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Domains
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Abstract The problem of building an orthogonal basis for the space of square-
integrable harmonic functions defined in a spheroidal (either oblate or prolate)
domain leads to special functions, which provide an elegant analysis of a variety
of physical problems. Many generalizations of these ideas in the context of
Quaternionic Analysis possess a similar elegant mathematical structure. A brief
descriptive review is given of these developments.
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12.1 Introduction

The origins behind the study of orthogonal bases of polynomials for the spaces of
square-integrable harmonic functions defined in a prolate or oblate spheroid are
to be found in [16]. The orthogonality was taken with respect to certain inner
products, each of which lead to the discussion of a PDE by means of the kernel
of the orthogonal system corresponding to that inner product. As regards treatises
on the subject, we add the names of Laplace [28], Lamé [27], Heine [23], Liouville
[34], Thomson and Tait [51], Hilbert [24], Niven [47], Klein [26], Lindemann [33],
Stieltjes [49], Darwin [11], Ferrers [15], Féjer [14], Whittaker and Watson [52],
among others, while more general aspects of their theory were given by Hobson
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[25], Szegö [50], Byerly [6], Sansone [48], Lebedev [31], and Dassios [12]. In this
connection, recently in [17] the spheroidal harmonics were defined following [16],
with a rescaling factor which permits including the unit ball as a limit of both the
prolate and oblate cases, combined into a single one-parameter family.

Multi-dimensional extensions of the prolate spheroidal harmonics to the frame-
work of Quaternionic Analysis were originally developed in [36] and subsequently
in [37], which provided many of their properties and have subsequently attracted
special attention. In [43] it was shown that the underlying prolate spheroidal
monogenics play an important role in defining and studying the monogenic Szegö
kernel function for prolate spheroids. In [46] the authors developed an orthogonal
basis of oblate spheroidal monogenics and some recurrence formulae were found.
It was shown that in the case of an oblate spheroid a basis can only be either
orthogonal or Appell basis. Some aspects on generating monogenic functions that
are orthogonal in a region outside a prolate spheroid were considered in [44].
Generalization of these results has been recently done in [38].

The object of the present note is twofold: to review the construction of a single
one-parameter family of spheroidal harmonics with special emphasis on those
orthogonal in the L2-Hilbert space structure; and to construct an orthogonal basis
of spheroidal monogenics, whose elements are parametrized by the shape of the
corresponding spheroid. We observe that this analysis cannot be done with models in
which the unit ball only is approximated as a degenerate case and requires a separate,
yet completely analogous, treatment for prolate and oblate spheroids [16, 25]. The
proofs of the main results are simplified, in accordance with developments of the
theory later in date than the original proofs; other results are given in a form more
general than that in which they were first discovered. The references given are to be
regarded solely as indicating sources of information from which I have drawn, or
where more detailed information on the various topics is to be found.

12.2 Background on Spheroidal Harmonics

We consider the family of coaxial spheroidal domains �μ, scaled so that the major
axis is of length 2:

�μ = {x ∈ R
3| x2

0 + x2
1 + x2

2

e2ν
< 1}, (12.2.1)

where ν ∈ R and μ = (1 − e2ν)
1
2 will be useful in later formulas. This follows

the notation in [17]. The equations relating the Cartesian coordinates of a point
x = (x0, x1, x2) inside �μ to spheroidal coordinates (η, ϑ, ϕ) are

x0 = μ cosh η cos ϑ, x1 = μ sinh η sin ϑ cos ϕ, x2 = μ sinh η sin ϑ sin ϕ,

(12.2.2)
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where in the case of the prolate spheroid (ν < 0) the coordinates range over η ∈
[0, π], ϑ ∈ [0, arctanh eν], ϕ ∈ [0, 2π), and 0 < μ < 1 is the eccentricity, while for
the oblate spheroid (ν > 0) we have η ∈ [0, π] and ϑ ∈ [0, arccoth eν], ϕ ∈ [0, 2π)

and μ is imaginary, μ/i > 0. The spheroids reduce to the unit ball for ν = 0, μ = 0:
�0 = {x ∈ R

3 : |x|2 < 1}.
In terms of the coordinates (12.2.2), the spheroidal harmonics are

U±
l,m[μ](x) := Ul,m[μ](η, ϑ) �±

m(ϕ), (12.2.3)

where

Ul,m[μ](η, ϑ) = αl,m μlPm
l (cos ϑ)Pm

l (cosh η) (12.2.4)

for μ �= 0. Here Pm
l are the associated Legendre functions of the first kind (see

[25, Ch. III]) of degree l and order m, and we write �+
m(ϕ) = cos(mϕ), �−

m(ϕ) =
sin(mϕ), and

αl,m = (l − m)!
(2l − 1)!! (12.2.5)

with use of the symbol n!! = ∏�n/2�−1
k=0 (n − 2k) for the double factorial. To avoid

repetition, we state once and for all that U−
l,m[μ] is only defined for m ≥ 1, i.e.

U−
l,0[μ] is expressly excluded from all statements of theorems.

It was shown in [17] that with the scale factor (12.2.5), the U±
l,m[μ] are

polynomials in the variables x0, x1, x2, which are normalized so that the limiting
case μ → 0 gives the classical solid spherical harmonics [45, 48],

U±
l,m[0](x) = |x|lPm

l

(
x0

|x|
)

�±
m(ϕ), (12.2.6)

where we employ spherical coordinates x0 = ρ cos θ , x1 = ρ sin θ cos ϕ, and x2 =
ρ sin θ sin ϕ.

Moreover, in [16] it was shown that while the U±
l,m[μ] are orthogonal in

the Dirichlet norm on �μ, the closely related functions, which we will call the
Garabedian spheroidal harmonics,

V ±
l,m[μ](x) = ∂

∂x0
U±

l+1,m[μ](x) (12.2.7)

form an orthogonal basis for L2(�μ) ∩ Har(�μ), the set of harmonic functions in
L2(�μ). This property makes the V ±

l,m[μ] of greater interest for many considera-
tions.

In accordance with the notation already employed, we shall use V ±
l,m[μ] =

Vl,m[μ]�±
m when the factors �±

m are not of interest. It will be convenient, before
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proceeding, to investigate the algebraical forms of the Vl,m[μ]. We will assume that
ν < 0, because the case ν > 0 is similar. From differentiating (12.2.2),

∂

∂x0
= 1

μ(cosh2 η − cos2 ϑ)

(

cos ϑ sinh η
∂

∂η
− sin ϑ cosh η

∂

∂ϑ

)

,

from which the definition (12.2.7) gives

(cosh2 η − cos2 ϑ)

αl+1,m μl
Vl,m[μ] = cos ϑ sinh2 ηPm

l+1(cos ϑ)(Pm
l+1)

′(cosh η)

+ sin2 ϑ cosh ηPm
l+1(cosh η)(Pm

l+1)
′(cos ϑ).

(12.2.8)

There are many well-known recurrence relations for the associated Legendre
functions (see for example [25, Ch. III]). The relation

(1 − t2)(Pm
l+1)

′(t) = (l + m + 1)Pm
l (t) − (l + 1)tPm

l+1(t) (12.2.9)

yields that (12.2.8) is equal to (l + m + 1) times

cosh η Pm
l (cos ϑ)Pm

l+1(cosh η) − cos ϑ Pm
l+1(cos ϑ)Pm

l (cosh η).

It follows, then, that

Vl,m[μ] = αl+1,m(l + m + 1)μl

(cosh2 η − cos2 ϑ)

[
cosh η Pm

l (cos ϑ)Pm
l+1(cosh η)

− cos ϑ Pm
l (cosh η)Pm

l+1(cos ϑ)
]
, (12.2.10)

with the initial values

Vl,l[μ] = (2l + 1)Ul,l[μ],
Vl+1,l[μ] = 2(l + 1)Ul+1,l[μ].

In order to avoid the difficulties usually attendant on manipulations like those of
the formulas (12.2.10), it will here be convenient to prove very simple recurrence
relations for the functions Vl,m[μ]. The following will be key in the proof of
Theorem 12.3.1 and it is based on the results of [36].

Proposition 12.2.1 For each l ≥ 2, the functions Vl,m[μ] satisfy the recurrence
relations

Vl,m[μ] = (l + m + 1)Ul,m[μ] + μ2(l + m + 1)(l + m)

(2l + 1)(2l − 1)
Vl−2,m[μ]. (12.2.11)
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Proof Equation (12.2.10) together with the further relation

(l − m + 1)Pm
l+1(t) = (2l + 1)tPm

l (t) − (l + m)Pm
l−1(t) (12.2.12)

show that

Vl+1,m[μ] = (l + m + 1)Ul,m[μ]

+ αl,m μl(l + m + 1)(l + m)

(cosh2 η − cos2 ϑ)(2l + 1)
[cos ϑ Pm

l−1(cos ϑ)Pm
l (cosh η)

− cosh η Pm
l (cos ϑ)Pm

l−1(cosh η)],
with

αl,m = 2l + 1

l − m + 1
αl+1,m.

Using again (12.2.12), we obtain

Vl+1,m[μ] = (l + m + 1)Ul,m[μ]

+ αl−1,m μl(l + m + 1)(l + m)(l + m − 1)

(cosh2 η − cos2 ϑ)(2l − 1)(2l + 1)

× [cosh η Pm
l−2(cos ϑ)Pm

l−1(cosh η)

− cos ϑ Pm
l−1(cos ϑ)Pm

l−2(cosh η)].
The result now follows. 
�

Since the basic harmonics U±
l,m[μ] of [16] are polynomials of degree l, it is

clear that the operations of rescaling by 1/μ or i/μ and multiplying by μl implied
in (12.2.4) assure that the V ±

l,m[μ] are polynomials in μ. By Eq. (12.2.11) it is clear
that −μ produces the same results as μ, so the only powers of μ which appear are
even.

In this regard, from (12.2.11) we note that for spherical harmonics,

∂

∂x0
U±

l+1,m[0](x) = (l + m + 1)U±
l,m[0](x), (12.2.13)

whereas V ±
l,m[μ] is not so simply related to U±

l,m[μ] for μ �= 0, as was proved in
[36]:

Theorem 12.2.2 Let l ≥ 0, 0 ≤ m ≤ l. The non-vanishing coefficients vl,m,k in the
relation

V ±
l,m[μ] =

[
l−m

2

]

∑

k=0

vl,m,k μ2kU±
l−2k,m[μ] (12.2.14)
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are given by

vl,m,k = (l + m + 1)!(2l + 1 − 4k)!!
(l + m − 2k)!(2l + 1)!! . (12.2.15)

Proof Suppose inductively that the formula of theorem is true when l is replaced by
l′ < l. Then

V ±
l,m[μ] = (l + m + 1)U±

l,m[μ]

+ (l + m + 1)(l + m)

(2l + 1)(2l − 1)

[
l−2−m

2

]

∑

k=0

vl−2,m,k μ2(k+1)U±
l−2(k+1),m[μ].

Since by (12.2.15)

vl,m,0 = l + m + 1,

vl,m,k+1 = (l + m + 1)(l + m)

(2l + 1)(2l − 1)
vl−2,m,k,

we find that the stated formula is also true, completing the proof. 
�
An important result of [16] regarding the orthogonailty of the V ±

l,m[μ] in the L2-
Hilbert space can be restated as follows.

Theorem 12.2.3 For a fixed μ, the functions V ±
l,m[μ] (l ≥ 0) form a complete

orthogonal family in the closed subspace L2(�μ) ∩ Har(�μ) of L2(�μ) with the
norms

‖V ±
l,m[μ]‖2

L2(�μ) = 2π(1 + δ0,m)μ2l+3γl,mIl,m(μ), (12.2.16)

where Il,m(μ) is defined by

Il1,m(μ) :=
∫ 1

μ

1
Pm

l1
(t)Pm

l1+2(t)dt, (12.2.17)

and

γl,m = (l + m + 1)(l + 2 − m)!(l + m + 1)!
(2l + 1)!!(2l + 3)!! . (12.2.18)

For the limiting case, μ = 0,

‖V ±
l,m[0]‖2

L2(�0)
= 2π(1 + δ0,m)(l + m + 1)(l + m + 1)!

(2l + 1)(2l + 3)(l − m)! . (12.2.19)
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12.3 An Orthogonal Basis of Spheroidal Monogenics

The standard bases for spheroidal harmonics have their counterparts for the
corresponding spaces of monogenic functions taking values inR3. These monogenic
polynomials are defined by regardingR3 as the subset of the quaternionsH := {x0+
x1i + x2j + x3k} for which x3 = 0. Although this subspace is not closed under the
quaternionic multiplication (which is defined, as usual, so that i2 = j2 = k2 = −1
and ij = k = −ji, jk = i = −kj, ki = j = −ik), it is possible to carry out a great
deal of the analysis analogous to that of complex numbers [13, 21, 35, 39, 40, 42].

Consider the Cauchy-Riemann (or Fueter) operators

∂ = ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
, ∂ = ∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
. (12.3.1)

Define the set of monogenic functions

M(�μ) :=
{

f = [f]0 + [f]1i + [f]2j ∈ C1(Ωμ) : ∂f = 0
}

.

Monogenic functions are harmonic, but not vice-versa. The hypercomplex derivative
is simply denoted by (1/2)∂f [18].

A basis of polynomials spanning the square-integrable solutions of ∂f = 0
was given in [36] (cf. [37]) for prolate spheroids and another in [46] for oblate
spheroids, via explicit formulas. Note that the latter prolate and oblate spheroidal
monogenics can be obtained as a special case of the present theory by appropriate
interpretation. In the following, we consider the prolate and oblate cases of
spheroids simultaneously.

In analogy to (12.2.7) the basic monogenic spheroidal polynomials are con-
structed as

X±
l,m[μ] = ∂U±

l+1,m[μ]. (12.3.2)

It was noted in [39] that Sc X±
l,m[0] is equal to V ±

l,m[0] = (l +m+ 1)U±
l,m[0], and an

explicit expression for the vector part was written out, which was later generalized
from the sphere to the spheroid in [36].

Using (12.2.10) and further properties of the Legendre functions, we can verify
that

Vl,−1[μ] =
⎧
⎨

⎩

− 1
(l+1)(l+2)

Vl,1[μ] l = 1, 2, . . . ,

0 l = 0.
(12.3.3)

These functions will appear in the representation (12.3.4) for the case of zero-order
monogenic polynomials (see Theorem 12.3.1 below). Similar results can be found
in [36].
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Theorem 12.3.1 For each l ≥ 0 and 0 ≤ m ≤ l + 1, the basic spheroidal
monogenic polynomials (12.3.2) are equal to

X±
l,m[μ] = V ±

l,m[μ] + i
2

[

(l + m + 1)V ±
l,m−1[μ] − 1

l + m + 2
V ±

l,m+1[μ]
]

∓ j
2

[

(l + m + 1)V ∓
l,m−1[μ] + 1

l + m + 2
V ∓

l,m+1[μ]
]

, (12.3.4)

where the harmonic polynomials V ±
l,m[μ] are defined by (12.2.7). Moreover, the set

{X±
l,m[μ] : l ≥ 0, 0 ≤ m ≤ l + 1} is orthogonal in the sense of the scalar product

defined by

〈f, g〉[μ] = Sc
∫∫∫

�μ

fg dx. (12.3.5)

Their norms are given by

‖X±
l,m[μ]‖2

L2(�μ) = π μ2l+3

(l + 2)(l + m + 2)(2l + 1)!!(2l + 3)!!
[
(l + 2)(l + m)(l + m + 1)(l − m + 3)!(l + m + 2)!Il,m−1

+ 2δ0,m(l + m + 2)(l + 1)!(l + 2)!Il,1

+ (l + 2)(l − m + 1)!(l + m + 2)!(Il,m+1

+ 2(l − m + 2)(l + m + 1)(1 + δ0,m)Il,m

)]
,

where Il,m(μ) is defined by (12.2.17). For the limiting case, μ = 0,

‖X±
l,m[0]‖2

L2(�0)
= 2π(1 + δ0,m)(l + 1)(l + 1 + m)!

(2l + 3)(l + 1 − m)! .

Proof The full operator (12.3.1) in spheroidal coordinates (12.2.2) is

∂ = 1

μ(cosh2 η − cos2 ϑ)

(

cos ϑ sinh η
∂

∂η
− sin ϑ cosh η

∂

∂ϑ

)

− 1

μ(cosh2 η − cos2 ϑ)
(cos ϕi + sin ϕj)

(

sin ϑ cosh η
∂

∂η
+ cos ϑ sinh η

∂

∂ϑ

)

− 1

μ sin ϑ sinh η
(− sin ϕi + cos ϕj)

∂

∂ϕ
.
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The first line of this expression applied to U±
l+1,m[μ] produces the scalar part of

X±
l,m[μ] in (12.3.4) and was calculated in [36]. For the non-scalar part, we use the

relation (12.2.9) to obtain

2

μl+1αl+1,m�±
m

(

cos ϑ sinh η
∂

∂ϑ
+ sin ϑ cosh η

∂

∂η

)

U±
l+1,m[μ]

= (l + m + 1)(l − m + 2)
[
sin ϑ cosh ηPm

l+1(cos ϑ)Pm−1
l+1 (cosh η)

− cos ϑ sinh η Pm−1
l+1 (cos ϑ)Pm

l+1(cosh η)
]

+ sin ϑ cosh ηPm
l+1(cos ϑ)Pm+1

l+1 (cosh η)

+ cos ϑ sinh ηPm+1
l+1 (cos ϑ)Pm

l+1(cosh η).

Next, we use the relation

√
1 − t2Pm

l+1(t) = (l − m)tPm−1
l+1 (t) − (l + m)Pm−1

l (t)

(valid for |t| < 1, and replacing 1 − t2 with t2 − 1 for |t| > 1) produces

− (cosh2 η − cos2 ϑ)

μlαl+1,m−1
Vl,m−1[μ] = sin ϑ cosh η Pm

l+1(cos ϑ)Pm−1
l+1 (cosh η)

− cos ϑ sinh η Pm
l+1(cosh η)Pm−1

l+1 (cos ϑ).

Furthermore, using the expression

(1 − t2)1/2 Pm
l+1(t) = 1

2l + 3
(Pm+1

l+2 (t) − Pm+1
l (t)),

and its counterpart for |t| > 1, and then applying (12.2.12), we arrive at

cosh η sin ϑPm
l+1(cos ϑ)Pm+1

l+1 (cosh η) + sinh η cos ϑPm+1
l+1 (cos ϑ)Pm

l+1(cosh η)

= (cosh2 η − cos2 ϑ)

(l + 1 − m)(l + 2 + m)μlαl+1,m+1
Vl,m+1[μ].

With these calculations at hand, we have

− 1

μ(cosh2 η − cos2 ϑ)

(

sin ϑ cosh η
∂

∂η
+ cos ϑ sinh η

∂

∂ϑ

)

U±
l+1,m[μ]

= (l + 1 + m)

2
Vl,m−1[μ]�±

m − 1

2(l + 2 + m)
Vl,m+1[μ]�±

m.
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Similarly, one can prove that

1

sin ϑ sinh η

∂

∂ϕ
U±

l+1,m[μ]

= ∓ m μl+1αl+1,m

cosh2 η − cos2 ϑ
�∓

m

×
[

sinh ηPm+1
l+1 (cos ϑ)Pm

l+1(cosh η)

sin ϑ
+ sin ϑPm+1

l+1 (cos ϑ)Pm
l+1(cosh η)

sinh η

]

= ± μ

2

[
1

l + 2 + m
Vl,m+1[μ] + (l + 1 + m)Vl,m−1[μ]

]

�∓
m.

Combining these three formulas one straightforward obtains the desired expressions
for (∂/∂x1)U

±
l+1,m[μ] and (∂/∂x2)U

±
l+1,m[μ].

In the sequel, we will denote by [f]i (i = 0, 1, 2) the components of a function
f : �μ → R

3. By definition of the integral (12.3.5) it follows that

〈X±
l1,m1

[μ], X±
l2,m2

[μ]〉L2(�μ)

=
∫∫∫

�μ

(
[X±

l1,m1
[μ]]0[X±

l2,m2
[μ]]0 + [X±

l1,m1
[μ]]1[X±

l2,m2
[μ]]1

+ [X±
l1,m1

[μ]]2[X±
l2,m2

[μ]]2

)
dx.

By Eqs. (12.3.3) and (12.3.4), and Theorem 12.2.3 we have

∫∫∫

�μ

[X±
l1,m1

[μ]]0[X±
l2,m2

[μ]]0 dx = ‖V ±
l1,m1

[μ]‖2
L2(�μ) δl1,l2δl1,l2 (12.3.6)

and
∫∫∫

�μ

(
[X±

l1,m1
[μ]]1[X±

l2,m2
[μ]]1 + [X±

l1,m1
[μ]]2[X±

l2,m2
[μ]]2

)
dx

=πp1(l2 + m1 + 1)δm1,m2

2

∫ arctanh eν

0

∫ π

0
Vl1,m1−1[μ]Vl2,m1−1[μ] dR

± π

(l1 + 2)(l2 + 2)
δm1,0

∫ arctanh eν

0

∫ π

0
Vl1,1[μ]Vl2,1[μ] dR

+ π

2p1(l2 + m1 + 1)
δm1,m2

∫ arctanh eν

0

∫ π

0
Vl1,m1+1[μ]Vl2,m1+1[μ] dR,

where dR = μ3(cosh2 η − cos2 ϑ) sin ϑ sinh ηdϑdη.
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Using Proposition 12.2.1, and applying again the orthogonality of Theo-
rem 12.2.3, we are left with

∫∫∫

�μ

(
[X±

l1,m1
[μ]]1[X±

l2,m2
[μ]]1 + [X±

l1,m1
[μ]]2[X±

l2,m2
[μ]]2

)
dx

= πμ2l1+3

(l1 + 2)(2l1 + 1)!!(2l1 + 3)!!
× [

(l1 + 2)(l1 + m1 + 1)!
(
(l1 + m1)(l1 + m1 + 1)(l1 − m1 + 3)!Il1,m1−1

+ (l1 − m1 + 1)!Il1,m1+1
) + 2(l1 + 1)!(l1 + 2)!Il1,1δ0,m

]
δm1,m2δl1,l2

(12.3.7)

with Il,m defined in (12.2.17). Combining (12.3.6) and (12.3.7), we conclude that

〈X+
l1,m1

[μ], X+
l2,m2

[μ]〉L2(�μ) = 0

when l1 �= l2 or m1 �= m2. Similarly, 〈X−
l1,m1

[μ], X−
l2,m2

[μ]〉L2(�μ) = 0 when l1 �= l2
or m1 �= m2.

Using once more the orthogonality of the system {�±
m} on [0, 2π], we conclude

that

〈X±
l1,m1

[μ], X∓
l2,m2

[μ]〉L2(�μ) = 0

when the indices do not coincide. The calculation of the norms comes from taking
l1 = l2 and m1 = m2 in (12.3.7) and adding the expression (12.2.16). By the
symmetric form taken by X±

l,m[μ] in (12.3.4), we know that when m �= 0,

‖X+
l,m[μ]‖L2(�μ) = ‖X−

l,m[μ]‖L2(�μ).

The limiting case, μ = 0, follows with the use of Eq. (12.2.19). 
�
The solid spherical monogenics X±

l,m[0] are embedded generically in this one-
parameter family of spheroidal monogenics. In contrast, in treatments such as [16,
25, 36, 37, 44, 46], the spheroidal monogenics degenerate as the eccentricity of the
spheroid decreases.

For a general orientation, the reader is urged to read some of the existing works
where the spherical monogenics emerged [7, 9, 10]. It is worth mentioning that
at the time of the publications [8–10] a closed-form representation corresponding
to the X±

l,m[0] in terms of the basic solid spherical harmonics (12.2.6), originally
stated in [39], were not at disposal for the investigation of some basic properties
of these functions. They played a fundamental role in [19, 20, 22, 39, 40] (cf. [35])
in the study of higher-dimensional counterparts of the well-known Bohr theorem,
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Borel-Carathéodory’s theorem and Hadamard real part theorems on the majorant
of a Taylor’s series, as well as Bloch’s theorem, in the context of Quaternionic
Analysis, where they were investigated in detail. In a different context, orthogonal
Appell bases of monogenic polynomials were constructed in [1], [4] and [41] (cf.
[2, 3]) using a basis of quaternionic-valued spherical monogenics orthogonal with
respect to the quaternionic inner product

〈f, g〉[0] =
∫∫∫

�0

fg dx.

These bases were rediscovered in [29] (cf. [5, 30]) using a different algebraic
approach based on Gelfand-Tsetlin schemes.

In [32] it is shown that the dimension of the space M(l) of homogeneous
monogenic polynomials of degree l in x0, x1, x2 is 2l + 3 (this does not depend
on the domain). Since the polynomials X±

l,m[μ] are not homogeneous, we consider
the space

M(l)∗ =
⋃

0≤k≤l

M(l)

of monogenic polynomials of degree l, a class which is not altered by adding
monogenic polynomials of lower degree. Thus

dimM(l)∗ =
l∑

k=0

(2k + 3) = (l + 3)(l + 1). (12.3.8)

Consider the collections of 2k + 3 polynomials

Bk[μ] := {X+
k,m[μ], 0 ≤ m ≤ k + 1} ∪ {X−

k,m[μ], 1 ≤ m ≤ k + 1}.

By Theorem 12.3.1 and (12.3.8), the union

⋃

0≤k≤l

Bk[μ] (12.3.9)

is an orthogonal basis for M(l)∗ . In addition, M(l)∗ is dense in L2(�μ) ∩ M(�μ).
Therefore the following result, which will be of use in the further discussion, can
now be established:

Proposition 12.3.2 For a fixed μ, the function set (12.3.9) forms an orthogonal
basis of L2(�μ) ∩ M(�μ).

Furthermore, it would be useful in practice if the foregoing orthogonal
basis (12.3.9) has the Appell property also. It was shown in [46] that there does
not exist an orthogonal Appell basis in the case of spaces of solid oblate spheroidal
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monogenics. We shall proceed in such a manner that we compute the hypercomplex
derivative of a spheroidal monogenic of degree l and show, as expected, that the
obtained polynomial is not a member of the family with degree l − 1 like in cases
of Appell bases [4, 7, 8, 10]. We find that the hypercomplex derivative of a basic
spheroidal monogenic is a combination of [(l − m)/2] + 1 spheroidal monogenics
of lower degrees. Basically, it can be represented by all polynomials of degree at
most l − 1.

Theorem 12.3.3 For a fixed μ, the hypercomplex derivative of X±
l,m[μ] has the

form:

(
1

2
∂)X±

l,m[μ] =
[ l−m

2 ]∑

k=0

vl,m,k μ2kX±
l−1−2k,m[μ], (12.3.10)

where the constants vl,m,k are given by (12.2.15).

Proof Since ∂/∂x0 is a linear operator, we find, by Theorem 12.2.2, the relation:

∂

∂x0
V ±

l,m[μ] =
[ l−m

2 ]∑

k=0

vl,m,k μ2kV ±
l−1−2k,m[μ].

The rest of the proof is straightforward. 
�
An advantage of Eq. (12.3.10) is that it furnishes a concise expression for the

hypercomplex derivatives of the basic monogenic spheroidal polynomials by means
of which many of their properties may be easily investigated.

The next proposition shows that there are two hyperholomorphic constants
among the basic spheroidal monogenic polynomials, i.e., functions whose hyper-
complex derivative is identically zero.

Proposition 12.3.4 For a fixed μ, X±
l,l+1[μ] are hyperholomorphic constants.

Proof The proof is a consequence of Theorem 12.3.3. 
�
It can be further shown that X±

l,l+1[μ] = X±
l,l+1[0]; that is, the hyperholomorphic

constants X±
l,l+1[μ] do not depend on the parameter μ.

The hypercomplex derivatives of the prescribed monogenic polynomials in its
extended signification being thus computed, no difficulties can arise in restricting it
to a particular limiting case. In fact, when μ = 0, we have readily [7, 10]:

(
1

2
∂)X±

l,m[0] = (l + m + 1)X±
l−1,m[0]. (12.3.11)
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The reader might find without any additional work that, using (12.3.11) and setting
for each l ≥ 0, 0 ≤ m ≤ l + 1,

Y±
l,m := l!(m + 1)!

(l + m + 1)! X±
l,m[0], (12.3.12)

the equality follows:

(
1

2
∂)Y±

l,m = l Y±
l−1,m. (12.3.13)

Thus the application of the hypercomplex derivative to Y±
l,m results again in a

real multiple of the similar function one degree lower [41]. The special normal-
ization (12.3.13) is called Appell property. In [8] it is proved that the solid spherical
monogenics (12.3.12) form, indeed, an orthogonal Appell basis for M(l)(�0),
l ≥ 0. In [1] and [3], fundamental recursion formulas were obtained for the elements
of the prescribed Appell basis.

We turn now to show that the Appell property holds for a part of the X±
l,m[μ]

(providing the prescribed normalization (12.3.12)).

Corollary 12.3.5 Let μ be fixed. For l − m = 0, 1, the hypercomplex derivatives of
X±

l,m[μ] follow the rule

(
1

2
∂)X±

l,m[μ] = (l + 1 + m)X±
l−1,m[μ].

Proof It is an immediate consequence of Theorem 12.3.3. 
�
One of our leading results is that the three-dimensional spherical monogenics

considered, e.g., in [4, 8, 10] are embedded in the prescribed one-parameter family
of internal spheroidal monogenics. Hence, the latter can be naturally seen as
an extention of the former functions to arbitrarily spheroidal domains. Further
investigations on this topic are now under investigation and will be reported in a
forthcoming paper.

Acknowledgement The author’s work is supported by the Asociación Mexicana de Cultura, A. C.

References

1. S. Bock, Über funktionentheoretische Methoden in der räumlichen Elastizitätstheorie, Ph.D.
thesis, Bauhaus-University Weimar (2009)

2. S. Bock, On a three dimensional analogue to the holomorphic z-powers: Laurent series
expansions. Complex Var. Elliptic Equ. 57(12), 1271–1287 (2012)

3. S. Bock, On a three dimensional analogue to the holomorphic z-powers: power series and
recurrence formulae. Complex Var. Elliptic Equ. 57(12), 1349–1370 (2012)



12 An Orthogonal Family of Monogenic Functions on Spheroidal Domains 265

4. S. Bock, K. Gürlebeck, On a generalized Appell system and monogenic power series. Math.
Methods Appl. Sci. 33(4), 394–411 (2010)
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