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Abstract There is a short section describing how Newton’s method works for
algebraic problems over Clifford algebras. There are two applications. Zeros of
unilateral polynomials over a Clifford algebra in R

8 and solutions of a Riccati
equation over all eight Clifford algebras in R

4.

Keywords Clifford algebras · Newton’s method · Algebraic equations over
Clifford algebras · Riccati equation

Mathematics Subject Classification (2010) Primary 15A66; Secondary 12E10,
1604

13.1 Introduction

Let p : RN → R
N be a mapping, where R

N stands for any Clifford algebra. For
introduction to Clifford Algebras, see [1], for algebraic and analytic properties of
coquaternion algebra, see [6]. Examples for p are polynomials of a general type,
including unilateral and bilateral polynomials. Other examples are matrix equations
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like the Riccati equation

p(X) := A + BX + XC + XDX = 0, (13.1.1)

where the matrix entries are elements from a Clifford algebra in R
N . If X is a matrix

of size m × n, then, in this case, p : RmnN → R
mnN . The Riccati equation will

be treated separately in the last section. For other examples see also [2]. In order to
find the solutions of p(z) = 0 by Newton’s method, the linear system for h

p(z) + p′(z)h = 0 (13.1.2)

has to be solved where in the beginning, z has to be replaced by an arbitrary guess
z ∈ R

N and after having found h as the solution of (13.1.2) the guess has to be
replaced by z := z + h. In a paper by Lauterbach and Opfer [5], it was shown that
p′(z)h is the linear part of p(z + h) with respect to h. To mention an example let
p(z) = z2 + a1z + a0. Then,

p(z + h) = (z + h)2 + a1(z + h) + a0 = z2 + hz + zh + h2 + a1z + a1h + a0

and the linear part of this expression with respect to h is

p′(z)h = hz + zh + a1h. (13.1.3)

In all cases and independent of the algebra the linear part always consist of a sum
with terms of the form ahb. Since, by definition, p′(z)h is a real, linear mapping
R
N → R

N in h, the linear part must have a matrix representation

p′(z)h = Mzh (13.1.4)

where Mz is a real N × N matrix and h is now a real column vector of length
N . The matrix Mz is called the Jacobi matrix of (13.1.2). In comparison with
the numerical Jacobi matrix which is constructed by replacing p′(z)h by partial
derivatives, the Jacobi matrix we use is exact and in addition easy to compute. Even
for general, nonunilateral polynomials the matrix representation of p′(z)h is given
in [5, Section 4]. And the underlying algebra is not of large importance. In the
MATLAB program given in Table 13.4 one can see how to compute the matrix Mz

given in (13.1.4) for the linear term ahb. Let y = p(z). We call the euclidean R
N

norm ||y|| the error of z. Thus, our aim is to find all z with error zero.

13.2 Application of Newton’s Method to Polynomials
with Clifford Coefficients

Let p now be a unilateral polynomial in any R
N algebra. In order to find zeros of

p we have to use (13.1.2) together with (13.1.4). As an example we use a Clifford
algebra in R

8 which we call C4 and as examples we will be looking for zeros of a
quadratic polynomial and a polynomials of degree 7.
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Table 13.1 Multiplication
table of C4 for the canonical
unit vectors uk in
R

8, 1 ≤ k ≤ 8

u1 u2 u3 u4 u5 u6 u7 u8

u2 −u1 u4 −u3 u6 −u5 u8 −u7

u3 −u4 −u1 u2 u7 −u8 −u5 u6

u4 u3 −u2 −u1 u8 u7 −u6 −u5

u5 −u6 −u7 u8 −u1 u2 u3 −u4

u6 u5 −u8 −u7 −u2 −u1 u4 u3

u7 u8 u5 u6 −u3 −u4 −u1 −u2

u8 −u7 u6 −u5 −u4 u3 −u2 u1

In order to describe the multiplication rules of the algebra C4 we abbreviate the
eight unit vectors units(k) in R

8 also by uk, k = 1, 2, . . . , 8, and the multiplication
rules are listed in Table 13.1.

The elements in theC4 algebra for use in the MATLAB program, which is printed
at the end of this section as Table 13.4, page 273, will have the name

a = c4([a1, a2, a3, a4, a5, a6, a7, a8]), aj ∈ R, j = 1, 2, . . . , 8 (13.2.1)

or in short

a = c4(h), h ∈ R
8.

In order to apply the program, an initial guess xold is needed. For a syste-
matic search a random guess is very practical. We always used random integer
values as components of xold. This can be done by the MATLAB command
xold=c4(round(40*(rand(1,8)-0.5))), where rand is the MATLAB
command for random (uniformly distributed) numbers in [0, 1]. The given expres-
sion for xold produces an integer row vector with eight entries in [−20, 20]. We
have applied the program to two examples, a quadratic polynomial and a polynomial
of degree 7. In all cases there are several solutions.

Example Let the quadratic polynomial p be defined by

p(z) = z2 + c4([2, 3, 5, 7, 11, 13, 17, 19])z+ u8. (13.2.2)

We found the following four zeros (see Table 13.2) all in less than 20 steps by
applying Newton’s method. We never found a singular Jacobi matrix. Whether there
are more solutions as given, it is an open question.

Example We selected the following polynomial

p(z) = u1z
7 + u2z

6 + u3z
5 + u4z

4 + u5z
3 + u6z

2 + u7z + u8. (13.2.3)
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We can guess already one solution, namely z = u4. If we look at Table 13.1 we see
that u2

4 = −1 ⇒ u4
4 = 1 ⇒ u5

4 = u4 ⇒ u6
4 = u2

4 = −1 ⇒ u7
4 = u3

4 = −u4, thus,

p(u4) = −u4 − u2 + u3u4 + u4 − u5u4 − u6 + u7u4 + u8 =
= −u4 − u2 + u2 + u4 − u8 − u6 + u6 + u8 = 0.

We applied the given program to (13.2.3) and in less than 40 Newton iterations
for each zero we found the solutions given in Table 13.3. It contains 18 zeros of p.
These are found by using random integer guesses. Whether there are more zeros than
indicated, it is an open problem. We did not encounter one example which did not
converge. The convergence behavior was typical for Newton’s method. If the error
was under a certain limit, say 10−2, then there were only few remaining steps so
that almost machine precision was reached. Therefore, in the two Tables 13.2, 13.3
the original MATLAB results are presented. The advantage of using Newton’s
method for finding zeros of polynomials with arbitrary algebra coefficients is its
easy use and its high precision. There is another advantage. If with some other
method a zero is computed it is easy to apply few additional Newton steps in
order to reduce the error. The disadvantage is, that we do not know whether there
are still other, nondiscovered zeros. We note, that the frequently appearing number

0.353553390593274 in Table 13.3 is
√

2

4
(Table 13.4).

13.3 Application to Riccati Equation

In the Riccati equation over a Clifford algebra in R
N , given in (13.1.1), we can

choose the sizes of the corresponding matrices as follows:

X : m × n ⇒ A : m × n, B : m × m, C : n × n, D : n × m.

The linear part of p(X + H) is easy to compute:

p′(X)H = H(C + D) + (B + XD)H = M1H + M2H = (M1 + M2)H.

In this case the matrices M1, M2 are of order mnN and H is a column vector of
dimension mnN . For more details see also [5], Theorem 8.1 and [3]. In [5], also
quotations to the relevant literature is given. We will use an example defined in all
eight R4 algebras which have the names and notations:

1. Quaternions, H,
2. Coquaternions, Hcoq,
3. Tessarines, Htes,
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Table 13.3 Table of zeros of p, a polynomial of degree 7, defined in (13.2.3)

±(0, 0, 0, 0.923879532511287,

0, 0, 0, −0.382683432365090).

0.353553390593274, 0.353553390593274, 0, 0.5,

−0.5, 0, 0.353553390593274, −0.353553390593274.

±(0.382683432365090, 0, 0, 0,

0.923879532511287, 0, 0, 0).

0.191341716182520, 0, 0, 0.961939766255643,

−0.038060233744357, 0, 0, −0.191341716182520.

0, 0, 0, 1,

0, 0, 0, 0.

−0.191341716182545, 0, 0, 0.038060233744357,

−0.961939766255643, 0, 0, 0.191341716182545.

±(0,
√

0.5, 0, 0,

0, 0, 0, −√
0.5).

0.191341716182545, 0, 0, 0.038060233744357,

0.961939766255643, 0, 0, 0.191341716182545.

−0.191341716182545, 0, 0, 0.961939766255643,

0.038060233744357, 0, 0, −0.191341716182545.

−0.353553390593272, 0.353553390593274, 0, 0.5,

0.5, 0, −0.353553390593275, −0.353553390593272.

±(0.544895106775818, 0.353553390593275, 0, −0.461939766255644,

0.461939766255644, 0, 0.353553390593272, −0.162211674410729).

±(-0.162211674410729, 0.353553390593274, 0, 0.461939766255643,

0.461939766255643, 0, −0.353553390593274, −0.544895106775819).

−0.353553390593272, −0.353553390593274, 0, 0.5,

−0.5, 0, −0.353553390593275, 0.353553390593272.

Two consecutive lines, separated by a dot . and a small skip define one or two zeros
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Table 13.4 MATLAB program for computing zeros of polynomials over coefficients from R
8

algebra C4 by Newton’s method

%[xnew,J]=c4_newton(c,xold); c presents the vector of polynomial
%coefficients and xold is an arbitrary initial guess. Computed
%are J, the exact Jacobi matrix at xold, and xnew, the result
%of the application of one Newton step.
%%%
%Basis for the program:
%R. Lauterbach - G. Opfer, AACA 24(2014), pp. 1059 - 1073.
%The polynomials have the form (highest coefficient first)
%%%
%p(x) = c_1x^n + c_2x^{n-1} + ... + c_{n+1}.
%%%
%This programm works in principle for all geometric R^N algebras,
%provided the corresponding algebraic rules have been transmitted
%to MATLAB by a technique called "overloading".
%%%%===============================================================
%function [xnew,J]=c4_newton(c,xold); %J is the exact Jacobi matrix
% n=length(c)-1;
% global N;
% dim=8;
% N=dim;
% J=zeros(N,N);
% for ell=n:-1:1
% J=J+derivative_of_xpowerj(ell,xold,c(n-ell+1));
% end;
% y=Polyval(c,xold);
% if abs(det(J))>=1e-10
% h=-J\col(y);
% xnew=xold+c4(h);
% else
% error(‘Jacobi matrix J is near to singular’);
% %This happens almost never!
% end;
%
%%%%===============================================================
%function M=derivative_ahb_in_matrixform(a,b); %a,b depend on x
%global N;
%M=[];
%for k=1:N
%M=[M,col(a*units(k)*b)]; %M is real NxN matrix
%end;
%
%%%%===============================================================
%function M=derivative_of_xpowerj(j,x,factor);
% %M is real NxN Matrix.
% %factor stands for polynomial coefficients.
% global N;
% M=zeros(N,N);
% for k=1:j
% a=factor*x^(k-1); b=x^(j-k);
% M=M+derivative_ahb_in_matrixform(a,b);
% end;}
%
%%%%===============================================================
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Table 13.5 Definition of the coefficients of algebraic Riccati equation

A :=
[
( 1,−4,−2, 0), (−1, 4, 3, 5), ( 2,−3, 2,−5)

(−1,−1, 3, 3), ( 2,−3,−4, 0), ( 4, 5, 0,−4)

]
;

B :=
[
( 3,−3, 4,−2), (−3,−2, 1, 0)

(−1, 3, 1, 0), ( 4,−2, 3, 3)

]
;

C :=
⎡
⎢⎣ (−1, 1,−4,−4), ( 0, 3, 4,−4), ( 1, 0,−5,−2)

(−3, 3,−2, 0), (−3, 1,−2, 2), ( 2, 2, 0,−4)

(−3, 4,−3, 3), ( 0, 5,−4,−1), (−4, 5,−5, 3)

⎤
⎥⎦ ;

D :=
⎡
⎢⎣ ( 5, 5,−3, 5), (−3, 0,−1, 1)

( 2,−5, 3, 4), ( 5,−2, 1,−3)

(−2,−5,−4, 3), (−4,−2, 3,−2)

⎤
⎥⎦ .

4. Cotessarines, Hcotes,
5. Nectarines, Hnec,
6. Conectarines, Hcon,
7. Tangerines, Htan,
8. Cotangerines, Hcotan.

It should be noted, that the algebras numbered 3, 4, 7, 8 are commutative. About the
names and the multiplication rules see [4, 7]. We quote an example from [5].

Example We choose m = 2, n = 3 and define the algebraic Riccati equation by
A ∈ A2×3,B ∈ A2×2,C ∈ A3×3,D ∈ A3×2, where the matrix entries are given in
Table 13.5.

The data of Table 13.5 are randomly chosen integers in [−5, 5]. We choose
X = 0 as initial guess with the exception of Algebra 6, where another guess is
used. Newton’s method converges then in all 8 cases. The solutions are given in
Table 13.6. These solutions are not necessarily the only solutions.
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Table 13.6 Solutions X ∈ A2×3 of the algebraic Riccati equation in all eight R4

algebras

Pos. Quaternions H Coquaternions Hcoq

x11 (−0.1045,−0.1495, 0.2660, 0.0712) ( 0.1544, 0.6186,−0.0883, 0.3512)

x21 ( 0.3071, 0.3399,−0.6350, 0.1765) ( 0.2732, 0.3379,−0.5506, 0.2582)

x12 ( 0.2731,−0.1913, 0.1003, 0.6167) ( 0.1612, 0.0891,−0.6692,−0.2445)

x22 ( 0.5842, 0.7970,−0.0900,−0.4788) ( 0.5916, 1.3237, 0.1198, 0.6950)

x13 ( 0.9956, 0.1306, 0.3851, 0.6174) (−0.1351, 0.2386,−0.6664, 0.8003)

x23 (−0.5317,−0.3326,−0.5753,−0.3978) (−1.2738, 0.5379, 0.6102, 1.0119)

Pos. Tessarines Htes Cotessarines Hcotes

x11 (−0.8748,−0.1261, 0.0210, 0.0205) ( 0.0749, 0.5097, 0.8189,−0.7321)

x21 (−0.1044,−0.4106, 1.0738,−0.9254) ( 0.1177,−0.0515,−0.7539, 0.0017)

x12 ( 0.1632, 0.0329,−0.1188,−0.4736) (−1.7670, 0.0836, 0.3282,−1.2972)

x22 ( 0.0282, 0.4299, 0.3035, 0.4502) ( 0.3680, 0.1663, 0.7493, 1.4654)

x13 (−0.6189, 0.5054,−0.8030,−0.4800) ( 1.0919,−1.0135,−0.5820, 1.0441)

x23 ( 0.8554,−0.0146, 0.2011,−1.1011) (−0.5413,−0.2660, 0.0956,−0.2739)

Pos. Nectarines Hnec Conectarines Hcon

x11 ( 0.1490,−0.1557, 0.6250, 0.3262) ( 1.3763,−0.5053, 0.8822,−1.0762)

x21 ( 0.1598,−0.5805,−0.9796,−1.2966) ( 0.4270, 0.0322, 0.5237, 0.8558)

x12 ( 0.5285, 0.1447,−0.4479, 0.0074) ( 1.5484,−4.3525,−1.4404, 5.4397)

x22 (−0.2607,−0.4621,−0.8051,−0.4240) (−0.5729, 1.4386, 1.0001,−1.7677)

x13 (−0.2660,−0.3224, 0.3163, 0.3754) ( 1.7588,−0.5349,−0.3498, 0.8295)

x23 (−0.7931,−0.9394, 0.4466, 0.6899) (−0.3289, 0.4151,−0.0512,−0.3035)

Pos. Tangerines Htan Cotangerines Hcotan

x11 ( 0.0238, 0.1553,−0.6713, 0.3590) (−0.4374,−0.8677,−0.4367, 0.8265)

x21 ( 0.3589,−0.1427,−0.2777,−0.6520) (−0.4075, 0.6499, 0.5927,−0.0469)

x12 (−0.1408,−0.0282, 0.2520, 0.8164) ( 0.2330,−0.6134,−0.4203, 0.2160)

x22 (−0.1875,−0.0557, 0.5904, 0.4577) (−0.4898,−0.1886, 0.2013, 0.4882)

x13 ( 0.1099,−0.4139, 0.0090,−0.1696) ( 0.2155,−0.2357,−0.4028, 0.0678)

x23 (−0.1393,−0.2064, 0.0938, 0.0396) ( 0.2917, 0.1488, 0.3577,−0.2748)
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