑

σ∈ϒk

[
k2 − 1

k1

]

q

[
k3 − 1

k2

]

q

. . .

[
k − 1
kr−1

]

q

�i1�i2 . . .�ir ,

where ϒk is the set of all compositions of an integer 1 � k � N , σ = (i1, i2, . . . , ir )

is composition of an integer k in the form of a sequence of strictly positive integers,
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where i1 + i2 + . . . + ir = N, and

k1 = i1,

k2 = i1 + i2,

k3 = i1 + i2 + i3,

. . .

kr−1 = i1 + i2 + . . . + ir−1.
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