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This volume is dedicated to our colleague,
friend and teacher

Wolfgang Sprößig
on the occasion of his 70th birthday.

He started with quaternionic analysis in the
1970s and was the PhD-advisor of several
well-known researchers in the field of
quaternionic and Clifford analysis.



vi

W. Sprößig (left) at the 5th International
Conference on Clifford Algebras and their
Applications in Mathematical Physics, 1999,
in Ixtapa, Zihuatanejo (Mexico).1 In the rows
behind Wolfgang are some of his colleagues
and students. Second row (from left to right):
U. Kähler (University of Aveiro, PhD-student
of K. Gürlebeck), S. Bernstein (TU
Bergakademie Freiberg, PhD-student of W.
Sprößig), K. Gürlebeck (Bauhaus-Universität
Weimar, PhD-student and co-author of W.
Sprößig. Last row in the background: S.-L.
Eriksson (University of Helsinki)).

1With courtesy of P. Cerejeiras.



Preface

This volume, compiled in honour of Wolfgang Sprößig’s 70th birthday, gives an
overview of modern quaternionic and Clifford analysis.

When Wolfgang Sprößig began his research in the field of quaternion analysis
and elliptic partial differential equations, little was known from multidimensional
function theory. Back then, function theory was conceived as a theory in C or Cn

or as a theory of harmonic functions, but not in Rn as a refinement of harmonic
function theory.

It turned out that Clifford algebras are the appropriate tool for refining the
harmonic analysis and for describing a higher-dimensional analogue of the Cauchy-
Riemann system, the so-called generalized Cauchy-Riemann system, and in par-
ticular the Dirac operator, which is actually related to the Dirac operator in
physics. Today, many completely different topics and theories rely on Clifford
analysis as a tool or as a principal research topic. The contributions to this volume
exemplify various approaches of Clifford analysis and its application to partial
differential equations, distributions, harmonic analysis and frameworks, monogenic
polynomials, numerical methods, differential geometry, as well as discrete Clifford
analysis.

I would like to thank all the colleagues who contributed to this volume—some of
them being long-term friends of Wolfgang Sprößig, some of them being his students,
some of them being his friends’ disciples, but all of them being researchers in the
field of Clifford analysis.

Freiberg, Germany Swanhild Bernstein
March 2019
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Laudation

Klaus Gürlebeck and Helmuth R. Malonek

This collection1 contains 23 original contributions, submitted by 40 colleagues and
friends on the occasion of the 70th birthday of Professor Wolfgang Sprößig. The
main goal of this preface is to provide a—admittedly subjective and incomplete—
review of the life and work of the celebrant, and to highlight his contribution to and
his influence on the development of quaternionic and Clifford analysis, a scientific
field with origins in the first half of the twentieth century. The actual importance
of this field, and its vast potential for practical applications in particular, have been
fully understood in the late 1970s and early 1980s—to a considerable degree due to
the work of Wolfgang Sprößig.

As the authors of this preface know all too well, Professor Sprößig is not the
kind of person to revel in the spotlight. Still, we do hope that this book will give
him the opportunity to look back on his life path with the perspective that only the
passage of time may grant and recognize some of his many achievements, reflected
here through the work and the eyes of other authors. The picture that emerges is
certainly dazzling.

Wolfgang Sprößig was born in the Saxon city of Chemnitz on Sunday, October
13th, 1946, to his loving parents Dora and Karl Sprößig. From 1953 until 1965, he
attended high school, and in 1965 began his studies in mathematics at the University
of Technology in Karl-Marx-Stadt (today: Chemnitz). In 1969, he successfully
finished his studies with the (German) diploma degree. At that time, the University
of Technology in Karl-Marx-Stadt was facing big challenges. New departments

1The authors thank Marius Mitrea for the linguistic improvement of this laudation.

K. Gürlebeck
Chair of Applied Mathematics, Bauhaus-Universität Weimar, Weimar, Germany
e-mail: klaus.guerlebeck@uni-weimar.de

H. R. Malonek
Departamento de Matemática, Universidade de Aveiro, Aveiro, Portugal
e-mail: hrmalon@ua.pt
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were established in order to meet the high demand caused by the industrial
development in the region, and the number of students was rapidly increasing. In
1968, a reorganization of all the universities had taken place that granted more
freedom to research. Also, increasing attention was being paid to the applicability
of theoretical results in practice. At that time, the University of Technology in Karl-
Marx-Stadt had attracted several young mathematicians with a “habilitation” who
had studied at the universities of Leningrad (today: St. Petersburg) and Moscow,
some of whom had also graduated there with a doctoral degree. As a result, the
level of activity in pure and applied mathematics increased drastically. Among
the new professors who joined this movement was Siegfried Prößdorf, who had
graduated under the supervision of Solomon G. Mikhlin. In 1969, Wolfgang Sprößig
began to work as a young assistant in Prößdorf’s research group. He completed and
defended his dissertation in 1974. The thesis is entitled “Über die Regularisierung
eines Systems zweidimensionaler singulärer Integralgleichungen, dessen Symbol
endlich viele Nullstellen ganzzahliger Ordnung besitzt” (English translation: “On
the regularization of a system of two-dimensional singular integral equations whose
symbol has finitely many zeros of integer order”).

Having acquired a great deal of professional expertise, Wolfgang Sprößig began
to direct his interests to the field of quaternionic analysis—which, as we all know,
has remained a vibrant area of activity until today. He wrote five original papers that
set the ground for his habilitation thesis “Eine mehrdimensionale Operatorenrech-
nung über beschränkten Gebieten des Euklidischen Raumes und ihre Anwendung
auf die Lösung von Gleichungen” (English translation: “A multidimensional opera-
tor calculus on bounded domains of Euclidean space, and its application to solving
equations”), published in 1979. These first five papers as well as the habilitation
thesis were the beginning of an ambitious research program, which would take
Wolfgang many decades to complete. But step by step, it eventually became a
reality—a process that has stretched through the entire academic life of Wolfgang
Sprößig. Envisioning something ahead of one’s time is impressive; but having the
ability and tenacity to make it real is truly momentous. Wolfgang Sprößig’s original
insight is now part of the universal mathematical landscape.

In the early stages, quaternionic analysis had belonged to the fringes of math-
ematics and was regarded as merely esoteric. Wolfgang Sprößig challenged these
narrow perceptions and succeeded in changing the status quo of quaternionic
analysis. With his calm yet persuasive demeanour, he made a compelling case by
highlighting both the theoretical importance of this field as well as its potential for
practical applicability.

Wolfgang Sprößig has an innate talent for explaining complex topics. This made
him a perspicuous teacher, as already his first students could experience. His lecture
on partial differential equations in 1977 was a remarkable example. In this lecture,
he had incorporated some of his own original research results that were new at the
time. This gave the audience a chance to acquaint themselves in a most effective
manner with quaternion-valued functions, spatial Cauchy-Riemann equations, the
generalized Cauchy integral, and last but not least the famous T-operator. This
type of lectures was both a revelation and a challenge for the involved students,
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since it blurred the boundaries between doing research and teaching in a traditional
way. While traditional scientists who upheld Humboldt’s pioneering ideas only
spoke about the union of teaching and research, Wolfgang Sprößig’s students
could witness this symbiosis from the very beginning. For example, the students
got the chance to learn about the T-operator and applications of the associated
operator calculus to boundary-value problems before these results had actually been
published (1978, 1979)!

The sheer number of students who subsequently decided to pursue academic
careers testifies to Wolfgang Sprößig’s ability to educate and inspire young students
by his way of lecturing. Wolfgang Sprößig’s exuberant enthusiasm unabatedly
continued throughout his entire professional life, and he has always put great effort
into importing recent, original research into his lectures. The lecture notes of an
international intensive course taking place in Coimbra in 2000, a book on function
theory in the plane and in the space published in 2006, and the small text book
“Vector analysis”2 prove this side of our celebrated colleague. Overall, this set of
activities perfectly embodies Wolfgang Sprößig’s professional attitude, according to
which there is nothing that one cannot still improve.

In 1980, Wolfgang Sprößig was recognized for his achievements by being
appointed as Associate Professor (“Hochschuldozent”) for Analysis at the Uni-
versity of Technology in Karl-Marx-Stadt. At that time, the first author of this
contribution, Klaus Gürlebeck, had the opportunity to work directly under the
tutelage of Professor Sprößig as a member of his research group until 1986. This
turned out to be a unique learning experience that transcended the boundaries of
mathematics. Klaus still vividly remembers that, on his first day of work, Professor
Sprößig made unmistakably clear that failure was not an option and that great things
were expected of all concerned people. This clear statement of determination and,
of course, the competent scientific guidance provided by Professor Sprößig ensured
that things indeed turned out that way. Wolfgang Sprößig has always understood
how to get the best out of his students, with a gentle style of guidance that fostered
trust and encouraged personal initiative. The pleasant and open-minded atmosphere
in his research group has always been a great incentive for all those involved.

It is also worth mentioning that Wolfgang Sprößig’s cooperation with SKET
Magdeburg (a company in the heavy engineering industry) was intensified during
this period. At that time, such cross-pollination between academia and industry had
by no means been normal at universities. Still, Wolfgang Sprößig fully embraced the
challenge of doing sophisticated applied mathematics and at the same time serving
as the Scientific Director of this cooperation project for several years. Together with
the Head of the Science Department, Prof. Hans Jäckel, he succeeded in forming
a group of interested students and young staff members who tackled concrete
problems arising in engineering in a systematic and sustainable way. Overall,
this cooperation project lasted for almost 14 years, namely from 1977 to 1990.

2W. Sprößig, A. Fichtner: Vektoranalysis. 2004. 1st edition, 79 pages. Leipzig: Edition am
Gutenbergplatz Leipzig (EAGLE).
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This explains why also titles like “Mathematical Foundations for Heat Treatment
Technologies of Industrial Steels”3 show up in Wolfgang Sprößig’s publication list.

Eventually, quaternionic analysis emerged as an important tool for solving
such problems—and as a consequence, several generations of students had the
distinct pleasure of dealing with the T-operator. As a result of these endeavours,
several publications emerged with the goal of solving concrete boundary-value
problems in mathematical physics, e.g., “A Hypercomplex Method of Calculating
Stress in Three-Dimensional Bodies” by W. Sprößig and K. Gürlebeck.4 This work
essentially marks the beginning of several productive decades of collaboration
between the two authors.

In 1986, Wolfgang Sprößig was appointed Chair of Analysis at the Bergakademie
Freiberg—the world’s first and most traditional “Montanuniversität”, founded in
1765. Six years later, in 1992, he was appointed Professor of Complex Analysis at
the TU Bergakademie Freiberg, where he served as Deputy Director of the Institute
for Applied Mathematics until 1996. Later on, he took over the leadership of the
Institute for Applied Mathematics until 2003. And finally, until his retirement in
2012, he was the Head of the Institute for Applied Analysis. In all these functions,
Wolfgang Sprößig has worked tirelessly while maintaining a highly productive
scientific life. In addition to about 90 scientific papers, he published 11 books,
including six books on his most favourite topic, namely applications of quaternionic
and Clifford analysis to boundary-value problems in mathematical physics:

• K. Gürlebeck, W. Sprößig: “Quaternionic Analysis and Elliptic Boundary Value
Problems”, Akademieverlag Berlin, Math. Research 56, 1989 and ISNM 89,
Birkhäuser, Basel, 1990;

• K. Gürlebeck, W. Sprößig: “Quaternionic Calculus for Engineers and Physicists”,
John Wiley & Sons, Chichester, 1997;

• K. Gürlebeck, W. Sprößig: “Introduction in analytical and numerical methods in
Clifford Algebras”, Dep. de Matematica da Universidade de Coimbra, Textos de
Matematica, Serie B, 2000;

• K. Gürlebeck, K. Habetha, W. Sprößig: “Funktionentheorie in der Ebene und im
Raum”, Birkhäuser, 2006 (in German; English translation: Function theory in the
plane and in space);

• K. Gürlebeck, K. Habetha, W. Sprößig: “Holomorphic Functions in the Plane and
n-dimensional Space”, Birkhäuser, 2008;

• K. Gürlebeck, K. Habetha, W. Sprößig: “Application of Holomorphic Functions
in Two and Higher Dimensions”, Birkhäuser, Basel, 2016.

At the core of this body of work was the task of obtaining explicit representations
for solutions to partial differential equations in general, and to boundary-value
problems associated with such PDEs in particular. These representations can be used

3Wissenschaftliche Schriftenreihe (WSR) of the University of Technology in Karl-Marx-Stadt,
10/1982, in German.
4Suppl. Rend. Circ. Mat. Palermo, Series II, number 6, 1984, 271–284.
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for establishing the uniqueness, regularity, and stability of solutions. In addition
to these purely analytical questions, Wolfgang Sprößig was always interested in
the numerical aspects revolving around the topic of boundary-value problems. A
substantial part of the joint work with Klaus Gürlebeck was dedicated to this area
(33 papers and 6 books). The basic idea was—and still is—to develop a unified
theory for the analytical and numerical investigation of boundary-value problems.

As is obvious from his research output, Wolfgang Sprößig was particularly
fascinated by the field of flow problems. Here, his works range from purely abstract
results on the existence and regularity of solutions via the study of the spectra of
relevant operators to very concrete models. In this context, one should also mention
his entirely new research on weather models, which was presented only recently.

Wolfgang Sprößig has also maintained a highly visible profile at the international
level. In addition to his academic and administrative tasks as coordinator in various
international programs—such as the Socrates, Erasmus and Leonardo program
in the European Union—, he has also been very active on the lecture tour for
many years. His recent involvement in the International Master Course “Techno-
Mathematics” at Hanoi University of Technology (2005–2010) deserves special
mention.

Besides his scientific work, Wolfgang Sprößig has also been significantly
involved in editor work for a number of scientific publications. For example, he is

• Member of the Editorial Boards of

– Revista Scientifica
– Advances in Applied Clifford Algebras
– Complex Analysis and Operator Theory (CAOT)

• Advisory Editor of the book series “Frontiers in Mathematics”

And perhaps the most recognizable activity in this category: He is

• Managing Editor of the journal “Mathematical Methods in Applied Sciences”
(Wiley).

Several international conference series are also very closely associated with
Wolfgang’s name. For many years, he was a member of the ICCA Advisory Board
(International Conferences on Clifford Algebras and Applications) and Head of the
Advisory Board from 2008 to 2014. Also, Wolfgang Sprößig has regularly been
a co-organizer of various other meetings. In this context, the annual work for the
ICNAAM sessions from 2004 to 2017 are particularly noteworthy.

This small overview of Professor Wolfgang Sprößig’s work undoubtedly shows
what influence he has had on the development of his area of research. He is an
academic as one would imagine an academic to be. In the years since his retirement,
there has been no sign of retreat, so we are looking forward to further cooperation.
Dear Wolfgang, we wish you all the best for your seventies—and above all, health
and a productive time.
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Chapter 1
Cauchy’s Formula in Clifford Analysis:
An Overview

Fred Brackx, Hennie De Schepper, Roman Lávička, and Vladimir Souček

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract The Clifford-Cauchy integral formula has proven to be a corner stone of
the monogenic function theory, as is the case for the traditional Cauchy formula
in the theory of holomorphic functions in the complex plane. In the recent years,
several new branches of Clifford analysis have emerged. Similarly as hermitian
Clifford analysis was introduced in Euclidean space R2n of even dimension as
a refinement of Euclidean Clifford analysis by the introduction of a complex
structure on R2n, quaternionic Clifford analysis arose as a further refinement by the
introduction of a so-called hypercomplex structure Q, i.e. three complex structures
(I, J, K) which submit to the quaternionic multiplication rules, on Euclidean
space R4p, the dimension now being a fourfold. Two, respectively four differential
operators are constructed, leading to invariant systems under the action of the
respective symmetry groups U(n) and Sp(p). Their simultaneous null solutions
are respectively called hermitian and quaternionic monogenic functions. The basics
of hermitian monogenicity have been studied in e.g. Brackx et al. (Compl Anal
Oper Theory 1(3):341–365, 2007; Complex Var Elliptic Equ 52(10–11):1063–1079,
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has been developed in, amongst others, Peña-Peña (Complex Anal Oper Theory
1:97–113, 2007), Eelbode (Complex Var Elliptic Equ 53(10):975–987, 2008),
Damiano et al. (Adv Geom 11:169–189, 2011), and Brackx et al. (Adv Appl
Clifford Alg 24(4):955–980, 2014; Ann Glob Anal Geom 46:409–430, 2014). In
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this contribution, we give an overview of the ways in which a Cauchy integral
representation formula has been established within each of these frameworks.

Keywords Cauchy’s formula · Monogenic functions

Mathematics Subject Classification (2010) Primary 30G35

1.1 Introduction

In the theory of holomorphic functions in the complex plane, i.e. the null solutions
of the Cauchy–Riemann operator ∂z (with z = x + iy), the Cauchy formula as
well as the Cauchy transform play an important rôle; they both involve the so-called
Cauchy kernel

E(z) = 1

2π i

1

z

which is the fundamental solution of the Cauchy–Riemann operator, i.e.

∂zE(z) = δ(z)

Let D be a bounded domain in C with (piecewise) smooth boundary ∂D. Then
the Cauchy formula reproduces a holomorphic function f in the interior of D from
its boundary values on ∂D as follows:

f (z) = 1

2πi

∫
∂D

f (ξ)

ξ − z dξ, z ∈ ◦
D

while the Cauchy transform serves to generate a holomorphic function H in the
interior of D from a given smooth function h on ∂D:

H(z) = 1

2πi

∫
∂D

h(ξ)

ξ − z dξ, z ∈ ◦
D

The Cauchy formula has been extended to the case of several complex variables
in two ways. Taking a holomorphic kernel and an integral over the boundary ∂0D =∏n
j=1 ∂Dj of a polydiskD =∏n

j=1Dj in Cn leads to

f (z1, . . . , zn) = 1

(2πi)n

∫
∂0D

f (ξ1, . . . , ξn)

(ξ1 − z1) · · · (ξn − zn) dξ1 ∧ · · · ∧ dξn , zj ∈
◦
Dj

while taking an integral over the (piecewise) smooth boundary ∂D of a bounded
domain D in Cn in combination with the Martinelli–Bochner kernel, see e.g.
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[16, 17], which is no longer holomorphic but still harmonic, results into

f (z) =
∫
∂D

f (ξ) U(ξ, z) , z ∈ ◦
D (1.1)

with

U(ξ, z) = (n− 1)!
(2πi)n

n∑
j=1

(−1)j−1
ξcj − zcj
|ξ − z|2n

[
dξj
]

where

[
dξj
] = dξc1 ∧ · · · ∧ dξcj−1 ∧ dξcj+1 ∧ · · · ∧ dξcn ∧ dξ1 ∧ · · · ∧ dξn

and ·c denotes the complex conjugate. For some historical background on (1.1),
which was obtained independently by Martinelli and Bochner, we refer to [16]. The
formula reduces to the traditional Cauchy integral formula when n = 1; for n > 1,
it establishes a connection between harmonic and complex analysis.

An alternative for generalizing Cauchy’s integral formula to higher dimension is
offered by Clifford analysis, the theory of monogenic functions, i.e. continuously
differentiable functions defined in an open region of Euclidean space Rm, taking
their values in the Clifford algebra R0,m, or subspaces thereof, and vanishing under
the action of the Dirac operator

∂ =
m∑
α=1

eα ∂Xα

which corresponds to the Clifford vector variable

X =
m∑
α=1

eα Xα

where (eα)mα=1 is an orthonormal basis of Rm, underlying the construction of the
Clifford algebra, see e.g. [2, 12, 14, 15]. Monogenic functions are the natural
higher dimensional counterparts of holomorphic functions in the complex plane.
The Dirac operator factorizes the Laplacian: �m = −∂2, and is invariant under
the action of the Spin(m)-group which doubly covers the SO(m)-group, whence
this framework is usually referred to as Euclidean (or orthogonal) Clifford analysis.
Standard references in this respect are [2, 12, 14, 15]. In this framework the Cauchy
formula for a monogenic function f on a bounded domain D in Rm with smooth
boundary ∂D can be written as

f (X) =
∫
∂D

E(Y −X) dσY f (Y ) , X ∈ ◦
D (1.2)
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where now the Cauchy kernel E(X) in the integral over the boundary is the
fundamental solution of the Dirac operator, given by

E(X) = 1

am

X∣∣X∣∣m

am being the area of the unit sphere Sm−1 in Rm, ·̄ denoting the Clifford conjugation
and dσ being a Clifford algebra valued differential form of order (m−1), explicitly
given by

dσX =
m∑
j=1

ej (−1)j−1 d̂Xj

where the notation indicates that in the j th term the differential dXj is omitted, i.e.

d̂Xj = dX1 ∧ . . .∧ dXj−1 ∧ dXj+1 ∧ . . .∧ dXn, j = 1, . . . ,m

This Clifford-Cauchy integral formula, which enables us to reproduce monogenic
functions from their boundary values, has been a corner stone in the function theo-
retic development of Euclidean Clifford analysis. Similarly, monogenic functions in
the interior ofD are generated by the Clifford-Cauchy transform acting on a smooth
function h on ∂D:

H(X) =
∫
∂D

E(Y − X) dσY h(Y ) , X ∈ ◦
D

This paper is devoted to giving an overview of attempts to establish Cauchy-like
formulae in recent branches of Clifford analysis, i.e. hermitian and quaternionic
Clifford analysis. The ingredients in any setting should thus be: a differential
operator D, a fundamental solution K of this differential operator, which will serve
as a kernel for an integral transform which will reproduce or generate null solutions
of the differential operator in the interior of a bounded domain by means of given
function values on the boundary of that domain.

1.2 Hermitian Monogenicity

The first refinement of monogenicity is so-called hermitian monogenicity, for which
the setting is fixed as follows: take the dimension to be even: m = 2n, rename the
variables as

(X1, . . . , X2n) = (x1, y1, x2, y2, . . . , xn, yn)
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and consider the standard complex structure I2n, i.e. the complex linear real SO(2n)-
matrix

I2n = diag

(
0 1

−1 0

)
,

for which I2
2n = −E2n, where E2n denotes the identity matrix. We then define the

rotated vector variable and the corresponding rotated Dirac operator

X
I
= I2n[X] =

n∑
k=1

(−yke2k−1 + xke2k)

∂I = I2n[∂] =
n∑
k=1

(−∂yke2k−1 + ∂xk e2k)

A differentiable function F taking values in the complex Clifford algebra C2n then
is called hermitian monogenic in some region	 of R2n, if and only if in that region
F is a solution of the system

∂F = 0 = ∂IF

However, one can also introduce hermitian monogenics by means of the projection
operators π± = ± 1

2 (1± i I2n), involving a complexification. They produce the Witt
basis vectors

fk = π−[e2k−1] = −1

2
(1 − i I2n)[e2k−1], k = 1, . . . , n

f†k = π+[e2k−1] = 1

2
(1 + i I2n)[e2k−1], k = 1, . . . , n

submitting to the properties

fj fk + fkfj = 0, f†j f
†
k + f†kf

†
j = 0, fj f

†
k + f†kfj = δjk, j, k = 1, . . . , n

which imply their isotropy. By means of these Witt bases, we obtain hermitian vector
variables

z = −1

2
(1 − i I2n)[X] =

n∑
k=1

(xk + iyk)fk =
n∑
k=1

zkfk,

z† = 1

2
(1 + i I2n)[X] =

n∑
k=1

(xk − iyk)fk =
n∑
k=1

zkf
†
k
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where we have introduced complex variables (zk, zk) in n respective complex
planes. Correspondingly, the hermitian Dirac operators arise:

∂†
z =

1

2
π−[∂] = −1

4
(1 − i I2n)[∂] =

n∑
k=1

∂zk fk,

∂z = 1

2
π+[∂] = 1

4
(1 + i I2n)[∂] =

n∑
k=1

∂zk f
†
k

It follows that for a function F on R2n ∼= Cn the hermitian monogenic system is
equivalent to the system

∂zF = 0 = ∂†
z F

which can be shown to be invariant under the action of the group U(n). The basics of
hermitian monogenicity can be found in e.g. [3–5, 18]. For group theoretical aspects
we also refer to [11, 13].

In the real approach to hermitian monogenicity we have the fundamental
solutions

E(X) = 1

a2n

X

|X|2n , EI(X) = 1

a2n

X
I

|X
I
|2n

for the operators ∂ and ∂I respectively, where now a2n denotes the area of the unit
sphere S2n−1 in R2n. By projection they give rise to their hermitian counterparts,
explicitly given by:

E(z) = 2π−[E(X)] = −E(X)+ i EI(X) = 2

a2n

z∣∣z∣∣2n

E†(z) = 2π+[E(X)] = E(X)+ i EI(X) = 2

a2n

z†

∣∣z∣∣2n

However, the latter turn out to be no fundamental solutions for the hermitian Dirac
operators. Introducing the particular circulant (2 × 2) matrices

D(z,z†) =
(
∂z ∂z†

∂z† ∂z

)
, E(z) =

(
E (z) E†(z)

E†(z) E(z)

)
, δ(z) =

(
δ(z) 0

0 δ(z)

)

it was obtained that

D(z,z†)E(z) = δ(z)
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whence the concept of a fundamental solution has to be reinterpreted for a matrix
Dirac operator.

Consequently, this also turned out to be the case for hermitian monogenicity: a
circulant matrix

G1
2 =

(
g1 g2

g2 g1

)

with continuously differentiable entries g1 and g2 defined in 	 and taking values in
C2n was then called hermitian monogenic if and only if it satisfies the system

D(z,z†)G
1
2 = O

where O denotes the matrix with zero entries. An important feature of this definition
of matricial hermitian monogenicity is that, for the case of a diagonal matrix

G0 = =
(
g 0
0 g

)

i.e. when g1 = g and g2 = 0, the hermitian monogenicity of G0 coincides with
the hermitian monogenicity of g. This is however not the case for a full matrix G1

2
versus its entries g1 and g2.

Also observe that the matrix Dirac operator still factorizes the Laplacian, since

4D(z,z†)D†
(z,z†)

= �2n

where �2n denotes a diagonal matrix with the Laplace operator in dimension 2n on
the diagonal.

1.3 Cauchy Integral Formulae in the Hermitian Context

In the actual dimension and with the new notations, the classical Clifford-Cauchy
formula now reads

f (X) =
∫
∂D

E(Y −X) dσY f (Y ) , X ∈ ◦
D

where E(X) was given in the previous section and the differential form dσ of order
(2n− 1) is explicitly given by

dσX =
n∑
j=1

(
e2j−1 d̂xj − e2j d̂yj

)
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A formal Cauchy integral formula for hermitian monogenic circulant matrix
functions was first obtained in [6]. We recall the different steps needed to arrive
at it. Introducing the notations

d̂zj =dz1∧ dz1 ∧. . .∧dzj−1∧ dzj−1 ∧dzj∧dzj+1∧ dzj+1∧. . .∧dzn∧ dzn
(1.3)

d̂zj =dz1∧ dz1 ∧. . .∧dzj−1∧ dzj−1∧dzj∧dzj+1∧ dzj+1 ∧. . .∧dzn∧ dzn
(1.4)

it is easily obtained that

d̂zj = 2n−1(−i)n [d̂xj + id̂yj ]

d̂zj = 2n−1(−i)n [d̂xj − id̂yj ]

Then the hermitian differential forms are defined as

dσz =
n∑
j=1

f†j d̂zj , dσz† = −
n∑
j=1

fj d̂zj

which may also be obtained by projection:

dσz = (−i)n2n−1π−[dσX] = −1

2
(−i)n2n−1 (dσX − i dσXI

)

dσz† = (−i)n2n−1π+[dσX] = 1

2
(−i)n2n−1 (dσX + i dσX

I

)

Then, for a bounded domain D ∈ R2n with smooth boundary ∂D and a full
hermitian monogenic circulant matrix G1

2 the Cauchy formula reads as follows:

G1
2(X) =

1

(−2i)n

∫
∂D

E(v − z) d�(v,v†) G
1
2(Y ), X ∈ ◦

D

where v is the hermitian vector variable corresponding to Y ∈ ∂D, z is the one
corresponding to X in the interior of D and where the differential form matrix d�

is given by

d�(z,z†) =
(
dσz dσz†

dσz† dσz

)

The multiplicative constant appearing at the right hand side of the formula originates
from the re-ordering of 2n real variables into n complex planes.
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Taking for G1
2 the diagonal matrix G0, the above formula reduces to a genuine

Cauchy formula for the hermitian monogenic function g, which explicitly reads

g(X) = 1

(−2i)n

∫
∂D

[
E(v − z)dσv + E†(v − z)dσv†

]
g(Y ) (1.5)

together with the additional integral identity

∫
∂D

[
E(v − z)dσv† + E†(v − z)dσv

]
g(Y ) = 0 (1.6)

which thus should be fulfilled for every hermitian monogenic function g on D.
We will now further comment on these obtained results, which we will derive

directly from the classical Clifford-Cauchy formula. To this end we will consider
functions taking values in complex spinor space

S = C2n I ∼= Cn I

which is realized here by means of the primitive idempotent I = I1 . . . In, with

Ij = fj f
†
j , j = 1, . . . , n

In [4], it has been shown that S, considered as a U(n)-module, decomposes as

S =
n⊕
r=0

S
r =

n⊕
r=0

(C
†
n)
(r)I (1.7)

into the U(n)-invariant and irreducible subspaces

S
r = (C
†

n)
(r)I, j = 0, . . . , n

consisting of r-vectors from C

†
n multiplied by the idempotent I , where C
†

n is the
Grassmann algebra generated by the Witt basis elements {f†1, . . . , f†n}. The spaces Sr

are also called the “homogeneous parts” of spinor space. Consequently, any spinor
valued function g decomposes as

g =
n∑
r=0

g(r), g(r) : Cn −→ S
r , r = 0, . . . , n

in its so-called homogeneous components. It is worth noticing that the action of the
hermitian Dirac operators on a function Fr taking values in a fixed part Sr will have
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the following effect:

∂zF
r : Cn −→ S

r+1

∂†
z F

r : Cn −→ S
r−1

whence for such a function, the notions of monogenicity and hermitian monogenic-
ity are equivalent. Indeed, seen the fact that

∂ = 2(∂z − ∂z†)

hermitian monogenicity clearly implies monogenicity for any function. If moreover
the function g takes values in the homogeneous part Sr , then we have seen above
that ∂zg will be S

r+1 valued, while ∂z†g will be mSr−1 valued, whence ∂g = 0
will force both terms to be separately zero. A similar decomposition, followed
by an analysis of the values may now be applied to the classical Clifford-Cauchy
formula (1.2). Indeed, since all building blocks of the hermitian framework were
obtained by projection (up to constants), we may conversely decompose

E(X) = 1

2

(
E†(z)− E(z)

)
and dσX = in

2n−1

(
dσz† − dσz

)

Substituting this into (1.2) yields

g(X) = 1

(−2i)n

∫
∂D

(
E†(v − z)− E(v − z)

) (
dσv† − dσv

)
g(Y )

or still

g(X) = 1

(−2i)n

[∫
∂D

(
E†(v − z)dσv† + E(v − z)dσv

)
g(Y)

+
∫
∂D

(
E†(v − z)dσv + E(v − z)dσv†

)
g(Y )

]

Seen the definitions of E(z), E†(z), dσz and dσz† , we will have

(
E†(v − z)dσv† + E(v − z)dσv

)
g(Y ) : Cn −→ S

r

while

E†(v−z)dσvg(Y ) : Cn −→ S
r+2 and E(v−z)dσv†g(Y ) : Cn −→ S

r−2
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We thus directly obtain (1.5), while (1.6) can be replaced by the even stronger result

∫
∂D

E(v − z)dσv† g(Y ) = 0 =
∫
∂D

E†(v − z)dσv g(Y )

since both terms take values in different homogeneous parts.
This conclusion may be directly generalized for any spinor valued function g; it

suffices to decompose such a function into its homogeneous parts and invoke the
fact that g is hermitian monogenic if and only if all its homogeneous parts g(r) are.
We may thus write the above results separately for each component g(r) and simply
add them.

Remark 1.1 As mentioned above, in complex analysis, an alternative way of
generalizing the Cauchy formula to higher dimension is by means of the Martinelli–
Bochner kernel, see e.g. [16, 17], a kernel which is not holomorphic but still
harmonic, in this way establishing a connection between harmonic and holomorphic
functions. The above hermitian Cauchy formula reduces to the Martinelli-Bochner
formula when the considered functions take their values in the nth homogeneous
part of complex spinor space, where hermitian monogenicity coincides with holo-
morphicity in the variables z1, . . . , zn, and thus establishes a connection between
(hermitian) Clifford analysis and complex analysis in several variables.

If we want to consider the Cauchy transform in this framework, as a generator
for hermitian monogenic functions, then the integral

∫
∂D

E(v − z) d�(v,v†) H 0(�), for X ∈ ◦
D

for a diagonal matrix h0 having a smooth spinor valued entry h defined on ∂D,
should yield a hermitian monogenic diagonal matrix H0. This will however only be
the case if h fulfills the additional conditions

∫
∂D

E(v − z)dσv† h = 0 =
∫
∂D

E†(v − z)dσv h

1.4 Quaternionic Monogenicity

A further refinement of hermitian monogenicity is obtained by taking the dimension
to be a fourfold:m = 2n = 4p, renumbering the variables as

(X1, . . . , X4p) = (x1, y1, x2, y2, . . . , x2p, y2p)

and considering the hypercomplex structure Q = (I4p, J4p,K4p) on R4p. This
hypercomplex structure arises by introducing, next to the complex structure I4p,
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a second one, J4p, given by

J4p = diag

⎛
⎜⎜⎝

1
−1

−1
1

⎞
⎟⎟⎠

Clearly J4p ∈ SO(4p), with J2
4p = −E4p, and it anti-commutes with I4p. A third

SO(4p)-matrix

K4p = I4p J4p = −J4p I4p

then arises, for which K
2
4p = −E4p and which anti-commutes with both I4p and

J4p. Note that the representation of vectors is assumed to be by rows and the
action of matrices on vectors thus is given by right multiplication, whence the above
relation between the matrices K, I and J in fact signifies that K = J ◦ I.

Next to the vector variable

X =
n∑
k=1

(xke2k−1 + yke2k + xk+1e2k+1 + yk+1e2k+2)

we now introduce the rotated variables

X
I
=

n∑
k=1

(−yke2k−1 + xke2k − yk+1e2k+1 + xk+1e2k+2)

X
J
=

n∑
k=1

(−xk+1e2k−1 + yk+1e2k + xke2k+1 − yke2k+2)

X
K
=

n∑
k=1

(yk+1e2k−1 + xk+1e2k − yke2k+1 − xke2k+2)

and we introduce the concept of quaternionic monogenicity by means of the Dirac
operator

∂ =
n∑
k=1

(∂xk e2k−1 + ∂yk e2k + ∂xk+1e2k+1 + ∂yk+1e2k+2)
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and the additional rotated Dirac operators

∂I = I4p[∂] =
n∑
k=1

(−∂yk e2k−1 + ∂xk e2k − ∂yk+1e2k+1 + ∂xk+1e2k+2)

∂J = J4p[∂] =
n∑
k=1

(−∂xk+1e2k−1 + ∂yk+1e2k + ∂xk e2k+1 − ∂yk e2k+2)

∂K = K4p[∂] =
n∑
k=1

(∂yk+1e2k−1 + ∂xk+1e2k − ∂yk e2k+1 − ∂xk e2k+2)

A differentiable function F : R4p −→ S is called quaternionic monogenic in some
region	 of R4p, if and only if in that region F is a solution of the system

∂F = ∂IF = ∂JF = ∂KF = 0

Also here an alternative characterization is possible by means of complexifica-
tion. In the actual dimension the hermitian vector variables read

z = −1

2
(1 − i I4p)[X] =

p∑
j=1

(z2j−1f
†
2j−1 + z2j f

†
2j )

z† = 1

2
(1 + i I4p)[X] =

p∑
j=1

(z2j−1f2j−1 + z2j f2j )

and their images under the action of J4p turn out to be

zJ = J[z] = −1

2
(J4p − iK4p)[X] =

p∑
j=1

(z2j f
†
2j−1 − z2j−1f

†
2j )

z†J = J[z†] = 1

2
(J4p + iK4p)[X] =

p∑
j=1

(z2j f2j−1 − z2j−1f2j )

The corresponding quaternionic Dirac operators are

∂z = 1

4
(1 + i I2n)[∂] =

p∑
j=1

(∂z2j−1 f
†
2j−1 + ∂z2j f

†
2j ),

∂†
z = −1

4
(1 − i I2n)[∂] =

p∑
j=1

(∂z2j−1 f2j−1 + ∂z2j f2j )



16 F. Brackx et al.

∂Jz = 1

4
(J4p + iK4p)[∂] = J4p[∂z] =

p∑
j=1

(∂z2j f2j−1 − ∂z2j−1 f2j ),

∂†J
z = −1

4
(J4p − iK4p)[∂] = J4p[∂†

z ] =
p∑
j=1

(∂z2j f
†
2j−1 − ∂z2j−1 f

†
2j )

For a function F on R4p ∼= C2n the quaternionic system then is easily seen to be
equivalent to

∂zF = ∂†
z F = ∂Jz F = ∂†J

z F = 0

which can be shown to be invariant under the action of the symplectic group action
of Sp(p). The basics of the quaternionic monogenic function theory were developed
in [7, 8]. For group theoretical aspects we refer to [9, 10].

In the real approach to quaternionic monogenicity we have the fundamental
solutions

E(X) = 1

a4p

X

|X|4p , EI(X) = 1

a4p

X
I

|X
I
|4p ,

EJ(X) = 1

a4p

X
J

|X
J
|4p , EK(X) = 1

a4p

X
K

|X
K
|4p

for the operators ∂ , ∂I, ∂J and ∂K, respectively, where now a4p denotes the area of
the unit sphere S4p−1 in R4p. By similar projections/decompositions as above they
give rise to their quaternionic counterparts, explicitly given by:

E(z) = −E(X)+ i EI(X) = 2

a4p

z∣∣z∣∣4p

E†(z) = E(X)+ i EI(X) = 2

a4p

z†

∣∣z∣∣4p

EJ (z) = −EJ(X)+ i EK(X) = 2

a4p

zJ∣∣z∣∣4p

E†J (z) = EJ(X)+ i EK(X) = 2

a4p

z†J

∣∣z∣∣4p

However, as could be expected, the latter are no fundamental solutions for the
quaternionic Dirac operators, whence again, a circulant matrix approach has to be
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followed. Looking closer at the explicit computations shows that

∂zE(z) = 1

2p
βδ(z)+ 2

a4p
βFp

1

|z|4p − 2

a4p
(2p)Fp

z†z

|z|4p+2

∂†
z E

†(z) = 1

2p
(2p − β)δ(z)+ 2

a4p
(2p − β)Fp

1

|z|4p − 2

a4p
(2p)Fp

zz†

|z|4p+2

where β is a Clifford constant and Fp stands for the finite parts distribution.
Similarly, we also have

∂Jz E
J (z) = 1

2p
(2p − β)δ(z)+ 2

a4p
(2p − β)Fp

1

|z|4p − 2

a4p
(2p)Fp

z†J zJ

|z|4p+2

∂†J
z E

†J (z) = 1

2p
βδ(z)+ 2

a4p
βFp

1

|z|4p − 2

a4p
(2p)Fp

zJ z†J

|z|4p+2

Introducing the operator matrix

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂z ∂
†
z ∂Jz ∂

†J
z

∂
†J
z ∂z ∂

†
z ∂Jz

∂Jz ∂
†J
z ∂z ∂

†
z

∂
†
z ∂Jz ∂

†J
z ∂z

⎞
⎟⎟⎟⎟⎟⎟⎠
,

as well as the matrices

E(z) =

⎛
⎜⎜⎜⎝
E E† EJ E†J

E†J E E† EJ

EJ E†J E E†

E† EJ E†J E

⎞
⎟⎟⎟⎠ and δ(z) =

⎛
⎜⎜⎝
δ(z) 0 0 0

0 δ(z) 0 0
0 0 δ(z) 0
0 0 0 δ(z)

⎞
⎟⎟⎠

it thus is easily obtained that

DET(z) = 2δ(z)

whence a matrix fundamental solution has been found. Also this matrix Dirac
operator still factorizes the Laplacian, in the sense that 2DD† = �4p. Notice that
taking the transpose of the matrix E was not needed in the hermitian case, since a
circulant 2×2 matrix always is symmetric. A similar (yet slightly different) strategy
was developed in [1].
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However, another approach is possible as well, since the actions ∂zE†(z),

∂
†
z E(z), ∂Jz E

†J (z) and ∂†J
z E

J (z) all equal zero, meaning that we can also consider

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂z ∂
†
z 0 0

∂
†
z ∂z 0 0

0 0 ∂Jz ∂
†J
z

0 0 ∂
†J
z ∂Jz

⎞
⎟⎟⎟⎟⎟⎟⎠
, and E =

⎛
⎜⎜⎜⎝
E E† 0 0
E† E 0 0

0 0 EJ E†J

0 0 E†J EJ

⎞
⎟⎟⎟⎠ (1.8)

for which it holds that 4DD† = � and

DE(z) = δ(z) (1.9)

In the next section we will see which of both possibilities is best suited for
establishing a Cauchy-type formula in the quaternionic Clifford setting.

1.5 Cauchy Integral Formulae in the Quaternionic Context

In order to make a deliberate choice between both approaches, we will first have
a look at the underlying group symmetry of quaternionic monogenic functions. To
this end we will again consider functions taking values in complex spinor space,
which now is given by

S = C4p I ∼= C2p I

and realized by means of the primitive idempotent I = I1 . . . I2p, with Ij = fj f
†
j ,

j = 1, . . . , 2p. We already know that, as a U(n)-module, it decomposes into
homogeneous parts as

S =
2p⊕
r=0

S
r =

2p⊕
r=0

(C

†
2p)

(r)I

An important observation is that the spaces Sr are invariant and irreducible U(n)
modules, but they are reducible under the action of the fundamental symmetry group
Sp(p).

It still holds that a spinor valued function g is hermitian monogenic if and only if
all its homogeneous parts g(r) are; however for a fixed component g(r) quaternionic
monogenicity is not equivalent to monogenicity. Yet we have the following result
(see [8]).
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Proposition 1.1 For a function g(r) defined on (a domain in)R4p ∼= C2n and taking
values in Sr , r ∈ {1, . . . , 2p}, it holds that g(r) is quaternionic monogenic if and
only if it is simultaneously ∂ and ∂J monogenic.

This result shows that the second attempt (1.8)–(1.9) is the right one to pursue in
view of establishing a Cauchy formula, since the structure of the involved matrices
reflects the importance of ∂ and ∂J monogenicity in this setting. We thus introduce
the concept of matricial quaternionic monogenicity: a block diagonal matrix

G =

⎛
⎜⎜⎝
g1 g2 0 0
g2 g1 0 0
0 0 g3 g4

0 0 g4 g3

⎞
⎟⎟⎠

with continuously differentiable entries g1, g2, g3, g4 defined on (a domain in)
R4p ∼= C2p and taking values in C4p is called quaternionic monogenic if and only
if it satisfies the system

DG = O

In the case of a diagonal matrix G0 with g1 = g = g3 and g2 = 0 = g4, the
quaternionic monogenicity of G0 coincides with the quaternionic monogenicity of
g, which is not the case in general.

Next we define, in a similar way, the differential form matrix

d� =

⎛
⎜⎜⎜⎜⎝

dσz dσz† 0 0

dσz† dσz 0 0

0 0 dσzJ dσ
z†J

0 0 dσ
z†J dσzJ

⎞
⎟⎟⎟⎟⎠

where, as above, we have introduced

dσz =
2p∑
j=1

(
f†2j−1 d̂z2j−1 + f†2j d̂z2j

)

dσz† = −
2p∑
j=1

(
f2j−1 d̂z2j−1 + f2j d̂z2j

)

where the notations d̂zk and d̂zk keep their original definition, see (1.3)–(1.4),
whence

dσz = (−i)2p22p−1π−[dσX] = −1

2
(−i)2p22p−1 (dσX − i dσXI

)

dσz† = (−i)2p2p−1π+[dσX] = 1

2
(−i)2p22p−1 (dσX + i dσXI

)
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Similarly we have defined

dσ
zJ

=
2p∑
j=1

(
f2j−1 d̂z2j − f2j d̂z2j−1

)

dσz†J = −
2p∑
j=1

(
f†2j−1 d̂z2j − f†2j d̂z2j−1

)

or, expressed in the original real variables

dσz = J [dσz] = −1

2
(−i)2p22p−1

(
dσXJ

− i dσXK

)

dσz† = J [dσz† ] = 1

2
(−i)2p22p−1

(
dσX

J
+ i dσX

K

)

The resulting Cauchy formula then reads, for a bounded domain D ∈ R4p with
smooth boundary ∂D and a full quaternionic monogenic matrix G:

G(X) = 1

(−2i)2p

∫
∂D

E(v − z) d�(v,v†) G(Y ), X ∈ ◦
D

where v is the hermitian vector variable corresponding to Y ∈ ∂D, and z is the one
corresponding toX in the interior ofD. Again, the multiplicative constant appearing
at the right hand side originates from the re-ordering of 4p real variables into 2p
complex planes.

Taking for G the diagonal matrix G0, the above formula reduces to a genuine
Cauchy formula for the hermitian monogenic function g, which splits into two
reproducing formulae, given by

g(X) = 1

(−2i)n

∫
∂D

[
E(v − z)dσv + E†(v − z)dσv†

]
g(Y )

g(X) = 1

(−2i)n

∫
∂D

[
EJ (v − z)dσvJ + E†J (v − z)dσvJ†

]
g(Y )

stemming from the ∂ and the ∂J part, and two additional integral identities

∫
∂D

[
E(v − z)dσv† + E†(v − z)dσv

]
g(Y ) = 0

∫
∂D

[
EJ (v − z)dσvJ† + E†J (v − z)dσvJ

]
g(Y ) = 0

which thus should be fulfilled for every quaternionic monogenic function g on D.
The same formulae can be obtained by, as has been done explicitly for the hermitian
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case, splitting a spinor valued function in its homogeneous components, writing
down the Cauchy formulae for ∂ and ∂J monogenicity for each part, while invoking
the structural decompositions for all building blocks involved and the subsequent
splitting of the values, and finally adding all obtained results.

1.6 Future Work and Ideas

Interesting results were obtained in the hermitian framework by restricting the
values of the considered functions to the different homogenous parts of spinor space,
which are suggested by the U(n) symmetry. For quaternionic monogenics the under-
lying Sp(p) invariance has not yet been fully exploited, since the homogeneous parts
of spinor space are reducible under Sp(p) and split further into so-called symplectic
cells, see e.g. [7, 8]. This splitting is caused by the action of the multiplication
operators

P = f2f1 + f4f3 + . . .+ f2pf2p−1, Q = f†1f
†
2 + f†3f

†
4 + . . .+ f†2p−1f

†
2p

for which we define, for r = 0, . . . , p, the kernel spaces

S
r
r = KerP |Sr , S

2p−r
r = KerQ|S2p−r

and for k = 0, . . . , p − r , the subspaces obtained by iterative action of Q on the
kernel of P and vice versa:

S
r+2k
r = Qk Srr , S

2p−r−2k
r = Pk S

2p−r
r

It was shown that, for all r = 0, . . . , p,

S
r =

� r2 �⊕
j=0

S
r
r−2j , S

2p−r =
� r2 �⊕
j=0

S
2p−r
r−2j

and each of the symplectic cells S
r
s in the above decompositions is an irreducible

Sp(p)-representation, whence we can now decompose a function F : R4p −→ S

into components taking values in these symplectic cells:

F =
n∑
r=0

Fr =
n∑
r=0

∑
s

F rs , F rs : R4p −→ S
r
s

The quaternionic monogenicity of F then is shown to be equivalent with the
quaternionic monogenicity of each of its components Frs , creating an opportunity
to refine even further the results obtained above.
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Moreover, in [10] it was shown, that from a group theoretical point of view,
the definition of quaternionic monogenicity is not the best possible one. For
instance, spaces Qr,s

a,b of quaternionic monogenic bi-homogeneous polynomials
with values in a symplectic cell still remain reducible under the action of the
group Sp(p), an unfortunate situation. This has lead to the definition of so-called
osp(4|2) monogenicity in [9, 10], where a function, apart from being quaternionic
monogenic, is requested to be in the kernel of the multiplication operator P and of
the Euler like scalar differential operator

E =
p∑
k=1

z2k−1 ∂z2k − z2k ∂z2k−1

which arises when computing the anti-commutators of all operators in the odd part
of the involved Lie (super)algebra.

It remains to establish suitable integral formulae for the reproduction of such
functions from their boundary values.

Acknowledgements R. Lávička and V. Souček gratefully acknowledge support by the Czech
Grant Agency through grant GA CR 17-01171S.

References

1. R. Abreu Blaya et al., Cauchy integral formulae in quaternionic Hermitean Clifford analysis.
Compl. Anal. Oper. Theory 6(5), 971–985 (2012)

2. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis (Pitman Publishers, Boston, 1982)
3. F. Brackx et al., Fundaments of Hermitean Clifford analysis part I: complex structure. Compl.

Anal. Oper. Theory 1(3), 341–365 (2007)
4. F. Brackx et al., Fundaments of Hermitean Clifford analysis part II: splitting of h-monogenic

equations. Complex Var. Elliptic Equ. 52(10–11), 1063–1079 (2007)
5. F. Brackx, H. De Schepper, F. Sommen, The Hermitian Clifford analysis toolbox. Appl.

Clifford Algebra 18(3–4), 451–487 (2008)
6. F. Brackx et al., On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford

analysis. Bull. Braz. Math. Soc. 40(3), 395–416 (2009)
7. F. Brackx et al., Fundaments of quaternionic Clifford analysis I: quaternionic structure. Adv.

Appl. Clifford Alg. 24(4), 955–980 (2014)
8. F. Brackx et al., Fundaments of quaternionic Clifford analysis III: Fischer decomposition in

symplectic harmonic analysis. Ann. Glob. Anal. Geom. 46, 409–430 (2014)
9. F. Brackx et al., osp(4|2)-monogenicity in Clifford analysis, in Proceedings of the 15th

International Conference on Computational and Mathematical Methods in Science and
Engineering I (2015), pp. 240–243

10. F. Brackx et al., Fischer decomposition for osp(4|2)-monogenics in quaternionic Clifford
analysis. Math. Methods Appl. Sci. 39(16), 4874–4891 (2016)

11. A. Damiano, D. Eelbode, I. Sabadini, Quaternionic Hermitian spinor systems and compatibility
conditions. Adv. Geom. 11, 169–189 (2011)
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Chapter 2
Quaternionic Hyperbolic Function
Theory

Sirkka-Liisa Eriksson and Heikki Orelma

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract We are studying hyperbolic function theory in the skew-field of quater-
nions. This theory is connected to k-hyperbolic harmonic functions that are
harmonic with respect to the hyperbolic Riemannian metric

ds2
k =

dx2
0 + dx2

1 + dx2
2 + dx2

3

xk3

in the upper half space R4+ = {(x0, x1, x2, x3) ∈ R4 : x3 > 0}. In the case k = 2,
the metric is the hyperbolic metric of the Poincaré upper half-space. Hempfling
and Leutwiler started to study this case and noticed that the quaternionic power
function xm (m ∈ Z), is a conjugate gradient of a 2-hyperbolic harmonic function.
They researched polynomial solutions. We find fundamental k-hyperbolic harmonic
functions depending only on the hyperbolic distance and x3. Using these functions
we are able to verify a Cauchy type integral formula. Earlier these results have been
verified for quaternionic functions depending only on reduced variables (x0, x1, x2).
Our functions are depending on four variables.
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2.1 Introduction

We study hyperbolic function theory in the skew-field of quaternions, denoted by
H. This theory was initiated by Hempfling and Leutwiler in [14]. They studied
quaternion valued twice continuous differentiable functions f (x) defined in the full
space R4 satisfying the following modified Cauchy-Riemann system

x3

(
∂f0

∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3

)
+ 2f3 = 0,

∂f0

∂xi
= − ∂fi

∂x0
for all i = 1, 2, 3,

∂fi

∂xj
= ∂fj

∂xi
for all i, j = 1, 2, 3.

In [16] Leutwiler noticed that the power function xm, wherem ∈ Z, calculated using
quaternions, is a conjugate gradient of a hyperbolic harmonic function h which
satisfies the equation

�2h = x2
3�h− 2x3

∂h

∂x3
= 0

where as usual

�h = ∂2h

∂x2
0

+ ∂2h

∂x2
1

+ ∂2h

∂x2
2

+ ∂2h

∂x2
3

.

The operator �2 is the hyperbolic Laplace-Beltrami operator with respect to the
Poincaré hyperbolic metric

ds2 = dx2
0 + dx2

1 + dx2
2 + dx2

3

x2
3

.

Leutwiler and the first author in [11] studied the total Clifford algebra
valued functions, called hypermonogenic functions. Their Cauchy-type formula
was proved in [3, 9] and the key ideas are the relations between k and −k-
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hypermonogenic functions, introduced in [10]. An introduction to the theory is
given in [17] and in more recent papers [6] and [7].

In this paper, we verify the Cauchy type theorems for quaternionic valued
functions called k-hyperregular. Our Cauchy type theorems are not directly follow-
ing from the theory of quaternionic valued hypermonogenic functions, which are
depending only on three variables. Our functions are depending on four variables
and k is an arbitrary real coefficient. However, it is possible to deduce some results
from the theory of paravector valued k-hypermonogenic funcions (see [5]) which
domain of the definition is an open subset of R4 and the values are in the Clifford
algebra C
0,3. These methods are rather complicated in case of quaternions and we
prefer the direct methods.

2.2 Preliminaries

The space of quaternions H is four dimensional associative division algebra over
reals with an identity 1 and generated by the elements 1, e1, e2 and e3 satisfying the
relations

e3 = e1e2

and

eiej + ej ei = −2δij1,

where δij is the usual Kronecker delta. The elements α1 and α may be identified.
We denote the coefficients of the components of a quaternion x with respect to

the base {1, e0, e1, e2} by x0, x1, x2 and x3, that is

x = x0 + x1e1 + x2e2 + x3e3

where x0, x1, x2 and x3 are real numbers. The spaces R4 and H may be identified as
vector spaces.

We denote the upper half space by

H+ = {x | xi ∈ R, i = 0, 1, 2, 3 and x3 > 0}

and the lower half space by

H− = {x | xi ∈ R i = 0, 1, 2, 3 and x3 < 0} .
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The hyperbolic distance dh(x, a) between the points x and a in H+ may be
computed from the formula dh(x, a) = arcoshλ(x, a), where

λ(x, a) = (x0 − a0)
2 + (x1 − a1)

2 + (x2 − a2)
2 + x2

3 + a2
3

2x3a3

= ‖x − a‖2 + ‖x − a∗‖2

4x3a3

= ‖x − a‖2

2x3a3
+ 1 = ‖x − a∗‖2

2x3a3
− 1,

a∗ = a0 + a1e1 + a2e2 − a3e3 and the distance

‖x − a‖ =
√
(x0 − a0)

2 + (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2

is the usual Euclidean distance (see the proof for example in [17]). Similarly, we
may compute the hyperbolic distance between the points x and a in H−. Notice that
if both x and a belong to H+ or in H− then

dh (x, a) = dh
(
x∗, a∗

)
.

We recall the following simple calculation rules

‖x − a‖2 = 2x3a3 (λ(x, a)− 1) , (2.2.1)
∥∥x − a∗∥∥2 = 2x3a3 (λ(x, a)+ 1) , (2.2.2)

‖x − a‖2

‖x − a∗‖2 = λ(x, a)− 1

λ(x, a)+ 1
= tanh2

(
dh (x, a)

2

)
. (2.2.3)

We remind that hyperbolic balls are also Euclidean balls with a shifted center
given by the next result.

Proposition 2.2.1 The hyperbolic ball Bh (a, rh) with the hyperbolic center a in
H+ and the radius rh is the same as the Euclidean ball with the Euclidean center

ca (rh) = a0 + a1e1 + a2e2 + a3 cosh rhe3

and the Euclidean radius re = a3 sinh rh. Conversely, if b = (b0, b1, b2, b3) is
a point in H+ and re < b3 then the Euclidean ball Be (b, re) is the same as the
hyperbolic ball with the hyperbolic radius

rh = artanh

(
re

b3

)
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and the hyperbolic center

a =
(
b0, b1, b2,

b3

cosh rh

)
.

Corollary 2.2.2 The hyperbolic metric in H+ (resp. in H−) is equivalent with the
Euclidean metric in H+ (resp. in H−), that is they generate the same topology.

We may extend the hyperbolic topology to the whole space. Indeed, if U ⊂ H

and the set U ∩ {x ∈ H | x3 = 0} is non-empty then we call the set U open if it
is open with respect to usual Euclidean topology. The inner product 〈x, y〉 in H is
defined by

〈x, y〉 =
3∑
i=0

xiyi

similarly as in the Euclidean space R4.
The elements

x = x0 + x1e1 + x2e2

are called reduced quaternions if x0, x1and x2 are real numbers. The set of reduced
quaternions is identified with R

3.
We recall that the prime involution in H is the mapping x → x ′ defined by

x ′ = x0 − x1e1 − x2e2 + x3e3.

Similarly, the reversion in H is the mapping x → x∗ defined by

x∗ = x0 + x1e1 + x2e2 − x3e3.

The conjugation in H is the mapping x → x defined by x = (x ′)∗ = (x∗)′, that is

x = x0 − x1e1 − x2e2 − x3e3.

These involutions satisfy the following product rules

(xy)′ = x ′y ′,

(xy)∗ = y∗x∗

and

xy = y x

for all x, y ∈ H.
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The prime involution may be characterized also as

xe3 = e3x
′

for all quaternions x.
The real part of a quaternion x is defined by

Re x = x0

and the vector part by

Vec x = x1e1 + x2e2 + x3e3.

We recall the product rule

xy = −〈x, y〉 + x × y

if Re x = Re y = 0, where × is the usual cross product in R3.
We define the mappings S : H → R3 and T : H → R by

Sa = a0 + a1e1 + a2e2

and

T a = a3

for a = a0+a1e1+a2e2+a3e3 ∈ H. Using the reversion, we compute the formulas

Sa = 1

2

(
a + a∗) , (2.2.4)

T a = −1

2

(
a − a∗) e3. (2.2.5)

We recall the identities

ab + ba = 2aRe b + 2bRe a − 2 〈a, b〉 (2.2.6)

and

1

2

(
abc + cba) = 〈b, c〉 a − [a, b, c] (2.2.7)
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valid for all quaternions a, b and c. The term [a, b, c] is called a triple product and
is defined by

[a, b, c] = 〈a, c〉b − 〈a, b〉c.

If a, b and c are quaternions with Re a = Re b = Re c = 0, then (cf. [13])

[a, b, c] = a × (b × c).

2.3 Hyperregular Functions

We use the following hyperbolic modificationsHl
k and Hr

k of the Cauchy-Riemann
operators

Hl
kf (x) = Dlf (x)+ k f3

x3
, H

l

kf (x) = Dlf (x)− k f3

x3
,

H r
k f (x) = Drf (x)+ k f3

x3
, H

r

kf (x) = Drf (x)− k f3

x3
,

where the parameter k ∈ R and the generalized Cauchy-Riemann operators are
defined by

Dlf =
3∑
i=0

ei
∂f

∂xi
, Dlf =

3∑
i=0

ei
∂f

∂xi
,

Drf =
3∑
i=0

∂f

∂xi
ei , Drf =

3∑
i=0

∂f

∂xi
ei .

We also abbreviateDlf by Df and Hl
k by Hk .

Definition 2.3.1 Let 	 ⊂ H be open. A function f : 	 → H is called k-
hyperregular, if f ∈ C1 (	) and

Hl
kf (x) = Hr

k f (x) = 0.

for any x ∈ 	\{x3 = 0}.
We may simply compute the components of the operatorsHl

k andHr
k as follows.
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Lemma 2.3.2 Let 	 ⊂ H be open. If a function f : 	→ H is differentiable then
the coordinate functions of Hl

k and Hr
k are given by

(
Hl
kf
)

0 = ∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

+ k f3
x3
,

(
Hr
k f
)

0 =
(
Hl
kf
)

0 ,(
Hl
kf
)

1 = ∂f0
∂x1

+ ∂f1
∂x0

− ∂f2
∂x3

+ ∂f3
∂x2
,
(
Hr
k f
)

1 = ∂f0
∂x1

+ ∂f1
∂x0

+ ∂f2
∂x3

− ∂f3
∂x2
,(

Hl
kf
)

2 = ∂f0
∂x2

+ ∂f2
∂x0

+ ∂f1
∂x3

− ∂f3
∂x1
,
(
Hr
k f
)

2 = ∂f0
∂x2

+ ∂f2
∂x0

− ∂f1
∂x3

+ ∂f3
∂x1
,(

Hl
kf
)

3 = ∂f0
∂x3

+ ∂f3
∂x0

− ∂f1
∂x2

+ ∂f2
∂x1
,
(
Hr
k f
)

3 = ∂f0
∂x3

+ ∂f3
∂x0

+ ∂f1
∂x2

− ∂f2
∂x1
,

where (·)j denotes the real coefficient of the element ej for each j = 0, 1, 2, 3.

We obtain immediately the following result.

Proposition 2.3.3 Let 	 ⊂ H be open and a function f : 	 → H continuously
differentiable. A function f is k-hyperregular in 	 if and only if

∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

+ k f3
x3

= 0, if x3 �= 0,
∂f0
∂xi

= − ∂fi
∂x0

for all i = 1, 2, 3,
∂fi
∂xj

= ∂fj
∂xi

for all i, j = 1, 2, 3.

Our operators are connected to the hyperbolic metric via the hyperbolic Laplace
operator as follows.

Proposition 2.3.4 Let f : 	→ H be twice continuously differentiable. Then

Hl
kH

l

kf =�f − k

x3

∂f

∂x3
+ kf3

x2
3

e3 + k

x3

(
∂f1

∂x2
− ∂f2

∂x1

)

+ k

x3

(
∂f1

∂x3
− ∂f3

∂x1

)
e1 + k

x3

(
∂f2

∂x3
− ∂f3

∂x2

)
e2

=Hl

kH
l
kf

and

Hr
kH

r

kf =�f − k

x3

∂f

∂x3
+ kf3e3

x2
3

+ k

x3

(
∂f2

∂x1
− ∂f1

∂x2

)

+ k

x3

(
∂f1

∂x3
− ∂f3

∂x1

)
e1 + k

x3

(
∂f2

∂x3
− ∂f3

∂x2

)
e2

=Hr

kH
r
k f.
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Proof We just compute

DlH
l
kf = DlDlf − kDf3

x3
+ kf3e3

x2
3

= �f − k
∂f3
∂x0

+ ∂f3
∂x1
e1 + ∂f3

∂x2
e2 + ∂f3

∂x3
e3

x3
+ kf3e3

x2
3

and

(
H
l

kf
)

3
= (Dlf )3 = − ∂f0

∂x3
+ ∂f1

∂x2
− ∂f2

∂x1
+ ∂f3

∂x0
.

Hence we obtain

Hl
kH

l

kf =�f − k

x3

∂f

∂x3
+ kf3

x2
3

e3 + k

x3

(
∂f1

∂x2
− ∂f2

∂x1

)

+ k

x3

(
∂f1

∂x3
− ∂f3

∂x1

)
e1 + k

x3

(
∂f2

∂x3
− ∂f3

∂x2

)
e2.

Similarly, we compute

DrH
r
k f = DrDrf − kDrf3

x3
+ kf3e3

x2
3

= �f − k
∂f3
∂x0

+ ∂f3
∂x1
e1 + ∂f3

∂x2
e2 + ∂f3

∂x3
e3

x3
+ kf3e3

x2
3

and

(
H
r

kf
)

3
= (Drf )3 = − ∂f0

∂x3
− ∂f1

∂x2
+ ∂f2

∂x1
+ ∂f3

∂x0
.

Hence we have

Hr
kH

r

kf =�f − k

x3

∂f

∂x3
+ kf3e3

x2
3

+ k

x3

(
∂f2

∂x1
− ∂f1

∂x2

)

+ k

x3

(
∂f1

∂x3
− ∂f3

∂x1

)
e1 + k

x3

(
∂f2

∂x3
− ∂f3

∂x2

)
e2.

Moreover, we easily deduce that H
l

kH
l
kf = Hl

kH
l

kf and H
r

kH
r
k f = Hr

kH
r

kf . ��
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We immediately obtain two corollaries.

Corollary 2.3.5 If f : 	→ H is twice continuously differentiable and k �= 0 then

Hl
kH

l

kf = Hr
k H

r

kf = �f − k

x3

∂f

∂x3
+ kf3e3

x2
3

if and only if ∂fi
∂xj

= ∂fj
∂xi

for all i, j = 1, 2, 3.

Corollary 2.3.6 If f : 	→ R is real valued and twice continuously differentiable
then

xk3H
l
kH

l

kf = xk3H
r
kH

r

kf = �kf,

where the operator

�k = xk3

(
�− k

x3

∂

∂x3

)

is the Laplace-Beltrami operator (see [18]) with respect to the Riemannian metric

ds2
k =

dx2
0 + dx2

1 + dx2
2 + dx2

3

xk3

. (2.3.1)

Differentiating the first equation of Proposition 2.3.3 with respect to xi and
applying the rest of the equations of Proposition 2.3.3 we obtain the following result.

Proposition 2.3.7 Let 	 ⊂ H be open and a function f : 	 → H twice
continuously differentiable. If f is k-hyperregular then

xk3H
l
kH

l

kf = xk3H
r
kH

r

kf = �kf + xk−2
3 kf3e3 = 0.

The previous results motivate the following definition.

Definition 2.3.8 Let 	 ⊂ H be open. A twice continuously differentiable function
f : 	→ H is called k-hyperbolic, if

�f − k

x3

∂f

∂x3
+ kf3e3

x2
3

= 0.

There exists a characterization of k-hyperregular functions in terms of k-
hyperbolic functions.

Theorem 2.3.9 Let	 ⊂ H be open. A twice continuously differentiable hyperbolic
harmonic function f : 	→ H is k-hyperregular if and only if the functions f and
xf + f x are k-hyperbolic and Hl

kf = Hr
k f.
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Proof In order to abbreviate notations, we denote g = xf +f x. Using the standard
formulas �(xf ) = x�f + 2Dlf and �(f x) = (�f ) x + 2Drf we obtain by
virtue of Proposition 2.3.7, that

x2
3�g − kx3

∂g

∂x3
+ kg3e3 =x2

3xH
l
kH

l

kf + x2
3

(
Hl
kH

l

kf
)
x + 2x2

3H
l
kf + 2x2

3H
r
k f

− 4kx3f3 − kx3
(
e3f´+ f e3

)+ 2k (x0f3 + x3f0) e3

− 2kf3 (x0e3 − x3)

=x2
3xH

l
kH

l

kf + x2
3

(
Hl
kH

l

kf
)
x

+ 2x2
3H

l
kf + 2x2

3H
r
k f.

If f is k-hyperregular then

x2
3H

l
kH

l

kf = x2
3�f − kx3

∂f

∂x3
+ kf3e3 = 0

and Hl
kf = Hr

k f = 0 which implies that g is k-hyperbolic. Conversely, if g and f
are k-hyperbolic and Hl

kf = Hr
k f then

Hl
kf +Hr

k f = 0.

Hence f is k-hyperregular. ��
Real valued k-hyperbolic functions are especially important, since they produce

k-hyperregular functions.

Theorem 2.3.10 Let 	 be an open subset of H. If h is real valued k-hyperbolic
on 	 then the function f = Dh is k-hyperregular on 	. Conversely, if f is
k-hyperregular on 	, there exists locally a real valued k-hyperbolic function h
satisfying f = Dh.

Proof Let h be real k-hyperbolic on 	 and denote f = Dh. Applying Proposi-
tion 2.3.6 we obtain

Hl
kf = Hl

kH
l

kh = �h− k

x3

∂h

∂x3
= 0 = Hr

kH
r

kh = Hr
k f.

Hence f is k-hyperregular. The converse statement is verified similarly as
in [11]. ��

We use the following transformation property proved in [4] and [15].
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Lemma 2.3.11 Let 	 be an open set contained in H+ or in H−. A function f :
	 → R is k-hyperbolic harmonic if and only if the function g (x) = x

2−k
2

3 f (x)

satisfies the equation

�2Sg + 1

4

(
9 − (k + 1)2

)
Sg = 0. (2.3.2)

2.4 Cauchy Type Integral Formulas

We first recall the quaternionic version of the Stokes theorem verified for example
in [13] as follows. If 	 is an open subset of H, K a 3-chain satisfying K ⊂ 	 and
f, g ∈ C1 (	,H), then

∫
∂K

gνf dσ =
∫
K

(Drgf + gDlf ) dm (2.4.1)

where ν = ν0 + ν1e1 + ν2e2 + ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4 identified with H as a vector space.

The T -part and S-part play a strong role in our operator Hk . We have therefore
two versions of the Stokes theorem. The first version deals with T -parts and the
second one with S-parts.

Theorem 2.4.1 Let	 be an open subset of H\ {x3 = 0} andK a 3-chain satisfying
K ⊂ 	. If f, g ∈ C1 (	,H), then

∫
∂K

gνf dσ =
∫
K

((
Hr−kg

)
f + gH l

kf + k

x3
((g3) Sf − Sgf3)

)
dm

and therefore

T

(∫
∂K

gνf dσ

)
=
∫
K

T
((
Hr−kg

)
f + gH l

kf
)
dm

where ν = ν0 + ν1e1 + ν2e2 + ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.

Proof Since Drg = Hr−kg + k
g3
x3

and Dlf = Hl
kf − k f3

x3
we deduce using (2.4.1)

that

∫
∂K

(gdσf ) =
∫
K

((
Hr−kg

)
f + gH l

kf + k

x3
((g3) f − gf3)

)
dm

=
∫
K

((
Hr−kg

)
f + gH l

kf + k

x3
((g3) Sf − Sgf3)

)
dm,

completing the proof. ��
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We may also prove

Theorem 2.4.2 Let 	 be an open subset of H4\ {x3 = 0} and K a 3-chain
satisfying K ⊂ 	. If f, g ∈ C1 (	,H), then

∫
∂K

f νgdσ =
∫
K

((
Hr
k f
)
g + fH l−kg +

k

x3
((g3) Sf − Sgf3)

)
dm

and therefore

T

(∫
∂K

f νgdσ

)
=
∫
K

T
((
Hr
k f
)
g + fH l

−kg
)
dm,

where ν = ν0 + ν1e1 + ν2e2 + ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.

Proof Since Dlg = Hl
−kg + k g3

x3
and Drf = Hr

k f − k f3
x3

we deduce using (2.4.1)
that

∫
∂K

(gνf ) dσ =
∫
K

((
Hrf
)
g + fH l−kg +

k

x3
(fg3 − f3g)

)
dm

=
∫
K

((
Hrf
)
f + gH l−kg +

k

x3
((g3) Sf − Sgf3)

)
dm,

completing the proof. ��
Combining previous results we conclude the following results.

Theorem 2.4.3 Let	 be an open subset of R4\ {x3 = 0} andK a 3-chain satisfying
K ⊂ 	. If f, g ∈ C1 (	,H), then

∫
∂K

T (gνf + f νg) dσ =
∫
K

T
(
Hr−kgf + gH l

kf +Hr
k fg + fH l

−kg
)
dm,

where ν = ν0 + ν1e1 + ν2e2 + ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.

Theorem 2.4.4 Let	 be an open subset of R4\ {x3 = 0} andK a 3-chain satisfying
K ⊂ 	. If f, g ∈ C1 (	,H), then

∫
∂K

S (gνf + f νg) dσ
xk3

=
∫
K

S
(
Hr
k gf + gH l

kf +Hr
k fg + fH l

kg
) dm
xk3

,

where ν = ν0 + ν1e1 + ν2e2 + ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.
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Proof Applying (2.4.1), we deduce

∫
∂K

gνf
dσ

xk3

=
∫
K

(
Drgf + gDlf − k ge3f

x3

)
dm

xk3

.

Since Hr
k g = Drg + kg3

x3
and Hl

kf = Dlg + kf3
x3

, we infer

∫
∂K

gνf
dσ

xk3

=
∫
K

(
Hr
k gf + gH l

kf − k g3f + gf3 + ge3f

x3

)
dm

xk3

.

Using the formula ge3f = ge3Sf − gf3, we obtain

∫
∂K

gνf
dσ

xk3

=
∫
K

(
Hr
k gf + gH l

kf − k g3f + ge3Sf

x3

)
dm

xk3

=
∫
K

(
Hr
k gf + gH l

kf − k g3f3e3 + Sge3Sf

x3

)
dm

xk3

.

If we compute the coordinates of Sge3Sf , we have

∫
∂K

gνf
dσ

xk3

=
∫
K

(
Hr
k gf + gH l

kf − k g0f0 + g1f1 + g2f2 + g3f3

x3
e3

)
dm

xk3

−
∫
K

k
g1f2 − g2f1 + (g2f0 − g0f2) e1 + (g0f1 − g1f0) e2

xk+1
3

dm.

If we interchange the roles of f and g, we infer

∫
∂K

f νg
dσ

xk3

=
∫
K

(
Hr
k fg + fH l

kg − k
g0f0 + g1f1 + g1f1 + g3f3

x3
e3

)
dm

xk3

−
∫
K

k
f1g2 − f2g1 + (f2g0 − f0g2) e1 + (f0g1 − f1g0) e2

xk+1
3

dm

Hence
∫
∂K

(gνf + f νg) dσ
xk3

=
∫
K

(
Hr
k gf + gH l

kf +Hr
k fg + fH l

kg
) dm
xk3

− 2ke3

∫
K

g0f0 + g1f1 + g1f1 + g3f3

x3

dm

xk3
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and therefore
∫
∂K

S (gνf + f νg) dσ
xk3

=
∫
K

S
(
Hr
k gf + gH l

kf +Hr
k fg + fH l

kg
) dm
xk3

.

��
The hyperbolic Laplace operator of functions depending on λ is computed in [4]

as follows.

Lemma 2.4.5 Let x and y be points in the upper half space. If f is twice
continuously differentiable depending only on λ = λ (x, y), then

�hf (x) =
(
λ2 − 1

) ∂2f

∂λ2 + 4λ
∂f

∂λ
.

We recall the definition of the associated Legendre function of the second kind

Qμν (λ) = C
(
λ2 − 1

)μ
2
λ−ν−μ−1

2F1

(
ν + μ+ 2

2
,
μ+ ν + 1

2
; 2ν + 3

2
; 1

λ2

)

where

C = −
√
π� (ν + μ+ 1)

2ν+1�
(
ν + 3

2

) .

and the hypergeometric function is defined by

2F1 (a, b; c; x)=
∞∑
m=0

(a)m (b)m

(c)m

xm

m! ,

converging in the usual sense at least for x satisfying |x| < 1. Associated Legendre
functions satisfies the differential equation (see [19])

(λ2 − 1)u′′(λ)+ 2λu′(λ)−
(
ν (ν + 1)− μ2

1 − λ2

)
u(λ) = 0. (2.4.2)

We are looking for solutions of the equation

�hf (λ)+ γf (λ) = 0

in the form

f (λ) =
(
λ2 − 1

)α
g (λ) .
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We just compute that

(
λ2 − 1

)
g′′ (λ)+ (4α + 4) λg′ (λ)+

(
4α2 + 6α + γ + 2α (2 + 2α)

λ2 − 1

)
g (λ) = 0.

In order to compute the solutions using Legendre functions, we compare this
equation with (2.4.2) and first we set 4α + 4 = 2 and therefore α = − 1

2 . Then
we have the equation

(
λ2 − 1

)
g′′ (λ)+ 2λg′ (λ)+

(
−2 + γ − 1

1 − λ2

)
g (λ) = 0

and again comparing with (2.4.2), we obtain equations

ν (ν + 1) = 2 − γ,

μ2 = (n− 1)2

4
.

Hence μ = ±1 and ν =
√

9−4γ−1
2 . Setting −γ = 1

4

(
(k + 1)2 − 9

)
, we obtain

ν = ±|k + 1| − 1

2
.

Consequently, we found a solution
(
λ2 − 1

)− 1
2 Q1

|k+1|−1
2

(λ). Note that Q1
|k+1|−1

2

(λ)

is well defined since λ > 1 and |k+1|−1
2 > −1.

Denote ν = |k+1|−1
2 . Applying [19, S.2.9-4.] and the definition of Q1

ν (λ), we
obtain

Q1
ν (λ) = −ν + 1

2ν+1

∫ π
0 (λ+ cosα)−ν sin2ν+1 α dα

(
λ2 − 1

) 1
2

= −
√
π� (ν + 2) λ−ν 2F1

(
ν
2 ,

ν+1
2 ; 2ν+3

2 ; 1
λ2

)

2ν+1�
(
ν + 3

2

) (
λ2 − 1

) .

We recall that the volume measure of the Riemannian metric dsk defined
in (2.3.1) is

dmk = y−2k
3 dm
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where dm is the usual Lebesgue measure. Its surface element is defined by dσ(k) =
y
− 3k

2
3 dσ . The outer normal in ∂Bh (x,Rh) is denoted by ne and the outer normal

derivative is defined by ∂u
∂nk

= y
k
2
3
∂u
∂ne

.
We prove that the function

Fk (x, y) = −x
k−2

2
3 y

k−2
2

3 Q1
ν (cosh dh (x, y))

ω3 sinh dh (x, y)

is the fundamental k-hyperbolic harmonic function at the point x (symmetrically y),
that is −�kFk = δx in the distributional sense with respect to the volume measure
of the Riemannian metric dsk and ω3 = 2π2 is the Euclidean surface area of the
unit ball in H. We also remind that the fundamental k-harmonic function is unique
up to the k-hyperbolic harmonic function.

We first verify the following crucial result.

Lemma 2.4.6 Let x be a point in the upper half space and denote ν = |k+1|−1
2 . The

function

gk (dh (x, y)) = ν + 1

2ν+1

∫ π

0
(cosh dh (x, y)+ cosα)−ν sin2ν+1 α dα

=
√
π� (ν + 2) λ−ν 2F1

(
ν
2 ,

ν+1
2 ; 2ν+3

2 ; 1
cosh2 dh(x,y)

)

2ν+1�
(
ν + 3

2

)

is positive and continuous for any y ∈ H+ and

gk (0) = 1.

Proof Applying properties of hypergeometric functions (see for example [2]) and
the Gamma function, we infer that

2F1

(
ν

2
,
ν + 1

2
; 2ν + 3

2
; 1

)
=

�
(
ν + 3

2

)
� (1)

�
(
ν+3

2

)
�
(
ν+2

2

) = �
(
ν + 3

2

)
2ν+1

√
π� (ν + 2)

.

Hence gk (0) = 1. ��
Next we prove that Fk (x, y) is integrable in the hyperbolic ball Bh (a,Rh) with

respect to the Riemannian volume measure dmk.
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Lemma 2.4.7 The function Fk (x, y) is integrable in the hyperbolic ballBh (x,Rh)
with respect to the volume measure dmk in the hyperbolic ball Bh (x,Rh) and

∫
Bh(x,Rh)

Fk (dh (y, x)) dmk (y) ≤ 2−
3k+4

2 Me
|3k+2|

2 x−k3 sinh2 Rh,

where M = maxy∈Bh(x,Rh) (gk (y, x)) ≥ 1.

Proof Using Proposition 2.2.1 we infer that the hyperbolic ball Bh (x,Rh) is an
Euclidean ball with the Euclidean center cx (Rh) = x0 + x1e1 + x2e2 + x2 coshRh
and the Euclidean radius Re = x3 sinhRh. Hence we deduce

gk (dh (x, y))

x2
3 sinh2 dh (y, x)

= gk (dh (x, y))

‖y − cx (Rh) ‖2

and in Bh (x,Rh)

2x3e
−Rh = x3 (coshRh − sinhRh) ≤ y3 ≤ x3 (coshRh + sinhRh) = 2x3e

Rh

for all y ∈ Bh (x,Rh). Since gk (dh (x, y)) is a continuous function, it attains its
maximum in the closure of the ball Bh (x,Rh). Since

∫
Bh(x,Rh)

x−2
3 sinh−2 dh (y, x) dm (y) =

∫
Be(cx(Rh),x3 sinhRh)

dm (y)

‖y − cx (Rh) ‖2

=
∫ x3 sinhRh

0
r

∫
∂Bh(cx(rh),1)

dSdr

= ω3x
2
3 sinh2Rh

2

we conclude
∫
Bh(x,Rh)

Fk (y, x) dmk (y) ≤ 2−
3k+4

2 Me
|3k+2|

2 x−k3 sinh2 Rh.

��
We also need the result

Lemma 2.4.8 Let 	 ⊂ H+ be open and Bh (x,Rh) ⊂ 	. Let u be a continuous
real valued function in 	. Then

lim
Rh→0

∫
∂Bh(x,Rh)

u
∂Fk (x, y)

∂nk
dσ(k) (y) = −u (x) .
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Proof Applying Proposition 2.2.1 we obtain that the outer normal at y ∈
∂Bh (x,Rh) is

ne = (n0, n1, n2, n3) = (y0 − x0, y1 − x1, y2 − x2, y3 − x3 coshRh)

x3 sinhRh

In order to abbreviate the notations, we denote briefly rh = dh (y, x). We compute
the outer normal derivative by

∂Fk (x, y)

∂nk
=y

k
2
3
∂Fk (x, y)

∂ne
= y

k
2
3 〈ne, gradFk (x, y)〉

=yk−1
3 x

k−2
2

3

∂
gk(rh)

sinh2 rh

∂rh

3∑
i=0

ni
∂rh

∂yi

+ k − 2

2
y
k−2

2
3 n3Fk (x, y) .

Since rh = arcosλ (y, x) we deduce

∂rh

∂yi
= ∂ arccosλ (y, x)

∂yi
= yi − xi − x3 (cosh rh − 1) δi3

y3x3 sinh rh

and therefore the identity

3∑
i=0

ni
∂rh

∂yi
= 1

y3

holds. Hence we compute further

∂Fk (x, y)

∂nk
= yk−2

3 x
k−2

2
3

ω3 sinh2 rh

∂gk (rh)

∂rh
+ k − 2

2ω3
yk−2

3 n3Fk (x, y)

− yk−2
3 x

k−2
2

3 gk (rh) cosh rh

ω3 sinh3 rh
.

Since Bh (x,Rh) = B (cx (Rh) , x3 sinRh) for

cx (Rh) = x0 + x1e1 + x2e2 + x2 coshRh

we infer that

lim
Rh→0

x
k−4

2
3

ω3x
3
3 sinh3 Rh

∫
∂Bh(x,Rh)

sinhRhy
k−2
3

∂gk

∂rh
(Rh) dσ(k) = 0.
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Similarly, we compute that

lim
Rh→0

(k − 2) x
k−6

2
3

2ω3x
3
3 sinh3 Rh

∫
∂Bh(x,Rh)

yk−2
3 (y3 − x3 coshRh) gk (Rh) dσ(k) = 0.

Finally, manipulating the last integral, we obtain

lim
Rh→0

−gk (Rh) coshRh
ω3 sinh3 Rh

∫
∂Bh(x,Rh)

yk−2
3 x

k−2
2

3 dσ(k)

= lim
rh→0

−x
k+4

2
3 coshRhgk (Rh)

ω3x
3
3 sinh3 Rh

∫
∂Bh(x,Rh)

y
− k+4

2
3 dσ

= −u (x) ,

completing the proof. ��
Theorem 2.4.9 Let	 ⊂ H+ be open and Bh (a, ρ) a hyperbolic ball with a center
a and the hyperbolic radius ρ satisfying Bh (a, ρ) ⊂ 	. If u is a twice continuously
differentiable functions in 	 and x ∈ Bh (a, ρ) then

u (x) =
∫
∂Bh(a,ρ)

(
Fk (y, x)

∂u (y)

∂nk
− u (y) ∂Fk (y, x)

∂nk

)
dσ(k) (y)

−
∫
Bh(a,ρ)

�ku (y)Fk (y, x) dmk (y) ,

where dmk = y−2k
3 dx, dσ(k) = y

− 3k
2

n dσ and the outer normal ∂u
∂nk

= y
k
2
3
∂u
∂ne

.

Proof Denote Bh (a, ρ) = B and pick a hyperbolic ball such that Bh (x,Rh) ⊂ B.
Denote R = B\Bh (x,Rh). Since Fk is k-hyperbolic harmonic in R, we may apply
the Green’s formula

∫
R

(u�kv − v�ku) dmk =
∫
∂R

(
u
∂v

∂nk
− v ∂u

∂nk

)
dσ(k)

of the Laplace-Beltrami operator

�k = xk3

(
�− k

x3

∂

∂x3

)
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with respect to the Riemannian metric ds2
k (see [1]) and obtain

∫
R

Fk (y, x)�kudxk =
∫
∂B

(
Fk (y, x)

∂u

∂nk
− u∂Fk (y, x)

∂nk

)
dσ (k)

−
∫
∂Bh(x,Rh)

(Fk (y, x)
∂u

∂nk
− u∂Fk (y, x)

∂nk
)dσ(k).

Since ∂u

∂nk
and y

− 2k+2
2

3 x
k−2

2
3 gk (dh (x, y)) are bounded we obtain

∫
∂Bh(x,Rh)

|Fk (y, x) ∂u
∂nk

|dσ(k) (y) ≤ M

sinh2R

∫
∂Bh(x,Rh)

dσ =M sinhRh

and therefore

lim
Rh→0

∫
∂Bh(x,Rh)

|Fk (y, x) ∂u
∂nk

|dσ(k) (y) = 0.

Moreover, since Fk (x, y) is integrable and u is bounded on B we infer

∫
Bh(a,ρ)

�ku (y)Fk (y, x) dmk = lim
Rh→0

∫
Rh

Fk (y, x)�ku dmk.

Then applying the previous result we conclude the result. ��
Using the standard methods, we deduce that

φ (x) = −
∫
�kφ (y)Fk (y, x) dmk

for all φ ∈ C∞0 (H+). Hence we have reached our main result.

Theorem 2.4.10 Let x and y be points in the upper half space and denote ν =
|k+1|−1

2 . The fundamental k-hyperbolic harmonic function is

Fk (x, y) = − x
k−2

2
3 y

k−2
2

3 Q1
ν (λ (x, y))

2ν+1ω3
(
λ (x, y)2 − 1

) 1
2

= (ν + 1) x
k−2

2
3 y

k−2
2

3

∫ π
0 (λ (x, y)+ cosα)−ν sin2ν+1 α dα

2ν+1ω3
(
λ (x, y)2 − 1

)

=
√
π� (ν + 2) x

k−2
2

3 y
k−2

2 −1
3 λ−ν 2F1

(
ν
2 ,

ν+1
2 ; 2ν+3

2 ; 1
λ2

)

2ν+1ω3�
(
ν + 3

2

) (
λ (x, y)2 − 1

) .
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Corollary 2.4.11 Let x and y be points in the upper half-space H+. Then

Fk (x, y) = xk+1
3 yk+1

3 F−k−2 (x, y) .

The previous result follows also from the correspondence principle of Weinstein
(see [20]).

Lemma 2.4.12 If we denote

Kk (f ) = �f − k

x3

∂f

∂x3

then

Kk (f ) = xk+1
3 K−k−2

(
x−k−1

3 f
)
.

A kind of fundamental k-hyperbolic harmonic function has also been computed
by GowriSankaram and Singman in [12] using more technical deductions. In order
to compare the results, we first verify the following lemma.

Lemma 2.4.13 Let λ > 1 and ν > −1. Denoting ν + 1 = β, then

∫ π

0
(λ− cosα)−β sin2β−1 α dα = 2βQ0

ν(λ)

and therefore

(
λ2 − 1

)− 1
2
Q1
ν(λ) = −β2−β

∫ π

0
(λ− cosα)−β−1 sin2β−1 α dα

= A

∫ π

0

(
‖x − y‖2 + 2x3y3 (1 − cosα)

)−β−1
sin2β−1 α dα.

where A = −2βxβ+1
2 y

β+1
3 .

Proof Applying [19, S.2.9-4.] and using complex numbers in computations, we
obtain

Q0
ν(λ) = ei(β)πQ0

ν(−λ) = ei(β)π2−(β)
∫ π

0
(−λ+ cosα)−β sin2β−1 α dα

= 2−(β)
∫ π

0
(λ− cosα)−β sin2β−1 α dα

Recalling the known formula

Q1
ν (λ) =

(
λ2 − 1

) 1
2 d

dλ
Q0
ν (λ)
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we obtain the first equality. The second one follows from it when we substitute

λ = ‖x−y‖2+2x3y3
2x3y3

. ��
Theorem 2.4.14 Let x and y be points in the upper half space and denote ν =
|k+1|−1

2 . The fundamental k-hyperbolic harmonic function is

ω3Fk (x, y) = (ν + 1) x
k−2

2
3 y

k−2
2
∫ π

0 (λ− cosα)−ν−2 sin2ν+1 α dα

2ν+1

= B

∫ π

0

(
‖x − y‖2 + 2x3y3 (1 − cosα)

)−ν−2
sin

2ν+1
α dα

where

B = 2 (ν + 1) x
k−2

2 +ν+2
3 y

k−2
2 +ν+2

3 .

Moreover, if k ≤ −1 then

ω3Fk (x, y) = −k
∫ π

0

(
‖x − y‖2 + 2x3y3 (1 − cosα)

) k−2
2

sin−k−1 α dα,

and if k ≥ −1 then

ω3Fk (x, y)

k + 2
= xk+1

3 yk+1
3

∫ π

0

(
‖x − y‖2 + 2x3y3 (1 − cosα)

)− k+4
2

sin
k+1
α dα.

We may compute the following special cases.

1. Let k = 0. Then

F0 (x, y) = 1

2ω3x3y3

(
1

λ− 1
− 1

λ+ 1

)

1

ω3

(
1

‖x − y‖2
− 1

‖x − y∗‖2

)

2. Let k = −2. Then

F−2 (x, y) = 1

2ω3x
2
3y

2
3

∫ π

0
(cosh dh (x, y)− cosα)−2 sin αdα

= 1

2ω3x
2
3y

2
3

(
1

λ− 1
− 1

λ+ 1

)
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= 1

ω3x
2
3y

2
3

(
λ2 − 1

)

= 1

2ω3x3y3

(
1

‖x − y‖2
− 1

|x − y∗|2
)

= 4

ω3‖x − y‖2‖x − y∗‖2 .

3. Let k = 2, then

2ω−1
3 F2 (x, y) =

∫ π

0
(cosh dh (x, y)− cosα)−3 sin3 αdα

=
[
−2−1 (cosh dh (x, y)− cosα)−2 sin2 α

]π
0

+
∫ π

0
(cosh dh (x, y)− cosα)−2 sin α cosαdα

=−
[
(cosh dh (x, y)− cosα)−1 cosα

]π
0

−
∫ π

0
(cosh dh (x, y)− cosα)−1 sin αdα

= 1

λ− 1
+ 1

λ+ 1
− (log (λ+ 1)− log(λ− 1))

= 2λ

λ2 − 1
− log (λ+ 1)+ log (λ− 1) .

Comparing this function with the kernel function computed in [8], we obtain

−
∫ 1

‖a−x‖
‖x−a∗‖

(
1 − s2

)2
s3 ds = −

∫ 1

‖a−x‖
‖x−a∗‖

(
s−3 − 2s−1 + s

)
ds

= |x − a∗|2
2‖a − x‖2 + 2 log

‖a − x‖
‖x − a∗‖ − 1

2

‖a − x‖2

‖x − a∗‖2 .

Applying the properties (2.2.1) and (2.2.2), we infer that

−1

4

∫ 1

‖a−x‖
‖x−a∗‖

(
1 − s2

)2
s3 ds = λ

λ2 − 1
− log (λ+ 1)

2
+ log (λ− 1)

2

In order to compute the kernel function for k-hyperregular functions, we need
the following lemma (see [8]).
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Lemma 2.4.15 If a ∈ R
n+1+ and ca (dh (x, a)) = a0 + a1e1 + a2e2 +

a3 cosh dh (x, a) e3 then

D
x
λ (x, a) = x − ca (dh (x, a))

x3a3
.

Theorem 2.4.16 Denote rh = dh (x, y), t = k −2
2 , ν = |k+1|−1

2 and define as
earlier

gk (dh (x, y)) = ν + 1

2ν+1

∫ π

0
(cosh dh (x, y)+ cosα)−ν sin2ν+1 α dα.

The k-hyperregular kernel is the function

hk (x, y) = 1

2
D
x
(Fk (x, y))

= r(x, y)wk (x, y) p (x, y)

= r(x, y)p (x, y) vk (x, y)

where r(x, y) = 1
2x

k−2
2

3 y
k+4

2
3 ,

wk (x, y) = −te3gk (rh)
x − Py
y3

+ sinh rhg′k (rh)− (t + 2) gk (rh) cosh rh,

vk (x, y) = −t x − Py
y3

e3gk (rh)+ sinh rhg′k (rh)− (t + 2) gk (rh) cosh rh,

and

p (x, y) =
(
x − cy (rh)

)−1

x3‖x − cy (rh) ‖2

is 2-hyperregular with respect to x.

Proof The function Fk (x, y) is k-hyperbolic and therefore the function hk =
D
x
Fk (x, y) is k-hyperregular outside y and y∗. Denoting t = k −2

2 and λ (x, y) =
cosh rh, we compute as follows

2hk (x, y)

x
k−2

2
3 y

k−2
2

3

= − te3g (rh)

x3 sinh2 rh
+
(

sinh rhg′ (rh)− 2g (rh) cosh rh
sinh3 rh

)
D
x
rh.
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Applying [8] we obtain

D
x
rh = x − cy (rh)

x3y3 sinh rh

and

x3D
x
rh

y3
3 sinh3 rh

= x − cy (rh)
‖x − cy (rh) ‖4 =

(
x − cy (rh)

)−1

‖x − cy (rh) ‖2 .

Since

x − cy (rh)
x3y3

(
x − cy (rh)

)−1

‖x − cy (rh) ‖2 = 1

x3y3‖x − cy (rh) ‖2

= 1

x3y
3
3 sinh2 rh

.

Hence we obtain

hk (x, y)

yt+3
3 xt3

= wk (x, y)

(
x − cy (rh)

)−1

x3‖x − cy (rh) ‖2 ,

where

wk (x, y) = −te3gk (rh)
x − Py
y3

+ sinh rhg′k (rh)− (t + 2) gk (rh) cosh rh.

Similarly we prove the other equation. ��
Using the similar deductions as in [3] we may prove the formula for S and T -

parts.

Theorem 2.4.17 Let 	 and be an open subsets of H+ (or H.−). Assume that K is
an open subset of 	 and K ⊂ 	 is a compact set with the smooth boundary whose
outer unit normal field is denoted by ν. If f is k-hyperregular in 	 and a ∈ K , then

Sf (a) = −1

2

∫
∂K

S (hk (y, a) νf + f νhk (y, a)) dσ
yk3

= 1

2

∫
∂K

S [hk (y, a) , ν, f ]
dσ

yk3

− 1

2

∫
∂K

Shk (y, a) 〈ν, f 〉 dσ
yk3

.

Proof Let a ∈ K . Denote R = K\Bh (a, rh) and

A =
∫
∂K

S (hk (y, a) νf (y)+ f (y) νhk (y, a)) dσ
yk3

.
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Then we obtain

0 =
∫
∂R

S (hk (y, a) νf (y)+ f (y) νhk (y, a)) dσ
yk3

= A−
∫
∂Bh(a,rh)

S (hk (y, a) ν (y) f (y)+ f (y) ν (y) hk (y, a)) dσ
yk3

.

By virtue of Proposition 2.2.1, we deduce that

ν (y) = y − ca (rh)
‖y − ca (rh) ‖ .

Hence we obtain

A = − lim
rh

a
k−4

2
3

2ω3‖a − ca (rh) ‖3

∫
∂Bh(a,rh)

S (wk (y, a) f + f vk (y, a)) dσ
y
k−4

2
3

= −f (a) .

The last formula follows from (2.2.7) and the definition of the triple product. ��
Similarly we may verify the result for the T -part. The main difference is that we

use the surface measure dσ , not y−k3 dσ .

Theorem 2.4.18 Let 	 be an open subsets of H+ (or H.−). Assume that K is an
open subset of 	 and K ⊂ 	 is a compact set with the smooth boundary whose
outer unit normal field at y is denoted by ν. If f is k-hyperregular in 	 and a ∈ K ,

Tf (a) = −a
k
3

2

∫
∂K

T (h−k (y, a) νf + f ν h−k (y, a)) dσ

= ak3

2

(∫
∂K

T [h−k (y, a) , ν, f ]dσ −
∫
∂K

T h−k (y, a) 〈ν, f 〉 dσ
)
.

2.5 Conclusion

Our main results produce integral formulas for the T - and S-parts of k-hyperregular
functions. An interesting problem is to research integral operators produced by these
formulas. However, these results requires much computations and therefore they are
left to the consequent publications.
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Abstract We present some new relations between the Cauchy-Riemann operator
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operator, the differential operator characterizing slice regularity, and the spherical
derivative of a slice function. The computation of the Laplacian of the spherical
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3.1 Introduction and Preliminaries

Let Rn denote the real Clifford algebra of signature (0, n), with basis vectors
e1, . . . , en. Consider the Dirac operator

D = e1
∂

∂x1
+ · · · + en ∂

∂xn

and the Cauchy-Riemann operators

∂ = ∂

∂x0
+ e1

∂

∂x1
+ · · · + en ∂

∂xn
and ∂ = ∂

∂x0
− e1

∂

∂x1
− · · · − en ∂

∂xn

on Rn. The operator ∂ factorizes the Laplacian operator

∂∂ = ∂∂ = �n+1 = ∂2

∂x2
0

+ ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

of the paravector space

V = {x0 + x1e1 + · · · + xnen ∈ Rn | x0, . . . , xn ∈ R} � R
n+1.

This property is one of the most attractive aspects of Clifford analysis, the well-
developed function theory based on Dirac and Cauchy-Riemann operators (see [4,
8, 19] and the vast bibliography therein).

In this paper we prove some new relations between the Cauchy-Riemann
operator, the spherical Dirac operator, the Laplacian operator and the class of
slice-regular functions on a Clifford algebra. Slice-regular functions constitute a
recent but rapidly expanding function theory in several hypercomplex settings,
including quaternions and real Clifford algebras (see [5, 10–12, 16, 17]). This class
of functions was introduced by Gentili and Struppa [10] in 2006–2007 for functions
of one quaternionic variable. Let H denote the skew field of quaternions, with basic
elements i, j, k. For each quaternion J in the sphere of imaginary units

SH = {J ∈ H | J 2 = −1} = {x1i + x2j + x3k ∈ H | x2
1 + x2

2 + x2
3 = 1},

let CJ = 〈1, J 〉 � C be the subalgebra generated by J . Then we have the “slice”
decomposition

H =
⋃
J∈SH

CJ , with CJ ∩ CK = R for every J,K ∈ SH, J �= ±K.
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A differentiable function f : 	 ⊆ H → H is called (left) slice-regular on 	 if,
for each J ∈ SH, the restriction

f |	∩CJ : 	 ∩ CJ → H

is holomorphic with respect to the complex structure defined by left multiplication
by J . For example, polynomials f (x) = ∑m x

mam with quaternionic coefficients
on the right are slice-regular on H. More generally, convergent power series are
slice-regular on an open ball centered at the origin. Observe that nonconstant
polynomials do not belong to the kernel of the Cauchy-Riemann-Fueter operator

∂CRF = ∂

∂x0
+ i ∂

∂x1
+ j ∂

∂x2
+ k ∂

∂x3
.

Here x0, x1, x2, x3 denote the real components of a quaternion x = x0+x1i+x2j+
x3k.

Let H⊗R C be the algebra of complex quaternions, with elements w = a + ıb,
a, b ∈ H, ı2 = −1. Every quaternionic polynomial f (x) = ∑m x

mam lifts to a
unique polynomial function F : C → H⊗R C which makes the following diagram
commutative for all J ∈ SH:

C R ⊗R C
F

H ⊗R C

J J

f

where�J : H⊗RC → H is defined by�J (a+ıb) := a+Jb. The lifted polynomial
is simply F(z) = ∑m z

mam, with variable z = α + ıβ ∈ C. This lifting property
is equivalent to the following fact: for each z = α + ıβ ∈ C, the restriction of f
to the 2-sphere α + SHβ = ∪J∈SH�J (z), is a quaternionic left-affine function with
respect to J ∈ SH, namely of the form J �→ a + Jb (a, b ∈ H).

In this lifting, the usual product of polynomials with coefficients in H on one
fixed side (the one obtained by imposing commutativity of the indeterminate with
the coefficients when two polynomials are multiplied together) corresponds to the
pointwise product in the algebra H⊗R C.

More generally, if a quaternionic function f (not necessarily a polynomial) has
a holomorphic lifting F then f is called (left) slice-regular.

This approach to slice regularity can be pursued on an ample class of real
algebras. Here we recall the basic definitions and refer to [12, 16] for details and
other references. Let A be a real alternative algebra with unity e. The real multiples
of e in A are identified with the real numbers. Assume that A is a *-algebra, i.e.
it is equipped with a linear antiinvolution x �→ xc, such that (xy)c = ycxc for all
x, y ∈ A and xc = x for x real. Let t (x) := x + xc ∈ A be the trace of x and
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n(x) := xxc ∈ A the norm of x. Let

SA := {J ∈ A | t (x) = 0, n(x) = 1}

be the “sphere” of the imaginary units of A compatible with the *-algebra structure
of A. Assuming SA �= ∅, one can consider the quadratic cone of A, defined as the
subset of A

QA :=
⋃
J∈SA

CJ

whereCJ = 〈1, J 〉 is the complex “slice” ofA generated as a subalgebra by J ∈ SA.
It holds CJ ∩ CK = R for each J,K ∈ SA, J �= ±K . The quadratic cone is a real
cone invariant with respect to translations along the real axis.

Observe that t and n are real-valued on QA and that QA = A if and only if
A � C,H,O (where O is the algebra of octonions).

The remark made above about quaternionic polynomials suggests a way to define
polynomials with coefficients in A or more generally A-valued functions on the
quadratic cone ofA. Let J ∈ SA and let�J : A⊗RC → A defined by�J (a+ıb) :=
a + Jb for any a, b ∈ A. By imposing commutativity of diagrams

C R ⊗R C
F

A ⊗R C

J J

A
f

A (3.1.1)

for all J ∈ SA, we get the class of slice functions on A. This is the class of functions
which are compatible with the slice character of the quadratic cone.

More precisely, let D ⊆ C be a set that is invariant with respect to complex
conjugation. In A⊗R C consider the complex conjugation mapping w = a + ıb to
w = a − ıb (a, b ∈ A). If a function F : D → A⊗R C satisfies F(z) = F(z) for
every z ∈ D, then F is called a stem function on D. Let 	D be the circular subset
of the quadratic cone defined by

	D =
⋃
J∈SA

�J (D).

The stem function F = F1 + ıF2 : D → A ⊗R C induces the (left) slice function
f = I(F ) : 	D → A in the following way: if x = α + Jβ = �J (z) ∈ 	D ∩ CJ ,
then

f (x) = F1(z)+ JF2(z),
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where z = α + ıβ. The slice function f = I(F ) is called (left) slice-regular if
F is holomorphic. The function f = I(F ) is called slice-preserving if F1 and F2
are real-valued (this is the case already considered by Fueter [9] for quaternionic
functions and by Gürlebeck and Sprössig (cf. [18, 19]) for radially holomorphic
functions on Clifford algebras). In this case, the condition f (xc) = f (x)c holds for
each x ∈ 	D.

When A is the algebra of real quaternions and the domain D intersects the real
axis, this definition of slice regularity is equivalent to the one proposed by Gentili
and Struppa [10].

In this paper we are mainly interested in the case where A is the real 2n-
dimensional Clifford algebra Rn with signature (0, n). Let e1, . . . , en be the basic
units of Rn, satisfying eiej + ej ei = −2δij for each i, j , and let eK denote the
basis elements eK = ei1 · · · eik , with e∅ = 1 and K = (i1, . . . , ik) an increasing
multi-index of length k, with 0 ≤ k ≤ n. Every element x ∈ Rn can be written as
x =∑K xKeK , with xK ∈ R. We will identify paravectors, i.e. elements x ∈ Rn of
the form x = x0 + x1e1 + · · · + xnen, with elements of the Euclidean space Rn+1.

The Clifford conjugation x �→ xc is the unique antiinvolution of Rn such that
eci = −ei for i = 1, . . . , n. If x = x0 + x1e1 + · · · + xnen ∈ Rn+1 is a paravector,
then xc = x0 − x1e1 − · · · − xnen. Therefore t (x) = x + xc = 2x0 and n(x) =
xxc = |x|2, the squared Euclidean norm. The same formulas for t and n hold on the
entire quadratic cone of Rn, that in this case (cf. [12, 13]) can be defined as

QRn = {x ∈ Rn | t (x) ∈ R, n(x) ∈ R}.

The quadratic cone of Rn is a real algebraic set which contains the paravector space
Rn+1 as a proper (if n > 2) subset. For example, QR1 = R1 � C, QR2 = R2 � H,
while

QR3 = {x ∈ R3 | x123 = x1x23 − x2x13 + x3x12 = 0}

is a real algebraic set of dimension 6.
Each x ∈ QRn can be written as x = Re(x) + Im(x), with Re(x) = x+xc

2 ,

Im(x) = x−xc
2 = βJ , where β = | Im(x)| and J ∈ SRn (the “sphere” of imaginary

units in Rn compatible with the Clifford conjugation). The choice of J is unique if
x �∈ R.

The class of slice-regular functions on Rn, defined as explained before by means
of holomorphic stem functions, is an extension of the class of slice-monogenic
functions introduced by Colombo, Sabadini and Struppa in 2009 [5]. More precisely,
let Sn−1 = {x1e1+· · ·+xnen ∈ Rn | x2

1 +· · ·+x2
n = 1}, a subset of SRn . A function

f : 	 ⊆ Rn+1 → Rn is slice-monogenic if, for every J ∈ Sn−1, the restriction
f |	∩CJ : 	 ∩ CJ → Rn is holomorphic with respect to the complex structure LJ
defined by LJ (v) = Jv. When the domain 	 intersects the real axis, the definition
of slice regularity on Rn is equivalent to the one of slice monogenicity, in the sense
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that the restriction to the paravector space of a Rn-valued slice-regular function is a
slice-monogenic function.

In the next sections we will introduce a differential operator ϑ characterizing
slice regularity [7, 15] and the notion of spherical derivative of a slice function [12].
Then we will prove a formula, relating the operator ϑ , the spherical derivative, the
spherical Dirac operator and the Cauchy-Riemann operator on Rn. The computation
of the Laplacian of the spherical derivative of a slice regular function gives a result
which implies, in particular, the Fueter-Sce Theorem for monogenic functions (i.e.
the functions belonging to the kernel of the Cauchy-Riemann operator ∂). We recall
that Fueter’s Theorem [9], generalized by Sce [23], Qian [22] and Sommen [24]
on Clifford algebras and octonions, in our language states that applying to a slice-
preserving slice-regular function the Laplacian operator of R4 (in the quaternionic
case) or the iterated Laplacian operator �(n−1)/2

n+1 of Rn+1 (in the Clifford algebra
case with n odd), one obtains a function in the kernel, respectively, of the Cauchy-
Riemann-Fueter operator or of the Cauchy-Riemann operator. This result was
extended in [6] to the whole classes of quaternionic slice-regular functions and of
slice-monogenic functions defined by means of stem functions.

These results take a particularly neat form in the two four-dimensional cases
represented by paravectors in the Clifford algebra R3 and by the space H of
quaternions. As we will show in Sects. 3.5 and 3.6, in these cases there appear
unexpected relations between slice-regular functions, the zonal harmonics on the
three-dimensional sphere and the Poisson kernel of the unit ball.

As an application, a stronger version of Liouville’s Theorem for entire slice-
regular functions is given. See [5, 10, 11] for the generalization of the complex
Liouville’s Theorem to quaternionic functions and slice monogenic functions.
The formulas obtained in the present paper have found application also to four
dimensional Jensen formulas for quaternionic slice-regular functions [2, 21].

The present work can be considered also a continuation of [20], where other
relations, of a different nature, between the two function theories, the one of
monogenic functions and the one of slice-regular functions, were presented.

3.2 The Slice Derivatives and the Operator ϑ

The commutative diagrams (3.1.1) suggest a natural definition of the slice deriva-
tives ∂f

∂x
,
∂f
∂xc

of a slice functions f . They are the slice functions induced, respec-
tively, by the derivatives ∂F

∂z
and ∂F

∂z
:

∂f

∂x
= I
(
∂F

∂z

)
and

∂f

∂xc
= I
(
∂F

∂z

)
.

With this notation a slice function is slice-regular if and only if ∂f
∂xc

= 0 and if this

is the case also the slice derivative ∂f
∂x

is slice-regular.
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For each alternative ∗-algebra A there exists [15] a global differential operator
ϑ which characterizes slice-regular functions among the class of slice functions. If
	D is a circular domain in the quadratic cone of A, the operator

ϑ : C1(	D \ R, A)→ C0(	D \R, A)

is defined on the class C1(	D \R, A) of A-valued functions of class C1 on 	D \R.
In particular, when A is the Clifford algebra Rn, the operator ϑ has the following
expression

ϑ = ∂

∂x0
+ Im(x)

| Im(x)|2
∑

|K |≡1,2 (mod 4)

xK
∂

∂xK
. (3.2.1)

When the operator ϑ is applied to a slice function f , it yields two times the slice
derivative ∂f

∂xc
. Let ϑ be the conjugated operator of ϑ . Then ϑf = 2 ∂f

∂x
for each slice

function f .

Theorem 3.2.1 ([15]) If f ∈ C1(	D) is a slice function, then f is slice-regular if
and only if ϑf = 0 on 	D \ R. If 	D ∩ R �= ∅ and f ∈ C1(	D) (not a priori a
slice function), then f is slice-regular if and only if ϑf = 0.

As seen in the introduction, the paravector space R
n+1 is a subspace of the

quadratic cone of Rn, proper if n > 2. The action of ϑ on functions defined on
	D ∩ R

n+1 (corresponding to the terms with |K| = 1 in the summation (3.2.1))
coincides, up to a factor 2, with the action of the radial Cauchy-Riemann operator
∂rad (cf. e.g. [18]). An equivalent operator defined on the paravector space Rn+1 of
Rn was given in [7].

In the case n = 2, the algebra R2 � H is four-dimensional and coincides with
the quadratic cone (while paravectors form a three-dimensional subspace). When
applied on functions defined on open subsets of the full algebra H, the operator ϑ
contains also the term with |K| = 2 in (3.2.1).

3.3 Spherical Operators

Let f = I(F ) be a slice function on 	D , induced by the stem function F = F1 +
ıF2, with F1, F2 : D ⊆ C → Rn. We recall some definitions from [12]:

Definition 3.3.1 The function f ◦
s : 	D → Rn, called spherical value of f , and the

function f ′
s : 	D \ R → Rn, called spherical derivative of f , are defined as

f ◦
s (x) :=

1

2
(f (x)+ f (xc)) and f ′s (x) :=

1

2
Im(x)−1(f (x)− f (xc)).
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If x = α + βJ ∈ 	D , z = α + ıβ ∈ D, then f ◦s (x) = F1(z) and f ′s (x) =
β−1F2(z). Therefore f ◦s and f ′

s are slice functions, constant on every set Sx =
α+β SRn . They are slice-regular only if f is locally constant. Moreover, the formula

f (x) = f ◦
s (x)+ Im(x)f ′s (x) (3.3.1)

holds for each x ∈ 	D \ R. If F ∈ C1, the formula holds also for x ∈ 	D ∩ R. In
particular, if f is slice-regular, f ′s extends with the values of the slice derivative ∂f

∂x

on the real points x ∈ 	D ∩ R.
Since the paravector space Rn+1 is contained in the quadratic cone QRn , we can

consider the restriction of a slice function on domains of the form	 = 	D∩Rn+1 in
Rn+1. Thanks to the representation formula (see e.g. [12, Prop. 6]), this restriction
uniquely determines the slice function. We will therefore use the same symbol to
denote the restriction.

To simplify notation, in the following we will denote the partial derivatives ∂
∂xi

also with the symbol ∂i (i = 0, . . . , n).
For any i, j with 1 ≤ i < j ≤ n, let Lij = xi∂j−xj ∂i be the angular momentum

operators and � = −∑i<j eijLij the spherical Dirac operator on Rn (see e.g. [18,
§2.1.5], [4, §8.7] or [25]). The operators Lij are tangential differential operators for
the spheres Sx ∩Rn+1 = α + β Sn−1. The spherical Dirac operator � factorizes the
Laplace-Beltrami operator�LB =∑i<j L

2
ij on Sn−1 since�LB = �(−�+n−2).

We show that the function obtained applying the operator � to a slice function f is
equal, up to a multiple of Im(x), to the spherical derivative f ′s .

Proposition 3.3.2 Let 	 = 	D ∩ Rn+1 be an open subset of Rn+1. For each slice
function f : 	→ Rn of class C1(	), the following formulas hold on 	 \ R:

(a) �f = (n− 1) Im(x)f ′s .
(b) ∂f − ϑf = (1 − n)f ′

s .

Proof Let f be a slice function. Since the functions f ◦s and f ′s are constant on the
spheres Sx , every Lij vanishes on them. Using formula (3.3.1) and Leibniz rule we
get

Lij f = Lij (f
◦
s (x)+ Im(x)f ′s (x)) = Lij (Im(x))f ′s .

A direct computation gives

�x = −
∑
i<j

eijLij (Im(x)) = −
∑
i<j

eij (xiej − xj ei) = (n− 1) Im(x).

It follows that

�f = −
∑
i<j

eijLij f = −
∑
i<j

eijLij (Im(x))f ′s = (n− 1) Im(x)f ′s
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and point (a) is proved. To prove (b), we can use the decomposition of the Cauchy-
Riemann operator given in [25]:

∂ = ∂0 + ω
ω + 1

| Im(x)|L

where ω = Im(x)
| Im(x)| , 
ω = 1

| Im(x)|
∑n
i=1 xi∂i and L = ω�. Since f depends only on

paravector variables, ϑf coincides with the radial part (∂0 + ω
ω)f of ∂f . Then
∂f − ϑf = 1

| Im(x)|Lf = 1
| Im(x)|ω�f = ω2(n− 1)f ′s = (1 − n)f ′

s . ��
Corollary 3.3.3 Let f : 	 ⊆ Rn+1 → Rn be a slice function of class C1(	).
Then

(a) f is slice-regular if and only if ∂f = (1 − n)f ′
s .

(b) Let n > 1. Then f is slice-regular and monogenic (i.e. it belongs to the kernel
of ∂) if and only if f is (locally) constant.

(c) ∂f − ϑf = (n− 1)f ′
s and ϑf ′s = ∂f ′

s .

Proof The first statement is immediate from point (b) of Proposition 3.3.2 and
Theorem 3.2.1. If ∂f = ϑf = 0, then f ′

s ≡ 0. This means that the component F2
of the inducing stem function F vanishes identically. From the holomorphicity of F
it follows that F1 is locally constant, and then also f is locally constant. The first
statement in (c) is a consequence of point (b) of Proposition 3.3.2, taking account
of the equalities

∂ + ∂ = 2∂0 = ϑ + ϑ.

The last statement comes from the property (f ′s )′s = 0, which holds for every slice
function f . ��

Statement (b) of the previous Corollary shows that when n > 1 the two function
theories, the one of monogenic functions and the one of slice-regular functions, are
really skew. This is in contrast with the classical case (n = 1), when ∂f = ϑf and
the two theories coincide.

3.4 The Laplacian of Slice Functions

Let f = I(F ) be a slice function on 	D , with F = F1 + ıF2 a stem function with
real analytic components F1, F2. Since F(z) = F(z) for every z = α + ıβ, the
functions F1, F2 : D ⊆ C → Rn are, respectively, even and odd functions with
respect to the variable β. Therefore there existG1 and G2, again real analytic, such
that

F1(α, β) = G1(α, β
2), F2(α, β) = βG2(α, β

2).
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If x = α + βJ , z = α + ıβ, then

f ◦s (x) = G1(α, β
2) = G1(Re(x), | Im(x)|2), (3.4.1)

f ′
s (x) = G2(α, β

2) = G2(Re(x), | Im(x)|2). (3.4.2)

The functions G1 and G2 are useful in the computation of the Laplacian of the
spherical derivative and of the spherical value of a slice regular function. Let 	 =
	D ∩ Rn+1.

Observe that if f is slice regular, then F1 and F2 have harmonic real components
with respect to the two-dimensional Laplacian �2 of the plane. For j = 1, 2, let

∂1Gj(u, v) stand for the partial derivative
∂Gj
∂u
(u, v) and ∂2Gj(u, v) for the partial

derivative
∂Gj
∂v
(u, v).

Theorem 3.4.1 Let 	 = 	D ∩ Rn+1 be an open subset of Rn+1. Let f =
I(F ) : 	 → Rn be (the restriction of) a slice-regular function. Let f ′

s (x) =
G2(Re(x), | Im(x)|2) as in (3.4.2) and let�n+1 be the Laplacian operator on Rn+1.
Then it holds:

(a)

�n+1f
′
s (x) = 2(n− 3) ∂2G2(Re(x), | Im(x)|2).

(b) For each k = 1, 2, . . . ,
[
n−1

2

]
,

�kn+1f
′
s (x) = 2k(n− 3)(n− 5) · · · (n− 2k − 1) ∂k2G2(Re(x), | Im(x)|2).

(c)

�n+1f
′
s (x) =

n− 3

| Im(x)|2
(
∂f ◦
s

∂x0
(x)− f ′

s (x)

)
.

More precisely, the formulas in (a) and (b) hold if and only if F2 has harmonic
components on D.

Proof Let x0 = Re(x), r = | Im(x)|. By direct computation, from (3.4.2) we get

�2F2(α, β) =
(
∂2

1 + 4β2 ∂2
2 + 6 ∂2

)
G2(α, β

2) (3.4.3)

and

�n+1G2(x0, r
2) = ∂2G2

∂x2
0

(x0, r
2)+

n∑
i=1

∂2G2

∂x2
i

(x0, r
2)

=
(
∂2

1 + 4r2∂2
2 + 2n ∂2

)
G2(x0, r

2).
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Therefore �2F2 = 0 on D if and only if �n+1f
′
s (x) = �n+1G2(x0, r

2) = (2n −
6) ∂2G2(x0, r

2). This proves (a). To obtain (b) we use induction on k, starting from

the case k = 1 given by (a). For every k with 1 < k ≤
[
n−1

2

]
−1, if�2F2(α, β) = 0

it holds

�n+1∂
k
2G2(x0, r

2) =
(
∂2

1∂
k
2 + 4r2∂k+2

2 + 2n ∂k+1
2

)
G2(x0, r

2)

=
(
∂k2

(
∂2

1 + 4r2∂2
2 + 2n ∂2

)
− 4k ∂k+1

2

)
G2(x0, r

2)

=
(
∂k2 (−6 ∂2 + 2n ∂2)− 4k∂k+1

2

)
G2(x0, r

2)

= 2(n− 2k − 3) ∂k+1
2 G2(x0, r

2).

By the induction hypothesis

�k+1
n+1f

′
s (x) = 2k(n− 3)(n− 5) · · · (n− 2k − 1)�n+1∂

k
2G2(x0, r

2)

= 2k(n− 3)(n− 5) · · · (n− 2k − 1) 2(n− 2k − 3) ∂k+1
2 G2(x0, r

2)

and (b) is proved. Statement (c) follows from the holomorphicity of F . Since
∂αF1(α, β) = ∂βF2(α, β) = ∂β(βG2(α, β

2)) = G2(α, β
2) + 2β2∂2G2(α, β

2),
it holds, for r �= 0,

∂2G2(x0, r
2) = 1

2r2

(
∂1F1(x0, r

2)−G2(x0, r
2)
)
= 1

2r2

(
∂f ◦
s

∂x0
(x)− f ′s (x)

)
.

Together with (a), this proves (c). ��
These results take a particularly attractive form when the paravectors space is

four-dimensional, i.e. n = 3.

Corollary 3.4.2 Let f : 	 ⊆ R4 → R3 be (the restriction of) a slice-regular
function. Then it holds:

(a) The spherical derivative f ′s is harmonic on	, i.e. its eight real components are
harmonic functions.

(b) The following generalization of Fueter-Sce Theorem for the Clifford algebra R3
holds:

∂�4f = �4∂f = −2�4f
′
s = 0.

(c) �2
4f = 0, i.e. every slice regular function on R3 is biharmonic on 	.

(d) �4f = −4
∂f ′
s

∂x
. Therefore also

∂f ′s
∂x

is harmonic on 	.

Proof The first statement is immediate from point (a) of Theorem 3.4.1. Point (b)
is a consequence of (a) and of Corollary 3.3.3. Statement (c) follows from (b) and
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the factorization ∂∂ = �4. Since 2 ∂f
∂x

= ϑf (cf. [15]) for any slice function, from
Corollary 3.3.3 it follows that

4
∂f ′s
∂x

= 2ϑ(f ′s ) = ∂(2f ′s ) = −∂∂f = −�4f.

This proves (d). ��
Remark 3.4.3 If f is only slice-harmonic on 	D, i.e. f = I(F ) is induced by a
harmonic stem function F on D ⊆ C, then F2 has harmonic real components and
therefore f ′

s is still harmonic.

Examples

(1) If f = x3, a slice-regular function, then

∂f = −2f ′s = −2
(

3x2
0 − x2

1 − x2
2 − x2

3

)

is harmonic on R4 and �4f = −4 (3x0 + x1e1 + x2e2 + x3e3) is monogenic.
(2) If f = (xc)3, a slice-harmonic function, then

f ′s = −3x2
0 + x2

1 + x2
2 + x2

3

is harmonic on R4 while �4f = 4 (−3x0 + x1e1 + x2e2 + x3e3) is not
monogenic.

(3) Let f = x
(

1 − Im(x)
| Im(x)|e1

)
. The function f is slice regular on QR3 \R, a set that

contains R4 \R. Then f ′
s = 1− x0| Im(x)|e1 is harmonic on R4 \R. The Laplacian

�4f = 2

| Im(x)|3
(
−x0x1 + (x2

1 + x2
2 + x2

3 )e1 − x0x2e12 − x0x3e13

)

is monogenic on R4 \ R.

Now consider the higher dimensional case, with n > 3 odd.

Corollary 3.4.4 Let n > 3 odd. If f : 	 ⊆ Rn+1 → Rn is (the restriction of) a
slice-regular function, then

(a) (�n+1)
n−3

2 f ′
s is harmonic on 	.

(b) The following generalization of Fueter-Sce Theorem for Rn holds:

∂(�n+1)
n−1

2 f = (�n+1)
n−1

2 ∂f = (1 − n) (�n+1)
n−1

2 f ′
s = 0.

(c) (�n+1)
n+1

2 f = 0, i.e. every slice regular function on Rn is polyharmonic.
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Proof The proof follows the same lines as above, using point (b) of Theorem 3.4.1
instead of (a). ��

The harmonicity properties of slice-regular functions imply a stronger form of the
Liouville’s Theorem for entire slice regular functions. See [5] for the generalization
of the classical result to slice monogenic functions. In the next Corollary we give
also a new proof of this last result (at least in the case of n odd).

Corollary 3.4.5 Let n ≥ 3 be odd. Let f ∈ SR(QRn) be an entire slice regular
function. If f is bounded on R

n+1, then f is constant. If the spherical derivative f ′s
is bounded (equivalently, if ∂f is bounded) on R

n+1, then f is a left-affine function,
of the form f (x) = a + xb (a, b ∈ Rn).

Proof Let f = I(F ) be induced by the holomorphic stem function F = F1 + ıF2,
with F1, F2 : C → Rn. If f is bounded, then the real components of f are
polyharmonic and bounded on Rn+1. Then f is constant from the Liouville’s
Theorem for polyharmonic functions.

If f ′s is bounded, the real components of its continuous extension to Rn+1 are
polyharmonic and bounded and then constant. Therefore F2(α, β) = βb, with b ∈
Rn. By the Cauchy-Riemann equations, it follows that F1(α, β) = a + αb, with
a ∈ Rn. Therefore f (x) = (a + x0b)+ Im(x)b = a + xb. ��

As regards the spherical value of a slice-regular function, we can still compute
its Laplacian. In general, even in the four-dimensional case, the spherical value
is not a harmonic function, nonetheless in the even-dimensional case it is always
polyharmonic.

Theorem 3.4.6 Let f = I(F ) : 	 ⊆ Rn+1 → Rn be (the restriction of) a slice-
regular function. Let f ◦s (x) = G1(Re(x), | Im(x)|2) as in (3.4.1). It holds:

(a)

�n+1f
◦
s (x) = (�n+1f )

◦
s (x) = 2(n− 1) ∂2G1(Re(x), | Im(x)|2).

(b) For each k = 1, 2, . . . ,
[
n−1

2

]

�kn+1f
◦
s (x) = 2k(n− 1)(n− 3) · · · (n− 2k + 1) ∂k2G1(Re(x), | Im(x)|2).

(c)

�n+1f
◦
s (x) = (1 − n) ∂f

′
s

∂x0
(x).

(d) When n = 3, �2
4f

◦
s = 0. In general, if n is odd, (�n+1)

n+1
2 f ◦

s = 0.

Proof Let x0 = Re(x), r = | Im(x)|. By direct computation, from (3.4.1) we get

�2F1(α, β) =
(
∂2

1 + 4β2 ∂2
2 + 2 ∂2

)
G1(α, β

2). (3.4.4)
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The proofs of (a) and (b) follows the same lines as the corresponding proofs of
Theorem 3.4.1, using (3.4.4) in place of (3.4.3). We prove (c): since ∂αF2(α, β) =
−∂βF1(α, β) = −2β∂2G1(α, β

2), it holds, for r �= 0,

∂2G1(x0, r
2) = − 1

2r
r ∂1G2(x0, r

2) = −1

2

∂f ′
s

∂x0
(x).

Together with (a), this proves (c). Finally, (d) is immediate from (b). ��
Again, points (a) and (b) remain valid if f is slice-harmonic.

3.5 The Four-Dimensional Case: Zonal Harmonics
and the Poisson Kernel

Thanks to Corollary 3.4.2, for any polynomial f (x) = ∑d
m=0 x

mam with coeffi-
cients in R3, the spherical derivative

f ′s (x) =
d∑

m=0

(xm)
′
sam

is a harmonic polynomial on R4. In particular, for every m ∈ N the spherical
derivative (xm)′s = − 1

2∂(x
m) of a Clifford power xm is a homogeneous harmonic

polynomial of degree m − 1 in the variables x0, x1, x2, x3, with real coefficients.
Observe that (xm)′s can be written as

(xm)
′
s =

Im(x)−1

2

(
xm − (xc)m) = (x − xc)−1 (xm − (xc)m)

=
m−1∑
k=0

xm−k−1(xc)k =

[
m−2

2

]
∑
ν=0

t (xm−1−2ν)n(x)ν + n(x)m−1
2

(where the last term is present only if m is odd).
Let B be the open unit ball in R4. Let Zm(x, a) denote the four-dimensional

(solid) zonal harmonic of degree m with pole a ∈ ∂B (see e.g. [3, Ch. 5]). From
the uniqueness properties of zonal harmonics and their invariance with respect to
four-dimensional rotations, we get the following result.

Proposition 3.5.1 The spherical derivatives of Clifford powers xm coincide on R4,
up to a constant, with the zonal harmonics with pole 1 ∈ ∂B. More precisely, for
every m ≥ 1 and every a ∈ ∂B, it holds:

(a) Zm−1(x, 1) = m(xm)′s . Therefore ∂(xm) = − 2
m
Zm−1(x, 1).
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(b) Zm−1(x, a) = Zm−1(xa
c, 1) = m(xm)′s |x=xac

= m
∑m−1
k=0 (xa

c)m−k−1(axc)k.
(c) (x−m)′s = −K

[
(xm)′s

]
, where K is the Kelvin transform in R4. The functions

(x−m)′s are harmonic on R4 \ {0}.
(d) The restriction of (xm)′s to the unit sphere ∂B is equal to the Gegenbauer

polynomial C(1)m−1(Re(x)).

Proof Let α, β ∈ R with β > 0 and α2 + β2 = 1. The spherical derivatives
(xm)′s are constant on every “parallel” Sx = α + βS2 in ∂B orthogonal to the
real axis. From [3, Theorem 5.37] it follows that (xm)′s is a constant multiple of
Zm−1(x, 1). To determine the constant, it is sufficient to compute (xm)′s at x = 1.
On real points the spherical derivative coincides with the slice derivative ∂f

∂x
, and

then (xm)′s |x=1 = ∂xm

∂x |x=1 = mxm−1|x=1 = m. Since Zm−1(1, 1) = m2, (a) is
proved. Point (b) is a consequence of the rotational properties of zonal harmonics
(cf. [3, 5.27]). Statement (c) follows from direct computation:

(x−m)′s = (x − xc)−1
(
(xc)m

|x|2m − xm

|x|2m
)

and then

K
[
(x−m)′s

]
= |x|−2

(
x

|x|2 − xc

|x|2
)−1 (( xc

|x|2
)m

−
(
x

|x|2
)m) ∣∣∣∣ x

c

|x|2
∣∣∣∣
−2m

= (x − xc)−1((xc)m − xm) = −(xm)′s .

Since K[K[f ]] = f , this proves (c). Statement (d) follows from (a) and a well-
known property of zonal harmonics. Note that C(1)m−1(1) = m for each m ≥ 1. ��
Corollary 3.5.2 The Clifford powers xm of the paravector variable of R3 can be
expressed in terms of the four-dimensional zonal harmonics: for eachm ≥ 1,

xm = 1

m+ 1
Zm(x, 1)+ (x − 2 Re(x))

m
Zm−1(x, 1)

= 1

m+ 1
Zm(x, 1)− xc 1

m
Zm−1(x, 1).

Proof Let x0 = Re(x). Applying the Leibniz rule for the spherical derivative
(cf. [12, §5]), we get

(xm+1)
′
s = (x · xm)′s = (x)′s (xm)

◦
s + (x)◦s (xm)′s = (xm)

◦
s + x0(x

m)
′
s .
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Therefore

(xm)
◦
s = (xm+1)

′
s − x0(x

m)
′
s =

1

m+ 1
Zm(x, 1)− x0

1

m
Zm−1(x, 1)

and

xm = 1

m+ 1
Zm(x, 1)− x0

1

m
Zm−1(x, 1)+ Im(x)

1

m
Zm−1(x, 1).

��
Let P(x, a) = 1−|x|2

|x−a|4 be the Poisson kernel for the unit ball B in R4 (x ∈ B,
a ∈ ∂B). This harmonic kernel is related with the slice-regular function induced by
a famous holomorphic function. Let fK(x) = (1 − x)−2x be the Cliffordian Koebe
function. It is the slice-preserving slice-regular function induced by the classical
Koebe function FK(z) = (1 − z)−2z.

Corollary 3.5.3 The Cliffordian Koebe function fK(x) = (1 − x)−2x is slice-
regular on QR3 \ {1} ⊃ B and has the following properties. For every x ∈ B,

(fK)
′
s (x) = P(x, 1) = 1 − |x|2

|x − 1|4 .

For every a ∈ ∂B and x ∈ B,

(fK)
′
s (xa

c) = P(x, a) = 1 − |x|2
|x − a|4 .

Proof The formulas can be checked directly or by means of the relation of (xm)′s
with zonal harmonics proved in Proposition 3.5.1. The power series

∑∞
m=0(m +

1)zm+1 converges to FK(z) on the complex unit disc. This implies the expansion
fK(x) =∑∞

m=0(m+ 1)xm+1 on B. Therefore, for every x ∈ B, it holds

(fK)
′
s(x) =

∞∑
m=0

(m+ 1)(xm+1)
′
s =

∞∑
m=0

Zm(x, 1) = P(x, 1),

where the last equality follows from the zonal harmonic expansion P(x, a) =∑∞
m=0 Zm(x, a) (cf. [3, Theorem 5.33]). The last statement is a consequence of

point (b) of Proposition 3.5.1. ��
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3.6 The Quaternionic Case

When n = 2, the Clifford algebra R2 is isomorphic to the field H of quaternions.
In this case the paravector space has dimension three and then Corollary 3.4.4 and
its consequences are not applicable. However, similar results still hold since the
computations made in Proposition 3.3.2 on the paravector space can be repeated
anytime there is a real subspace of the quadratic cone containing the real axis. The
simplest example of this setting is given by the quaternions, where the quadratic
cone coincides with the whole algebra: QH = H.

By means of the identifications e1 = i, e2 = j , e12 = ij = k, in the coordinates
(x0, x1, x2, x3) of x = x0 + x1i + x2j + x3k ∈ H, the differential operator ϑ takes
the form [15]

ϑ = ∂

∂x0
+ Im(x)

| Im(x)|2
3∑
i=1

xi
∂

∂xi
.

For every slice function f : 	 ⊆ R3 → R2, of class C1 on a domain 	 in the
three-dimensional space of (quaternionic) paravectors, Proposition 3.3.2 gives

∂f − ϑf = −f ′
s . (3.6.1)

If we consider the whole quaternion algebra, we must instead use the Cauchy-
Riemann-Fueter operator

∂CRF = ∂

∂x0
+ i ∂

∂x1
+ j ∂

∂x2
+ k ∂

∂x3
= ∂ + k ∂

∂x3
.

Let ϑ and ∂CRF be the conjugated differential operators:

ϑ = ∂

∂x0
− Im(x)

| Im(x)|2
3∑
i=1

xi
∂

∂xi
and ∂CRF = ∂

∂x0
− i ∂

∂x1
− j ∂

∂x2
− k ∂

∂x3
.

The Cauchy-Riemann-Fueter operator ∂CRF factorizes the Laplacian operator of R4:

∂CRF ∂CRF = ∂CRF ∂CRF = �4.

For any i, j with 1 ≤ i < j ≤ 3, let Lij = xi∂j − xj ∂i and let

� = −iL23 + jL13 − kL12

be the quaternionic spherical Dirac operator on Im(H). The operators Lij are
tangential differential operators for the spheres Sx = α + β S2. For the Cauchy-
Riemann-Fueter operator the analogous of Proposition 3.3.2 is the following result.
Compare point (b) with formula (3.6.1).
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Proposition 3.6.1 Let 	 = 	D be an open circular domain in H. For every slice
function f : 	→ H, of class C1(	), the following formulas hold on 	 \R:

(a) �f = 2 Im(x)f ′s .
(b) ∂CRFf − ϑf = −2f ′s .

Proof The proof of (a) is the same as the one given for point (a) of Proposition 3.3.2.
To prove (b), set r = | Im(x)|, ω = Im(x)

| Im(x)| , 
ω = 1
| Im(x)|

∑3
i=1 xi∂i and L = ω�. It

holds

rω (i∂i + j∂2 + k∂3) = Im(x) (i∂i + j∂2 + k∂3) = −
3∑
i=1

xi∂i − �.

Therefore

∂CRF = ∂0 + (i∂i + j∂2 + k∂3) = ∂0 + ω

r

(
3∑
i=1

xi∂i + �
)
= ∂0 + ω
ω + 1

r
L.

Since ϑf coincides with the radial part (∂0 + ω
ω)f of ∂CRFf , we get ∂CRFf −
ϑf = 1

| Im(x)|Lf = 1
| Im(x)|ω�f = 2ω2f ′

s = −2f ′s and (b) is proved. ��
Corollary 3.6.2 Let	 = 	D be an open circular domain in H. Let f : 	→ H be
a slice function of class C1(	). Then

(a) f is slice-regular if and only if ∂CRFf = −2f ′s .
(b) f is slice-regular and Fueter-regular (i.e. it belongs to the kernel of ∂CRF ) if

and only if f is (locally) constant.
(c) ∂CRFf − ϑf = 2f ′

s and ϑf ′s = ∂CRFf
′
s .

Proof The proofs of (a) and (b) are the same as the ones given in Corollary 3.3.3.
From ∂CRF + ∂CRF = 2∂0 = ϑ + ϑ and point (b) of Proposition 3.6.1, it follows the
first statement in (c). The last statement comes from the property (f ′

s )
′
s = 0, which

holds for every slice function f . ��
Theorem 3.6.3 Let 	 = 	D be an open circular domain in H. If f : 	 → H is
slice-regular, then it holds:

(a) The spherical derivative f ′
s is harmonic on 	 (i.e. its four real components are

harmonic).
(b) The following generalization of Fueter’s Theorem holds:

∂CRF�4f = �4∂CRFf = −2�4f
′
s = 0.

As a consequence, �2
4f = 0: every quaternionic slice-regular function is

biharmonic.

(c) �4f = −4
∂f ′
s

∂x
. In particular,

∂f ′s
∂x

is harmonic on 	.
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Proof We proceed as in Sect. 3.4. Let f = I(F ) and let G2 be the real analytic
function on D such that F2(α, β) = βG2(α, β

2). If x = α + βJ , z = α + ıβ, then

f ′
s (x) = G2(α, β

2) = G2(Re(x), | Im(x)|2).

Since

�2F2(α, β) =
(
∂2

1 + 4β2 ∂2
2 + 6 ∂2

)
G2(α, β

2) (3.6.2)

and

�4G2(x0, r
2) = ∂2G2

∂x2
0

(x0, r
2)+

3∑
i=1

∂2G2

∂x2
i

(x0, r
2)

=
(
∂2

1 + 4r2∂2
2 + 6 ∂2

)
G2(x0, r

2),

�2F2 = 0 on D if and only if �4f
′
s (x) = �4G2(x0, r

2) = 0 on 	. This proves
(a). Point (b) is immediate from (a) and Proposition 3.6.1. The last statement can be
proved as point (d) of Corollary 3.4.2. ��
Remark 3.6.4 The spherical value f ◦

s of a slice-regular function is biharmonic. This
can be proved as in Theorem 3.4.6.

Remark 3.6.5 As in the case of R3, if f is slice-harmonic on 	 = 	D , i.e. f =
I(F ) is induced by a harmonic stem function F on D ⊆ C, then F2 has harmonic
real components and therefore f ′

s is still harmonic.

Remark 3.6.6 As it was proved in [1], the harmonic functions f ′
s (y) and ∂f ′s

∂x
(y) are,

respectively, the first and the second coefficients of the spherical expansion at y of
a slice-regular function f (see [14, 26]).

The link existing between Clifford powers and zonal harmonics (Proposi-
tion 3.5.1 and its corollaries) has a quaternionic counterpart: the spherical deriva-
tives of the quaternionic powers xm coincide on R4, up to a constant, with the
four-dimensional zonal harmonics with pole 1 ∈ ∂B. We do not repeat the proofs
given in Sect. 3.5.

Corollary 3.6.7 For every m ≥ 1 and every a ∈ ∂B, it holds:

(a) Zm−1(x, 1) = m(xm)′s . Therefore ∂CRF (xm) = − 2
m
Zm−1(x, 1).

(b) Zm−1(x, a) = Zm−1(xa, 1) = m(xm)′s |x=xa = m
∑m−1
k=0 (xa)

m−k−1(ax)k .

(c) (x−m)′s = −K
[
(xm)′s

]
, where K is the Kelvin transform in R4. The functions

(x−m)′s are harmonic on R4 \ {0}.
(d) xm = 1

m+1Zm(x, 1)− x 1
m
Zm−1(x, 1).

(e) The restriction of (xm)′s to the unit sphere ∂B is equal to the Gegenbauer

polynomial C(1)m−1(Re(x)).
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(f) The quaternionic Koebe function fK(x) = (1−x)−2x is slice-regular on H\{1}
and it holds

(fK)
′
s (x) = P(x, 1), (fK)

′
s (xa) = P(x, a).

for every x ∈ B, a ∈ ∂B, where P(x, a) is the Poisson kernel of B.
��

The harmonicity properties of slice-regular functions imply also in the quater-
nionic case a stronger form of the Liouville’s Theorem for entire slice regular
functions. See [10, 11] for the generalization of the classical result to quaternionic
functions. In the next Corollary we give also a new proof of this last result.

Corollary 3.6.8 Let f ∈ SR(H) be an entire slice regular function. If f is
bounded, then f is constant. If the spherical derivative f ′

s is bounded (equivalently,
if ∂CRFf is bounded), then f is a quaternionic left-affine function, of the form
f (x) = a + xb (a, b ∈ H).

Proof We can repeat the same arguments of the proof of Corollary 3.4.5, using the
harmonicity of f ′s and the biharmonicity of f . ��
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Chapter 4
Some Notions of Subharmonicity over
the Quaternions

Caterina Stoppato

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract This work introduces several notions of subharmonicity for real-valued
functions of one quaternionic variable. These notions are related to the theory of
slice regular quaternionic functions introduced by Gentili and Struppa in 2006. The
interesting properties of these new classes of functions are studied and applied to
construct the analogs of Green’s functions.
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4.1 Introduction

Let H = R+ iR+ jR+ kR denote the real algebra of quaternions and let

S := {q ∈ H : q2 = −1} = {αi + βj + γ k : α2 + β2 + γ 2 = 1}

denote the 2-sphere of quaternionic imaginary units. For each I ∈ S, the subalgebra
LI = R + IR generated by 1 and I is isomorphic to C. In recent years, this
elementary fact has been the basis for the introduction of a theory of quaternionic
functions.
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Definition 4.1 ([5]) Let f be a quaternion-valued function defined on a domain	.
For each I ∈ S, let 	I = 	 ∩ LI and let fI = f|	I be the restriction of f to 	I .
The restriction fI is called holomorphic if it has continuous partial derivatives and

1

2

(
∂

∂x
+ I ∂

∂y

)
fI (x + yI) ≡ 0. (4.1)

The function f is called (slice) regular if, for all I ∈ S, fI is holomorphic.

The study of regular quaternionic functions has then grown into a full theory,
described in the monograph [6]. It resembles the theory of holomorphic complex
functions, but in a many-sided way that reflects the richness of the non-commutative
setting.

In the present work, we consider several notions of subharmonicity related to
the class of regular quaternionic functions. This study is distinct from the one
performed in [10]. Indeed, that work studied the relation between regularity and
real harmonicity; moreover, it introduced the notion of slice harmonic function: a
quaternion-valued (or Clifford-valued) slice functions induced by a harmonic stem
function. The present work searches instead for new notions of subharmonicity for
real-valued functions of a quaternionic variable, compatible with composition with
regular functions.

The first attempt is J-plurisubharmonicity. However, this property is quite
restrictive, besides being preserved by composition with a regular function f only
if f is slice preserving, that is, if f (	I ) ⊆ LI for all I ∈ S.

For this reason, the alternative notions of weakly subharmonic and strongly
subharmonic function are introduced. Composition with regular functions turns out
to map strongly subharmonic functions into weakly subharmonic ones. Moreover,
composition with slice preserving regular functions is proven to preserve weak
subharmonicity.

These new notions of subharmonicity turn out to have many nice properties that
recall the complex and pluricomplex cases, including mean-value properties and
versions of the maximum modulus principle.

These results are finally applied to construct quaternionic analogs of Green’s
functions, which reveal many peculiarities due to the non-commutative setting.

An appendix comprises the classic properties of subharmonic and plurisubhar-
monic functions used for our new constructions.

4.2 Prerequisites

Let us recall a few properties of the algebra of quaternionsH, on which we consider
the standard Euclidean metric and topology.

• For each I ∈ S, the couple 1, I can be completed to a (positively oriented)
orthonormal basis 1, I, J,K by choosing J ∈ S with I ⊥ J and settingK = IJ .
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• The coordinates of any q ∈ H with respect to such a basis can be recovered as

x0(q) = 1

4
(q − IqI − JqJ −KqK)

x1(q) = 1

4I
(q − IqI + JqJ +KqK)

x2(q) = 1

4J
(q + IqI − JqJ +KqK)

x3(q) = 1

4K
(q + IqI + JqJ −KqK).

• Mapping each v ∈ Tq0H
∼= H to Iv for all q0 ∈ H defines an (orthogonal)

complex structure on H, called constant. A biholomorphism between (H, I ) and
(L2
I , I )

∼= (C2, i) can be constructed by mapping each q to (z1(q), z2(q)), where

z1(q) = x0(q)+ Ix1(q) = (q − IqI)1

2
,

z2(q) = x2(q)+ Ix3(q) = (q + IqI) 1

2J
,

are such that z1(q)+ z2(q)J = q . Both z1 and z2 depend on the choice of I ; z2
also depends on J , but only up to a multiplicative constant c ∈ LI .

For every domain 	 and every function f : 	 → H, let us denote by f =
f1 + f2J the corresponding decomposition with f1, f2 ranging in LI . Furthermore
∂1, ∂2, ∂̄1, ∂̄2 : C1(	,LI ) → C0(	,LI ) will denote the corresponding complex
derivatives. In other words,

∂1 = 1

2

(
∂

∂x0
− I ∂

∂x1

)

∂̄1 = 1

2

(
∂

∂x0
+ I ∂

∂x1

)

∂2 = 1

2

(
∂

∂x2
− I ∂

∂x3

)

∂̄2 = 1

2

(
∂

∂x2
+ I ∂

∂x3

)
.

We notice that these derivatives commute with each other, and that ∂1, ∂̄1 depend
only on I , while ∂2, ∂̄2 depend on both I and J .

The definition of regular function (Definition 4.1) amounts to requiring that the
restriction to 	I be holomorphic from (	I , I) to (H, I ) for all I ∈ S. Curiously, if
the domain is carefully chosen then a stronger property holds.
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Definition 4.2 Let 	 be a domain in H. 	 is a slice domain if it intersects the
real axis R and if, for all I ∈ S, the intersection 	I with the complex plane LI is
connected. Moreover,	 is termed symmetric if it is axially symmetric with respect
to the real axis R.

If we denote by ∂cf the slice derivative

∂cf (x + Iy) = 1

2

(
∂

∂x
− I ∂

∂y

)
fI (x + yI)

introduced in [5] and by ∂sf the spherical derivative

∂sf (q) = (q − q̄)−1 (f (q)− f (q̄))

introduced in [8], then the aforementioned property can be stated as follows.

Theorem 4.3 ([12]) Let 	 be a symmetric slice domain, let f : 	 → H be a
regular function and let q0 ∈ 	. Chosen I, J ∈ S so that q0 ∈ LI and I ⊥ J , let
z1, z2, z̄1, z̄2 be the induced coordinates and let ∂1, ∂2, ∂̄1, ∂̄2 be the corresponding
derivations. Then

(
∂̄1f1 ∂̄2f1

∂̄1f2 ∂̄2f2

)∣∣∣∣
q0

=
(

0 0
0 0

)
. (4.2)

Furthermore, if q0 �∈ R then

(
∂1f1 ∂2f1

∂1f2 ∂2f2

)∣∣∣∣
q0

=
(
∂cf1(q0) −∂sf2(q0)

∂cf2(q0) ∂sf1(q0)

)
. (4.3)

If, on the contrary, q0 ∈ R then

(
∂1f1 ∂2f1

∂1f2 ∂2f2

)∣∣∣∣
q0

=
(
∂cf1(q0) −∂cf2(q0)

∂cf2(q0) ∂cf1(q0)

)
. (4.4)

We point out that we have not proven that f is holomorphic with respect to the
constant structure I : with respect to the basis 1, I, J, IJ , equality (4.2) only holds
at those points q0 that lie in LI . In fact, regularity is related to a different notion
of holomorphy, which involves non-constant orthogonal complex structures. Let us
recall the notations Re(q) = x0(q), Im(q) = q − Re(q) for q ∈ H and let us set

Jq0v :=
Im(q0)

|Im(q0)|v ∀ v ∈ Tq0(H \R) ∼= H.
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Then ±J are orthogonal complex structures on

H \R =
⋃
I∈S
(R+ IR+)

and they are induced by the natural identification with the complex manifold CP
1 ×

(R+ iR+).

Theorem 4.4 ([7]) Let 	 be a symmetric slice domain, and let f : 	 → H be an
injective regular function. Then the real differential of f is invertible at each q ∈ 	
and the push-forward of J via f , that is,

J
f

f (q)v =
Im(q)

|Im(q)|v ∀ v ∈ Tf (q)f (	 \ R) ∼= H , (4.5)

is an orthogonal complex structure on f (	 \ R).
In the hypotheses of the previous theorem, f is (obviously) a holomorphic map

from (	 \ R, J) to
(
f (	 \ R), Jf ). Furthermore, there is a special class of regular

functions such that Jf = J.

Remark 4.5 Let f : 	→ H be a slice preserving regular function, namely a regular
function such that f (	I ) ⊆ LI for all I ∈ S. Then f (	 \ R) = f (	) \ R and f is
a holomorphic map from (	 \ R, J) to (f (	) \R, J).

4.3 Quaternionic Notions of Subharmonicity

Let 	 be a domain in H and let

us(	) = {u : 	→ [−∞,+∞), u upper semicontinuous, u �≡ −∞}.

For u ∈ us(	), we aim at defining some notion of subharmonicity that behaves
well when we compose u with a regular function. Remark 4.5 encourages us
to consider J-plurisubharmonic and J-harmonic functions, i.e., functions that
are pluri(sub)harmonic with respect to the complex structure J. However, the
notion of J-plurisubharmonicity on a symmetric slice domain 	 is induced by
plurisubharmonicity in CP

1 ×D	 with

D	 = {x + iy ∈ R+ iR+ : x + yS ⊂ 	},

which amounts to constancy in the first variable and subharmonicity in the second
variable. We conclude:

Proposition 4.6 Let 	 be a symmetric domain in H. A function u ∈ us(	) is J-
pluri(sub)harmonic in 	 \ R if, and only if, there exists a (sub)harmonic function
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υ : D	 → R such that u(x+Iy) = υ(x+ iy) for all I ∈ S and for all x+ iy ∈ D	.
In particular, a function u ∈ C2(	,R) is J-plurisubharmonic in 	 \ R if, and only
if, u(x + Iy) does not depend on I and

(
∂2

∂x2 + ∂2

∂y2

)
u(x + Iy) ≥ 0; (4.6)

it is J-harmonic if, and only if, equality holds at all points.

Clearly, if we complete 1, I to a basis 1, I, J, IJ with I ⊥ J , consider
the induced coordinates z1, z2, z̄1, z̄2 and let ∂1, ∂2, ∂̄1, ∂̄2 be the corresponding
derivations, then inequality (4.6) is equivalent to ∂̄1∂1uI ≥ 0.

In order to get a richer class of functions, we need to suitably weaken the
notion of subharmonicity considered. We are thus encouraged to give the following
definition.

Definition 4.7 Let 	 be a domain in H and let u ∈ us(	). We call u weakly
subharmonic if for all I ∈ S the restriction uI = u|	I is subharmonic (after the
natural identification between LI and C). We say that u is weakly harmonic if, for
all I ∈ S, uI is harmonic.

Remark 4.8 A function u ∈ C2(	,R) is weakly subharmonic if, and only if,
inequality (4.6) holds for all I ∈ S; u is weakly harmonic if, and only if, equality
holds at all points.

By construction:

Proposition 4.9 Let 	 be a symmetric domain in H and let u ∈ us(	). If u is J-
pluri(sub)harmonic in 	 \R then it is weakly (sub)harmonic in 	 \R. If, moreover,
u is continuous at all points of 	 ∩ R then u is weakly (sub)harmonic in 	.

The converse implication is not true, as shown by the next example. Here, 〈·, ·〉
denotes the Euclidean scalar product on Im(H) ∼= R3.

Example 4.10 All real affine functions u : H → R are weakly harmonic, including
the coordinates x0, x1, x2, x3 with respect to any basis 1, I, J, IJ with I, J ∈ S, I ⊥
J . On the other hand, x1, x2, x3 are not J-plurisubharmonic in H\R, as x1(x+Iy) =
y〈I, i〉, x2(x + Iy) = y〈I, j 〉, x3(x + Iy) = y〈I, k〉 are not constant in I .

Actually, a stronger property holds for real affine functions u : H → R: they
are pluriharmonic with respect to any constant orthogonal complex structure. This
motivates the next definition.

Definition 4.11 Let 	 be a domain in H and let u ∈ us(	). We say that u is
strongly (sub)harmonic if it is pluri(sub)harmonic with respect to every constant
orthogonal complex structure on 	.
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Remark 4.12 A function u ∈ C2(	,R) is strongly subharmonic if, for all I, J ∈ S

with I ⊥ J ,

HI,J (u) =
(
∂̄1∂1u ∂̄1∂2u

∂̄2∂1u ∂̄2∂2u

)
(4.7)

is a positive semidefinite matrix at each q ∈ 	. The function u is strongly harmonic
if for all I, J ∈ S with I ⊥ J the matrix HI,J (u) has constant rank 0.

Clearly, if the matrix HI,J (u) is positive semidefinite then its (1, 1)-entry ∂̄1∂1u

is non-negative. Similarly, ifHI,J (u) has constant rank 0 then ∂̄1∂1u ≡ 0. This leads
to the next result, which, however, is not only true for u ∈ C2(	,R) but also for
u ∈ us(	).

Proposition 4.13 Let u ∈ us(	). If u is strongly (sub)harmonic then it is weakly
(sub)harmonic.

Proof Let u ∈ us(	) be strongly (sub)harmonic, let I ∈ S and let us pr ove that
uI is (sub)harmonic. By construction, u is pluri(sub)harmonic with respect to the
constant orthogonal complex structure I . Moreover, the inclusion map incl : 	I →
	 is a holomorphic map from (	I , I) to (	, I). As a consequence, uI = u ◦ incl
is (sub)harmonic, as desired. ��

Example 4.10 shows that strong (sub)harmonicity does not imply J-
pluri(sub)harmonicity. The converse implication does not hold, either:

Example 4.14 The function u(q) = Re(q2) is J-pluriharmonic in H \ R, as u(x +
Iy) = x2 − y2 does not depend on I and

(
∂2

∂x2 + ∂2

∂y2

)
u(x + Iy) ≡ 0. On the

other hand, u is not strongly subharmonic. Actually, it is not plurisubharmonic with
respect to any constant orthogonal complex structure I : after choosing J ∈ S with
J ⊥ I , we compute

u(z1 + z2J ) = Re
(
z2

1 − z2z̄2 + (z1z2 + z2z̄1)J
)
= z2

1 + z̄2
1

2
− z2z̄2

for all z1, z2 ∈ LI , so that HI,J (u) ≡
(

0 0
0 −1

)
.

We have proven the following implications (none of which can be reversed):

plurisubharmonic
w.r.t. all OCS’s in 	 \R

↙ ↘
J-plurisubharmonic strongly subharmonic

in 	 \ R in 	 \ R
↘ ↙

weakly subharmonic in 	 \ R
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A similar scheme can be drawn for the quaternionic notions of harmonicity. We
show with a further example that a strongly subharmonic function is not necessarily
strongly harmonic when it is weakly harmonic, or even J-pluriharmonic.

Example 4.15 Consider the function u : H → R with u(q) := log |q| for all q ∈
H \ {0} and u(0) := −∞. u is J-pluriharmonic in H \R, as u(x+ Iy) = 1

2 log(x2+
y2). As a consequence, u is also weakly harmonic. On the other hand, for any choice
of I, J ∈ S, the fact that u(z1 + z2J ) = 1

2 log(z1z̄1 + z2z̄2) implies that

HI,J (u)|z1+z2J =
1

2(z1z̄1 + z2z̄2)2

(
z2z̄2 −z1z̄2

−z2z̄1 z1z̄1

)

= 1

2(|z1|2 + |z2|2)2
( |z2|2 −z1z̄2

−z2z̄1 |z1|2
)
.

Hence, u is strongly subharmonic but it is not strongly harmonic.

Let us review a few classical constructions in our new environment.

Remark 4.16 On a given domain 	, let us denote by wsh(	) the set of weakly
subharmonic functions, by ssh(	) that of strongly subharmonic functions, and
by pshJ(	) that of J-plurisubharmonic functions on 	 (if 	 equals a symmetric
domain minus R). If S is any of these sets then:

1. S is a convex cone;
2. for all u ∈ S, if ϕ is a real-valued C2 function on a neighborhood of u(R) and if
ϕ is increasing and convex then ϕ ◦ u : 	→ R also belongs to S;

3. for all u1, u2 ∈ S, the function u(q) = max{u1(q), u2(q)} belongs to S;
4. if {uα}α∈A (with A �= ∅) is a family in S, locally bounded from above, and if
u(q) = supα∈A uα(q) for all q ∈ 	 then the upper semicontinuous regularization
u∗ belongs to S.

Example 4.17 For any α > 0, the function u : H → R q �→ |q|α is strongly
subharmonic in H and it is J-plurisubharmonic in H \ R.

Example 4.18 The functions Re2(q) = x2
0(q) and |Im(q)|2 = x2

1 (q) + x2
2(q) +

x2
3(q) are strongly subharmonic in H. (They are also J-plurisubharmonic in H \ R,

as Re2(x + Iy) = x2 and |Im(x + Iy)|2 = y2.)

We conclude this section showing that any given subharmonic function on an
axially symmetric planar domain extends to a weakly subharmonic function on the
corresponding symmetric domain of H.

Remark 4.19 If we start with a domain D ⊆ C that is symmetric with respect
to the real axis and a (sub)harmonic function υ on D, we may define a weakly
(sub)harmonic function u on the symmetric domain	 =⋃x+iy∈D x+yS by setting

u(x + Iy) := 1 + 〈I, i〉
2

υ(x + iy)+ 1 − 〈I, i〉
2

υ(x − iy)
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for all x ∈ R, I ∈ S, y > 0 such that x + Iy ∈ 	 and u(x) := υ(x) for all
x ∈ 	 ∩ R.

4.4 Composition with Regular Functions

We now want to understand the behavior of the different notions of sub-
harmonicity we introduced, under composition with regular functions. For
J-pluri(sub)harmonicity, Remark 4.5 immediately implies:

Proposition 4.20 Let 	 be a symmetric domain in H and let u ∈ us(	). u is J-
pluri(sub)harmonic in	\R if, and only if, for every symmetric domain	′ in H and
every slice preserving regular function f : 	′ \R → 	 \R, the composition u ◦ f
is J-pluri(sub)harmonic in 	′ \R.

It is essential to restrict to slice preserving regular functions. If we compose u
with an injective regular function f then the only sufficient condition we know in
order for u ◦ f to be J-pluri(sub)harmonic is, that u be Jf -pluri(sub)harmonic (see
Theorem 4.4).

For weak (sub)harmonicity, we can prove the next result.

Theorem 4.21 Let u ∈ us(	). u is weakly (sub)harmonic in 	 if, and only if,
for every symmetric domain 	′ in H and every slice preserving regular function
f : 	′ → 	, the composition u ◦ f is weakly (sub)harmonic in 	′.

Proof If u ◦ f is weakly (sub)harmonic for all slice preserving regular f then in
particular u = u ◦ id is weakly (sub)harmonic.

Conversely, let u ∈ us(	) be weakly (sub)harmonic, let f : 	′ → 	 be a slice
preserving regular function and let us prove that u◦f is weakly (sub)harmonic. For
each I ∈ S, uI is (sub)harmonic in 	I and the restriction fI is a holomorphic map
from (	′

I , I ) to (	I , I). As a consequence, (u ◦ f )I = uI ◦ fI is (sub)harmonic in
	′
I . ��
As for strong harmonicity and subharmonicity, they are preserved under compo-

sition with quaternionic affine transformations, as the latter are holomorphic with
respect to any constant structure I ∈ S:

Remark 4.22 If u is a strongly (sub)harmonic function on a domain	 ⊆ H then, for
any a, b ∈ H with b �= 0, the function v(q) = u(a + qb) is strongly (sub)harmonic
in 	b−1 − a.

However, strong harmonicity and subharmonicity are not preserved by compo-
sition with other regular functions, not even slice preserving regular functions (see
Example 4.14). For this reason, we address the study of their composition with
regular functions by direct computation, starting with the C2 case.

Lemma 4.23 Let I, J ∈ S with I ⊥ J and let us consider the associated
∂1, ∂2, ∂̄1, ∂̄2. Let 	 be a domain in H and let u ∈ C2(	,R). For every symmetric
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slice domain 	′ and for every regular function f : 	′ → 	, we have

∂̄1∂1(u ◦ f )|q0
= (∂1f1, ∂1f2)|q0 ·HI,J (u)|f (q0)

·
(
∂1f1

∂1f2

)∣∣∣∣
q0

(4.8)

at each q0 ∈ 	′
I . If, moreover, f is slice preserving then

∂̄1∂1(u ◦ f )|q0
= |∂1f1|2|q0

· ∂̄1∂1u|f (q0)
(4.9)

at each q0 ∈ 	′
I . The same is true if there exists a constant c ∈ H such that fI + c

maps 	′
I to LI .

Proof We compute:

∂1(u ◦ f ) = (∂1u) ◦ f · ∂1f1 + (∂2u) ◦ f · ∂1f2 + (∂̄1u) ◦ f · ∂1f̄1 + (∂̄2u) ◦ f · ∂1f̄2

and

∂̄1∂1(u ◦ f ) = ∂̄1((∂1u) ◦ f ) · ∂1f1 + (∂1u) ◦ f · ∂̄1∂1f1+
+ ∂̄1((∂2u) ◦ f ) · ∂1f2 + (∂2u) ◦ f · ∂̄1∂1f2+
+ ∂̄1((∂̄1u) ◦ f ) · ∂1f̄1 + (∂̄1u) ◦ f · ∂̄1∂1f̄1+
+ ∂̄1((∂̄2u) ◦ f ) · ∂1f̄2 + (∂̄2u) ◦ f · ∂̄1∂1f̄2 .

If we evaluate the previous expression at a point q ∈ LI , equality (4.2) guarantees
the vanishing of all terms but the first and the third. Hence,

∂̄1∂1(u ◦ f )|q = ∂̄1((∂1u) ◦ f )|q · ∂1f1|q + ∂̄1((∂2u) ◦ f )|q · ∂1f2|q

where

∂̄1((∂1u) ◦ f )|q =∂1∂1u|f (q) · ∂̄1f1|q + ∂2∂1u|f (q) · ∂̄1f2 |q+
+ ∂̄1∂1u|f (q) · ∂̄1f̄1|q + ∂̄2∂1u|f (q) · ∂̄1f̄2|q =

=∂̄1∂1u|f (q) · ∂1f1|q + ∂̄2∂1u|f (q) · ∂1f2 |q

and

∂̄1((∂2u) ◦ f )|q =∂1∂2u|f (q) · ∂̄1f1|q + ∂2∂2u|f (q) · ∂̄1f2 |q+
+ ∂̄1∂2u|f (q) · ∂̄1f̄1|q + ∂̄2∂2u|f (q) · ∂̄1f̄2|q =

=∂̄1∂2u|f (q) · ∂1f1|q + ∂̄2∂2u|f (q) · ∂1f2 |q .
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Thus,

∂̄1∂1(u ◦ f )|q = ∂̄1∂1u|f (q) · |∂1f1|2|q + ∂̄2∂1u|f (q) · ∂1f2 |q · ∂1f1|q+
+ ∂̄1∂2u|f (q) · ∂1f1|q ∂1f2 |q + ∂̄2∂2u|f (q) · |∂1f2|2|q ;

that is,

∂̄1∂1(u ◦ f )|q = (∂1f1, ∂1f2)|q ·
(
∂̄1∂1u ∂̄1∂2u

∂̄2∂1u ∂̄2∂2u

)∣∣∣∣
f (q)

·
(
∂1f1

∂1f2

)∣∣∣∣
q

.

Finally, if there exists c = c1 + c2J ∈ H such that fI + c maps 	′
I to LI , then

f2 ≡ −c2 in 	′
I so that ∂1f2 vanishes identically in 	′

I and

∂̄1∂1(u ◦ f )|q = |∂1f1|2|q · ∂̄1∂1u|f (q) ,

as desired. ��
We are now ready to study the composition of strongly (sub)harmonic C2

functions with regular functions.

Theorem 4.24 Let u ∈ C2(	,R). u is strongly (sub)harmonic if, and only if, for
every symmetric slice domain 	′ and for every regular function f : 	′ → 	, the
composition u ◦ f is weakly (sub)harmonic.

Proof If u : 	 → R is strongly subharmonic then, for all I, J ∈ S (with I ⊥ J ),
the matrix HI,J (u) is positive semidefinite. For every regular function f : 	′ → 	

and for all I ∈ S, Lemma 4.23 implies ∂̄1∂1(u ◦ f )|z1 ≥ 0 at each z1 ∈ 	I . Hence,
u ◦ f is weakly subharmonic.

Conversely, if u ◦ f is weakly subharmonic for every regular function f : 	′ →
	 then we can prove that u is strongly subharmonic in the following way. Let us fix
I, J ∈ S, p ∈ 	 (with I ⊥ J ) and prove that HI,J (u) is positive semidefinite at p,
i.e., that

(v̄1, v̄2) ·HI,J (u)|p ·
(
v1

v2

)
≥ 0

for arbitrary v1, v2 ∈ LI . Let us set v := v1 + v2J and f (q) := qv + p for
q ∈ B(0, R) (with R > 0 small enough to guarantee the inclusion of f (B(0, R)) =
B(p, |v|R) into 	). By direct computation, ∂cf ≡ v. Formula (4.3) yields the
equalities ∂1f1|0 = v1, ∂1f2|0 = v2. Taking into account Lemma 4.23 and the fact
that f (0) = p, we conclude that

(v̄1, v̄2) ·HI,J (u)|p ·
(
v1

v2

)
= ∂̄1∂1(u ◦ f )|0 .
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Since u ◦ f is weakly subharmonic, ∂̄1∂1(u ◦ f )|0 ≥ 0 and we have proven the
desired inequality.

Analogous reasonings characterize strong harmonicity. ��
The previous result allows us to construct a large class of examples of weakly

subharmonic functions.

Example 4.25 For any regular function f : 	 → H on a symmetric slice
domain 	, the components of f with respect to any basis 1, I, J, IJ with I, J ∈
S, I ⊥ J are weakly harmonic. Furthermore, for all α > 0 the functions
log |f |, |f |α, Re2f, |Imf |2 are weakly subharmonic.

4.5 Mean-Value Property and Consequences

We can characterize weak and strong (sub)harmonicity of u ∈ us(	) in terms of
mean-value properties. For each I ∈ S, a ∈ 	, b ∈ H \ {0} such that	 includes the
disc �I,a,b := {a + λb : λ ∈ LI , |λ| ≤ 1}, we will use the notation

lI (u; a, b) := 1

2π

∫ 2π

0
u(a + eIϑb)dϑ. (4.10)

Proposition 4.26 Let 	 be a domain in H and let u ∈ us(	). u is weakly
subharmonic if, and only if, the inequality

u(a) ≤ lI (u; a, b) (4.11)

holds for all I ∈ S, a ∈ 	I , b ∈ LI \ {0} such that �I,a,b ⊂ 	I . u is weakly
harmonic if, and only if, (u does not take the value −∞ and) equality always holds
in formula (4.11).

Proof Fix any I ∈ S. By the mean-value characterization of subharmonic functions
(see Theorem 4.51), uI is subharmonic in 	I if, and only if, u(a) ≤ lI (u; a, b)
for all a ∈ 	I, b ∈ LI \ {0} such that �I,a,b ⊂ 	I . The corresponding equalities
characterize harmonicity because uI is harmonic if, and only if, uI and −uI are
both subharmonic (see Corollary 4.53). ��
Proposition 4.27 Let 	 be a domain in H and let u ∈ us(	). u is strongly
subharmonic if, and only if, the inequality

u(a) ≤ lI (u; a, b) (4.12)

holds for all I ∈ S, a ∈ 	, b ∈ H \ {0} such that �I,a,b ⊂ 	. u is strongly
harmonic if, and only if, (u does not take the value −∞ and) equality always holds
in formula (4.12).
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Proof For each I ∈ S, let us apply the mean-value characterization of plurisubhar-
monic functions (see Theorem 4.56) to establish whether u is I -plurisubharmonic.
This happens if, and only if, u(a) ≤ lI (u; a, b) for all a ∈ 	, b ∈ H \ {0} such that
�I,a,b ⊂ 	. The corresponding equalities characterize I -pluriharmonicity. ��

As an application of the previous results, we can extend Theorem 4.24 to all
u ∈ us(	).

Theorem 4.28 Let u ∈ us(	). u is strongly (sub)harmonic if, and only if, for every
regular function f : 	′ → 	 the composition u ◦ f is weakly (sub)harmonic.

Proof Let us suppose the composition u ◦ f with any regular function f : 	′ →
	 to be weakly subharmonic and let us prove that u is strongly subharmonic. By
Proposition 4.27, it suffices to prove that, for any I ∈ S, a ∈ 	, b ∈ H \ {0} such
that �I,a,b ⊂ 	, the inequality

u(a) ≤ lI (u; a, b)

holds. If we set f (q) := a + qb, then f (0) = a and f maps the disc �I,0,1 into the
disc �I,a,b. Thus, it suffices to prove that

u(f (0)) ≤ lI (u ◦ f ; 0, 1).

But this inequality is true by Proposition 4.26, since u◦f is weakly subharmonic in
a domain 	′ such that �I,0,1 ⊂ 	′

I . Analogous considerations can be made for the
harmonic case.

Conversely, let u ∈ us(	) be strongly (sub)harmonic, let f : 	′ → 	 be
a regular function and let us prove that u ◦ f is weakly (sub)harmonic. For each
I ∈ S, u is I -pluri(sub)harmonic and the restriction fI is a holomorphic map from
(	′

I , I ) to (	, I). As a consequence, (u ◦ f )I = u ◦ fI is (sub)harmonic in 	′
I , as

desired. ��
A form of maximum modulus principle holds for weakly or strongly plurisub-

harmonic functions.

Proposition 4.29 Let 	 be a domain in H and suppose u ∈ us(	) to be weakly
subharmonic. If u has a local maximum point p ∈ 	I then uI is constant in the
connected component of	I that includesp. If, moreover, u is strongly subharmonic,
then u is constant in 	.

Proof In our hypotheses, uI is a subharmonic function with a local maximum point
p ∈ 	I . Thus, uI is constant in the connected component of 	I that includes p by
the maximum modulus principle for subharmonic functions (see Theorem 4.52).

If, moreover, u is strongly subharmonic then it is I -plurisubharmonic. Since we
assumed 	 to be connected, u is constant in 	 by the maximum modulus principle
for plurisubharmonic functions (see Theorem 4.58). ��

Let us now consider maximality.
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Definition 4.30 Let S be a class of real-valued functions on an open set D and let
υ be an element of S. Suppose that, for any relatively compact subset G of D and
for all ν ∈ S with ν ≤ υ in ∂G, the inequality ν ≤ υ holds throughout G. In this
situation, we say that υ is maximal in S (or among the elements of S).

Bearing in mind that harmonic functions of one complex variable are the
maximal elements of the class of plurisubharmonic functions (see Remark 4.59),
we can characterize weak harmonicity as follows.

Remark 4.31 Let 	 be a domain in H and let u ∈ wsh(	). u is weakly harmonic
if, and only if, for all I ∈ S, the restriction uI is maximal among subharmonic
functions on 	I . As a consequence, if u is weakly harmonic then u is maximal in
wsh(	).

Let us now consider strongly subharmonic functions. Since they are pluri-
subharmonic with respect to all constant structures, we can make the following
observation.

Remark 4.32 Let	 be a domain in H and let u ∈ ssh(	). If u is strongly harmonic
then it is maximal in ssh(	). Furthermore, if u ∈ C2(	) then u is maximal in
ssh(	) if and only if detHI,J (u) ≡ 0 for all I, J ∈ S with I ⊥ J .

It is easy to exhibit a maximal element of ssh(	) that is not strongly harmonic.

Example 4.33 The function u(q) = log |q| is a strongly subharmonic function on
H. The explicit computations in Example 4.15 show that u is maximal but not
strongly harmonic.

4.6 Approximation

An approximation result holds for strongly subharmonic functions. For all ε > 0,
let

	ε :=
{ {q ∈ 	 : dist(q, ∂	) > ε} if 	 �= H

H if 	 = H

and let u ∗ χε denote the convolution of u with the standard smoothing kernels χε
of H ∼= R4 (see Definition 4.54).

Proposition 4.34 Let u ∈ ssh(	). If ε > 0 is such that 	ε is not empty, then
u∗χε ∈ C∞∩ssh(	ε). Moreover, u∗χε monotonically decreases with decreasing
ε and

lim
ε→0+

u ∗ χε(q) = u(q) (4.13)

for each q ∈ 	.
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Proof Fix any I ∈ S, so that u is I -plurisubharmonic. The fact that u ∗ χε ∈ C∞ ∩
ssh(	ε), as well as our second statement, follow from the corresponding classic
properties of plurisubharmonic functions (see Theorem 4.57). ��

On the other hand, convolution with the standard smoothing kernel χε does not
preserve weak subharmonicity. This can be shown with an example, which uses the
notation lI (u; a, b) established in formula (4.10). As customary, lI (u; ·, b) denotes
the function a �→ lI (u; a, b).
Example 4.35 The function u(q) = Re(q2) is in wsh(H), but u∗χε does not belong
to wsh(H). Indeed, we saw that for each orthonormal basis 1, I, J, IJ of H we have

HI,J (u) ≡
(

0 0
0 −1

)
. Hence, −u is strongly subharmonic and the same is true for

−u ∗χε by the previous proposition. In particular,−u ∗χε ∈ wsh(H) so that u ∗χε
can only be in wsh(H) if it is weakly harmonic. This amounts to requiring that for
each I ∈ S, a ∈ 	I , b ∈ LI \ {0} such that �I,a,b ⊂ 	 the equality

u ∗ χε(a) = lI (u ∗ χε; a, b) = lI (u; ·, b) ∗ χε(a),

holds. But this happens if, and only if, u(a − q) = lI (u; a − q, b) for all q in
the support B(0, ε) of χε. This cannot be true, since (if z1, z2 denote the complex
variables with respect to the orthonormal basis 1, I, J, IJ ) the function −u is
strictly subharmonic in z2.

4.7 Green’s Functions

We now consider the analogs of Green’s functions in the context of weakly and
strongly subharmonic functions.

Definition 4.36 Let 	 be a domain in H, let q0 ∈ 	, and set

wshq0(	) :=
{
u ∈ wsh(	) : u < 0, lim sup

q→q0

∣∣u(q)− log |q − q0|
∣∣ <∞

}

sshq0(	) := wshq0(	) ∩ ssh(	) .

For all q ∈ 	, let us define

w(q) :=
{−∞ if wshq0(	) = ∅

sup{u(q) : u ∈ wshq0(	)} otherwise

s(q) :=
{−∞ if sshq0(	) = ∅

sup{u(q) : u ∈ sshq0(	)} otherwise
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The Green function of 	 with logarithmic pole at q0, denoted g	q0
, is the upper

semicontinuous regularization w∗ of w. The strongly subharmonic Green function
of 	 with logarithmic pole at q0, denoted G	q0

, is the upper semicontinuous
regularization s∗ of s.

Remark 4.37 By construction, G	q0
(q) ≤ g	q0

(q) for all q ∈ 	. Moreover, any

inclusion 	′ ⊆ 	 implies g	q0
(q) ≤ g	

′
q0
(q) andG	q0

(q) ≤ G	
′

q0
(q).

Let us construct a basic example. We will use the notations B := B(0, 1), where

B(q0, R) := {q ∈ H : |q − q0| < R}

for all q0 ∈ H, R > 0, and BI := B ∩ LI .

Example 4.38 We can easily prove that

GB

0 (q) = gB0 (q) = log |q|

for all q ∈ B. Indeed, q �→ log |q| is clearly an element of ssh0(B) ⊆ wsh0(B).
Furthermore, for each u ∈ wsh0(B), the inequality u(q) ≤ log |q| holds throughout
B. Indeed, for all I ∈ S it holds uI (z) ≤ log |z| for all z ∈ BI because z �→ log |z|
is the (complex) Green function of the disc BI .

Further examples can be derived by means of the next results.

Lemma 4.39 Let f be any affine transformation of H, let 	 be a domain in H and
fix q0 ∈ 	. Then

G
f (	)

f (q0)
(f (q)) = G	q0

(q)

for all q ∈ 	.

Proof By repeated applications of Remark 4.22, we conclude that

sshq0(	) = {u ◦ f : u ∈ sshf (q0)(f (	))}.

Thanks to this equality, the statement immediately follows from Definition 4.36. ��
Lemma 4.40 Let	 be a symmetric slice domain in H, fix q0 ∈ 	 and take a regular
function f : 	→ H. Then

G
f (	)

f (q0)
(f (q)) ≤ g	q0

(q)

for all q ∈ 	. If, moreover, f is slice preserving then

g
f (	)

f (q0)
(f (q)) ≤ g	q0

(q)
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for all q ∈ 	. If, additionally, f admits a regular inverse f−1 : f (	) → 	, then
the last inequality becomes an equality at all q ∈ 	.

Proof By Theorem 4.28,

wshq0(	) ⊇ {u ◦ f : u ∈ sshf (q0)(f (	))}.

If f is a slice preserving regular function then, by Theorem 4.21,

wshq0(	) ⊇ {u ◦ f : u ∈ wshf (q0)(f (	))}.

The last inclusion is actually an equality if f admits a regular inverse f−1 :
f (	)→ 	, which is necessarily slice preserving. The three statements now follow
from Definition 4.36. ��

In the last statement, we assumed 	 to be a symmetric slice domain for the sake
of simplicity. The result could, however, be extended to all slice domains.

Lemmas 4.39 and 4.40, along with the preceding example, yield what follows.

Example 4.41 For each x0 ∈ R and each R > 0, the equalities

log
|q − x0|
R

= GB(x0,R)
x0

(q) = gB(x0,R)
x0

(q)

hold for all q ∈ B(x0, R). We point out that this function is strongly subharmonic
in B(x0, R) and weakly harmonic in B(x0, R) \ {x0}.
Example 4.42 For each q0 ∈ H and each R > 0 it holds

log
|q − q0|
R

= G
B(q0,R)
q0 (q) ≤ g

B(q0,R)
q0 (q)

for all q ∈ B = B(q0, R). We point out that GBq0
, though strongly and weakly

subharmonic, is not weakly harmonic if q0 �∈ R. Indeed, if we fix an orthonormal
basis 1, I, J, IJ and write q0 = q1 + q2J with q1, q2 ∈ LI , then by Lemma 4.23

(
∂̄1∂1G

B
q0

)
|z
= 1

R2

(
∂̄1∂1G

B

0

)
| z−q0
R

= |q2|2
2(|z− q1|2 + |q2|2)2

for z ∈ LI . This expression only vanishes when q2 = 0, that is, when q0 ∈ LI .

We are now in a position to make the next remarks.

Remark 4.43 Let 	 be a bounded domain in H and let q0 ∈ 	. For all r, R > 0
such that B(q0, r) ⊆ 	 ⊆ B(q0, R), we have that

log
|q − q0|
R

≤ G	q0
(q) ≤ log

|q − q0|
r

.
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As a consequence, G	q0
is not identically equal to −∞, it belongs to sshq0(	) and

it coincides with the supremum s appearing in Definition 4.36.

Remark 4.44 Let 	 be a bounded domain in H and let q0 ∈ 	. For all R > 0 such
that 	 ⊆ B(q0, R), we have that

log
|q − q0|
R

≤ g	q0
(q) ,

whence g	q0
is not identically equal to −∞. If, moreover, q0 = x0 ∈ R then for all

r > 0 such that B(x0, r) ⊆ 	 we have that

g	x0
(q) ≤ log

|q − x0|
r

.

In this case, g	x0
belongs to wshx0(	) and it coincides with the supremum w

appearing in Definition 4.36.

When 	 admits a well-behaved exhaustion function, we can prove a few further
properties.

Theorem 4.45 Let 	 be a bounded domain in H. Suppose there exists ρ ∈
C0(	, (−∞, 0))∩ssh(	) such that {q ∈ 	 : ρ(q) < c} ⊂⊂ 	 for all c < 0. Then
for all q0 ∈ 	 and for all p ∈ ∂	

lim
q→p

G	q0
(q) = 0.

Moreover, G	q0
is continuous in 	 \ {q0}.

Proof Let B(q0, r) ⊆ 	 ⊆ B(q0, R) and let C > 0 be such that Cρ < log r
R

in
B(q0, r). If we set

u(q) =
{

log |q−q0|
R

q ∈ B(q0, r)

max
{
Cρ(q), log |q−q0|

R

}
q ∈ 	 \ B(q0, r)

then u ∈ sshq0(	). Thus, u ≤ G	q0
≤ 0, where limq→p u(q) = 0 for all p ∈ ∂	.

This proves the first statement.
To prove the second statement, we only need to prove the lower semicontinuity

of G	q0
. Let us choose λ ∈ (0, 1) such that ρ < −λ in B(q0, λ). For any ε ∈ (0, λ)

such that log ε
R
> (1 − ε) log ε2 (whence log ε

R
> ε − 1

ε
), let us set

α(q) = (1 − ε) log (ε|q − q0|)− ε

on B(q0, ε).
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By Proposition 4.34, for each sufficiently small δ > 0, the convolutionG	q0
∗χδ is

an element ofC∞∩ssh(	δ). If we choose η ∈ (0, ε) so that (1−ε) log(εη) > log η
R

then we may choose δ = δε > 0 so that:

• (1 − ε) log(εη) > G	q0
∗ χδ in ∂B(q0, η),

• 	δ includes ρ−1([−∞,−ε3]), and
• G	q0

∗ χδ < 0 in ρ−1(−ε3).

We may then set

β(q) := G	q0
∗ χδε (q)− ε

for all q ∈ 	δε and

γ (q) := ε−2ρ(q)

for all q ∈ 	. By construction, α, β, γ can be patched together in a continuous
strongly subharmonic function defined on 	, namely

uε :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α in B(q0, η)

max {α, β} in B(q0, ε) \ B(q0, η)

β in ρ−1([−∞,−ε]) \ B(q0, ε)

max {β, γ } in ρ−1([−ε,−ε3])
γ in 	 \ ρ−1([−∞,−ε3))

We remark that ρ−1([−∞,−ε]) \ B(q0, ε) increases as ε→ 0 and that

⋃
ε∈(0,λ)

(
ρ−1([−∞,−ε]) \ B(q0, ε)

)
= 	 \ {q0} .

Thus, for all q ∈ 	 \ {q0},

lim
ε→0

uε(q) = lim
ε→0

G	q0
∗ χδε (q)− ε = G	q0

(q) .

Moreover, for each ε ∈ (0, λ) it holds uε
1−ε ∈ sshq0(	), whence uε

1−ε ≤ G	q0
in 	.

Thus,

G	q0
(q) = sup

ε∈(0,λ)
uε(q)

1 − ε ,

whence the lower semicontinuity of G	q0
immediately follows. ��
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Similarly:

Proposition 4.46 Let 	 be a bounded domain in H. Suppose there exists ρ ∈
C0(	, (−∞, 0)) ∩ wsh(	) such that {q ∈ 	 : ρ(q) < c} ⊂⊂ 	 for all c < 0.
Then for all q0 ∈ 	 and for all p ∈ ∂	

lim
q→p

g	q0
(q) = 0.

Proof Let B(q0, r) ⊆ 	 ⊆ B(q0, R) and let C > 0 be such that Cρ < log r
R

in
B(q0, r). If we set

u(q) =
{

log |q−q0|
R

q ∈ B(q0, r)

max
{
Cρ(q), log |q−q0|

R

}
q ∈ 	 \ B(q0, r)

then u ∈ wshq0(	). Thus, u ≤ g	q0
≤ 0, where limq→p u(q) = 0 for all p ∈ ∂	.

��
For a special class of domains 	 and points q0, the Green function g	q0

can be
easily determined, as follows.

Theorem 4.47 Let 	 be a bounded symmetric slice domain and let x0 ∈ 	 ∩ R.
Consider the slice 	i = 	 ∩ C of the domain and the (complex) Green function of
	i with logarithmic pole at x0, which we will denote as γ	ix0 . If we set

u(x + Iy) := γ	ix0
(x + iy)

for all x, y ∈ R and I ∈ S such that x + Iy ∈ 	, then:

• u is a well-defined function on 	;
• u is J-plurisubharmonic in 	 \ R and it belongs to wshx0(	);
• u coincides with g	x0

.

Proof The slice 	i of the domain is a bounded domain in C. Hence, the function
γ
	i
x0 is a negative plurisubharmonic function on	i with a logarithmic pole at x0 (see

Proposition 4.60). Moreover, since 	i is symmetric with respect to the real axis, it
holds γ	ix0 (x + iy) = γ

	i
x0 (x − iy) for all x + iy ∈ 	i . It follows at once that u is

well-defined, that it belongs to wshx0(	), and that it is J-plurisubharmonic in	\R.
Moreover, let us fix any other v ∈ wsh0(B): we can prove that v(q) ≤ u(q) for

all q ∈ 	, as follows. For each I ∈ S, the inequality vI ≤ uI holds in 	I because
(up to identifyingLI with C) the function uI is the (complex) Green function of	I
with logarithmic pole at x0 and vI is a negative subharmonic function on 	I with a
logarithmic pole at x0. As a consequence, u coincides with g	x0

. ��
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4.7.1 A Significant Example

An interesting example to consider is that of the unit ball B with a pole other than
0. It is natural to address it by means of the classical Möbius transformations of
B, namely the conformal transformations v−1Mq0u, where u, v are constants in ∂B,
q0 ∈ B and Mq0 is the transformation of B defined as

Mq0(q) := (1 − qq̄0)
−1(q − q0) .

The transformation Mq0 has inverse M−1
q0

= M−q0 . It is regular if, and only if,
q0 = x0 ∈ R; in this case, it is also slice preserving. For more details, see [2, 11].

Our first observation can be derived from either Lemma 4.40 or Theorem 4.47.

Example 4.48 For each x0 ∈ B ∩ R, we have

GB

x0
(q) ≤ gBx0

(q) = log
|q − x0|
|1 − qx0|

for all q ∈ B.

The same techniques do not work when the logarithmic pole q0 is not real, as
a consequence of the fact that Mq0 is not a regular function. Nevertheless, we can
make the following observation.

Example 4.49 Let us fix q0 ∈ B \ R. We will prove that

log
|q − q0|
|1 − qq̄0| ≤ gBq0

(q)

by showing that u(q) = log |q−q0||1−qq̄0| is weakly subharmonic. We will also prove that:
(a) the restriction uI to BI \{q0} is harmonic if, and only if, q0 ∈ BI ; (b) the function
u is not strongly subharmonic.

• We first observe that

u(q) = log |q − q0| − log |q − q̃0| − log |q̄0| ,

with q̃0 := q̄−1
0 = q0|q0|−2. With respect to any orthonormal basis 1, I, J, IJ

and to the associated coordinates z1, z2, z̄1, z̄2, if we split q0, q̃0 as q0 = q1 +
q2J, q̃0 = q̃1 + q̃2J with q1, q2, q̃1, q̃2 ∈ BI then

HI,J (u)|q =
1

2|q − q0|4
( |z2 − q2|2 −(z1 − q1)(z̄2 − q̄2)

−(z2 − q2)(z̄1 − q̄1) |z1 − q1|2
)
+

− 1

2 |q − q̃0|4
( |z2 − q̃2|2 −(z1 − q1)(z̄2 − q̃2)

−(z2 − q̃2)(z̄1 − q̃1) |z1 − q̃1|2
)
.
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• For all z ∈ BI (that is, z1 = z, z2 = 0) it holds

(
∂̄1∂1u

)
|z =

|q2|2
2(|z− q1|2 + |q2|2)2 − |q2|2|q0|4

2
(∣∣z |q0|2 − q1

∣∣2 + |q2|2
)2 .

If q0 ∈ BI then q2 = 0 and
(
∂̄1∂1u

)
vanishes identically in BI . Otherwise,(

∂̄1∂1u
)
|z > 0 for all z ∈ BI because

∣∣z |q0|2 − q1
∣∣2 + |q2|2 − |q0|2(|z− q1|2 + |q2|2)

= |z|2|q0|4 + |q0|2 − |q0|2|z|2 − |q0|4

= |q0|2(1 − |q0|2)(1 − |z|2) > 0 .

• In general,HI,J (u) is not positive semidefinite. To see this, let us choose a basis
1, I, J, IJ so that q1 �= 0 �= q2 and let us choose z1 = 0, z2 = q2. We get

HI,J (u)|q2J
= 1

2|q1|4
(

0 0
0 |q1|2

)
+

− 1

2
(|q̃1|2 + |q2 − q̃2|2

)2
( |q2 − q̃2|2 q1(q̄2 − q̃2)

(q2 − q̃2)q̃1 |q̃1|2
)
,

where q2 − q̃2 �= 0 by construction.

We would now like to consider a different approach, through regular transforma-
tions of B. Indeed, the work [11] proved the following facts.

• The only regular bijections B → B are the so-called regular Möbius transforma-
tions of B, namely the transformations Mq0 ∗ u = Mq0u with u ∈ ∂B, q0 ∈ B

and

Mq0(q) := (1 − qq̄0)
−∗ ∗ (q − q0) .

Here, the symbol ∗ denotes the multiplicative operation among regular functions
and f−∗ is the inverse of f with respect to this multiplicative operation.

• For all q ∈ B, it holds

Mq0(q) = Mq0(Tq0(q)) ,

where Tq0 : B → B is defined as Tq0(q) = (1 − qq0)
−1q(1 − qq0) and has

inverse T −1
q0
(q) = Tq̄0(q).

• Mq0 is slice preserving if, and only if, q0 = x0 ∈ R (in which case, Tq0 = idB
and Mx0 =Mx0 ).
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If we fix q0 ∈ B \ R then, by Lemma 4.40,

log
∣∣Mq0(q)

∣∣ ≤ gBq0
(q) (4.14)

for all q ∈ B. The work [3] proved the quaternionic Schwarz-Pick Lemma and, in
particular, the inequality

log |f (q)| ≤ log
∣∣Mq0(q)

∣∣
valid for all regular f : B → B with f (q0) = 0. It is therefore natural to ask
ourselves whether an equality may hold in (4.14). However, this is not the case: as
a consequence of the next result, inequality (4.14) is strict at all q not belonging to
the same slice BI as q0. As a byproduct, we conclude that the set

{log |f | : f : B → H regular, f (q0) = 0}

is not a dense subset of wshq0(B).

Theorem 4.50 If q0 ∈ BI , then

|Mq0(Tq0(q))| = |Mq0(q)| ≤ |Mq0(q)| (4.15)

for all q ∈ B. Equality holds if, and only if, q ∈ BI .

Proof Inequality (4.15) is equivalent to

|Tq0(q)− q0| |1 − qq̄0| ≤ |q − q0| |1 − Tq0(q)q̄0| .

Since |Tq0(q)| = |q|, the last inequality is equivalent to

0 ≤
(
|q|2 − 2〈q, q0〉 + |q0|2

) (
1 − 2〈Tq0(q), q0〉 + |q|2|q0|2

)
+

−
(
|q|2 − 2〈Tq0(q), q0〉 + |q0|2

) (
1 − 2〈q, q0〉 + |q|2|q0|2

)

= 2
(
−|q|2 − |q0|2 + 1 + |q|2|q0|2

)
〈Tq0(q), q0〉+

2
(
−1 − |q|2|q0|2 + |q|2 + |q0|2

)
〈q, q0〉

= 2(1 − |q0|2)(1 − |q|2))〈Tq0(q)− q, q0〉 .

Thus, inequality (4.15) holds for q ∈ B if, and only if, 0 ≤ 〈Tq0(q) −
q, q0〉. This is equivalent to the non-negativity of the real part of (Tq0(q) − q)q̄0
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= ((1 − qq0)
−1q(1 − qq0)− q)q̄0 or, equivalently, of the real part of

(
(1 − qq0)q(1 − qq0)− |1 − qq0|2q

)
q̄0

= (1 − qq0)(q − q2q0 − q + qq0q)q̄0

= (1 − q̄0q̄)(qq0qq̄0 − q2|q0|2)
= qq0qq̄0 − q2|q0|2 + |q|2|q0|2(q̄0q − qq̄0)

= (|q0|2 − q̄2
0 )(|z2|2 − z1z2J )+ (q̄0 − q0)z2J ,

where the last equality can be obtained by direct computation after splitting q as
q = z1 + z2J , with z1, z2 ∈ BI and J ⊥ I . If q0 = x0 + Iy0 then the real part
of the last expression equals (x2

0 + y2
0 − x2

0 + y2
0)|z2|2 = 2y2

0 |z2|2, which is clearly
non-negative. Moreover, it vanishes if, and only if, z2 = 0, i.e., q ∈ BI . ��

An example wherein inequality (4.15) holds and is strict had been constructed
in [4]. That construction was used to prove that regular Möbius transformations are
not isometries for the Poincaré distance of B, defined as

δB(q, q0) := 1

2
log

(
1 + |Mq0(q)|
1 − |Mq0(q)|

)

for all q, q0 ∈ B. The subsequent work [1] proved that, for each q0 ∈ B \ R, there
exists no Riemannian metric on B having Mq0 as an isometry.

Our new inequality (4.15) is equivalent to

δB(Tq0(q), q0) ≤ δB(q, q0).

In other words, we have proven the following property of the transformation Tq0 of
B: while all points q ∈ BI are fixed, all points q ∈ B \ BI are attracted to q0 with
respect to the Poincaré distance.
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Appendix

For the reader’s convenience, we include in this appendix some classical results and
definitions, which are used in the present work. We begin with some theorems con-
cerning subharmonic functions of m real variables, along with some instrumental
definitions. Let λ denote the Lebesgue measure on R

m and σ denote the surface
area measure.

Theorem 4.51 ([9, Theorem 2.4.1 (iii)]) Let D be an open subset of Rm and let
υ : D → [−∞,+∞) be an upper semicontinuous function which is not identically
−∞ on any connected component ofD. The function υ is subharmonic inD if, and
only if, for any Euclidean ball B(a,R) such that B(a,R) ⊂ D, it holds

υ(a) ≤ L(υ; a,R),

where

L(υ; a,R) := 1

smRm−1

∫
∂B(a,R)

u(x)dσ(x), sm := σ(∂B(0, 1)).

Theorem 4.52 ([9, Theorem 2.4.2]) LetD be a bounded connected open subset of
R
m and let υ : D → [−∞,+∞) be subharmonic in D. Then either υ is constant

or, for each x ∈ D,

υ(x) < sup
z∈∂D

{
lim sup
D&y→z

υ(y)

}
.

Corollary 4.53 ([9, Corollary 2.4.3]) u is harmonic if, and only if, u and −u are
both subharmonic.

Definition 4.54 ([9, §2.5]) Define h : R → R by the formula

h(t) :=
{

exp(−1/t) if t > 0
0 if t ≤ 0

and define χ : Rm → R by the formula

χ(x) := 1

c
h(1 − ‖x‖2), c :=

∫
B(0,1)

h(1 − ‖x‖2)dλ(x).

The standard smoothing kernels χε : Rm → R are defined, for all ε > 0, by the
formula

χε(x) := 1

εm
χ
(x
ε

)
.
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Given a function υ on a open subset D of Rm, the convolution

υ ∗ χε(x) = χε ∗ υ(x) :=
∫
Rm

χε(x − y)υ(y)dλ(y)

is well-defined on

Dε :=
{ {x ∈ D : dist(x, ∂D) > ε} if D �= Rm

C
n if D = R

m

Theorem 4.55 ([9, Theorem 2.5.5]) Let D be an open subset of Rm and let υ :
D → [−∞,+∞) be subharmonic. For all ε > 0 such that Dε is not empty, υ ∗ χε
is C∞ and subharmonic in Dε . Moreover, υ ∗ χε monotonically decreases with
decreasing ε and

lim
ε→0+

υ ∗ χε(x) = υ(x) (4.16)

for each x ∈ D.

We now recall some properties of plurisubharmonic functions of n complex
variables.

Theorem 4.56 ([9, Theorem 2.9.1]) Let D be an open subset of Cn and let υ :
D → [−∞,+∞) be an upper semicontinuous function which is not identically
−∞ on any connected component of D. υ is plurisubharmonic in D if, and only if,
for any a ∈ D, b ∈ Cn such that {a + λb : λ ∈ C, |λ| ≤ 1} ⊂ D, it holds

υ(a) ≤ l(υ; a, b) ,

where

l(υ; a, b) := 1

2π

∫ 2π

0
υ(a + eitb)dt.

Moreover, plurisubharmonicity is a local property.

Theorem 4.57 ([9, Theorem 2.9.2]) Let D be an open subset of Cn and let υ :
D → [−∞,+∞) be plurisubharmonic. For all ε > 0 such that Dε is not empty,
υ∗χε isC∞ and plurisubharmonic inDε . Moreover, υ∗χε monotonically decreases
with decreasing ε and

lim
ε→0+

υ ∗ χε(z) = υ(z) (4.17)

for each z ∈ D.
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Theorem 4.58 ([9, Corollary 2.9.9]) Let D be a bounded connected open subset
of Cn and let υ be a plurisubharmonic function on D. Then either υ is constant or,
for each z ∈ D,

υ(z) < sup
w∈∂D

{
lim sup
D&y→w

υ(y)

}
.

Remark 4.59 ([9, §3.1]) Let D be an open subset of C and let υ be a plurisub-
harmonic function on D. The function υ is harmonic if, and only if, it is maximal
among plurisubharmonic functions on D.

Proposition 4.60 ([9, Proposition 6.1.1 (iv)]) Let D be a bounded domain in Cn,
let w ∈ D and let γDw denote the pluricomplex Green function of D with pole at w.
Then γDw is a negative plurisubharmonic function with a logarithmic pole at w.
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Abstract Let L be a second-order, homogeneous, constant (complex) coefficient
elliptic system in Rn. The goal of this article is to prove a Fatou-type result,
regarding the a.e. existence of the nontangential boundary limits of any null-
solution u of L in the upper half-space, whose nontangential maximal function
satisfies an integrability condition with respect to the weighted Lebesgue measure
(1 + |x ′|n−1)−1dx ′ in Rn−1 ≡ ∂Rn+. This is the best result of its kind in the
literature. In addition, we establish a naturally accompanying integral representation
formula involving the Agmon-Douglis-Nirenberg Poisson kernel for the system L.
Finally, we use this machinery to derive well-posedness results for the Dirichlet
boundary value problem for L in R

n+ formulated in a manner which allows for the
simultaneous treatment of a variety of function spaces.
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5.1 Introduction

Let n ∈ N with n ≥ 2 denote the dimension of the Euclidean ambient space. Fix
an integer M ∈ N and consider the second-order, homogeneous, M ×M system,
with constant complex coefficients in R

n, written (with the usual convention of
summation over repeated indices in place) as

Lu :=
(
aαβrs ∂r∂suβ

)
1≤α≤M, (5.1.1)

when acting on vector-valued distributions u = (uβ)1≤β≤M in an open subset of
R
n. Throughout, we shall assume that L is elliptic in the sense that there

exists a real number c > 0 such that the following Legendre-Hadamard condition is
satisfied:

Re
[
a
αβ
rs ξrξsηαηβ

] ≥ c|ξ |2|η|2 for every

ξ = (ξr )1≤r≤n ∈ Rn and η = (ηα)1≤α≤M ∈ CM.

(5.1.2)

Examples to keep in mind are the Laplacian and the Lamé system.
As is known from the classical work of Agmon et al. in [1, 2], every operatorL as

in (5.1.1), (5.1.2) has a Poisson kernel, denoted by PL (an object whose properties
mirror the most basic characteristics of the classical harmonic Poisson kernel). For
details, see Theorem 5.2.3 below.

The main goal of this paper is to establish a Fatou-type theorem and a naturally
accompanying Poisson integral representation formula for null-solutions of an
elliptic system L, as above, in the upper half-space

R
n+ := {(x ′, xn) ∈ R

n−1 × R : xn > 0
}
. (5.1.3)

Among other things, this is going to yield versatile well-posedness results for the
Dirichlet problem in R

n+ for such systems. Prior to formulating the main result,
some comments on the notation used are in order. Given a function u defined in R

n+,
by Nκu we shall denote the nontangential maximal function of u with aperture κ ;

see (5.2.2) for a precise definition. Next, by u
∣∣κ−n.t.

∂Rn+
we denote the (κ-)nontangential

limit of the given function u on the boundary of the upper half-space (canonically
identified with R

n−1), as defined in (5.2.3). Finally, given any d ∈ N, the Lebesgue
measure in R

d will be denoted by L d .
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Theorem 5.1.1 (A Fatou-Type Theorem and Poisson’s Integral Formula) LetL
be an M × M system with constant complex coefficients as in (5.1.1) and (5.1.2),
and fix some aperture parameter κ > 0. Then

⎧⎪⎨
⎪⎩
u ∈ [C∞(Rn+)

]M
, Lu = 0 in R

n+,∫
Rn−1

(
Nκu
)
(x ′) dx ′

1 + |x ′|n−1 <∞,

(5.1.4)

implies that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u
∣∣κ−n.t.

∂Rn+
exists at L n−1-a.e. point in Rn−1,

u
∣∣κ−n.t.

∂Rn+
belongs to

[
L1
(
R
n−1 ,

dx ′

1 + |x ′|n−1

)]M
,

u(x ′, t) =
(
PLt ∗ (u∣∣κ−n.t.

∂Rn+

))
(x ′) for each (x ′, t) ∈ R

n+,

(5.1.5)

where PL = (PLβα
)

1≤β,α≤M is the Agmon-Douglis-Nirenberg Poisson kernel for the

system L in R
n+ and PLt (x

′) := t1−nPL(x ′/t) for each x ′ ∈ Rn−1 and t > 0.

This refines [6, Theorem 6.1, p. 956]. We also wish to remark that even in the
classical case when L := �, the Laplacian in Rn, Theorem 5.1.1 is more general
(in the sense that it allows for a larger class of functions) than the existing results
in the literature. Indeed, the latter typically assume an Lp integrability condition for
the harmonic function which, in the range 1 < p < ∞, implies our weighted L1

integrability condition for the nontangential maximal function demanded in (5.1.4).
In this vein see, e.g., [4, Theorems 4.8–4.9, pp. 174–175], [13, Corollary, p. 200],
[14, Proposition 1, p. 119].

A remarkable feature of Theorem 5.1.1 is that while its statement is phrased
exclusively in terms of the Agmon-Douglis-Nirenberg Poisson kernel PL, its proof
is actually carried out largely in terms of the Green function associated with the
system L in the upper half-space. The latter entity has been studied at length in [7],
and here we make ample use of the results established therein.

A special case of Theorem 5.1.1 worth singling out is as follows. Recall the
Agmon-Douglis-Nirenberg kernel function

KL ∈ ⋂ε>0

[
C∞(

R
n+ \ B(0, ε))]M×M

,

KL(x) := PLt (x
′) for all x = (x ′, t) ∈ R

n+,
(5.1.6)

associated with the elliptic system L as in Theorem 5.2.3. Fix some to > 0 and
define

u(x) := KL(x ′, t + to) = PLt+to (x
′) for all x = (x ′, t) ∈ R

n+. (5.1.7)
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Then

u ∈ [C∞(
R
n+
)]M×M

, Lu = 0 in R
n+, u

∣∣
∂Rn+

= PLto on R
n−1. (5.1.8)

In addition, (5.2.12) ensures that there exists a finite constant Cto > 0 with the
property that |u(x)| ≤ Cto(1 + |x|)1−n for each x ∈ R

n+. For each fixed κ > 0 this
readily entails

(
Nκu
)
(x ′) ≤ C

1 + |x ′|n−1 , ∀ x ′ ∈ R
n−1. (5.1.9)

This, in turn, guarantees that the finiteness condition demanded in (5.1.4) is
presently satisfied. Having verified all hypotheses of Theorem 5.1.1, from the
Poisson integral representation formula in the last line of (5.1.5) and (5.1.7)–(5.1.8)
we conclude that

PLt+to (x
′) = u(x ′, t) = (PLt ∗ PLto

)
(x ′) for all (x ′, t) ∈ R

n+, (5.1.10)

where the convolution between the two matrix-valued functions in (5.1.10) is
understood in a natural fashion, taking into account the algebraic multiplication
of matrices. Ultimately, this provides an elegant proof of the following result (first
established in [6, Theorem 5.1] via a conceptually different argument):

the Agmon-Douglis-Nirenberg Poisson kernel PL associated with
any given elliptic system L as in Theorem 5.2.3 satisfies the semi-
group property PLt0+t1 = PLt0 ∗ PLt1 for all t0, t1 > 0.

(5.1.11)

Here is another important corollary of Theorem 5.1.1, which refines [6, Theo-
rem 3.2, p. 935].

Corollary 5.1.2 (A General Uniqueness Result) Let L be anM ×M system with
constant complex coefficients as in (5.1.1) and (5.1.2), and fix an aperture parameter
κ > 0. Then

u ∈ [C∞(Rn+)
]M
, Lu = 0 in R

n+∫
Rn−1

(
Nκu
)
(x ′) dx ′

1 + |x ′|n−1
< +∞

u
∣∣κ−n.t.

∂Rn+
= 0 at L n−1-a.e. point on Rn−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
'⇒ u = 0 in R

n+. (5.1.12)

Theorem 5.1.1 also interfaces tightly with the topic of boundary value problems.
To elaborate on this aspect, we need more notation. Denote by M the collection of
all (equivalence classes of) Lebesgue measurable functions f : Rn−1 → [−∞,∞]
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such that |f | < ∞ at L n−1-a.e. point in R
n−1. Also, call a subset Y of M a

function lattice if the following properties hold:

(i) whenever f, g ∈ M satisfy 0 ≤ f ≤ g at L n−1-a.e. point in Rn−1 and g ∈ Y

then necessarily f ∈ Y;
(ii) 0 ≤ f ∈ Y implies λf ∈ Y for every λ ∈ (0,∞);

(iii) 0 ≤ f, g ∈ Y implies max{f, g} ∈ Y.

In passing, note that, granted (i), one may replace (ii)–(iii) above by the condition:
0 ≤ f, g ∈ Y implies f + g ∈ Y. As usual, we set log+ t := max

{
0 , ln t

}
for each

t ∈ (0,∞). Also, the symbol M is reserved for the Hardy-Littlewood maximal
operator in Rn−1; see (5.2.6).

We are now in a position to discuss the following refinement of [6, Theorem 1.1,
p. 915].

Corollary 5.1.3 (A Template for the Dirichlet Problem) Let L be an M × M

system with constant complex coefficients as in (5.1.1) and (5.1.2), and fix an
aperture parameter κ > 0. Also, assume that

Y ⊆ L1
(
R
n−1 ,

dx ′

1 + |x ′|n−1

)
, Y is a function lattice, (5.1.13)

and that

X is a collection of CM -valued measurable functions on R
n−1 satisfying MX ⊆ Y.

(5.1.14)

Then the (X,Y)-Dirichlet boundary value problem for the system L in the upper
half-space, formulated as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u ∈ [C∞(Rn+)
]M
,

Lu = 0 in R
n+,

Nκu ∈ Y,

u
∣∣κ−n.t.

∂Rn+
= f ∈ X,

(5.1.15)

has a unique solution. Moreover, the solution u of (5.1.15) is given by

u(x) = (PLt ∗ f )(x ′) for all x = (x ′, t) ∈ R
n−1 × (0,∞) = R

n+, (5.1.16)

where PL is the Poisson kernel for L in R
n+, and satisfies

(
Nκu
)
(x ′) ≤ CMf (x ′), ∀ x ′ ∈ R

n−1, (5.1.17)

for some constant C ∈ (0,∞) that depends only on L, n, and κ .
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Corollary 5.1.3 contains as particular cases a multitude of well-posedness
results for elliptic systems in the upper half-space. For example, one may take
Muckenhoupt weighted Lebesgue spaces X := [Lp(Rn−1, wL n−1)

]M and Y :=
Lp(Rn−1, wL n−1) with p ∈ (1,∞) and w ∈ Ap, or Morrey spaces in Rn−1; for
more on this, as well as other examples, see [6].

Here we wish to identify the most inclusive setting in which Corollary 5.1.3
yields a well-posedness result. Specifically, in view of the assumptions made
in (5.1.13)–(5.1.14) it is natural to consider the linear space

Z :=
{
f ∈ [L1(

R
n−1 , dx ′

1+|x ′|n−1

)]M : Mf ∈ L1(
R
n−1 , dx ′

1+|x ′|n−1

)}

=
{
f : Rn−1 → C

M : measurable and Mf ∈ L1(
R
n−1 , dx ′

1+|x ′|n−1

)}
(5.1.18)

(recall that M is the Hardy-Littlewood maximal operator in R
n−1) equipped with

the norm

‖f ‖Z := ‖f ‖[L1(Rn−1, dx′
1+|x′|n−1 )]M

+ ‖Mf ‖
L1
(
Rn−1, dx′

1+|x′|n−1

)

≈ ‖Mf ‖
L1
(
Rn−1, dx′

1+|x′|n−1

), ∀ f ∈ Z . (5.1.19)

Then, Corollary 5.1.3 applied with X := Z and Y := L1
(
Rn−1 ,

dx ′|
1+|x ′|n−1

)
yields

the following result.

Corollary 5.1.4 (The Most Inclusive Well-Posedness Result) Let L be an M ×
M system with constant complex coefficients as in (5.1.1) and (5.1.2), and fix an
aperture parameter κ > 0. Then the following boundary value problem is well-
posed:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ [C∞(Rn+)
]M
, Lu = 0 in R

n+,∫
Rn−1

(
Nκu
)
(x ′) dx ′

1 + |x ′|n−1 <∞,

u
∣∣κ−n.t.

∂Rn+
= f ∈ Z .

(5.1.20)

The relevance of the fact that (5.1.4) implies (5.1.5) in the context of all
the aforementioned boundary value problems (cf. (5.1.15), (5.1.20)) is that the

nontangential boundary trace u
∣∣κ−n.t.

∂Rn+
is guaranteed to exist by the other conditions

imposed on the function u in the formulation of the said problems, and that the
solution may be recovered from the boundary datum via convolution with the
Poisson kernel canonically associated with the system L.
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The type of boundary value problems treated here, in which the size of the
solution is measured in terms of its nontangential maximal function and its trace
is taken in a nontangential pointwise sense, has been dealt with in the particular
case when L = �, the Laplacian in Rn, in a number of monographs, including
[3, 4, 13, 14], and [15]. In all these works, the existence part makes use of the
explicit form of the harmonic Poisson kernel, while the uniqueness relies on either
the Maximum Principle, or the Schwarz reflection principle for harmonic functions.
Neither of the latter techniques may be adapted successfully to prove uniqueness
in the case of general systems treated here, and our approach is more in line with
the work in [6] (which involves Green function estimates and a sharp version of the
Divergence Theorem), with some significant refinements. A remarkable aspect is
that our approach works for the entire class of elliptic systems L as in (5.1.1) and
(5.1.2).

5.2 Preliminary Matters

Throughout, N stands for the collection of all strictly positive integers, and N0 :=
N∪{0}. As such, for each k ∈ N, we denote by N

k
0 the collection of all multi-indices

α = (α1, . . . , αk) with αj ∈ N0 for 1 ≤ j ≤ k. Also, fix n ∈ N with n ≥ 2. We shall
work in the upper half-space R

n+, whose topological boundary ∂Rn+ = R
n−1 × {0}

will be frequently identified with the horizontal hyperplane R
n−1 via (x ′, 0) ≡ x ′.

The origin in R
n−1 is denoted by 0′ and we let Bn−1(x

′, r) stand for the (n − 1)-
dimensional Euclidean ball of radius r centered at x ′ ∈ R

n−1. Having fixed κ > 0,
for each boundary point x ′ ∈ ∂Rn+ introduce the conical nontangential approach
region with vertex at x ′ as

�κ(x
′) := {y = (y ′, t) ∈ R

n+ : |x ′ − y ′| < κ t
}
. (5.2.1)

Given a vector-valued function u : Rn+ → C
M , the nontangential maximal function

of u is defined by

(
Nκu
)
(x ′) := sup

{|u(y)| : y ∈ �κ(x ′)}, x ′ ∈ ∂Rn+ ≡ R
n−1. (5.2.2)

Whenever meaningful, we also define the nontangential trace of u as

u
∣∣κ−n.t.

∂Rn+
(x ′) := lim

�κ(x ′)&y→(x ′,0)
u(y) for x ′ ∈ ∂Rn+ ≡ R

n−1. (5.2.3)

In the sequel, we shall need to consider a localized version of the nontangential
maximal operator. Specifically, given any E ⊂ R

n+, for each u : E → CM we set

(
NE
κ u
)
(x ′) := sup

{|u(y)| : y ∈ �κ(x ′) ∩ E}, x ′ ∈ ∂Rn+ ≡ R
n−1. (5.2.4)
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Hence, NE
κ u = Nκ ũ where ũ is the extension of u to R

n+ by zero outside E. In
the scenario when u is originally defined in the entire upper half-space R

n+ we may
therefore write

NE
κ u = Nκ(1Eu), (5.2.5)

where 1E denotes the characteristic function of E.
The action of the Hardy-Littlewood maximal operator in R

n−1 on any Lebesgue
measurable function f defined in R

n−1 is given by

(
Mf
)
(x ′) := sup

r>0
−
∫
Bn−1(x ′,r)

|f | dL n−1, ∀ x ′ ∈ R
n−1, (5.2.6)

where the barred integral denotes mean average (for functions which are CM -valued
the average is taken componentwise).

We next recall a useful weak compactness result from [6, Lemma 6.2, p. 956]. To
state it, denote by Cvan(R

n−1) the space of continuous functions in Rn−1 vanishing
at infinity.

Lemma 5.2.1 Let v : Rn−1 → (0,∞) be a Lebesgue measurable function and
consider a sequence {fj }j∈N in the weighted Lebesgue space L1(Rn−1 , vL n−1)

such that

F := sup
j∈N

|fj | ∈ L1(Rn−1 , vL n−1). (5.2.7)

Then there exists a subsequence
{
fjk
}
k∈N of {fj }j∈N and a function f ∈

L1(Rn−1 , vL n−1) with the property that

∫
Rn−1

fjk (x
′)ϕ(x ′)v(x ′) dx ′ −→

∫
Rn−1

f (x ′)ϕ(x ′)v(x ′) dx ′ as k → ∞,

(5.2.8)
for every ϕ ∈ Cvan(R

n−1).

We next discuss the notion of Poisson kernel in R
n+ for an operatorL as in (5.1.1)

and (5.1.2).

Definition 5.2.2 Let L be an M × M system with constant complex coefficients
as in (5.1.1) and (5.1.2). A Poisson kernel for L in R

n+ is a matrix-valued
function

PL = (PLαβ)1≤α,β≤M : Rn−1 −→ C
M×M (5.2.9)
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such that the following conditions hold:

(a) there exists C ∈ (0,∞) such that |PL(x ′)| ≤ C

(1 + |x ′|2) n2 for each x ′ ∈ Rn−1;

(b) the function PL is Lebesgue measurable and
∫
Rn−1

PL(x ′) dx ′ = IM×M , the

M ×M identity matrix;
(c) if KL(x ′, t) := PLt (x

′) := t1−nPL(x ′/t), for each x ′ ∈ Rn−1 and t ∈ (0,∞),
then the functionKL = (KL

αβ

)
1≤α,β≤M satisfies (in the sense of distributions)

LKL·β = 0 in R
n+ for each β ∈ {1, . . . ,M}, (5.2.10)

whereKL·β :=
(
KL
αβ

)
1≤α≤M .

Poisson kernels for elliptic boundary value problems in a half-space have been
studied extensively in [1, 2], [5, §10.3], [10–12]. Here we record a corollary of more
general work done by Agmon et al. in [2].

Theorem 5.2.3 Any M × M system L with constant complex coefficients as
in (5.1.1) and (5.1.2) has a Poisson kernel PL in the sense of Definition 5.2.2, which
has the additional property that the function

KL(x ′, t) := PLt (x
′) for all (x ′, t) ∈ R

n+, (5.2.11)

satisfiesKL ∈ [C∞(Rn+ \B(0, ε))]M×M
for every ε > 0, and has the property that

for each multi-index α ∈ N
n
0 there exists Cα ∈ (0,∞) such that

∣∣(∂αKL)(x)
∣∣ ≤ Cα |x|1−n−|α|, for every x ∈ R

n+ \ {0}. (5.2.12)

Here and elsewhere, the convolution between two functions, which are matrix-
valued and vector-valued, respectively, takes into account the algebraic multiplica-
tion between a matrix and a vector in a natural fashion.

The next result we recall has been proved in [6, Theorem 3.1, p. 934].

Proposition 5.2.4 Let L be anM×M system with constant complex coefficients as
in (5.1.1)–(5.1.2), and recall the Poisson kernel PL forL in R

n+ from Theorem 5.2.3.
Also, fix some arbitrary aperture parameter κ > 0. Given a function

f ∈
[
L1
(
R
n−1 ,

dx ′

1 + |x ′|n
)]M

, (5.2.13)

set

u(x ′, t) := (PLt ∗ f )(x ′), ∀ (x ′, t) ∈ R
n+. (5.2.14)
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Then u is meaningfully defined via an absolutely convergent integral,

u ∈ [C∞(Rn+)
]M
, Lu = 0 in R

n+, u
∣∣κ−n.t.

∂Rn+
= f at L n−1-a.e. point in R

n−1

(5.2.15)
(with the last identity valid in the set of Lebesgue points of f ), and there exists a
constant C = C(n,L, κ) ∈ (0,∞) with the property that

(
Nκu
)
(x ′) ≤ C

(
Mf
)
(x ′), ∀ x ′ ∈ R

n−1. (5.2.16)

A key ingredient in the proof of our main result is understanding the nature of
the Green function associated with a given elliptic system. While we elaborate on
this topic in Theorem 5.2.6 below, we begin by providing a suitable definition for
the said Green function (which, in particular, is going to ensure its uniqueness). To
set the stage, denote by D′(Rn+) the space of distributions in R

n+.

Definition 5.2.5 Let L be anM ×M system with constant complex coefficients as
in (5.1.1)–(5.1.2). Call GL(·, ·) : Rn+ ×R

n+ \ diag → CM×M a Green function
for L in R

n+ provided for each y = (y ′, yn) ∈ R
n+ the following properties hold (for

some aperture parameter κ > 0):

GL(· , y) ∈ [L1
loc(R

n+)
]M×M

, (5.2.17)

GL(· , y)∣∣κ−n.t.

∂Rn+
= 0 at L n−1-a.e. point in R

n−1 ≡ ∂Rn+, (5.2.18)

∫
Rn−1

(
N R

n+\B(y,yn/2)
κ GL(· , y)

)
(x ′) dx ′

1 + |x ′|n−1 <∞, (5.2.19)

L
[
GL(· , y)] = −δy IM×M in

[
D′(Rn+)

]M×M
, (5.2.20)

where the M ×M system L acts in the “dot” variable on the columns ofG.

The existence and basic properties of the Green function just defined are
discussed in our next theorem (a proof of which may be found in [7]). Before
stating it, we make two conventions regarding notation. First, we agree to abbreviate
diag := {(x, x) : x ∈ R

n+} for the diagonal in the Cartesian product Rn+ × R
n+.

Second, given a function G(·, ·) of two vector variables, (x, y) ∈ R
n+ × R

n+ \ diag,
for each k ∈ {1, . . . , n} we agree to write ∂XkG and ∂YkG, respectively, for the
partial derivative of G with respect to xk , and yk . This convention may be iterated,
lending a natural meaning to ∂αX∂

β
Y G, for each pair of multi-indices α, β ∈ N

n
0. We

are now ready to present the result alluded to above.

Theorem 5.2.6 Assume that L is an M × M system with constant complex
coefficients as in (5.1.1) and (5.1.2). Then there exists a unique Green function
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GL(·, ·) for L in R
n+, in the sense of Definition 5.2.5. Moreover, this Green function

also satisfies the following additional properties:

1. Given κ > 0, for each y ∈ R
n+ and each compact neighborhood K of y in R

n+
there exists a finite constant Cy = C(n,L, κ,K, y) > 0 such that for every
x ′ ∈ Rn−1 there holds

N
R
n+\K

κ

(
GL(·, y))(x ′) ≤ Cy

1 + log+ |x ′|
1 + |x ′|n−1 . (5.2.21)

Moreover, for any multi-indices α, β ∈ N
n
0 such that |α| + |β| > 0, there exists

some constant Cy = C(n,L, κ, α, β,K, y) ∈ (0,∞) such that

N R
n+\K

κ

(
(∂αX∂

β
Y G

L)(·, y))(x ′) ≤ Cy

1 + |x ′|n−2+|α|+|β| . (5.2.22)

2. For each fixed y ∈ R
n+, there holds

GL(· , y) ∈ [C∞(
R
n+ \ B(y, ε))]M×M

for every ε > 0. (5.2.23)

As a consequence of (5.2.23) and (5.2.18), for each fixed y ∈ R
n+ one has

GL(·, y)
∣∣∣
∂Rn+

= 0 everywhere on R
n−1. (5.2.24)

3. For each α, β ∈ N
n
0 the function ∂αX∂

β

Y G
L is translation invariant in the

tangential variables, in the sense that

(
∂αX∂

β
Y G

L
)(
x − (z′, 0), y − (z′, 0)

) = (∂αX∂βY GL
)
(x, y)

for each (x, y) ∈ R
n+ × R

n+ \ diag and z′ ∈ Rn−1,

(5.2.25)

and is positive homogeneous, in the sense that

(
∂αX∂

β
Y G

L
)
(λx, λy) = λ2−n−|α|−|β|(∂αX∂βY GL

)
(x, y)

for each x, y ∈ R
n+ with x �= y and λ ∈ (0,∞),

provided either n ≥ 3, or |α| + |β| > 0.

(5.2.26)

4. If GL
*
(·, ·) denotes the (unique, by the first part of the statement) Green function

for L* (the transposed of L) in R
n+, then

GL(x, y) =
[
GL

*
(y, x)

]*
, ∀ (x, y) ∈ R

n+ × R
n+ \ diag. (5.2.27)
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Hence, as a consequence of (5.2.27), (5.2.18), and (5.2.23), for each fixed x ∈
R
n+ and ε > 0,

GL(x, ·) ∈ [C∞(
R
n+ \ B(x, ε))]M×M

and GL(x, ·)
∣∣∣
∂Rn+

= 0 on R
n−1.

(5.2.28)
5. For any multi-indices α, β ∈ N

n
0 there exists a finite constant Cαβ > 0 such that

∣∣(∂αX∂βYGL
)
(x, y)

∣∣ ≤ Cαβ |x − y|2−n−|α|−|β|,
∀ (x, y) ∈ R

n+ × R
n+ \ diag, if either n ≥ 3, or |α| + |β| > 0,

(5.2.29)

and, corresponding to |α| = |β| = 0 and n = 2, there exists C ∈ (0,∞) such
that

∣∣GL(x, y)∣∣ ≤ C + C∣∣ln |x − y|∣∣, ∀ (x, y) ∈ R
2+ ×R

2+ \ diag, (5.2.30)

where y := (y ′,−yn) ∈ Rn is the reflexion of y = (y ′, yn) ∈ R
n+ across the

boundary of the upper half-space.
6. The Agmon-Douglis-Nirenberg Poisson kernel PL = (PLγα)1≤γ,α≤M forL in R

n+
from Theorem 5.2.3 is related to the Green function GL for L in R

n+ according
to the formula

PLγα(z
′) = a

βα
nn

(
∂YnG

L
γβ

)(
(z′, 1), 0

)
, ∀ z′ ∈ Rn−1,

for each α, γ ∈ {1, . . . ,M}.
(5.2.31)

We shall now record the following versatile version of interior estimates for
second-order elliptic systems. A proof may be found in [8, Theorem 11.9, p. 364].

Theorem 5.2.7 Consider a homogeneous, constant coefficient, second-order, sys-
tem L satisfying the weak ellipticity condition det [L(ξ)] �= 0 for each ξ ∈ Rn \ {0}.
Then for each null-solution u of L in a ball B(x,R) (where x ∈ Rn and R > 0),
0 < p <∞, λ ∈ (0, 1), 
 ∈ N0, and 0 < r < R, one has

sup
z∈B(x,λr)

|∇
u(z)| ≤ C

r


(
−
∫
B(x,r)

|u|p dL n

)1/p

, (5.2.32)

where C = C(L,p, 
, λ, n) > 0 is a finite constant.

We conclude by recording a suitable version of the Divergence Theorem recently
obtained in [9]. To state it requires a few preliminaries which we dispense with first.
We shall write E ′(Rn+) for the subspace of D′(Rn+) consisting of those distributions
which are compactly supported. Hence,

E ′(Rn+) ↪→ D′(Rn+) and L1
loc(R

n+) ↪→ D′(Rn+). (5.2.33)
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For each compact set K ⊂ R
n+, define E ′K(Rn+) :=

{
u ∈ E ′(Rn+) : suppu ⊂ K

}
and consider

E ′K(Rn+)+ L1(Rn+) :=
{
u ∈ D′(Rn+) : ∃ v1 ∈ E ′K(Rn+) and ∃ v2 ∈ L1(Rn+)

such that u = v1 + v2 in D′(Rn+)
}
. (5.2.34)

Also, introduce C∞
b (R

n+) := C∞(Rn+) ∩ L∞(Rn+) and let
(
C∞
b (R

n+)
)∗ denote its

algebraic dual. Moreover, we let (C∞
b (Rn+))∗

(· , ·)C∞
b (Rn+)

denote the natural duality

pairing between these spaces. It is useful to observe that for every compact set K ⊂
R
n+ one has

E ′K(Rn+)+ L1(Rn+) ⊂
(
C∞
b (R

n+)
)∗
. (5.2.35)

Theorem 5.2.8 ([9]) Assume that K ⊂ R
n+ is a compact set and that .F ∈[

L1
loc(R

n+)
]n

is a vector field satisfying the following conditions (for some aperture
parameter κ > 0):

(a) div .F ∈ E ′K(Rn+) + L1(Rn+), where the divergence is taken in the sense of
distributions;

(b) the nontangential maximal function N R
n+\K

κ
.F belongs to L1(Rn−1);

(c) the nontangential boundary trace .F ∣∣κ−n.t.

∂Rn+
exists (in Cn) at L n−1-a.e. point in

Rn−1.

Then, with en := (0, . . . , 0, 1) ∈ Rn and “dot” denoting the standard inner product
in Rn,

(C∞
b (Rn+))∗

(
div .F, 1

)
C∞
b (Rn+)

= −
∫
Rn−1

en ·
( .F ∣∣κ−n.t.

∂Rn+

)
dL n−1. (5.2.36)

5.3 Proofs of Main Results

We take on the task of presenting the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1 Fix an arbitrary point x� ∈ R
n+ and bring in GL

*
( · , x�),

the Green function with pole at x� for L*, the transposed of the operator L
(cf. Definition 5.2.5 and Theorem 5.2.6 for details on this matter). For ease of
notation, abbreviate

G(·) := GL
*
( · , x�) in R

n+ \ {x�}. (5.3.1)
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By design, this is a matrix-valued function, say G = (Gαγ )1≤α,γ≤M . We shall
apply Theorem 5.2.8 to a suitably chosen vector field. To set the stage, consider the
compact set

K� := B(x�, r) ⊂ R
n+, where r := dist (x�, ∂Rn+) · κ

2
√

4+κ2
. (5.3.2)

For each ε > 0 consider the function uε : Rn+ → CM given by

uε(x) := u(x ′, xn + ε) for all x = (x ′, xn) ∈ R
n+. (5.3.3)

Then

uε ∈ [C ∞(Rn+ )
]M
, Luε = 0 in R

n+, and Nκu
ε ≤ Nκu on R

n−1.

(5.3.4)

Fix ε > 0 along with some β ∈ {1, . . . ,M} and, using the summation convention
over repeated indices, define the vector field

.F :=
(
uεα a

γα
kj ∂kGγβ−Gαβ aαγjk ∂kuεγ

)
1≤j≤n at L n-a.e. point in R

n+. (5.3.5)

From (5.3.5), Theorem 5.2.6, and the fact that uε ∈ [C ∞(Rn+ )
]M

it follows that

.F ∈ [L1
loc(R

n+)
]n ∩ [C∞(Rn+ \K�)

]n (5.3.6)

and, on account of (5.2.24) (used for L* in place of L), we have

.F
∣∣∣
∂Rn+

=
((
uεα

∣∣
∂Rn+

)
a
γα
kj

(
∂kGγβ

)∣∣
∂Rn+

)
1≤j≤n. (5.3.7)

Next, in the sense of distributions in R
n+, we may compute

div .F = (∂ju
ε
α) a

γα
kj (∂kGγβ)+ uεα aγαkj (∂j ∂kGγβ)

− (∂jGαβ) aαγjk (∂kuεγ )−Gαβ aαγjk (∂j ∂kuεγ )

=: I1 + I2 + I3 + I4, (5.3.8)

where the last equality defines the Ii ’s. Changing variables j ′ = k, k′ = j , α′ = γ ,
and γ ′ = α in I3 yields

I3 = −(∂k′Gγ ′β) aγ
′α′

k′j ′ (∂j ′u
ε
α′) = −I1. (5.3.9)



5 A Fatou Theorem and Poisson’s Formula 119

As regards I4, we have

I4 = −Gαβ (Luε)α = 0, (5.3.10)

by (5.3.4). Finally,

I2 = uεα(LA*G·β)α = uεα(L
*G·β)α

= −uεαδαβδx� = −uεβ δx� = −uεβ(x�) δx�. (5.3.11)

Collectively, these equalities permit us to conclude that, in the sense of distributions
in R

n+,

div .F = −uεβ(x�) δx� ∈ E ′(Rn+). (5.3.12)

In particular,

div .F ∈ D′(Rn+) induces a continuous functional in
(
C∞
b (R

n+)
)∗
. (5.3.13)

Moving on, fix x ′ ∈ Rn−1 ≡ ∂Rn+ and pick an arbitrary point

y = (y ′, yn) ∈ �κ/2(x ′) \K�. (5.3.14)

Choose a rectifiable path γ : [0, 1] → R
n+ joining (x ′, 0) with y in �κ/2(x ′) \ K�

and whose length is ≤ Cyn. Then, for some constant C ∈ (0,∞) independent of x ′
and y, we may estimate

|G(y)| = |G(y)−G(x ′, 0)| =
∣∣∣
∫ 1

0

d

dt
[G(γ (t))] dt

∣∣∣

=
∣∣∣
∫ 1

0
(∇G)(γ (t)) · γ ′(t) dt

∣∣∣ ≤
(

sup
ξ∈γ ((0,1))

|(∇G)(ξ)|
) ∫ 1

0
|γ ′(t)| dt

≤ Cyn ·N R
n+\K�

κ/2 (∇G)(x ′), (5.3.15)

using the fact thatG vanishes on ∂Rn+, the Fundamental Theorem of Calculus, Chain
Rule, and (5.2.4). Next, define

a := κ

2(κ + 1)
∈ (0, 1

2

)
(5.3.16)
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and write, using interior estimates (cf. Theorem 5.2.7) for the function uε,

|(∇uε)(y)| ≤ C

yn
−
∫
B(y,a·yn)

|uε(z)| dz

≤ Cy−1
n · sup

z∈�κ(x ′)
|uε(z)| ≤ Cy−1

n · (Nκu
ε
)
(x ′), (5.3.17)

since having z = (z′, zn) ∈ B(y, a · yn) entails

yn ≤ zn + |z− y| < zn + a · yn '⇒ yn < (1 − a)−1zn, (5.3.18)

which, bearing in mind that y is as in (5.3.14), permits us to conclude that

|z′ − x ′| ≤ |z′ − y ′| + |y ′ − x ′| ≤ |z− y| + (κ/2)yn < a · yn + (κ/2)yn

= (κ/2 + a)yn < κ/2 + a
1 − a zn = κzn, hence z ∈ �κ(x ′). (5.3.19)

Then combining (5.3.15) with (5.3.17) gives, on account of (5.2.22),

N R
n+\K�

κ/2

(|G||∇uε|)(x ′) ≤ C
(
N R

n+\K�
κ/2 (∇G))(x ′)(Nκu

ε
)
(x ′)

≤ C
(
Nκu
)
(x ′) 1

1 + |x ′|n−1 at each point x ′ ∈ R
n−1.

(5.3.20)

Since we also have

N R
n+\K�

κ/2

(|∇G||uε|)(x ′) ≤ (N R
n+\K�

κ/2 (∇G))(x ′)(Nκu
ε
)
(x ′)

≤ C
(
Nκu
)
(x ′) 1

1 + |x ′|n−1 at each point x ′ ∈ R
n−1,

(5.3.21)

we conclude from (5.3.5), (5.3.20), (5.3.21), and the second line in (5.1.4) that

N R
n+\K�

κ/2
.F ∈ L1(Rn−1). (5.3.22)

Having established (5.3.6), (5.3.7), (5.3.13), and (5.3.22), Theorem 5.2.8 applies.
To write the Divergence Formula (5.2.36) in this case, express x� as (x ′, t) ∈ R

n−1×
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(0,∞). Then, in view of (5.3.12) and (5.3.7) we may write

uβ(x
� + εen) = uεβ(x

�) = −(C∞
b (Rn+))

∗
(
div .F , 1

)
C∞
b (Rn+)

=
∫
Rn−1

en ·
( .F ∣∣

∂Rn+

)
dL n−1

=
∫
Rn−1

uα(y
′, ε)aγαkn

(
∂kGγβ

)
(y ′, 0) dy ′

=
∫
Rn−1

uα(y
′, ε)aγαnn

(
∂nGγβ

)
(y ′, 0) dy ′

=
∫
Rn−1

uα(y
′, ε)aγαnn (∂XnGL

*
γβ )
(
(y ′, 0), x�

)
dy ′

=
∫
Rn−1

uα(y
′, ε)aγαnn (∂YnGLβγ )

(
x�, (y ′, 0)

)
dy ′

=
∫
Rn−1

uα(y
′, ε)aγαnn (∂YnGLβγ )

(
(x ′ − y ′, t), 0

)
dy ′

=
∫
Rn−1

uα(y
′, ε)t1−naγ αnn (∂YnGLβγ )

(
((x ′ − y ′)/t, 1), 0

)
dy ′

=
∫
Rn−1

uα(y
′, ε)(PLβα)t (x ′ − y ′) dy ′, (5.3.23)

where the fifth equality uses the observation that (∂kG)(y ′, 0) = 0 whenever
k < n since G vanishes (in a smooth fashion) on R

n−1 × {0}, the sixth equality
is a consequence of (5.3.1), the seventh equality is implied by (5.2.27), the eighth
equality makes use of (5.2.25) (bearing in mind that x� = (x ′, t)), the ninth equality
is seen from (5.2.26), and the last equality comes from (5.2.31).

Since β ∈ {1, . . . ,M} and x� = (x ′, t) ∈ R
n+ have been arbitrarily chosen, the

argument so far shows that

u(x ′, t + ε) =
∫
Rn−1

PLt (x
′ − y ′)fε(y ′) dy ′ for each x = (x ′, t) ∈ R

n+,

(5.3.24)

where we have abbreviated

fε := u(·, ε) : Rn−1 −→ C
M for each ε > 0. (5.3.25)
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If we also consider the weight v : R
n−1 → (0,∞) defined as v(x ′) := (1 +

|x ′|n−1)−1 for each x ′ ∈ R
n−1, then the last condition in (5.1.4) entails

sup
ε>0

|fε| ≤ Nκu ∈ L1(
R
n−1 , vL n−1). (5.3.26)

Granted this, the weak-∗ convergence result from Lemma 5.2.1 may be used for
the sequence

{
fε
}
ε>0 ⊂ L1

(
R
n−1 , vL n−1

)
to conclude that there exists some

f ∈ L1
(
Rn−1 , vL n−1

)
and some sequence {εj }j∈N ⊂ (0,∞) which converges to

zero with the property that

lim
j→∞

∫
Rn−1

ϕ(y ′)fεj (y ′)
dy ′

1 + |y ′|n−1 =
∫
Rn−1

ϕ(y ′)f (y ′)
dy ′

1 + |y ′|n−1 (5.3.27)

for every continuous function ϕ ∈ Cvan(R
n−1). The fact that there exists a constant

C ∈ (0,∞) for which

|PL(z′)| ≤ C

(1 + |z′|2)n/2 for each z′ ∈ R
n−1 (5.3.28)

(see item (a) of Definition 5.2.2) ensures for each fixed point (x ′, t) ∈ R
n+ the

assignment

R
n−1 & y ′ �→ ϕ(y ′) := (1 + |y ′|n−1)PLt (x

′ − y ′) ∈ C
M×M

is a continuous function which vanishes at infinity.
(5.3.29)

At this stage, from (5.3.24) and (5.3.27) used for the function ϕ defined in (5.3.29)
we obtain (bearing in mind that u is continuous in R

n+) that

u(x ′, t) =
∫
Rn−1

PLt (x
′ − y ′)f (y ′) dy ′ for each x = (x ′, t) ∈ R

n+. (5.3.30)

With this in hand, and since L1
(
Rn−1 , vL n−1

) ⊆ L1
(
Rn−1 ,

dx ′

1 + |x ′|n
)

, we may

invoke Proposition 5.2.4 to conclude that

u
∣∣κ−n.t.

∂Rn+
exists and equals f at L n−1-a.e. point in R

n−1. (5.3.31)

Once this has been established, all conclusions in (5.1.5) are implied by (5.3.30) and
(5.3.31). ��

We close by presenting the proof of Corollary 5.1.3.



5 A Fatou Theorem and Poisson’s Formula 123

Proof of Corollary 5.1.3 As a preamble, let us first show that

X ⊆
[
L1
(
R
n−1 ,

dx ′

1 + |x ′|n
)]M

. (5.3.32)

To justify this, pick some arbitrary f ∈ X. Then the inclusion in (5.1.14) gives that
Mf ∈ Y, hence Mf is not identically +∞. This implies that f ∈ [L1

loc(R
n−1)]M

which, in concert with Lebesgue’s Differentiation Theorem, implies that |f | ≤ Mf

at L n−1-a.e. point in Rn−1. Since Y is a function lattice, it follows that |f | ∈ Y.
Thus, ultimately, (5.3.32) holds by virtue of the inclusion in (5.1.13).

To prove the existence of a solution for (5.1.15), given any f ∈ X define u as
in (5.1.16). Note that (5.3.32) ensures that Proposition 5.2.4 is applicable. In turn,
this guarantees that u is a well-defined null-solution ofL belonging to

[
C∞(Rn+)

]M
,

satisfying the boundary condition u
∣∣κ−n.t.

∂Rn+
= f at L n−1-a.e. point in Rn−1, as well

as the pointwise estimate in (5.1.17). The latter property, together with the last
conditions imposed in (5.1.14) and (5.1.13), guarantees Nκu ∈ Y. Thus, u is indeed
a solution for (5.1.15).

At this stage, there remains to establish that the boundary value problem (5.1.15)
can have at most one solution. To this end, assume that both u1 and u2 solve (5.1.15)
for the same datum f ∈ X and set u := u1−u2 ∈

[
C∞(Rn+)

]M . ThenLu = 0 in R
n+

and u
∣∣κ−n.t.

∂Rn+
= 0 at L n−1-a.e. point in Rn−1. Since we also have Nκu1,Nκu2 ∈ Y,

the pointwise estimate

0 ≤ Nκu ≤ Nκu1 +Nκu2 ≤ 2 max
{
Nκu1 , Nκu2

}
on R

n−1 (5.3.33)

forces Nκu ∈ Y by the properties of the function lattice Y. Granted this,
Corollary 5.1.2 applies (thanks to the first condition in (5.1.13)) and gives that u ≡ 0
in R

n+. Hence u1 = u2, as wanted. ��
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Chapter 6
Hardy Spaces for the Three-Dimensional
Vekua Equation

Briceyda B. Delgado and R. Michael Porter

To Wolfgang Sprößig, with affection and respect

Abstract Let 	 be a bounded Lipschitz domain in R3. We introduce the Vekua-
Hardy spaces Hp

f (	) of solutions of the main Vekua equation DW = (Df/f )W

where 1 < p < ∞. Here W is quaternion-valued, D is the Moisil-Teodorescu
operator, and the conductivity f is a bounded scalar function with bounded gradient.
Using the Vekua-Hilbert transform Hf defined in previous work of the authors, we
give some characterizations of Hp

f (	) analogous to those of the “classical” Hardy

spaces of monogenic functions in R3. The main obstacle is the lack of several
fundamental analogues of properties of solutions to the special case DW = 0
(monogenic, or hyperholomorphic functions), such as power series and the Cauchy
integral formula.

Keywords Monogenic functions · Hardy spaces · Main Vekua equation ·
Vekua-Hardy spaces · Vekua-Hilbert transform · Conductivity equation

Mathematics Subject Classification (2010) Primary 30G20; Secondary 30H10,
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6.1 Introduction

The study of Hardy spaces of holomorphic functions in planar domains with
Lipschitz boundary was initiated in [24]. The analogous study for monogenic
functions on n-dimensional Lipschitz domains began in [10, 11, 16]. Here we
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consider 	 ⊆ R
3, and generalizing the definition given in [31] for Hardy spaces

of monogenic functions Hp(	), we introduce the Vekua-Hardy space Hp

f (	) of

solutions to the main Vekua equation (6.2.1), with conductivity f ∈ W 1,∞(	,R)
and 1 < p < ∞. The case p = 2 is of particular importance because the solution
of (6.2.1) constructed through the Vekua-Hilbert transform Hf , defined in [14],
belongs to the corresponding Vekua-Hardy space H 2

f (	).
In the complex case, more precisely for the unit disk, there exist several classes

of generalized Hardy spaces, for example, the Hardy space for general first-order
elliptic systems [27], the Hardy space of generalized analytic functions [26] and
the Hardy space of solutions to the conjugate Beltrami equation [3]. All these
spaces preserve many properties inherited from analytic functions mainly due to
the Similarity Principle [9, 28]. Since there is no n-dimensional Similarity Principle
in the literature for n > 2, our results instead depend strongly on the intrinsic
properties of the Teodorescu transform and the Cauchy operator in bounded domains
in R3 as well as on the Vekua-Hilbert transform defined in [14].

In the half space Rm+, there are the Hardy spaces of solutions of generalized Riesz
and Moisil-Teodorescu systems, which were characterized in [7]. Some aspects of
(monogenic) Hardy and Bergman spaces in the unit ball in R3 whose functions take
values in the reduced quaternions were considered in [32].

Another recent example [30] is the generalized Hardy space consisting of
Clifford-valued solutions of perturbed Dirac operators in the exterior of uniformly
rectifiable domains, radiating at infinity (domains with boundary Lipschitz are
uniformly rectifiable [22]).

The structure of this paper is as follows. In Sect. 6.2 we summarize some known
results concerning the main Vekua equation (6.2.1) in R3. In Sect. 6.3 we define
the Vekua-Hardy space Hp

f (	) and the associated generalized Bergman space
of Lp solutions of (6.2.1), and state a series of characterizations for them and
for some Banach subspaces. To take advantage of the fact that solutions of the
main Vekua equation satisfy a homogeneous div-curl system (6.2.3), the spaces
Wp,div(	,R3) and Wp,curl(	,R3) are introduced with the aim of providing a
natural weak characterization for the Lp-solutions of (6.2.1). Finally, in Sect. 6.4
we recall the definition of the Vekua-Hilbert transform (6.4.1) given in [14] and
prove the main result of the paper (Theorem 6.4.4), which guarantees the existence
of non-tangential limits and is a kind of Maximum Principle for a subspace of the
Vekua-Hardy spaceH 2

f (	): for those functions inH 2
f (	)whose scalar part belongs

to the Sobolev space W 1,2(	,R).

6.2 Notation and Background for the Main Vekua Equation

Let 	 ⊆ R3 be a bounded domain. We are interested in functions W = W0 +
.W : 	 → H with W0 = ScW , .W = VecW , where H denotes the algebra of

quaternions x = x0 +∑3
i=1 eixi = Sc x + Vec x with xi ∈ R; the imaginary units
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e1, e2, e3 obey the standard laws of multiplication e2
i = e1e2e3 = −1 for i = 1, 2, 3.

Identifying the subspaces ScH and VecH with R and R3 respectively, we refer to
elements .x ∈ 	. Some references for higher-dimensional function theory and its
applications which will be used here are [6, 17, 20, 21, 29].

Let D = ∑3
i=1 ei∂/∂xi be the Moisil-Teodorescu differential operator acting

usually on the left on H-valued functions defined in 	, and consider a fixed
nonvanishing scalar function f ∈ W 1,∞(	,R) (the Sobolev space of bounded
functions with bounded derivatives). Our object of interest is the main Vekua
equation [28]

DW = Df

f
W, (6.2.1)

whose theory appeared in [5, 36] for functions in R2. It plays an important role
in the theory of pseudo-analytic functions (sometimes called generalized analytic
functions). We write

Mf (	) =
{
W : 	→ H

∣∣ (D − Df

f
CH

)
W = 0

}
(6.2.2)

for the space of measurable weak solutions of (6.2.1), whereCHW = ScW−VecW
is the quaternionic conjugate operator. For f ≡ 1, this reduces to Mf≡1(	) =
M(	), the classical space of left-monogenic (or hyperholomorphic) functions, i.e.
solutions of DW = 0. We will be interested in the subspace

M
p
f (	) = {W ∈ Mf (	) : ‖W‖Lp <∞}

of Lp-solutions of (6.2.1). This is a nontrivial linear subspace over R: in addition
to the elementary solutions f and (1/f )ei , i = 1, 2, 3, also note (1/f ) SI(	,R3) ∩
Lp(	,R3) ⊆ M

p

f (	), where SI(	,R3) is the collection of solenoidal-irrotational

vector fields .W , that is, D .W = .WD = 0, or more explicitly

div .W = 0, curl .W = 0,

a system equivalent to .W ∈ SI(	,R3) as can be seen by rewriting DW in vector
form

DW = − div .W + gradW0 + curl .W.

From this we also have [28, Th. 161] that W is solution of (6.2.1) if and only if
W0 and .W satisfy the homogeneous div-curl system

div(f .W) = 0, curl(f .W) = −f 2∇(W0/f ). (6.2.3)



128 B. B. Delgado and R. M. Porter

We will say that .W is an f 2-hyperconjugate for W0 when W0 + .W is a solution
of (6.2.1). In [13, 14] two constructions for f 2-hyperconjugates were given. Both
are direct applications of the solution of the “div-curl system”; in [13] this was
done for star-shaped domains in R3 and in [14] for Lipschitz domains in R3 with
connected complement. In Sect. 6.4 we will follow the second approach.

When we apply div, curl to the second equation of (6.2.3), we obtain

∇ · f 2 ∇
(
W0

f

)
= 0, (6.2.4)

curl

(
1

f 2 curl(f .W)
)
= 0. (6.2.5)

These are the so-called conductivity equation and the double curl-type equation. For
brevity we will say that f 2 is a conductivity when f is a non-vanishing R-valued
function in the domain under consideration. The conductivity will be called proper
when ρ(f ) = sup(|f |, 1/|f |) is finite.

The Cauchy kernel E(.x) = −.x/(4π |.x|3) is a fundamental solution of D. The
Teodorescu transform

T	[w](.x) = −
∫
	

E(.y − .x)w(.y) d .y, .x ∈ R
3, (6.2.6)

is a right inverse of D. Although T	 is not a left inverse of D, we have the Borel-
Pompeiu formula [21, Th. 7.8]

T	[Dw](.x)+ F∂	[trw](.x) = w(.x), .x ∈ 	, (6.2.7)

where the Cauchy operator

F∂	[ϕ](.x) =
∫
∂	

E(.y − .x)η(.y)ϕ(.y) ds.y, .x ∈ R
3 \ ∂	

(with η the outward pointing unit normal vector to ∂	) satisfies F∂	[ϕ] ∈ M(	).
We let W 1,p(	,H) denote the Sobolev space of functions in Lp with first

derivatives in Lp ; the space of their boundary values is W 1−1/p,p(∂	,H). The
latter space exists due to the Trace Theorem [19, Th. 1.5.1.10], valid for example in
Lipschitz domains, and the trace operator

tr : W 1,p(	,H)→ Lp(∂	,H), tr u = u|∂	,

is a bounded linear operator.
Moreover, when p = 2, tr : W 1,2(	,H) → H 1/2(∂	,H) is bounded; we

use the common notation H 1/2(∂	,H) = W 1−1/2,2(∂	,H). The presence of the
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codomain H (or R or R3) will avoid confusion with the notation of the Hardy spaces
Hp(	) given in the next section.

6.3 Hardy Spaces of Solutions of the Main Vekua Equation

For definitions we follow almost entirely the monographs [25, 31]. Similarly
to the classical definition of Hardy spaces in domains in C, several equivalent
characterizations are known for the left-monogenic Hardy spaces in R3, which
depend on basic facts such as the Maximum Principle and the Mean Value Property
for monogenic functions as well as the regularity and boundedness on Lp(∂	) of
the Cauchy operator [8]. However, since such results are not all currently available
for the Vekua equation, we give our main definition in terms of the non-tangential
maximal function Nα. From now on 	 will be a bounded domain with Lipschitz
boundary.

For a fixed α > 0 and .x ∈ ∂	, the region of non-tangential approach with vertex
at .x is given by

�α(.x) = {.y ∈ 	 : |.x − .y| ≤ (1 + α) dist(.y, ∂	)} .

Then NαW : ∂	→ [0,∞] is given by

NαW(.x) = sup {|W(.y)| : .y ∈ �α(.x)} .

When measuring the growth of W , the choice of α is largely irrelevant because
for α, β > 0 we have estimates C1‖NβW‖Lp(∂	) ≤ ‖NαW‖Lp(∂	) ≤
C2‖NβW‖Lp(∂	) [22, Prop. 2.1.2]. See [17, 24, 25, 31] for the general theory
of Hardy spaces of monogenic functionsHp(	), where one writes N for Nα and

‖NW‖Lp(∂	) =
(∫

∂	

|NW(.x)|p ds.y
)1/p

(6.3.1)

as the definition of ‖W‖Hp .

Definition 6.3.1 Let 1 < p < ∞ and let f ∈ W 1,∞(	,R) be a proper
conductivity. The Vekua-Hardy spaceHp

f (	) consists of all functionsW in Mf (	)

whose non-tangential maximal function NW belongs to Lp(∂	,R); that is,

‖W‖Hp
f
:= ‖NW‖Lp(∂	) <∞.

Notice that by hypothesis Df/f ∈ L∞(	,R3). Also Hp
f (	) is a nontrivial linear

subspace over R, because it contains f as well as (1/f )ei , i = 1, 2, 3.
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We allow W to be a solution of (6.2.1) in the sense of distributions in 	, so the
div-curl system (6.2.3) is satisfied weakly. For the development of the Vekua-Hardy
spaces Hp

f (	) we will need the following spaces linked to the operators div and
curl appearing in many electromagnetism problems [12, 18]:

Wp,div(	,R3) = {.u ∈ Lp(	,R3) : div .u ∈ Lp(	,R)},
Wp,curl(	,R3) = {.u ∈ Lp(	,R3) : curl .u ∈ Lp(	,R3)},

which are Banach spaces with the norms

‖.u‖Wp,div = ‖.u‖Lp + ‖ div .u‖Lp, ‖.u‖Wp,curl = ‖.u‖Lp + ‖ curl .u‖Lp .

These are weaker than ‖ · ‖W 1,p because W 1,p(	,R3) is a proper subset of the
intersection

Wp, div-curl(	,R3) = Wp,div(	,R3) ∩Wp,curl(	,R3).

The normal trace operator is defined in Wp,div(	,R3) by

γn : Wp,div(	,R3)→ (W 1−1/q,q(∂	,R))∗

γn(.u) = .u|∂	 · η,

which by the Divergence Theorem is weakly defined for .u ∈ Wp,div(	,R3) by

〈γn(.u), tr v0〉∂	 =
∫
	

.u · ∇v0 d .y +
∫
	

(div .u)v0 d .y (6.3.2)

for all v0 ∈ W 1,q(	,R), where the symbol 〈·, ·〉∂	 denotes the duality pairing
between W 1−1/q,q(∂	) and its dual space (W 1−1/q,q(∂	))∗. Analogously, the
tangential trace operator is defined in Wp,curl(	,R3) by

γt : Wp,curl(	,R3)→ (W 1−1/q,q(∂	,R3))∗

γt(.u) = .u|∂	 × η,

〈γt(.u), tr .v〉∂	 =
∫
	

.u · curl .v d .y −
∫
	

curl .u · .v d .y (6.3.3)

for all .u ∈ Wp,curl(	,R3) and .v ∈ W 1,q(	,R3).



6 Hardy Spaces for the Three-Dimensional Vekua Equation 131

Note by (6.2.3) that when W ∈ M
p
f (	), we have curl .W ∈ Lp(	,R3) if and

only if W0 ∈ W 1,p(	,R). Thus, let us define

L̂p(	,H) =W 1,p(	,R)+ Lp(	,R3)

={W ∈ Lp(	,H) : ScW ∈ W 1,p(	,R)}, (6.3.4)

which is a Banach space with the norm ‖W‖L̂p = ‖W0‖W 1,p + ‖ .W‖Lp . Now we
show that solutions of the main Vekua equation in L̂p(	,H) have a natural weak
characterization.

Lemma 6.3.2 Let W = W0 + .W ∈ L̂p(	,H). ThenW ∈ M
p
f (	) if and only if for

every v = v0 + .v ∈ W 1,q
0 (	,H) (the subspace of W 1,q(	,H) with trace zero),

∫
	

f .W · ∇v0 d .y = 0,

∫
	

f .W · curl .v d .y = −
∫
	

f 2∇(W0/f ) · .v d .y. (6.3.5)

Proof Let W ∈ M
p

f (	). By (6.2.3), f .W ∈ Wp, div-curl(	,R3). Therefore we

can use (6.3.2) and (6.3.3). Let v = v0 + .v ∈ W
1,q
0 (	,H). Then (again by the

Divergence Theorem)

0 = 〈γn(f .W), tr v0〉∂	 =
∫
	

f .W · ∇v0 d .y,

0 = 〈γt(f .W), tr .v〉∂	 =
∫
	

f .W · curl .v d .y +
∫
	

f 2∇(W0/f ) · .v d .y.

For the converse, begin with the system (6.3.5), and use (6.3.2) and (6.3.3) to obtain

∫
	

div(f .W)v0 d .y = 0,

∫
	

(curl(f .W)+ f 2∇(W0/f )) · .v d .y = 0,

for v ∈ W 1,q
0 (	,H), which says that (6.2.3) is weakly satisfied. ��

To investigate further how the scalar part of a solution of (6.2.1) influences the
vector part, we introduce the subspace

M̂
p
f (	) = M

p
f (	) ∩ L̂p(	,H). (6.3.6)
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Theorem 6.3.3 Let 	 be a bounded Lipschitz domain and let f ∈ W 1,∞(	,R) be
a proper conductivity. The space M̂p

f (	) is closed in L̂p(	,H) for 1 < p <∞.

Proof Let {Wn} ⊆ M̂
p
f (	) be a sequence such that Wn → W in L̂p(	,H), so for

all pairs of test functions v0 ∈ W 1,q
0 (	,R) and .v ∈ W 1,q

0 (	,R3) we have

∫
	

f .Wn · ∇v0 d .y −→
∫
	

f .W · ∇v0 d .y,
∫
	

f .Wn · curl .v d .y −→
∫
	

f .W · curl .v d .y,
∫
	

f 2∇(W0,n/f ) · .v d .y −→
∫
	

f 2∇(W0/f ) · .v d .y, (6.3.7)

as n→ ∞. By Lemma 6.3.2,Wn = Wn,0 + .Wn satisfy (6.3.5), so W does also. By
Lemma 6.3.2 again,W ∈ M̂

p

f (	). ��
If instead of the first limit of (6.3.7) we use the fact [4] that Sol(	,R3) ∩

Lp(	,R3) is closed in Lp(	,R3), then we can see immediately that divf .W = 0.
When f ≡ 1, then Mp(	) andHp(	) are the classical Bergman and Hardy spaces,
respectively. It is well known that Hp(	) ⊆ Mp(	), but we do not know whether
or not Hp

f (	) ⊆ M
p
f (	) for every proper conductivity f ∈ W 1,∞(	,R) (cf.

Proposition 6.4.5 below).
A key consequence of DT	 = I which will enable us to derive information

about (6.2.1) from known results on monogenic functions is the easily verified fact
that I − T	(Df/f )CH transforms solutions of the main Vekua equation to left-
monogenic functions:

I − T	(Df/f )CH : Mp
f (	)→ M(	) ∩ Lp(	). (6.3.8)

In fact,D is a right inverse of T	 even in the weak sense, by Weyl’s Lemma [15, 35],
so when W is a weak solution of (6.2.1), U = W − T	[(Df/f )W ] is monogenic.
Conversely, when U is monogenic, W is a (strong) solution of (6.2.1). A similar
relation holds for Hardy-Vekua spaces:

Lemma 6.3.4 Let 	 be a bounded Lipschitz domain. Let W ∈ Wm−1,p(	,H),
where f ∈ Wm,∞(	,R) is a proper conductivity, m ∈ Z+, 3/m < p < ∞ and
m ≥ 1. Then

W ∈ Hp
f (	)⇔ U = W − T	

[
Df

f
W

]
∈ Hp(	). (6.3.9)

Proof By the comments preceding this statement of the Lemma, it is suffices to
show that NT	[(Df/f )W ] ∈ Lp(∂	,R), because this implies that NU and NW
are simultaneously in or not in Lp(∂	,R).
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By the dimension requirement of the Sobolev Imbedding Theorem [1, Th.
4.12], the inclusion Wm,p(	) ⊆ C0(	) is continuous because we are working
in R3 and 3/m < p < ∞. Since T	 : Wm−1,p(	) → Wm,p(	) is continuous
[20, Th. 2.3.8], we have T	 : Wm−1,p(	) → C0(	) is continuous. Thus since
(Df/f )W ∈ Wm−1,p(	),

NαT	[(Df/f )W ](.x) = sup{|T	[(Df/f )W ](.y)| : .y ∈ �α(.x)}
≤ sup{|T	[(Df/f )W ](.y)| : .y ∈ 	}
≤ ‖T	‖‖(Df/f )W‖Wm−1,p(	)

≤ Cf ‖T	‖‖W‖Wm−1,p (	), (6.3.10)

where Cf only depends on ‖Df/f ‖Wm−1,∞(	). Thus NT	[(Df/f )W ] is bounded
and in particular p-integrable. ��

A known result in harmonic analysis [8, 31] is the continuity of the Cauchy
operator F∂	 : Lp(∂	,H)→ Hp(	); that is, for every ϕ ∈ Lp(∂	),

‖NF∂	[ϕ]‖Lp(∂	) � ‖F∂	‖‖ϕ‖Lp(∂	), (6.3.11)

where � means that the left side does not exceed a constant times the right side.

Proposition 6.3.5 Let	 be a bounded Lipschitz domain,m ∈ Z
+, 3/m < p <∞,

m ≥ 2, and let f ∈ Wm,∞(	,R) be a proper conductivity. Suppose W ∈ Mf (	).
If W ∈ Wm−1,p(	,H), thenW belongs to the Vekua-Hardy space Hp

f (	), and

‖W‖Hp
f (	)

� ‖W‖Wm−1,p (	). (6.3.12)

Proof Since the Borel-Pompeiu formula (6.2.7) is valid in W 1,p(	,H) [20, Cor.
2.5.4], we have

W − T	[(Df/f )W ] = F∂	[trW ],

for every W ∈ Mf (	) ∩Wm−1,p(	,H). Thus F∂	[trW ] ∈ Hp(	). By (6.3.10)–
(6.3.11) and using the fact that tr : W 1,p(	)→ Lp(∂	) is continuous, we have

‖W‖Hp
f (	)

= ‖NW‖Lp(∂	)
≤ ‖NT	[(Df/f )W ] +NF∂	[trW ]‖Lp(∂	)
� Cf ‖T	‖‖W‖Wm−1,p (	) + ‖F∂	‖‖ trW‖Lp(∂	)
≤ C′

f ‖W‖Wm−1,p (	) <∞,

whereC′
f = Cf ‖T	‖+‖ tr ‖‖F∂	‖. Therefore (6.3.12) holds andW ∈ Hp

f (	). ��
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In particular, for m = 2 and f ∈ W 2,∞(	,R), we have in the range 3/2 < p <

∞ that

W 1,p(	,H) ∩Mf (	) ⊆ H
p
f (	).

6.4 Boundary Vekua-Hardy Spaces

We will write tr+W(.x) for the non-tangential limit of W(.y) as .y ∈ 	 tends to .x ∈
∂	within �α(.x) ⊆ 	. WhenW is in the Sobolev spaceW 1,p(	,H) (1 < p <∞),
where the trace is well defined, tr coincides with the non-tangential limit tr+ almost
everywhere in ∂	. Again, the equivalences of [31, Th. 4.1] tell us that W ∈ Hp(	)

if and only if W has non-tangential boundary limit tr+W(.x) at almost any point
.x ∈ ∂	.

Proposition 6.4.1 Let 	 be a bounded Lipschitz domain, 3 < p < ∞, and let
f ∈ W 1,∞(	,R) be a proper conductivity. Let W ∈ Hp

f (	)∩Lp(	,H). Then the
non-tangential limit tr+W(.x) exists for almost every .x ∈ ∂	.

Proof By (6.3.9) and the result [31, Th. 4.1] for classical Hardy spaces, we know
that the monogenic function W − T	[(Df/f )W ] ∈ Hp(	) has a non-tangential
limit for almost every .x ∈ ∂	. Since T	[(Df/f )W ] ∈ W 1,p(	,H), where tr = tr+,
W also has a non-tangential limit for almost all .x ∈ ∂	. ��

Since F∂	[trT	[(Df/f )W ]] = 0, we have for every W ∈ Hp
f (	) ∩ Lp(	,H)

with 3 < p <∞,

W = T	[(Df/f )W ] + F∂	[tr+W ].

6.4.1 The Vekua-Hilbert Transform

From this point we only discuss the case p = 2. At the beginning of this section
we recall results mainly from [14]. The Hilbert transform H : H 1/2(∂	,R) →
H 1/2(∂	,R3) for monogenic functions was defined in [14] in the context of
Sobolev spaces for bounded Lipschitz domains 	 ⊆ R3 with connected comple-
ment, following a construction given in [33, 34] for scalar boundary data in Lipschitz
domains or in the unit ball in Rn, respectively (see also [2] for a generalization for
k-forms on n-dimensional Lipschitz domains). The definition is

H[ϕ0] = −→
K (I +K0)

−1ϕ0, (6.4.1)
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whereK0 = ScS∂	, .K = VecS∂	, and S∂	 is the principal value three-dimensional
singular Cauchy integral operator

S∂	[ϕ](.x) = 2 P.V.
∫
∂	

E(.y − .x)η(.y)ϕ(.y)ds.y, .x ∈ ∂	, (6.4.2)

applied here only to scalar-valued functions.
The definition of the Vekua-Hilbert transform

Hf : H 1/2(∂	,R)→ H 1/2(∂	,R3)

in [14] requires additionally the Teodorescu transform (6.2.6) as follows. Given ϕ0 ∈
H 1/2(∂	,R), let W0 be the solution of the conductivity Eq. (6.2.4) satisfying the
boundary condition trW0 = f ϕ0. By [23, Th. 4.1],

‖W0/f ‖W 1,2(	) ≤ C	,ρ(f )‖ϕ0‖H 1/2(∂	), (6.4.3)

where C	,ρ(f ) only depends on 	 and ρ(f ). Set α0 + .α = tr T	
[−f 2∇(W0/f )

]
.

The Vekua-Hilbert transform is given by

Hf [ϕ0] = .α −H[α0]. (6.4.4)

Full details will be found in [14]. Further, by the Trace Theorem, α = α0 +
.α ∈ H 1/2(∂	,H). The characteristic property of Hf , justifying the name of this
operator, is expressed in the following result.

Proposition 6.4.2 [14, Th. 4.3, Prop. 4.8] Let 	 be a bounded Lipschitz domain
and let f ∈ W 1,∞(	,R) be a proper conductivity. Suppose that ϕ0 ∈ H 1/2(∂	,R).
Then the quaternionic function f ϕ0 + (1/f )Hf [ϕ0] is the trace of a solution of the
main Vekua equation (6.2.1) and the vector part .W ∈ W 1,2(	,R3) of the extension
satisfies

‖f .W‖W 1,2(	) ≤ C′
	,ρ(f )‖ϕ0‖H 1/2(∂	), (6.4.5)

where C′
	,ρ(f ) depends on C	,ρ(f ) and ‖f ‖W 1,∞(	).

In the following result we relate the solutions of the main Vekua equation
constructed through the Vekua-Hilbert transform Hf (6.4.4) to elements of the
Vekua-Hardy space H 2

f (	):

Proposition 6.4.3 Let 	 be a bounded Lipschitz domain and let f be a proper
conductivity inW 2,∞(	,R). Suppose that ϕ0 ∈ H 1/2(∂	,R). LetW = W0+ .W ∈
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W 1,2(	,H) be the solution of (6.2.1) such that

trW0 = f ϕ0,

tr f .W = Hf [ϕ0].

Then W ∈ H 2
f (	) and

‖W‖H 2
f (	)

� ‖ϕ0‖H 1/2(∂	). (6.4.6)

Proof This is a direct consequence of Propositions 6.4.2 and 6.3.5 with m = 2 and
p = 2. The inequality (6.4.6) comes from (6.3.12), from the estimate (6.4.5) for .fW
and from the regularity property of the solutions of the conductivity Eq. (6.4.3). ��

A fact that will be useful in the proof of Theorems 6.4.4 and 6.4.6 is that when
W and Z are solutions of (6.2.1) with identical scalar part, f (W − Z) = f ( .W −
.Z) is left-monogenic. This can be seen immediately from the equivalent div-curl
system (6.2.3) satisfied by the solutions of the main Vekua equation.

Consider the following linear subspace of the Vekua-Hardy space:

Ĥ 2
f (	) = {W ∈ H 2

f (	) : ScW ∈ W 1,2(	,R)}. (6.4.7)

Theorem 6.4.4 Let 	 be a bounded Lipschitz domain and let f ∈ W 2,∞(	,R)
be a proper conductivity. Let W ∈ Ĥ 2

f (	). Then the non-tangential limit tr+W(.x)
exists for almost every .x ∈ ∂	. Moreover,

‖W‖H 2
f (	)

� ‖ trW0‖H 1/2(∂	) + ‖ tr+ .W‖L2(∂	). (6.4.8)

Proof Let W = W0 + .W ∈ Ĥ 2
f (	). Then f ( .W − .Z) is left-monogenic, where

Z = W0 + .Z ∈ W 1,2(	,H) is the solution of (6.2.1) constructed through the
Vekua-Hilbert transform Hf ; that is, Hf [ϕ0] = tr f .Z where ϕ0 = tr(W0/f ). By
Proposition 6.4.3, Z ∈ H 2

f (	). Since f is a proper conductivity, f (W − Z) ∈
H 2(	), and using the basic equivalences for monogenic Hardy spaces [31, Th. 4.1],
the trace tr+ f (W − Z) exists. Therefore tr+W exists, so tr+ is well defined on
Ĥ 2
f (	).
Since f (W − Z) = F∂	[tr+ f (W − Z)], by (6.3.11) we have

‖Nf (W − Z)‖L2(∂	) � ‖F∂	‖‖ tr+ f ( .W − .Z)‖L2(∂	). (6.4.9)

By (6.4.6), (6.4.9) and the boundedness of Hf [14, Th. 4.7], we deduce

‖W‖H 2
f (	)

� ‖W − Z‖H 2
f (	)

+ ‖Z‖H 2
f (	)

� ‖1/f ‖L∞‖Nf ( .W − .Z)‖L2(∂	) + ‖ϕ0‖H 1/2(∂	)
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� ‖1/f ‖L∞‖F∂	‖
(
‖ tr+ f .W‖L2(∂	) + ‖Hf [ϕ0]‖L2(∂	)

)

+ ‖ϕ0‖H 1/2(∂	)

� ‖1/f ‖L∞‖F∂	‖‖ tr+ f .W‖L2(∂	)

+
(
‖1/f ‖L∞‖F∂	‖‖Hf ‖ + 1

)
‖ϕ0‖H 1/2(∂	).

��
By the proof of Theorem 6.4.4, we see that f (W − Z) ∈ H 2(	) ⊆ M2(	) ⊆

L2(	,H) and Z ∈ W 1,2(	,H) ⊆ L2(	,H). This gives us the following.

Proposition 6.4.5 Ĥ 2
f (	) ⊆ M̂2

f (	).

Theorem 6.4.4 is stronger than Proposition 6.4.1 for the range of validity of p;
actually the main tool in the proof of 6.4.4 is the Vekua-Hilbert transformHf for the
scalar boundary data as well as its vector extension provided by Proposition 6.4.2.
Recall the definition (6.4.7).

Theorem 6.4.6 Let 	 be a bounded Lipschitz domain and let f ∈ W 2,∞(	,R) be
a proper conductivity. Then

(a) Ĥ 2
f (	) is closed in L̂2(	,H);

(b) tr+ Ĥ 2
f (	) is closed in L̂2(∂	,H) = H 1/2(∂	,R)+ L2(∂	,R3);

(c)
(
f I + (1/f )Hf

)
H 1/2(∂	,R) ⊆ tr+ Ĥ 2

f (	).

Proof Let {Wn} ⊆ Ĥ 2
f (	) be a sequence such that Wn → W in L̂2(	,H).

By definition, {NWn} ⊆ L2(∂	,R). Let {Zn} ⊆ Ĥ 2
f (	) be the sequence

constructed through the Vekua-Hilbert transform Hf ; that is, Zn = W0,n + .Zn,
tr f .Zn = Hf [ϕ0,n] where ϕ0,n = tr(W0,n/f ). Since f is bounded, we have
{f (Wn − Zn)} ⊆ H 2(	). Let ϕ0 = tr(W0/f ). Then

‖f (ϕ0,n − ϕ0)‖H 1/2(∂	) ≤ ‖ tr ‖ ‖W0,n −W0‖W 1,2(	),

and W0,n → W0 in W 1,2(	,R), so f (Wn − Zn) → f (W − Z), where Z =
W0 + .Z ∈ H 2

f (	) is also given by Proposition 6.4.3; i.e., tr f .Z = Hf [ϕ0]. Using

that H 2(	) is closed in L2(	,H), we see that f (W − Z) ∈ H 2(	). Since 1/f is
bounded,W ∈ Ĥ 2

f (	).

The proof of part (b) is straightforward from the closedness of Ĥ 2
f (	) and

by (6.4.8). Part (c) is a consequence of Proposition 6.4.3 and Theorem 6.4.4. ��
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6.5 Closing Remarks

We have pointed out the close relationship of the spaces M̂
p

f (	) and Ĥ p

f (	) to
the three-dimensional Vekua-Hardy spaces, and have shown that they are Banach
spaces. Theorem 6.4.4 can be regarded as a Maximum Principle for functions
in the Vekua-Hardy subspace Ĥ p

f (	). For the Vekua-Hardy space in complex
numbers, the Maximum Principle is straightforward, because in the planar case
the Similarity Principle holds, and many properties are thus inherited automatically
from the holomorphic Hardy space. Even though we do not know whether there
exists a Similarity Principle for the three-dimensional main Vekua equation (6.2.1),
we have been able to compensate for this somewhat via the operator (6.3.8) and
the construction of f 2-hyperconjugates through the Vekua-Hilbert transform Hf ,
which has made possible results such as (6.4.8). A full theory could depend on the
development of the ideas of pseudoanalytic function theory for the Vekua equation,
and in particular any result implying that the operation of evaluation at a point is
a continuous operation in the Lp norm. Currently we do not even know whether
H
p

f (	) ⊆ M
p

f (	).
In [14], the Vekua-Hilbert transform Hf associated to the main Vekua equa-

tion (6.2.1) was introduced with the aid of a explicit solution of the div-curl system
in bounded Lipschitz domains. One can also consider the somewhat more general
Vekua equation

DW = (Dg/g)W + (Df/f )W (6.5.1)

with proper conductivities f, g ∈ W 1,∞(	,R). This is equivalent to U =
W0/(fg) + (f/g) .W satisfying the “quaternionic Beltrami equation”

DU = 1 − f 2

1 + f 2DU. (6.5.2)

ThusW satisfies (6.5.1) if and only if W0 and .W satisfy

div

(
f

g
.W
)
= 0, curl

(
f

g
.W
)
= −f 2∇

(
W0

fg

)
. (6.5.3)

This is again a homogeneous div-curl system, and when g ≡ 1, (6.5.3) reduces
to (6.2.3). The construction of the Vekua-Hilbert transform [14] and the results
of this work on the Vekua-Hardy spaces can readily be generalized for this more
general context.
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Radial and Angular Derivatives
of Distributions
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birthday

Abstract When expressing a distribution in Euclidean space in spherical co-
ordinates, derivation with respect to the radial and angular co-ordinates is far
from trivial. Exploring the possibilities of defining a radial derivative of the
delta distribution δ(x) (the angular derivatives of δ(x) being zero since the delta
distribution is itself radial) led to the introduction of a new kind of distributions, the
so-called signumdistributions, as continuous linear functionals on a space of test
functions showing a singularity at the origin. In this paper we search for a definition
of the radial and angular derivatives of a general standard distribution and again,
as expected, we are inevitably led to consider signumdistributions. Although these
signumdistributions provide an adequate framework for the actions on distributions
aimed at, it turns out that the derivation with respect to the radial distance of a
general (signum)distribution is still not yet unambiguous.
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7.1 Introduction

Let us consider a scalar-valued distribution T (x) ∈ D′(Rm) expressed in terms
of spherical co-ordinates: x = rω, r = |x|, ω = ∑m

j=1 ej ωj ∈ S
m−1,

(e1, e2, . . . , em) being an orthonormal basis of Rm and Sm−1 being the unit sphere
in Rm. The aim of this paper is to search for an adequate definition of the radial
and angular derivatives ∂r T and ∂ωj T , j = 1, . . . ,m. This problem was treated in
[2] for the special and interesting case of the delta distribution δ(x), the following
spherical co-ordinates expression of which is often encountered in physics texts:

δ(x) = 1

am

δ(r)

rm−1
(7.1.1)

where am = 2πm/2
�(m/2) is the area of the unit sphere Sm−1 in Rm. Apparently

expression (7.1.1) can mathematically be explained in the following way. Write the
action of the delta distribution as an integral:

ϕ(0) = 〈 δ(x), ϕ(x) 〉 =
∫
Rm

δ(x) ϕ(x) dV (x)

=
∫ ∞

0
rm−1δ(x) dr

∫
Sm−1

ϕ(r ω) dSω

= am

∫ ∞

0
rm−1 δ(x)�0[ϕ](r) dr

introducing the so-called spherical mean of the test function ϕ given by

�0[ϕ](r) = 1

am

∫
Sm−1

ϕ(r ω) dSω.

As it is easily seen that �0[ϕ](0) = ϕ(0), it follows that

am

∫ ∞

0
rm−1 δ(x)�0[ϕ](r) dr =

∫ ∞

0
δ(r)�0[ϕ](r) dr = 〈 δ(r),�0[ϕ](r) 〉

which explains (7.1.1). However we prefer to interpret this expression as

ϕ(0) = 〈 δ(x), ϕ(x) 〉 = 〈 δ(r),�0[ϕ](r) 〉 = �0[ϕ](0). (7.1.2)

Straightforward successive derivation with respect to r of (7.1.1) leads to

∂2

r δ(x) = 1

(2
)!(m)(m+ 1) · · · (m+ 2
− 1)
1

am

δ(2
)(r)

rm−1 , (7.1.3)
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∂2
+1
r δ(x) = 1

(2
+ 1)! (m)(m+ 1) · · · (m+ 2
)
1

am

δ(2
+1)(r)

rm−1 . (7.1.4)

Expression (7.1.3) then is interpreted as

〈 ∂2

r δ(x), ϕ(x) 〉 = 1

(2
)!(m)(m+ 1) · · · (m+ 2
− 1) 〈 δ(2
)(r),�0[ϕ](r) 〉

which is meaningful and which can serve as the definition of the even order
derivatives with respect to r of the delta distribution. However expression (7.1.4)
makes no sense since the spherical mean �0[ϕ](r) is an even function of r , whence
its odd order derivatives vanish at the origin:

〈 − ∂2
+1
r δ(r),�0[ϕ](r) 〉 = {∂2
+1

r �0[ϕ](r)}|r=0 = 0.

How to explain this fact that, proceeding stepwise by derivation with respect to
r , the even order derivatives of δ(x) apparently make sense, while its odd order
derivatives are zero distributions, in this way violating the basic requirement of any
derivation procedure that ∂r ∂r should equal ∂2

r ? Let us to that end have a quick look
at the functional analytic background of this phenomenon; for a more systematic
treatment we refer to [2].

When expressing a scalar-valued test function ϕ(x) ∈ D(Rm) in spherical co-
ordinates, one obtains a function ϕ̃(r, ω) = ϕ(rω) ∈ D(R× Sm−1), but it is evident
that not all functions ϕ̃(r, ω) ∈ D(R × Sm−1) stem from a test function in D(Rm).
However a one-to-one correspondence may be established between the usual space
of test functions D(Rm) and a specific subspace of D(R× Sm−1).

Lemma 7.1.1 (See [5]) There is a one-to-one correspondence ϕ(x) ↔ ϕ̃(r, ω) =
ϕ(rω) between the spaces D(Rm) and V = {φ(r, ω) ∈ D(R × Sm−1) : φ is even,
i.e. φ(−r,−ω) = φ(r, ω), and {∂nr φ(r, ω)}|r=0 is a homogeneous polynomial of
degree n in (ω1, . . . , ωm),∀n ∈ N}.
Clearly V is a closed (but not dense) subspace of D(R×Sm−1) and even of DE(R×
Sm−1), where the subscriptE refers to the even character of the test functions in that
space; this space V is endowed with the induced topology of D(R×Sm−1). The one-
to-one correspondence between the spaces of test functions D(Rm) and V translates
into a one-to-one correspondence between the standard distributions T ∈ D′(Rm)
and the bounded linear functionals in V ′, this correspondence being given by

〈 T (x), ϕ(x) 〉 = 〈 T̃ (r, ω), ϕ̃(r, ω) 〉.

By Hahn-Banach’s theorem the bounded linear functional T̃ (r, ω) ∈ V ′ may be
extended to the distribution T(r, ω) ∈ D′(R × S

m−1); such an extension is called a
spherical representation of the distribution T (see e.g. [9]). However as the subspace
V is not dense in D(R× S

m−1), the spherical representation of a distribution is not
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unique, but if T1 and T2 are two different spherical representations of the same
distribution T , their restrictions to V coincide:

〈 T1(r, ω), ϕ̃(r, ω) 〉 = 〈 T2(r, ω), ϕ̃(r, ω) 〉 = 〈 T̃ (r, ω), ϕ(rω) 〉 = 〈 T (x), ϕ(x) 〉.
For test functions in D(R × Sm−1) the spherical variables r and ω are ordinary
variables, and thus smooth functions. It follows that for distributions in D′(R ×
Sm−1) multiplication by r and ωj , j = 1, . . . ,m and differentiation with respect to
r and ωj , j = 1, . . . ,m are well-defined standard operations, whence

〈 ∂r T(r, ω),�(r, ω) 〉 = − 〈 T(r, ω), ∂r �(r, ω) 〉 (7.1.5)

for all test functions �(r, ω) ∈ D(R × Sm−1), and similar expressions for ∂ωj T,
r T and ωT. However if T1 and T2 are two different spherical representations of the
same distribution T ∈ D′(Rm), then, upon restriction to test functions ϕ̃(r, ω) ∈ V ,
we are stuck with

−〈 T1(r, ω), ∂r ϕ̃(r, ω) 〉 �= − 〈 T2(r, ω), ∂r ϕ̃(r, ω) 〉
because ∂r ϕ̃(r, ω) does no longer belong to V (and neither do ∂ωj ϕ̃(r, ω), r ϕ̃(r, ω)
and ω ϕ̃(r, ω)) since it is an odd function in the variables (r, ω). And it is also clear
that the action (7.1.5) might be unambiguously restricted to testfunctions in V if the
test function � were in a subspace of D(R × Sm−1) consisting of odd functions.
The conclusion is that the concept of spherical representation of a distribution does
not allow for an unambiguous definition of the actions proposed. What is more, it
becomes apparent that there is a need for a subspace of odd test functions. And at
the same time it becomes clear why even order derivatives with respect to r of the
delta distribution and of a standard distribution in general, are well-defined instead.
Indeed, we have e.g.

〈 ∂2

r T(r, ω),�(r, ω) 〉 = 〈 T(r, ω), ∂2


r �(r, ω) 〉
where now ∂2


r �(r, ω) belongs to DE(R× Sm−1) which enables restriction to test
functions in V in an unambiguous way.

7.2 Preliminaries

In this paper vectors in Rm will be interpreted as Clifford 1-vectors in the Clifford
algebra R0,m, where the basis vectors (ej , e2, . . . , em) of Rm, satisfy the relations
e2
j = −1, ei ∧ ej = eiej = −ej ei = −ej ∧ ei , ei · ej = 0, i �= j = 1, . . . ,m.

This allows for the use of the very efficient geometric or Clifford product of Clifford
vectors:

x y = x · y + x ∧ y
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for which, in particular,

x x = x · x = − |x|2

x being the Clifford 1-vector x =∑m
j=1 ej xj , whence also

ωω = ω · ω = − |ω|2 = −1.

For more on Clifford algebras we refer to e.g. [6].
The Dirac operator ∂ = ∑m

j=1 ej ∂xj , which may be seen as a Stein-Weiss
projection of the gradient operator (see e.g. [8]) and which underlies the higher
dimensional theory of monogenic functions (see e.g. [3, 4]), linearizes the Laplace
operator: ∂2 = −�. Its action on a scalar-valued standard distribution T (x) results
into the vector-valued distribution ∂ T (x) given for all ϕ(x) ∈ D(Rm) by

〈 ∂ T (x) , ϕ(x) 〉 =
m∑
j=1

ej 〈 ∂xj T (x) , ϕ(x) 〉 = −
m∑
j=1

ej 〈 T (x) , ∂xj ϕ(x) 〉

= − 〈 T (x) , ∂ ϕ(x) 〉

which is a meaningful operation since only derivatives with respect to the cartesian
co-ordinates are involved.

Two fundamental formulae in monogenic function theory are

{x, ∂} = x ∂ + ∂ x = − 2E−m and [x, ∂] = x ∂ − ∂ x = m− 2�

where

E =
m∑
j=1

xj ∂xj

is the scalar Euler operator, and

� =
∑
j<k

ej ek Ljk =
∑
j<k

ej ek(xj∂xk − xk∂xj )

is the bivector angular momentum operator. It follows that

x ∂ = −E− �

or more precisely

x · ∂ = −E and x ∧ ∂ = −�.
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7.3 Signumdistributions

As already observed in the introduction, ω is an ordinary (vector) variable in R ×
S
m−1, whence it makes sense to consider the following subspace of vector-valued

test functions in R× S
m−1:

W = ω V ⊂ DO(R× S
m−1;Rm) ⊂ D(R× S

m−1;Rm)

where now the subscript O refers to the odd character of the test functions under
consideration, i.e. ψ(−r,−ω) = −ψ(r, ω),∀ψ ∈ DO(R× Sm−1;Rm). This space
W is endowed with the induced topology of D(R× Sm−1;Rm). By definition there
is a one-to-one correspondence between the spaces V and W .

For each U(r, ω) ∈ D′(R×Sm−1;Rm) we define Ũ (r, ω) ∈ W ′ by the restriction

〈 Ũ(r, ω), ω ϕ̃(r, ω) 〉 = 〈 U(r, ω), ω ϕ̃(r, ω) 〉, ∀ ω ϕ̃(r, ω) ∈ W .

In Rm we consider the space 	(Rm;Rm) = {ωϕ(x) : ϕ(x) ∈ D(Rm)}. Clearly the
functions in 	(Rm;Rm) are no longer differentiable in the whole of Rm, since they
are not defined at the origin due to the function ω = x

|x| . By definition there is a
one-to-one correspondence between the spaces D(Rm) and 	(Rm;Rm).

For each Ũ(r, ω) ∈ W ′ we define sU(x) by

〈 sU(x), ω ϕ(x) 〉 = 〈 Ũ(r, ω), ω ϕ̃(r, ω)) 〉, ∀ ω ϕ(x) ∈ 	(Rm;Rm).

Clearly sU(x) is a bounded linear functional on 	(Rm;Rm), for which, in [2], we
coined the term signumdistribution.

Now start with a standard distribution T (x) ∈ D′(Rm) and let T(r, ω) ∈ D′(R×
Sm−1) be one of its spherical representations. Put S(r, ω) = ωT(r, ω) which in its
turn leads to the signumdistribution sS(x) ∈ 	′(Rm;Rm). Then we consecutively
have

〈 sS(x), ω ϕ(x) 〉 = 〈 S(r, ω), ω ϕ̃(r, ω) 〉 = 〈 ωT(r, ω), ω ϕ̃(r, ω) 〉
= − 〈 T(r, ω), ϕ̃(r, ω) 〉 = − 〈 T (x), ϕ(x) 〉

since ω2 = −1. We call sS(x) a signumdistribution associated to the distribution
T (x) and denote it by T ∨(x). It thus holds that for all test functions ϕ ∈ D(Rm)

〈 T ∨(x), ω ϕ(x) 〉 = − 〈 T (x), ϕ(x) 〉. (7.3.1)

At the same time we call T (x) the distribution associated to the signumdistribution
sS(x) and we denote this distribution by sS∧(x). Formula (7.3.1) then also reads

〈 sS(x), ω ϕ(x) 〉 = − 〈 sS∧(x), ϕ(x) 〉 (7.3.2)
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and it is clear that

T ∨∧ = T and sS∧∨ = sS.

At first sight for a given distribution T (x) the associated signumdistribution T ∨(x)
is not uniquely defined since its construction involves the not uniquely defined
spherical representation T of T (x). Nevertheless it follows from (7.3.1) that for
a given distribution T (x) its associated signumdistribution T ∨(x) is unique, what
can also be proven directly as follows.

Proposition 7.3.1 Given the distribution T (x) its associated signumdistribution
T ∨(x) is uniquely determined.

Proof Assume that T1 and T2 are two different spherical representations of T , i.e.
for all test functions�(r, ω) ∈ D(R× Sm−1;Rm) it holds that

〈 T1,�(r, ω) 〉 �= 〈 T2,�(r, ω) 〉

while for all test functions ϕ̃(r, ω) ∈ V it holds that

〈 T1, ϕ̃(r, ω) 〉 = 〈 T2, ϕ̃(r, ω) 〉 = 〈 T̃ , ϕ̃(r, ω) 〉.

Let T ∨
1 and T ∨

2 be the associated signumdistributions to T through the spherical
representations T1 and T2 respectively. Then for j = 1, 2 it holds that

〈 T ∨
j , ω ϕ(x) 〉 = 〈 Tj , ϕ̃(r, ω) 〉

whence T ∨
1 = T ∨

2 on 	(Rm;Rm). ��
Conversely, for a given signumdistribution sU ∈ 	′(Rm;Rm) we define the

associated distribution sU∧ by

〈 sU∧(x), ϕ(x) 〉 = − 〈 sU(x), ω ϕ(x) 〉 ∀ϕ(x) ∈ D(Rm).

Clearly it holds that

T ∨∧ = T and sU∧∨ = sU.

Example As an example consider the distribution T (x) = δ(x). Our aim is to define
the signumdistribution δ∨(x). A spherical representation of the delta distribution is
given by

〈 T(r, ω),�(r, ω) 〉 = �0[�(r, ω)]}|r=0.
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Indeed, when restricting to the space V and taking into account property (7.1.2), we
obtain

〈 T(r, ω), ϕ̃(r, ω) 〉 = �0[ϕ(r ω)]}|r=0 = 〈 δ(x), ϕ(x) 〉.

This particular spherical representation of T (x) induces the signumdistribution
associated to δ(x), which we define to be δ∨(x). It thus holds that for all test
functions ϕ ∈ D(Rm)

〈 δ∨(x), ω ϕ(x) 〉 = − 〈 δ(x), ϕ(x) 〉. (7.3.3)

For further examples we refer to [2].

7.4 The Dirac Operator in Spherical Co-ordinates

Passing to spherical co-ordinates x = rω, r = |x|, ω =∑m
j=1 ej ωj ∈ Sm−1, the

Dirac operator takes the form

∂ = ∂rad + ∂ang
with

∂rad = ω ∂r and ∂ang =
1

r
∂ω.

To give an idea what the angular differential operator ∂ω =∑m
j=1 ej ∂ωj looks like,

let us mention its explicit form in dimension m = 2:

∂ω = eθ ∂θ

and in dimensionm = 3:

∂ω = eθ ∂θ + eϕ 1

sin θ
∂ϕ,

the meaning of the polar co-ordinates θ and ϕ being straightforward. The operator
∂ω is sometimes called the spherical Dirac operator.

Taking into account that ∂ω is orthogonal to ω, the Euler operator in spherical
co-ordinates then reads:

E = − x · ∂ = − rω · ∂rad = − rω · ω ∂r = r ∂r
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while the angular momentum operator � takes the form

� = − x ∧ ∂ = − rω ∧ ∂ang = − rω ∧ 1

r
∂ω = −ω ∧ ∂ω = −ω ∂ω.

The question now is how to define, if possible, the action of the operators ∂rad and
∂ang on a standard distribution. To that end both operators should be expressed in
terms of cartesian derivatives. This is achieved as follows.

Definition 7.4.1 The actions of the operators ∂rad and ∂ang on a distribution T are
given by

∂rad T = ω ∂r T = − 1

x
E T

and

∂ang T = 1

r
∂ω T = − 1

x
� T .

It becomes clear at once that, in this way, the actions of ∂rad and ∂ang on a
standard distribution T (x) are well-defined but not uniquely defined. Indeed, due to
the division by the analytic function x, both expressions

∂rad T (x) = ω ∂r T (rω) = −
[

1

x
E T (x)

]
(7.4.1)

and

∂ang T (x) =
1

r
∂ω T (rω) = −

[
1

x
� T (x)

]
(7.4.2)

represent equivalent classes of distributions each two of which differ by a vector
multiple of the delta distribution δ(x). However if S1 = ∂rad T (x) and S2 =
∂ang T (x) are distributions arbitrarily chosen in the equivalent classes (7.4.1)
and (7.4.2) respectively, i.e.

x S1 = −E T (x) and x S2 = −�T (x)

this choice is not completely arbitrary since S1 and S2 always must satisfy the
relation

S1 + S2 = ∂rad T (x)+ ∂ang T (x) = ∂ T (x) (7.4.3)

where the right-hand side, quite naturally, is a known distribution once the distribu-
tion T has been given. One could say that the differential operators ∂rad and ∂ang
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are entangled in the sense that the results of their actions on a distribution are subject
to (7.4.3).

Example Let us give a simple example to illustrate the above phenomenon.
Consider the regular distribution T (x) = x. Then ∂ x = −m, E x = x and
� x = (m− 1) x, whence

(ω ∂r) x = −1 + c1 δ(x) and

(
1

r
∂ω

)
x = 1 −m+ c2 δ(x)

with the restriction that the vector constants c1 and c2 always must satisfy the
entanglement condition c1 + c2 = 0.

Apparently there seems to be no possibility to uniquely define the actions of
the ∂rad and ∂ang operators on a standard distribution by singling out specific
distributions in the equivalent classes (7.4.1) and (7.4.2), except for the following
two special cases.

(i) If the distribution T (x) is radial, i.e. only depends on r = |x|, then we put
1
r
∂ω T = 0 and ω ∂r T = ∂ T . This first special case is illustrated by the delta

distribution (see also [2]): 1
r
∂ω δ(x) = 0 and ω ∂r δ(x) = ∂ δ(x).

(ii) If the distribution T (x) is angular, i.e. only depends on ω = ω

|x| , then we put

ω ∂r T = 0 and 1
r
∂ω T = ∂ T . This second special case is illustrated by the

regular distribution ω for which ω ∂r ω = 0 and 1
r
∂ω ω = ∂ ω = −(m− 1) 1

r
.

In Sect. 7.6 we will expose two other cases where the actions of the ∂rad and ∂ang
operators are uniquely defined.

7.5 The Laplace Operator in Spherical Co-ordinates

As was already observed in Sect. 7.2, the Dirac operator factorizes the Laplace
operator: −� = ∂2. As the Laplace operator is a scalar operator it holds that

� = −∂ · ∂ = |∂|2.
Passing to spherical co-ordinates we obtain, in view of

∂rad ∂rad = − ∂2
r

∂rad ∂ang = − 1

r2
ω ∂ω + 1

r
ω ∂ω ∂r

∂ang ∂rad = − (m− 1)
1

r
∂r − 1

r
∂r ω ∂ω

∂ang ∂ang =
1

r2 ∂
2
ω
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the following expression for the Laplace operator:

� = − (∂rad + ∂ang)2

= ∂2
r + (m− 1)

1

r
∂r + 1

r2 (ω ∂ω − ∂2
ω)

= ∂2
r + (m− 1)

1

r
∂r + 1

r2
�∗

where

�∗ = ω ∂ω − ∂2
ω

is the Laplace-Beltrami operator, sometimes denoted by �0. The Laplace-Beltrami
operator is a purely angular scalar operator; as ω ∂ω = −� is a bivector operator, it
follows that

�∗ = − ∂ω · ∂ω = |∂ω|2 and ω ∂ω = ∂ω ∧ ∂ω = −�.

It is a nice observation that while the Laplace operator � is the normsquared
of the Dirac operator, the spherical Laplace or Laplace-Beltrami operator is the
normsquared of the spherical Dirac operator.

As is the case for the Laplace operator� =∑m
j=1 ∂

2
xj

, also the Laplace-Beltrami
operator may be expressed in terms of derivatives with respect to the cartesian
co-ordinates.

Proposition 7.5.1 The angular differential operators ∂2
ω and �∗ may be written in

terms of cartesian co-ordinates as

∂2
ω = �2 − (m− 1) �

and

�∗ = (m− 2) � − �2.

Proof One has

�2 = (−ω ∂ω)2 = ω ∂ω ω ∂ω

= ω ((1 −m)− ω ∂ω)∂ω
= (1 −m)ω ∂ω + ∂2

ω

= (m− 1) � + ∂2
ω
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and

�∗ = ω ∂ω − ∂2
ω

= −� − �2 + (m− 1) �

= (m− 2) � − �2.

��
There is a second, and, quite naturally, equivalent, way to write the Laplace-

Beltrami operator by means of cartesian derivatives. It only needs a straightforward
calculation to prove the following result.

Proposition 7.5.2 The Laplace-Beltrami operator may be written as

�∗ =
∑
j<k

L2
jk =

∑
j<k

(xj ∂xk − xk ∂xj )2.

The actions of the Laplace operator and the Laplace-Beltrami operator on a
distribution being uniquely well-defined, the question arises how to define the
actions on a distribution of the three parts of the Laplace operator expressed in
spherical co-ordinates. It turns out that these actions are well-defined, though not
uniquely, through equivalent classes of distributions.

Proposition 7.5.3 Let T be a scalar distribution. One has

(i) ∂2
r T = S2 + δ(x) c2 −∑m

j=1 c1,j ∂xj δ(x)

for arbitrary constants c2 and c1,j , j = 1, . . . ,m and any distribution S2 such
that x S2 = E S1 with x S1 = −E T

(ii) 1
r
∂r T = S3 + 1

m

∑m
j=1 c1,j ∂xj δ(x)+ c3 δ(x)

for arbitrarily constant c3 and any distribution S3 such that x S3 = S1
(iii) 1

r2 �
∗ T = S4 + c4 δ(x)+∑m

j=1 c5,j ∂xj δ(x)

for arbitrary constants c4 and c5,j , j = 1, . . . ,m and any distribution S4 such
that r2 S4 = �∗ T

Proof

(i) From Sect. 7.4 we know that

(ω ∂r) T = −
[

1

x
E T

]
= S1 + δ(x) c1
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with x S1 = −E T . It follows that

∂2
r T = − (ω ∂r)2 T

= − (ω ∂r) (S1 + δ(x) c1)

=
[

1

x
E S1

]
− ∂δ(x) c1

= S2 + δ(x) c2 − ∂δ(x) c1

with x S2 = E S1.
(ii) We have consecutively

1

r
∂r T = 1

x
(ω ∂r) T

= 1

x
(S1 + δ(x) c1)

= S3 + 1

x
δ(x) c1

= S3 + 1

m
∂ δ(x) c1 + δ(x) c3

with x S3 = S1.
(iii) The distribution�∗ T is uniquely defined and r2 is an analytic function with a

second order zero at the origin. The result follows immediately.
��

Remark 7.5.4 The operators ∂2
r , 1

r
∂r and 1

r2 �
∗ are entangled in the sense that,

given a distribution T and having chosen appropriately the distributions S1, S2,
S3 and S4, all arbitrary constants appearing in the expressions of Proposition 7.5.3
should satisfy the entanglement condition

∂2
r T + (m− 1)

1

r
∂r T + 1

r2 �
∗ T = �T

the distribution at the right-hand side being uniquely determined.

Example Proposition 7.5.3 may be generalised to distributions which are e.g. vector
valued. Let us illustrate this by considering the distribution T = x3 = − r3 ω, for
which, by a direct computation, �T = �(x3) = − 2 (m + 2) x, and �∗ T =
�∗ (x3) = (m− 1) r2 x = − (m− 1) x3.

As E T = E (x3) = 3 x3, we chose S1 = − 3 x2 = 3 r2 satisfying x S1 = − 3 x3.
As E S1 = E (−3x2) = − 6 x2 = 6 r2, we chose S2 = − 6 x satisfying x S2 =
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− 6 x2, and S3 = − 3 x satisfying x S3 = − 3 x2. Finally we chose S4 = (m− 1) x,
satisfying r2 S4 = �∗ T = (m− 1) r2 x. This leads to:

(i) ∂2
r T = ∂2

r (x
3) = − 6 x + δ(x) c2 −∑m

j=1 c1,j ∂xj δ(x)

(ii) 1
r
∂r T = 1

r
∂r (x

3) = − 3 x + 1
m

∑m
j=1 c1,j ∂xj δ(x)+ c3 δ(x)

(iii) 1
r2 �

∗ T = 1
r2 �

∗ (x3) = (m− 1) x + c4 δ(x)+∑m
j=1 c5,j ∂xj δ(x)

provided that the arbitrary constants should satisfy the entanglement conditions

{
c2 + (m− 1) c3 + c4 = 0

− 1
m
c1,j + c5,j = 0, j = 1, . . . ,m.

7.6 Radial and Angular Derivatives of Distributions

In Sect. 7.1 we explained why it is impossible to define the radial derivative ∂r T
and the vector angular derivative ∂ω T of a distribution T within the class of
distributions. Neither is it possible to multiply a distribution by the non-analytic
functions r and ω. For legitimizing those forbidden actions we have to take the
signumdistributions into consideration instead.

Definition 7.6.1 The product of a scalar-valued distribution T by the function ω is
the signumdistribution T ∨ associated to T , and it holds that

〈 ω T , ω ϕ 〉 = 〈 T ∨ , ω ϕ 〉 = − 〈 T , ϕ 〉.

Definition 7.6.2 The product of a scalar-valued distribution T by the function r is
the signumdistribution r T = (− x T )∨ given by

〈 r T , ω ϕ 〉 = 〈 x T , ϕ 〉 = 〈 T , x ϕ 〉

according to (the boldface part of) the commutative diagram

−x
T −→ − x T

−ω −r −ω↑ �↗ ↑↓ �↘ ↓
ω r ω

T ∨ = ω T −→ r T
−x

Remark 7.6.3 In the above commutative diagram, and in all the commutative
diagrams in the sequel of this paper as well, the row above is situated in the
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world of distributions, while the objects in the row below are signumdistributions.
Vertical transition from the distributions to the signumdistributions and vice versa
is executed by the multiplication operators ω and −ω respectively. Each of the
horizontally acting operators between distributions, has its counterpart in the world
of signumdistributions, and vice versa; e.g. in the above commutative diagram the
multiplication operator − x between the distributions T and − x T corresponds
with the multiplication operator − x between the signumdistributions T ∨ and
(− x T )∨ = r T . In fact this implies the definition of the multiplication of the
signumdistribution T ∨ = ω T by the function x resulting in the signumdistribution
− r T .

Definition 7.6.4 The derivative with respect to the radial distance r of a scalar-
valued distribution T is the equivalent class of signumdistributions

[∂r T ] = [−ω ∂r T ]∨ =
[

1

x
E T

]∨
= (S + c δ(x))∨ = ωS + ω δ(x) c

for any vector distribution S satisfying x S = E T , according to (the boldface part
of) the commutative diagram

−ω∂r
T −→

[
1
x ET

]

−ω −∂r −ω↑ �↗ ↑↓ �↘ ↓
ω ∂r ω

T ∨ = ω T −→ [∂rT]
−ω∂r

Remark 7.6.5 In the special case of a scalar-valued radial distribution T rad , its
radial derivative ∂r T rad is uniquely determined as the signumdistribution ∂r T rad =
(− ∂ T rad)∨ given by

〈 ∂r T rad , ω ϕ 〉 = 〈 ω∂r T rad , ϕ 〉 = 〈 ∂ T rad , ϕ 〉

according to (the boldface part of) the commutative diagram

−ω∂r
Trad −→ −∂ Trad

−ω −∂r −ω↑ �↗ ↑↓ �↘ ↓
ω ∂r ω

ω T rad −→ ∂rTrad = −ω ∂ Trad

−ω∂r
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Remark 7.6.6 The commutative diagram of Definition 7.6.4 implies the definition
of the action of the operator ∂rad = ω ∂r on the signumdistribution T ∨ = ω T

resulting in the (equivalence class of) signumdistributions − [∂r T ]. In the special
case where the distribution T is radial: T = T rad , the action of the operator ∂rad =
ω ∂r on ω T rad is the uniquely determined signumdistribution

(ω ∂r)ω T
rad = − ∂r T rad = ω(ω ∂r)T = ω ∂ T = (∂ T )∨

and for all test functions ω ϕ it holds that

〈 −ω ∂r T ∨ , ω ϕ 〉 = 〈 (ω ∂r T ∨)∧ , ϕ 〉 = 〈 ∂r T ∨ , ϕ 〉
= 〈 − (∂r T )∧ , ϕ 〉 = 〈 ∂r T , ω ϕ 〉.

Definition 7.6.7 The angular ∂ω-derivative of a scalar-valued distribution T is the
signumdistribution ∂ω T = (� T )∨ given by

〈 ω ϕ , ∂ω T 〉 = 〈 ϕ , ω ∂ω T 〉 = 〈 ϕ , −� T 〉

according to (the boldface part of) the commutative diagram

−ω∂ω
T −→ � T

−ω ω∂ωω −ω↑ �↗ ↑↓ �↘ ↓
ω ∂ω ω

T ∨ = ωT −→ ∂ω T
−∂ωω

Remark 7.6.8 The commutative diagram of Definition 7.6.7 implies the definition
of the action of the operator ∂ω ω on the signumdistribution T ∨ = ω T resulting
in the signumdistribution − ∂ω T , which in its turn implies the definition of the
action of the �-operator on the signumdistribution T ∨ = ω T resulting in the
signumdistribution

�(ω T ) = (m− 1) ω T − ∂ω T

since

∂ω ω = (1 −m)1 − ω ∂ω = (1 −m)1 + �.
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7.7 Actions on Signumdistributions

Definition 7.7.1 The product of a scalar-valued signumdistribution sU by the
function ω is the distribution − sU∧ associated to − sU , and it holds that

〈 ω sU , ϕ 〉 = 〈 − sU∧ , ϕ 〉 = 〈 sU , ω ϕ 〉.

Definition 7.7.2 The product of a scalar-valued signumdistribution sU by the
function r is the distribution r sU = x (sU)∧ given by

〈 r sU , ϕ 〉 = 〈 x (−ω sU) , ϕ 〉 = 〈 −ω sU , x ϕ 〉 = 〈 sU , −ω (x ϕ) 〉.
according to (the boldface part of) the commutative diagram

x
sU∧ = −ω sU −→ r sU

−ω r −ω↑ �↗ ↑↓ �↘ ↓
ω −r ω

sU −→ x sU

x

Remark 7.7.3 The commutative diagram of Definition 7.7.2 implies the definition
of the multiplication of the signumdistribution sU by the function x resulting in the
signumdistribution x sU given by

x sU = (r sU)∨ = ω (x sU∧) = ω
(
x (−ω) sU) .

Definition 7.7.4 The derivative with respect to the radial distance r of a scalar-
valued signumdistribution sU is the equivalent class of distributions

[
∂r
sU
] = [ω ∂r sU∧] =

[
− 1

x
E
sU∧
]
=
[

1

x
Eω sU

]
= T + c δ(x)

for any scalar distribution T satisfying x T = −E sU∧ = Eω sU , according to (the
bold face part of) the commutative diagram

ω∂r
sU∧ = −ω sU −→ [

∂r
sU
]

−ω ∂r −ω↑ �↗ ↑↓ �↘ ↓
ω −∂r ω

sU −→ ω [∂r sU ]
ω∂r



158 F. Brackx

Remark 7.7.5 As we have now at our disposal the definitions of the multiplication
by r (Definition 7.7.2) and of the radial derivative ∂r (Definition 7.7.4) of a
signumdistribution, we are able to define the action of the Euler operator E = r ∂r
on the signumdistribution sU , resulting into the unique signumdistribution E sU

given by

E
sU = (r ∂r )

sU = r (∂r
sU) = ω (−x [∂r sU ]) = ω (E sU∧) = ω (−x T ) = r T

for any distribution T satisfying x T = −E sU∧, according to the commutative
diagram

ω∂r −x
sU∧ = −ω sU −→ [∂r sU ] −→ E sU∧

−ω ∂r −ω −r −ω↑ �↗ ↑ �↗ ↑↓ �↘ ↓ �↘ ↓
ω −∂r ω r ω

sU −→ ω [∂r sU ] −→ ωE sU∧
ω∂r −x

Remark 7.7.6 The commutative diagram of Definition 7.7.4 implies the definition
of the action of the operator ∂rad = ω ∂r on the signumdistribution sU resulting in
the signumdistribution ω ∂r sU given by the equivalence class

[ω ∂r sU ] = ω
[
∂r
sU
] = ω

[
− 1

x
E
sU∧
]
= ω

[
1

x
Eω sU

]
=
[
− 1

x
E
sU

]
.

In particular, when sU is a radial signumdistribution: sU = sUrad , we define the
action of the Dirac operator ∂ on sUrad to be

∂ sUrad =
[
ω ∂r

sUrad
]
=
[

1

x
Eω sUrad

]
.

Definition 7.7.7 The angular ∂ω-derivative of a scalar-valued signumdistribution
sU is the distribution ∂ω sU = ∂ω ω

sU∧ according to (the boldface part of) the
commutative diagram

∂ωω
sU∧ = −ω sU −→ ∂ω

sU

−ω ∂ω −ω↑ �↗ ↑↓ �↘ ↓
ω ω∂ωω ω

sU −→ ω ∂ω
sU

ω∂ω
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Remark 7.7.8 The commutative diagram of Definition 7.7.7 implies the definition
of the action of the �-operator on the signumdistribution sU resulting in the
signumdistribution � sU given by

−� sU = ω ∂ω
sU = ω (∂ω

sU) = ω (∂ω ω
sU∧) = (∂ω ω

sU∧)∨.

7.8 Composite Actions of Two Operators

In the preceding sections we were able to define the actions on (signum-) distribu-
tions of the operators r , ω, ∂r , and ∂ω. In Sect. 7.1 it was argued that the composite
action by any two of those operators should lead to a legal action on distributions.
Let us find out now if this is indeed the case.

1. Multiplication of a distribution T by the analytic function r2 = − x2 =∑m
j=1 x

2
j is well defined. Through the following commutative diagram it is

shown that r(rT ) = r2 T :

− x x

T −→ − x T −→ r2 T

−ω −ω r −ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω r ω ω

ω T −→ r T −→ ω r2T

− x x

2. Multiplication of a distribution T by the analytic function x = r ω is well
defined. Through the commutative diagram of Definition 7.6.2 it is shown that
r(ω T ) = x T .

3. The action of the Euler operator E = ∑m
j=1 xj ∂xj on a distribution is well

defined. Through the following commutative diagram it is shown that r(∂r T ) =
E T :

−ω ∂r x

T −→ [−ω ∂r T ] =
[

1
x
E T
]

−→ E T

−ω −ω r −ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂r ω ω

ω T −→ [∂r T ] = ω
[

1
x
E T
]

−→ ωE T

−ω ∂r x
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4. The action of the operator x � = x
(∑

j<k ej ek(xj ∂xk − xk∂xj )
)

on a

distribution is well defined. Through the following commutative diagram it is
shown that r(∂ω T ) = x � T :

−ω ∂ω x

T −→ � T −→ x � T

−ω −ω r −ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂ω ω ω

ω T −→ ∂ω T −→ x ∂ω T

− ∂ω ω x

5. It is clear that ω (ω T ) = −T .
6. The action of the operator ω ∂r on a distribution is well defined, albeit not

uniquely but through an equivalence class instead, see (7.4.1). Definition 7.6.4
implies that ω [∂r T ] = [(ω ∂r) T ].

7. The action of the operator ω ∂ω = −� on a distribution is well defined.
Definition 7.6.7 implies that ω (∂ω T ) = −� T .

8. The action of the operator ∂2
r on a distribution was defined in Sect. 7.5 by the

equivalence class

∂2
r T =

[
− (ω ∂r)2 T

]
= S2 + δ(x) c2 −

m∑
j=1

c1,j ∂xj δ(x)

for arbitrary constants c2 and c1,j , j = 1, . . . ,m and any distribution S2 such
that x S2 = E S1 with x S1 = −E T , which is in complete agreement with the
commutative diagram

−ω ∂r ω ∂r

T −→ [−ω ∂r T ] =
[

1
x
E T
]

−→ [− (ω ∂r)2 T ]
−ω −ω ∂r −ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂r ω ω

ω T −→ [∂r T ] = ω
[

1
x
E T
]

−→ ω
[− (ω ∂r)2 T ]

−ω ∂r ω ∂r

9. Start with the observation that for a distribution T ,

∂r ∂ω T = ω ∂r (−ω ∂ω) T = −
[

1

x
E� T

]
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to see that the action of the operator ∂r ∂ω on a distribution is well-defined,
though not uniquely. Then the commutative diagram

−ω ∂ω ω ∂r

T −→ � T −→ ∂r ∂ω T

−ω −ω ∂r −ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂ω ω ω

ω T −→ ∂ω T −→ − ∂r � T
− ∂ω ω ω ∂r

shows that indeed ∂r (∂ω T ) = ∂r ∂ω T .
10. Start with the observation that for a distribution T ,

∂2
ω T = ∂ω ω (−ω ∂ω) T = (1 −m)� T + �2 T

to see that the action of the operator ∂ω on a distribution is well-defined.
Applying twice the commutative diagram of Definition 7.6.7 we obtain

−ω ∂ω ∂ω ω

T −→ � T −→ ∂2
ω T

−ω −ω ∂ω −ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂ω ω ω

ω T −→ ∂ω T −→ ω ∂2
ω T

− ∂ω ω ω ∂ω

showing that indeed ∂ω (∂ω T ) = ∂2
ω T .

7.9 Division of (Signum)Distributions by r

Division of a standard distribution T by an analytic function α(x) resulting in an
equivalent class of distributions S such that α(x) S = T , we expect the division of a
standard distribution by the non-analytic function r to lead to an equivalence class
of signumdistributions. Let us make this precise.

Definition 7.9.1 The quotient of a scalar distribution T by the radial distance r is
the equivalence class of signumdistributions

[
1

r
T

]
= ω

[
1

x
T

]
= ω (S + δ(x) c) = ω S + ω δ(x) c = S∨ + δ(x)∨ c
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for any vector-valued distribution S for which x S = T , according to (the boldface
part of) the commutative diagram

1
x

T −→
[

1
x T
]

−ω − 1
r

−ω↑ �↗ ↑↓ �↘ ↓
ω 1

r ω

T ∨ = ω T −→
[

1
r T
]

1
x

Example Let us illustrate Definition 7.9.1 by the case of the delta-distribution: T =
δ(x). As x ∂ δ(x) = mδ(x) and x δ(x) = 0 we have

1

x
δ(x) = 1

m
∂ δ(x)+ δ(x) c0

with c0 an arbitrary constant vector. It then follows that

[
1

r
δ(x)

]
= ω

[
1

x
δ(x)

]
= ω

[
1

m
∂ δ(x)+ δ(x) c0

]

= 1

m
ω ∂ δ(x)+ ω δ(x) c0 =

1

m
(∂ δ(x))∨ + δ(x)∨ c0

or, in view of the definition of ∂r δ(x),

[
1

r
δ(x)

]
= − 1

m
∂r δ(x)+ ω δ(x) c0.

However in this particular case of the delta-distribution it turns out that 1
r
δ(x) is

uniquely determined. Indeed, as ∂r δ(x) is a radial signumdistribution and as we
expect the signumdistribution 1

r
δ(x) to be SO(m)-invariant as well, the arbitrary

vector constant c0 should be zero, eventually leading to

1

r
δ(x) = − 1

m
∂r δ(x).

For the general case of the division of the delta-distribution by natural powers of r
we refer to [2].



7 Derivatives of Distributions 163

Remark 7.9.2 The commutative diagram of Definition 7.9.1 implies the definition
of the quotient of the signumdistribution T ∨ = ω T by r , viz. the equivalence class
of distributions

[
1

r
(ω T )

]
=
[
− 1

x
T

]

as well as the quotient of the same signumdistribution by x, viz. the equivalence
class of signumdistributions

[
1

x
(ω T )

]
=
[

1

r
T

]
.

It is also interesting and useful to define the division by r of a signumdistribution,
because it will lead to the definition of the action of the angular part ∂ang = 1

r
∂ω

of the Dirac operator on a signumdistribution, leading in its turn to the definition of
the action of the Dirac operator on a signumdistribution.

Definition 7.9.3 The quotient of a scalar-valued signumdistribution sU by the
radial distance r is the equivalence class of distributions

[
1

r

sU

]
=
[

1

x
ω sU

]
= S + δ(x) c

for any scalar-valued distribution S for which x S = ω sU , according to (the
boldface part of) the commutative diagram

− 1
x

−ωsU −→
[

1
r

sU
]

−ω 1
r

−ω↑ �↗ ↑↓ �↘ ↓
ω − 1

r ω

sU −→ ω
[

1
x
ω sU
]

− 1
x

Remark 7.9.4 The commutative diagram of Definition 7.9.3 implies the definition
of the quotient of the signumdistribution sU by x, viz. the equivalence class of
signumdistributions

[
1

x

sU

]
= −ω

[
1

x
ωsU

]
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as well as the quotient of the distribution ω sU by r , viz. the equivalence class of
signumdistributions

[
1

r
(ω sU)

]
=
[
− 1

x

sU

]
.

Now as we know how to act with the operator ∂ω on a distribution (see
Definition 7.6.7) and how to act with the operator 1

r
on a signumdistribution (see

Definition 7.9.3) we are now in the position to check the action on a distribution of
the composition of both operators, viz. the angular part ∂ang of the Dirac operator.
The outcome should match expression (7.4.2); that this is indeed the case is shown
by the following commutative diagram:

−ω∂ω − 1
x

T −→ � T −→
[

1
r
∂ω T
]
=
[
− 1

x
� T
]

−ω −ω 1
r

−ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂ω ω ω

ω T −→ ∂ω T −→ ω
[
− 1

x
� T
]

− ∂ω ω − 1
x

In the same order of ideas we can define the action of ∂ang = 1
r
∂ω on a

signumdistribution through the commutative diagram

∂ω ω
1
x

sU∧ = −ω sU −→ ∂ω
sU −→

[
1
x
∂ω

sU
]

−ω ∂ω −ω −ω↑ ↗ ↑ � ↑↓ � ↓ ↘ ↓
ω ω 1

r ω

sU −→ ω ∂ω
sU −→

[
1
r
∂ω

sU
]

ω∂ω
1
x

in other words

[
∂ang

sU
]
=
[

1

r
∂ω

sU

]
= ω

[
1

x
∂ω

sU

]
=
[
− 1

x
� sU

]
.

Combining the actions on a signumdistribution of the radial and angular parts of
the Dirac operator, we are able to define the action of the Dirac operator itself on a
signumdistribution.
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Definition 7.9.5 The action of the Dirac operator ∂ on the signumdistribution sU

is given by the equivalence class of signumdistributions

[
∂ sU
] =
[
(ω ∂r + 1

r
∂ω)

sU

]

=
[
− 1

x
E
sU

]
+
[
− 1

x
� sU

]

=
[
− 1

x
(E+ �) sU

]

=
[

1

x
(x ∂) sU

]

according to the commutative diagram

D

sU∧ = −ω sU −→
[
∂r
sU + 1

x
∂ω

sU
]

−ω −ω↑ ↑
↓ ↓

ω ω

sU −→ [
∂ sU
]

∂

whereD stands for the operator

D = ω ∂r + 1

x
∂ω ω

= ω ∂r − 1

r
ω ∂ω ω

= ω ∂r − 1

r
∂ω + (m− 1)

1

r
ω.

Example Let us illustrate Definition 7.9.5 with the following simple example;
Sect. 7.10 will offer more elaborated ones. Consider the signumdistribution x

defined by

〈 x , ω ϕ 〉 = 〈 x ω , ϕ 〉 = 〈 − r , ϕ 〉 =
∫
Rm

r ϕ̃(r, ω) dx

for which

E x = x
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and

� x = (m− 1)x

whence

[
∂ x
] =
[
− 1

x
mx

]
= [−m] = −m+ δ(x) c

As x∧ = r and D r = [mω], this result fits into the following commutative
diagram:

D

r −→ [
mω
]

−ω −ω↑ ↑↓ ↓
ω ω

x −→ [−m]
∂

Remark 7.9.6 The commutative diagram of Definition 7.9.5 shows that the Dirac
operator acting on signumdistributions, corresponds with the operator D acting
on distributions. We can wonder which operator acting on signumdistributions
corresponds to the Dirac operator ∂ = ∂rad + ∂ang = ω ∂r + 1

r
∂ω acting on

distributions. From the commutative diagram in Definition 7.6.4 we learn that
ω ∂r corresponds with ω ∂r , while we saw above that 1

r
∂ω corresponds with

− 1
r
ω ∂ω ω. It follows that the Dirac operator acting on distributions corresponds

with the operator ω ∂r − 1
r
ω ∂ω ω, which is precisely the operator D, acting on

signumdistributions.

Finally, as we know how to act with the multiplication operator 1
r

on a signumdis-
tribution, we can check the action on a distribution T of the composite operator
( 1
r
◦ ∂r ) T = 1

r
(∂r T ) which should coincide with the action ( 1

r
∂r ) T , defined,

though not uniquely, in Proposition 7.5.3 by 1
r
∂r T = S3 + 1

m

∑m
j=1 c1,j ∂xj δ(x)+

c3 δ(x) for arbitrarily constant c3 and any distribution S3 such that x S3 = S1 with
x S1 = −E T . That this is indeed the case is shown by the following commutative
diagram:

−ω ∂r − 1
x

T −→ [−ω ∂r T ] =
[

1
x
E T
]

−→
[

1
r2 E T

]

−ω −ω 1
r

−ω↑ � ↑ ↗ ↑↓ ↘ ↓ � ↓
ω ∂r ω ω

ω T −→ [∂r T ] = ω
[

1
x
E T
]

−→ ω
[

1
r2 E T

]
−ω ∂r − 1

x
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7.10 Two Families of Specific (Signum)Distributions

In the context of Clifford analysis a number of families of distributions were
thoroughly studied, see e.g. [1]. Of particular importance are the families Tλ and
Uλ, λ being a complex parameter. They are defined as follows.

〈 Tλ, ϕ(x) 〉 := am 〈 Fp rλ+m−1+ ,�0[ϕ](r) 〉r

〈 Uλ, ϕ(x) 〉 := am 〈 Fp rλ+m−1+ ,�1[ϕ](r) 〉r
where the so-called spherical means�0 and �1 are given by

�0[ϕ](r) = 1

am

∫
Sm−1

ϕ(rω) dS(ω)

�1[ϕ](r) = 1

am

∫
Sm−1

ω ϕ(rω) dS(ω)

and Fp rμ+ stands for the finite part distribution on the one-dimensional r-axis.
The distributions Tλ are standard distributions in harmonic analysis; as functions

of λ ∈ C they show simple poles at λ = −m,−m − 2,−m − 4, . . .. The most
important distribution is this family is T−m+2 = 1

rm−2 , which is, up to a constant,
the fundamental solution of the Laplace operator�.

The distributionsUλ form a typical Clifford analysis construct; they show simple
poles at λ = −m− 1,−m− 3,−m− 5, . . .. The most important distribution in this
family is U−m+1 = ω

rm−1 which is, up to a constant, the fundamental solution of the
Dirac operator ∂ (see Sect. 7.4).

Both families of distributions are intertwined by the action of the Dirac operator
∂, viz.

∂ Tλ = λUλ−1 λ �= −m,−m− 2,−m− 4, . . .

and

∂ Uλ = −(λ+m− 1) Tλ−1 λ �= −m+ 1,−m− 1,−m− 3, . . . .

In the setting of spherical co-ordinates these formulae take the form:

ω ∂r Tλ = λUλ−1
1

r
∂ω Tλ = 0 λ �= −m,−m−2,−m−4, . . . (7.10.1)

and

ω ∂r Uλ = −λTλ−1
1

r
∂ω Uλ = −(m− 1) Tλ−1 λ �= −m+ 1,−m− 1, . . . .

(7.10.2)



168 F. Brackx

When restricted to the half-plane Re λ > −m the distributions Tλ and Uλ are
regular, i.e. locally integrable functions. We know from [2] that a locally integrable
function can also be seen as a signumdistribution. Whence the definition of the
following two families of signumdistributions:

〈 sTλ, ω ϕ(x) 〉 := am 〈 Fp rλ+m−1+ ,�1[ϕ](r) 〉r

〈 sUλ, ω ϕ(x) 〉 := − am 〈 Fp rλ+m−1+ ,�0[ϕ](r) 〉r
It becomes clear at once that:

T ∨
λ = sUλ

and

U ∨
λ = − sTλ

Moreover sTλ inherits the simple poles of Uλ, viz. λ = −m− 1,−m− 3, . . ., while
sUλ inherits the simple poles of Tλ, viz. λ = −m,−m− 2, . . ..

Invoking the commutative diagrams of Sect. 7.6 we are now able to compute the
radial derivative of the distributions Tλ and Uλ, which at the time [1] and related
papers were written, we were not yet able to achieve. We obtain:

−ω∂r −ω∂r
− 1
λ
Tλ −→ Uλ−1 −→ (λ− 1)Tλ−2

−ω −∂r −ω −∂r −ω↑ �↗ ↑ �↗ ↑↓ �↘ ↓ �↘ ↓
ω ∂r ω ∂r ω

− 1
λ

s
Uλ −→ −sTλ−1 −→ (λ− 1)sUλ−2

−ω∂r −ω∂r

whence, for general λ, i.e. λ not in the simple poles mentioned above:

∂r Tλ = λ sTλ−1 ∂r Uλ = λ sUλ−1

formulae one should expect right from the start where it not that the results are no
longer distributions but signumdistributions instead.
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For the exceptional values of the parameter λ, in particular for those values which
give rise to the fundamental solutions of the Dirac and Laplace operators, we obtain,
in a similar manner, the following commutative diagram:

−ω∂r −ω∂r
T−m+2
m−2 −→ U−m+1 −→ −(m− 1)T−m + amδ(x)

−ω −∂r −ω −∂r −ω↑ �↗ ↑ �↗ ↑↓ �↘ ↓ �↘ ↓
ω ∂r ω ∂r ω

sU−m+2
m−2 −→ −sT−m+1 −→ −(m− 1)sU−m + amωδx

−ω∂r −ω∂r

Notice that at in this way we proved the formula

ω∂r U−m+1 = (m− 1)T−m − amδ(x)

which is additional to (7.10.2) and refines the traditional formula

∂ U−m+1 = −am δ(x).

We also proved

(ω ∂r)
sT−m+1 = − (m− 1) sU−m + am ω δ(x).

Compared with the similar formula at the distribution level, viz.

(ω ∂r) T−m+1 = − (m− 1) U−m,

the appearance of the signumdeltadistribution ω δ(x) might be surprising, but is
well understood when realizing that λ = −m is a regular point for U−m while it is a
simple pole for sU−m.

7.11 Conclusion

In his famous and seminal book [7] Laurent Schwartz writes on page 51: Using co-
ordinate systems other than the cartesian ones should be done with the utmost care
[our translation]. And right he is! Indeed, just consider the delta distribution δ(x):
it is pointly supported at the origin, it is rotation invariant: δ(A x) = δ(x), ∀A ∈
SO(m), it is even: δ(−x) = δ(x) and it is homogeneous of order (−m): δ(ax) =

1
|a|m δ(x). So in a first, naive, approach, one could think of its radial derivative
∂r δ(x) as a distribution which remains pointly supported at the origin, rotation
invariant, even and homogeneous of degree (−m−1). Temporarily leaving aside the
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even character, on the basis of the other cited characteristics the distribution ∂r δ(x)
should take the following form:

∂r δ(x) = c0 ∂x1δ(x)+ · · · + cm ∂xmδ(x)

and it becomes immediately clear that this approach to the radial derivation of the
delta distribution is impossible since all distributions appearing in the sum at the
right-hand side are odd and not rotation invariant, whereas ∂r δ(x) is assumed to be
even and rotation invariant. It could be that ∂r δ(x) is either the zero distribution
or is no longer pointly supported at the origin, but both those possibilities are
unacceptable. So from the start we are warned by this example that introducing
spherical co-ordinates x = rω, r = |x|, ω ∈ Sm−1 makes derivation of
distributions in Rm a far from trivial action, as are, in principle “forbidden”, actions
such as multiplication by the non-analytic functions r and ωj , j = 1, . . . ,m. But
there is more: functional analytic considerations on the space D(Rm) of compactly
supported smooth test functions expressed in spherical co-ordinates, forced us to
introduce a new space of continuous linear functionals on a auxiliary space of test
functions showing a singularity at the origin, for which, in [2], we coined the term
signumdistributions, bearing in mind that ω = x

|x| may be interpreted as the higher
dimensional counterpart to the signum function on the real line. It turns out that the
actions by r , ω, ∂r and ∂ω map a distribution to a signumdistribution and vice versa.
The basic idea behind the definition of these actions on a distribution T ∈ D′(Rm),
is to express the resulting signumdistributions as appropriate and “legal" actions on
T . So, for example, we put 〈rT , ωϕ〉 = 〈rωT , ϕ〉 = 〈xT , ϕ〉,∀ϕ ∈ D(Rm). This
idea may seem to be rather simple, but it is backed up by the functional analytic
considerations of Sect. 7.1, and it paves the way for easy to handle calculus rules as
established in [2].

Of the four aforementioned actions only the radial derivative ∂r T escapes,
in general, from an unambiguous definition, but leads to an equivalent class of
signumdistributions instead. Still we are able to define unambiguously ∂r T in two
particular cases: (i) when the given distribution T is radial, i.e. rotation invariant, and
(ii) when T = U∧ is the associated distribution to a given radial signumdistribution
U , these two particular cases being quite interesting since they correspond to two
families of frequently used distributions such as the fundamental solutions of the
Laplace and the Dirac operator, in Clifford analysis.
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8.1 Introduction

The magnetohydrodynamic equations (MHD) represent a combination of the
Navier-Stokes system with the Maxwell system. They describe fluid dynamical
processes under the influence of an electromagnetic field and have been the
subject of investigation of numerous authors since more than 20 years. As classical
references we emphasize [26] among others.

In general, there is a distinction made between the inviscid and the viscous
MHD equations. On the one hand, the inviscid MHD equations play an important
role in the description of the dynamic of astrophysical plasmas, for instance in the
description of the magnetic phenomena of the heliosphere and in the prediction of
the distribution of the solar wind density, see for example [16] and the references
therein. On the other hand, the viscous MHD equations have attracted a growing
interest by mathematicians and physicists over the last three decades. This topic
is in the main focus of recent interest, see for instance [2, 15, 23, 29], where new
criteria concerning the existence of global solutions and global well-posedness for
particular geometrical settings, in particular axially symmetric settings are being
developed. Also, it has recently been applied to medicine, such as in modelling of
hydromagnetic blood flows [25]. More classical results can be found in [17].

In this paper we revisit the three dimensional instationary incompressible viscous
MHD equations

− 1

Re
�u + ∂u

∂t
+ (u grad) u + grad p = 1

μ0
rotB × B in G (8.1.1)

− 1

Rm
�B + ∂B

∂t
+ (u grad) B − (B grad)u = 0 in G (8.1.2)

div u = 0 in G (8.1.3)

div B = 0 in G (8.1.4)

u = 0, B = h at ∂G. (8.1.5)

In the context of this paper G is some arbitrary time-varying Lipschitz domain
G ⊂ R3 × R+. The symbol u represents the velocity of the flow, p the pressure,
B the magnetic field, μ0 is magnetic permeability of the vacuum and Re and Rm
the fluid mechanical resp. magnetic Reynolds number. The first equation basically
resembles the time dependent Navier-Stokes equation—the external force however
is an unknown magnetic entity that also needs to be computed. Together with the
second equation the dynamics of the magnetic field, the velocity, and the pressure, is
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described. The third equation manifests the incompressibility of the flow. The forth
equation states the non-existence of magnetic monopoles. The remaining equations
represent the measured (known) data at the boundary � = ∂G of the domainG.

In [9, 14, 24] some global existence criteria for the weak solutions to the
instationary 3D MHD equations have been presented. These works use modern har-
monic analysis techniques as proposed in [4] for the incompressible Navier-Stokes
equations. However, many theoretical questions concerning existence, uniqueness
and regularity in the framework of general domains still remain open problems. In
particular, one is interested in improving the explicitness of these criteria and in
obtaining explicit analytic representation formulas for the solutions as well as for
the Lipschitz contraction constant being valid in all kinds of Lipschitz domains—
independently of the particular geometry of the domain.

Furthermore, we observed that in many cases dealing with large temporal
distances, the classical time stepping methods (like the Rothe method) are valid
for only small periods of time and, therefore, they often do not lead to the desired
result. These obstacles motivate us to develop alternative methods.

Over the last three decades the quaternionic operator calculus proposed by
K. Gürlebeck, W. Sprößig, M. Shapiro, V.V. Kravchenko, P. Cerejeiras, U. Kähler
and by their collaborators, see for example [5, 7, 18, 20], provides an alternative
analytic toolkit to treat the Navier-Stokes system, the Maxwell system and many
other elliptic PDE. The quaternionic calculus leads to further new explicit criteria
for the regularity, the existence and the uniqueness of the solutions. Moreover, it
turned out to be also suitable to tackle strongly time dependent problems very
elegantly. Based on the new theoretical results also new numerical algorithms could
be developed, see for instance [13]. Also fully analytic representation formulas for
the solutions to the Navier-Stokes equations and for the Maxwell and Helmholtz
systems could be established for some special classes of domains, cf. [10, 11].
An important advantage of the quaternionic calculus is that the formulas hold
universally for all bounded Lipschitz domains, independently of its particular
geometry.

As shown already by Sijue Wu in [27], quaternionic analytic methods could also
be applied to deal the well posedness problem in Sobolev spaces of the full 3D
water wave problem, where previously well established methods did not lead to any
success.

Since the quaternionic calculus provided an added value both in the treatment
of the Navier-Stokes system and of the Maxwell system, it is natural to expect
similar insightful results for the MHD system, since the latter one is a coupling
of both systems. In [19] we explained how we can compute the solutions of the time
independent stationary incompressible viscous MHD system with the quaternionic
integral operator calculus. Recently complex quaternions have also been used by
M. Tanisli, S. Demir, and T. Tolan to describe the dynamics of dyonic plasmas
in an elegante way. In future work we plan to address the fully time-dependent
incompressible viscous MHD equations using parabolic versions of the Dirac
operator for modelling these type of equations independent of particular geometric
constraints—except of regularity conditions on the boundaries
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The aim of this paper is to exploit another advantage of quaternionic methods—
namely that they are naturally predestinated to also address analogous MHD
problems in the more general context of conformally flat spin manifolds that arise
by factoring out some simply connected domain by a discrete Kleinian group. In
this paper we specifically look at MHD problems on several kinds of conformally
flat spin cylinders and tori as these are the most illustrative examples. In particular,
this paper provides a generalization of the idea used in [8] were we addressed the
“simpler” Navier-Stokes equations on these kind of manifolds without the influence
of a magnetic field.

It is worth to mention that in the same way how we treat flat spin cylinders or
tori we can also address their non-oriented conformally flat twisted analogues—
namely the Möbius strip and the Kleinian bottle—where we have pin- instead of
spin-structures.

The construction methods can easily be adapted by replacing the corresponding
integral kernels. In this paper we explain how to explicit construct the integral
kernels and how these are used in the resolution schemes for our specific MHD
problem on the cylinders tori. We finalize with a brief look at particular rotation-
invariant variants of these varieties and explain how our construction can easily be
transferred to this setting.

8.2 Preliminaries

8.2.1 The Quaternionic Operator Calculus

By e1, e2, e3 we denote the usual vector space basis R3. To introduce a multipli-
cation operation on R3, we embed it into the algebra of Hamiltonian quaternions
H. A quaternion has the form x = x0 + x := x0 + x1e1 + x2e2 + x3e3 where
x0, . . . , x3 are real numbers. Furthermore, x0 is called the real part of the quaternion
and will be denoted by 5(x). x is the vector part of x, also denoted by Vec(x). In
the quaternionic setting the standard basis vectors play the role of imaginary units,
we have e2

i = −1 for i = 1, 2, 3. Their mutual multiplication coincides with the
usual vector product, i.e., e1e2 = e3, e2e3 = e1, e3e1 = e2 and eiej = −ejei for
i �= j . We also need the quaternionic conjugation defined by ab = b a, ei = −ei ,
i = 1, 2, 3. The usual Euclidean norm extends to a norm on the whole quaternionic

algebra, i.e. |a| :=
√∑3

i=0 a
2
i .

The additional multiplicative structure of the quaternions allows us to describe all
C1-functions f : R3 → R3 that satisfy both div f = 0 and rot f = 0 equivalently in
a compact form as null-solutions to one single differential operator. The latter is the
three-dimensional Euclidean Dirac operator D :=∑3

i=1
∂
∂xi
ei . In spin geometry this

operator is also known as the Atiyah-Singer-Dirac operator. It naturally arises from
the Levi-Civita connection in the context of general Riemannian spin manifolds,
reducing to the above stated simple form in the flat case. In turn, the Euclidean
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Dirac operator coincides with the usual gradient operator when this one is applied
to a scalar-valued function. If U ⊆ R3 is an open subset, then a real differentiable
function f : U → H is called left quaternionic holomorphic or left monogenic inU ,
if Df = 0. In the quaternionic calculus, the square of the Euclidean Dirac operator
gives the Euclidean Laplacian up to a minus sign; we have D2 = −�. Consequently,
every real component of a left monogenic function is harmonic. This property allows
us to treat harmonic functions with the function theory of the Dirac operator offering
generalizations of many powerful theorems used in complex analysis. For deeper
insight, we refer the reader for instance to [12, 18].

To treat time dependent problems in R3 we follow the ideas of [7] and introduce
the “parabolic” basis elements f and f† which act in the following way

ff† + f†f = 1,

f2 = (f†)2 = 0,

fej = ej f = 0,

f†ej = ej f
† = 0.

The associated parabolic Dirac operators have the form

D±
x,t :=

3∑
j=1

ej
∂

∂xj
+ f

∂

∂t
± f†

and satisfy (D±
x,t )

2 = −�± ∂
∂t

. The fundamental solution to D+
x,t has the form

G(x, t) = H(t) exp(−|x|2
4t )

(2
√
πt)3

( 1

2t

3∑
j=1

ejxj + f(
3

2t
+ |x|2

4t2
)+ f†

)
,

whereH(·) stands for the usual Heaviside function. Solutions satisfyingD±
x,t f = 0

are called left parabolic monogenic (resp. antimonogenic).
For our needs we need the more general parabolic Dirac type operator, used for

instance in [1, 6], having the form

D±
x,t,k :=

3∑
j=1

ej
∂

∂xj
+ f

∂

∂t
± kf†

for a positive real k ∈ R. This operator factorizes the second order operator

(D±
x,t,k)

2 = −�± k2 ∂

∂t
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and has very similar properties as the previously introduced one. Its nullsolutions are
called left parabolic k-monogenic (resp. left parabolic k-antimonogenic) functions.

Adapting from [1, 6], the fundamental solution to D+
x,t,k turns out to have the

form

E(x, t; k) = √
k
H(t) exp(− k|x|2

4t )

(2
√
πt)3

( k
2t

3∑
j=1

ejxj + f(
3

2t
+ k|x|2

4t2
)+ kf†

)
.

Suppose that G is in general a space-time varying bounded Lipschitz domain G ⊂
R3 ×R+. In what followsWk,l

2 (G) denotes the parabolic Sobolev spaces of L2(G)

where k is the regularity parameter with respect to x and l the regularity parameter
with respect to t . For our needs we recall, cf. e.g. [1, 6, 7]

Theorem 8.2.1 (Borel-Pompeiu Integral Formula) Let G ⊂ R3 × R+ be a
bounded or unbounded Lipschitz domain with a strongly Lipschitz boundary � =
∂D. Then for all u ∈ W 1,1

2 (G)

∫

�

E(x−y, t− t0; k)dσx,t u(x, t) = u(y, t0)+
∫

G

E(x−y, t− t0; k)D+
x,t;k(u(x, t))dV dt,

where dσx,t = Dx,t�dV dt . The differential form dσx,t = Dx,t�dV dt is the
contraction of the operatorDx,t with the volume element dV dt .

For g ∈ Ker D+
x,t;k one obtains the following version of Cauchy’s integral formula

for left parabolic k-monogenic functions in the form

∫

�

E(x − y, t − t0; k)dσx,tu(x, t) = u(y, t0).

Again, following the above cited works, one can introduce the parabolic Teodorescu
transform and the Cauchy transform by

TGu(y, t0) =
∫
G

E(x − y, t − t0; k)u(x, t)dV dt

F�u(y, t0) =
∫
�

E(x − y, t − t0; k)dσx,tu(x, t).

Analogously to the Euclidean case one can rewrite the Borel-Pompeiu formula
in the form

Lemma 8.2.2 Let u ∈ W 1,0
2 (G). Then TGD

+
x,t;ku = u− F�u.

On the other hand one hasD+
x,t :kTGu = u. So, the parabolic Teodorescu operator is

the right inverse to the parabolic Dirac operator.
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The following direct decomposition of the space L2(G) into the subspace of
functions that are square-integrable and left parabolic k-monogenic in the inside of
G and its complement will be applied in this paper.

Theorem 8.2.3 (Hodge Decomposition) Let G ⊆ R3 × R+ be a bounded or

unbounded Lipschitz domain. Then L2(G) = B(G) ⊕ D+
x,t;k

◦
W

1,1

2 (G) where

B(G) := L2(G)∩ Ker D+
x,t;k is the Bergman space of left parabolic k-monogenic

functions, and where
◦
W

1,1

2 (G) is the subset of W 1,1
2 (G) with vanishing boundary

data.

Proofs of the above statements can be found for example in [1, 6, 7].
In what follows P : L2(G)→ B(G) denotes the orthogonal Bergman projection

while Q : L2(G)→ D+
x,t

◦
W

1,1

2 (G) stands for the projection into the complementary
space in all that follows. One has Q = I−P, where I stands for the identity operator.

8.3 The Incompressible In-Stationary MHD Equations
Revisited in the Quaternionic Calculus

In the classical vector analysis calculus the in-stationary viscous incompressible
MHD equations have the form

− 1

Re
�u + ∂u

∂t
+ (u grad) u + grad p = 1

μ0
rotB × B in G (8.3.1)

− 1

Rm
�B + ∂B

∂t
− (u grad) B + (B grad)u = 0 in G (8.3.2)

div u = 0 in G (8.3.3)

div B = 0 in G (8.3.4)

u = 0, B = h at ∂G (8.3.5)

with given boundary data u|∂G = g = 0 and B|∂G = h. To apply the quaternionic
integral operator calculus to solve these equations we first express this system in the
quaternionic language.

First we recall that we have for a time independent quaternionic function f :
R4 → R4, where (x0 + x) → f (x0 + x) = f0(x0 + x) + f(x0 + x), the relation
Df = grad f0 + rot f − div f. Here f0 = 5(f ) is the scalar part of f while
f = Vec(f ) ∈ R3 represents the vectorial part of f, and D := ∑3

i=0 ei
∂
∂xi

is the
quaternionic Cauchy-Riemann operator. Its vector part, denoted by D, is the three
dimensional Euclidean Dirac operator introduced in the previous section. In the case
where f is a vector valued function, i.e. a function defined in an open subset of R3
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with values in R
3 we have Df = rot f−div f. If p is a scalar valued function defined

in an open subset of R3, then we have Dp = grad p.
When applying these rules to the magnetic vector field B ∈ R

3 we obtain that
DB = rot B − div B. In view of Eq. (8.1.4) which expresses that there are no
magnetic monopoles, this equation reduces to DB = rot B. Furthermore, we can
express (DB) × B = Vec((DB) · B) in terms of the quaternionic product ·. The
divergence of an R

3-valued vector field f can be expressed as div f = 5(Df). The

three-dimensional Euclidean Laplacian � = ∑3
i=1

∂2

∂x2
i

can be expressed in terms

of the Dirac operator as � = −D2, applying the rule e2
i = −1 for all i = 1, 2, 3.

Let us next assume that our functions are also dependent on the time variable t .
Applying the formulas from the preceding section allow us to express the entities
− 1
Re
�u + ∂u

∂t
and − 1

Rm
�B + ∂B

∂t
in the form

− 1

Re
�u + ∂u

∂t
= (D+

x,t,Re)
2u

− 1

Rm
�B + ∂B

∂t
= (D+

x,t,Rm)
2B.

with

D+
x,t,Reu = 1√

Re
Du + f∂tu + f†u

D+
x,t,RmB = 1√

Rm
DB + f∂tB + f†B

Thus, the previous system (together with the mentioned restrictions) can be
reformulated in quaternionic form in the following way:

(D+
x,t,Re)

2u +5(u D) u + D p = 1

μ0
Vec((DB) · B) in G (8.3.6)

(D+
B,t,Rm)

2B − 5(u D) B + 5(B D)u = 0 in G (8.3.7)

5(Du) = 0 in G (8.3.8)

5(DB) = 0 in G (8.3.9)

u = 0, B = h at ∂G. (8.3.10)

The aim is now to apply the previously introduced hypercomplex integral operators
in order to get computation formulas for the magnetic field B, the velocity u, and
the pressure p.

We remark that whenever we fix the magnetic field B in the stationary version of
Eq. (8.3.6) we obtain (in the weak sense) the pressure p and the velocity u, c.f. [28].
In a similar way, given (u,p) in Eq. (8.3.7) we can recover the magnetic field B.
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Moreover, the solution for magnetic field is unique if the operator is hypoelliptic.
These results hold for the in-stationary case.

8.4 The MHD Equations in the More General Context
of Some Conformally Flat Spin 3-Manifolds

Due to the conformal invariance of the Dirac operator, the related quaternionic
differential and integral operator calculus canonically provides a simple access to
easily transfer the results and representation formulas summarized in the previous
section to the context of addressing analogous boundary value problems within the
more general context of conformally flat spin manifolds.

As a consequence of the famous Liouville theorem, in dimensions n ≥ 3
conformally flat manifolds are explicitly only those that possess atlasses whose
transition functions are Möbius transformations, because these are the only con-
formal transformations in Rn whenever n ≥ 3. The treatment with quaternions (or
with Clifford numbers in general) allow us to represent Möbius transformations in
the compact form f (x) = (ax + b)(cx + d)−1 where a, b, c, d are quaternions
satisfying to certain constraints, cf. [3].

Already the classical paper [21] mentions one possibility to construct a number
of examples of conformally flat manifolds, namely by factoring out a subdomain U
of R3 by a torsion-free subgroup� of the group of Möbius transformations�, under
the additional condition that the latter acts strongly discontinuously on U .

The topological quotientU/� then is a conformally flat manifold. Of course, this
construction just addresses a subclass of all conformally flat manifolds. However,
this subclass can be characterized in an intrinsic way. As shown in [21], the class
of conformally flat manifolds of the form U/� are exactly those for which the
universal cover of this manifold admits a local conformal diffeomorphism into S3

which is a covering map Ũ → U ⊂ S3.

The most popular examples are 3-tori, cylinders, real projective (rotation invari-
ant) space and the hyperbolic manifolds considered in [3] that arise by factoring
upper half-spaces, cones or positivity domains by arithmetic subgroups of higher
dimensional generalizations of the modular or Fuchsian group [3].

In order to generalize and to apply the representation formulas and the results that
we obtained in the previous sections for the instationary MHD system to the context
of analogous instationary boundary value problems on conformally manifolds we
only need to introduce the properly adapted analogues of the parabolic Dirac
operator as well as the other hypercomplex integral operators on these manifolds.
From the geometric point of view one is particularly interested in those conformally
flat manifolds that have a spin structure, that means those that admit the construction
of at least one spinor bundle over such a manifold. In many cases one gets more than
just one spin structure which leads to the consideration of (several) spinor sections,
in our case quaternionic spinor sections. For the geometric background we refer
to [22].
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We explain the method at the simplest non-trivial example dealing with con-
formally flat spin 1,2-cylinders and 3-tori with inequivalent spinor bundles. This
special example illustrates in a nice way how one can transfer the results and
construction method to other examples of conformally flat (spin) manifolds that
again are constructed by factoring out a connected domain by a discrete arithmetic
group of some higher dimensional modular groups, such as those roughly outlined
above.

For the sake of simplicity, let 	3 := Ze1 +Ze2 +Ze3 be the orthonormal lattice
in R3. Then the topological quotient space R3/	3 represents a three-dimensional
conformally flat compact torus denoted by T3, over which one can construct exactly
eight different conformally inequivalent spinor bundles over T3. With the additional
time coordinate t > 0, this leads to the consideration of a toroidal time half-
cylinder of the form 	3 × [0,∞) which then represents a non-compact manifold
with boundary in upper half space of R4 ∼= H, t > 0, denoted by H+. The invariance
group is an abelian subgroup of the hypercomplex modular group SL(2,H+) just
acting on the space coordinates. More generally, we can also factor out sublattices
of the form 	p := Ze1 + · · · + Zep where 1 ≤ p ≤ 3. The topological quotients
R3/	p are 1-resp. 2-cylinders in the cases p = 1 and p = 2 respectively, having
infinite extensions also in x3- (resp. also in the x2-) coordinate direction.

We recall that in general different spin structures on a spin manifold M are
detected by the number of distinct homomorphisms from the fundamental group
"1(M) to the group Z2 = {0, 1}. In the case of the 3-torus we have "1(T3) = Z3.
There are two homomorphisms of Z to Z2. The first one is θ1 : Z → Z2 : θ1(n) = 0
mod 2 while the second one is the homomorphism θ2 : Z → Z2 : θ2(n) = 1 mod
2. Consequently there are 23 distinct spin structures on T3, or more generally, 2p

different spin structures on Tp with p ≤ 3.
For the sake of generality, in what follows let p ∈ {1, 2, 3}. It is very easy to

construct all conformally inequivalent different spinor bundles over Tp. To describe
them let l be an integer in the set {1, 2, 3}, and consider the sublattice Zl = Ze1 +
. . .+Zel where (0 ≤ l ≤ p). For l = 0 we put Z0 := ∅. There is also the remainder
lattice Zp−l = Zel+1 + . . . + Zep. In this case Zp = {m + n : m ∈ Zl and
n ∈ Zp−l}. Let us now assume thatm = m1e1+ . . .+mlel . We identity (x,X) with
(x + m + n, (−1)m1+...+mlX) where x ∈ R3 and X ∈ H. This identification gives
rise to a quaternionic spinor bundle E(l) over Tp.

Clearly, R3 is the universal covering space of Tp. Thus, there is a well-defined
projection map P : R3 × R+ → Tp × R+, by identifying (x + ω, t) with all
equivalent points of the form (x mod 	p, t).

As explained for example in [3] every p-fold periodic resp. anti-periodic open
set U ⊂ R3 and every p-fold periodic resp. anti-periodic section f : U ′ ×[0,∞)→
E(l), which satisfies f (x, t) = (−1)m1+···+ml (x + ω, t) for all ω ∈ Zl ⊕ Zp−l ,
descends to a well-defined open setU ′ := P(U)×[0,∞) ⊂ Tp×[0,∞) (associated
with that particularly chosen spinor bundle) and a well-defined spinor section f ′ :=
P(f ) : U ′ ⊂ Tp × [0,∞)→ E(l) ⊂ H, respectively.
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The projection P : R3×[0,∞)→ Tp×[0,∞) induces well-defined cylindrical
resp. toroidal modified parabolic Dirac operators on Tp×R

+ by P(D±
x,t,k) =: D±

x,t,k
acting on spinor sections of Tp × R+. Sections defined on open sets U of Tp ×R+
are called cylindrical resp. toroidal k-left parabolic monogenic if D±

x,t,ks = 0 holds

in U . By D̃ := P(D) we denote the projection of the time independent Euclidean
Dirac operator down to the cylinder resp. torus Tp.

We denote the projections of the p-fold (anti-)periodization of the function
E(x, t; k) by

E(x, t; k) :=
∑

ω∈Zp⊕Zp−l
(−1)m1+···+mlE(x + ω, t; k).

This generalized parabolic monogenic Eisenstein type series provides us with
the fundamental section to the cylindrical resp. toroidal parabolic modified Dirac
operatorD±

x,t,k acting on the corresponding spinor bundle of the space cylinder resp.
space torus Tp. Indeed, the function E(x, t; k) can be regarded as the canonical
generalization of the classical elliptic Weierstraß ℘-function to the context of the
modified Dirac operator D+

x,t,k in three space variables x1, x2, x3 and the positive
time variable t > 0.

To show that E(x, t; k) is well-defined parabolic monogenic spinor section on
the manifold Tp × [0,∞), we have to show that this series actually converges.
The regularity behavior then is guaranteed by the application of the Weierstraß
convergence theorem.

Theorem 8.4.1 Let 1 ≤ p ≤ 3. Then the function series

E(x, t; k) =
∑

ω∈Zp⊕Zp−l
(−1)m1+···+mlE(x + ω, t; k)

converges uniformally on any compact subset of R3 × R+.

Proof The simplest way to prove the convergence is to decompose the full lattice
Zp into the the following particular union of lattice points 	 =⋃+∞

m=0	m where

	m := {ω ∈ Z
p | |ω|max = m}.

Next one defines

Lm := {ω ∈ Z
p | |ω|max ≤ m}.

The subset Lm contains exactly (2m + 1)p points. Hence, the cardinality of 	m
precisely is $	m = (2m+ 1)p − (2m− 1)p. Notice that this particular construction
admits that Euclidean distance between the set 	m+1 and the 	m is exactly dm :=
dist2(	m+1,	m) = 1. This is the motivation for this particular decomposition.
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Next, as a standard calculus argument one fixes a compact subset K ⊂ R
3 and

one considers t > 0 as an arbitrary but fixed value. Then there exists a r ∈ R such
that all x ∈ K satisfy |x|max ≤ |x|2 < r .

Let x ∈ K. For the convergence it suffice to consider those points with |ω|max ≥
[r] + 1.

As a consequence of the standard argumentation

|x + ω|2 ≥ |ω|2 − |x|2 ≥ |ω|max − |x|2 = m− |x|2 ≥ m− r

one may arrive at

+∞∑
m=[r]+1

∑
ω∈	m

|E(x, t; k)(x + ω)|2

≤ k

(2
√
πt)3

+∞∑
m=[r]+1

∑
ω∈	m

exp(−k|x + ω|2/4t)
( k

2t
|x + ω|2 + f(

3

2t
+ k|x + ω|22

4t2
)+ kf†

)

≤ k

(2
√
πt)3

+∞∑
m=[r]+1

(
[(2m+ 1)p − (2m− 1)p](k(r +m)

2t
+ f(

3

2t
+ k(r +m)2

4t2
)+ kf†)

× exp(
−k(m− r)2

4t
)
)
,

in view of m − r ≥ [r] + 1 − r > 0. This sum is absolutely uniformly convergent
because of the exponential decreasing term which dominates the polynomial
expressions in m. Due to the absolute convergence, the series

E(x, t; k) :=
∑

ω∈Zl⊕Zp−l
(−1)m1+···+mlE(x + ω, t; k),

which can be can be rearranged in the requested form

E(x, t; k) :=
+∞∑
m=0

∑
ω∈	m

(−1)m1+···+mlE(x + ω, t; k),

converges normally on R3 × R+. Since E(x + ω, t; k) belongs to Ker D+
x,t,k in

each (x, t) ∈ R3 × R+ the series E(x, t; k) satisfies D+
x,t,kE(x, t; k) = 0 in each

x ∈ R3 × R+, which, as mentioned previously, follows from the classical standard
Weierstraß convergence argument. �
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Obviously, by a direct rearrangement argument, one obtains that

E(x, t; k) = (−1)m1+···+mlE(x + ω, t; k) ∀ω ∈ 	

which shows that the projection of this kernel correctly descends to a section with
values in the spinor bundle E(l). The projection P(E(x, t; k)) denoted by Ẽ(x, t; k)
is the fundamental section of the cylindrical (resp. toroidal) modified parabolic
Dirac operator D̃+

x,t,k. For a time-varying Lipschitz domain G ⊂ T3 × R+ with
a strongly Lipschitz boundary � we can now proceed to define, similarly to our
description in the previous sections, the canonical analogue of the Teodorescu and
of the Cauchy-Bitzadse transform for toroidal k-monogenic parabolic quaternionic
spinor valued sections by

T̃Gu(y, t0) =
∫
G

Ẽ(x − y, t − t0; k)u(x, t)dV dt

F̃�u(y, t0) =
∫
�

Ẽ(x − y, t − t0; k)dσx,tu(x, t).

To transfer the integral operator calculus from the flat Euclidean space setting to
our setting we introduce the following norms on the manifolds and on the sections
with values in the associated spinor bundles. Let (x′, t) be an arbitrary point on
Tp × [0,∞). Then we put for 1 ≤ q ≤ ∞:

‖(x′, t)‖Tp,q := ‖P−1(x′, t)‖q := min
ω∈	p

‖(x + ω, t)‖q

where ‖ · ‖q is the usual q-norm on R3 × [0,∞).
Next we define the Lq -norm on an arbitrary quaternionic spinor section f ′ :

U ′ := U ×[0,∞) ⊂ Tp×[0,∞)→ E(l) ⊂ H with values in one of the previously
described spinor bundles E(l) by:

‖f ′‖Lq(U ′) := q

√√√√
∫

U

min
ω∈	p

{‖P−1f ((x + ω, t))‖q }dxdt

Similarly, for q < ∞ we may introduce the adequate Sobolev spaces of derivative
degree up to a fixed k ≥ 1 by:

‖f ′‖Wk
q (U

′) :=
(
‖f ‖q

L2(U ′) +
∑

0<‖α‖+β≤k

∥∥∥∥ ∂
|α|+β

∂xα∂tβ

∥∥∥∥
q

L2(U ′)

)1/q

.

An important property is the L1-boundedness of the cylindrical (toroidal) funda-
mental solution Ẽ(x′, t) in the norm ‖ · ‖L1 . To justify this we note that in view of
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using the particular definition of the norm ‖ · ‖Tp,1 we obtain:

‖Ẽ‖L1 =
∫

U ′
‖Ẽ(x′, t)‖Tp,1dx′dt

=
∫

U

min
ω∈	p

‖E(x + ω, t)‖1dxdt <∞,

since the fundamental solution E is an L1-function over any bounded domain U in
R3 ×R+ according to [7]. This allows us directly to establish

Proposition 8.4.2 Let 1 ≤ q < ∞. Let G′ ⊂ Tp × [0,∞) be a bounded domain.
Then the operator T̃G′ is bounded from Lq(G

′) to Lq(G′).

Proof In view of Young’s inequality we have

‖T̃G′g‖Lq(G′) = ‖Ẽ ∗ g‖Lq(G)′ ≤ ‖Ẽ‖L1(G′) · ‖g‖Lq(G′).

Since ‖Ẽ‖L1(G′) is a finite expression wheneverG′ is bounded, as shown previously,
we obtain the Lq -boundedness of T̃G′ . ��
As furthermore shown in [7] also the partial derivatives of E(x, t) are L1-bounded
under the condition that G is a bounded domain, we directly obtain by a similar
argument the following

Proposition 8.4.3 Let 1 ≤ q < ∞. Let G′ ⊂ Tp × [0,∞) be a bounded domain.
Then the partial derivatives of the operator T̃G′ with respect to xk (k = 1, 2, 3)
satisfy the mapping property:

∂xk (T̃G′g) : Lq(G′)→ Lq(G
′), k = 1, 2, 3

and are bounded.

To the proof one again only needs to apply Young’s inequality leading to

‖∂xk (T̃G′g)‖Lq(G′) = ‖(∂xk Ẽ) ∗ g‖Lq(G)′ ≤ ‖∂xk Ẽ‖L1(G′) · ‖g‖Lq (G′).

As a direct consequence of these two propositions we may now establish the
important result

Theorem 8.4.4 Let p ∈ {1, 2, 3}, 1 ≤ q < ∞ and let k ∈ N. Let G′ be a
bounded domain in the time p-cylinder (torus) Tp × [0,∞). Then the operator
T̃G′ : Lq(G′)→ Wk

q (G
′) is continuous.
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This property together with the Borel-Pompeiu formula presented in Sect. 8.2 also
implies that the operator

F̃� : Wk−1/q
q (�)→ Wk

q (G
′)

is continuous.
To complete the quaternionic integral calculus toolkit, the associated Bergman

projection can be introduced by

P̃ = F̃�(tr�T̃GF̃�)
−1tr�T̃G.

and Q̃ := Ĩ − P̃.
Now, adapting from [11] we obtain a direct analogy of Theorem 1, Lemma 1 and

Lemma 2 on these conformally flat time cylinders rep. time tori using these time
cylindrical (toroidal) versions T̃G, F̃� and P̃ of operators introduced in Sect. 8.2.
Suppose next that we have to solve an MHD problem of the form (1)–(5) within a
Lipschitz domainG ⊂ T3 × R+ with values in the spinor bundle E(l) × R+. Then,
imposing certain regularity conditions, which will be discussed in very detail in our
future work, we can compute its solutions by simply applying the following adapted
iterative algorithm

un = Re

μ0
T̃GQ̃T̃G

[
Vec((D̃Bn−1) · Bn−1)−5(un−1D̃)un−1

]

−Re2T̃GQ̃T̃GD̃pn

5(Q̃T̃GD̃pn) = 1

μ0
5
[
Q̃T̃G Vec((D̃Bn−1) · Bn−1)−5(un−1D̃)un−1

]

Bn = Rm2T̃GQ̃T̃G
[
5(BnD̃)un −5(unD̃)Bn

]
.

Bn(i) = Rm2T̃GQ̃T̃G
[
5(Bn(i−1)D̃)un −5(unD̃)Bn(i−1)

]

Again, in our future work, we will address a number of concrete existence
and uniqueness criteria for the solutions computed by this fixed point algorithm
involving some a priori estimate conditions.

Anyway, it is now clear how this approach even carries over to more general
conformally flat spin manifolds that arise by factoring out a simply connected
domain U by a discrete Kleinian group �. The Cauchy-kernel is constructed by
the projection of the �-periodization (involving eventually automorphy factors like
in [3]) of the fundamental solution E(x; t; k). With this fundamental solution we
construct the corresponding integral operators on the manifold. In terms of these
integral operators we can express the solutions of the corresponding MHD boundary
value problem on these manifolds, simply by replacing the usual hypercomplex
integral operators by its adequate analogies on the manifold. In this framework,
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of course one has to introduce the adequated norms and to consider the adequated
function spaces accordingly.

This again underlines the highly universal character of our approach to treat the
MHD equations but also many other complicated elliptic, parabolic, hypoelliptic
and hyperbolic PDE systems with the quaternionic operator calculus using Dirac
operators. Furthermore, the representation formulas and results also carry directly
over to the n-dimensional case in which one simply replaces the corresponding
quaternionic operators by Clifford algebra valued operators, such as suggested in
[7, 11].

To round off we establish a further result on the invariance behavior of the kernel
functions under rotations of S3 applied to the spatial coordinates. More precisely,
we have:

Theorem 8.4.5 Let a ∈ S3 := {x ∈ R3 | ‖x‖ = 1}. Then the Cauchy kernel
of the parabolic Dirac operator satisfies the invariance property aE(axa, t; k)a =
E(x, t; k) for all a ∈ S3.

Proof Let us consider the expression:

aE(axa, t; k)a = a

(
H(t) exp(−|axa|2

4t )

(2
√
πt)3

( 1

2t
axa + f(

3

2t
+ |axa|2

4t2
)+ f†

))
a

= H(t) exp(−|x|2
4t )

(2
√
πt)3

( 1

2t
aaxaa + af( 3

2t
+ |x|2

4t2
)a + af†a

)

= E(x, t; k)

where we applied the properties that aa = ‖a‖2 = 1, afa = f and af†a = f†. ��
This property opens the door to treat a class of S3-invariant manifolds. More
precisely, by identifying all points of the form (axa, t) with (x, t) we can construct
a class of rotation invariant projective orbifolds which under certain constraints on
a will be manifolds again.

Notice also the cylindrical and toroidal kernels E(x′, t) exhibit this rotation
invariance behavior. This is due to the fact that each single term in the series itself
exhibits this rotation invariance property, so that the whole series turn out to have
this property.

Moreover, this new identification can additionally be combined with the cylin-
drical (toroidal) translation invariance where one applies the identification of all
	p-equivalent points. This gives rise to an identification of all points of the time
cylinder (torus) (ax′a, t) with (x′, t). The associated orbifold resulting from this
identification that has both a translation and a rotation invariant structure. In some
dimensions we even obtain manifolds.

In the case where we restrict to those points from the unit sphere a ∈ S3 such
that there is a finite number n ∈ N with an = 1 which yields a finite cyclic group of
rotations A := {a, a2, . . . , an}, then the corresponding Cauchy kernel can again be
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constructed by an Eisenstein type series. The latter then has the explicit form

EA(x, t; k) =
∑
a∈A

∑
ω∈Zp⊕Zp−l

(−1)m1+···+ml aE(axa + ω, t; k)a

which then descends to a projective rotational variant of the cylinders/tori discussed
previously. Since A only has a finite cardinality, the convergence of this series is
guaranteed by the argument of Theorem 8.4.1.

Once one has that the kernel function, one again can introduce the corresponding
Teodorescu and Cauchy Bitzadse operators involving these explicit kernels in the
same way as performed previously to also address the corresponding boundary value
problems in these kinds of geometries introducing the norms properly. This once
more underlines the geometric universality of our approach where we do nothing
else than exploiting the conformal invariance of the Dirac operator.
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12. R. Delanghe, F. Sommen, V. Souček, Clifford Algebra and Spinor Valued Functions (Kluwer,
Dortrecht, 1992)

13. N. Faustino, K. Gürlebeck, A. Hommel, U. Kähler, Difference potentials for the Navier-Stokes
equations in unbounded domains. J. Differ. Equ. Appl. 12(6), 577–595 (2006)

14. S. Gala, Extension criterion on regularity for weak solutions to the 3D MHD equations. Math.
Methods Appl. Sci. 32(12), 1496–1503 (2010)

15. Y. Ge, S. Shao, Global solution of 3D incompressible magnetohydrodyanamic equations with
finite energy. J. Math. Anal. Appl. 425, 571–578 (2015)

16. H. Goedbloed, S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory
and Astrophysical Plasmas (Cambridge University Press, Cambridge, 2010)

17. M. Gunzburger, A. Meir, J. Peterson, On the existence, uniqueness and finite element
approximation of the equations of stationary, incompressible magnetohydrodynamics. Math.
Comput. 56(194), 523–563 (1991)

18. K. Gürlebeck, W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems
(Birkhäuser, Basel, 1990)

19. R.S. Kraußhar, On the incompressible viscous MHD equations and explicit solution formulas
for some three dimensional radially symmetric domains, in Hypercomplex Analysis and
Applications, ed. by I. Sabadini, F. Sommen. Trends in Mathematics (Birkhäuser, Basel, 2011),
pp. 125–137

20. V. Kravchenko, Applied Quaternionic Analysis. Research and Exposition in Mathematics, vol.
28 (Heldermann Verlag, Lemgo, 2003)

21. N.H. Kuiper, On conformally flat spaces in the large. Ann. Math. 50, 916–924 (1949)
22. H.B. Lawson, M.-L. Michelsohn, Spin Geometry (Princeton University Press, New York, 1989)
23. Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions. J.

Diff. Equ. 259, 3202–3215 (2015)
24. C. Miao, B. Yuan, On well-posedness of the Cauchy problem for MHD systems in Besov

spaces. Math. Methods Appl. Sci. 32(1), 53–76 (2010)
25. S. Rashidi, J.A. Esfahani, M. Maskaniyan, Applications of magnetohydrodynamics in biolog-

ical systems-a review on the numerical studies. J. Magn. Magn. Mater. 439, 358–372 (2017)
26. M. Sermagne, R. Temam, Some mathematical questions related to the MHD equations.

Commun. Pure Appl. Math. 6, 635–664 (1983)
27. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3D. J. Am. Math.

Soc. 12, 445–495 (1999)
28. E. Zeidler, Nonlinear Functional Analysis and ist Applications – IV. Applications to Mathe-

matical Physics (Springer, Berlin, 1988)
29. X. Zhai, Z. Yin, Global well-posedness for the 3D incompressible inhomogeneous Navier-

Stokes equations and MHD equations. J. Diff. Equ. 262, 1359–1412 (2017)



Chapter 9
Generalized Riesz Transforms,
Quasi-Monogenic Functions and Frames

Swanhild Bernstein and Sandra Schufmann

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract Monogenic functions can be extended to quasi-monogenic functions
using Fourier multipliers. It turns out that the whole class of quasi-monogenic
signals has similar properties than the monogenic signal based on the Riesz
transforms. Quasi-monogenic Riesz transforms can be used to construct frames.
We use quasi-monogenic functions to construct a linearized Riesz transform in
R3 that allows to define quasi-monogenic shearlets in the cone in R3. We further
prove that Riesz transforms and linearized Riesz transforms are Lp multipliers (for
1 < p <∞ and similarly for p = 1).

Keywords Quasi-monogenic functions · Riesz transforms · Fourier symbol ·
Generalized Riesz transform
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9.1 Introduction

Clifford analysis [5–7, 11, 12] is a refinement of harmonic analysis and function
theory. Complex function theory has a lot of applications. One application in signal
theory is the analytic signal introduced by Gabor [9], which is a quadrature filter and
can be mathematically described as values of an analytic function. The importance
and relevance of the analytic signal have forced a search for higher dimensional
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versions. One is the higher dimensional analytic signal by Hahn [13], which
describes boundary values of an analytic function in Cn and the monogenic signal
by Felsberg and Sommer [8], which are boundary values of a monogenic function.
At the same time the monogenic signal was introduced, Larkin [19] developed the
same theory from observations in optics.

The analytic signal is based on the Hilbert transform whereas the monogenic
signal is based on the Riesz transforms. Hilbert and Riesz transforms play an
important role in mathematics and optics [1, 3, 4]. Because the Hilbert transforms
of wavelets are wavelets, the connection of Riesz transforms and wavelets has
been studied intensively in the context of monogenic wavelets [17] and monogenic
curvelets [22]. The Riesz transforms themselves can be used to construct several
useful frames [20, 23]. Constructing specific monogenic shearlets was not possible
with the standard Riesz transforms because they commute with rotations but not
with shearings. That led to the so-called linearized Riesz transforms in R2. It turns
out that not only the Riesz transforms and linearized Riesz transforms can be used
to construct frames but a huge class of singular integral operators [24].

Embedding these ideas into Clifford analysis, Fourier multipliers were used
in [2] to construct quasi-monogenic functions in the Fourier domain. The notion
quasi-monogenic represents the fact that these functions share a lot of similar
properties with monogenic functions. The main development in this paper is the
construction of linearized Riesz transforms that commute with shearings in R3.

That is more complicated than in R2 [16], but it also gives an idea of how to do
it in Rn. Furthermore, we prove that the linearized Riesz transforms in R3 are
Lp, 1 < p < ∞, multipliers and fulfil similar properties for L1 based on the
Mikhlin-Hörmander multiplier theorem.

This chapter is organized as follows. After this introduction and the mathematical
preliminaries, we consider in Sect. 9.3 quasi-monogenic functions and some of
their properties. Section 9.4 is devoted to the Riesz transforms and linearized
Riesz transforms in R3 and the proof of commutation and multiplier properties.
Section 9.5 is concerned with frames, wavelets and shearlets.

9.2 Preliminaries

9.2.1 Clifford Algebras

Let C
n be the Clifford algebra over the field of complex numbers generated by
e1, . . . , en, and e0 the unit element of the Clifford algebra which fulfill

e2
0 = 1, e0ej = ej e0, e2

j = −1, eiej = −ej ei, i, j = 1, . . . , n.
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Because e0 is the unit element of the algebra, we identify e0 with 1. An arbitrary
element of the complex Clifford algebra can be represented as

a =
∑
A

aAeA, aA ∈ C.

where eA = ei1ei2 · · · eih, A = (i1, i2, . . . , ih) ⊂ {0, 1, . . . , n} ⊂ N, and 0 ≤ i1 <

i2 < · · · < ih ≤ n.

We denote the scalar part by Sc(a) = a0e0 = a0, the real part by Re(a) =∑
A Re (aA)eA, the imaginary part by Im(a) = ∑A Im (aA)eA. We also have

several conjugations, the complex conjugation of a complex number zC = Re (z)−
iIm (z), and aC = ∑A aA

CeA, the Clifford conjugation eC
0 = e0, eC
j = −ej and

eAeB
C
 = eB

C
eA
C
 and a combination of both a = ∑A aA

CeA
C
. The norm or

length of a complex quaternion is given by

|a|2 = Sc(aa) =
∑
A

aA
CaA.

Furthermore we define

|a|2∗ = aC
a = aaC
 = |Re(a)|2 − |Im(a)|2 + 2i〈Re(a), Im(a)〉.

Not all complex quaternions are invertible, since this algebra has zero divisors. A
complex quaternion is invertible if and only if |a|2∗ �= 0. The inverse quaternion is

uniquely determined and given by a−1 = aC


|a|2∗
. Let

C
(k)n = SpanC{eα1 · · · eαk : 1 ≤ α1 < · · · < αk ≤ n}

be the space of k-multivectors spanned by the reduced products eα = eα1 · · · eαk of

length k in the complex Clifford algebra C
n. Then C = C

(0)
n and Cn = C


(1)
n and

the space of paravectors C
(0)n ⊕ C

(1)
n will be thought of as Cn+1.

9.2.2 Function Spaces

A Clifford valued function u = ∑A uAeA belongs to Lp(D,C
n), where D is an
open domain in Rn, if all components uA ∈ Lp(D), 1 ≤ p < ∞. The norm
21−n∑

A

(∫
D
|uA|p dx

)1/p is equivalent to the norm

||u||Lp =
(∫

D

|u|p dx
)1/p

.
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For p = 2 the norm is induced by the scalar product

〈u, v〉 := Sc
∫
D

uv dx =
∑
A

uA
CvA.

The function space L2(Rn, C

(0)
n ⊕ C


(1)
n ) consists of all Clifford-valued function

f (x) = e0f0(x) + ∑j=1 ejfj (x), where fj (x) ∈ L2(Rn), j = 0, 1, . . . , n.

Furthermore, we equip L2(Rn, C

(0)
n ⊕ C


(1)
n ) with the scalar product

〈f, g〉 =
n∑
j=0

f
C

j gj , f, g ∈ L2(Rn, C
(0)n ⊕ C
(1)n ).

For all other spaces, the Clifford valued function u belongs to the function space
F if an only if all components uA belong to the scalar-value space F.

More on Clifford analysis and hypercomplex analysis can be found in
[5–7, 11, 12].

Given u in the Schwartz space S(Rn) of rapidly decreasing functions, we define
the Fourier transform of u as

(Fu)(ξ) = û(ξ) := 1

(2π)n/2

∫
Rn

u(x) e−i〈ξ, x〉 dx.

The inverse Fourier transform is given by

F−1(u) = u∨(x) := 1

(2π)n/2

∫
Rn

u(ξ) ei〈x, ξ〉 dξ .

Definition 9.2.1 (Lp-Multiplier [10]) Given 1 ≤ p <∞, we denote by Mp(R
n)

the space of all bounded functionsm on R
n such that the operator

Tm(f ) =
(
f̂ m
)∨
, f ∈ S(Rn),

is bounded on Lp(Rn)(or is initially defined in a dense subspace of Lp(Rn) and has
a bounded extension on the whole space). The norm of m in Mp(R

n) is defined by

||m||Mp
= ||Tm||Lp→Lp .

The function m is the Fourier symbol of the operator Tm. A function m ∈
Mp(R

n) is called an Lp- or Fourier multiplier and m is also called Fourier
symbol of the operator Tm.
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Theorem 9.2.2 (Hörmander-Mikhlin1 Multiplier Theorem [10]) Let m(ξ) be a
complex-valued bounded function on R

n\{0} that satisfies either

(a) Mikhlin’s condition

|∂αξ m(ξ)| ≤ A|ξ |−|α|

for all multi-indices |α| ≤
[n

2

]
+ 1,

(b) Hörmander’s condition

sup
R>0

R−n+2|α|
∫
R<|ξ |<2R

|∂αξ m(ξ)| dξ ≤ A2 <∞

for all multi-indices |α| ≤
[n

2

]
+ 1.

Then for all 1 < p <∞, m lies in Mp(R
n) and the following estimate is valid:

||m||Mp
≤ Cn max(p, (p − 1)−1)(A+ ||m||L∞).

Moreover, the operator f �→ (f̂m)∨ maps L1(Rn) to L1,∞(Rn), with norm at most
a dimensional constant multiple of A+ ||m||L∞ .
Remark 9.2.3 The space L1,∞(Rn) is a Lorentz space and its definition can be
found in [10], p. 48.

9.3 Quasi-Monogenic Functions

Driven from some application of “generalized Riesz transforms” we are looking for
operators that fulfill the following conditions. Let be Q1, . . . ,Qn ∈ L2(Rn,R) →
L2(Rn,R) an n-tuple of linear independent, bounded, linear operators. Then Q =∑n
j=1 ejQj is called a quadrature operator of order m if the following conditions

are fulfilled:

(i) Q is invariant under translation,
(ii) Q is invariant under positive dilations,

(iii) Q is self-inverting, i.e. Q2 = I,

(iv) Qi is anti-selfadjoint, i.e. Q∗
i = −Qi, i = 1, 2, . . . ,m.

Such an operatorQ gives raise to the quasi-monogenic signal.

1Mikhlin is a transliteration of the Russian name, there are also other versions like Mihlin or
Michlin.
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Definition 9.3.1 (Quasi-Monogenic Signal) The quasi-monogenic signal in
L2(Rn, C


(0)
n ⊕ C


(1)
n ) is defined as

Qmf = f +Qf = f +
n∑
j=1

ejQjf,

with amplitude

|Qmf | =
√√√√|f |2 +

n∑
i=1

|Qif |2,

and local phase

ϕ = arccos

(
f

|Qmf |
)
, ϕ ∈ [0, π],

and local orientation

q = Qf

|Qf | .

Any kind of convolution operator with Fourier symbol m(ξ) fulfills (i) and (ii).

For it to be self-inverting, we assume that (m(ξ))2 = 1 a. e. and to be anti-

selfadjoint, we assume that mj(ξ)
C = −mj(ξ), j = 1, . . . , n.

Definition 9.3.2 Let m be a Clifford vector, i.e. m∈C
(1)n , invertible with
(m(ξ))2 = 1 for all ξ ∈ Rn\{0} and an Lp- multiplier, 1 < p < ∞. We define the
Riesz transforms Rmj and the Riesz-Hilbert transform Hm associated with m as

Rmj u(x) = F−1
ξ→x

(
mj(ξ)û(ξ )

)
, Hmu(x) = F−1

ξ→x

(
m(ξ)û(ξ)

)
=

n∑
j=1

ejRmj u(x),

as well as the Dirac operator

DHm
= |D|Hm = F−1

ξ→x(|ξ |m(ξ)).

Next, we define quasi-monogenic functions in the upper and lower half space. Let be

χ+(ξ) = 1
2 (1 +m(ξ)), χ−(ξ ) = 1

2 (1 −m(ξ)),
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which satisfy

χ2+(ξ) = χ+(ξ ), χ2−(ξ ) = χ−(ξ), χ+(ξ)χ−(ξ ) = χ−(ξ)χ+(ξ ) = 0,

and decompose accordingly

L∞(Rn, C
n) = L+∞(Rn, C
n)⊕ L−∞(Rn, C
n)

into the subspaces

L+∞(Rn, C
n) = {u ∈ L∞(Rn, C
n) : uχ− = 0} = {u ∈ L∞(Rn, C
n) : uχ+ = u},
L−∞(Rn, C
n) = {u ∈ L∞(Rn, C
n) : uχ+ = 0} = {u ∈ L∞(Rn, C
n) : uχ− = u}.

Theorem 9.3.3 ([2]) Let û ∈ L+∞(Rn, C
n) and define U+ on R
n+1+ by

U+(x) = U+(x0e0 + x) = 1

(2π)n

∫
Rn

û(ξ)ei〈x, ξ 〉 e−x0|ξ | dξ,

when x0 > 0 and x ∈ R
n.

Analoguously, U−(x) = U−(x0e0 + x) = 1

(2π)n

∫
Rn

û(ξ)ei〈x, ξ 〉 ex0|ξ | dξ,

when x0 < 0 and x ∈ R
n.

Then the integral is absolutely convergent, and |U±(x)| ≤ c
|x0|n ||û||∞. Further-

more,

(1)
∂U±
∂x0

(x0e0+x)+DHm
U±(x0e0+x) = 0, x0e0+x ∈ R

n+1± , or in other words,

the functions U± are left quasi-monogenic on their respective half-spaces.
(2) lim

x0→0±U±(x0e0 + x) = P±U(x) for almost all x ∈ Rn. (Plemelj-Sochotzki

formulae)
(3) lim

x0→±∞U±(x0e0 + x) = 0 for all x ∈ Rn.

Then U+ is the quasi-monogenic Cauchy kernel

k(x) = k(x0e0 + x) = 1

(2π)n

∫
Rn

χ+(ξ)ei〈x, ξ 〉 e−x0|ξ | dξ.

Let x ∈ R
n and ωn = 2πn/2

�(n2 )
be the surface area of the (n − 1) dimensional unit

sphere. We denote by Pt (x) the Poisson kernel for Rn,

Pt (x) = 2

ωn+1

t

(t2 + |x|2) n2 with Fourier transform P̂t (ξ ) = e−t |ξ|.
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Then the Cauchy integral becomes

Cmf (t, x) = (Pt ∗ 1
2 (I +Hm)f )(x), (t, x) ∈ R

n+1+

and we obtain that 1
2 (I + Hm)f (x) = 1

2 (I +
∑n
j=1 ejR

m
j )f (x) are the boundary

values of a quasi-monogenic function with Fourier symbolm in the upper half space.

9.4 Lp Multiplier

9.4.1 Riesz Transforms

It is easily seen that all Riesz transforms Rmk , k = 1, . . . , n, are bounded linear
operators in L2(Rn). To construct frames, we need specific symbols to be Fourier
multipliers. We start with the well known classical Riesz transforms and show that
they are Fourier multipliers by using their Fourier symbols.

Theorem 9.4.1 For all 1 < p < ∞ the Riesz transforms are Lp(Rn) multipliers
and map L1(Rn) to L1,∞(Rn).

Proof The theorem follows from the boundedness of the Fourier symbol m and
from the Hörmander-Mikhlin Multiplier theorem [10]. Hence, we need to show for
each mk, k = 1, . . . , n, that for all multi-indices α with |α| ≤ [n2

] + 1, there is an
A ∈ R

+ so that

|∂αmk(ξ)| ≤ A

∣∣∣ξ
∣∣∣−|α| . (9.4.1)

To show (9.4.1), we need to find ∂αmk(ξ) = ∂α
ξk|ξ | .

Since ξk∣∣∣ξ
∣∣∣ = ∂k

∣∣∣ξ
∣∣∣ for all k ∈ {1, . . . , n} and |ξ | =

√
ξ2

1 + · · · + ξ2
n , we will

begin by constructing

∂βg
(
h
(
ξ
))
,

where g(t) = √
t , h(x) = x2

1 + · · · + x2
n and β is a multi-index.

We will later need the derivatives of g:

g′(x) = 1

2
x−

1
2 ,

g′′(x) = − 1

22 x
− 3

2 ,
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g′′′(x) = 1 · 3

23 x−
5
2 ,

...

g(t) = (−1)t+1 (2t − 2)!
(t − 1)!22t−1x

− 2t−1
2 . (9.4.2)

To differentiate the chain-function g (h (ξ)), we use Faá di Bruno’s formula [14]:

∂βg
(
h
(
ξ
))

=
∑
π∈"

g(|π |)(h)
∏
B∈π

∂ |B|h(ξ)∏
j∈B

∂xj
, (9.4.3)

where" is the set of all partitions of {1, . . . , |β|}, and

x1 = x2 = · · · = xβ1 = ξ1,

xβ1+1 = · · · = xβ1+β2 = ξ2,

...

· · · = x|β| = ξn.

We know that ∂ih(x) = 2xi and ∂iih(x) = 2 for all i ∈ {1, . . . , n}. All other
partial derivatives of h vanish. Therefore it suffices to look at those partitions in", in
which all elements are of the form {p} or {p, q} with xp = xq , p, q ∈ {1, . . . , |β|}.
For all other partitions the summands in (9.4.3) vanish.

We will now look at different partitions, i.e. partitions that lead to different
summands in (9.4.3): For each partition let bj be the number of elements of the
form {p}, with xp = ξj , and cj the number of elements of the form {p, q}, with
xp = xq = ξj , for all j = {1, . . . , n}. It follows that bj + 2cj = βj for all
j ∈ {1, . . . , n}.

For each set of bj+cj elements there are
βj !

bj !cj !2cj partitions of {i ∈ {1, . . . , |β|} :
xi = ξj }. Hence, the set {b1, c1, . . . , bj , cj , . . . , bn, cn} encompasses

n∏
j=1

βj !
bj !cj !2cj (9.4.4)

partitions.
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Using (9.4.4) in (9.4.3), we get

∂βg
(
h
(
ξ
))

=
∑

b1+2c1=β1

...
bn+2cn=βn

n∏
j=1

βj !
bj !cj !2cj g

(b+c)(h(ξ ))
n∏
j=1

(
∂2

∂ξ 2
j

h(ξ)

)cj (
∂

∂ξj
h(ξ)

)bj
,

where b =
n∑
j=1

bj and c =
n∑
j=1

cj . With (9.4.2), this leads to

∂βg
(
h
(
ξ
))

=
∑

b1+2c1=β1

.

.

.
bn+2cn=βn

n∏
j=1

βj !
bj !cj !2cj (−1)b+c+1 (2b + 2c − 2)!

(b + c − 1)!22b+2c−1
|ξ |−2b−2c+1

· 2c · 2b ·
n∏
j=1

ξ
bj
j

=
∑

b1+2c1=β1

.

.

.
bn+2cn=βn

n∏
j=1

βj !
bj !cj ! (−1)b+c+1 (2b + 2c − 2)!

2|β|−1(b + c − 1)!

n∏
j=1

ξ
bj
j

|ξ |2b+2c−1

We will now use this formula to show (9.4.1): Since |ξj | ≤ |ξ | for all j ∈
{1, . . . , n}, it follows that

n∏
j=1

|ξj |bj ≤ |ξ |b, so

n∏
j=1

|ξj |bj

‖ξ‖2b+2c−1 ≤ |ξ |−b−2c+1 = |ξ |−|β|+1.

Hence,

∣∣∣∂βg
(
h
(
ξ
))∣∣∣ ≤ ∑

b1+2c1 = β1
...

bn+2cn=βn

∣∣∣∣∣∣
n∏
j=1

βj !
bj !cj ! (−1)b+c+1 (2b + 2c− 2)!

2|β|−1(b + c − 1)!

∣∣∣∣∣∣

︸ ︷︷ ︸
=:A(β)

|ξ |−|β|+1.
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Since our goal is to show (9.4.1) for ∂α ξk|ξ | , let β = (α1, . . . , αk−1, αk +
1, αk+1, . . . , αn). Then |α| = |β| − 1 and

∂α
ξk

|ξ | = ∂β |ξ | ≤ A(β)|ξ |−|α|.

��

9.4.2 Linearized Riesz Transforms in R
2

The standard Riesz transforms are invariant under rotations, and due to Proposition
2 in [21], p. 58, the Riesz transforms generate all rotational invariant operators. The
Riesz transforms are rotational invariant but not invariant under shears. To get shear

invariant operators we represent
ξ

|ξ | in trigonometric form. We have

ξ = ξ1e1 + ξ2e2 = |ξ |
(
ξ1

|ξ |e1 + ξ2

|ξ |e2

)
= |ξ |e1

(
ξ1

|ξ | +
ξ2

|ξ |e1e2

)

= |ξ |e1

(
ξ1

|ξ | +
ξ2

|ξ |e3

)
= |ξ |e1 exp(e3θ(ξ)) = |ξ |e1

(
cos(θ(ξ))+ e3 sin(θ(ξ))

)

= |ξ |
(

cos(θ(ξ))e1 + sin(θ(ξ))e2

)
,

where θ(ξ) = arctan 2(ξ) = arctan 2
(
ξ2
ξ1

)
. Because the aim for the construction

of the modified Riesz transform is to have a transform that commutes with shears,
θ(ξ) will be linearized to θL(ξ) (cf. [16]) defined as

θL(ξ) :=

⎧⎪⎪⎨
⎪⎪⎩
(1 − sign(ξ1))sign(ξ2)

π

2
+ π

4

ξ2

ξ1
if (ξ1, ξ2) ∈ Ch,

sign(ξ2)
π

2
− π

4

ξ1

ξ2
if (ξ1, ξ2) ∈ Cv,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

4

ξ2

ξ1
if (ξ1, ξ2) ∈ Ch+,

π

2
− π

4

ξ1

ξ2
if (ξ1, ξ2) ∈ Cv+,

sign(ξ2)π + π

4

ξ2

ξ1
if (ξ1, ξ2) ∈ Ch−,

−π
2
− π

4

ξ1

ξ2
if (ξ1, ξ2) ∈ Cv−,

(9.4.5)
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Fig. 9.1 Cones

where the cones are defined as (Fig. 9.1)

Ch+ :=
{
(ξ1, ξ2) ∈ R

2 :
∣∣∣∣ξ2

ξ1

∣∣∣∣ ≤ 1, ξ1 ≥ 0

}
,

Ch− :=
{
(ξ1, ξ2) ∈ R

2 :
∣∣∣∣ξ2

ξ1

∣∣∣∣ ≤ 1, ξ1 ≤ 0

}
,

Cv+ :=
{
(ξ1, ξ2) ∈ R

2 :
∣∣∣∣ξ1

ξ2

∣∣∣∣ ≤ 1, ξ2 ≥ 0

}
,

Cv− :=
{
(ξ1, ξ2) ∈ R

2 :
∣∣∣∣ξ1

ξ2

∣∣∣∣ ≤ 1, ξ2 ≤ 0

}
,

and Ch = Ch+ ∪ Ch−, Cv = Cv+ ∪ Cv−,

The Linearized Riesz transforms RL,1, RL,2 were introduced by Häuser et al.
[16].

Definition 9.4.2 (Linearized Riesz Transforms [16]) The linearized Riesz trans-
forms RL,1, RL,2, L2(R2,R)→ L2(R2,R) are defined by

RL,1u(x) := F−1(−i cos(θL(ξ))̂u(ξ)), RL,2u(x) := F−1(−i sin(θL(ξ))̂u(ξ))

and HL = e1RL,1 + e2RL,2.

Theorem 9.4.3 ([2]) For all 1 < p < ∞, the linearized Riesz transforms
RL,1, RL,2 are Lp(R2)-multipliers and map L1(R2) to L1,∞(R2).
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In [16] it is shown that the linearized Riesz transforms are invariant under shears.
Let

Ss :=
(

1 s
0 1

)
, s ∈ R,

be the shear operator.

Lemma 9.4.4 ([16]) Let q be a scalar-valued filter function such that ĝ is sup-

ported in {ξ ∈ R2 :
∣∣∣∣ξ2

ξ1

∣∣∣∣ ≤ α}, where 0 ≤ α < 1. Then, for α − 1 ≤ s ≤ 1 − α,

RL, j (g(S
−1
s x)) = eis

π
4 (RL, jg)(S

−1
s x), j = 1, 2.

The linearized Riesz transform can be used to construct quasi-monogenic shearlets.

9.4.3 Linearized Riesz Transforms in R
3

We will extend the definition of the linearized Riesz transforms to three dimensions.
Recall that the Fourier multipliers of the Riesz Transform are mj(ξ) = −i ξj∣∣∣ξ∣∣∣ . For

n = 3 we will represent ξ in polar coordinates, ξ =
(
r,�2(ξ ),�1(ξ)

)
with �2 =

�2(ξ ) ∈ [0, 2π],�1 = �1(ξ) ∈ [0, π], where

tan�2 = ξ3

ξ2
,

tan�1 =
√
ξ2

3 + ξ2
2

ξ1
.

Then the Fourier multipliers can be written as

m1 = −i cos�1,

m2 = −i sin�1 cos�2,

m3 = −i sin�1 sin�2,

which are combined to

R̂f (ξ) =
3∑
j=1

ejmj (ξ)f̂ (ξ).
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Fig. 9.2 Partition of R3 into six cones

For the following definition, the angles �1 and �2 are redefined in a way, that
has its roots in the concept of pseudo-polar coordinates. First, we will divide the
space R

3 into three pairs of pyramids, which are in this context also called cones,
compare Fig. 9.2.

C1 =
{
ξ ∈ R

3 :
∣∣∣∣ξ2

ξ1

∣∣∣∣ ≤ 1,

∣∣∣∣ξ3

ξ1

∣∣∣∣ ≤ 1

}
,

C2 =
{
ξ ∈ R

3 :
∣∣∣∣ξ1

ξ2

∣∣∣∣ ≤ 1,

∣∣∣∣ξ3

ξ2

∣∣∣∣ ≤ 1

}
,

C3 =
{
ξ ∈ R

3 :
∣∣∣∣ξ1

ξ3

∣∣∣∣ ≤ 1,

∣∣∣∣ξ2

ξ3

∣∣∣∣ ≤ 1

}
.

From this definition it follows that for all ξ ∈ Ck , we have |ξk| =
max {|ξ1|, |ξ2|, |ξ3|} for k = 1, 2, 3. The following definition depends on the value
of k, i. e. on the cone that it is applied to.

Definition 9.4.5 (Linear Riesz Transform) The linearized Riesz transforms
RL,1, RL,2, RL,3 : L2(R3,R)→ L2(R3,R) are defined by

RL,ju(x) := F−1(mj (ξ))̂u(ξ)), j = 1, 2, 3,

and HL = e1RL,1 + e2RL,2 + e3RL,3, where for ξ ∈ Ck

mk(ξ) = −i sin�1(ξ),

mk2(ξ) = −i cos�1(ξ ) sin�2(ξ),

mk3(ξ) = −i cos�1(ξ ) cos�2(ξ)
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Fig. 9.3 Definition of angles for the cases ξ ∈ C1, ξ1 > 0 (left) and ξ ∈ C3, ξ3 > 0 (right)

with

(k2, k3) =

⎧⎪⎪⎨
⎪⎪⎩
(2, 3) if k = 1

(3, 1) if k = 2

(1, 2) if k = 3

.

Depending on the cone that ξ is in, the angles are defined in the following way
(Fig. 9.3).

�L,1(ξ) = ξk2

|ξk|
π

4
,

�L,2(ξ) =
{ ξk3
ξk

π
4 if ξk > 0

π + |ξk3 |
ξk

π
4 if ξk < 0

.

Then

|mk|2 + |mk2 |2 + |mk3 |2 = sin2�L,1 + cos2�L,1 sin2�L,2 + cos2�L,1 cos2�L,2

= sin2�L,1 + cos2�L,1

(
sin2�L,2 + cos2�L,2

)

= sin2�L,1 + cos2�L,1

= 1.

From the definition of the �L,k, k = 1, 2 it follows that �L,k(aξ) = �L,k(ξ),
and so mk(aξ) = mk(ξ) for all k = 1, 2, 3, a > 0 and ξ �= 0.

Theorem 9.4.6 For 1 < p < ∞, the Fourier multipliers of the linearized Riesz
transformsmL,k, k = 1, 2, 3, areLp(R3)multipliers and mapL1(R3) toL1,∞(R3).
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Proof Since all mL,k are bounded, we only need to show that Mihlin’s condition
[10] holds, i.e. for all multi-indices α with |α| ≤ [n2

]+1, there is an A ∈ R+ so that

|∂αm(ξ)| ≤ A · |ξ |−|α|. (9.4.6)

Since the Linear Riesz Transforms are symmetrical for each of the six cones in
C1, C2 and C3, it suffices to show (9.4.6) for ξ ∈ C1, ξ1 > 0.

In R3, (9.4.6) needs to be shown for |α| ≤
[

3
2

]
+ 1 = 2. Therefore, we will

approximate the first and second derivatives of m ∈ ML.
Each of m1, m2, m3 can be written as

ml(ξ) = −i trig1(ξ ) · trig2(ξ),

l = 1, 2, 3, with

trig1(ξ) =
{

sin�1(ξ ) if l = 1

cos�1(ξ ) if l = 2, 3
,

trig2(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if l = 1

sin�2(ξ) if l = 2

cos�2(ξ) if l = 3

.

Differentiatingml in the j th coordinate, j = 1, 2, 3, gives

∂jml(ξ) = −i∂j�1(ξ)trig′1(ξ )trig2(ξ)− i∂j�2(ξ )trig1(ξ )trig
′
2(ξ), (9.4.7)

where trig′1 and trig′2 are the first derivatives of the corresponding trigonometric
functions. Since |trigk(x)|, |trig′k(x)| ≤ 1 for all x ∈ R, k = 1, 2, we can
approximate (9.4.7) by

|∂jml(ξ)| ≤ |∂j�1(ξ)| + |∂j�2(ξ)|.

The first derivatives of �1 and �2 are

∂j�1(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

− ξ2

ξ2
1

π
4 if j = 1

1
ξ1

π
4 if j = 2

0 if j = 3

,

∂j�2(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

− ξ3

ξ2
1

π
4 if j = 1

0 if j = 2
1
ξ1

π
4 if j = 3

.
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Since |ξ2|, |ξ3| ≤ |ξ1| and ||ξ ||2 = ξ2
1 + ξ2

2 + ξ2
3 ≤ 3ξ2

1 , i. e. |ξ1|−1 ≤ √
3||ξ ||−1,

the derivatives can be approximated by

|∂j�1(ξ)|, |∂j�2(ξ)| ≤ 1

|ξ1|
π

4

≤
√

3π

4
||ξ ||−1. (9.4.8)

With that we have

|∂jml(ξ)| ≤
√

3π

2
‖ξ‖−1.

Now we will examine the case |α| = 2:
For the second derivatives of �1 and�2 we get

∂jr�1(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ2

ξ3
1

π
2 if j = r = 1

− 1
ξ2

1

π
4 if (j, r) = (1, 2), (2, 1)

0 else

,

∂jr�2(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ3

ξ3
1

π
2 if j = r = 1

− 1
ξ2

1

π
4 if (j, r) = (1, 3), (3, 1)

0 else

.

Because of |ξ2|, |ξ3| ≤ |ξ1| and |ξ1|−1 ≤ √
3||ξ ||−1, this means

|∂jr�1(ξ)|, |∂jr�2(ξ)| ≤ 1

ξ2
1

π

2

≤ 3π

2
||ξ ||−2. (9.4.9)

Differentiating (9.4.7) in the rth coordinate, r = 1, 2, 3, gives

∂jrml(ξ ) =− i∂jr�1(ξ )trig
′
1(ξ )trig2(ξ )− i∂j�1(ξ )∂r�1(ξ )trig

′′
1(ξ )trig2(ξ )

− ∂j�1(ξ )∂r�2(ξ )trig
′
1(ξ )trig

′
2(ξ )− i∂jr�2(ξ )trig1(ξ )trig

′
2(ξ )

− i∂j�2(ξ )∂r�1(ξ )trig′1(ξ )trig′2(ξ )− i∂j�2(ξ )∂r�2(ξ )trig1(ξ )trig
′′
2(ξ ),
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where trig′′1 and trig′′2 are the second derivatives of the corresponding trigonometric
functions. With (9.4.8), (9.4.9) and |trig′′k(x)| ≤ 1 for all x ∈ R, k = 1, 2, the above
can be approximated by

|∂jrml(ξ)| ≤ 2 · 3π

2
||ξ ||−2 + 4 ·

(√
3π

4
||ξ ||−1

)2

=
(

3π + 3

4
π2
)
||ξ ||−2.

��
We will now examine the behavior of the linearized Riesz transforms combined

with shear mappings. Shearings do not generally form a group under composition.
Sets of shearings along a fixed axis, however, form an abelian group. Thus, we will
only look at shearings along one axis, here the ξ3-axis.

Let S be the shear operator

S :=
⎛
⎝ 1 0 0

0 1 0
s1 s2 1

⎞
⎠ .

The following theorem shows that the Linearized Riesz Transform commutes
with shearings. Here, we generalize a result from [16].

Theorem 9.4.7 Let g ∈ L2
(
R

3,R
)

be a filter function such that ĝ is supported in{
ξ ∈ R3 :

∣∣∣ ξkξ3

∣∣∣ ≤ αk, k = 1, 2
}

, where 0 ≤ αk ≤ 1, k = 1, 2. Then, for αk − 1 ≤
sk ≤ 1 − αk , the relation

(RLg)
(
S−1·
)
= D

s1
π
4

1 D
s2
π
4

2 RLg
(
S−1·
)

where the rotations Dαk are defined as below, holds true. In other words, up to a
set of rotations by s2 π4 and s1 π4 , the linearized Riesz transform of the sheared filter
equals the sheared linearized Riesz transform of the filter.

Proof First we need to consider rotations in R3. Any rotation can be defined by a
plain, in which the rotation is to take place, and an angle α. The plain is well-defined
as the span of two orthogonal unit vectors .g1, .g2; the orientation of the rotation is
given by the order of those two vectors. We will denote the described rotation with
Dα.g1, .g2

.
Let .g1 and .g2 be given in polar representation, i.e. (1,�2,�1) with �2 ∈

[0, 2π], �1 ∈ [0, π]. We will denote a rotation where .g1 = (1,�2,�1) and
.g2 = (

1,�2 + π
2 ,�1

)
for all possible �k , k = 1, 2, as Dα2 . Similarly, Dα1

is to be the rotation with .g1 as above and .g2 = (
1,�2,�1 + π

2

)
. Note that

a specific Dαk is actually not one distinct rotation but a set of rotations that
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are dependent on the angles �2 and �1, and so on the vector that is to be
rotated.

It can easily be seen that if

�2 + α ∈ [0, 2π] for k = 2 and�1 + α ∈ [0, π] for k = 1, (9.4.10)

then Dαk is a well-defined mapping of R3 to itself,

Dα1 : (r,�2,�1) �→ (r,�2,�1 + α) .
Dα2 : (r,�2,�1) �→ (r,�2 + α,�1) .

In contrast to standard rotations,Dαk even commutes, i.e.

Dαk ◦Dβl = D
β
l ◦Dαk ,

as long as the condition in (9.4.10) is kept. This property can quickly be confirmed
by the fact that Dαk only changes one polar angle of the vector it is applied to, and
leaves the radius and other angle the same.

We can now show (9.4.7): Since S is a linear, invertible operator and det(S) = 1,
the General Stretch Theorem gives us

̂g
(
S−1·)(ξ) = | detS|ĝ

(
ST ξ
)

= ĝ(ξ1 + s1ξ3, ξ2 + s2ξ3, ξ3).

By the support assumption on g, this function becomes zero if one of the
conditions

−αk ≤ ξk + skξ3

ξ3
≤ αk, k = 1, 2

is not fulfilled.
Because of the restriction on sk , we have

−1 ≤ −αk − sk ≤ ξk

ξ3
≤ αk − sk ≤ 1.

Together with the definition of RL, we get for ξ3 > 0,

(
RLg
(
S−1·
))
(̂ξ ) = −i (1,�L,2(ξ),�L,1(ξ)) ĝ(ST ξ)

= −i
(

1,
ξ2

ξ3

π

4
,
ξ1

ξ3

π

4

)
ĝ(ST ξ).
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On the other hand,

∣∣∣∣∣
[
ST ξ
]
k[

ST ξ
]

3

∣∣∣∣∣ =
∣∣∣∣ξk + skξ3

ξ3

∣∣∣∣ =
∣∣∣∣ξkξ3

+ sk
∣∣∣∣

≤
∣∣∣∣ξkξ3

∣∣∣∣+ |sk| ≤ αk + (1 − αk) = 1, k = 1, 2,

so we get

(
(RLg)

(
S−1·
))
(̂ξ ) = R̂Lg

(
ST ξ
)

= −i
(

1,�L,2(ST ξ),�L,1(ST ξ)
)
ĝ(ST ξ)

= −i
(

1,
ξ2

ξ3

π

4
+ s2π

4
,
ξ1

ξ3

π

4
+ s1π

4

)
ĝ(ST ξ)

= −iDs1
π
4

1 D
s2
π
4

2

(
1,
ξ2

ξ3

π

4
,
ξ1

ξ3

π

4

)
ĝ(ST ξ)

= D
s1
π
4

1 D
s2
π
4

2

(
RLg
(
S−1·
))
(̂ξ ).

Similarly we can conclude for ξ3 < 0.
The assertion follows by taking the inverse Fourier transform and the Fourier

rotation theorem,

(RLg)

(
S−1·
)
= D

s1
π
4

1 D
s2
π
4

2 RLg
(
S−1·
)
.

��

9.5 Frames

Theorem 9.5.1 The quasi-monogenic Riesz transform Rm = ∑n
j=1 ejRmj maps

L2(Rn) → L2(Rn, C

(1)
n ) and the adjoint operator (Rm)∗F = −∑n

j=1 Rmj fj ,

where F =∑n
j=1 ejfj , maps L2(Rn, C


(1)
n )→ L2(Rn,R).
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Proof We have already proven that Rmk maps L2(Rn) into L2(Rn).We compute the
adjoint operator.

〈Rmf,G〉 =
n∑
j=1

∫
Rmj f (x)

C
Gj(x) dx =

n∑
j=1

∫
mj (ξ)f̂

C

Ĝj (ξ ) dξ

=
∫
f̂
C

⎛
⎝ n∑
j=1

mj(ξ)
C
Ĝj (ξ)

⎞
⎠ dξ = −

∫
f
C

⎛
⎝ n∑
j=1

f
C
Rmj RmGj(x)

⎞
⎠ dx,

i.e. (Rm)∗G(x) = −∑n
j=1 RmjGj (x). ��

It follows that

(Rm)
∗Rmf (x) = −

n∑
j=1

Rmj Rmj f (x) = f (x).

Definition 9.5.2 (Frame, Parseval Frame) A family {fj }j∈Z of elements of a
Hilbert space H is a frame if there exist positive constants A and B such that

A||f ||2 ≤
∑
n∈Z

|〈f, fn〉|2 ≤ B||f ||2 for all f ∈ H.

The frame is called tight if A = B and it is a Parseval frame if A = B = 1.

Theorem 9.5.3 Suppose that {ϕk : k ∈ Z} is a Parseval frame for L2(Rn). Then
the quasi-monogenic Riesz transform generates a frame:

{ψk,j = Rmj (ϕk) : k ∈ Z, j = 1, . . . , n},

with

f =
n∑
j=1

∑
k

〈f,ψk,j 〉ψk,j .

Proof From Theorem 9.5.1 it follows f = (Rm)
∗Rmf , thenRmj f can be expanded

in the original frame:

Rmj f =
∑
k∈Z

〈Rmj f, ϕk〉ϕk = −
∑
k∈Z

〈f,Rmj ϕk〉ϕk
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and hence

f = (Rm)
∗
(
−
∑
k∈Z

ej 〈f,Rmj ϕk〉ϕk
)
= −

n∑
j=1

Rmj

(
−
∑
k∈Z

〈f,Rmj ϕk〉ϕk
)

=
n∑
j=1

∑
k∈Z

〈f,ψk,j 〉ψk,j .

It is a tight frame due to

||Rmf ||22 =
n∑
j=1

||Rmj f ||22 =
n∑
j=1

∑
k∈Z

|〈Rmj f, ϕk〉|2 =
∑
k∈Z

|〈f,ψk,j 〉|2.

��

9.5.1 Riesz Wavelet Frames

We can get more results if we construct wavelet frames from a primal wavelet.
These wavelet frames are families of functions {ψi,k}k∈Zk,i∈Z that are indexed by
a pair (k, i) of location and scale indices. The wavelet ψk,i(x) is a dilated and
translated version of the mother wavelet ψ = ψ0,0, i.e. ψk,i(x) = DiTkψ(x) =
det(D)i/2ψ(D−i x − k), where D is dilation matrix with positive determinant.
The standard dyadic wavelets correspond to D = 2I. Theorem 9.5.1 implies the
decomposition/reconstruction formula

f =
n∑
j=1

∑
k∈Zd

∑
i∈Z

〈f,ψi,k,j 〉ψi,k,j , ∀f ∈ L2(Rn),

the coefficients of which can be obtained from coefficients of the primal wavelet:

〈f,ψi,k,j 〉 = 〈f,Rmj ψi,k〉 = 〈R∗
mj
f,ψi,k〉.

Because Rmj is a convolution operator and ψi,k = DiTkψ , we obtain 〈f,ψi,·,j 〉 =
〈R∗
mj
f,ψi,·〉 = R∗

mj
〈f,Diψ(x − ·)〉.

The first example is the classical Riesz transforms. Not only do Riesz transforms
form a frame, they are also invariant with respect to rotations and this property is
unique in the following sense:
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Theorem 9.5.4 ([21]) Let T = (T1, T2, . . . , Tn) be an n-tuple of bounded
transforms on L2(Rn). Suppose

(a) Each Tj commutes with translations of Rn,
(b) Each Tj commutes with (isotropic) dilations of Rn,
(c) For every rotation ρ = (ρjk) of Rn, ρTjρ−1f =∑k ρjkTkf.

Then the Tj are a constant multiple of the Riesz transforms, i.e. there exists a
constant c, so that Tj = cRj , j = 1, . . . , n.

An immediate consequence is the steerability of the Riesz transforms:

Definition 9.5.5 Let u ∈ Rn : |u| = 1 and let ρ ∈ SO(n) : u = ρe1. Then the
Riesz transform in direction u is given by

Ruf (x) = ρ−1R1ρf (x) =
n∑
l=1

ρ1,lRlf (x), ∀f ∈ L2(Rn), x ∈ R
n,

where ρk,l are the entries of the matrix ρ.

Hence the Riesz transform is steerable, since the Riesz transform with respect to
any direction u is a linear combination of the n Riesz transforms Rj with respect to
the basis directions.

But we can get even more:

Theorem 9.5.6 Let ψ ∈ L2(Rn) and let D be a rotated dilation, i.e. D := Ddρ,

where ρ ∈ SO(n). Then the monogenic wavelet transform is generated by the
monogenic mother wavelet

ψm := ψ + Rψ = ψ +
n∑
l=1

ekRlψ

and satisfies

Wψmf (t, j) = 〈f,Dj
dTtψm〉 +

n∑
l,k=1

el(ρ
j )k,l〈R∗

k f,D
j
dTtψm〉.

Proof

Wψmf (t, j) = 〈f,Dj
dTtψm〉 +

n∑
l=1

el〈f,Dj
dTtRlψm〉

= 〈f,Dj
dTtψm〉 +

n∑
l=1

el〈f,Ddj ρj TtRlψm〉
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= 〈f,Dj

dTtψm〉 +
n∑

l,k=1

el(ρ
j )k,l〈f,RkDdj ρjTtψm〉

= 〈f,Dj
dTtψm〉 +

n∑
l,k=1

el(ρ
j )k,l〈R∗

k f,Ddj ρ
j Ttψm〉

= 〈f,Dj
dTtψm〉 +

n∑
l,k=1

el(ρ
j )k,l〈R∗

k f,D
j
dTtψm〉

��
Because of 〈R∗

k f,D
j

dTtψm〉 = R∗
k 〈f,Dj

dTtψm〉 the coefficients of the monogenic
wavelet transform with the mother wavelet ψm can be directly computed from the
coefficients of the wavelet transform with the mother wavelet ψ.

Next, we would like to have a quasi-monogenic Riesz transform that interacts the
same way with shearings as Riesz transforms do with rotations.

9.5.2 Shearlets

Let ψ ∈ L2(R2,R) be a function that is composed of a wavelet ψ1 and a bump
function in Fourier domain ψ̂2 with supp ψ̂2 ⊆ [−1, 1]:

ψ̂(ξ) = ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)
.

Such a function fulfills the admissibility condition and will be a mother shearlet.

∫
R2

|ψ̂(ξ)|2
ξ2

1

dξ <∞

Additionally, the shearlets have a scaling function ϕ. For specific constructions see
[16, 18]. Let the parabolic scaling matrix Aα be defined by

Aa =
(
a 0
0
√
a

)
, a ∈ R

+.

Then the shearlets ψa,s,t are defined by dilation, shearing and translation

ψa,s,t (x) := a
− 3

4ψ(A−1
a S−1

s (x − t)).
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The continuous shearlet transform SHψ(f ) of a function f ∈ L2(R2) is defined by

SHψ(f )(a, s, t) := 〈f,ψa,s,t 〉 = 〈f̂ , ψ̂a,s,t〉.

Classical continuous shearlet systems do exhibit a directional bias. This problem can
be resolved by partitiong the Fourier domain into four conic regions and considering
the low frequencies separately. Therefore, we define the restricted horizontal and
vertical cones by

Ch :=
{
(ξ1, ξ2) ∈ R

2 : |ξ1| ≤ 1

2
, |ξ2| < |ξ1|

}
,

Cv :=
{
(ξ1, ξ2) ∈ R

2 : |ξ2| ≤ 1

2
, |ξ2| > |ξ1|

}
,

respectively, and the “ìntersection” of the two cones and the low frequency set by

Cx :=
{
(ξ1, ξ2) ∈ R

2 : |ξ1| ≤ 1

2
, |ξ2| ≤ 1

2
, |ξ1| = |ξ2|

}
,

C0 :=
{
(ξ1, ξ2) ∈ R

2 : |ξ1| < 1, |ξ2| < 1
}
.

To obtain discrete shearlets on the cone, the discrete scaling and shear parameters
are chosen to be

aj := 2−2j = 1

4j
, j = 0, . . . , j0 − 1, sj,k := k2−j ,−2j ≤ k ≤ 2j , k ∈ Z

and the translation parameters tl, l ∈ Z2. The domain is chosen to be a discrete
square

D := {l = (l1, l2) : li = 0, . . . , N − 1, i = 1, 2}

and assume periodic continuation over the boundary. Then the Fourier domain is

	 := {ξ = (ξ1, ξ2) : ξi = −[N
2
], . . . , [N

2
] − 1, i = 1, 2}.

We deal only with a finite number of scales j = 0, 1, . . . , j0, where j0 :=
[ 1

2 log2N] and choose the translation parameters tl = l

N
, l ∈ D. Then the discrete

shearlets are defined as

ψj,k,l(x) := 2−
3j
2 ψaj ,sjk ,tl (x) = ψ(A−1

aj
).
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The shearlets ψh on the horizontal con Ch are given by

ψj,k,l (x) = ψ(A−1
aj
S−1
sjk
(x − t))χCh,

where χCh is the characteristic function of the cone Ch. Analoguously, the shearlets
ψv on the vertical cone are defined by changing the roles of ξ1 and ξ2. Moreover,

ψhxv
j,±2j ,l := ψh

j,±2j ,lχCx ,

with the characteristic function χCx of Cx. In [15] it is shown that the set

{ψhj,k,l , ψvj,k,l , ψhxvj,±2j ,l : j = 0, . . . , j0 − 1,−2j + 1 ≤ k ≤ 2j − 1, l ∈ D}
∪{ϕl : l ∈ D}

For the discrete setting we define the quasi-monognic Riesz transforms with the
discrete Fourier transform and restrict everything to the discrete domains. I.e. for a
function D → R the linearized Riesz transform is defined using DFT as

R̂Lf (ξ) := −ieiϕL(ξ)f̂ (ξ), ξ ∈ 	.

and H′
Lf := (f,RL,1f,RL,2f ).

Definition 9.5.7 The discrete quasi-monogenic shearlet transform on the cone is
defined by

B := {H′
Lψ

h
j,k,l ,H′

Lψ
v
j,k,l ,H′

Lψ
hxv
j,±2j ,l :

j = 0, . . . , j0 − 1,−2j + 1 ≤ k ≤ 2j − 1, l ∈ D} ∪ {H′
Lϕl : l ∈ D}.

(9.5.1)

and the quasi-monogenic discrete shearlet transform by

MSH(f )(κ, j, k, l) :=

⎧⎪⎪⎨
⎪⎪⎩

〈f, ϕl〉 for κ = 0,

〈f,H′
Lψ

κ
j,k,l〉 for κ ∈ {h, v},

〈f,H′
Lψ

κ
j,k,l〉 for κ = x, |k| = 2j ,

where j = 0, . . . , j0,−2j + 1 ≤ k ≤ 2j − 1, and l ∈ D.

To prove that the definition actually defines shearlets, it is important that the

following property is fulfilled. Because ψ̂j,0,0 is supported in {ξ ∈ R2 :
∣∣∣ ξ2
ξ1

∣∣∣ ≤
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2−j }, using α = 2−j and s = 2−j k in Lemma 9.4.4, we obtain

RL,i(ψj,0,0(S
−1
sjk
·)) = e

2−j k π4 (RL,iψj,0,0)(S
−1
sjk
·), i = 1, 2.

Furthermore, the set B of quasi-monogenic shearlets defined in (9.5.1) forms a tight
frame for L2(D) with frame bound A = 2.

To compute the quasi-monogenic shearlet transform we use

〈f,H′
Lψ

κ
j,k,l〉 = (〈f,ψκj,k,l 〉, 〈f,RL,1ψκj,k,l〉, 〈f,RL,2ψκj,k,l〉)

= (〈f,ψκj,k,l 〉, 〈R∗
L,1f,ψ

κ
j,k,l〉, 〈R∗

L,2f,ψ
κ
j,k,l〉).

It follows with ψκj,k,· :=
(
ψκj,k,l

)
l∈D that

〈f,H′
Lψ

κ
j,k,·〉 = (〈f,ψκj,k,·〉, R∗

L,1〈f,ψκj,k,·〉, R∗
L,2〈f,ψκj,k,·〉).

This means that the adjoint Riesz transform can simply be applied to the shearlet
coefficients to obtain the monogenic coefficients. Similarly, 3d monogenic shearlets
on the cone can be built using the linearized Riesz transforms and the construction
of shearlets in [18].
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Quaternionic Operator Calculus
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Abstract Micropolar elasticity is a refined version of the classical elasticity.
Equations of micropolar elasticity are not given only by a single differential
equation w.r.t. a vector field of displacement, but by a coupled system of differential
equations connecting fields of displacements and rotations. However, construction
of solution methods for boundary value problems of micropolar elasticity is still
an open mathematical task, mostly due to the coupled nature of the resulting
system of partial differential equations. Especially, only few results are available
for spatial problems of micropolar elasticity. Therefore, in this paper, we present
a quaternionic operator calculus-based approach to construct general solutions to
three-dimensional problems of micropolar elasticity. Moreover, we prove solvability
of the boundary value problem of micropolar elasticity, as well as we provide
an explicit estimate for the difference between the classical elasticity and the
micropolar model.
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10.1 Introduction

Original ideas for the extension of classical elasticity theory to account microeffects
of a continuum go back to the work [1] of Cosserat brothers, where they introduced
a new theory called the Cosserat continuum. The introduced theory grabbed
attention of many scientists. Among others, works of Eringen [2], and Nowacki
[3] significantly supported further development of the theory. Especially Eringen
introduced micro-inertia in the theory, which has led to renaming of the theory to
the micropolar elasticity. From practical point of view, the micropolar theory models
not only displacements of a continuum, as in the classical theory of elasticity,
but also its rotations. Therefore, the micropolar theory assures a more precise
description of composites, materials with cellular structure, materials with fibers,
and human bones. Additional to micromodelling of materials, micropolar elasticity
can be used on macrolevel for the modelling of masonry structures and objects
having similar cellular-like structure.

The development of solution methods for boundary value problems of micropolar
elasticity was essentially based on the methods of complex function and potential
theories, since the two theories were widely and successfully applied in the classical
elasticity theory. Generalisations of the Papkovich-Neuber approach to micropolar
elasticity were presented in [4, 5]. Representation formulae based on complex
analysis were presented in [6], where the approach similar to the classical Kolosov-
Muskhelishvili formulae was used. Due to the progress in the field of modern
materials, a growing interest appeared in recent years to the development of solution
techniques for boundary value problems of micropolar elasticity. Especially, for
problems containing stress concentrations, such as crack, see for example [7–
9] and references therein. However, only two-dimensional problems have been
considered so far. Therefore, development of solution methods for spatial problems
of micropolar elasticity is an open task.

In this paper we introduce representation formulae for the solution of spatial
boundary value problems of micropolar elasticity. The representation formulae
are constructed in the framework of quaternionic analysis, which is a natural
extension of the classical complex analysis to higher dimensions. The main toolbox
for constructing representation formulae for problems of mathematical physics in
hypercomplex analysis is the co-called quaternionic operator calculus, which has
been introduced in [10], see [11] for applications and recent advances. The essential
ingredient is the T -operator (Teodorescu transform), which is a right inverse to the
generalised Cauchy-Riemann operator. Accomplishing the T -operator with the F -
operator (Cauchy-Bitsadze operator), the higher-dimensional generalisation of the
classical Borel-Pompeiu formula can be obtained, which is the core of applications
of the operator calculus to boundary value problems of mathematical physics.
However, problems of micropolar elasticity have not been considered so far in
the hypercomplex setting. Thus, in this paper we study equations of micropolar
elasticity by tools of quaternionic operator calculus. Moreover, by working with
general operator equations we discuss the solvability of Dirichlet boundary value
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problems for micropolar elasticity in a strong sense, while previous results are
related to variational approaches, see for example [12, 13]. Additionally, we provide
an estimate for the difference between the classical elasticity theory and the
micropolar elasticity. This difference is estimated by help of the corresponding
operator norms.

10.2 Preliminaries and Notations

10.2.1 Basics of Quaternionic Analysis

Let 1, e1, e2, e3 be an orthonormal basis of the Euclidean vector space R4. As usual
we identify the basis vector e0 with 1. We introduce an associative multiplication of
the basis vectors subject to the multiplication rules:

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3.

This non-commutative product generates the algebra of real quaternions denoted
by H. The real vector space R4 will be embedded in H by identifying the element
a = (a0, a1, a2, a3) ∈ R4 with the element

a = a0 + a1e1 + a2e2 + a3e3 ∈ H.

The real number Sc a := a0 is called the scalar part of a and Vec a := a1e1 +
a2e2+a3e3 is the vector part of a, or the pure quaternion. Analogous to the complex
case, the conjugate of a := a0 + a1e1 + a2e2 + a3e3 ∈ H is the quaternion ā :=
a0 − a1e1 − a2e2 − a3e3. The norm of a is given by |a| = √

aā and coincides with
the corresponding Euclidean norm of a, as a vector in R4. Finally, the real vector
space R3 will be embedded in H by identifying the element a = (a0, a1, a2) ∈ R3

with the corresponding pure quaternion, i.e. a = a0e1 + a1e2 + a2e3 ∈ H.
Let	 be an open subset of R3 with a sufficiently smooth boundary. An H-valued

function is a mapping

f : 	 �→ H with f (x) =
3∑
k=0

f k(x)ek, x ∈ 	.

The coordinates f k are real-valued functions defined in 	, i.e.

f k : 	 �→ R, k = 0, 1, 2, 3.

Continuity, differentiability or integrability of f are defined coordinate-wisely.
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Definition 10.2.1 For continuously real-differentiable functions f : 	 ⊂ R
3 → H,

which we will denote for simplicity by f ∈ C1(	,H), the operator

D :=
3∑
k=1

ek∂xk

is called the Dirac operator.

Additionally, we need to introduce two integral operators [11]:

Definition 10.2.2 Let 	 ⊂ R3, u ∈ C(	). Then the linear integral operator

(T u) (x) := −
∫

	

E(y − x)u(y)dσy

with

E(x) = 1

4π

ω̄(x)
|x|3 , ω(x) = x

|x| ,

is called the Teodorescu transform over 	. We also define the operator

(F�u) (x) :=
∫

�

E(y − x)dy∗u(y)

that is called Cauchy-Bitsadze operator.

Finally, by using the introduced operators, the Borel-Pompeiu formula can be
written in the form

(F�u) (x)+ (T D u) (x) =
{
u(x), x ∈ 	,

0, x ∈ R3 \	,

or shortly F + TD = I for x ∈ 	.
For the treatment of boundary value problems it is important to know the

boundary behaviour of the Cauchy-Bitsadze operator.

Theorem 10.2.3 (Plemelj-Sokhotzki Formulae) Let u ∈ C0,β(�,H), 0 < β ≤ 1.
Then we have for each regular point x0 ∈ �

lim
x→x0

x∈G±,x0∈�
(F�u) (x) = 1

2
[±u(x0)+ (S�u) (x0)] ,
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where G+ := G and G− := Rn \G+, the limit has to be taken as a non-tangential
limit, and S� is the singular integral operator defined by

(S�u) (x) := 2
∫

�

E(y − x)dy∗u(y), x ∈ �.

The limits define the Plemelj projectionsP� := 1
2 (I+S�) andQ� := 1

2 (I−S�).
These operators can be extended to Sobolev spaces. For details, see [10].

Additionally to the classical version of operators, we need to introduce modified
operators, which will be used later during the factorisation of equations of microp-
olar elasticity.

Definition 10.2.4 For continuously real-differentiable functions f : 	 ⊂ R
3 → H,

which we will denote for simplicity by f ∈ C1(	,H), the operator

Dα := α +
3∑
k=1

ek∂xk , α ∈ C

is called a modified Dirac operator.

Definition 10.2.5 Let 	 ⊂ R3, u ∈ C(	). Then the weakly singular integral
operator

(Tαu) (x) := −
∫

G

eα(y − x)u(y)dσy, x ∈ 	,

is called the modified Teodorescu transform; further, the operator

(Fαu) (x) :=
∫

�

eα(y − x)dy∗u(y), x ∈ R
3 \	,

acting of functions u ∈ C1(	) ∩ C(	), is called the modified Cauchy-Bitsadze
operator. The kernel eα is given by

eα(x) = − 1

4π |x|3
(
α|x|2 + (iα|x| + 1)

3∑
k=1

exxk

)
e−iα|x|.
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Theorem 10.2.6 (Modified Plemelj-Sokhotzki Formulae) Let u ∈ C0,β(�,H),

0 < β ≤ 1. Then we have

lim
y→x∈�
y∈	

(Fαu) (x) = (Pαu) (x) = 1

2
(I + Sα) u(x),

lim
y→x∈�
y∈Rn\	

(Fαu) (x) = − (Qαu) (x) = −1

2
(I − Sα) u(x),

where the singular integral operator Sα is defined by

(Sαu) (x) :=
∫

�

eα(y − x)dy∗u(y), x ∈ �.

Details of the modified operators and study of their properties can be found in
[11].

Important ingredients for the representation formulas which will be used later on
in the paper are the mapping properties of the integral operators. These properties
have been studied precisely in [10, 11, 14]:

T : Wk,p(	)→ Wk+1,p(	), and T±α : Wk,p(	)→ Wk+1,p(	),

as well as the facts

∂iT u ∈ Wk,p(	), and ∂iT±αu ∈ Wk,p(	) if u ∈ Wk,p(	),

with ∂i denoting partial derivatives w.r.t. coordinate xi , i = 1, 2, 3.

10.2.2 Equations of Micropolar Elasticity

Let 	 ⊂ R3 be a bounded simply connected domain with a sufficiently smooth
boundary � = �0 ∪ �1. A boundary value problem of the micropolar elasticity is
formulated as follows

(λ+ 2μ+ κ)∇∇ · u − (μ+ κ)∇ × ∇ × u = −κ∇ × ϕ, (10.2.1)

(α + β + γ )∇∇ · ϕ − γ∇ × ∇ × ϕ − 2κϕ = −κ∇ × u, (10.2.2)
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with boundary conditions

{
u = g1 on �0,

ϕ = g2 on �0,
and

{
tlknl = t(n)k on �1,

mlknl = m(n)k on �1,
(10.2.3)

where u is the displacement vector, ϕ is the vector of micropolar rotation, tlk is the
stress tensor,mlk is the couple stress tensor, ρ is the material density, j is a rotational
inertia, λ and μ are the Lamé parameters, κ, α, β, γ are material parameters of
micropolar theory, nj are components of the unit outer normal vector, t(n)k are given
surface forces, and m(n)k are given surface moments. See [15] and reference therein
for the details related to mechanical meaning of additional material constants, as
well as their experimental derivations. However, since it is not the purpose of this
paper to discuss practical applicability of the micropolar theory, we will not address
the issue of identification of material parameters here.

Equations (10.2.1) and (10.2.2) are general equations of micropolar elasticity in
the static case. For now, we do not specify the function spaces for u and ϕ, since
during the construction of representation formulae in the next section the regularity
requirements will become clear.

10.3 Application of Quaternionic Operator Calculus to
Micropolar Elasticity Equations

We start with a hypercomplex reformulation of Eqs. (10.2.1) and (10.2.2), which is
given in the following Proposition:

Proposition 10.3.1 Considering the displacement field u ∈ C2(	) and micropolar
rotations ϕ ∈ C2(	) as pure quaternions, i.e. u = u1e1 + u2e2 + u3e3, ϕ =
ϕ1e1 + ϕ2e2 + ϕ3e3, equations of micropolar elasticity (10.2.1) and (10.2.2) can be
written as follows

DM1D u + κVecDϕ = 0,(
D − i

√
2κ
γ

)
M2

(
D + i

√
2κ
γ

)
ϕ + κVecDu = 0,

(10.3.1)

where the operatorsM1 andM2 are defined by

M1w := −(λ+ 2μ+ κ)w0 − (μ+ κ)w1e1 − (μ+ κ)w2e2

−(μ+ κ)w3e3,

M2w := −(α + β + γ )w0 − γ w1e1 − γ w2e2 − γ w3e3,

for a quaternion-valued function w = w0 +w1e1 +w2e2 +w3e3.

Proof The proof can be done by straight-forward calculations. ��
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We will reformulate the system as a system of operator equations. This form
allows it in a better way to study directly the questions of existence, regularity,
stablity and uniqueness as well as the formulation of some basic ideas for the
approximate solution.

10.3.1 Representation Formulae

Theorem 10.3.2 The system of equations

{
DM1D u + κVecDϕ = 0,(

D − i
√

2κ
γ

)
M2

(
D + i

√
2κ
γ

)
ϕ + κVecDu = 0,

(10.3.2)

with Dirichlet boundary conditions

{
u = g1 on �0,

ϕ = g2 on �0,

is equivalent to the system of operator equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = F� g̃1 + TM−1
1 F�(tr TM

−1
1 F�)

−1Q� g̃1

−κ TM−1
1 T VecDϕ,

ϕ = Fα g̃2 + TαM−1
2 F−α

(
tr TαM

−1
2 F−α

)−1
Qα g̃2

−κ TαM−1
2 T−αVecDu,

(10.3.3)

where g̃1 = g1 + κ trTM−1
1 T VecDϕ and g̃2 = g1 + κ tr TαM

−1
2 T−αVecDu.

Proof At first we construct the representation formula for u, depending on ϕ, i.e.
we consider the following boundary value problem

{
DM1D u = −κVecDϕ, in 	

u = g1, on �.
(10.3.4)

Taking into account the Borel-Pompeiu formula and that DT = I , the solution of
the non-homogeneous boundary value problem (10.3.4) can be written in the form

u = F� g̃1 + TM−1
1 F�

(
tr TM−1

1 F�

)−1
Q� g̃1 − κ TM−1

1 T VecDϕ.

Assuming for the moment that the inverse operator
(

tr TM−1
1 F�

)−1
is correctly

defined it is a straight forward calculation to show that u solves the boundary value
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problem (10.3.4). The crucial point is the study of

trTM−1
1 F� : imP� ∩Wk+ 1

p ,p(�) �→ W
k+1+ 1

p ,p(�) ∩ imQ�.

The regularity properties follow from the mapping properties of the single operators.
From the Borel-Pompeiu formula we get that the boundary values of Tf for any f
belong to the image of Q� .

The operator under consideration is a one-to-one mapping. Assuming
trTM−1

1 F�w = 0 and tr w = 0 we get that v = TM−1
1 F�w = 0 because the

Dirichlet problem for the Lamé equation is uniquely solvable and v is a solution.
Applying D and then M1 we get F�w = 0 implying that w ∈ imQ� ∩ imP� and
w = 0.

If, conversely, w ∈ imQ� , then due to the solvability of the Lamé system a
function u ∈ kerDM1D with tr u = w exists. Applying the Borel-Pompeiu formula,
M−1

1 and once again the Borel-Pompeiu formula we obtain w = trTM−1
1 F�s

with s = trM1Du ∈ imP� and therefore, the mapping trTM−1
1 F� : imP� ∩

W
k+ 1

p
,p
(�) �→ W

k+1+ 1
p
,p
(�) ∩ imQ� is surjective and an isomorphism between

the mentioned subspaces.
Now we consider the boundary value problem for ϕ depending on u.

{(
D − i

√
2κ
γ

)
M2

(
D + i

√
2κ
γ

)
ϕ = −κVecDu, in 	

ϕ = g2, on �.
(10.3.5)

The technique used to construct the representation formula for the solution
of (10.3.5) is similar to the one we have presented for u. The principal difference
here is the factorisation of the second order differential operator, acting on ϕ, by
operators of the type

Dα := α +D, D−α := α −D.

The study of such operators has been performed in [16], which is adopted to our case
by considering α = iβ, β ∈ R. Applying the modified Borel-Pompeiu formula and
taking into account that D±αT±α = I we get the following representation formula
for the solution of the non-homogeneous boundary value problem

ϕ = Fα g̃2 + TαM−1
2 F−α

(
tr TαM

−1
2 F−α

)−1
Qα g̃2 − κ TαM−1

2 T−αVecDu.

Finally, the validity of the constructed representation formulae can be checked by a
direct substitution into (10.3.5). Similar to the case of u we study now

trTαM
−1
2 F−α : imP−α ∩Wk+ 1

p ,p(�) �→ W
k+1+ 1

p ,p(�) ∩ imQα.
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Taking into account the regularity properties of the single operators, and the fact
that the boundary values of Tαf for any f belong to the image of Qα , we
conclude that the operator under consideration is a one-to-one mapping. Applying
the same reasoning as for (10.3.4) for the modified operators, we finally obtain that

the mapping trTαM
−1
2 F−α : imP−α ∩ Wk+ 1

p
,p
(�) �→ W

k+1+ 1
p
,p
(�) ∩ imQα is

surjective and an isomorphism between the mentioned subspaces, which finishes
the proof. ��

10.3.2 Uniqueness of Solution

For the discussion related to practical use of representation formulae (10.3.3) we
provide the following obvious corollary:

Corollary 10.3.3 Representation formulae (10.3.3) can be written as follows

{
u = A1ϕ + f1,

ϕ = A2u + f2,
(10.3.6)

where the operators A1 and A2 are defined by

A1 := −κ TM−1
1 T VecD, A2 := −κ TαM−1

2 T−αVecD,

together with additional terms f1, f2

f1 := F� g̃1 + TM−1
1 F�(trTM

−1
1 F�)

−1Q� g̃1,

f2 := Fα g̃2 + TαM−1
2 F−α

(
trTαM

−1
2 F−α

)−1
Qα g̃2.

Clearly, system of equations (10.3.6) is a coupled system. Two general strategies
can be considered to solve such a coupled system of equations:

(i) For decoupling the system (10.3.6) we can consider the iteration scheme

{
un = A1ϕn−1 + f1,

ϕn = A2un−1 + f2,

for n = 0, 1, . . . with given initial conditions u0 and ϕ0.
(ii) Perform a direct decoupling of system (10.3.6). The decoupling strategy is

particularly beneficial for the purpose of studying the difference between mod-
els of classical theory of elasticity and micropolar elasticity. Additionally, the
decoupling strategy provides a higher flexibility in practical realisation of the
solution procedure, since only one equation has to be solved by implementing
the operator representation, while the second can be calculated by standard
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methods knowing one of two functions u or ϕ. Thus, we discuss the decoupling
strategy in the sequel.

Remark 10.3.4 We would like to remark, that regardless of the chosen solution
strategy, boundary conditions are automatically satisfied by the use of operator
calculus.

Using the representation formula for ϕ from (10.3.3) in the first equation
of (10.3.6), and correspondingly, the representation formula for u from (10.3.3) in
the second equation of (10.3.6), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = A1

(
Fα g̃2 + TαM−1

2 F−α
(

tr TαM
−1
2 F−α

)−1
Qα g̃2

−κ TαM−1
2 T−αVecDu

)
+ f1,

ϕ = A2

(
F� g̃1 + TM−1

1 F�(tr TM
−1
1 F�)

−1Q� g̃1

−κ TM−1
1 T VecDϕ

)
+ f2.

By help of the new notations defined by

B1 := A1

(
−κ TαM−1

2 T−αVecD
)
,

B2 := A2

(
−κ TM−1

1 T VecD
)
,

and

f∗1 = f1 + A1

(
Fα g̃2 + TαM−1

2 F−α
(

tr TαM
−1
2 F−α

)−1
Qα g̃2

)
,

f∗2 = f2 + A2

(
F� g̃1 + TM−1

1 F�(tr TM
−1
1 F�)

−1Q� g̃1

)
,

we finally obtain the following decoupled system

{
u = B1u + f∗1,
ϕ = B2ϕ + f∗2.

(10.3.7)

Decoupled system (10.3.7) can be equivalently written as

{
(I − B1) u = f∗1,
(I − B2)ϕ = f∗2,

(10.3.8)

where I is the identity operator.
Solvability of decoupled equations (10.3.8) can be shown via existence of the

bounded inverse operators (I − B1)
−1 and (I − B2)

−1. These inverse operators exist
if ‖Bj‖ < 1 and Bj : Hj → Hj , whereHj are the corresponding Banach spaces for
j = 1, 2. For the sake of readability, we provide complete definition of operators
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Bj , j = 1, 2:

B1 := κ2TM−1
1 T VecD

(
TαM

−1
2 T−αVecD

)
,

B2 := κ2TαM
−1
2 T−αVecD

(
TM−1

1 T VecD
)
.

(10.3.9)

Taking into account the mapping properties of operators used in (10.3.9) we
obtain the following corollary:

Corollary 10.3.5 The operators B1 and B2 defined in (10.3.9) are continuous
mapping from Wk,p(	) to Wk,p(	).

For the discussion regarding the norms of operators Bj we refer again to works
[10, 11, 14], where the estimates for norms together with explicit formulae for
constants have been presented. However, for the purpose of studying only the
solvability of (10.3.8), we notice additionally that the norms of operators (10.3.9)
are, in fact, controlled by the parameter κ , which is a material constant coming from
the micropolar model, we write the norm estimates as follows

B1 ≤ κ2C1(T , T D, T−αDα), B2 ≤ κ2C2(T , T D, T−αDα),

where C1 and C2 are constants depending on sharp estimates of operators used
in (10.3.9). Thus, assuming that κ is sufficiently small, we get that ‖Bj‖ < 1.

Finally, by using the inverse mapping theorem, we can formulate the following
proposition:

Proposition 10.3.6 For given boundary conditions g1,2 ∈ Wk+ 3
2 ,2(�) and suffi-

ciently small κ , the solution u,ϕ ∈ Wk,2(	) of decoupled problem (10.3.8) is
unique, the problem is well-posed, and the solution can be estimated as follows

‖u‖ ≤ ‖ (I − B1)
−1 ‖‖f∗1‖, ‖ϕ‖ ≤ ‖ (I − B2)

−1 ‖‖f∗2‖,

with f∗1 and f∗2 explicitly given by

f∗1 = F� g̃1 + TM−1
1 F�(trTM

−1
1 F�)

−1Q� g̃1

−κ TM−1
1 T VecD

(
Fα g̃2 + TαM−1

2 F−α
(

trTαM
−1
2 F−α

)−1
Qα g̃2

)
,

f∗2 = Fα g̃2 + TαM−1
2 F−α

(
trTαM

−1
2 F−α

)−1
Qα g̃2

−κ TαM−1
2 T−αVecD

(
F� g̃1 + TM−1

1 F�(tr TM
−1
1 F�)

−1Q� g̃1

)
.

Remark 10.3.7 The assumption of small values of κ naturally limits the class
of practical problems covered by the proposed approach. However, it is indeed
important to discuss it, since the case of κ = 0 in (10.2.1) corresponds to the
classical Lamé equation. Thus, the case of small κ can be classified as the class
of “boundary” models, where it is not a-priori clear if the classical elasticity or the
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micropolar model should be used. Therefore, our interest is to provide an estimate
between the two models for the case of small κ .

10.3.3 Difference Between the Models

Finally, we study now the difference between the classical theory of elasticity and
the micropolar theory. Our goal is to provide the estimate for

‖ue − um‖,

inW 2,1(	) with ue denoting the elasticity solution, and um denoting the micropolar
solution. Using representation formula for the displacement u from (10.3.3) and
taking into account that elasticity solution ue can be obtained from that formula by
setting κ to zero, we get the following estimate:

‖ue − um‖ ≤ ‖κ TM−1
1 T VecDϕ‖.

Using now in the last inequality solution for ϕ provided by (10.3.8), we get

‖ue − um‖ ≤ ‖κ TM−1
1 T VecD

[
(I − B2)

−1 f∗2
]
‖. (10.3.10)

This estimate depends on Dirichlet boundary data given in terms of displacement
and micropolar rotations. In practice it means, that a boundary value problem of the
classical linear elasticity can be formulated at first, then micropolar rotations can be
measured at the boundary of a domain; after that estimate (10.3.10) can be used in
order to decide if a coupled model has to be considered, or if it is sufficient to work
in the framework of the classical theory.

10.4 Summary and Outlook

Micropolar elasticity is a refined version of the classical elasticity. Equations of
micropolar elasticity are not given only by a single differential equation w.r.t. a
vector field of displacement, but by a coupled system of differential equations
connecting fields of displacements and rotations. However, construction of solution
methods for boundary value problems of micropolar elasticity is still an open
mathematical task, mostly due to the coupled nature of the resulting system of
partial differential equations. Particularly, spatial problems of micropolar elasticity
were not addressed in full generality. Therefore, in this paper we have proposed
a solution strategy of spatial boundary value problems of micropolar elasticity by
means of quaternionic operator calculus.
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By using the tools of quaternionic operator calculus, the solvability of boundary
value problems of micropolar elasticity with Dirichlet boundary data has been
proved. Moreover, the solvability has been proved in a strong sense, while results
available in literature are related to variational approaches. Additionally, an explicit
estimate for the difference between the classical theory of linear elasticity and the
micropolar model has been obtained. The estimate is constructed for a specific class
of models with small parameter κ , where it is not a-priori clear if the classical
elasticity or the micropolar model should be used. Thus, the presented estimate
supports practical use the micropolar theory.

The scope of future research is related to practical realisation of the proposed
operator calculus approach. Particularly, since the discrete operator calculus and
the discrete function theory are gaining a growing attention in recent years, it is
attractive to transfer the presented results to the discrete level.
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Chapter 11
Constructive Orthonormalisation
of Monogenic Polynomials on a Finite
Cylinder

Sebastian Bock and Dmitrii Legatiuk

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract Orthogonal series expansions are widely used in different fields of
mathematics, as well as in numerous practical applications. Especially from a com-
putational point of view, orthogonal functions systems provide numerical efficiency
and stability. Therefore, the construction of such systems is important not only for
theoretical studies, but rather for practical applications, particularly in the context of
hypercomplex analysis, where extensive computations related to functions systems
appear frequently. In recent years, systems of orthogonal monogenic polynomials
for some canonical domains, such as spheres, balls and infinite cylinders, have
been developed by several authors. However, from the practical point of view, a
finite cylinder is one of the very important domains, particularly for applications in
spatial elasticity theory, which still lacks an orthogonal system. Thus, the objective
of this paper is to provide an orthogonal system of monogenic polynomials for
a finite cylinder. To this end, we present an adaptive orthonormalisation scheme
with explicit formulae for the calculation of inner products allowing a simple and
efficient construction of an orthonormal Appell system for a finite cylinder. Finally,
we present some numerical results for the comparison with a non-orthonormalised
polynomial basis, which underline the practical relevance of the proposed orthonor-
mal system.
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11.1 Introduction

Hypercomplex analysis is a natural extension of complex function theory to higher
dimensions. In this connection, monogenic functions generalise the concept of
holomorphic functions in C and are functions in the kernel of a generalised Cauchy-
Riemann operator. In recent years, monogenic functions appeared more and more
frequently in different areas of applications. Similar to the complex case, where
holomorphic functions can be defined through orthogonal series expansions in C

in terms of integer powers of the complex variable z, monogenic functions in
the hypercomplex setting can be represented by complete orthogonal systems of
monogenic polynomials (see [1, 2]). These systems of monogenic polynomials
generalise several properties of the complex monomials to higher dimensions,
such as, for instance, the Appell property [3] and the orthogonality w.r.t. the
unit ball, which are essential to define higher dimensional orthogonal Taylor- and
Fourier series expansions [4]. However, with an eye on practical applications, it is
valuable to construct orthogonal systems also for other three-dimensional domains.
Particularly, a finite cylinder is one of very important domains for applications in
the field of spatial elasticity theory. So far, no orthonormal system of monogenic
polynomials has been constructed for a finite cylinder. Therefore, the objective of
this paper is to provide a constructive orthonormalisation scheme for monogenic
polynomials over a finite cylinder. More precisely, we consider a cylindrical domain
defined in the classical way by

C :=
{
(x0, r, ϕ)

∣∣∣ x0 ∈ [−ξ, ξ ], r ∈ [0, ρ], ϕ ∈ [0, 2π)
}
, ξ, ρ ∈ R

+.

In [5] the authors claim to construct an orthogonal Appell system of monogenic
polynomials in a cylinder. However, only the well-known classical Appell polyno-
mials were studied here and the orthogonality w.r.t. the domain of a finite cylinder
was proven only for the polynomial subspaces for a fixed degree of homogeneity
and not for the whole space. Thus, this is not an orthogonal system in the classical
sense. Another orthogonal system has been constructed in [6] for a domain

Ca :=
{|z| ≤ a, ρ > 0, 0 ≤ ϕ < 2π : a ∈ R

+} ,
which the authors refer to as an infinite cylinder. Thus, the construction of a
complete orthonormal system for a finite cylinder is still an open problem.

To construct an orthonormal system of monogenic polynomials over a finite
cylinder, we propose an adaptive orthonormalisation scheme which takes advantage
of the used Appell basis leading to explicit formulae for the calculation of
inner products. Based on this result, we show that the resulting Gram matrix is
real and sparse. Additionally, a rearrangement of the basis elements leads to a
diagonal block structure of the Gram matrix. Consequently, the proposed adaptive
orthonormalisation scheme can be easily implemented using methods from real
linear algebra and do not suffer from numerical instability.
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The article is structured as follows. Section 11.2 introduces some necessary
fundamentals and notations of the algebraH of real quaternions. Section 11.3 recalls
some known results about orthogonal Appell polynomials, which are needed in the
following sections. In Sect. 11.4 we first give a closed-form representation for the
monogenic Appell polynomials in cylindrical coordinates. Using this representation,
we get explicit formulas for the inner product of two arbitrary functions w.r.t. the
domain of a finite cylinder. These results are then used to provide an adaptive
orthonormalisation scheme for the system of monogenic Appell polynomials on the
finite cylinder. Finally, we demonstrate the practical need for orthonormalisation by
evaluating the condition number of the Gram matrix of the non-orthonormalised
Appell polynomials.

11.2 Preliminaries and Notations

Let H be the algebra of real quaternions with the standard basis {e0, e1, e2, e3}
subject to the multiplication rules

eiej + ejei = −2δij e0, i, j = 1, 2, 3,
e1e2 = e3, e0ei = eie0 = ei , i = 0, 1, 2, 3.

The real vector space R4 will be embedded in H by identifying the element a =
[a0, a1, a2, a3]T ∈ R4 with the quaternion a = a0 + a1e1 + a2e2 + a3e3, ai ∈ R,
i = 0, 1, 2, 3, and e0 = [1, 0, 0, 0]T is the multiplicative unit element of the algebra
H. Further, we denote by

(i) Sc(a) := a0 the scalar part, Vec(a) = a :=∑3
i=1 aiei the vector part of a,

(ii) a := a0 − a the conjugate of a,
(iii) â := −e3ae3 the e3-involution of a,
(iv) |a| := √

a a the norm of a,
(v) a−1 := a

|a|2 , a �= 0 the inverse of a.

Throughout the article we will often represent elements from H (coefficients,
functions, differential operators etc.) in the component form

a = (a0 + a3e3)+ e1(a1 − a2e3) =: a03 + e1a
12.

The multiplication of the components a03, a12 ∈ span {e0, e3} commutes with e0, e3
and anti-commutes with e1, e2. Accordingly, for (i, j) = {(0, 3), (1, 2)} we have

ek aij =
{

aij ek : k = 0, 3,

aij ek : k = 1, 2 .
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Moreover, the components of a can be calculated by help of the relations

a03 = 1

2
(a + â) and a12 = −e1

2
(a − â) .

Now, let us consider the subset A := spanR {1, e1, e2}. The real vector space R3

will be embedded in A by the identification of x = [x0, x1, x2]T ∈ R3 with the
reduced quaternion

x = x0 + e1ζ ∈ A with ζ := x1 − e3x2.

As a consequence, the symbol x is often used to represent a point in R3 as well as
to represent the corresponding reduced quaternion. Note that A is only a real vector
space but not a sub-algebra of H.

Let now 	 be an open subset of R3 with a piecewise smooth boundary. An H-
valued function is a mapping

f : 	 −→ H such that f (x) = f 03(x)+ e1f
12(x) :=

3∑
i=0

f i(x) ei .

The coordinates f i(x), x ∈ 	 are real-valued functions defined in 	, i.e., f i(x) :
	 −→ R , i = 0, 1, 2, 3. Continuity, differentiability or integrability of f are
defined coordinate-wise. Due to the non-commutativity of the algebra all functions
will be considered in the right H-linear Hilbert space of square-integrable H-valued
functions denoted by L2(	;H) and equipped with the H-valued inner product

〈f ,g〉L2(	;H) :=
∫
	

f g dV.

Here dV denotes the Lebesgue measure in R3. Let us now denote by ∂j the partial
derivatives w.r.t. xj , j = 0, 1, 2, the operator

∂ := ∂0 + 2e1∂ζ
with 2∂

ζ
:= ∂1 − e3∂2

is called generalised Cauchy-Riemann operator. The corresponding adjoint gener-
alised Cauchy-Riemann operator is defined by

∂ := ∂0 − 2e1∂ζ
.

Throughout this article the introduced differential operators are considered as
operators acting from the left and analogously denoted as in complex analysis (see,
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e.g. [7]) contrary to the originally introduced notation in Clifford analysis (see, e.g.
[8]). This leads to the following definition:

Definition 11.2.1 A function f ∈ C1(	;H) is called monogenic in 	 ⊂ R3 if
∂f = 0 in 	. Conversely, a function g ∈ C1(	;H) is called anti-monogenic in
	 ⊂ R3 if ∂g = 0 in 	.

A relationship between monogenic and anti-monogenic functions is given by the
e3-involution as follows:

Corollary 11.2.2 ([9]) Let f = f 03+e1f
12 ∈ C1(	;H) be a monogenic function

in	 ⊂ R3. The e3-involution of f , given by f̂ = f 03−e1f
12, is an anti-monogenic

function in 	.

Let us remark that in the complex one-dimensional case the conjugation of
a holomorphic function f ∈ C1(	;C) gives directly the corresponding anti-
holomorphic function f̂ and thus f ≡ f̂ . For H-valued monogenic functions this
property does not hold in general as Corollary 11.2.2 shows. The subset of A-valued
monogenic functions is an exception to this.

Finally, we need the concept of the hypercomplex derivative (see, e.g. the first
works [10, 11] or for a survey [12]). The main result of [11] is summarised in the
following definition:

Definition 11.2.3 (Hypercomplex Derivative) Let f ∈ C1(	;H) be monogenic
in 	. The expression ∂xf := 1

2∂f is called the hypercomplex derivative of f in 	.

As a consequence of Definition 11.2.3, we introduce a special subset of mono-
genic functions characterised by a vanishing first derivative.

Definition 11.2.4 (Monogenic Constant) A C1-function belonging to ker ∂x ∩
ker ∂ is called a monogenic constant.

11.3 Orthogonal Appell Basis on the Unit Ball

In this section we give a brief overview of the extensively studied orthogonal Appell
basis of monogenic polynomials with respect to the unit ball B in R3. This polyno-
mial basis is a natural generalisation of the holomorphic z-monomials to R3 having
special properties with regard to the hypercomplex derivation and primitivation. In
the following, only some basic properties of the Appell polynomials are recalled.
For a detailed description see [1, 2] and [9].

The monogenic Appell polynomials in R3 can be defined by a three-term
recurrence relation given in the following theorem.

Theorem 11.3.1 ([2]) The system
{
Al
n : l = 0, . . . , n

}
n∈N0

is an orthogonal

Appell basis in L2(B;H) ∩ ker ∂ whose elements satisfy the three-term recurrence
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relation

2(n− l + 1)(n+ l + 2)Al
n+1(x)

= (n+ 1)
[(
(2n+ 3)x + (2n+ 1)x

)
Al
n(x)− 2n xx Al

n−1(x)
]

(11.3.1)

with

Al
l+1(x) = 1

4

[
(2l + 3)x + (2l + 1)x

]
Al
l (x) and Al

l (x) = ζ l .

Furthermore, for each n ∈ N it holds that

∂xAl
n(x) =

{
nAl

n−1(x) : n �= l,

0 : n = l
and ∂ζAn

n(x) = nAn−1
n−1(x).

Figure 11.1 presents the structural scheme of the orthogonal Appell basis given in
Theorem 11.3.1. Firstly, for a fixed degree n = l+p, n ∈ N0 we obtain n+1 Appell
polynomials of order l = 0, . . . , n leading to a triangular scheme of basis functions.
Secondly, the three-term recurrence relation (11.3.1) relates Appell polynomials
with the same polynomial order l, where the initial functions are defined by the
set
{
An
n(x)
}
n∈N0

of monogenic constants. The set
{
An
n(x)
}
n∈N0

is a basis in the

orthogonal subspace of monogenic constants in L2(B;H) [1]. Thirdly, it has been
proved in [2] that the basis polynomials have the Appell property, i.e. that the
application of the hypercomplex derivative ∂x (see Definition 11.2.3) to an arbitrary
Appell polynomial Al

n(x) yields nAl
n−1(x) if Al

n(x) ∈ ker ∂ \ (ker ∂x ∩ ker ∂) or

0 if Al
n(x) ∈ ker ∂x ∩ ker ∂ is a monogenic constant. Note that the application of

∂x only changes the degree n and not the order l of the Appell polynomial and thus
acts along the columns of the triangular scheme shown in Fig. 11.1.

Fig. 11.1 Structural scheme of the orthogonal Appell basis
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Furthermore, in [9] it has been proved that in spherical coordinates

x0 = r cos θ and ζ = r sin θ(cosψ − e3 sinψ),

where r > 0, θ ∈ (0, π], ψ ∈ (0, 2π], the orthogonal Appell polynomials defined
in Theorem 11.3.1 have the closed form representation

Al
n(r,ω) = 2 ϒn,l(r,ω)+ e1 ϒn,l+1(r,ω), (11.3.2)

where

ϒn,l(r,ω) = rn 2l−1 n!
(n+ l)!

[
P ln(cos θ) e−e3lψ

]
and e−e3lψ = cos(lψ) − e3 sin(lψ).

Here, ω = cos θ + e1 sin θ(cosψ − e3 sinψ) and P ln(t) denote the associated
Legendre function of the first kind (see, e.g., [13]), given by

P ln(t) = (1 − t2) l2
� n−l2 �∑
k=0

(−1)k (2n− 2k)!
2n k! (n− k)! (n− 2k − l)! t

n−l−2k.

Note that, up to a normalisation factor, the components of the Appell polynomials
Aln(r,ω) are the classical spherical harmonics (see, e.g., [14]). Spherical harmonics
are a well-known and extensively studied orthogonal function system w.r.t. the unit
ball and play an important role in many theoretical and practical applications. Rep-
resentation formula (11.3.2) gives therefore an interesting insight to the structure of
hypercomplex polynomials and related series expansions.

For the purpose of this article, we provide representation (11.3.2) also in
Cartesian coordinates. Using the relations

r = |x|, cos θ = x0

|x| and e−e3ψ = ζ

|ζ | ,

a closed form representation of the Appell polynomials in Cartesian coordinates is
given by

Al
n(x) =

[
2 ϒn,l(x)+ e1 ϒn,l+1(x)

]
, (11.3.3)

where

ϒn,l (x) = 2l−1 n!
(n+ l)! |x|

n P ln(t)

(
ζ

|ζ |
)l

and t = x0

|x| .
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11.4 Appell Polynomials on the Cylinder and a Constructive
Orthonormalisation Procedure

In this section we propose a system of monogenic Appell polynomials for a finite
cylinder, and additionally, we develop a methodology for the constructive orthonor-
malisation of these polynomials on the finite cylinder. Finally, we demonstrate the
practical need for orthonormalisation by evaluating the conditioning of Gram’s
matrix of the non-orthonormalised Appell polynomials.

11.4.1 Appell Polynomials in Cylindrical Coordinates

Let us introduce cylindrical coordinates as follows

x0 = x0, x1 = r cosϕ, x2 = r sinϕ with r > 0, ϕ ∈ [0, 2π), (11.4.1)

and define, as pointed out in the introduction, the domain of the finite cylinder

C :=
{
(x0, r, ϕ)

∣∣∣ x0 ∈ [−ξ, ξ ], r ∈ [0, ρ], ϕ ∈ [0, 2π)
}
, ξ, ρ ∈ R

+.

Hence, the reduced quaternion variable transforms to

x = x0 + e1ζ = x0 + e1re
−e3ϕ with e−e3ϕ = cosϕ − e3 sinϕ.

Applying the coordinate transform (11.4.1) to (11.3.3) and using the identities

|x| =
√
x2

0 + r2,

(
ζ

|ζ |
)l

= e−e3lϕ and

√
1 −
(
x0

|x|
)2

= r√
x2

0 + r2
,

we obtain by a straightforward calculation a system
{
Al
l+p(x0, r, ϕ) : l, p ∈ N0

}
of

monogenic Appell polynomials in cylindrical coordinates, given by

Al
l+p(x0, r, ϕ) =

⎡
⎣
� p2 �∑
h=0

r2h+lxp−2h−1
0

(
cl,p,h x0 + dl,p,h e1 re

−e3ϕ
)⎤⎦ e−e3lϕ,

(11.4.2)
where

cl,p,h = (−1)h(l + p)!
22hh!(l + h)!(p − 2h)! and dl,p,h = (−1)h(l + p)!

22h+1h!(l + h+ 1)!(p − 2h− 1)! .
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The closed-form representation (11.4.2) for the monogenic Appell polynomials in
cylindrical coordinates is used in the following section for the explicit calculation
of the inner product of two arbitrary Appell polynomials w.r.t. the domain of a finite
cylinder.

11.4.2 Explicit Calculation of Inner Products

Let us consider now the inner product in L2(C;H) of two arbitrary cylindrical
Appell polynomials (11.4.2), i.e.

〈
A
l1
l1+p1

,A
l2
l2+p2

〉
=
∫ ξ

−ξ

∫ 2π

0

∫ ρ

0
A
l1
l1+p1

A
l2
l2+p2

r dr dϕ dx0.

First, we evaluate the integrand using the component form of the cylindrical mono-
genic polynomials (11.4.2). For this we denote the components of the polynomial

by A
lj
lj+pj =: A03

j + e1A
12
j , j = 1, 2 and compute

A
l1
l1+p1

A
l2
l2+p2

r =
(
A03

1 − e1A
12
1

) (
A03

2 + e1A
12
2

)
r

=
[(

A03
1 A03

2 +A12
1 A12

2

)
+ e1

(
A03

1 A12
2 − A12

1 A03
2

)]
r.

To shorten the notations we further denote the real coefficients by cj := clj ,pj ,hj
and dj := dlj ,pj ,hj . Thus, we obtain for the (03)-component of the integrand

I03 =
(
A03

1 A03
2 +A12

1 A12
2

)
r

= ee3(l1−l2)ϕ

⌊
p1
2

⌋
∑
h1=0

⌊
p2
2

⌋
∑
h2=0

r2h1+2h2+l1+l2+1 x
p1+p2−2h1−2h2−2
0

(
c1c2 x

2
0 + d1d2 r

2
)

and accordingly for the (12)-component of the integrand

I12 =
(
A03

1 A12
2 −A12

1 A03
2

)
r

= e−e3(l1+l2+1)ϕ

⌊
p1
2

⌋
∑
h1=0

⌊
p2
2

⌋
∑
h2=0

r2h1+2h2+l1+l2+1 x
p1+p2−2h1−2h2−1
0 (c1d2 − d1c2) .
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Now consider the integration of the components I03 and I12 w.r.t. ϕ. For each k ∈
N0 holds

∫ 2π

0
e−e3kϕdϕ =

{
2π : k = 0,
0 : k �= 0,

and thus leading to the cases

(i) l1 �= l2

∫ 2π

0
A
l1
l1+p1

A
l2
l2+p2

r dϕ = 0 ,

(ii) l1 = l2 = l

∫ 2π

0
Al
l+p1

Al
l+p2

r dϕ

= 2π

⌊
p1
2

⌋
∑
h1=0

⌊
p2
2

⌋
∑
h2=0

r2h1+2h2+2l+1 x
p1+p2−2h1−2h2−2
0

(
c1c2 x

2
0 + d1d2 r

2
)
.

In the next step we consider the case (ii) and integrate w.r.t. the radius r that gives

∫ ρ

0

∫ 2π

0
Al
l+p1

Al
l+p2

r dϕdr

= π

⌊
p1
2

⌋
∑
h1=0

⌊
p2
2

⌋
∑
h2=0

ρ2(h1+h2+l+1) x
p1+p2−2h1−2h2−2
0

(
c1c2 x

2
0

h1 + h2 + l + 1
+ d1d2 ρ

2

h1 + h2 + l + 2

)
.

After all, we compute for the last result the integral w.r.t. x0 by applying

∫ ξ

−ξ
xadx =

⎧⎪⎨
⎪⎩

2τa+1

a + 1
: a ∈ N0, even,

0 : a ∈ N, odd,

and finally end up with the main result of this section summarised in the following
theorem:

Theorem 11.4.1 The inner product in L2(C;H) of two arbitrary elements of the
Appell basis (s. Theorem 11.3.1) is given by

(a) l1 �= l2 ∨ p1, p2 have different parity

∫ ξ

−ξ

∫ ρ

0

∫ 2π

0
A
l1
l1+p1

A
l2
l2+p2

r dϕ dr dx0 = 0,
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(b) l1 = l2 ∧ p1, p2 have same parity

∫ ξ

−ξ

∫ ρ

0

∫ 2π

0
Al
l+p1

Al
l+p2

r dϕ dr dx0

= 2π

⌊
p1
2

⌋
∑
h1=0

⌊
p2
2

⌋
∑
h2=0

cl,p1,h1cl,p2,h2 ρ
2(h1+h2+l+1) ξp1+p2−2(h1−h2)+1

(h1 + h2 + l + 1)(p1 + p2 − 2h1 − 2h2 + 1)

+ dl,p1,h1dl,p2,h2 ρ
2(h1+h2+l+2) ξp1+p2−2(h1−h2)−1

(h1 + h2 + l + 2)(p1 + p2 − 2h1 − 2h2 − 1)
, (11.4.3)

where the real constants are defined by

cl,p,h = (−1)h(l + p)!
22hh!(l + h)!(p − 2h)! and dl,p,h = (−1)h(l + p)!

22h+1h!(l + h+ 1)!(p − 2h− 1)! .

On the basis of the results in Theorem 11.4.1, it can be clearly seen that the
polynomials for every fixed degree of homogeneity n ∈ N0 are already orthogonal
w.r.t. the finite cylinder. In addition, the classical Appell polynomials with even (or
odd, respectively) degree of homogeneity are also orthogonal to each other. For all
other cases, the inner product is distinct from zero, which, contrary to [5], means
that the classical Appell system is not an orthogonal system for the finite cylinder.
Furthermore, it should be pointed out here that all inner products in L2(C;H) of two
arbitrary Appell polynomials are real, and hence, the corresponding Gram matrix for
a finite system of basis functions is real and sparse. As a consequence, all methods
of real linear algebra can be used to orthonormalise the remaining non-orthonormal
polynomials.

11.4.3 Adaptive Orthonormalisation Scheme

Orthonormal systems are the best choice for the purpose of approximation. How-
ever, it is well known that direct application of the Gram-Schmidt process to
orthonormalise a given system of functions typically leads to numerical stability
problems. Therefore, explicit formulae to construct an orthonormal system are of
particular interest in practical applications. As it has been already shown in the
previous section, the proposed system of Appell polynomials contains functions
which are already orthogonal in L2(C;H), but a remaining part of the system has
still to be orthonormalised.
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As a first step we represent the basis up to a maximal polynomial degree ν ∈ N

as an ordered set{
Al
n : l = 0, . . . , n

}ν
n=0

=
{{

A0
n

}ν
n=0,
n even

,
{
A0
n

}ν
n=0,
n odd

, . . . , . . . ,
{
Aν
n

}ν
n=ν,
n even

,
{
Aν
n

}ν
n=ν,
n odd

}

=
{{

Ak
n

}ν
n=k,
n even

,
{
Ak
n

}ν
n=k,
n odd

}ν
k=0

.

To shorten the notations we denote the respective subsets as follows

{
Al
n : l = 0, . . . , n

}ν
n=0

=: {Sν2k,Sν2k+1

}ν
k=0.

The proposed notation indicates that for each column k ∈ N0 in Fig. 11.1 we
have two subsets Sν2k (even degree of homogeneity) and Sν2k+1 (odd degree of
homogeneity) in the construction. This rearrangement of the basis polynomials
follows directly from the fact that each subset contains polynomials which are
already orthogonal to the polynomials of the other subsets. Thus, we need to
orthonormalise only the polynomials in each subset. The exact number of elements
in each subset is given by the formulae

∣∣∣Sν2k
∣∣∣ =
⎧⎨
⎩
⌈
ν−k+1

2

⌉
: ν is even,⌊

ν−k+1
2

⌋
: ν is odd

and
∣∣∣Sν2k+1

∣∣∣ =
⎧⎨
⎩
⌊
ν−k+1

2

⌋
: ν is even,⌈

ν−k+1
2

⌉
: ν is odd

and depends on the maximal polynomial degree ν and the order k. Taking into
account the proposed ordering of the basis elements, the Gram matrix has a diagonal
block structure (see Fig. 11.2). For a fixed ν ∈ N, the square blocks on the main
diagonal are the Gram matrices

Gν
j :=
[〈
ϕνj,p, ϕ

ν
j,q

〉
L2(C,H)

]
p,q=1,...,|Sνj |

, j = 0, . . . , 2ν + 1

Fig. 11.2 Diagonal block
structure of the Gram matrix
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of the basis elements ϕνj,p ∈ Sνj , p = 1, . . . , |Sνj | of the respective subsets Sνj .
The entries of the Gram matrices Gν

j are explicitly given by relation (11.4.3) and
therefore do not require high computational costs.

An adaptive orthogonalisation procedure taking advantage of the diagonal block
structure of the Gram matrix could then be realised as follows. Due to the fact that
the matrices Gν

j are real, symmetric and positive definite, we used the Cholesky
decomposition for the orthonormalisation of the basis polynomials in the respective
subsets Sνj . Of course, other matrix decompositions or the application of the
classical Gram-Schmidt orthonormalisation process would also be possible here.

Finally, it should be estimated to what extent the computational costs are reduced
by the explicit knowledge of the inner products and the resulting diagonal block
structure of the Gram matrix. To that end we evaluate the complexity of the
computational methods used in Listing 11.1 by considering only multiplications
and divisions. Given a real square matrix of size m ∈ N, it is well known that the
Cholesky decomposition has complexity 1

6m
3 + O(m2), the inversion of an upper

triangular matrix has complexitym3 +O(m2) and the matrix-vector multiplication
O(m2). Thus, the computational costs for the orthonormalisation of m ∈ N

polynomials with regard to the algorithm presented in Listing 11.1 can be estimated
by


(m) = 7

6
m3 +O(m2).

From this we conclude directly that for a fixed maximal polynomial degree ν ∈ N

and a total number of basis functions

κ = 1

2
(ν + 1) (ν + 2)

Listing 11.1 Adaptive orthogonalisation scheme

d e f i n e ∀ j = 0, . . . , 2ν + 1, ν ∈ N fixed

�ν
j :=
[
ϕνj,k

]
k=1,...,|Sν

j
|, ϕ

ν
j,k ∈ Sνj ; and Gν

j :=
[〈
ϕνj,p, ϕ

ν
j,q

〉
L2(C,H)

]
p,q=1,...,|Sνj |

;

for j from 0 to 2ν + 1 do

compute Lνj such t h a t Gν
j = Lνj

(
Lνj

)T
;

compute Cν
j :=
((

Lνj

)T
)−1

;

compute �
ν,�
j := Cν

j �ν
j ; / / o r t h o n o r m a l i s e d p o l y n o m i a l s o f Sνj

end do ;
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Fig. 11.3 Estimated computational costs of direct and adaptive orthonormalisation method

the computational costs of the orthonormalisation of the Appell polynomi-
als (11.4.2) w.r.t. the domain of the finite cylinder, be it with or without utilising the
Gram matrix structure, can be estimated by

Ndirect (ν) ≈ 7

48

(
ν2 + 3ν + 2

)3
and Nadaptive(ν) ≈

2ν+1∑
j=0



(
|Sνj |
)
.

A comparison of the respective computational costs is shown in Fig. 11.3. Thus, the
proposed adaptive orthonormalisation procedure leads to a significant reduction in
computational costs compared to the direct application of the orthonormalisation
process without using any prior knowledge of the Gram matrix structure.

11.4.4 Conditioning of the Gram Matrix
of Non-orthonormalised Appell Basis

In this concluding subsection, we will examine the practical relevance of an
orthonormal system for the cylinder. Let us now consider the numerical properties
of classical Appell polynomials w.r.t. the finite cylinder. To that end we consider, for
a fixed maximal polynomial degree ν ∈ N, the subset

{
ϕln(x) : l = 0, . . . , n

}ν
n=0

of Appell polynomials normalised w.r.t. the domain of a ball Bρ of radius ρ ∈ R+
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(see [2] for the details), given explicitly by

ϕln(x) = 1

2l+1 n!
√
(2n+ 3) (n− l)! (n+ l + 1)!

π ρ2n+3
sph

Al
n(x),

and calculate the condition number of the Gram matrix for different cylinder
geometries Cρ,τ . For the numerical evaluation, consider the case where the radius
of the ball Bρ and the cylinder Cρ,τ are the same, i.e, ρsph = ρcyl , and the height
τ ∈ R+ of the cylinder varies (see Fig. 11.4a). The other case where ρsph = τ and
the radius ρcyl of the cylinder varies leads to similar results. Figure 11.4b shows
the condition numbers of the Gram matrix of subsets

{
ϕln(x) : l = 0, . . . , n

}ν
n=0

for different maximal polynomial degrees ν and different ratios τ/ρcyl of the
cylinder parameters. The evaluation clearly shows that the non-orthonormalised
Appell system w.r.t. a finite cylinder only has good numerical properties (relatively
small condition numbers) for ratios τ/ρcyl = 1, which is the case when Bρ is the
insphere of Cρ,τ , i.e., ρsph = ρcyl = τ . For ratios where τ is much larger or smaller
than the radius ρcyl , the Gram matrix is ill-conditioned due to the exponential growth
of the condition numbers. For these reasons it can be concluded that, in particular
for practical problems where the considered domains are either long thin cylinders
(e.g. supports with circular cross section) or very flat cylinders (e.g. circular plates),
the orthonormalisation of the Appell system is indispensable.

Fig. 11.4 Numerical evaluation of the condition number of the Gram matrix of the non-
orthonormalised Appell polynomials ϕln(x) w.r.t. different cylinder geometries. (a) Geometrical
setting. (b) Condition number for different ratios
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11.5 Conclusions

In this article we have examined the orthogonality properties of the classical Appell
polynomials w.r.t. a finite cylinder. Based on an explicit calculation of the inner
products of two arbitrary Appell polynomials it has been shown that most of the
functions are already orthogonal. This results for a given finite subset of functions
in a real and sparse Gram matrix. The structural properties of the Gram matrix have
been used to propose an adaptive orthonormalisation method, which significantly
reduces the computational costs. Finally, the practical necessity of orthonormalising
the Appell system has been illustrated by numerically evaluating the condition
number of the Gram matrix for the non-orthonormal Appell polynomials. Here it
has been clearly verified that an orthonormalisation of the Appell polynomials for
cylindrical geometries with ratios τ/ρ 8 1 or τ/ρ 9 1 is beneficial.
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Chapter 12
Comments on an Orthogonal Family
of Monogenic Functions on Spheroidal
Domains

Joaõ Morais

Celebrating Wolfgang Sprößig 70th birthday

Abstract The problem of building an orthogonal basis for the space of square-
integrable harmonic functions defined in a spheroidal (either oblate or prolate)
domain leads to special functions, which provide an elegant analysis of a variety
of physical problems. Many generalizations of these ideas in the context of
Quaternionic Analysis possess a similar elegant mathematical structure. A brief
descriptive review is given of these developments.

Keywords Quaternionic analysis · Spherical harmonics · Spheroidal harmonics ·
Monogenic functions
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12.1 Introduction

The origins behind the study of orthogonal bases of polynomials for the spaces of
square-integrable harmonic functions defined in a prolate or oblate spheroid are
to be found in [16]. The orthogonality was taken with respect to certain inner
products, each of which lead to the discussion of a PDE by means of the kernel
of the orthogonal system corresponding to that inner product. As regards treatises
on the subject, we add the names of Laplace [28], Lamé [27], Heine [23], Liouville
[34], Thomson and Tait [51], Hilbert [24], Niven [47], Klein [26], Lindemann [33],
Stieltjes [49], Darwin [11], Ferrers [15], Féjer [14], Whittaker and Watson [52],
among others, while more general aspects of their theory were given by Hobson
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[25], Szegö [50], Byerly [6], Sansone [48], Lebedev [31], and Dassios [12]. In this
connection, recently in [17] the spheroidal harmonics were defined following [16],
with a rescaling factor which permits including the unit ball as a limit of both the
prolate and oblate cases, combined into a single one-parameter family.

Multi-dimensional extensions of the prolate spheroidal harmonics to the frame-
work of Quaternionic Analysis were originally developed in [36] and subsequently
in [37], which provided many of their properties and have subsequently attracted
special attention. In [43] it was shown that the underlying prolate spheroidal
monogenics play an important role in defining and studying the monogenic Szegö
kernel function for prolate spheroids. In [46] the authors developed an orthogonal
basis of oblate spheroidal monogenics and some recurrence formulae were found.
It was shown that in the case of an oblate spheroid a basis can only be either
orthogonal or Appell basis. Some aspects on generating monogenic functions that
are orthogonal in a region outside a prolate spheroid were considered in [44].
Generalization of these results has been recently done in [38].

The object of the present note is twofold: to review the construction of a single
one-parameter family of spheroidal harmonics with special emphasis on those
orthogonal in the L2-Hilbert space structure; and to construct an orthogonal basis
of spheroidal monogenics, whose elements are parametrized by the shape of the
corresponding spheroid. We observe that this analysis cannot be done with models in
which the unit ball only is approximated as a degenerate case and requires a separate,
yet completely analogous, treatment for prolate and oblate spheroids [16, 25]. The
proofs of the main results are simplified, in accordance with developments of the
theory later in date than the original proofs; other results are given in a form more
general than that in which they were first discovered. The references given are to be
regarded solely as indicating sources of information from which I have drawn, or
where more detailed information on the various topics is to be found.

12.2 Background on Spheroidal Harmonics

We consider the family of coaxial spheroidal domains 	μ, scaled so that the major
axis is of length 2:

	μ = {x ∈ R
3| x2

0 +
x2

1 + x2
2

e2ν < 1}, (12.2.1)

where ν ∈ R and μ = (1 − e2ν)
1
2 will be useful in later formulas. This follows

the notation in [17]. The equations relating the Cartesian coordinates of a point
x = (x0, x1, x2) inside 	μ to spheroidal coordinates (η, ϑ, ϕ) are

x0 = μ cosh η cosϑ, x1 = μ sinh η sinϑ cosϕ, x2 = μ sinh η sinϑ sinϕ,
(12.2.2)
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where in the case of the prolate spheroid (ν < 0) the coordinates range over η ∈
[0, π], ϑ ∈ [0, arctanh eν], ϕ ∈ [0, 2π), and 0 < μ < 1 is the eccentricity, while for
the oblate spheroid (ν > 0) we have η ∈ [0, π] and ϑ ∈ [0, arccoth eν], ϕ ∈ [0, 2π)
andμ is imaginary,μ/i > 0. The spheroids reduce to the unit ball for ν = 0,μ = 0:
	0 = {x ∈ R3 : |x|2 < 1}.

In terms of the coordinates (12.2.2), the spheroidal harmonics are

U±
l,m[μ](x) := Ul,m[μ](η, ϑ)�±

m(ϕ), (12.2.3)

where

Ul,m[μ](η, ϑ) = αl,m μ
lPml (cosϑ)Pml (cosh η) (12.2.4)

for μ �= 0. Here Pml are the associated Legendre functions of the first kind (see
[25, Ch. III]) of degree l and order m, and we write �+

m(ϕ) = cos(mϕ), �−
m(ϕ) =

sin(mϕ), and

αl,m = (l −m)!
(2l − 1)!! (12.2.5)

with use of the symbol n!! = ∏<n/2>−1
k=0 (n − 2k) for the double factorial. To avoid

repetition, we state once and for all that U−
l,m[μ] is only defined for m ≥ 1, i.e.

U−
l,0[μ] is expressly excluded from all statements of theorems.

It was shown in [17] that with the scale factor (12.2.5), the U±
l,m[μ] are

polynomials in the variables x0, x1, x2, which are normalized so that the limiting
case μ→ 0 gives the classical solid spherical harmonics [45, 48],

U±
l,m[0](x) = |x|lPml

(
x0

|x|
)
�±
m(ϕ), (12.2.6)

where we employ spherical coordinates x0 = ρ cos θ , x1 = ρ sin θ cosϕ, and x2 =
ρ sin θ sin ϕ.

Moreover, in [16] it was shown that while the U±
l,m[μ] are orthogonal in

the Dirichlet norm on 	μ, the closely related functions, which we will call the
Garabedian spheroidal harmonics,

V ±
l,m[μ](x) =

∂

∂x0
U±
l+1,m[μ](x) (12.2.7)

form an orthogonal basis for L2(	μ) ∩ Har(	μ), the set of harmonic functions in
L2(	μ). This property makes the V±

l,m[μ] of greater interest for many considera-
tions.

In accordance with the notation already employed, we shall use V ±
l,m[μ] =

Vl,m[μ]�±
m when the factors �±

m are not of interest. It will be convenient, before
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proceeding, to investigate the algebraical forms of the Vl,m[μ]. We will assume that
ν < 0, because the case ν > 0 is similar. From differentiating (12.2.2),

∂

∂x0
= 1

μ(cosh2 η − cos2 ϑ)

(
cosϑ sinh η

∂

∂η
− sinϑ cosh η

∂

∂ϑ

)
,

from which the definition (12.2.7) gives

(cosh2 η − cos2 ϑ)

αl+1,m μl
Vl,m[μ] = cosϑ sinh2 ηPml+1(cosϑ)(Pml+1)

′(cosh η)

+ sin2 ϑ cosh ηPml+1(cosh η)(Pml+1)
′(cosϑ).

(12.2.8)

There are many well-known recurrence relations for the associated Legendre
functions (see for example [25, Ch. III]). The relation

(1 − t2)(Pml+1)
′(t) = (l +m+ 1)Pml (t)− (l + 1)tPml+1(t) (12.2.9)

yields that (12.2.8) is equal to (l +m+ 1) times

cosh η Pml (cosϑ)Pml+1(cosh η)− cosϑ Pml+1(cosϑ)Pml (cosh η).

It follows, then, that

Vl,m[μ] = αl+1,m(l +m+ 1)μl

(cosh2 η − cos2 ϑ)

[
cosh η Pml (cosϑ)Pml+1(cosh η)

− cosϑ Pml (cosh η)Pml+1(cosϑ)
]
, (12.2.10)

with the initial values

Vl,l[μ] = (2l + 1)Ul,l[μ],
Vl+1,l[μ] = 2(l + 1)Ul+1,l[μ].

In order to avoid the difficulties usually attendant on manipulations like those of
the formulas (12.2.10), it will here be convenient to prove very simple recurrence
relations for the functions Vl,m[μ]. The following will be key in the proof of
Theorem 12.3.1 and it is based on the results of [36].

Proposition 12.2.1 For each l ≥ 2, the functions Vl,m[μ] satisfy the recurrence
relations

Vl,m[μ] = (l +m+ 1)Ul,m[μ] + μ2(l +m+ 1)(l +m)
(2l + 1)(2l − 1)

Vl−2,m[μ]. (12.2.11)
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Proof Equation (12.2.10) together with the further relation

(l −m+ 1)Pml+1(t) = (2l + 1)tPml (t)− (l +m)Pml−1(t) (12.2.12)

show that

Vl+1,m[μ] = (l +m+ 1)Ul,m[μ]

+ αl,m μ
l(l +m+ 1)(l +m)

(cosh2 η − cos2 ϑ)(2l + 1)
[cosϑ Pml−1(cosϑ)Pml (cosh η)

− cosh η Pml (cosϑ)Pml−1(cosh η)],
with

αl,m = 2l + 1

l −m+ 1
αl+1,m.

Using again (12.2.12), we obtain

Vl+1,m[μ] = (l +m+ 1)Ul,m[μ]

+ αl−1,m μ
l(l +m+ 1)(l +m)(l +m− 1)

(cosh2 η − cos2 ϑ)(2l − 1)(2l + 1)

× [coshη Pml−2(cosϑ)Pml−1(cosh η)

− cosϑ Pml−1(cosϑ)Pml−2(cosh η)].
The result now follows. ��

Since the basic harmonics U±
l,m[μ] of [16] are polynomials of degree l, it is

clear that the operations of rescaling by 1/μ or i/μ and multiplying by μl implied
in (12.2.4) assure that the V±

l,m[μ] are polynomials in μ. By Eq. (12.2.11) it is clear
that −μ produces the same results as μ, so the only powers of μ which appear are
even.

In this regard, from (12.2.11) we note that for spherical harmonics,

∂

∂x0
U±
l+1,m[0](x) = (l +m+ 1)U±

l,m[0](x), (12.2.13)

whereas V±
l,m[μ] is not so simply related to U±

l,m[μ] for μ �= 0, as was proved in
[36]:

Theorem 12.2.2 Let l ≥ 0, 0 ≤ m ≤ l. The non-vanishing coefficients vl,m,k in the
relation

V ±
l,m[μ] =

[
l−m

2

]
∑
k=0

vl,m,k μ
2kU±

l−2k,m[μ] (12.2.14)
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are given by

vl,m,k = (l +m+ 1)!(2l + 1 − 4k)!!
(l +m− 2k)!(2l + 1)!! . (12.2.15)

Proof Suppose inductively that the formula of theorem is true when l is replaced by
l′ < l. Then

V±
l,m[μ] = (l +m+ 1)U±

l,m[μ]

+ (l +m+ 1)(l +m)
(2l + 1)(2l − 1)

[
l−2−m

2

]
∑
k=0

vl−2,m,k μ
2(k+1)U±

l−2(k+1),m[μ].

Since by (12.2.15)

vl,m,0 = l +m+ 1,

vl,m,k+1 = (l +m+ 1)(l +m)
(2l + 1)(2l − 1)

vl−2,m,k,

we find that the stated formula is also true, completing the proof. ��
An important result of [16] regarding the orthogonailty of the V ±

l,m[μ] in the L2-
Hilbert space can be restated as follows.

Theorem 12.2.3 For a fixed μ, the functions V ±
l,m[μ] (l ≥ 0) form a complete

orthogonal family in the closed subspace L2(	μ) ∩ Har(	μ) of L2(	μ) with the
norms

‖V ±
l,m[μ]‖2

L2(	μ)
= 2π(1 + δ0,m)μ

2l+3γl,mIl,m(μ), (12.2.16)

where Il,m(μ) is defined by

Il1,m(μ) :=
∫ 1

μ

1
Pml1 (t)P

m
l1+2(t)dt, (12.2.17)

and

γl,m = (l +m+ 1)(l + 2 −m)!(l +m+ 1)!
(2l + 1)!!(2l + 3)!! . (12.2.18)

For the limiting case, μ = 0,

‖V ±
l,m[0]‖2

L2(	0)
= 2π(1 + δ0,m)(l +m+ 1)(l +m+ 1)!

(2l + 1)(2l + 3)(l −m)! . (12.2.19)
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12.3 An Orthogonal Basis of Spheroidal Monogenics

The standard bases for spheroidal harmonics have their counterparts for the
corresponding spaces of monogenic functions taking values inR3. These monogenic
polynomials are defined by regardingR3 as the subset of the quaternionsH := {x0+
x1i + x2j + x3k} for which x3 = 0. Although this subspace is not closed under the
quaternionic multiplication (which is defined, as usual, so that i2 = j2 = k2 = −1
and ij = k = −ji, jk = i = −kj, ki = j = −ik), it is possible to carry out a great
deal of the analysis analogous to that of complex numbers [13, 21, 35, 39, 40, 42].

Consider the Cauchy-Riemann (or Fueter) operators

∂ = ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
, ∂ = ∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
. (12.3.1)

Define the set of monogenic functions

M(	μ) :=
{

f = [f]0 + [f]1i + [f]2j ∈ C1(Ωμ) : ∂f = 0
}
.

Monogenic functions are harmonic, but not vice-versa. The hypercomplex derivative
is simply denoted by (1/2)∂f [18].

A basis of polynomials spanning the square-integrable solutions of ∂f = 0
was given in [36] (cf. [37]) for prolate spheroids and another in [46] for oblate
spheroids, via explicit formulas. Note that the latter prolate and oblate spheroidal
monogenics can be obtained as a special case of the present theory by appropriate
interpretation. In the following, we consider the prolate and oblate cases of
spheroids simultaneously.

In analogy to (12.2.7) the basic monogenic spheroidal polynomials are con-
structed as

X±
l,m[μ] = ∂U±

l+1,m[μ]. (12.3.2)

It was noted in [39] that Sc X±
l,m[0] is equal to V ±

l,m[0] = (l+m+1)U±
l,m[0], and an

explicit expression for the vector part was written out, which was later generalized
from the sphere to the spheroid in [36].

Using (12.2.10) and further properties of the Legendre functions, we can verify
that

Vl,−1[μ] =
⎧⎨
⎩
− 1
(l+1)(l+2)Vl,1[μ] l = 1, 2, . . . ,

0 l = 0.
(12.3.3)

These functions will appear in the representation (12.3.4) for the case of zero-order
monogenic polynomials (see Theorem 12.3.1 below). Similar results can be found
in [36].
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Theorem 12.3.1 For each l ≥ 0 and 0 ≤ m ≤ l + 1, the basic spheroidal
monogenic polynomials (12.3.2) are equal to

X±
l,m[μ] = V ±

l,m[μ] +
i
2

[
(l +m+ 1)V±

l,m−1[μ] −
1

l +m+ 2
V±
l,m+1[μ]

]

∓ j
2

[
(l +m+ 1)V∓

l,m−1[μ] +
1

l +m+ 2
V ∓
l,m+1[μ]

]
, (12.3.4)

where the harmonic polynomials V ±
l,m[μ] are defined by (12.2.7). Moreover, the set

{X±
l,m[μ] : l ≥ 0, 0 ≤ m ≤ l + 1} is orthogonal in the sense of the scalar product

defined by

〈f, g〉[μ] = Sc
∫∫∫

	μ

fg dx. (12.3.5)

Their norms are given by

‖X±
l,m[μ]‖2

L2(	μ)
= π μ2l+3

(l + 2)(l +m+ 2)(2l + 1)!!(2l + 3)!![
(l + 2)(l +m)(l +m+ 1)(l −m+ 3)!(l +m+ 2)!Il,m−1

+ 2δ0,m(l +m+ 2)(l + 1)!(l + 2)!Il,1
+ (l + 2)(l −m+ 1)!(l +m+ 2)!(Il,m+1

+ 2(l −m+ 2)(l +m+ 1)(1 + δ0,m)Il,m
)]
,

where Il,m(μ) is defined by (12.2.17). For the limiting case, μ = 0,

‖X±
l,m[0]‖2

L2(	0)
= 2π(1 + δ0,m)(l + 1)(l + 1 +m)!

(2l + 3)(l + 1 −m)! .

Proof The full operator (12.3.1) in spheroidal coordinates (12.2.2) is

∂ = 1

μ(cosh2 η − cos2 ϑ)

(
cosϑ sinh η

∂

∂η
− sinϑ cosh η

∂

∂ϑ

)

− 1

μ(cosh2 η − cos2 ϑ)
(cosϕi + sin ϕj)

(
sinϑ cosh η

∂

∂η
+ cosϑ sinh η

∂

∂ϑ

)

− 1

μ sinϑ sinh η
(− sinϕi + cosϕj)

∂

∂ϕ
.
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The first line of this expression applied to U±
l+1,m[μ] produces the scalar part of

X±
l,m[μ] in (12.3.4) and was calculated in [36]. For the non-scalar part, we use the

relation (12.2.9) to obtain

2

μl+1αl+1,m�
±
m

(
cosϑ sinh η

∂

∂ϑ
+ sinϑ cosh η

∂

∂η

)
U±
l+1,m[μ]

= (l +m+ 1)(l −m+ 2)
[
sinϑ cosh ηPml+1(cosϑ)Pm−1

l+1 (cosh η)

− cosϑ sinh η Pm−1
l+1 (cosϑ)Pml+1(cosh η)

]

+ sinϑ cosh ηPml+1(cosϑ)Pm+1
l+1 (cosh η)

+ cosϑ sinh ηPm+1
l+1 (cosϑ)Pml+1(cosh η).

Next, we use the relation

√
1 − t2Pml+1(t) = (l −m)tPm−1

l+1 (t)− (l +m)Pm−1
l (t)

(valid for |t| < 1, and replacing 1 − t2 with t2 − 1 for |t| > 1) produces

− (cosh2 η − cos2 ϑ)

μlαl+1,m−1
Vl,m−1[μ] = sinϑ cosh η Pml+1(cosϑ)Pm−1

l+1 (cosh η)

− cosϑ sinh η Pml+1(cosh η)Pm−1
l+1 (cosϑ).

Furthermore, using the expression

(1 − t2)1/2 Pml+1(t) =
1

2l + 3
(Pm+1
l+2 (t)− Pm+1

l (t)),

and its counterpart for |t| > 1, and then applying (12.2.12), we arrive at

cosh η sinϑPml+1(cosϑ)Pm+1
l+1 (cosh η)+ sinh η cosϑPm+1

l+1 (cosϑ)Pml+1(cosh η)

= (cosh2 η − cos2 ϑ)

(l + 1 −m)(l + 2 +m)μlαl+1,m+1
Vl,m+1[μ].

With these calculations at hand, we have

− 1

μ(cosh2 η − cos2 ϑ)

(
sinϑ cosh η

∂

∂η
+ cosϑ sinh η

∂

∂ϑ

)
U±
l+1,m[μ]

= (l + 1 +m)
2

Vl,m−1[μ]�±
m − 1

2(l + 2 +m)Vl,m+1[μ]�±
m.
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Similarly, one can prove that

1

sinϑ sinh η

∂

∂ϕ
U±
l+1,m[μ]

= ∓ mμl+1αl+1,m

cosh2 η − cos2 ϑ
�∓
m

×
[

sinh ηPm+1
l+1 (cosϑ)Pml+1(cosh η)

sinϑ
+ sinϑPm+1

l+1 (cosϑ)Pml+1(cosh η)

sinh η

]

= ± μ

2

[
1

l + 2 +mVl,m+1[μ] + (l + 1 +m)Vl,m−1[μ]
]
�∓
m.

Combining these three formulas one straightforward obtains the desired expressions
for (∂/∂x1)U

±
l+1,m[μ] and (∂/∂x2)U

±
l+1,m[μ].

In the sequel, we will denote by [f]i (i = 0, 1, 2) the components of a function
f : 	μ → R3. By definition of the integral (12.3.5) it follows that

〈X±
l1,m1

[μ],X±
l2,m2

[μ]〉L2(	μ)

=
∫∫∫

	μ

(
[X±
l1,m1

[μ]]0[X±
l2,m2

[μ]]0 + [X±
l1,m1

[μ]]1[X±
l2,m2

[μ]]1

+ [X±
l1,m1

[μ]]2[X±
l2,m2

[μ]]2
)
dx.

By Eqs. (12.3.3) and (12.3.4), and Theorem 12.2.3 we have

∫∫∫
	μ

[X±
l1,m1

[μ]]0[X±
l2,m2

[μ]]0 dx = ‖V ±
l1,m1

[μ]‖2
L2(	μ)

δl1,l2δl1,l2 (12.3.6)

and
∫∫∫

	μ

(
[X±
l1,m1

[μ]]1[X±
l2,m2

[μ]]1 + [X±
l1,m1

[μ]]2[X±
l2,m2

[μ]]2
)
dx

=πp1(l2 +m1 + 1)δm1,m2

2

∫ arctanh eν

0

∫ π

0
Vl1,m1−1[μ]Vl2,m1−1[μ] dR

± π

(l1 + 2)(l2 + 2)
δm1,0

∫ arctanh eν

0

∫ π

0
Vl1,1[μ]Vl2,1[μ] dR

+ π

2p1(l2 +m1 + 1)
δm1,m2

∫ arctanh eν

0

∫ π

0
Vl1,m1+1[μ]Vl2,m1+1[μ] dR,

where dR = μ3(cosh2 η − cos2 ϑ) sinϑ sinh ηdϑdη.
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Using Proposition 12.2.1, and applying again the orthogonality of Theo-
rem 12.2.3, we are left with

∫∫∫
	μ

(
[X±
l1,m1

[μ]]1[X±
l2,m2

[μ]]1 + [X±
l1,m1

[μ]]2[X±
l2,m2

[μ]]2
)
dx

= πμ2l1+3

(l1 + 2)(2l1 + 1)!!(2l1 + 3)!!
× [(l1 + 2)(l1 +m1 + 1)!(
(l1 +m1)(l1 +m1 + 1)(l1 −m1 + 3)!Il1,m1−1

+ (l1 −m1 + 1)!Il1,m1+1
)+ 2(l1 + 1)!(l1 + 2)!Il1,1δ0,m

]
δm1,m2δl1,l2

(12.3.7)

with Il,m defined in (12.2.17). Combining (12.3.6) and (12.3.7), we conclude that

〈X+
l1,m1

[μ],X+
l2,m2

[μ]〉L2(	μ) = 0

when l1 �= l2 orm1 �= m2. Similarly, 〈X−
l1,m1

[μ],X−
l2,m2

[μ]〉L2(	μ) = 0 when l1 �= l2
or m1 �= m2.

Using once more the orthogonality of the system {�±
m} on [0, 2π], we conclude

that

〈X±
l1,m1

[μ],X∓
l2,m2

[μ]〉L2(	μ) = 0

when the indices do not coincide. The calculation of the norms comes from taking
l1 = l2 and m1 = m2 in (12.3.7) and adding the expression (12.2.16). By the
symmetric form taken by X±

l,m[μ] in (12.3.4), we know that when m �= 0,

‖X+
l,m[μ]‖L2(	μ) = ‖X−

l,m[μ]‖L2(	μ).

The limiting case, μ = 0, follows with the use of Eq. (12.2.19). ��
The solid spherical monogenics X±

l,m[0] are embedded generically in this one-
parameter family of spheroidal monogenics. In contrast, in treatments such as [16,
25, 36, 37, 44, 46], the spheroidal monogenics degenerate as the eccentricity of the
spheroid decreases.

For a general orientation, the reader is urged to read some of the existing works
where the spherical monogenics emerged [7, 9, 10]. It is worth mentioning that
at the time of the publications [8–10] a closed-form representation corresponding
to the X±

l,m[0] in terms of the basic solid spherical harmonics (12.2.6), originally
stated in [39], were not at disposal for the investigation of some basic properties
of these functions. They played a fundamental role in [19, 20, 22, 39, 40] (cf. [35])
in the study of higher-dimensional counterparts of the well-known Bohr theorem,
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Borel-Carathéodory’s theorem and Hadamard real part theorems on the majorant
of a Taylor’s series, as well as Bloch’s theorem, in the context of Quaternionic
Analysis, where they were investigated in detail. In a different context, orthogonal
Appell bases of monogenic polynomials were constructed in [1], [4] and [41] (cf.
[2, 3]) using a basis of quaternionic-valued spherical monogenics orthogonal with
respect to the quaternionic inner product

〈f, g〉[0] =
∫∫∫

	0

fg dx.

These bases were rediscovered in [29] (cf. [5, 30]) using a different algebraic
approach based on Gelfand-Tsetlin schemes.

In [32] it is shown that the dimension of the space M(l) of homogeneous
monogenic polynomials of degree l in x0, x1, x2 is 2l + 3 (this does not depend
on the domain). Since the polynomials X±

l,m[μ] are not homogeneous, we consider
the space

M(l)∗ =
⋃

0≤k≤l
M(l)

of monogenic polynomials of degree l, a class which is not altered by adding
monogenic polynomials of lower degree. Thus

dimM(l)∗ =
l∑

k=0

(2k + 3) = (l + 3)(l + 1). (12.3.8)

Consider the collections of 2k + 3 polynomials

Bk[μ] := {X+
k,m[μ], 0 ≤ m ≤ k + 1} ∪ {X−

k,m[μ], 1 ≤ m ≤ k + 1}.

By Theorem 12.3.1 and (12.3.8), the union

⋃
0≤k≤l

Bk[μ] (12.3.9)

is an orthogonal basis for M(l)∗ . In addition, M(l)∗ is dense in L2(	μ) ∩ M(	μ).
Therefore the following result, which will be of use in the further discussion, can
now be established:

Proposition 12.3.2 For a fixed μ, the function set (12.3.9) forms an orthogonal
basis of L2(	μ) ∩M(	μ).

Furthermore, it would be useful in practice if the foregoing orthogonal
basis (12.3.9) has the Appell property also. It was shown in [46] that there does
not exist an orthogonal Appell basis in the case of spaces of solid oblate spheroidal
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monogenics. We shall proceed in such a manner that we compute the hypercomplex
derivative of a spheroidal monogenic of degree l and show, as expected, that the
obtained polynomial is not a member of the family with degree l − 1 like in cases
of Appell bases [4, 7, 8, 10]. We find that the hypercomplex derivative of a basic
spheroidal monogenic is a combination of [(l − m)/2] + 1 spheroidal monogenics
of lower degrees. Basically, it can be represented by all polynomials of degree at
most l − 1.

Theorem 12.3.3 For a fixed μ, the hypercomplex derivative of X±
l,m[μ] has the

form:

(
1

2
∂)X±

l,m[μ] =
[ l−m2 ]∑
k=0

vl,m,k μ
2kX±

l−1−2k,m[μ], (12.3.10)

where the constants vl,m,k are given by (12.2.15).

Proof Since ∂/∂x0 is a linear operator, we find, by Theorem 12.2.2, the relation:

∂

∂x0
V ±
l,m[μ] =

[ l−m2 ]∑
k=0

vl,m,k μ
2kV ±

l−1−2k,m[μ].

The rest of the proof is straightforward. ��
An advantage of Eq. (12.3.10) is that it furnishes a concise expression for the

hypercomplex derivatives of the basic monogenic spheroidal polynomials by means
of which many of their properties may be easily investigated.

The next proposition shows that there are two hyperholomorphic constants
among the basic spheroidal monogenic polynomials, i.e., functions whose hyper-
complex derivative is identically zero.

Proposition 12.3.4 For a fixed μ, X±
l,l+1[μ] are hyperholomorphic constants.

Proof The proof is a consequence of Theorem 12.3.3. ��
It can be further shown that X±

l,l+1[μ] = X±
l,l+1[0]; that is, the hyperholomorphic

constants X±
l,l+1[μ] do not depend on the parameter μ.

The hypercomplex derivatives of the prescribed monogenic polynomials in its
extended signification being thus computed, no difficulties can arise in restricting it
to a particular limiting case. In fact, when μ = 0, we have readily [7, 10]:

(
1

2
∂)X±

l,m[0] = (l +m+ 1)X±
l−1,m[0]. (12.3.11)
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The reader might find without any additional work that, using (12.3.11) and setting
for each l ≥ 0, 0 ≤ m ≤ l + 1,

Y±
l,m := l!(m+ 1)!

(l +m+ 1)! X±
l,m[0], (12.3.12)

the equality follows:

(
1

2
∂)Y±

l,m = lY±
l−1,m. (12.3.13)

Thus the application of the hypercomplex derivative to Y±
l,m results again in a

real multiple of the similar function one degree lower [41]. The special normal-
ization (12.3.13) is called Appell property. In [8] it is proved that the solid spherical
monogenics (12.3.12) form, indeed, an orthogonal Appell basis for M(l)(	0),
l ≥ 0. In [1] and [3], fundamental recursion formulas were obtained for the elements
of the prescribed Appell basis.

We turn now to show that the Appell property holds for a part of the X±
l,m[μ]

(providing the prescribed normalization (12.3.12)).

Corollary 12.3.5 Let μ be fixed. For l−m = 0, 1, the hypercomplex derivatives of
X±
l,m[μ] follow the rule

(
1

2
∂)X±

l,m[μ] = (l + 1 +m)X±
l−1,m[μ].

Proof It is an immediate consequence of Theorem 12.3.3. ��
One of our leading results is that the three-dimensional spherical monogenics

considered, e.g., in [4, 8, 10] are embedded in the prescribed one-parameter family
of internal spheroidal monogenics. Hence, the latter can be naturally seen as
an extention of the former functions to arbitrarily spheroidal domains. Further
investigations on this topic are now under investigation and will be reported in a
forthcoming paper.
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Chapter 13
Newton’s Approach to General Algebraic
Equations over Clifford Algebras

Drahoslava Janovská and Gerhard Opfer

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract There is a short section describing how Newton’s method works for
algebraic problems over Clifford algebras. There are two applications. Zeros of
unilateral polynomials over a Clifford algebra in R8 and solutions of a Riccati
equation over all eight Clifford algebras in R4.
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Clifford algebras · Riccati equation
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13.1 Introduction

Let p : RN → RN be a mapping, where RN stands for any Clifford algebra. For
introduction to Clifford Algebras, see [1], for algebraic and analytic properties of
coquaternion algebra, see [6]. Examples for p are polynomials of a general type,
including unilateral and bilateral polynomials. Other examples are matrix equations
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like the Riccati equation

p(X) := A + BX + XC + XDX = 0, (13.1.1)

where the matrix entries are elements from a Clifford algebra in RN . If X is a matrix
of size m × n, then, in this case, p : RmnN → RmnN . The Riccati equation will
be treated separately in the last section. For other examples see also [2]. In order to
find the solutions of p(z) = 0 by Newton’s method, the linear system for h

p(z)+ p′(z)h = 0 (13.1.2)

has to be solved where in the beginning, z has to be replaced by an arbitrary guess
z ∈ RN and after having found h as the solution of (13.1.2) the guess has to be
replaced by z := z + h. In a paper by Lauterbach and Opfer [5], it was shown that
p′(z)h is the linear part of p(z + h) with respect to h. To mention an example let
p(z) = z2 + a1z + a0. Then,

p(z + h) = (z + h)2 + a1(z+ h)+ a0 = z2 + hz + zh+ h2 + a1z + a1h+ a0

and the linear part of this expression with respect to h is

p′(z)h = hz+ zh+ a1h. (13.1.3)

In all cases and independent of the algebra the linear part always consist of a sum
with terms of the form ahb. Since, by definition, p′(z)h is a real, linear mapping
R
N → R

N in h, the linear part must have a matrix representation

p′(z)h = Mzh (13.1.4)

where Mz is a real N × N matrix and h is now a real column vector of length
N . The matrix Mz is called the Jacobi matrix of (13.1.2). In comparison with
the numerical Jacobi matrix which is constructed by replacing p′(z)h by partial
derivatives, the Jacobi matrix we use is exact and in addition easy to compute. Even
for general, nonunilateral polynomials the matrix representation of p′(z)h is given
in [5, Section 4]. And the underlying algebra is not of large importance. In the
MATLAB program given in Table 13.4 one can see how to compute the matrix Mz

given in (13.1.4) for the linear term ahb. Let y = p(z). We call the euclidean RN

norm ||y|| the error of z. Thus, our aim is to find all z with error zero.

13.2 Application of Newton’s Method to Polynomials
with Clifford Coefficients

Let p now be a unilateral polynomial in any RN algebra. In order to find zeros of
p we have to use (13.1.2) together with (13.1.4). As an example we use a Clifford
algebra in R8 which we call C4 and as examples we will be looking for zeros of a
quadratic polynomial and a polynomials of degree 7.
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Table 13.1 Multiplication
table of C4 for the canonical
unit vectors uk in
R

8, 1 ≤ k ≤ 8

u1 u2 u3 u4 u5 u6 u7 u8

u2 −u1 u4 −u3 u6 −u5 u8 −u7

u3 −u4 −u1 u2 u7 −u8 −u5 u6

u4 u3 −u2 −u1 u8 u7 −u6 −u5

u5 −u6 −u7 u8 −u1 u2 u3 −u4

u6 u5 −u8 −u7 −u2 −u1 u4 u3

u7 u8 u5 u6 −u3 −u4 −u1 −u2

u8 −u7 u6 −u5 −u4 u3 −u2 u1

In order to describe the multiplication rules of the algebra C4 we abbreviate the
eight unit vectors units(k) in R8 also by uk, k = 1, 2, . . . , 8, and the multiplication
rules are listed in Table 13.1.

The elements in theC4 algebra for use in the MATLAB program, which is printed
at the end of this section as Table 13.4, page 273, will have the name

a = c4([a1, a2, a3, a4, a5, a6, a7, a8]), aj ∈ R, j = 1, 2, . . . , 8 (13.2.1)

or in short

a = c4(h), h ∈ R
8.

In order to apply the program, an initial guess xold is needed. For a syste-
matic search a random guess is very practical. We always used random integer
values as components of xold. This can be done by the MATLAB command
xold=c4(round(40*(rand(1,8)-0.5))), where rand is the MATLAB
command for random (uniformly distributed) numbers in [0, 1]. The given expres-
sion for xold produces an integer row vector with eight entries in [−20, 20]. We
have applied the program to two examples, a quadratic polynomial and a polynomial
of degree 7. In all cases there are several solutions.

Example Let the quadratic polynomial p be defined by

p(z) = z2 + c4([2, 3, 5, 7, 11, 13, 17, 19])z+ u8. (13.2.2)

We found the following four zeros (see Table 13.2) all in less than 20 steps by
applying Newton’s method. We never found a singular Jacobi matrix. Whether there
are more solutions as given, it is an open question.

Example We selected the following polynomial

p(z) = u1z
7 + u2z

6 + u3z
5 + u4z

4 + u5z
3 + u6z

2 + u7z+ u8. (13.2.3)
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We can guess already one solution, namely z = u4. If we look at Table 13.1 we see
that u2

4 = −1 ⇒ u4
4 = 1 ⇒ u5

4 = u4 ⇒ u6
4 = u2

4 = −1 ⇒ u7
4 = u3

4 = −u4, thus,

p(u4) = −u4 − u2 + u3u4 + u4 − u5u4 − u6 + u7u4 + u8 =
= −u4 − u2 + u2 + u4 − u8 − u6 + u6 + u8 = 0.

We applied the given program to (13.2.3) and in less than 40 Newton iterations
for each zero we found the solutions given in Table 13.3. It contains 18 zeros of p.
These are found by using random integer guesses. Whether there are more zeros than
indicated, it is an open problem. We did not encounter one example which did not
converge. The convergence behavior was typical for Newton’s method. If the error
was under a certain limit, say 10−2, then there were only few remaining steps so
that almost machine precision was reached. Therefore, in the two Tables 13.2, 13.3
the original MATLAB results are presented. The advantage of using Newton’s
method for finding zeros of polynomials with arbitrary algebra coefficients is its
easy use and its high precision. There is another advantage. If with some other
method a zero is computed it is easy to apply few additional Newton steps in
order to reduce the error. The disadvantage is, that we do not know whether there
are still other, nondiscovered zeros. We note, that the frequently appearing number

0.353553390593274 in Table 13.3 is
√

2

4
(Table 13.4).

13.3 Application to Riccati Equation

In the Riccati equation over a Clifford algebra in RN , given in (13.1.1), we can
choose the sizes of the corresponding matrices as follows:

X : m× n⇒ A : m× n, B : m×m, C : n× n, D : n×m.

The linear part of p(X + H) is easy to compute:

p′(X)H = H(C + D)+ (B + XD)H = M1H + M2H = (M1 + M2)H.

In this case the matrices M1, M2 are of order mnN and H is a column vector of
dimension mnN . For more details see also [5], Theorem 8.1 and [3]. In [5], also
quotations to the relevant literature is given. We will use an example defined in all
eight R4 algebras which have the names and notations:

1. Quaternions, H,
2. Coquaternions, Hcoq,
3. Tessarines, Htes,
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Table 13.3 Table of zeros of p, a polynomial of degree 7, defined in (13.2.3)

±(0, 0, 0, 0.923879532511287,

0, 0, 0, −0.382683432365090).

0.353553390593274, 0.353553390593274, 0, 0.5,

−0.5, 0, 0.353553390593274, −0.353553390593274.

±(0.382683432365090, 0, 0, 0,

0.923879532511287, 0, 0, 0).

0.191341716182520, 0, 0, 0.961939766255643,

−0.038060233744357, 0, 0, −0.191341716182520.

0, 0, 0, 1,

0, 0, 0, 0.

−0.191341716182545, 0, 0, 0.038060233744357,

−0.961939766255643, 0, 0, 0.191341716182545.

±(0, √
0.5, 0, 0,

0, 0, 0, −√0.5).

0.191341716182545, 0, 0, 0.038060233744357,

0.961939766255643, 0, 0, 0.191341716182545.

−0.191341716182545, 0, 0, 0.961939766255643,

0.038060233744357, 0, 0, −0.191341716182545.

−0.353553390593272, 0.353553390593274, 0, 0.5,

0.5, 0, −0.353553390593275,−0.353553390593272.

±(0.544895106775818, 0.353553390593275, 0, −0.461939766255644,

0.461939766255644, 0, 0.353553390593272, −0.162211674410729).

±(-0.162211674410729, 0.353553390593274, 0, 0.461939766255643,

0.461939766255643, 0, −0.353553390593274,−0.544895106775819).

−0.353553390593272, −0.353553390593274, 0, 0.5,

−0.5, 0, −0.353553390593275, 0.353553390593272.

Two consecutive lines, separated by a dot . and a small skip define one or two zeros



13 Newton’s Approach to General Algebraic Equations 273

Table 13.4 MATLAB program for computing zeros of polynomials over coefficients from R
8

algebra C4 by Newton’s method

%[xnew,J]=c4_newton(c,xold); c presents the vector of polynomial
%coefficients and xold is an arbitrary initial guess. Computed
%are J, the exact Jacobi matrix at xold, and xnew, the result
%of the application of one Newton step.
%%%
%Basis for the program:
%R. Lauterbach - G. Opfer, AACA 24(2014), pp. 1059 - 1073.
%The polynomials have the form (highest coefficient first)
%%%
%p(x) = c_1x^n + c_2x^{n-1} + ... + c_{n+1}.
%%%
%This programm works in principle for all geometric R^N algebras,
%provided the corresponding algebraic rules have been transmitted
%to MATLAB by a technique called "overloading".
%%%%===============================================================
%function [xnew,J]=c4_newton(c,xold); %J is the exact Jacobi matrix
% n=length(c)-1;
% global N;
% dim=8;
% N=dim;
% J=zeros(N,N);
% for ell=n:-1:1
% J=J+derivative_of_xpowerj(ell,xold,c(n-ell+1));
% end;
% y=Polyval(c,xold);
% if abs(det(J))>=1e-10
% h=-J\col(y);
% xnew=xold+c4(h);
% else
% error(‘Jacobi matrix J is near to singular’);
% %This happens almost never!
% end;
%
%%%%===============================================================
%function M=derivative_ahb_in_matrixform(a,b); %a,b depend on x
%global N;
%M=[];
%for k=1:N
%M=[M,col(a*units(k)*b)]; %M is real NxN matrix
%end;
%
%%%%===============================================================
%function M=derivative_of_xpowerj(j,x,factor);
% %M is real NxN Matrix.
% %factor stands for polynomial coefficients.
% global N;
% M=zeros(N,N);
% for k=1:j
% a=factor*x^(k-1); b=x^(j-k);
% M=M+derivative_ahb_in_matrixform(a,b);
% end;}
%
%%%%===============================================================
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Table 13.5 Definition of the coefficients of algebraic Riccati equation

A :=
[
( 1,−4,−2, 0), (−1, 4, 3, 5), ( 2,−3, 2,−5)

(−1,−1, 3, 3), ( 2,−3,−4, 0), ( 4, 5, 0,−4)

]
;

B :=
[
( 3,−3, 4,−2), (−3,−2, 1, 0)

(−1, 3, 1, 0), ( 4,−2, 3, 3)

]
;

C :=
⎡
⎢⎣
(−1, 1,−4,−4), ( 0, 3, 4,−4), ( 1, 0,−5,−2)

(−3, 3,−2, 0), (−3, 1,−2, 2), ( 2, 2, 0,−4)

(−3, 4,−3, 3), ( 0, 5,−4,−1), (−4, 5,−5, 3)

⎤
⎥⎦ ;

D :=
⎡
⎢⎣
( 5, 5,−3, 5), (−3, 0,−1, 1)

( 2,−5, 3, 4), ( 5,−2, 1,−3)

(−2,−5,−4, 3), (−4,−2, 3,−2)

⎤
⎥⎦ .

4. Cotessarines, Hcotes,
5. Nectarines, Hnec,
6. Conectarines, Hcon,
7. Tangerines, Htan,
8. Cotangerines, Hcotan.

It should be noted, that the algebras numbered 3, 4, 7, 8 are commutative. About the
names and the multiplication rules see [4, 7]. We quote an example from [5].

Example We choose m = 2, n = 3 and define the algebraic Riccati equation by
A ∈ A2×3,B ∈ A2×2,C ∈ A3×3,D ∈ A3×2, where the matrix entries are given in
Table 13.5.

The data of Table 13.5 are randomly chosen integers in [−5, 5]. We choose
X = 0 as initial guess with the exception of Algebra 6, where another guess is
used. Newton’s method converges then in all 8 cases. The solutions are given in
Table 13.6. These solutions are not necessarily the only solutions.
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Table 13.6 Solutions X ∈ A2×3 of the algebraic Riccati equation in all eight R4

algebras

Pos. Quaternions H Coquaternions Hcoq

x11 (−0.1045,−0.1495, 0.2660, 0.0712) ( 0.1544, 0.6186,−0.0883, 0.3512)

x21 ( 0.3071, 0.3399,−0.6350, 0.1765) ( 0.2732, 0.3379,−0.5506, 0.2582)

x12 ( 0.2731,−0.1913, 0.1003, 0.6167) ( 0.1612, 0.0891,−0.6692,−0.2445)

x22 ( 0.5842, 0.7970,−0.0900,−0.4788) ( 0.5916, 1.3237, 0.1198, 0.6950)

x13 ( 0.9956, 0.1306, 0.3851, 0.6174) (−0.1351, 0.2386,−0.6664, 0.8003)

x23 (−0.5317,−0.3326,−0.5753,−0.3978) (−1.2738, 0.5379, 0.6102, 1.0119)

Pos. Tessarines Htes Cotessarines Hcotes

x11 (−0.8748,−0.1261, 0.0210, 0.0205) ( 0.0749, 0.5097, 0.8189,−0.7321)

x21 (−0.1044,−0.4106, 1.0738,−0.9254) ( 0.1177,−0.0515,−0.7539, 0.0017)

x12 ( 0.1632, 0.0329,−0.1188,−0.4736) (−1.7670, 0.0836, 0.3282,−1.2972)

x22 ( 0.0282, 0.4299, 0.3035, 0.4502) ( 0.3680, 0.1663, 0.7493, 1.4654)

x13 (−0.6189, 0.5054,−0.8030,−0.4800) ( 1.0919,−1.0135,−0.5820, 1.0441)

x23 ( 0.8554,−0.0146, 0.2011,−1.1011) (−0.5413,−0.2660, 0.0956,−0.2739)

Pos. Nectarines Hnec Conectarines Hcon

x11 ( 0.1490,−0.1557, 0.6250, 0.3262) ( 1.3763,−0.5053, 0.8822,−1.0762)

x21 ( 0.1598,−0.5805,−0.9796,−1.2966) ( 0.4270, 0.0322, 0.5237, 0.8558)

x12 ( 0.5285, 0.1447,−0.4479, 0.0074) ( 1.5484,−4.3525,−1.4404, 5.4397)

x22 (−0.2607,−0.4621,−0.8051,−0.4240) (−0.5729, 1.4386, 1.0001,−1.7677)

x13 (−0.2660,−0.3224, 0.3163, 0.3754) ( 1.7588,−0.5349,−0.3498, 0.8295)

x23 (−0.7931,−0.9394, 0.4466, 0.6899) (−0.3289, 0.4151,−0.0512,−0.3035)

Pos. Tangerines Htan Cotangerines Hcotan

x11 ( 0.0238, 0.1553,−0.6713, 0.3590) (−0.4374,−0.8677,−0.4367, 0.8265)

x21 ( 0.3589,−0.1427,−0.2777,−0.6520) (−0.4075, 0.6499, 0.5927,−0.0469)

x12 (−0.1408,−0.0282, 0.2520, 0.8164) ( 0.2330,−0.6134,−0.4203, 0.2160)

x22 (−0.1875,−0.0557, 0.5904, 0.4577) (−0.4898,−0.1886, 0.2013, 0.4882)

x13 ( 0.1099,−0.4139, 0.0090,−0.1696) ( 0.2155,−0.2357,−0.4028, 0.0678)

x23 (−0.1393,−0.2064, 0.0938, 0.0396) ( 0.2917, 0.1488, 0.3577,−0.2748)



276 D. Janovská and G. Opfer

References

1. D.J.H. Garling, Clifford Algebras: An Introduction (Cambridge Univerity Press, Cambridge,
2011), 200 pp

2. K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers
(Wiley, Chichester, 1997), 371 pp

3. D. Janovská, G. Opfer, The algebraic Riccati equation for quaternions. Dedicated to Ivo Marek
on the occasion of his 80th birthday. Adv. Appl. Clifford Algebras 23, 907–918 (2013)

4. D. Janovská, G. Opfer, Zeros and singular points for one-sided, coquaternionic polynomials
with an extension to other R4 algebras. Electron. Trans. Numer. Anal. 41, 133–158 (2014)

5. R. Lauterbach, G. Opfer, The Jacobi matrix for functions in noncommutative algebras. Adv.
Appl. Clifford Algebras 24, 1059–1073 (2014). Erratum: Adv. Appl. Clifford Algebras, 24
(2014), p. 1075

6. A.A. Pogurui, R.M. Rodriguez-Dagnino, Some algebraic and analytic properties of coquaternion
algebra. Adv. Appl. Clifford Algebras 20, 79–84 (2010)

7. B. Schmeikal, Tessarinen, Nektarinen und andere Vierheiten. Beweis einer Beobachtung von
Gerhard Opfer. Mitt. Math. Ges. Hamburg 34, 81–108 (2014)



Part IV
Differential Geometry



Chapter 14
Connections in Euclidean
and Non-commutative Geometry

Viktor Abramov and Olga Liivapuu

To the 70th birthday of professor Wolfgang Sprössig
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14.1 Introduction

A theory of connections is very important part of modern differential geometry.
The discovery of interconnection between this theory and the gauge field theories
has given a powerful impetus to development of the entire theory. In the present
paper we track the development of a concept of connection from the simplest
case of the canonical connection in the n-dimensional Euclidean space R

n to its
generalizations in non-commutative geometry. The present paper is written on the
basis of lectures delivered to the doctoral level students of Division of Applied
Mathematics of University of Mälardalen within the framework of NordPlus Higher
Education Program 2017.

In the first subsections of Sect. 14.2 we describe the structures of elementary
differential geometry of n-dimensional Euclidean space R

n such as vector fields
and differential 1-forms. We lay particular stress on algebraic aspects of these
structures and bring a reader to an idea of algebraic structure which is called a
first order differential calculus over an algebra. Then we explain a basic idea of
non-commutative geometry, where the commutative algebra of smooth functions
C∞(R)n on R

n is replaced by a non-commutative algebra. We show that in order
to construct the differential 1-forms on a non-commutative space we should have a
coordinate first order differential calculus with right partial derivatives over a non-
commutative algebra. As an example of a coordinate first order differential calculus
with right partial derivatives we consider the differential calculus on the quantum
hyperplane. In Sect. 14.3 we describe the algebra of differential forms with exterior
differential in the n-dimensional Euclidean space R

n and its generalization in an
approach of non-commutative geometry, which is called a higher order differential
calculus over an algebra. Particularly we explain the notion of the universal
differential graded algebra. In Sect. 14.4 we describe the canonical connection
in n-dimensional Euclidean space and derive its Cartan’s structure equations. In
Sect. 14.5 we develop a generalization of the theory of connection on modules with
the help of the concept of q-differential graded algebra, where q is a primitive N th
root of unity.

14.2 Vector Fields, Differential 1-Forms in Rn

and Non-commutative First Order Differential Calculus

In this section we describe the Lie algebra of smooth vector fields in n-dimensional
Euclidean space Rn and an approach of non-commutative geometry to a first order
differential calculus in a non-commutative space. In what follows we will use the
Einstein summation convention over repeated subscript and superscript.
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14.2.1 Vector Fields in the n-Dimensional Euclidean Space Rn

Consider the n-dimensional space Rn. This space has the structure of n-dimensional
vector space with the component-wise addition of two vectors and the component-
wise multiplication by real numbers. If we consider an element (v1, v2, . . . , vn)

of Rn as a vector then it will be denoted by .v = (v1, v2, . . . , vn). For any two
vectors .v = (v1, v2, . . . , vn), .w = (w1, w2, . . . , wn) we have the inner product
< .v, .w >=∑i v

i wi , which determines the Euclidean structure of Rn. If we do not
use the vector space structure of Rn then an element (p1, p2, . . . , pn) will be called
a point of Rn and denoted by p = (p1, p2, . . . , pn). The coordinate functions of
Rn will be denoted by x1, x2, . . . , xn and by definition xi(p) = pi . The canonical
basis for the Euclidean vector space Rn will be denoted by .e1, .e2, . . . , .en, where the
ith component of .ei is 1 and the others are zeros.

Let U ⊂ Rn be an open subset. A real-valued function f : U → R is called
a smooth function if it has continuous partial derivative of any order. The set of
all smooth functions on the n-dimensional Euclidean space Rn will be denoted
by C∞(Rn). The set C∞(Rn) endowed with the pointwise addition of smooth
functions and the multiplication of a smooth function by a real number is the
infinite dimensional vector space. We remind that a vector space A is said to be
a unital associative algebra if A is equipped with a product a · b, where a, b ∈ A ,
such that a · (b · c) = (a · b) · c (associativity), and this product has the identity
element e satisfying a · e = e · a = a. If, in addition to associativity, the product
a · b of any two elements is commutative, i.e. a · b = b · a, a unital associative
algebra A is called commutative. The vector space C∞(Rn) of smooth functions
endowed with the product fg of two smooth functions f, g, which is defined by
(fg)(p) = f (p) g(p), is the commutative unital associative algebra, where the
identity element is the function, whose value at any point of the space is 1. If
we ignore the multiplication of smooth functions by scalars (real numbers) then
C∞(Rn) is the commutative unital associative ring.

A tangent vector to the n-dimensional Euclidean space Rn at a point p ∈ Rn is
a pair (p; .v) ∈ Rn × Rn, which will be denoted by .vp , i.e. .vp = (p; .v). A tangent
space of all tangent vectors to Rn at a point p will be denoted by TpRn. The vector
space and Euclidean structure of Rn can be extended to any tangent space TpRn in
the natural way

.vp + .wp = (p; .v + .w), a.vp = (p; a.v), < .vp, .wp >=< .v, .w >, a ∈ R.

Then any tangent vector .vp = (p; .v) = (p; v1, v2, . . . , vn) can be expressed as
.vp = vi .ep,i , where .ep,i = (p; .ei). The disjoint union of tangent spaces

TRn = ∪p∈RnTpRn, (14.2.1)

will be referred to as the tangent bundle over the n-dimensional Euclidean spaceRn.
The projection π : TRn → Rn is defined by π(.vp) = p. A section of the tangent
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bundle TRn is a smooth mappingX : Rn → TRn such that π ◦X = idRn . A smooth
section X of the tangent bundle TRn is called a vector field in the Euclidean space
Rn. Obviously any vector field X is uniquely determined by n smooth functions
X1,X2, . . . , Xn such that

X : p ∈ R
n �→ Xp = (p;X1(p),X2(p), . . . , Xn(p)) ∈ TpRn.

The functions X1,X2, . . . , Xn will be called the components of a vector field
X. The vector space structure of a tangent space TpRn induces the vector space
structure in the set D of all vector fields.

Let M be an Abelian group and A be a unital associative ring. We remind that
M together with a mapping (a, u) ∈ A ×M �→ a · u ∈ M satisfying

(a+ b) · u = a · u+ b · u, a · (u+ v) = a · u+ a · v, (ab) · u = a · (b · u), e · u = u,

where a, b ∈ A , u, v ∈ M and e is the identity element of A , is called a left A -
module. A notion of right A -module is defined in a similar manner. A -bimodule is
an Abelian groupM , which is both left and rightA -module and (a·u)·b = a·(u·b).
One can extend the notion of a module (left, right or bimodule) over a ring to a
notion of a module over a unital associative algebra assuming that in this case A ,M
are vector spaces and scalars commute with everything. A left A -module M is
referred to as finitely generated if there is a set {u1, u2, . . . , un} of elements of M
such that any element u of M can be written as u = a1 u1 + a2 u2 + . . . + an un,
where a1, a2, . . . , an ∈ A . If {u1, u2, . . . , un} are linearly independent (over A )
then a finitely generated left A -module M is called a free module with a basis. If a
ring A has an invariant basis number then the cardinality of any basis for free left
A -module is called the rank of a free module.

It turns out that the concept of a module is applicable to the algebra of smooth
functions C∞(Rn) and the vector space of vector fields D, and plays an important
role in constructing noncommutative generalizations of vector fields. Indeed given
a smooth function f and a vector field X one can define the product fX (left
multiplication of vector fields by smooth functions) as the vector field fX : p �→
f (p)Xp . It is easy to check that this product defines the structure of left C∞(Rn)-
module in D. Analogously one can define a structure of right C∞(Rn)-module in
D, and then from f (p)Xp = Xp f (p) (numbers commute with vectors) it follows
that in the case of the Euclidean space Rn functions commute with vector fields
fX = Xf .

Let us define the vector fields Ei, i = 1, 2, . . . , n by the formula Ei(p) = .ep,i ,
where p ∈ Rn. Making use of the left multiplication of vector fields by smooth
functions one can express any vector field X, whose components are functions
X1,X2, . . . , Xn, in the form X = Xi Ei . Evidently the vector fields Ei, i =
1, 2, . . . , n are linearly independent (over the ring of smooth functions). The ring of
smooth functions C∞(Rn) is commutative, hence it has an invariant basis number,
and consequently the formula X = Xi Ei shows that D is the free left C∞(Rn)-
module of rank n. We can consider the basis {E1, E2, . . . , En} for the free left
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C∞(Rn)-module D as the frame field, i.e. as the mapping which attaches to each
point p of the Euclidean space the frame {.ep,i}ni=1 of tangent space TpRn. We
will denote this frame field by E and call it the canonical frame field for the
tangent bundle TRn. Obviously the canonical frame field E is orthonormal, i.e.
< Ei,Ej >= δij .

14.2.2 Vector Field as the Directional Derivative

Let f be a smooth function and X be a vector field in Rn. A vector field X at a
point p is the tangent vector Xp = (p; .v) ∈ TpRn. How we can measure a rate
of change of a function f at a point p in the direction of tangent vector Xp? For
this purpose we can use the directional derivative of a function. Evidently there is
a parametrized curve α : I → Rn, where I ⊂ R is an open interval, such that
α(0) = p (curve passes through a point p), and .α′(0) = Xp (the tangent vector to a
curve at a point p is Xp). For instance one can take the straight line α(t) = p+ t .v.
Then the directional derivative Xf at a point p is defined by

Xf (p) = d

dt
(f ◦ α(t))|t=0. (14.2.2)

The directional derivative of a function f determines a new smooth function Xf ,
whose value at any point of the Euclidean space is defined by (14.2.2). Hence a
vector field X induces the directional derivative and can be considered as a linear
mapping X : C∞(Rn) → C∞(Rn), which satisfies the Leibniz rule X(fg) =
(Xf ) g + f (Xg). An approach to a vector field X as the directional derivative is
very useful because it makes clear an algebraic nature of a vector field. We remind
that a linear mapping δ : A → A of an algebra A is said to be a derivation if it
satisfies δ(ab) = δ(a) b + a δ(b), where a, b ∈ A . Thus a vector field considered
as a directional derivative of a function is a derivation of the algebra C∞(Rn). It can
be proved that the vector space of all derivations of the algebra C∞(Rn) coincides
with the vector space of vector fields D, but generally if we consider the algebra of
N th order differentiable functions this is not the case.

It can be shown that if we consider a vector field X in the Euclidean space Rn as
the derivation of the algebra C∞(Rn) then we can identify a vector field X with the
first order differential operator

X = Xi
∂

∂xi
. (14.2.3)

This formula is equivalent to X = Xi Ei , because the constant vector field Ei ,
considered as the directional derivative, can be identified with partial derivative ∂

∂xi
.

Consequently the vector fields ∂

∂x1 ,
∂

∂x2 , . . . ,
∂
∂xn

form the basis for the free left
C∞(Rn)-module D of vector fields. From this it follows that at any point p of the
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n-dimensional Euclidean space there is the canonical basis ∂

∂x1 |p, ∂

∂x2 |p, . . . , ∂
∂xn

|p
for the tangent space TpRn.

Next algebraic structure, which plays an important role in the theory of vector
fields, is a Lie algebra. We remind that a vector space g is said to be a Lie algebra
if it is equipped with a Lie bracket [ , ] : g × g → g, which for any x, y, z ∈ g
satisfies

• [x, y] = −[y, x] (skew-symmetry),
• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity).

Consider the commutator of two vector fields [X,Y ] = X ◦ Y − Y ◦ X. It is easy
to verify that because of the symmetry (Schwarz’s theorem) of second order partial
derivatives the commutator of two vector fields is the vector field. Indeed if X =
Xi ∂

∂xi
and Y = Y j ∂

∂xj
then

[X,Y ] = (Xi
∂Y j

∂xi
− Y i ∂X

j

∂xi
)
∂

∂xj
. (14.2.4)

Clearly the commutator is skew-symmetric, and it can be checked by straightfor-
ward calculation that it satisfies the Jacobi identity. Hence the commutator of two
vector fields is the Lie bracket, and it determines the structure of Lie algebra in D.
It should be pointed out that this Lie algebra is infinite-dimensional.

14.2.3 Differential 1-Forms in the Euclidean Space Rn

A calculus of differential forms is dual to the calculus of vector fields. Let T∗
pR

n be
the dual or cotangent space of the tangent space TpRn at a point p. We remind that
in the case of finite dimensional vector spaces the dual space V ∗ of a vector space V
is the vector space of all linear R-valued functions on V . We will call the elements of
dual space covectors. We write an element of the cotangent space T∗

pR
n at a point p

as the pair (p;φ), where p is a point of Euclidean space and φ : Rn → R is a linear
function, and define (p;φ)(.vp) = φ(.v), where .vp = (p; .v) ∈ TpRn. Consider the
disjoint union

T∗
R
n = ∪p∈RnT∗

pR
n,

which will be referred to as the cotangent bundle over the Euclidean space Rn.
Define the projection π̃ : T∗

Rn → Rn by π̃(p;φ) = p. Then a differential form of
degree 1 or 1-form ω is a smooth section of the cotangent bundle ω : Rn → T∗

Rn,
i.e. it satisfies π̃ ◦ ω = idRn . Hence a differential 1-form is a smooth mapping
ω : p �→ ωp ∈ T∗

pR
n.

The vector space structure of T∗
pR

n induces the vector space structure in the

set of all 1-forms, and this vector space will be denoted by 	1(Rn). The infinite-
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dimensional vector space of 1-forms can be considered as a bimodule over the
algebra of smooth functions. Indeed given a smooth function f and a 1-form ω

one can define the product f · ω (left multiplication of 1-forms by functions) as
the 1-form such that (f · ω)p = f (p) ωp , where p is a point of Rn. Since real
numbers commute with covectors the right-hand side of this formula can be written
as ωp f (p), which means that we can define the product ω · f (right multiplication
of 1-forms by functions) by simply setting it equal to f ·ω. These two products f ·ω
and ω ·f determine the C∞(Rn)-bimodule structure of	1(Rn). Next we define the
value of differential 1-form ω on a vector field X as the function f = ω(X), whose
value at a point p is defined by f (p) = ωp(Xp). Evidently for any functions g, h
and any vector fields X,Y it holds ω(gX + hY ) = f ω(X) + g ω(Y ). This shows
that a differential 1-form ω determines the homomorphism ω : D → C∞(Rn) of
C∞(Rn)-bimodules. Two differential forms ω1, ω2 are equal ω1 ≡ ω2 iff for any
vector field X it holds ω1(X) = ω2(X). Hence a 1-form ω is uniquely determined
if we show how to compute its value on any vector field X (this dependence on
a vector field should be C∞(Rn)-linear). We can apply this way of constructing
differential 1-forms to functions. Indeed given a function f ∈ C∞(Rn) we can
define the differential 1-form df by means of the formula

df (X) = Xf, (14.2.5)

where X is a vector field. Hence any smooth function f induces the differential 1-
form df , i.e. we have the linear mapping f ∈ C∞(Rn)→ df ∈ 	1(Rn). Because
a vector field X is the derivation of the algebra of smooth functions, it holds

d(fg)(X) = X(fg) = (Xf ) g + f (Xg) = df (X) g + f dg(X),
or, omitting a vector field X and making use of C∞(Rn)-bimodule structure of
	1(Rn), we can write

d(fg) = df · g + f · dg. (14.2.6)

We see that the formula df (X) = Xf defines the linear mapping d : C∞(Rn) →
	1(Rn) from the algebra to bimodule over this algebra, which satisfies (14.2.6).

Now our aim is to find an expression for a 1-form ω in the coordinates xi of the
n-dimensional Euclidean space Rn. For this purpose we remind that if V ∗ is the dual
space of a finite dimensional vector space V , .ei is a basis for V then the elements ei

of the dual space V ∗ defined by ei(.ej ) = δij form the basis for V ∗, which is called
the dual basis of .ei . Any element (covector)φ of the dual space V ∗ can be expressed
in terms of dual basis as φ = φi e

i , where φi are real numbers. We also remind that
xi are regarded as the coordinate functions on the Euclidean space Rn. Hence each
coordinate function xi induces the 1-form dxi , and, according to the definition, we
have

dxi(
∂

∂xj
) = ∂xi

∂xj
= δij .
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This shows that at any point p the covectors dx1
p, dx

2
p, . . . , dx

n
p form the

basis for the cotangent space T∗
pR

n, which is dual to the canonical basis
∂

∂x1 |p, ∂

∂x2 |p, . . . , ∂
∂xn

|p. From this it is easy to conclude that any 1-form ω can

be expressed as follows ω = ωi dx
i , where ωi are smooth functions. This also

shows that the 1-forms dxi form the basis for the bimodule of 1-forms 	1(Rn)

over the algebra C∞(Rn). Hence 	1(Rn) is free left (or right) C∞(Rn)-module of
rank n.

14.2.4 Non-commutative First Order Differential Calculus

Now we can draw some conclusions from the previous considerations. The impor-
tant conclusion is that the algebra of smooth functionsC∞(Rn) is the basic structure
for the calculus of vector fields and differential 1-forms. Indeed we see that a vector
field can be identified with the derivation of this algebra and differential 1-forms
	1(Rn) can be considered as elements of the bimodule over this algebra. This
observation underlies an approach used in non-commutative geometry. The algebra
C∞(Rn) is commutative, but we can consider a non-commutative algebra, which by
its properties should be close, in a sense, to C∞(Rn). This non-commutative algebra
will mimic an algebra of functions on our space, and, making use of this algebra,
we can then develop structures of differential geometry such as a calculus of vector
fields, differential forms and so on. Peculiar property of this approach to geometry
is that we do not need a notion of a point of our space because the only thing which
we use to develop a differential geometry is an algebra of functions. It is worth to
mention that our main goal is the algebraic aspect of noncommutative geometry
approach, that is, we ignore the topological questions of functional spaces.

Let A be a unital associative algebra, which is not necessarily commutative. In
order to be able to model the algebraic aspect of the calculus of differential forms
developed in the previous subsection, we should have a bimodule over this algebra.
We will denote this A -bimodule by M . Now we can give a general definition of
a first order differential calculus over a unital associative algebra [14]. A triple
(A , d,M ), where A is a unital associative algebra, M is an A -bimodule and
d : A → M is a linear mapping, is said to be a first order differential calculus
over an algebra A if d satisfies the Leibniz rule d(ab) = da · b + a · db, where
a, b ∈ A . If A is a commutative (non-commutative) algebra then a first order
differential calculus (A , d,M ) is called a commutative (non-commutative) first
order differential calculus. Particularly the triple (C∞(Rn), d,	1(Rn)), where d
is defined by (14.2.5), is the commutative first order differential calculus over the
algebra of smooth functions in the n-dimensional Euclidean space Rn.

Given a unital associative algebra A one can construct a universal first order
differential calculus. Indeed the tensor product A ⊗2 = A ⊗A is the A -bimodule,
where the left and right multiplications by elements of A are defined by

a · (b ⊗ c) = (ab)⊗ c, (b⊗ c) · a = b⊗ (ca).
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For any a ∈ A define the linear mapping d : A → A ⊗2 by da = e ⊗ a − a ⊗ e,
where e is the identity element of A . Applying this mapping to product of two
elements

d(ab) = e ⊗ (ab)− (ab)⊗ e = e ⊗ (ab)− a ⊗ b + a ⊗ b − (ab)⊗ e
= (e ⊗ a − a ⊗ e) b + a (e ⊗ b − b ⊗ e) = da · b + a · db,

we see that d satisfies the Leibniz rule and thus (A , d,A ⊗2) is the first order
differential calculus, which is referred to as the universal first order differential
calculus over A [7].

A first order differential calculus over an algebra is very general algebraic
concept and in order to make it more close to differential 1-forms in the n-
dimensional Euclidean space we can use the fact that 	1(Rn) is the free left (or
right)C∞(Rn)-module of rank n and the set {dxi}ni=1 of 1-forms can be taken as the
basis for this module. Let (A , d,M ) be a non-commutative first order differential
calculus over an algebra A . Assume that the right A -module M is free module
of rank n and ξ i , i = 1, 2, . . . , n is a basis for this module. In analogy with the
differential calculus in the Euclidean space Rn one can define the right partial
derivatives ∂i : A → A by da = ξ i ∂ia. In this case a first order differential
calculus (A , d,M ) is called a first order differential calculus with right partial
derivatives (r.p.d.). Now the left A -module structure of M induces the mappings
Hi
j : a ∈ A �→ Hi

j (a) ∈ A defined by the formula a ξi = ξj H i
j (a), where a is an

element of algebra A . It can be proved [4] that the right partial derivatives ∂i satisfy
the twisted Leibniz rule

∂i(ab) = (∂ia) b +Hj
i (a) (∂jb), a, b ∈ A . (14.2.7)

We can compose the nth order matrix H(a) = (H
j

i (a)) over A by positioning the

element Hj

i (a) at the intersection of j th column and ith row. It can be proved that
H(ab) = H(a)H(b), which shows that H is the homomorphism from an algebra
A to the algebra of nth order matrices Matn(A ) over A .

Next assume that a unital associative algebra A is generated by variables xi, i =
1, 2, . . . , n which obey the relations fα(x1, x2, . . . , xn) = 0, α = 1, 2, . . . ,m,
where each fα(x1, x2, . . . , xn) is the finite polynomial of variables x1, x2, . . . , xn

and dxi = ξ i . In this case a first order differential calculus (A , d,M ) with r.p.d.
is called a coordinate first order differential calculus [4]. Clearly in this case the
generators x1, x2, . . . , xn can be viewed as analogs of coordinate functions.

14.2.5 Two Dimensional Quantum Space

A well known example of first order non-commutative differential calculus can
be constructed in the case of the quantum hyperplane [13]. As it was mentioned
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before, in non-commutative geometry approach one constructs and studies various
structures of differential geometry in a non-commutative space by means of algebra
of functions on this space. The algebra of functions on the quantum hyperplane
is the algebra of finite polynomials over C generated by variables x1, x2, . . . , xn,
which obey relations

xixj = q xjxi, (14.2.8)

where q is a non-zero complex number. The generators of the algebra x1, x2, . . . , xn

can be considered as the coordinate functions on the quantum hyperplane. Partic-
ularly if n = 2 then the algebra of functions generated by x, y, which obey the
relations

xy = q yx, (14.2.9)

will be referred to as the algebra of functions on the quantum plane and denoted
by Cq . Our aim in this subsection is to construct a first order differential calculus
over the algebra of functions on the quantum plane. It is useful to write the
relation (14.2.9) in the form r(x, y) = 0, where r(x, y) = xy − q yx.

According to the notion of first order differential calculus over an algebra
explained in the previous subsection, we have to construct a Cq -bimodule Mq

together with a differential d : Cq → Mq , which satisfies the Leibniz rule. For this
purpose we consider the right Cq -module Mq freely generated by ξ, η. We define
the Cq -bimodule structure of Mq by putting

xξ = ξ H 1
1 (x)+ ηH 1

2 (x), xη = ξ H 2
1 (x)+ ηH 2

2 (x), (14.2.10)

yξ = ξ H 1
1 (y)+ ηH 1

2 (y), yη = ξ H 2
1 (y)+ ηH 2

2 (y), (14.2.11)

where

H : x �→
(
H 1

1 (x) H
2
1 (x)

H 1
2 (x) H

2
2 (x)

)
, H : y �→

(
H 1

1 (y) H
2
1 (y)

H 1
2 (y) H

2
2 (y)

)
, (14.2.12)

is a homomorphism from the algebra of functionsCq to the algebra of 2×2-matrices
over Cq defined on the generators. Hence for any two functions f, g ∈ Cq it holds
H(fg) = H(f )H(g). Now we can define a differential d : Cq → Mq . Since
differential is a linear mapping and it satisfies the Leibniz rule, it suffices to define it
on the generators x, y. In order to have a coordinate first order differential calculus
with r.p.d. we put dx = ξ, dy = η. As it is shown in the previous subsection the
differential d induces the right partial derivatives

df = dx ∂xf + dy ∂yf, f ∈ Cq, (14.2.13)
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which satisfy the twisted Leibniz rule (14.2.7)

∂x(fg) = (∂xf ) g +H 1
1 (f ) ∂xg +H 2

1 (f ) ∂yg, (14.2.14)

∂y(fg) = (∂yf ) g +H 1
2 (f ) ∂xg +H 2

2 (f ) ∂yg. (14.2.15)

Thus our first order differential calculus is coordinate differential calculus with r.p.d.
Since we defined the differential d by dx = ξ, dy = η, the relations (14.2.10)

and (14.2.11) can be considered as commutation relations between coordinate
functions x, y and their differentials dx, dy. It is worth to mention that two
matrices H(x),H(y) completely determine the coordinate first order differential
calculus with r.p.d. over the algebra of functions on the quantum plane. Hence
the matrices (14.2.12) can be considered as parameters of a possible differential
calculus. Obviously these matrices should be compatible with the defining relation
of quantum plane r(x, y) = xy − q yx = 0. Hence the matrices H(x),H(y) have
to satisfy the following conditions

∂xr(x, y) = 0, ∂yr(x, y) = 0, H(r(x, y)) = 0. (14.2.16)

We find

∂x(xy− q yx) = y+H 2
1 (x)− q H 1

1 (y), ∂y(xy− q yx) = H 2
2 (x)− qx− q H 1

2 (y).

Hence the conditions ∂xr(x, y) = 0, ∂yr(x, y) = 0 imply

H 2
1 (x) = qH 1

1 (y)− y, H 2
2 (x) = qH 1

2 (y)+ qx, (14.2.17)

which can be written as

H 2(x) = qH 1(y)+
(−y
qx

)
, (14.2.18)

whereHi(x)(H i(y)) is the ith column of the matrix H(x) (H(y)).
From H(r(x, y)) = 0 it follows

H 2(y)H i
2(x) = q−1H(x)H i(y)−H 1(y)H i

1(x), i = 1, 2. (14.2.19)

The simplest case is when the matrices H(x),H(y) depend linearly on the
coordinates x, y. Hence we assume

H(x) = Ax + By, H(y) = Cx +Dy,



290 V. Abramov and O. Liivapuu

where A,B,C,D are complex matrices. It follows from (14.2.18) that these
matrices must satisfy

A2 = q C1 +
(

0
q

)
, B2 = q D1 +

(−1
0

)
. (14.2.20)

From (14.2.19) it follows that

C2Ai2 − q−1ACi + C1Ai1 = 0, (14.2.21)

D2Ai2 − ADi +D1Ai1 + qC2Bi2 − q−1BCi + qC1Bi1 = 0, (14.2.22)

D2Bi2 − q−1BDi +D1Bi1 = 0. (14.2.23)

Since H(y) = Cx + Dy it is natural to seek a solution on the assumption C = 0.
Then the first condition in (14.2.20) immediately gives

A2 =
(

0
q

)
.

Thus A2
1 = 0, A2

2 = q . Now the condition (14.2.21) is identically satisfied and the
condition (14.2.22) takes the form

D2Ai2 − ADi +D1Ai1 = 0. (14.2.24)

The second natural assumption is that the matrices A,D are diagonal, i.e.

A =
(
q2 0
0 q

)
, D =

(
γ1 0
0 γ2

)
,

where α1, α2, γ1, γ2 are different from zero. Then from the second formula
in (14.2.20) we get B2

1 = qγ1 − 1, B2
2 = 0. It is easy to verify that now the

condition (14.2.24) is identically satisfied, while Eq. (14.2.24) gives

(1 − q−1)γ1B
1
1 = 0, (γ2 − q−1γ1)B

1
2 = 0, (γ1 − q−1γ2)B

2
1 = 0. (14.2.25)

Since we assume γ1 �= 0, it follows from the first relation that B1
1 = 0. The second

and third relations have a symmetric form and we can solve them either by putting
γ2 − q−1γ1 = 0, B2

1 = 0 or γ1 − q−1γ2 = 0, B1
2 = 0 (other choices lead either

to restriction of q , which is unacceptable, or to B = 0, which makes the whole
construction very indeterminate). In order to be more specific, we take γ1−q−1γ2 =
0, B1

2 = 0 and fix γ1 = q . Then γ2 = q2, and we finally obtain the well known first
order coordinate differential calculus with r.p.d. on the quantum plane

x dx = q2dx x, x dy = (q2 − 1) dx y + q dy x, (14.2.26)

y dx = q dx y, y dy = q2 dy y. (14.2.27)
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14.3 Algebra of Differential Forms and Differential Graded
Algebra

In this section we describe the higher order differential forms in the n-dimensional
Euclidean space. We lay particular stress on an algebraic structure of differential
forms and bring a reader to idea of a notion of differential graded algebra. We
analyze in details the structure of differential graded algebra by pointing out that
it contains the first order differential calculus. We explain the notion of universal
differential graded algebra over a first order differential calculus.

14.3.1 Algebra of Differential Forms in Rn

In the previous section we showed how one can construct the calculus of differential
1-forms in the n-dimensional Euclidean space and its possible generalizations
within the framework of noncommutative geometry. In order to continue this
construction to higher degree differentials forms in Rn we attach to each point p
of the Euclidean space a vector space of totally skew-symmetric multilinear real-
valued k-forms ∧k(T∗

pR
n). The disjoint union ∧k(T∗

Rn) = ∪p ∧k (T∗
pR

n) is
referred to as the vector bundle of exterior k-forms over the Euclidean space Rn.
An element of this bundle can be written in the form (p; ϕ), where p is a point of
the Euclidean space and ϕ is a totally skew-symmetric multilinear k-form on the
vector space Rn, that is

ϕ : Rn × R
n × . . .× R

n (k times)→ R,

which for any permutation σ = (i1, i2, . . . , ik) of integers (1, 2, . . . , k) satisfies

ϕ(.vi1 , .vi2 , . . . , .vik ) = (−1)|σ | ϕ(.v1, .v2, . . . , .vk),

where |σ | is the parity of a permutation. We consider the pair ϕp = (p; ϕ) ∈
∧k(T∗

pR
n) as the k-form on the tangent space TpRn, where

ϕp(.vp;1, .vp;2, . . . , .vp;k) = ϕ(.v1, .v2, . . . , .vk), .vp;i = (p; .vi).

The projection π(k) : ∧k(T∗
R
n) → R

n is defined in the natural way π(k) ϕp = p.
A smooth section θ : R

n → ∧k(T∗
R
n) of the vector bundle of exterior k-

forms is referred to as a differential k-form. The vector space of all differential
k-forms will be denoted by 	k(Rn) and the degree of a differential k-form θ

will be denoted by |θ |, i.e. |θ | = k. Similar to differential 1-forms we can
define the products f θ, θf , where f is a smooth function, by means of point-
wise multiplication and since scalars commute with vectors we have f θ = θf .
Hence the vector space 	k(Rn) can be regarded as the bimodule over the algebra
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C∞(Rn). The value of a differential k-form on vector fields X1,X2, . . . , Xn is
the function f = θ(X1,X2, . . . , Xn), whose value at a point p is defined by
f (p) = θp((X1)p, (X2)p, . . . , (Xk)p).

Let ω be a differential k-form and θ be a differential l-form. The wedge product
ω∧ θ of two differential forms ω, θ is the differential (k+ l)-form, which is defined
by

ω ∧ θ(X1,X2, . . . , Xk+l ) =
∑
σ

(−1)|σ |ω(Xi1 ,Xi2 , . . . , Xik )

× θ(Xj1 ,Xj2, . . . , Xjl ), (14.3.1)

where σ = (i1, i2, . . . , ik, j1, j2, . . . , jl) is a permutation of integers (1, 2, . . . , k +
l) such that i1 < i2 < . . . < ik, j1 < j2 < . . . < jl and sum is taken over all such
permutations. It can be proved that the wedge product of differential forms has the
following properties:

(i) ω ∧ θ = (−1)|ω||θ |θ ∧ ω,
(ii) (ω ∧ θ) ∧ χ = ω ∧ (θ ∧ χ), i.e. the wedge product of differential forms is

associative.

It is useful to add the algebra of smooth functionsC∞(Rn) to the sequence	k(Rn),
k = 1, 2, . . ., of the vector spaces of differential forms by assigning degree zero to
functions. Hence we identify the vector space of differential 0-forms with C∞(Rn),
i.e. 	0(Rn) ≡ C∞(Rn). In order to complete the construction of algebra of
differential forms we introduce the direct sum of vector spaces	(Rn) = ⊕i	i(Rn).
Evidently	(Rn) is closed under the wedge product of differential forms and hence
it is the associative unital algebra, which is called the algebra of differential forms in
the n-dimensional Euclidean space. By unital we mean that the constant function 1,
whose value at any point is one, can be taken as the identity element of the algebra
of differential forms.

Now we remind the notion of a graded algebra. A unital associative algebra A is
called a graded algebra if A = ⊕k∈ZA k and for any elements u ∈ A i , v ∈ A j it
holds u · v ∈ A i+j . If u ∈ A i then u is an element of degree i and we will denote
its degree by |u|. An element of graded algebra, which has the certain degree, is
called homogeneous. A graded algebra is said to be a graded commutative if for any
two homogeneous elements u, v ∈ A it holds u · v = (−1)|u||v|v · u. It is useful
to introduce the graded commutator [u, v] of two homogeneous elements u, v by
[u, v] = u · v − (−1)|u||v|v · u. Then the condition of graded commutativity can be
given in the form [u, v] = 0.

Making use of the notion of graded algebra, we can say that the algebra of
differential forms is the graded algebra because for any two homogeneous forms
ω, θ it holds |ω ∧ θ | = |ω| + |θ |. Moreover, because of the first property of the
wedge product, the algebra of differential forms is graded commutative.

A differential 1-form ω can be expressed in terms of coordinate functions xi of
the n-dimensional Euclidean space as ω = ωi dx

i , where the coefficients ωi are the
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smooth functions and the 1-forms dxi form the basis for the bimodule 	1(Rn). It
follows from the properties of the wedge product that dxi ∧ dxj = −dxj ∧ dxi or,
equivalently, dxi ∧ dxi = 0. It is easy to show that differential 2-forms dxi ∧ dxj ,
where i < j , form the basis for the bimodule of 2-forms	2(Rn) and any differential
2-form θ can be written as follows

θ = 1

2
θij dx

i ∧ dxj ,

where indices i, j run independently from 1 to n and the functions θij satisfy θij =
−θji . Analogously any differential k-form can be written as follows

θ = 1

k!θi1i2...ik dx
i1 ∧ dxi2 ∧ . . . dxik , (14.3.2)

where the functions θi1i2...ik are totally skew-symmetric under permutations of
subscripts. From the expression for a differential k-form (14.3.2) and the property
dxi ∧ dxi = 0 it follows that the highest degree of non-trivial differential form in
the n-dimensional Euclidean space is n. Hence 	(Rn) = ⊕nk=0	

k(Rn).
Finally we would like to point out that at any fixed point p of the Euclidean space

the wedge product of differential forms induces the wedge products of covectors
dx1|p, dx2|p, . . . , dxn|p, which are subjected to the commutation relations

dxi |p ∧ dxj |p = −dxj |p ∧ dxi |p.

These relations show that dxi |p are the generators of Grassmann algebra
∧(T∗

pR
n) = ⊕k ∧k (T∗

pR
n), which is called the exterior algebra of the cotangent

space T∗
pR

n.
The exterior differential d of the algebra of differential forms is defined as

follows:

(i) if f is a smooth function then the exterior differential df is the 1-form defined
for any vector field X by df (X) = Xf ,

(ii) for any differential k-form θ the exterior differential dθ is the differential (k +
1)-form defined by the formula

dθ(X1,X2, .., Xk+1) =
k+1∑
i=1

(−1)i+1Xiθ(X1,X2, .., X̂i , .., Xk+1)

+
∑
i<j

(−1)i+j θ([Xi,Xj ],X1,X2, .., X̂i , .., X̂j , .., Xk+1),

where hat over Xi means that this vector field is omitted.
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It can be proved that the exterior differential has the following properties:

1. the exterior differential has the degree 1, i.e. d : 	k(Rn)→ 	k+1(Rn),
2. for any homogeneous forms ω, θ it holds d(ω ∧ θ) = dω ∧ θ + (−1)|ω|ω ∧ dθ ,

and this property is referred to as the graded Leibniz rule,
3. d2 = 0.

It should be mentioned that the exterior differential d is uniquely determined by the
above properties. The last property is very important and it is the key property for a
concept of de Rham cohomology.

14.3.2 Non-commutative Higher Order Differential Calculus

In the previous subsection it was shown that the triple (C∞(Rn), d,	1(Rn)) is
the commutative first order differential calculus in the Euclidean space Rn and
this calculus was included as the subalgebra of the algebra of differential forms
	(Rn) by assigning degree zero to smooths functions, i.e. 	0(Rn) ≡ C∞(Rn).
Hence we can look at the algebra of differential forms with exterior differential d as
the extension of the first order differential calculus (C∞(Rn), d,	1(Rn)) to higher
degree differentials forms, which satisfies the listed above properties of exterior
differential.

A general approach to this kind of extensions of first order differential calculus
is provided by the notion of differential graded algebra. A differential graded
algebra (DGA) G is a graded algebra G = ⊕kG k endowed with a linear mapping
d : G k → G k+1 of degree 1, which satisfies the graded Leibniz rule d(uv) =
du v + (−1)|u|u dv, where u, v ∈ G , |u| is the degree of u, and d2 = 0. Hence
the algebra of differential forms in the Euclidean space Rn is the commutative
differential graded algebra.

Firstly it follows from the definition of a DGA that the subspace of elements
of degree zero G 0 is the subalgebra of G . Indeed for u, v ∈ G 0 we have |uv| =
|u| + |v| = 0, which means that the product of two degree zero elements uv is the
element of degree zero, hence uv ∈ G 0. Secondly any subspace G k of elements of
degree k ≥ 0 is the G 0-bimodule. Indeed if we multiply an element w ∈ G k of
degree k by an element u of degree zero either from the left or from the right then
the degree of products is |w|+|u| = |w| = k, and thus the products are the elements
of G k . Consequently the multiplication by elements of degree zero determines the
mappings G 0 × G k → G k , G k × G 0 → G k , and it is easy to verify that all
axioms of bimodule are fulfilled. Thirdly the triple (G 0, d,G 1) is the first order
differential calculus over the algebra of elements of degree zero G 0, because the
graded Leibniz rule in the case of zero degree elements reduces to ordinary Leibniz
rule. This suggests the following definition: If (A , d,M ) is a first order differential
calculus and G is a DGA with differential d ′ such that G 0 ≡ A ,G 1 ≡ M and
d ′ coincides with d , when restricted to G 0, then a DGA G will be referred to as a
higher order differential calculus over a first order differential calculus (A , d,M ).
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Assume (A , d,M ) is a first order differential calculus and G is a higher order
differential calculus over A . A first order differential calculus, where A -bimodule
M does not contain unnecessary elements, is of most interest in a theory of higher
order calculus over an algebra. Hence we are most interested in the case, where
M is generated by elements of A and their differentials, i.e. M = A dA A .
But it immediately follows from the Leibniz rule that M = A dA A = dA A .
Indeed we have a db = d(ab)− da b, which implies a db c = (d(ab)− da b) c =
d(ab) c−da (bc). It can be proved [12] that if (A , d,M ) is a first order differential
calculus, where M = dA A , then there exists a DGA G generated by G 0 = A
such that its differential coincides with d , when restricted to A . This DGA is usually
referred to as the universal differential graded algebra of (A , d,M ).

The structure of the universal differential graded algebra of a first order differ-
ential calculus (A , d,M ) with right partial derivatives, where A is generated by a
set of variables xi, i ∈ I (with relations fα = 0) and the right A -module is freely
generated by ωk, k ∈ K , is of interest because it is similar to algebra of differential
forms in the Euclidean space Rn. Hence we have for the generators xi of A and for
the A -bimodule structure of M the following relations

fα(x
i) = 0, (14.3.3)

xiωk = ωl H ik
l , (14.3.4)

where fα(xi) are finite polynomials and Hik
l = Hk

l (x
i). Now let Ḡ be the

algebra generated by variables xi, ωk , which obey relations (14.3.3), (14.3.4).
In order to consider a case more general than a coordinate calculus we assume
dxi = ωkgik , where ωk ∈ dA , i.e. dωk = 0 (ωk are closed “differential 1-
forms”). Extending a differential d to elements of M by the graded Leibniz rule
and differentiating (14.3.4) and dxi = ωkgik we get

ωlωm
(
Hk
m(g

i
l )+ ∂mH ik

l

) = 0, ωkωm ∂mgik = 0. (14.3.5)

Now consider the algebra G generated by xi, ωk , which are subjected to the
relations (14.3.3), (14.3.4), (14.3.5). This algebra is endowed with differential
d : A → M . From (14.3.4) it follows that any element of G can be expressed
as follows

ωk1ωk2 . . . ωknhk1k2...kn, hk1k2...kn ∈ A . (14.3.6)

This implies that G is the graded algebra with the degree of a homogeneous element
determined by the number of ωk in the expression (14.3.6). Now it can be proved
[4] that if we extend a differential d : A → M to the algebra G by means of the
formula

d(ωk1ωk2 . . . ωknhk1k2...kn ) = (−1)nωk1ωk2 . . . ωknωk ∂khk1k2...kn , (14.3.7)
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then G is the universal differential graded algebra over coordinate first order
differential calculus (A , d,M ).

14.4 Connection in Euclidean Space

A concept of connection arises when we consider the problem of parallel translation
of a vector in the n-dimensional Euclidean space R

n. Assume α : I → R
n, I ⊂ R

is a parametrized curve which passes through a point p = α(0). Let .vp = (p; .v) ∈
TpRn be a tangent vector at a point p ∈ R

n of the space and our goal is to move this
vector in parallel way along a curve to some other point of a curve q = α(t0), t0 ∈ I .
Because we know what does it mean the parallelism in the Euclidean space R

n the
solution is easy. In order to extend a tangent vector .vp in parallel way along a curve α
we construct the constant vector field V (α(t)) = (α(t); .v) along α. But this problem
becomes less trivial and leads to interesting geometric structure if we consider
this problem of parallel translation of a vector in curvilinear coordinates. Let us
assume that U is an open subset of the Euclidean space R

n and x ′1, x ′2, . . . , x ′n
are curvilinear coordinates determined in U . We also assume that these curvilinear
coordinates can be expressed in terms of the Cartesian coordinates x1, x2, . . . , xn

by means of smooth functions, i.e. x ′i = x ′i (x1, x2, . . . , xn), and vice versa the
Cartesian coordinates can be expressed in terms of curvilinear coordinates by means
of smooth functions xi = xi(x ′1, x ′2, . . . , x ′n). We also assume that the coordinate
lines of curvilinear coordinates are orthogonal and hence we can construct the
orthonormal frame field E′ = {E′

1, E
′
2, . . . , E

′
n} by means of the vector fields

∂

∂x ′i (normalizing them if necessary). This orthonormal frame can be expressed in

terms of the canonical frame field E = {E1, E2, . . . , En} as follows E′
i = g

j
i Ej ,

where the matrix G = (g
j
i ) depends on a point of U and for any G ∈ SO(n), i.e.

GGT = I,DetG = 1 and I is the unit matrix.
Now we can write the constant vector field V (α(t)) as follows

V (α(t)) = V i(α(t)) E′
i (α(t)),

and our aim is to find unknown functions V i(α(t)). Differentiating both sides with
respect to t we get zero at the left-hand side because V (α(t)) is the constant vector
field. The right-hand side can be written as follows

d

dt

(
V i(α(t)) E′

i (α(t))
) = d

dt

(
V i(α(t))

)
E′
i (α(t)) + V i(α(t))

d

dt

(
E′
i (α(t))

)
.

Making use of the definition of directional derivative of a function we can interpret
the coefficients d

dt

(
V i(α(t))

)
in the first sum as the directional derivatives of

functionsV i(α(t) in the direction of the tangent vector fieldX(α(t)) = (α(t); .α′(t))
along a curve, i.e. we can write them as XV i . The derivatives in the second sum
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d
dt

(
E′
i (α(t))

)
can be regarded as analogs of directional derivatives for vector fields,

and this suggests us to introduce a new derivative for vector fields, which is called a
covariant derivative.

LetX,Y be two vector fields, p ∈ Rn be a point, α : I → Rn be a curve such that
α(0) = p, .α′(0) = Xp. The covariant derivative of a vector field Y with respect to
a vector fieldX at a point p is the tangent vector (DXY )p ∈ TpRn, which is defined
by

(DXY )p = d

dt

(
Y |α(t)

)|t=0.

Hence the covariant derivative determines the vector field p �→ (DXY )p, which will
be denoted byDXY . From this definition it follows that in any curvilinear coordinate
system x ′i and at any point p we have

(DXY )
i
p =

∂Y i

∂x ′j
|p dx

′j

dt
|t=0 = Xj (p)

∂Y i

∂x ′j
|p = (XY i)(p). (14.4.1)

HenceDXY is the vector field which in curvilinear coordinates x ′i can be written as
follows

DXY = (XY i)
∂

∂x ′i
. (14.4.2)

From (14.4.2) it follows that covariant derivative has the following properties:

(i) DX1+X2Y = DX1Y +DX2Y , DfXY = f DXY ;
(ii) DX(Y1 + Y2) = DXY1 +DXY2, DX(f Y ) = (Xf ) Y + f DXY ;

(iii) DXY −DYX = [X,Y ];
iv) X < Y,Z >=< DXY,Z > + < Y,DXZ >.

The property (i) shows that the covariant derivative DXY depends linearly on a
vector field X, and this clearly suggests that we can describe the structure of
covariant derivative in the terms of differential 1-forms. Indeed the formula (14.4.2)
can be written in the form

DXY = dY i(X)
∂

∂x ′i
, (14.4.3)

where dY i is the exterior differential of the function Y i . Now our aim is to get rid of
a vector fieldX in the above formula and to use differential 1-forms. For this purpose
we consider the right-hand side of (14.4.3) as a vector field valued differential 1-
form. In order to assign a geometric meaning to these words we attach to each point
p of the space Rn the tensor product ∧k(T∗

pR
n) ⊗ TpRn and consider the vector

bundle ∧k(T∗
Rn) ⊗ TRn = ∪p ∧k (T∗

pR
n) ⊗ TpRn with obvious projection. A

smooth section of this bundle is referred to as a vector field valued differential k-
form in the Euclidean space Rn. The vector space of vector field valued differential
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k-forms will be denoted by	k(Rn,D). It is worth to point out that this vector space
can be considered as the left C∞(Rn)-module, i.e. we can multiply vector field
valued forms by functions from the left. For instance any vector field valued 1-form
ω can be written in the form

ω = ωij dx
′j ⊗ ∂

∂x ′i
= ωi ⊗ ∂

∂x ′i
= dx ′j ⊗Xj,

where ωij are smooth functions, ωi = ωij dx
′j are R-valued differential 1-forms

and Xj = ωij
∂
∂x ′i are vector fields. If X is a vector field and a vector field valued

differential 1-form is written as ω = ωi ⊗ ∂
∂x ′i then its value on a vector field X is

the vector field defined by

ω(X) = ωi(X)
∂

∂x ′i
.

Now making use of vector field valued differential forms we can omit a vector field
X in the formula (14.4.3) and write it in the equivalent form

DY = dY i ⊗ ∂

∂x ′i
. (14.4.4)

Clearly for any vector field X we have DY(X) = DXY . Thus starting with the
covariant derivative DXY we constructed the mapping Y �→ DY , which assigns to
any vector field the vector field valued differential 1-form. What are the properties
of this mapping? Now the property (i) of the covariant derivative is obvious, because
DY is the differential 1-form. The property (ii) of covariant derivative shows that
D : D → 	1(Rn,D) is the linear mapping of vector spaces. The second part of this
properties gives

D(f Y ) = df ⊗ Y + fDY. (14.4.5)

In order to write the property (iv) in the terms of D we must extend the scalar
product of vector fields to vector field valued differential form and we can do this
by means of the formula

< ω⊗X, θ ⊗ Y >=< X,Y > ω ∧ θ.

Particularly the scalar product of vector field valued 1-form ω⊗X and a vector field
Y is the 1-form< ω⊗X,Y >=< X,Y > ω. Now the property (iv) implies

d < Y,Z >=< DY,Z > + < Y,DZ >, (14.4.6)

and this property is usually referred to as the condition of consistency of the
covariant derivative with the metric (inner product) of the Euclidean space Rn. Till
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now we used the frame field { ∂
∂x ′i }ni=1 for the module of vector fields and the basis

{dx ′i}ni=1 for the module of differential forms to obtain formulae for the covariant
derivatives. Now our aim is to study the structure of covariant derivative with the
help of the frame field E′ = {E′

i}ni=1. Let {θ i}ni=1 be the dual basis, where θ i are
differential 1-forms, which satisfy θ i(E′

j ) = δij . We can easily find the expression

for these differential forms in the terms of Cartesian coordinates dxi . Indeed if we
denote θ i = θ ij dx

j then

δik = θ i(E′
k) = θ i(g

j
k Ej ) = θ im g

j
k dx

m(Ej ) = θ im g
m
k .

Thus θ im = (G−1)im and θ i = (G−1)im dx
m.

Given a vector fieldX we can write it in the frame fieldE′ induced by curvilinear
coordinates as follows X = Xi E′

i . Making use of the properties of covariant
derivative we find

DX = D(Xi E′
i ) = dXi ⊗E′

i +Xi DE′
i . (14.4.7)

The covariant derivative DE′
i is the vector field valued 1-form and hence it can be

expanded as ωji ⊗E′
j , where ωji are the differential 1-forms. The matrix ω = (ω

j

i ),
whose elements are differential 1-forms, is referred to as the matrix of connection.
Thus if we fix a frame field (a basis for the module of vector fields) then the covariant
derivative induces the matrix of connection, which depends on a choice of a frame
field. Before we compute the matrix of connection, we can derive its very important
property from the consistency with the Euclidean metric (14.4.6). For two vector
fields E′

i , E
′
j of the frame field the consistency condition (14.4.6) takes on the form

d < E′
i , E

′
j >=< DE′

i , E
′
j > + < E′

i , DE
′
j > .

Taking into account that < E′
i , E

′
j >= δij and substituting DE′

i = ωki ⊗ E′
k ,

we obtain ωij + ω
j

i = 0. Thus the matrix of connection is the skew-symmetric

matrix ω + ωT = 0. If we analyze the origin of this property of the matrix of
connection we can see that the reason lies in the orthogonality of the attitude matrix
G = (gij ), which determines the transformation of the canonical frame field E into
the orthonormal frame field E′, induced by curvilinear coordinates. We remind that
the Lie algebra so(n) of the special orthogonal group SO(n) is the vector space of
skew-symmetric matrices, i.e.

so(n) = {h ∈ Matn(R) : h+ hT = 0}.

Consequently we conclude that if we use the matrix group SO(n) for a transition
from one frame field to another, or, by other words, we consider the action of the
matrix group SO(n) on the set of orthonormal frames of the tangent space TpRn at
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any point p ∈ U then the matrix of connection is so(n)-valued differential 1-form,
i.e. Lie algebra valued 1-form.

The matrix of connection depends on a choice of a frame field. Let us find how
the matrix of connection transforms when we pass from one frame field to another.
Let {E′

i}, {E′′
i } be two orthonormal frame fields and an orthogonal matrix G =

(g
j
i ) ∈ SO(n) be a transition matrix from {E′

i} to {E′′
i }, i.e. E′′

i = g
j
i E

′
j . We will

write this symbolically as E′′ = G · E′. It is worth to mention that if we consider
the previous formula at a fixed point p, i.e. (E′′

i )p = g
j

i (p) (E
′
j )p (symbolically

E′′
p = G(p)·E′

p), then it determines the action of the orthogonal group SO(n) on the
set of all orthonormal frames of the tangent space TpRn. This suggests us to attach
to each point p of the Euclidean space the set Fp of all orthonormal frames for
TpRn and to consider the disjoint union F (U) = ∪pFp. We will refer to F (U) as
the bundle of orthonormal frames over an open subset U of the Euclidean space Rn,
and to Fp as the fiber of this bundle at a point p. The projection π : F (U) → U

is defined in the obvious way and any orthonormal frame field is a smooth section
of the bundle F (U). The special orthogonal group SO(n) acts on the bundle of
orthonormal frames from the left as it is shown above, i.e.Ep → G·Ep, and we will
denote this left action by L : (G,Ep) �→ G ·Ep, i.e. L : SO(n)×F (U)→ F (U).
This action is

(i) transitive, i.e. for any two E′
p,E

′′
p ∈ Fp there exists G ∈ SO(n) such that

E′′
p = G ·E′

p,
(ii) effective, i.e. G · E′

p = E′
p impliesG = I .

Now let E′, E′′ be two orthonormal frame fields, i.e. two sections of the bundle of
orthonormal frames, and G = (g

j
i ) : U → SO(n) be the SO(n)-valued function

such thatE′′ = G·E′. Following the terminology used in a gauge field theory we can
call this transformation (from one frame field to another) the gauge transformation
of first kind. Hence E′′

i = g
j
i E

′
j , where gji depend smoothly on a point x ∈ U .

Let ω̃, ω be the matrices of connection in a frame fields E′′, E′ respectively. Then
DE′′

i = ω̃ki ⊗ E′′
k ,DE

′
i = ωki ⊗ E′

k . On the one hand DE′′
i = ω̃ki ⊗ (gmk E

′
m) =

(gmk ω̃
k
i )⊗ E′

m. On the other hand

DE′′
i = dgmi ⊗ E′

m + gji DE′
j = (dgmi + ωmj gji )⊗ E′

m,

and we get

gmk ω̃
k
i = dgmi + ωmj gji ,

or, written in the matrix form

ω̃ = G−1ωG+G−1dG. (14.4.8)
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We derived the transformation rule of the matrix of connection and this is usually
called in a gauge field theory the gauge transformation of second kind.

Particularly in the case of E′ = G · E, where E is the canonical frame field,
let us denote the connection matrix in the frame field E′ by ω and the connection
matrix in the canonical frame field E by ω0. Since the canonical frame field E
consists of constant vector fields, the gauge transformation (14.4.8) takes the form
ω = G−1d G, because in the case of the canonical frame field DEi = 0 (Ei is the
constant vector field) and hence ω0 = 0. In a gauge field theory the connection ω =
G−1d G is referred to as the pure gauge. It is easy to show that ω = G−1d G is the
so(n)-valued differential 1-form. Indeed we have G−1G = I and, differentiating
both sides, we obtain

dG−1G+G−1dG = 0. (14.4.9)

But the first term can be written dG−1G = (dG)T (G−1)T = (G−1dG)T = ωT

and we conclude ω + ωT = 0.
We remind that the dual 1-forms θ i for E′

i are θ i = (G−1)ij dx
j . Differentiating

and making use of (14.4.9) written in the form dG−1 = −G−1dGG−1, we get

dθi = d(G−1)ij∧dxj = −(G−1dGG−1)ij∧dxj = −(G−1dG)ik∧((G−1)kj∧dxj ),

or

dθi = −ωik ∧ θk. (14.4.10)

Equation (14.4.10) is called the first Cartan’s structure equation. Analogously
computing the exterior differential of the matrix of connection dω, we obtain

dω = d(G−1dG) = dG−1 ∧ dG = −(G−1dG) ∧ (G−1dG),

or

dωij = −ωik ∧ ωkj ⇔ dω = −ω ∧ ω. (14.4.11)

Equation (14.4.11) is called the second Cartan’s structure equation. Remind that
the matrix of connection ω can be considered as the so(n)-valued differential 1-
form. Let fα , where α = 1, 2, . . . , n(n−1)

2 , be a basis for the Lie algebra so(n). Then
ω = ωα fα or ωij = ωα(f)ij , where ωα is the differential 1-form. Define

[ω,ω] = ωα ∧ ωβ [fα, fβ ]. (14.4.12)

From this it follows

[ω,ω]ij = ωα ∧ ωβ ((fα)ik(fβ)kj − (fβ)ik(fα)kj ) = 2ωik ∧ ωkj .



302 V. Abramov and O. Liivapuu

Now the second Cartan’s structure equation can be written in the matrix form as
follows

dω = −1

2
[ω,ω]. (14.4.13)

14.5 q-Differential Graded Algebra and N -Connection

In this section we describe a generalization of the notion of connection which arises
in the framework of non-commutative geometry. First of all we would like to remind
a reader that the notion of a connection in the Euclidean space Rn, described in
the previous section, can be extended to a vector bundle over a smooth manifold.
A smooth n-dimensional manifold M is a Hausdorff topological space, which is
locally homeomorphic to open subset of the n-dimensional Euclidean space Rn (this
is called a local chart), and the smooth structure ofM is determined by the condition
that the transition functions of any two local charts must be smooth. A vector bundle
V over a manifold M is a triple (V, π,M), where V is a (n + r)-dimensional
manifold,π : V → M is a differentiable map, which is called a projection, such that
for any point x of a manifoldM the fiber π−1(x) is an r-dimensional vector space.
Additionally it is required that locally a vector bundle is trivial, i.e. for any point
x ∈ M there exists its neighborhood U ⊂ M such that π−1(U) is diffeomorphic
to U × Rr . A section of a vector bundle V is a differentiable map s : M → V
such that π ◦ s = idM . Let C = C∞(M) be the algebra of smooth functions on M ,
	(M) = ⊕i	i(M) be the algebra of differential forms on M , E (V) be the vector
space of smooth sections of a vector bundle V. This vector space of sections E (V)
and the algebra of differential forms 	(M) can be endowed with the structure of
module over the algebra of functions C by means of pointwise multiplication. Now
we can extend the notion of a vector field valued differential form to a notion of
vector bundle valued differential form by considering the tensor product 	(V) =
	(M)⊗C E (V). It is important here that the first factor in this tensor product is the
DGA. Now in accordance with the formula (14.4.5) we can define a connection in
a vector bundle V as a linear mappingD : E (V)→ 	1(V), which assigns to each
section of a vector bundle the vector bundle valued 1-form and satisfies

D(f · s) = df ⊗ s + f ·Ds.

Hence we see that important ingredient in the structure of connection is the DGA of
differential forms 	(M). In this section we describe a generalization of the notion
of connection which can be constructed if instead of a DGA we consider a more
general structure, which is called a q-differential graded algebra (q-DGA), where q
is a primitiveN th root of unity.
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14.5.1 q-Differential Graded Algebra

A basic algebraic structure used in the theory of connections on modules is a DGA.
Therefore if we consider a generalization of a DGA, where the basic property of
differential d2 = 0 is given in a more general form dN = 0, N ≥ 2 and the graded
Leibniz rule is replaced by the graded q-Leibniz rule, where q is a primitiveN th root
of unity, we can develop a generalization of the theory of connections on modules.

A notion of q-differential graded algebra was introduced in [5] and studied in the
series of papers [1, 6, 9, 11]. Let N ≥ 2, q be a primitive N th root of unity and
Gq = ⊕kGqk be an associative unital ZN -graded algebra over a field of complex
numbers. An algebra Gq is said to be a q-differential graded algebra (q-DGA) if it
is endowed with a linear mapping d of degree one, satisfying the graded q-Leibniz
rule

d(u v) = d(u) v + qku d(v), (14.5.1)

where u ∈ Gq
k, v ∈ Gq , and the N-nilpotency condition

dN = 0. (14.5.2)

A concept of q-DGA is related to a monoidal structure introduced in [11] for a
category of N-complexes. It is proved in [8] that the monoids of the category of
N-complexes can be determined as the q-DGA. In agreement with the terminology
developed in [5] we shall call d the N-differential of q-DGA Gq .

Clearly in the case N = 2 and q = −1 we get a notion of DGA, which allows us
to consider a concept of a q-DGA as a generalization of a DGA.

Let Gq be a q-DGA and A be an unital associative algebra over the field of
complex numbers. The subspace G 0

q ⊂ Gq of elements of degree zero is the

subalgebra of an algebra Gq . Obviously the triple (A, d,G 1
q ) is the first order

differential calculus over the the algebra A provided that A = G 0
q . The triple

(A, d,Gq) is said to be an N-differential calculus over the algebra A. Every
subspace G kq can be viewed as the bimodule over the algebra G 0

q if we determine

the structure of a bimodule with the mappings G 0
q ×G kq → G kq and G kq ×G 0

q → G kq
defined by (u,w) �→ uw and (w, v) �→ wv, where u, v ∈ G 0

q and w ∈ G kq . Hence

we have the following sequence of bimodules over the algebra G 0
q

. . .
d→ G k−1

q

d→ G kq
d→ G k+1

q

d→ . . . (14.5.3)

The sequence (14.5.3) can be considered as a cochain N-complex of modules or
simply N-complex with N-differential d [6]. The generalized cohomologies of this
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N-complex are defined by the formulaHk
m(Gq) = Zkm(Gq)/B

k
m(Gq), where

Zkm(Gq) = {u ∈ G kq : dmu = 0} ⊂ G kq ,

Bkm(Gq) = {u ∈ G kq : ∃ v ∈ G k+m−Nq , u = dN−mv} ⊂ Zkm(Gq).

Given a q-DGA Gq one can associate to it the generalized homologies Hm(Gq) =
⊕k∈ZNHk

m(Gq) of the correspondingN-complex (14.5.3).
Next we give the statement of theorem which allows us to construct various N-

complexes. Let G = ⊕k∈ZNG k be an associative unital ZN -graded algebra over the
field of complex numbers and e be the identity element of this algebra. The graded
subspace Z (G ) ⊂ G generated by homogeneous elements u ∈ G k , which for any
v ∈ G l satisfy uv = (−1)klvu, is called a graded center of an algebra G .

Let us generalize the notions of graded commutator and graded derivation of a
graded algebra with the help of q-deformations. In general q may be any complex
number different from one but for the structures we construct we need q to be a
primitive N th root of unity. The graded q-commutator [ , ]q : G k ⊗ G l → G k+l is
defined by

[u, v]q = uv − qklvu,

where u ∈ G k, G l are homogeneous elements and q is a primitiveN th root of unity.
A graded q-derivation of degree m of a graded algebra G is a linear mapping δ :
G → G of degreem with respect to the graded structure of G , i.e. δ : G k → G k+m
satisfying the graded q-Leibniz rule

δ(u v) = δ(u) v + qmlu δ(v),

where u ∈ G l .
The following theorem [2] can be used to construct the structure of a q-DGA for

a certain class of graded associative unital algebra.

Theorem 14.5.1 If there exists an element v ∈ G 1 of degree one which satisfies the
condition vN ∈ Z (G ), where N ≥ 2, then an algebra G equipped with the linear
mapping d : G → G defined by the formula d(u) = [v, u]q , u ∈ G is the q-DGA
and d is its N-differential.

14.5.2 Connection on Module

In this section we propose a notion of N-connection, which can be viewed as a
generalization of a concept of connection on modules. In our generalization we
use an algebraic approach based on the concept of q-DGA to define a notion of
N-connection and show that in the case of N = 2 we get the algebraic analog
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of a classical connection. A theory of connection on modules can be found in an
review [7]. We study the structure of an N-connection, define its curvature and
prove the Bianchi identity [1, 2]. We begin this section by recalling the notion of
connection on modules given in [7] and called 	-connection. Suppose that A is an
unital associative algebra over the field of complex numbers and E is a left module
over A. Let 	 be a DGA with differential d, such that 	0 = A, it means that the
triple (A, d,	1) is the first oder differential calculus over A. Since an subspace of
elements of grading one can be viewed as a (A,A)-bimodule, the tensor product
	1 ⊗A E clearly has the structure of left A-module.

A linear map ∇ : E → 	1 ⊗A E is called an 	-connection if it satisfies

∇(us) = du⊗A s + u∇(s)

for any u ∈ A and s ∈ E . Similarly to the case of connections on vector bundles,
this map has a natural extension ∇ : 	⊗A E → 	⊗A E by setting

∇(ω ⊗A s) = dω ⊗A s + (−1)pω∇(s),

where ω ∈ 	p and s ∈ E .
We will generalize a notion of 	-connection taking q-DGA 	q instead of DGA

	. Let A be an unital associative algebra over a field of complex numbers, 	q is a
q-DGA with N-differential d and A = 	0

q . Let E be a left A-module. Considering
algebra 	q as the (A,A)-bimodule we take the tensor product of left A-modules
	q ⊗A E which has the structure of left A-module. To minimize the notation, we
denote this left A-module by F. Taking into account that an algebra 	q can be
viewed as the direct sum of (A,A)-bimodules	kq we can split the left A-module F
into the direct sum of the left A-modules Fk = 	kq ⊗A E , i.e. F = ⊕kFk, which
means that F inherits the graded structure of algebra 	q, and F is the graded left
A-module. It is worth noting that the left A-submoduleF0 = A⊗A E of elements of
grading zero is isomorphic to a left A-module E, where isomorphism ϕ : E → F0

can be defined for any s ∈ E by ϕ(s) = e ⊗A s, where e is the identity element of
algebra A. Since a graded q-DGA	q can be viewed as the (	q,	q)-bimodule, the
left A-module F can be also considered as the left 	q -module and we will use this
structure to describe a concept of N-connection. Let us mention that multiplication
by elements of 	k, where k �= 0, does not preserve the graded structure of the left
	q -module F.

The tensor product F = 	q × E as the tensor product of two vector spaces has
also the structure of the vector space over C. Obviously F has a graded structure, i.e.
F = ⊕kFk , where Fk = 	kq ⊗C E . Due to the structure of vector space of F we can
introduce the notion of linear operator on F. We denote the vector space of linear
operators on F by Lin(F). The structure of the graded vector space of F induces the
structure of a graded vector space on Lin(F), and we shall denote the subspace of
homogeneous linear operators of degree k by Link(F).
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An N-connection on the left 	q-module F is a linear operator ∇q : F → F of
degree one satisfying the condition

∇q(ω⊗A s) = dω⊗A s + q |ω| ω∇q(s), (14.5.4)

whereω ∈ 	iq, s ∈ E , and |ω| is the grading of the homogeneous element of algebra
	q.

It is worth to mention that if N = 2 then q = −1, and in this particular case we
get the algebraic analog of a classical connection. A connection on vector bundle
can be viewed as a linear map on a left module of sections of vector bundle, taking
values a algebra of differential 1-forms with values in this vector bundle, which
clearly has a structure of a left module over an algebra of smooth functions on a base
manifold. Therefore a concept of a N-connection can be viewed as a generalization
of a classical connection.

We use the following proposition proved in [1] to define the curvature of N-
connection.

Proposition 14.5.2 The N-th power of any N-connection ∇q is the endomorphism
of degree N of the left 	q -module F.

The endomorphism F = ∇Nq of degree N of the left 	q -module F is said to be
the curvature of an N-connection ∇q .

Let us show that the curvature of an N-connection satisfies Bianchi identity.
We proceed to show that the graded vector space Lin(F) has a structure of graded
algebra. To this end, we take the product A ◦ B of two linear operators A,B of
the vector space F as an algebra multiplication. If A : F → F is a homogeneous
linear operator than we can extend it to the linear operator LA : Lin(F) → Lin(F)
on the whole graded algebra of linear operators Lin(F) by means of the graded q-
commutator:LA(B) = [A,B]q = A◦B−q |A||B|B ◦A,where B is a homogeneous
linear operator. It makes allowable to extend an N-connection ∇q to the linear
operator on the vector space Lin(F)

∇q(A) = [∇q,A]q = ∇q ◦ A− q |A|A ◦ ∇q, (14.5.5)

where A is a homogeneous linear operator. N-connection ∇q is the linear operator
of degree one on the vector space Lin(F), i.e. ∇q : Link(F) → Link+1(F), and ∇q
satisfies the graded q-Leibniz rule with respect to the algebra structure of Lin(F).
Consequently the curvature F of an N-connection can be viewed as the linear
operator of degreeN on the vector space F, i.e. F ∈ LinN(F). Therefore one can act
on F by N-connection ∇q , and it holds that for any N-connection ∇q the curvature
F of this connection satisfies the Bianchi identity

∇q(F ) = 0. (14.5.6)
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14.5.3 Local Structure of N -Connection

Connection on the vector bundle of finite rank over a finite dimensional smooth
manifold can be studied locally by choosing a local trivialization of the vector
bundle and this leads to the basis for the module of sections of this vector bundle.

In order to construct an algebraic analog of the local structure of anN-connection
∇q we assume E to be a finitely generated free left A-module. Let e = {eμ}rμ=1
be a basis for a left module E . This basis induces the basis f = {fμ}rμ=1, where

fμ = e ⊗A eμ, for the left A-module F0 ∼= E . For any ξ ∈ F0 we have ξ = ξμfμ.
Taking into account that F0 ⊂ F and F is the left 	q -module we can multiply the
elements of the basis f by elements of an q-DGA	q. It is easy to see that if ω ∈ 	kq
then for any μ we have ωfμ ∈ Fk. Consequently we can express any element of the
Fk as a linear combination of fμ with coefficients from	kq . Indeed let ω⊗A s be an

element of Fk = 	k ⊗A E . Then

ω ⊗A s = (ω e)⊗A (s
μeμ) = (ω e sμ)⊗A eμ

= (ωsμ e)⊗A eμ = ωsμ (e ⊗A eμ) = ωμfμ,

where ωμ = ωsμ ∈ 	kq .

Let F0 be a finitely generated free module with a basis f = {fμ}rμ=1, and s =
sμfμ ∈ F0, where sμ ∈ A. Since N-connection ∇q is a linear operator of degree
one, it follows that ∇q(s) ∈ F1, and making use of q-Leibniz rule we can express
the element ∇q(s) as follows: ∇q(s) = ∇q(sμfμ)

Denote by Mr (	q) be the vector space of square matrices of order r whose
entries are the elements of an q-DGA 	q . If each entry of a matrix ' = (θνμ) is
an element of a homogeneous subspace 	kq , i.e. θνμ ∈ 	kq then ' will be refereed
to as a homogeneous matrix of degree k and we shall denote the vector space of
such matrices by Mk

r (	q). Obviously Mr (	q) = ⊕kMk
r (	q). The vector space

Mr (	q) of r×r-matrices becomes the associative unital graded algebra if we define
the product of two matrices' = (θνμ),'

′ = (θ ′νμ ) ∈ Mr (	q) by (''′)νμ = θσμ θ
′ν
σ .

If ','′ ∈ Mr (	q) are homogeneous matrices then we define the graded q-
commutator by [','′]q = ''′ − q |'||'′|'′'. We extend the N-differential d of
an q-DGA	q to the algebra Mr (	q) as follows d' = d(θνμ) = (dθνμ).

Since any element of a left A-module F1 can be expressed in terms of the basis
f = {fμ}rμ=1 with coefficients from 	1

q, we have

∇q(fμ) = θνμ fν, (14.5.7)

where θνμ ∈ 	1
q . An r × r-matrix ' = (θνμ), whose entries θνμ are the elements of

	1
q i.e.' ∈ Mat1r (	q), is said to be a matrix of an N-connection∇q with respect to
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the basis f of the left A-module F0. Using the definition of N-connection we obtain

∇q (s) = (dsμ + sνθμν ) fμ. (14.5.8)

Let f′ = {f′μ}rμ=1 be another basis for the left A-module F0 with the same
number of elements (this will always be the case if A is a division algebra or if
A is commutative). Then f′μ = gνμfν, where G = (gνμ) ∈ Mat0r (	q) is a transition
matrix from the basis f to the basis f′. It is well known [10] that in the case of finitely
generated free module transition matrix is an invertible matrix. If we denote by θ ′μν
the coefficients of ∇q with respect to a basis f′ and g̃μν are the entries of the inverse
matrixG−1 then

θ ′μν = dgσν g̃
μ
σ + gσν θτσ g̃μτ ,

and this clearly shows that the components of ∇q with respect to different bases of
module F0 are related by the gauge transformation.

Our next aim is to express the components of the curvature F of a N-connection
∇q in the terms of the entries of the matrix' of an N-connection ∇q . Computation

in successive steps allows us to introduce polynomials ψl,μν ∈ 	lq on the entries of
the matrix of N-connection and their differentials. We have

∇q(s) = (dsμ + sνθμν ) fμ,
ψ1,μ
ν := θμν ,

∇2
q (s) = (d2sμ + [2]qdsνθμν + sν(dθμν + qθσν θμσ ))fμ,
ψ2,μ
ν := dθμν + q θσν θμσ , (14.5.9)

∇3
q (s) =

(
d3sμ + [3]qd2sνθμν + [3]qdsν(dθμν + qθσν θμσ )

+ sν(d2θμν + (q + q2)dθσν θ
μ
σ + q2θσν dθ

μ
σ + q3θτν θ

σ
τ θ

μ
σ )
)
fμ,

ψ(3,k)μν := d2θμν + (q + q2) dθσν θ
μ
σ + q2 θσν dθ

μ
σ + q3 θτν θ

σ
τ θ

μ
σ (14.5.10)

Therefore, the kth power of N-connection ∇q has the following form

∇kq (s) =
k∑
l=0

[
k

l

]
q

dk−lsμ ψl,νμ fν

= (dksμ ψ0,ν
μ + [k]q dk−1sμ ψ1,ν

μ + . . .+ sμ ψk,νμ ) fν, (14.5.11)
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We can calculate the polynomialsψl,νμ by means of the following recursion formula

ψl,νμ = dψl−1,ν
μ + ql−1ψl−1,σ

μ θνσ , (14.5.12)

or in the matrix form

*l = d*l−1 + ql−1*l−1', (14.5.13)

We begin with the polynomial ψ0,ν
μ = δνμ e ∈ A, and e is the identity element of

A ⊂ 	q . From (14.5.11) it follows that if k = N then the first term dNξμ ψ
(0,N)ν
μ

in this expansion vanishes because of the N-nilpotency of the N-differential d , and
the next terms corresponding to the l values from 1 to N − 1 also vanish because of
the property of q-binomial coefficients. Hence if k = N then the formula (14.5.11)
takes on the form

∇Nq (s) = sμ ψ(N,N)νμ fν . (14.5.14)

In order to simplify the notations and assuming that N is fixed we shall denote
ψνμ = ψ

(N,N)ν
μ .

An (r × r)-matrix * = (ψνμ), whose entries are the elements of degree N
of a graded q-differential algebra 	q , is said to be the curvature matrix of a N-
connection ∇q .

Obviously * ∈ MN
r (	q). In new notations the formula (14.5.14) can be written

as follows ∇Nq (s) = sμ ψνμ fν , and it shows that ∇Nq is the endomorphism of degree
N of the left 	q-module F.

Let us consider the expressions for curvature in the case when N = 2. If N = 2
then q = −1, and a graded q-differential algebra	q is a graded differential algebra
with differential d satisfying d2 = 0. This is a classical case, and if we assume
that 	q is the algebra of differential forms on a smooth manifold M with exterior
differential d and exterior multiplication ∧, E is the module of smooth sections of
a vector bundle E over M , ∇q is a connection on E, e is a local frame of a vector
bundle E then ' is the matrix of 1-forms of a connection ∇q and we have for the
components of curvature ψνμ = dθνμ − θσμθνσ . In this case 	q is super-commutative
algebra and we can put the expressions for components of curvature into the form
ψνμ = dθνμ+θνσ θσμ . or by means of matrices* = d'+' ·' in which we recognize
the classical expression for the curvature.

From the previous section it follows that the curvature of aN-connection satisfies
the Bianchi identity. If θμν , ψ

μ
ν are the components of an N-connection ∇q and its

curvatureF with respect to a basis f for the module F then the Bianchi identity takes
on the form

dψμν = θσμψ
ν
σ − ψσμθνσ .
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Let us consider now the structure ofN-connection forms and their curvature. We
apply the algebra of polynomials P[d, a] over C, constructed in the paper [3] to
study the structure of N-curvature. Let 	q be an q-DGA We will call an element
of degree one ' ∈ 	1

q an N-connection form in a graded q-differential algebra	q .
The linear operator of degree one ∇q = d + ' will be referred to as a covariant
N-differential induced by a N-connection form'.

We remind that d is anN-differential which means that dk �= 0 for 1 ≤ k ≤ N−1
and if we successively apply it to an N-connection form ' we get the sequence of
elements ', d', d2', . . . , dN−1', where dk' ∈ 	k+1

q . Let us denote

'1 = '

'2 = d'

...

'N = dN−1'.

We denote by 	q ['] the graded subalgebra of 	q generated by elements
'1,'2, . . . ,'N . For any integer k = 1, 2, . . . , N we define the polynomial
Fk ∈ 	q ['] by the formula Fk = ∇k−1

q ('). Evidently the subalgebra 	q [']
is isomorphic to the q-DGA Pq [a] of [3] if we identify 'k → ak. Then the
polynomialsFk are identified with the polynomials fk and we can apply all formulae
proved in the case of Pq [a] to study the structure of 	q ['].

It follows from [3] that for any integer 1 ≤ k ≤ N the k th power of the covariant
N-differential ∇q can be expanded as follows

(∇q)k =
k∑
i=0

[
k

i

]
q

F(i) d
k−1 = dk + [k]qF1d

k−1 + . . .+ [n]qFk−1d + Fk,

where Fk = (∇q )k−1('). Particularly if k = N then the N th power of the covariant
N-differential ∇q is the operator of multiplication by the element FN of grading
zero. It makes possible to define the curvature of an N-connection form ' : the N-
curvature form of an N-connection form' is the element of grading zero FN ∈ A.

We get the explicit power expansion formula for N-curvature form of an N-
connection

Fk =
∑
σ∈ϒk

[
k2 − 1
k1

]
q

[
k3 − 1
k2

]
q

. . .

[
k − 1
kr−1

]
q

'i1'i2 . . .'ir ,

whereϒk is the set of all compositions of an integer 1 � k � N , σ = (i1, i2, . . . , ir )

is composition of an integer k in the form of a sequence of strictly positive integers,
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where i1 + i2 + . . .+ ir = N, and

k1 = i1,

k2 = i1 + i2,
k3 = i1 + i2 + i3,
. . .

kr−1 = i1 + i2 + . . .+ ir−1.
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Chapter 15
Conformal Parametrisation
of Loxodromes by Triples of Circles

Vladimir V. Kisil and James Reid

Dedicated to Prof. Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract We provide a parametrisation of a loxodrome by three specially arranged
cycles. The parametrisation is covariant under fractional linear transformations
of the complex plane and naturally encodes conformal properties of loxodromes.
Selected geometrical examples illustrate the usage of parametrisation. Our work
extends the set of objects in Lie sphere geometry—circle, lines and points—to the
natural maximal conformally-invariant family, which also includes loxodromes.

Keywords Loxodrome · Fractional linear transformations · Logarithmic spiral ·
Cycle · Lie geometry · Möbius map · Fillmore–Springer–Cnops construction

Mathematics Subject Classification (2010) Primary 51B10; Secondary 51B25,
51N25, 30C20, 30C35

15.1 Introduction

It is easy to come across shapes of logarithmic spirals, as on Fig. 15.1a, looking
either on a sunflower, a snail shell or a remote galaxy. It is not surprising since the
fundamental differential equation ẏ = λy, λ ∈ C serves as a first approximation to
many natural processes. The main symmetries of complex analysis are build on the
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(a) (b)

Fig. 15.1 A logarithmic spiral (a) and its image under a fractional linear transformation—
loxodrome (b)

fractional linear transformation (FLT):
(
α β

γ δ

)
: z �→ αz + β

γ z+ δ , where α, β, γ, δ ∈ C and det

(
α β

γ δ

)
�= 0. (15.1)

Thus, images of logarithmic spirals under FLT, called loxodromes, as on Fig. 15.1b
shall not be rare. Indeed, they appear in many occasions from the stereographic
projection of a rhumb line in navigation to a preferred model of a Carleson arc in
the theory singular integral operators [5, 7]. Furthermore, loxodromes are orbits of
one-parameter continuous groups of FLT of loxodromic type [3, § 4.3]; [42, § 9.2];
[44, § 9.2].

This setup motivates a search for effective tools to deal with FLT-invariant
properties of loxodromes. They were studied from a differential geometry point
of view in many papers [6, 37–40, 43], see also [35, § 2.7.6]. In this work we
develop a “global” description which matches the Lie sphere geometry framework,
see Remark 15.2.3.

The outline of the paper is as follows. After preliminaries on FLT and invariant
geometry of cycles (Sect. 15.2) we review the basics of logarithmic spirals and
loxodromes (Sect. 15.3). A new parametrisation of loxodromes is introduced in
Sect. 15.4 and several examples illustrate its usage in Sect. 15.5. Section 15.6 frames
our work within a wider approach [29–31], which extends Lie sphere geometry. A
brief list of open questions concludes the paper.

15.2 Preliminaries: Fractional Linear Transformations
and Cycles

In this section we provide some necessary background in Lie geometry of cir-
cles, fractional-linear transformations and Fillmore–Springer–Cnops construction
(FSCc). Regretfully, the latter remains largely unknown in the context of complex



15 Conformal Parametrisation of Loxodromes 315

numbers despite of its numerous advantages. We will have some further discussion
of this in Remark 15.2.3 below.

The right way [42, § 9.2] to think about FLT (15.1) is through the projective
complex line PC. It is the family of cosets in C2 \ {(0, 0)} with respect to the

equivalence relation

(
w1

w2

)
∼
(
αw1

αw2

)
for all nonzero α ∈ C. Conveniently C is

identified with a part of PC by assigning the coset of

(
z

1

)
to z ∈ C. Loosely

speaking PC = C ∪ {∞}, where ∞ is the coset of

(
1
0

)
. The pair [w1 : w2] with

w2 �= 0 gives homogeneous coordinates for z = w1/w2 ∈ C. Then, the linear map
C2 → C2

M :
(
w1

w2

)
�→
(
w′

1
w′

2

)
=
(
αw1 + βw2

γw1 + δw2

)
, whereM =

(
α β

γ δ

)
∈ GL2(C)

(15.2)

factors from C2 to PC and coincides with (15.1) on C ⊂ PC.
Generic equations of cycle in real and complex coordinates z = x + iy are:

k(x2 + y2)− 2lx − 2ny +m = 0 or kzz̄− L̄z− Lz̄+m = 0 , (15.3)

where (k, l, n,m) ∈ R4 and L = l + in. This includes lines (if k = 0), points as
zero-radius circles (if l2+n2−mk = 0) and proper circles otherwise. Homogeneity
of (15.3) suggests that (k, l,m, n) shall be considered as homogeneous coordinates
[k : l : m : n] of a point in three-dimensional projective space PR3.

The homogeneous form of cycle’s equation (15.3) for z = [w1 : w2] can be
written1 using matrices as follows:

kw1w̄1−L̄w1w̄2−Lw̄1w2+mw2w̄2 =
(−w̄2 w̄1

) (L̄ −m
k −L

)(
w1

w2

)
= 0. (15.4)

From now on we identify a cycle C given by (15.3) with its 2× 2 matrix

(
L̄ −m
k −L

)
,

this is called the Fillmore–Springer–Cnops construction (FSCc). Again, C shall be
treated up to the equivalence relation C ∼ tC for all real t �= 0. Then, the linear
action (15.2) corresponds to some action on 2×2 cycle matrices by the intertwining

1Of course, this is not the only possible presentation. However, this form is particularly suitable to
demonstrate FLT-invariance (15.8) of the cycle product below.
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identity:

(−w̄′
2 w̄

′
1

) (L̄′ −m′
k′ −L′

)(
w′

1
w′

2

)
= (−w̄2 w̄1

) (L̄ −m
k −L

)(
w1

w2

)
. (15.5)

Explicitly, for M ∈ GL2(C) those actions are:

(
w′

1
w′

2

)
= M

(
w1

w2

)
, and

(
L̄′ −m′
k′ −L′

)
= M̄

(
L̄ −m
k −L

)
M−1 , (15.6)

where M̄ is the component-wise complex conjugation of M . Note, that FLT
M (15.1) corresponds to a linear transformation C �→ M(C) := M̄CM−1 of
cycle matrices in (15.6). A quick calculation shows that M(C) indeed has real off-
diagonal elements as required for a FSCc matrix.

This paper essentially depends on the following

Proposition 15.2.1 Define a cycle product of two cycles C and C′ by:

〈
C,C′〉 := tr(CC̄′) = LL̄′ + L̄L′ −mk′ − km′. (15.7)

Then, the cycle product is FLT-invariant:

〈
M(C),M(C′)

〉 = 〈C,C′〉 for any M ∈ SL2(C) . (15.8)

Proof Indeed:

〈
M(C),M(C′)

〉 = tr(M(C)M(C′))

= tr(M̄CM−1MC̄′M̄−1)

= tr(M̄CC̄′M̄−1)

= tr(CC̄′)

= 〈C,C′〉 ,
using the invariance of trace. ��
Note that the cycle product (15.7) is not positive definite, it produces a Lorentz-type
metric in R4. Here are some relevant examples of geometric properties expressed
through the cycle product:

Example 15.2.2

1. If k = 1 (and C is a proper circle), then 〈C,C〉/2 is equal to the square of radius
of C. In particular 〈C,C〉 = 0 indicates a zero-radius circle representing a point.

2. If 〈C1, C2〉 = 0 for non-zero radius cycles C1 and C2, then they intersects at the
right angle.
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3. If 〈C1, C2〉 = 0 and C2 is zero-radius circle, then C1 passes the point represented
by C2.

In general, a combination of (15.6) and (15.8) yields that a consideration of FLT in
C can be replaced by linear algebra in the space of cycles R4 (or rather PR3) with
an indefinite metric, see [12] for the latter.

A spectacular (and needed later) illustration of this approach is orthogonal
pencils of cycles. Consider a collection of all cycles passing two different points in
C, it is called an elliptic pencil. A beautiful and non-elementary fact of the Euclidean
geometry is that cycles orthogonal to every cycle in the elliptic pencil fill the entire
plane and are disjoint, the family is called a hyperbolic pencil. The statement is
obvious in the standard arrangement when the elliptic pencil is formed by straight
lines—cycles passing the origin and infinity. Then, the hyperbolic pencil consists
of the concentric circles, see Fig. 15.2. For the sake of completeness, a parabolic
pencil (not used in this paper) formed by all circles touching a given line at a given
point, [25, Ex. 6.10] contains further extensions and illustrations. See [44, § 11.8]
for an example of cycle pencils’ appearance in operator theory.

This picture trivialises a bit in the language of cycles. A pencil of cycles (of
any type!) is a linear span tC1 + (1 − t)C2 of two arbitrary different cycles C1
and C2 from the pencil. Again, this is easier to check for the standard pencils. A
pencil is elliptic, parabolic or hyperbolic depending on which inequality holds [25,
Ex. 5.28.ii]:

〈C1, C2〉2 � 〈C1, C1〉 〈C2, C2〉 . (15.9)

Then, the orthogonality of cycles on the plane is exactly their orthogonality
as vectors with respect to the indefinite cycle product (15.7). For cycles in the

Fig. 15.2 Orthogonal elliptic (green-dashed) and hyperbolic (red-solid) pencils of cycles. Left
drawing shows the standard case and the right—generic, which is the image of the standard pencils
under FLT
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standard pencils this is immediately seen from the explicit expression of the product〈
C,C′〉 = LL̄′ + L̄L′ −mk′ −km′ in cycle components. Finally, linearization (15.6)

of FLT in the cycle space shows that a pencil (i.e. a linear span) is transformed
to a pencil and FLT-invariance (15.8) of the cycle product guarantees that the
orthogonality of two pencils is preserved.

Remark 15.2.3 A sketchy historic overview (we apologise for any important
omission!) starts from the concept of Lie sphere geometry, see [4, Ch. 3] for a
detailed presentation. It unifies circles, lines and points, which all are called cycles
in this context (analytically it is already in (15.3)). The main invariant property
of Lie sphere geometry is tangential contact. The first radical advance came from
the observation that cycles (through their parameters in (15.3)) naturally form a
linear or projective space, see [36]; [41, Ch. 1]. The second crucial step is the
recognition that the cycle space carries out the FLT-invariant indefinite metric [4,
Ch. 3]; [18, § F.4]. At the same time some presentations of cycles by 2× 2 matrices
were used [42, § 9.2]; [41, Ch. 1]; [18, § F.4]. Their main feature is that FLT in C

corresponds to a some sort of linear transform by matrix conjugation in the cycle
space. However, the metric in the cycle space was not expressed in terms of those
matrices.

All three ingredients—matrix presentation with linear structure and the invariant
product—came happily together as Fillmore–Springer–Cnops construction (FSCc)
in the context of Clifford algebras [8, Ch. 4]; [9]. Regretfully, FSCc have not yet
propagated back to the most fundamental case of complex numbers, cf. [42, § 9.2]
or somewhat cumbersome techniques used in [4, Ch. 3]. Interestingly, even the
founding fathers were not always strict followers of their own techniques, see [10].

A combination of all three components of Lie cycle geometry within FSCc
facilitates further development. It was discovered that for the smaller group SL2(R)

there exist more types—elliptic, parabolic and hyperbolic–of invariant metrics in
the cycle space [19, 23, 25, Ch. 5]. Based on the earlier work [18], the key concept of
Lie sphere geometry—tangency of two cycles C1 and C2—was expressed through
the cycle product (15.7) as [25, Ex. 5.26.ii]:

〈C1 + C2, C1 + C2〉 = 0

for C1, C2 normalised such that 〈C1, C1〉 = 〈C2, C2〉 = 1. Furthermore, C1 +C2 is
the zero-radius cycle representing the point of contact.

FSCc is useful in consideration of the Poincaré extension of Möbius maps [29]
and continued fractions [28]. In theoretical physics FSCc nicely describes conformal
compactifications of various space-time models [15, 16, 21, 25, § 8.1]. Last but not
least, FSCc is behind the Computer Algebra System (CAS) operating in Lie sphere
geometry [20, 30]. FSCc equally well covers not only the field of complex numbers
but rings of dual and double numbers as well [25]. New usage of FSCc will be given
in the following sections in applications to loxodromes.
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15.3 Fractional Linear Transformations and Loxodromes

In aiming for a covariant description of loxodromes we start from the following
definition.

Definition 15.3.1 A standard logarithmic spiral (SLS) with parameter λ ∈ C is
the orbit of the point 1 under the (disconnected) one-parameter subgroup of FLT of
diagonal matrices

Dλ(t) =
(±eλt/2 0

0 e−λt/2
)
, t ∈ R. (15.10)

Remark 15.3.2 Our SLS is a union of two branches, each of them is a logarithmic
spiral in the common sense. The three-cycle parametrisation of loxodromes pre-
sented below will becomes less elegant if those two branches need to be separated.
Yet, we draw just one “positive” branch on Fig. 15.3 to make it more transparent.

SLS is the solution of the differential equation z′ = λz with the initial value
z(0) = ±1 and has the parametric equation z(t) = ±eλt . Furthermore, we obtain the
same orbit for λ1 and λ2 ∈ C if λ1 = aλ2 for real a �= 0 through a re-parametrisation
of the time t �→ at . Thus, SLS is identified by the point [5(λ) : A(λ)] of the real
projective line PR. Thereafter the following classification is useful:

Definition 15.3.3 SLS is

• positive, if 5(λ) · A(λ) > 0;
• degenerate, if 5(λ) · A(λ) = 0;
• negative, if 5(λ) · A(λ) < 0.

Informally: a positive SLS unwinds counterclockwise, a negative—clockwise.
Degenerate SLS is the unit circle if A(λ) �= 0 and the punctured real axis R \ {0} if
5(λ) �= 0. If 5(λ) = A(λ) = 0 then SLS is the single point 1.

Definition 15.3.4 A logarithmic spiral is the image of a SLS under a complex affine
transformation z �→ αz+β, with α, β ∈ C. A loxodrome is an image of a SLS under
a generic FLT (15.1).

Obviously, a complex affine transformation is FLT with the upper triangular matrix(
α β

0 1

)
. Thus, logarithmic spirals form an affine-invariant (but not FLT-invariant)

subset of loxodromes. Thereafter, loxodromes (and their degenerate forms—circles,
straight lines and points) extend the notion of cycles from the Lie sphere geometry,
cf. Remark 15.2.3.

By the nature of Definition 15.3.4, the parameter λ and the corresponding
classification from Definition 15.3.3 remain meaningful for logarithmic spirals and
loxodromes. FLTs eliminate distinctions between circles and straight lines, but for
degenerate loxodromes (5(λ) · A(λ) = 0) we still can note the difference between
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two cases of 5(λ) �= 0 and A(λ) �= 0: orbits of former are whole circles (straight
lines) while latter orbits are only arcs of circles (segments of lines).

The immediate consequence of Definition 15.3.4 is

Proposition 15.3.5 The collection of all loxodromes is a FLT-invariant family.
Degenerate loxodromes—(arcs of) circles and (segments) of straight lines—form
a FLT-invariant subset of loxodromes.

As mentioned above, SLS is completely characterised by the point [5(λ) : A(λ)]
of the real projective line PR extended by the additional point [0 : 0].2 In the
standard way, [5(λ) : A(λ)] is associated with the real value λ̃ := 2π5(λ)/A(λ)
extended by ∞ for A(λ) = 0 and symbol 0

0 for the 5(λ) = A(λ) = 0 cases.
Geometrically, a = exp(λ̃) ∈ R+ represents the next point after 1, where the given
SLS branch meets the real positive half-axis after one full counterclockwise turn.
Obviously, a > 1 and a < 1 for positive and negative SLS, respectively. For a
degenerate SLS:

1. with A(λ) �= 0 we obtain λ̃ = 0 and a = 1;
2. with 5(λ) �= 0 we consistently define a = ∞.

In essence, a loxodrome 
 is defined by the pair (λ̃,M), where M is the FLT
mapping
 to SLS with the parameter λ̃. While λ̃ is completely determined by
, a
map M is not.

Proposition 15.3.6

1. The subgroup of FLT which maps SLS with the parameter λ̃ to itself consists
of products Dλ̃(t)R

ε , ε = 0, 1 of transformations Dλ̃(t) = Dλ(t), λ = λ̃ +
2π i (15.10) and branch-swapping reflections:

R =
(

0 −1
1 0

)
: z �→ −z−1 . (15.11)

2. Pairs (λ̃,M) and (λ̃′,M ′) define the same loxodrome if and only if

a. λ̃ = λ̃′;
b. M = Dλ̃(t)R

εM ′ for ε = 0, 1 and t ∈ R.

Remark 15.3.7 Often loxodromes appear as orbits of one-parameter continuous
subgroups of loxodromic FLT, which are characterised by non-real traces [3, § 4.3];
[42, § 9.2]; [44, § 9.2]. In the above notations such a subgroup is MDλ̃(t)M

−1,
thus the common presentation is not much different from the above (λ̃,M)-
parametrisation. Furthermore, we need to pick up any point on a loxodrome to
present it as an orbit.

2Pedantic consideration of the trivial case 5(λ) = A(λ) = 0 will be often omitted in the following
discussion.
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15.4 Three-Cycle Parametrisation of Loxodromes

Although pairs (λ̃,M) provide a parametrisation of loxodromes, the following
alternative is more operational. It is inspired by the orthogonal pairs of elliptic and
hyperbolic pencils described in Sect. 15.2.

Definition 15.4.1 A three-cycle parametrisation {C1, C2, C3} of a non-degenerate
SLS λ̃ satisfies the following conditions:

1. C1 is the straight line passing the origin;
2. C2 and C3 are two circles with their centres at the origin;
3. 
 passes the intersection points C1 ∩ C2 and C1 ∩ C3; and
4. A branch of
 makes one full counterclockwise turn between intersection points
C1 ∩ C2 and C1 ∩ C3 belonging to a ray in C1 from the origin.

We say that three-cycle parametrisation is standard if C1 is the real axis and C2 is
the unit circle, then C3 = {z : |z| = exp(λ̃)}. A three-cycle parametrisation can be
consistently extended to a degenerate SLS
 as follows:

λ̃ = 0: any straight line C1 passing the origin and the unit circles C2 = C3 = 
;
λ̃ = ∞: the real axis as C1 = 
, the unit circle as C2 and C3 = (0, 0, 0, 1) being

the zero-radius circle at infinity.

Since cycles are elements of the projective space, the following normalised cycle
product:

[C1, C2] := 〈C1, C2〉√〈C1, C1〉 〈C2, C2〉 (15.12)

is more meaningful than the cycle product (15.7) itself. Note that, [C1, C2] is
defined only if neither C1 nor C2 is a zero-radius cycle (i.e. a point). Also, the
normalised cycle product is GL2(C)-invariant in comparison to SL2(C)-invariance
in (15.8).

A reader will instantly recognise the familiar pattern of the cosine of angle
between two vectors appeared in (15.12). Simple calculations show that this
geometric interpretation is very explicit in two special cases of our interest.

Lemma 15.4.2

1. Let C1 and C2 be two straight lines passing the origin with slopes tan φ1 and
tan φ2 respectively. Then C2 = Dx+iy(1)C1 for transformation (15.10) with any
x ∈ R and y = φ2 − φ1 satisfying the relations:

[C1, C2] = cos y . (15.13)

2. LetC1 andC2 be two circles centred at the origin and radii r1 and r2 respectively.
Then C2 = Dx+iy(1)C1 for transformation (15.10) with any y ∈ R and x =
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log(r2)− log(r1) satisfying the relations:

[C1, C2] = cosh x . (15.14)

Note the explicit elliptic-hyperbolic analogy between (15.13) and (15.14). By
the way, both expressions produce real x and y due to inequality (15.9) for the
respective types of pencils. Now we can deduce the following properties of three-
cycle parametrisation.

Proposition 15.4.3 For a given SLS 
 with a parameter λ:

1. Any transformation (15.10) maps a three-cycle parametrisation of 
 to another
three-cycle parametrisation of 
.

2. For any two three-cycle parametrisations {C1, C2, C3} and {C′
1, C

′
2, C

′
3} there

exists t0 ∈ R such that C′
j = Dλ(t0)Cj for Dλ(t0) (15.10) and j = 1, 2, 3.

3. The parameter λ̃ = 2π5(λ)/A(λ) of SLS can be recovered form its three-cycle
parametrisation by the relation:

λ̃ = arccosh [C2, C3] and λ ∼ λ̃+ 2π i . (15.15)

Proof The first statement is obvious. For the second we take Dλ(t0) : 
 → 


which maps C1∩C2 to C′
1∩C′

2, this transformation maps Cj �→ C′
j for j = 1, 2, 3.

Finally, the last statement follows from (15.14). ��
Note that expression (15.15) is FLT-invariant. Since any loxodrome is an image

of SLS under FLT we obtain a three-cycle parametrisation of loxodromes as follows.

Proposition 15.4.4

1. Any three-cycle parametrisation {C1, C2, C3} of SLS has the following FLT-
invariant properties:

a. C1 is orthogonal to C2 and C3;
b. C2 and C3 either disjoint or coincide.3

2. For any FLT M and a three-cycle parametrisation {C′
1, C

′
2, C

′
3} of SLS, three

cycles Cj =M(C′
j ), j = 1, 2, 3 satisfy the above conditions (1a) and (1b).

3. For any triple of cycles {C1, C2, C3} satisfying the above conditions (1a)
and (1b) there exist a FLT M such cycles {M(C1),M(C2),M(C3)} provide
a three-cycle parametrisation of SLS with the parameter λ̃ (15.15). FLT M is
uniquely defined by the additional condition that
{M(C1),M(C2),M(C3)} is a standard parametrisation of SLS.

Proof The first statement is obvious, the second follows because properties (1a)
and (1b) are FLT-invariant.

3Recall that if C2 = C3, then SLS is degenerate and coincide with C2 = C3.
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For (3) in the degenerate case C2 = C3: anyM which sends C2 = C3 to the unit
circle will do the job. If C2 �= C3 we explicitly describe below the procedure, which
produces FLT M mapping the loxodrome to SLS. ��
Procedure 15.4.5 Two disjoint cycles C2 and C3 span a hyperbolic pencil H as
described in Sect. 15.2. Then C1 belongs to the elliptic E pencil orthogonal to H .
Let C0 and C∞ be the two zero-radius cycles (points) from the hyperbolic pencil
H . Every cycle in E, including C1, passes C0 and C∞, we label those two in such a
way that

• for a positive λ̃ cycle C3 is between C2 and C∞; and
• for a negative λ̃ cycle C3 is between C2 and C0.

Here “between” for cycles means “between” for their intersection points with C1.
Finally, let Cu be any of two intersection points C1 ∩ C2. Then, there exists the
unique FLT M such that M : C0 �→ 0, M : Cu �→ 1 and M : C∞ �→ ∞. We will
call M the standard FLT associated to the three-cycle parametrisation {C1, C2, C3}
of the loxodrome.

Remark 15.4.6 To complement the construction of the standard FLT M associated
to the three-cycle parametrisation {C1, C2, C3} from Procedure 15.4.5, we can
describe the inverse operation. For the loxodrome, which is the image of SLS with
the parameter λ under FLT M , we define the standard three-cycle parametrisation
{M(R),M(Cu),M(Cλ)} as the image of the standard parametrisation of the SLS
under M . Here R is the real axis, Cu = {z : |z| = 1} is the unit circle and
Cλ = {z : |z| = exp(λ̃)}.

In essence, the previous proposition says that a three-cycle and (λ,M) parametri-
sations are equivalent and delivers an explicit procedure producing one from
another. However, three-cycle parametrisation is more geometric, since it links a

1
a

Fig. 15.3 Logarithmic spirals (left) and loxodrome (right) with associated pencils of cycles. This
is a combination of Figs. 15.1 and 15.2
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loxodrome to a pair of orthogonal pencils, see Fig. 15.3. Furthermore, cycles C1,
C2, C3 (unlike parameters λ andM) can be directly drawn on the plane to represent
a loxodrome, which may be even omitted.

15.5 Applications of Three-Cycle Parametrisation

Now we present some examples of the usage of three-cycle parametrisation of
loxodromes. Any parametrisation mentioned in this paper has some arbitrariness.
For pairs (λ̃,M) that is described in Proposition 15.3.6. Characterisation as orbits
from Remark 15.3.7 seems to be most ambiguous: besides of the previous freedom
in the one-parameter subgroup choice, we shall pick up any point of the loxodrome
as well. Now we want to resolve non-uniqueness in the three-cycle parametrisation.
Recall, that a triple {C1, C2, C3} is non-degenerate if C2 �= C3 and C3 is not zero-
radius.

Proposition 15.5.1 Two non-degenerate triples {C1, C2, C3} and {C′
1, C

′
2, C

′
3}

parameterise the same loxodrome if and only if all the following conditions are
satisfied:

1. Pairs {C2, C3} and {C′
2, C

′
3} span the same hyperbolic pencil. That is cycles C′

2
and C′

3 are linear combinations of C2 and C3 and vise versa.
2. Pairs {C2, C3} and {C′

2, C
′
3} define the same parameter λ̃:

[C2, C3] = [C′
2, C

′
3

]
. (15.16)

3. The elliptic-hyperbolic identity holds:

arccosh
[
Cj ,C

′
j

]

arccosh [C2, C3]
≡ 1

2π
arccos

[
C1, C

′
1

]
(mod 1) , (15.17)

where j is either 2 or 3.

Proof Necessity of (1) is obvious, since hyperbolic pencils spanned by {C2, C3} and
{C′

2, C
′
3} shall be both the image of concentric circles centred at origin under FLTM

defining the loxodrome. Necessity of (2) is also obvious since λ̃ is uniquely defined
by the loxodrome. Necessity of (3) follows from the analysis of the following
demonstration of sufficiency.

For sufficiency, let M be FLT constructed through Procedure 15.4.5 from
{C1, C2, C3}. Then (1) implies that M(C′

2) and M(C′
3) are also circles centred

at origin. Then Lemma 15.4.2 implies that the transformation Dx+iy(1), where
x = arccosh

[
C2, C

′
2

]
and y = arccos

[
C1, C

′
1

]
maps C′

1 and C′
2 to C1 and C2

respectively. Furthermore, from identity (15.16) follows that the same Dx+iy(1)
maps C′

3 to C3. Finally, condition (15.17) means that x + i(y + 2πn) = a(λ̃+ 2π i)
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for a = x/λ̃ and some n ∈ Z. In other words Dx+iy(1) = Dλ̃(a), thus Dx+iy(1)
maps SLS with the parameter λ̃ to itself. Since {M(C1),M(C2),M(C3)} and
{M(C′

1),M(C
′
2),M(C

′
3)} are two three-cycle parametrisations of the same SLS,

{C1, C2, C3} and {C′
1, C

′
2, C

′
3} are two three-cycle parametrisations of the same

loxodrome. ��
Equivalent triples of cycles parametrising the same loxodrome are shown on

Fig. 15.4 (an animation is available with the electronic version of this paper at
arXiv [32]). Relation (15.17), which correlates elliptic and hyperbolic rotations

Fig. 15.4 Two equivalent
parametrisations of the same
loxodrome by different triples
of cycles. The green cycle is
C1, two red circles are C2 and
C3. Full animation of
different parametrisations can
be seen at [27]

https://arxiv.org/abs/1802.01864
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for loxodrome, regularly appears in this context. The next topic provides another
illustration of this.

Procedure 15.5.2 To verify whether a loxodrome parametrised by three cycles
{C1, C2, C3} passes a point parametrised by a zero-radius cycle C0 we perform the
following steps:

1. Define the cycle

Ch = tC2 + (1 − t)C3 , where t = − 〈C0, C3〉
〈C0, C2 − C3〉 , (15.18)

which belongs to the hyperbolic pencil spanned by {C2, C3} and is orthogonal to
C0, that is, passes the respective point.

2. Find cycle Ce from the elliptic pencil orthogonal to {C2, C3} which passes C0.
Ce is the solution of the system of three linear (with respect to parameters of Ce)
equations, cf. Example 15.2.2:

〈Ce,C0〉 = 0 ,

〈Ce,C2〉 = 0 ,

〈Ce,C3〉 = 0 .

3. Verify the elliptic-hyperbolic relation:

arccosh [Ch,C2]

arccosh [C2, C3]
≡ 1

2π
arccos [Ce,C1] (mod 1) . (15.19)

Proof LetM be the standard FLT associated to {C1, C2, C3} from Procedure 15.4.5.
The pointC0 belongs to the loxodrome if the transformationDλ̃(t) for some t moves
M(C0) to the intersectionM(C1)∩M(C2). ButDx+iy(1)with x = arccosh [Ch,C2]
and y = arccos [Ce,C1] maps M(Ch) → M(C2) and M(Ce) → M(C1), thus
it also maps M(C0) ⊂ M(Ch) ∩ M(Ce) to M(C1) ∩ M(C2). Condition (15.19)
guaranties that Dx+iy(1) = Dλ̃(x/λ̃), as in the previous Prop. ��
Our final example considers two loxodromes which may have completely different
associated pencils.

Procedure 15.5.3 Let two loxodromes are parametrised by {C1, C2, C3} and
{C′

1, C
′
2, C

′
3}. Assume they intersect at some point parametrised by a zero-radius

cycle C0 (this can be checked by Procedure 15.5.2, if needed). To find the angle of
intersection we perform the following steps:

1. Use (15.18) to find cycles Ch and C′
h belonging to hyperbolic pencils, spanned

by {C2, C3} and {C′
2, C

′
3} respectively, and both passing C0.
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2. The intersection angle is

arccos
[
Ch,C

′
h

]− arctan

(
λ̃

2π

)
+ arctan

(
λ̃′

2π

)
, (15.20)

where λ̃ and λ̃′ are determined by (15.15).

Proof A loxodrome intersects any cycle from its hyperbolic pencil with the fixed
angle arctan(λ̃/(2π)). This is used to amend the intersection angle arccos

[
Ch,C

′
h

]
of cycles from the respective hyperbolic pencils. ��
Corollary 15.5.4 Let a loxodrome parametrised by {C1, C2, C3} passes a point
parametrised by a zero-radius cycle C0 as in Procedure 15.5.2. A non-zero radius
cycle C is tangent to the loxodrome at C0 if and only if two conditions holds:

〈C,C0〉 = 0 ,

arccos [C,Ch] = arctan

(
λ̃

2π

)
,

(15.21)

where Ch is given by (15.18) and is λ̃ is determined by (15.15).

Proof The first condition simply verifies that C passes C0, cf. Example 15.2.2.
Cycle C, as a degenerated loxodrome, is parametrised by {Ce,C,C}, where Ce is
any cycle orthogonal to C and Ce is not relevant in the following. The hyperbolic
pencil spanned by two copies of C consists of C only. Thus we put C′

h = C, λ̃′ = 0
in (15.20) and equate it to 0 to obtain the second identity in (15.21). ��

15.6 Discussion and Open Questions

It was mentioned at the end of Sect. 15.4 that a three-cycle parametrisation of
loxodromes is more geometrical than their presentation by a pair (λ,M). Fur-
thermore, three-cycle parametrisation reveals the natural analogy between elliptic
and hyperbolic features of loxodromes, see (15.17) as an illustration. Examples in
Sect. 15.5 show that various geometrical questions are explicitly answered in term of
three-cycle parametrisation. Thus, our work extends the set of objects in Lie sphere
geometry—circle, lines and points—to the natural maximal conformally-invariant
family, which also includes loxodromes. In practical terms, three-cycle parametri-
sation allows to extend the library figure for Möbuis invariant geometry [30, 31]
to operate with loxodromes as well.

It is even more important, that the presented technique is another implementation
of a general framework [28–31], which provides a significant advance in Lie sphere
geometry. The Poincaré extension of FLT from the real line to the upper half-plane
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was performed by a pair of orthogonal cycles in [29]. A similar extension of FLT
from the complex plane to the upper half-space can be done by a triple of pairwise
orthogonal cycles. Thus, triples satisfying FLT-invariant properties (1a) and (1b) of
Proposition 15.4.4 present another non-equivalent class of cycle ensembles in the
sense of [29]. In general, Lie sphere geometry can be enriched by consideration
of cycle ensembles interrelated by a list of FLT-invariant properties [29]. Such
ensembles become new objects in the extended Lie spheres geometry and can be
represented by points in a cycle ensemble space.

There are several natural directions to extend this work further, here are just few
of them:

1. Link our “global” parametrisation of loxodromes with differential geometry
approach from [6, 37, 40]. Our last Corollary 15.5.4 can be a first step in this
direction.

2. Consider all FLT-invariant non-equivalent classes of three-cycle ensembles on
C: pairwise orthogonal triples (representing points in the upper half-space [29]),
triples satisfying properties (1a) and (1b) of Proposition 15.4.4 (representing
loxodromes), etc.

3. Extend this consideration for quaternions or Clifford algebras [13, 33]. The
previous works [38, 39] and availability of FSCc in this setup [8, Ch. 4]; [9]
make it rather promising.

4. Consider Möbius transformations in rings of dual and double numbers [2, 22–
26, 29, 34]. There are enough indications that the story will not be quite the same
as for complex numbers.

5. Explore further connections of loxodromes with

• Carleson curves and microlocal properties of singular integral operators [1, 5,
7]; or

• applications in operator theory [42, 44].

Some combinations of those topics shall be fruitful as well.
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Automorphic Forms and Dirac Operators
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Abstract In this paper we present a summarizing description of the connection
between Dirac operators on conformally flat manifolds and automorphic forms
based on a series of joint work with John Ryan over the last 15 years. We also
outline applications to boundary value problems.
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16.1 Introduction

A natural generalization to Rn of the classical Cauchy-Riemann operator has proved
to be the Euclidean Dirac operatorD. Here Rn is considered as embedded in the real
2n-dimensional Clifford algebra Cln satisfying the relation x2 = −‖x‖2 for each
x ∈ Rn. The elements e1, . . . , en of the standard orthonormal basis of Rn satisfy
the relation eiej + ej ei = −2δij . The Dirac operator is defined to be

∑n
j=1 ej

∂
∂xj

.
Clifford algebra valued functions f and g that satisfy Df = 0 respectively gD = 0
are often called left (right) monogenic functions.

Its associated function theory together with its applications is known as Clifford
analysis and can be regarded as a higher dimensional generalization of complex
function theory in the sense of the Riemann approach. Indeed, associated to this
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operator there is a higher dimensional direct analogue of Cauchy’s integral formula
and other nice analogues, cf. [8]. As in complex analysis, also the Euclidean Dirac
factorizes the higher dimensional Euclidean Laplacian viz D2 = −�. Indeed, the
Euclidean Dirac operator has been used successfully in understanding boundary
value problems and aspects of classical harmonic analysis in Rn. See for instance
[14, 27].

On the other hand Dirac operators have proved to be extremely useful tools
in understanding geometry over spin and pin manifolds. Basic aspects of Clifford
analysis over spin manifolds have been developed in [2, 4]. Further in [16–19] and
elsewhere it is illustrated that the context of conformally flat manifolds provide a
useful setting for developing Clifford analysis.

Conformally flat manifolds are those manifolds which possess an atlas whose
transition functions are Möbius transformations. Under this viewpoint conformally
flat manifolds can be regarded as higher dimensional generalizations of Riemann
surfaces.

Following the classical work of Kuiper [22], one can construct examples of
conformally flat manifolds by factoring out a subdomain U ⊆ Rn by a torsion-free
Kleinian group � acting totally discontinuously on U .

Examples of conformally flat manifolds include spheres, hyperbolas, real pro-
jective space, cylinders, tori, the Möbius strip, the Kleinian bottle and the Hopf
manifolds S1 × Sn−1. The oriented manifolds among them are also spin manifolds.
In [16–18] explicit Clifford analysis techniques, including Cauchy and Green type
integral formulas, have been developed for these manifolds.

Finally, in one of our follow-up papers [1] we also looked at a class of hyperbolic
manifolds namely those that arise from factoring out upper half-space in Rn by
a torsion-free congruence subgroup, H , of the generalized modular group �p. �p
is the arithmetic group that is generated by p translation matrices (p < n) and
the inversion matrix. In two real variables these are k-handled spheres. Notice
that the group �p is not torsion-free, as it contains the negative identity matrix.
Consequently, the topological quotient of upper half-space with �p has only the
structure of an orbifold. To overcome this problem we deal with congruence
subgroups of level N ≥ 2, which are going to be introduced later on.

In this paper we present an overview about some of our most important joint
results. In the final section of this paper we also outline some applications addressing
boundary value problems modelling stationary flow problems on these classes of
manifolds where we adapt the techniques from [14] to this more general geometric
context.
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16.2 Clifford Algebras and Spin Geometry

16.2.1 Clifford Algebras and Orthogonal Transformations

As mentioned in the introduction, we embed the Rn into the real Clifford algebra
Cln generated by the relation x2 = −‖x‖2. For details, see [4, 8, 14]. This relation
defines the multiplication rules e2

i = −1, i = 1, . . . , n and eiej = −ej ei ∀i �= j . A
vector space basis forCln is given by 1, e1, . . . , en, e1e2, . . . , en−1en, . . . , e1 · · · en.
Each x ∈ Rn\{0} has an inverse of the form x−1 = − x

‖x‖2 . We also consider the

reversion anti-automorphism defined by ãb = b̃ã, where ẽj = ej ∀j = 1, . . . , n
and the conjugation defined by ab = b a, where ej = −ej ∀j = 1, . . . , n.

Notice that e1xe1 = −x1e1+x2e2+· · ·+xnen. The multiplication of e1 from the
left and from the right realizes in a simple form a reflection in the e1-direction. More
generally, one can say: IfO ∈ O(n), then there are reflectionsR1, . . . , Rm such that
O = R1 · · ·Rm. In turn for eachRj there exists a yj ∈ Sn−1 such thatRjx = yjxyj
for all x ∈ Rn. Summarizing, one can represent a general transformation ofO(n) in
the way Ox = y1 · · · ymxym · · · y1, so Ox = axã with a = y1 · · · ym.

This motivates the definition of the pin group as

Pin(n+ 1) = {a ∈ Cln | a = y1 · · · ym, yi ∈ Sn}.

Each transformation of O(n) can be written as Ox = axã with an a ∈ Pin(n).
In view of axã = (−a)x(−ã), Pin(n) is a double cover of O(n). A subgroup of
index 2 is the spin group defined by

Spin(n) := {a = y1 · · · ym ∈ Pin(n) | m ≡ 0(2)}.

Again, Spin(n) is the double cover of SO(n).

16.2.2 Spin Geometry

Here we summarize some basic results from [2, 9, 22].
LetM be a connected orientable Riemannian manifold with Riemann metric gij .
Consider for x ∈ M all orthonormal-bases of the tangential space TMx , which

again are mapped to orthonormal-bases of TMx by the action of the SO(n). This
gives locally rise to a fiber bundle.

Gluing together all these fiber bundles gives rise to a principal bundle P overM
with a copy of SO(n).

This naturally motivates the question whether it is possible to lift each fiber to
Spin(n) in a continuous way to obtain a new principal bundle S that covers P .
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However, the ambiguity caused by the sign may give a problem. If s : U →
U × SO(n) is a section then there are two options of lifting s to a spinor bundle
s∗ : U → U × Spin(n), namely s∗ and −s∗. So, it may happen that:

• It is not always possible to choose the sign in order to construct in a unique way
a bundle S overM , such that each fiber is a copy of Spin(n).

• There also might be several possibilities.
• The different spin structures are described by the cohomology group
H 1(M,Z2).

16.2.3 The Atiyah-Singer-Dirac Operator

Let M be a Riemannian spin manifold. Let � be the Levi-Civita connection. Then
�gij = 0. Stokes’s theorem tells us that

∫

∂V

〈s1(x), n(x)s2(x)〉Sdσ(x)

=
∫

V

(〈s1(x)D, s2(x)〉S + 〈s1(x),Ds2(x)〉S)dV

The arising differential operator here is the Atiyah-Singer-Dirac operator. In a local
orthonormal basis e1(x), . . . en(x) the latter has the form

D =
n∑
j=1

ej (x)�
∗
ej (x)

.

16.2.4 The Dirac Operator in R
n and R ⊕ R

n

Following [8] and others, the Dirac operator in R
n has the simple form D =

n∑
j=1

∂
∂xj
ej . In the so-called space of paravectors R⊕ R

n it particularly has the form

D = ∂
∂x0

+
n∑
j=1

∂
∂xj
ej . The latter naturally generalizes the well-known Cauchy-

Riemann operator ∂
∂x0

+ ∂
∂x1
i in a straight forward way to higher dimensions by

adding the additional basis elements.
As mentioned in the introduction, functions f : U → Cln (where U ⊆ Rn resp.

U ⊆ R⊕ Rn) that are in the kernel of D are often called monogenic.
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16.3 Analysis on Manifolds

16.3.1 Conformally Flat Manifolds in Rn+1

Following for example [22], conformally flat manifolds are Riemannian manifolds
with vanishing Weyl tensor. In turn these are exactly those Riemannian manifolds
which have an atlas whose transition functions are conformal maps. InR2 conformal
maps are exactly the (anti-)holomorphic functions. So, one deals with classical
Riemann surfaces. Up from space dimension n ≥ 3 in R≥3 however, the set of
conformal maps coincides with the set of Möbius transformations, cf. [4] The latter
set of functions then represent reflections at spheres and hyperplanes. This seems to
be quite restrictive at the first glance. However, this is not the case as the abundance
of classical important examples will show as outlined in the following.

So, let us now turn to an explicit construction principle of conformally flat
manifolds in Rn with n ≥ 3. To proceed in this direction take a torsion free discrete
subgroup G of the orthogonal group O(n + 1) that acts totally discontinuously on
a simply connected domain D. Next define a group action G × D → D. Then the
topological quotient space D/G is a conformally flat manifold. As also shown in the
original work of N.H. Kuiper in 1949 [22], the universal cover of a conformally flat
manifold possesses a local diffeomorphism to Sn. Conformally flat manifolds of the
form D/G are exactly those for which this local diffeomorphism is a covering map
D → D ⊂ Sn.

Let us present a few elementary examples:

• Take G = Tp := Z+ Ze1 + · · · + Zep−1, D = Rn+1 and consider the action

(m0, . . . ,mn) ◦ (x0, . . . , xn) �→ (x0 +m0, . . . , xp−1 +mp−1, xp, . . . , xn).

Then the topological quotients D/G represent oriented p cylinders. These are
spin manifolds with 2p many different spinor bundles. In the particular case p =
n+ 1 one deals with a compact oriented n+ 1-torus, cf. [17, 18].

• Take again as group Tn+1 and the same domain, but consider a different action
of the form

(m0, . . . ,mn−1,mn) ◦ (x0, . . . , xn−1, xn)

�→ (x0 +m0, . . . , xn−1 +mn−1, (−1)mnxn +mn).

Now D/G is the non-orientable Kleinian bottle in Rn+1. Due to the lack of
orientability it is not spin. However, it is a pin manifold with 2n+1 many pinor
bundles. For some Clifford analysis on these manifolds we refer the reader to our
recent works [16, 20].

Further interesting examples can be constructed by forming quotients with non-
abelian subgroups of Möbius transformations in Rn, in particular with arithmetic
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subgroups of the so-called Ahlfors-Vahlen group discussed for instance in [10] and
many other papers. To make the paper self-contained we recall its definition:

Definition 16.3.1 (Ahlfors-Vahlen Group) A Clifford algebra valued matrixM =(
a b

c d

)
∈ Mat(2, Cln) belongs to the special Ahlfors Vahlen group SAV (n), if:

– a, b, c, d are products of paravectors from R⊕Rn

– ac̃, cd̃, db̃, bc̃ ∈ R⊕ Rn and ad̃ − bc̃ = 1.

The use of Clifford algebras allow us to describe Möbius transformations in R⊕
Rn in the simple wayM < x >= (ax+b)(cx+d)−1, similarly to complex analysis.
For our needs we consider the special hypercomplex modular group [15] defined by

�p :=
〈(

1 1
0 1

)
,

(
1 e1

0 1

)
, . . . ,

(
1 ep
0 1

)

︸ ︷︷ ︸
=:Tp

,

(
0 −1
1 0

)

︸ ︷︷ ︸
=:J

〉

If p < n, then by applying the same arguments as in [12], �p acts totally
discontinuously on upper half-space discussed in [10]

H+(R⊕ R
n) := {x0 + x1e1 + · · · + xnen ∈ R⊕ R

n | xn > 0}.

In two dimensions it coincides with the classical group SL(2,Z). To get a larger
amount of examples we look at the following arithmetic congruence subgroups:

�p[N] :=
{(

a b

c d

)
∈ �p | a − 1, b, c, d − 1 ∈ NOp

}
,

where Op := ∑
A⊆P({1,...,p})

ZeA are the standard orders in Cln.

If we now take D = H+(Rn+1), G = �p[N] with N ≥ 2 and if we consider the
action

(M, x) �→ M < x >:= (ax + b) · (cx + d)−1,

where · is the Clifford-multiplication, then for N ≥ 2 the topological quotient
D/G realizes a class of conformally flat orientable manifold with spin structures
generalizing k-tori to higher dimensions, cf. [1].

16.3.2 Sections on Conformally Flat Manifolds

In the sequel let us make the general assumption that M := D/G is an orientable
conformally flat manifold. Let furthermore f : D → Rn+1 be a function with
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f (G < x >)) = j (G, x)f (x) ∀G ∈ G where j (G, x) is an automorphic factor
satisfying a certain co-cycle relation. In the simplest case j (G, x) ≡ 1 one deals
with a totally invariant function under the group action of G. Then the canonical
projection p : D → M induces a well-defined function f ′ := p(f ) on the

quotient manifold M. Now let D := ∂
∂x0

+
n∑
i=1

∂
∂xi
ei be the Euclidean Dirac-

or Cauchy-Riemann operator and let � be the usual Euclidean Laplacian. The
canonical projection p : D → M in turn induces a Dirac operator D′ = p(D)

resp. Laplace operator�′ = p(D) on M.
Consequence: A G-invariant function on D from Ker D (resp. from Ker �)

induces functions on M in KerD′ resp. in Ker�′. More generally, one considers for
f ′ monogenic resp. harmonic spinor sections with values in certain spinor bundles.

16.4 Automorphic Forms

16.4.1 Basic Background

Following classical literature on automorphic forms, for instance [12], let G be
a discrete group that acts totally discontinuously on a domain D by G × D →
D, (g, d) → d∗, Roughly speaking, automorphic forms on G are functions
on D that are quasi-invariant under the action of G. The fundamental theory of
holomorphic automorphic forms in one complex variable was founded around 1890,
mainly by H. Poincaré, F. Klein and R. Fricke. The associated quotient manifolds
are holomorphic Riemann surfaces.

The simplest examples are holomorphic periodic functions. They serve as
example of automorphic functions on discrete translation groups. Further very
classical examples are the so-called Eisenstein series

Gn(τ) :=
∑

(c,d)∈Z2\{(0,0)}
(cτ + d)−n n ≡ 0( mod 2) n ≥ 4

They are holomorphic functions on H+(C) := {z = x + iy ∈ C | y > 0}. For all
z ∈ H+(C) they satisfy :

f (z) = (f |nM)(z) ∀M =
(
a b

c d

)
∈ SL(2,Z)

where (f |nM)(z) := (cz+ d)−nf
(
az+b
cz+d
)

.
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The Eisenstein series Gn are the simplest non-vanishing holomorphic auto-
morphic forms on SL(2,Z). Further important examples are Poincaré series: For
n > 2, n ∈ 2N let

Pn(z,w) =
∑

M∈SL(2,Z)
(cz+ d)−n(w +M < z >)−n

These functions have the same transformation behavior as the previously described
Eisenstein series, namely:

Pn(w, z) = Pn(z,w) = (cz+ d)−nPn(M < z >,w).

In contrast to the Eisenstein series, these Poincaré series have the special property
that they vanish at the singular points of the quotient manifold resp. orbifold.

16.4.2 Higher Dimensional Generalizations in n Real
Variables

Already in the 1930s C.L. Siegel developed higher dimensional analogues of the
classical automorphic forms in the framework of holomorphic functions in several
complex variables. The context is Siegel upper half-space where one considers the
action of discrete subgroups of the symplectic group.

More closely related to our intention is the line of generalization initiated by H.
Maaß and extended by Elstrodt et al. [10] and Krieg [21] and many followers in the
period of 1985–1990 and onwards.

These authors looked at higher dimensional generalizations of Maaß forms which
are non-holomorphic automorphic forms on discrete subgroups of the Ahlfors-
Vahlen group (including for example the Picard group and the Hurwitz quaternions)
on upper half-space H+(Rn). As important analytic properties they exhibit to be
complex-valued eigensolutions to the scalar-valued Laplace-Beltrami operator

�LB = x2
n

( n∑
i=0

∂2

∂x2
i

)
− (n− 1)xn

∂

∂xn

In the case n = 1 one has �LB = x2
1�. Therefore, in the one-dimensional case

holomorphic automorphic forms simply represent a special case of Maaß forms.
A crucial disadvantage of Maaß forms behind the background of our particular

intentions consists in the fact that they do not lie in the kernel of the Euclidean Dirac
or Laplace operator. Additionally, they are only scalar-valued.
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16.4.3 Clifford-Analytic Automorphic Forms

16.4.3.1 Some Milestones in the Literature

To create a theory of Clifford algebra valued automorphic forms that are in kernels
of Dirac operators remained a challenge for a long time. A serious obstacle has
been to overcome the problem that neither the multiplication nor the composition of
monogenic functions are monogenic again. However, the set of monogenic functions
is quasi-invariant under the action of Möbius transformations up to an automorphic
factor that fortunately obeys a certain co-cycle relation. The latter actually provides
the fundament to build up a theory of automorphic forms in the Clifford analysis
setting.

The first contribution in the Clifford analysis setting is the paper [25] where J.
Ryan constructed n-dimensional monogenic analogues of the Weierstraß℘-function
and the Weierstraß ζ -function built as summations of the monogenic Cauchy kernel
over an n-dimensional lattice. Here, the invariance group is an abelian translation
group with n linearly independent generators.

In the period of 1998–2004 the author developed the fundamentals for a
more general theory of Clifford holomorphic automorphic forms on more general
arithmetic subgroups of the Ahlfors-Vahlen group, cf. [15]. The geometric context
is again upper half-space. However, the functions are in general Clifford algebra
valued and are null-solutions to iterated Dirac equations. In fact, the framework of
null-solutions to the classical first order Dirac operator is too small for a large theory
of automorphic forms, because the Dirac operator admits only the construction of
automorphic forms to one weight factor only. To consider automorphic forms with
several automorphic weight factors a more appropriate framework is the context of
iterated Dirac equations of the formDmf = 0 to higher order integer powers m. In
fact, higher order Dirac equations can also be related to k-hypermonogenic functions
[24] which allows us to relate the theory of Maaß forms to Clifford holomorphic
automorphic forms. This is successfully explained in [5, 7]. In this context it was
possible to generalize Eisenstein- and Poincaré series construction which gave rise
to the construction of spinor sections with values in certain spinor bundles on the
related quotient manifolds.

In fact, as shown in [7], it is possible to decompose the Clifford module of
Clifford holomorphic automorphic forms as an orthogonal direct sum of Clifford
holomorphic Eisenstein- and Poincaré series. As shown in our recent paper [13],
both modules turn out to be finitely generated.

The applications to solve boundary value problems on related spin manifolds
started with our first joint paper [17] where we applied multiperiodic Eisenstein
series on translation groups to construct Cauchy and Green kernels on conformally
flat cylinders and tori associated to the trivial spinor bundle.

In [18] we extended our study to address the other spinor bundles on these
manifolds. Furthermore, we also looked at dilation groups instead of translation
groups, too, and managed to give closed representation formulas for the Cauchy
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kernel of the Hopf manifold S1 × Sn−1. Already in this paper we outlined the
construction of spinor sections on some hyperbolic manifolds of genus ≥ 2.
However, to obtain the Cauchy kernel for these manifolds we needed to construct
Poincaré series which was a hard puzzle piece to find. Eisenstein series were easy to
construct and they lead to non-trivial spinor sections on these manifolds. However,
the Cauchy kernel must have the property to vanish at the cusps of the group—
and that construction was hard to do. A breakthrough in that direction could be
established in our joint paper [1] where we were able to fill in that gap.

Finally, in [6] and [7] we were able to extend these constructions to the
framework of k-hypermonogenic functions [11] and holomorphic Clifford functions
addressing null-solutions to D�mf = 0. This is the function class considered by
G. Laville and I. Ramadanoff introduced in [23].

Summarizing, the theory of Clifford holomorphic automorphic form provides us
with a toolbox to solve boundary value problems related to the Euclidean Dirac or
Laplace operator on conformally flat spin manifolds or more generally on manifolds
generalizing classical modular curves.

It also turned out to be possible to make analogous constructions for some non-
orientable conformally flat manifolds with pin structures. Belonging to that context,
in [18] we addressed real projective spaces and in [16, 20] we carried over our
constructions to the framework of higher dimensional Möbius strips and the Klein
bottle.

16.4.4 Some Concrete Examples

• The simplest non-trivial examples of Clifford-holomorphic automorphic forms
on the translation groups Tp are given by the series

ε
(p)
m (x) :=

∑
ω∈	p

qm(x + ω), 	p := Zω0 + Zω1 + . . .Zωp

which are normally convergent, if |m| ≥ p + 2. Here, qm(x) := ∂ |m|
∂xm q0(x)

where q0(x) := x
‖x‖m+1 and where m := (m1, · · · ,mn) is a multi-index and

|m| := m1 + m2 + · · · + mn and xm := x
m1
1 · · · xmnn is used as in usual multi-

index notation.
These series ε(p)m (x) can be interpreted as Clifford holomorphic generaliza-

tions of the trigonometric functions (with singularities) and of the Weierstraß
℘-function. The projection p(ε(p)m (x)) then induces a well-defined spinor section
on the cylinder resp. torus Rn+1/	p with values in the trivial spinor bundle.
Other spinor bundles can be constructed by introducing proper minus signs and
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the following decomposition of the period lattice in the way 	p := 	l ⊕ 	p−l
where 0 ≤ l ≤ p. The proper analogues of ε(p)m (x) then are defined by

ε
(p,l)
m (x) :=

∑
ω∈	l⊕	p−l

(−1)m0+···+ml qm(x+ω), 	p := Zω0+Zω1+. . .Zωp.

In total one can construct 2p+1 different spinor bundles. The Cauchy kernel is
obtained by the series that one obtains in the case m = 0. In that case it may
happen that the associated series above does not converge. To obtain convergence
in those cases one needs to apply special convergence preserving terms. For the
technical details we refer to our papers [17–19].

• Let us now turn to examples of hyperbolic manifolds that are generated by
quotient forming with non-abelian groups. The simplest non-trivial example
in that context are the monogenic Eisenstein series for �n−1[N] (and also for
�p[N]) with p < n− 1 which have been introduced in [5].

E(z) = lim
σ→0+

∑
M:Tn−1[N]\�n−1[N]

(
xn

‖cx + d‖2

)σ
q0(cx + d).

Notice that we here applied the Hecke trick (cf. [12]) to get well-definedness.
In fact, these Eisenstein series provide us with the simplest examples of
non-vanishing spinor sections defined on the hyperbolic quotient manifolds
H+(Rn+1)/�p[N]. However, these series do not vanish at the cusps of the
group. They serve as examples but they don’t reproduce the Cauchy integral. This
property can be achieved by the following monogenic Poincaré series, introduced
in our papers [1, 5]. The latter have the form

Pp(x,w) = lim
σ→0+

∑
M∈�p[N]

(
xn

‖cx + d‖2

)σ
q0(cx + d)q0(w +M〈x〉).

The series Pp(x,w) are indeed monogenic cusp forms, in particular

lim
xn→∞Pp(xnen) = 0.

Its projection down to the manifold induce the Cauchy kernel. In the following
section we want to outline how the explicit knowledge of the Cauchy kernel
allows us to solve boundary value problems on these manifolds.
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16.5 Applications to BVP on Manifolds

Some practical motivations for the following studies are to understand weather
forecast and flow problems on spheres, cylindrical ducts or other geometric contexts
fitting into the line of investigation of [3, 26].

16.5.1 The Cauchy Kernel on Spin Manifolds

Monogenic generalization of the Weierstraß ℘-function ε(p)n give rise to monogenic
sections on p-cylinders Rn+1/Tp. So, monogenic automorphic forms on �p(I)[N]
define spinor sections on the k-toriH+(Rn+1)/�p(I)[N]. The Poincaré series give
us the Cauchy kernel on these manifolds. Summarizing, for p < n − 1 the Cauchy
kernel has the concrete and explicit form

C(x, y) =
∑

M∈�p(I)[N]

cx + d
|cx + d|n

(y −M < x >)

‖y −M < x > ‖n+1
.

Each monogenic section f ′ on M then satisfies

f ′(y ′) =
∫

∂S ′
C′(x ′, y ′)dσ ′(x ′)f ′(x ′)

which is the reproduction of the Cauchy integral, cf. [1].

16.5.2 The Stationary Stokes Flow Problem on Some
Conformally Flat Spin Manifolds

Let M := D/G be a conformally flat spin manifold for which we know the Cauchy
kernel C(x, y) to the Dirac operator (concerning a fixed chosen spinor bundle F ).

Next let E ⊂ M be a domain with sufficiently smooth boundary � := ∂E.
Now we want to consider the following Stokes problem on M:

−�u+ 1

η
p = F in E (16.5.1)

div u = 0 in E

u = 0 on �,
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where u ∈ W 1
2 (E, F ) is the velocity of the flow and where p ∈ W 1

2 (E,R) is the
hydrostatic pressure. The explicit knowledge of the Cauchy kernel on M allows us
to set up explicit analytic representation formulas for the solutions.

To meet this end we define in close analogy of [14] the Teodorescu transform
and the Cauchy transform on M by

(TEf )(x) := −
∫
E

C(x, y)f (y)dV (y)

(F�f )(x) :=
∫
�

C(x, y)dσ(y)f (y).

where now C(x, y) stands for the Cauchy kernel associated to the chosen spinor
bundle F on the manifold. The associated Bergman projection P : L2(E) →
L2(E) ∩Ker(D) then can be represented in the usual form

P = F�(tr�TEF�)
−1tr�TE.

An application of the Clifford analysis methods provide us with explicit analytic
formulas for the velocity and the pressure of the fluid running over this manifold.
An application of TE to (16.5.1) yields:

(TED)(Du) + 1

η
TEDp = TEF.

Next, an application of the Borel-Pompeiu formula (Cauchy-Green formula) leads
to:

Du− F�Du+ 1

η
p − 1

η
F�p = TEF

If we apply the Pompeiu projectionQ := I − P , then one obtains

QDu−QF�Du+ 1

η
Qp − 1

η
QF�p = QTEF (∗)

Since F�Du,F�p ∈ Ker D, one further gets

QF�Du = 0 and QF�p = 0.

Thus,

QDu + 1

η
Qp = QTEF. (16.5.2)
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Further, another application of TE and the propertyQDu = Du leads to

TEDu+ 1

η
TEQp = TEQTEF

⇔ u− F�u︸︷︷︸
=0

+1

η
TEQp = TEQTEF.

In view of u|� = 0 we obtain the following representation formula for the velocity:

u = TE(I − P)TEF − 1

η
TE(I − P)p.

Finally, the condition div u = 0 allows us to determinate the pressure

(5(I − P))p = η5((I − P)TE(I − P)F)

where 5(·) stands for the scalar part of an element from the Clifford algebra.

Remark An extension of this approach to the parabolic setting in which instationary
flow problems are considered are treated in our follow up paper [3].
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Chapter 17
Higher Order Fermionic and Bosonic
Operators

Chao Ding, Raymond Walter, and John Ryan

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract This paper studies a particular class of higher order conformally invariant
differential operators and related integral operators acting on functions taking values
in particular finite dimensional irreducible representations of the Spin group. The
differential operators can be seen as a generalization to higher spin spaces of
kth-powers of the Euclidean Dirac operator. To construct these operators, we use
the framework of higher spin theory in Clifford analysis, in which irreducible
representations of the Spin group are realized as polynomial spaces satisfying a
particular system of differential equations. As a consequence, these operators act
on functions taking values in the space of homogeneous harmonic or monogenic
polynomials depending on the order. Moreover, we classify these operators in
analogy with the quantization of angular momentum in quantum mechanics to unify
the terminology used in studying higher order higher spin conformally invariant
operators: for integer and half-integer spin, these are respectively bosonic and
fermionic operators. Specifically, we generalize arbitrary powers of the Dirac and
Laplace operators respectively to spin- 3

2 and spin-1.
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17.1 Introduction

Classical Clifford analysis started as a generalization of aspects of one variable
complex analysis to m-dimensional Euclidean spaces. At the heart of this theory
is the study of the Dirac operator Dx on R

m, a conformally invariant first order
differential operator which generalizes the role of the Cauchy-Riemann operator.
Moreover, this operator is related to the Laplace operator with D2

x = −�x . The
classical theory is centered around the study of functions on R

m and taking values
in a spinor space [2, 4], and abundant results have been found. See for instance
[4, 11, 23, 28, 32, 33].

P.A.M. Dirac constructed a first order relativistically covariant equation describ-
ing the dynamics of an electron by using Clifford modules; hence differential
operators constructed using Clifford modules are called Dirac operators. In the
presence of an electromagnetic field, the Dirac Hamiltonian for an electron acquires
an additional contribution formally analogous to internal angular momentum called
spin, from which the Spin group and related notions take their name; for the electron,
spin has the value 1

2 [25]. Indeed, in dimension four with appropriate signature, null-
solutions of the Dirac operator Dx from classical Clifford analysis correspond to
solutions for the relativistically covariant dynamical equation of a massless particle
of spin 1

2 , also called the Weyl equation. The Dirac equation for the electron,
which has mass, may be considered an inhomogeneous equation satisfied by the
Dirac operator Dx . The Dirac equation is not only relativistically covariant, but
also conformally invariant. The construction of conformally invariant massless wave
equations, in terms of invariant operators with conformal weights over spin fields,
is well described by Eelbode and Roels [17]. The general importance of conformal
invariance in physics has long been recognized [21].

Rarita and Schwinger [30] introduced a simplified formulation of the theory
of particles of arbitrary half-integer spin k + 1

2 and in particular considered its
implications for particles of spin 3

2 . In the context of Clifford analysis, the so-
called higher spin theory was first introduced through the Rarita-Schwinger operator
[7], which is named analogously to the Dirac operator and reproduces the wave
equations for a massless particle of arbitrary half-integer spin in four dimensions
with appropriate signature [31]. (The solutions to these wave equations may not
be physical [39, 40].) The higher spin theory studies generalizations of classical
Clifford analysis techniques to higher spin spaces [5, 7, 9, 15, 17, 26]. This theory
concerns the study of the operators acting on functions on Rm, taking values in
arbitrary irreducible representations of Spin(m). These arbitrary representations are
defined in terms of polynomial spaces that satisfy certain differential equations, such
as j -homogeneous monogenic polynomials (half-integer spin) or j -homogeneous
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harmonic polynomials (integer spin). More generally, one can consider the highest
weight vector of the spin representation as a parameter [12], but this is beyond our
present scope. The present paper contributes to the study of conformally invariant
operators in the higher spin theory.

In principle, all conformally invariant differential operators on locally confor-
mally flat manifolds in higher spin theory are classified by Slovák [35], see also [37].
This classification is non-constructive, showing only between which vector bundles
these operators exist and what is their order; explicit expressions of these operators
are still being found. Eelbode and Roels [17] point out that the Laplace operator
�x is not conformally invariant anymore when it acts on C∞(Rm,H1), where H1
is the degree 1 homogeneous harmonic polynomial space (correspondingly M1
for monogenic polynomials). They construct a second order conformally invariant
operator on C∞(Rm,H1), the (generalized) Maxwell operator. In dimension four
with appropriate signature it reproduces the Maxwell equation, or the wave equation
for a massless spin-1 particle (the massless Proca equation) [17]. De Bie and his co-
authors [9] generalize this Maxwell operator from C∞(Rm,H1) to C∞(Rm,Hj ) to
provide the higher spin Laplace operators, the second order conformally invariant
operators generalizing the Laplace operator to arbitrary integer spins. Their argu-
ments also suggest that Dkx is not conformally invariant in the higher spin theory.
This raises the following question: what operators generalize kth-powers of the
Dirac operator in the higher spin theory? We know these operators exist, with even
order operators taking values in homogeneous harmonic polynomial spaces and odd
order operators in homogeneous monogenic polynomial spaces [35]. This paper
explicitly answers the question with the condition that the target space is a degree 1
homogeneous polynomial space, encompassing the spin-1 and spin- 3

2 cases. More
generally, one can consider bosonic and fermionic operators corresponding to either
integer or half-integer spins, taking values in polynomial spaces of appropriate
degree of homogeneity that are either harmonic or monogenic. The general case
of arbitrary order and spin is addressed in [14] using a different method.

The paper is organized as follows. We briefly introduce Clifford algebras, Clif-
ford analysis, and representation theory of the Spin group in Sect. 17.2. In Sect. 17.3,
we introduce the kth-order higher spin operators D1,k as the generalization of Dkx
when acting on C∞(Rm,U), where U = H1 (spin-1) or U = M1 (spin- 3

2)
depending on whether k is even or odd. We overview classification, existence, and
uniqueness results for higher spin operators. Nomenclature is given for the higher
order higher spin operators that we consider: bosonic and fermionic operators.
The construction and conformal invariance of the operators D1,k are given with
the help of the concept of generalized symmetry, as in [9, 17]. Then we provide
the intertwining operators for these operators, which also reveal that they are
conformally invariant. These intertwining operators are special cases of Knapp-
Stein intertwining operators [8, 24] in higher spin theory. Section 17.4 presents
the fundamental solutions (up to a multiplicative constant) of D1,k with the help
of Schur’s Lemma from representation theory. We provide the value of the constant
here, but it is derived from a different technique in [14]. In this paper, since we use
the fact that the only conformal transformations are Möbius transformations when
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dimension of the space m ≥ 3, we will not see logarithm functions involved in the
fundamental solutions, which corresponds to m = 2. More details can be found in
Sect. 17.4. We also present an argument that these fundamental solutions when seen
as a type of convolution operator are also conformally invariant. These convolution
type operators can also be recovered as Knapp-Stein operators [8, 24] in higher
spin theory. Further, the expressions of the fundamental solutions also suggest that
D1,k is a generalization of Dkx to low spins. With the observation that the bases of
the target spaces U have simple expressions, we also prove that D1,k is an elliptic
operator in Sect. 17.5.

17.2 Preliminaries

17.2.1 Clifford Algebra

A real Clifford algebra, Clm, can be generated from Rm by considering the
relationship

x2 = −‖x‖2

for each x ∈ Rm. We have Rm ⊆ Clm. If {e1, . . . , em} is an orthonormal basis for
Rm, then x2 = −‖x‖2 tells us that

eiej + ej ei = −2δij ,

where δij is the Kronecker delta function. An arbitrary element of the basis of the
Clifford algebra can be written as eA = ej1 · · · ejr , where A = {j1, · · · , jr } ⊂
{1, 2, · · · ,m} and 1 ≤ j1 < j2 < · · · < jr ≤ m. Hence for any element a ∈ Clm,
we have a = ∑A aAeA, where aA ∈ R. Similarly, the complex Clifford algebra
Clm(C) is defined as the complexification of the real Clifford algebra

Clm(C) = Clm ⊗ C.

We consider real Clifford algebra Clm throughout this subsection, but in the rest
of the paper we consider the complex Clifford algebra Clm(C) unless otherwise
specified.

The Pin and Spin groups play an important role in Clifford analysis. The Pin
group can be defined as

Pin(m) = {a ∈ Clm : a = y1y2 . . . yp, y1, . . . , yp ∈ S
m−1, p ∈ N},

where Sm−1 is the unit sphere in Rm. Pin(m) is clearly a group under multiplication
in Clm.
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Now suppose that a ∈ S
m−1 ⊆ R

m, if we consider axa, we may decompose

x = xa‖ + xa⊥,

where xa‖ is the projection of x onto a and xa⊥ is the rest, perpendicular to a. Hence
xa‖ is a scalar multiple of a and we have

axa = axa‖a + axa⊥a = −xa‖ + xa⊥.

So the action axa describes a reflection of x in the direction of a. By the Cartan-
Dieudonné Theorem each O ∈ O(m) is the composition of a finite number of
reflections. If a = y1 · · · yp ∈ Pin(m), we define ã := yp · · · y1 and observe that
axã = Oa(x) for some Oa ∈ O(m). Choosing y1, . . . , yp arbitrarily in Sm−1, we
see that the group homomorphism

θ : Pin(m) −→ O(m) : a �→ Oa, (17.2.1)

with a = y1 · · · yp and Oax = axã is surjective. Further −ax(−ã) = axã, so
1, −1 ∈ Ker(θ). In fact Ker(θ) = {1, −1}, see [29]. The Spin group is defined as

Spin(m) = {a ∈ Clm : a = y1y2 . . . y2p; y1, . . . , y2p ∈ S
m−1, p ∈ N}

and it is a subgroup of Pin(m). There is a group homomorphism

θ : Spin(m) −→ SO(m),

which is surjective with kernel {1, −1}. It is defined by (1). Thus Spin(m) is the
double cover of SO(m). See [29] for more details.

For a domain U in Rm, a diffeomorphism φ : U −→ Rm is said to be conformal
if, for each x ∈ U and each v,w ∈ TUx , the angle between v and w is preserved
under the corresponding differential at x, dφx . For m ≥ 3, a theorem of Liouville
tells us the only conformal transformations are Möbius transformations. Ahlfors and
Vahlen show that given a Möbius transformation on Rm ∪ {∞} it can be expressed
as y = (ax + b)(cx + d)−1 where a, b, c, d ∈ Clm and satisfy the following
conditions [1]:

1. a, b, c, d are all products of vectors in Rm;
2. ab̃, cd̃, b̃c, d̃a ∈ R

m;
3. ad̃ − bc̃ = ±1.

Since y = (ax+b)(cx+d)−1 = ac−1+(b−ac−1d)(cx+d)−1, a conformal trans-
formation can be decomposed as compositions of translation, dilation, reflection and
inversion. This gives an Iwasawa decomposition for Möbius transformations. See
[26] for more details.
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The Dirac operator in Rm is defined to be

Dx :=
m∑
i=1

ei∂xi .

Note D2
x = −�x , where �x is the Laplacian in Rm. A Clm-valued function f (x)

defined on a domainU in Rm is left monogenic ifDxf (x) = 0. Since multiplication
of Clifford numbers is not commutative in general, there is a similar definition for
right monogenic functions. Sometimes we will consider the Dirac operator Du in
vector u rather than x.

Let Mj denote the space of Clm-valued monogenic polynomials, homogeneous
of degree j . Note that if hj (u) ∈ Hj , the space of Clm-valued harmonic polynomials
homogeneous of degree j , thenDuhj (u) ∈ Mj−1, butDuupj−1(u) = (−m−2j+
2)pj−1(u), where pj−1 ∈ Mj−1so

Hj = Mj ⊕ uMj−1, hj = pj + upj−1.

This is an Almansi-Fischer decomposition of Hj . See [15] for more details. In this
Almansi-Fischer decomposition, we define Pj as the projection map

Pj : Hj −→ Mj .

Suppose again U is a domain in R
m. Consider a differentiable function f :

U × R
m −→ Clm, such that for each x ∈ U , f (x, u) is a left monogenic

polynomial homogeneous of degree j in u, then the Rarita-Schwinger operator
[7, 15] is defined by

Rjf (x, u) := PjDxf (x, u) =
(

uDu

m+ 2j − 2
+ 1

)
Dxf (x, u).

Though we have presented the Almansi-Fischer decomposition, the Dirac operator,
and the Rarita-Schwinger operator here in terms of functions taking values in the
real Clifford algebra Clm, they can all be realized in the same way for spinor-valued
functions in the complex Clifford algebra Clm(C); we discuss spinors in the next
section.

17.2.2 Irreducible Representations of the Spin Group

The following three representation spaces of the Spin group are frequently used
as the target spaces in Clifford analysis. The spinor representation is the most
commonly used spin representation in classical Clifford analysis and the other two
polynomial representations are often used in higher spin theory.
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17.2.2.1 Spinor Representation of Spin(m)

Consider the complex Clifford algebra Clm(C) with even dimension m = 2n. Then
C
m or the space of vectors is embedded in Clm(C) as

(x1, x2, · · · , xm) �→
m∑
j=1

xj ej : C
m ↪→ Clm(C).

Define the Witt basis elements of C2n as

fj := ej − iej+n
2

, f
†
j := −ej + iej+n

2
.

Let I := f1f
†
1 . . . fnf

†
n . The space of Dirac spinors is defined as

S := Clm(C)I.

This is a representation of Spin(m) under the following action

ρ(s)I := sI, f or s ∈ Spin(m).

Note that S is a left ideal of Clm(C). For more details, we refer the reader to [11].
An alternative construction of spinor spaces is given in the classical paper of Atiyah
et al. [2].

17.2.2.2 Homogeneous Harmonic Polynomials on Hj (Rm,C)

It is a well-known fact that the space of complex-valued harmonic polynomials
defined on several vector variables is invariant under the action of Spin(m), since
the Laplacian �m is an SO(m) invariant operator. But it is not irreducible for
Spin(m). It can be decomposed into the infinite sum of j -homogeneous harmonic
polynomials, 0 ≤ j < ∞. Each of these spaces is irreducible for Spin(m). This
brings us the most familiar representations of Spin(m): spaces of j -homogeneous
complex-valued harmonic polynomials defined on Rm, henceforth denoted by
Hj := Hj (R

m,C). The following action has been shown to be an irreducible
representation of Spin(m) [38]:

ρ : Spin(m) −→ Aut(Hj ), s �−→ (f (x) �→ s̃f (sxs̃)s).

This can also be realized as follows

Spin(m)
θ−−→ SO(m)

ρ−−→ Aut(Hj );
a �−→ Oa �−→

(
f (x) �→ f (Oax)

)
,
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where θ is the double covering map and ρ is the standard action of SO(m) on a
function f (x) ∈ Hj with x ∈ Rm. The function φ(z) = (z1 + izm)j is the highest
weight vector for Hj (R

m,C) having highest weight (j, 0, · · · , 0) (for more details,
see [23]). Accordingly, the spin representations given byHj (R

m,C) are said to have
integer spin j ; we can either specify an integer spin j or the degree of homogeneity
j of harmonic polynomials.

17.2.2.3 Homogeneous Monogenic Polynomials on Clm

In Clm-valued function theory, the previously mentioned Almansi-Fischer decom-
position shows that we can also decompose the space of j -homogeneous harmonic
polynomials as follows

Hj = Mj ⊕ uMj−1.

If we restrict Mj to the spinor valued subspace, we have another important
representation of Spin(m): the space of j -homogeneous spinor-valued monogenic
polynomials on Rm, henceforth denoted by Mj := Mj (R

m,S). More specifically,
the following action has been shown to be an irreducible representation of Spin(m):

π : Spin(m) −→ Aut(Mj ), s �−→ (f (x) �→ s̃f (sxs̃)).

When m is odd, in terms of complex variables zs = x2s−1 + ix2s for all 1 ≤ s ≤
m−1

2 , the highest weight vector is ωj (x) = (z̄1)
j I for Mj (R

m,S) having highest
weight (j + 1

2 ,
1
2 , · · · , 1

2 ), where z̄1 is the conjugate of z1, S is the Dirac spinor
space, and I is defined as in Sect. 17.2.2.1; for details, see [38]. Accordingly, the
spin representations given by Mj (R

m,S) are said to have half-integer spin j + 1
2 ;

we can either specify a half-integer spin j + 1
2 or the degree of homogeneity j of

monogenic spinor-valued polynomials.

17.3 The Higher Order Higher Spin Operator D1,k

17.3.1 Motivation

We have mentioned that the Laplace operator (acting on a C-valued field) is related
to the Dirac operator (acting on a spinor-valued field) and they are both conformally
invariant operators [33]. Moreover, the kth-power of the Dirac operator Dkx for k
a positive integer, is shown also to be conformally invariant in the spinor-valued
function theory [33]. However, the Dirac operator Dx and the Laplace operator
are no longer conformally invariant when acting on functions taking values in the
higher spin spaces, in the sense explained in the next paragraph; see [9, 17], and
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[13] for the Dirac operator case. The first generalization of the Dirac operator to
higher spin spaces is instead the so-called Rarita-Schwinger operator [7, 15], and
the generalization of the Laplace operator to higher spin spaces is the so-called
higher spin Laplace or Maxwell operator given in [9, 17].

Let us look deeper into this lack of conformal invariance of the Dirac operator
Dx when acting on functions taking values in the higher spin spaces. Given a
function f (x, u) ∈ C∞(Rm,Mj ) such that Dxf (x, u) = 0, we apply inversion

x �−→ x

||x||2 to it. There is also a reflection of u in the direction x given by
xux

||x||2 ;

this reflection involves x, which changes the conformal invariance of Dx such that
Dxf (x, u) = 0 does not hold in general. This explanation also applies for the
Laplace operator �x in the higher spin theory. The explanation we just mentioned
further implies that the kth-power of the Dirac operator Dkx is not conformally
invariant in the higher spin theory. In this section, we will provide the generalization
of Dkx when it acts on C∞(Rm,U), where U = H1 or U = M1 depending on
the order. We provide nomenclature for these higher order operators in higher spin
theory. We begin by examining existence and uniqueness of conformally invariant
differential operators in higher spin spaces.

17.3.2 Existence of Conformally Invariant Operators

There is a well developed literature on the existence of conformally invariant
operators [6, 19, 35–37]. In [35], Slovák demonstrated the existence of conformally
invariant differential operators in higher spin spaces. Then Souček considered parts
of Slovák’s results in a form more suitable for Clifford analysis. Indeed, Souček’s
results only cover differential operators with intertwining properties, which also
imply conformal invariance properties. In this section, we review Souček’s results.
For more details, we refer the reader to [37].

Let M = Rm ∪ {∞} be the conformal compactification of Rm. �m = {x ∈
Clm : xvx̃ ∈ Rm for all v ∈ Rm} is the so-called Clifford group, and V (m) be
the group of Ahlfors-Vahlen matrices. We know that all conformal transformations
in Rm, m > 2 can be expressed in the form ϕ(x) = (ax + b)(cx + d)−1 with(
a b

c d

)
∈ V (m). LetG denote the identity component of the groupV (m). The group

G acts transitively on M and the isotropic group of the point 0 ∈ Rm is clearly the

subgroupH of all matrices in G with the form

(
a 0
c d

)
. HenceM ∼= G/H .

For a matrix A ∈ H , the element a ∈ �m has a nonzero norm and can be written

as the product of
a

||a|| ∈ Spin(m) and ||a|| ∈ R+. If λ is a dominant integral weight

for Spin(m) with the corresponding irreducible representation Vλ and ω ∈ C is
a conformal weight, we denote ρλ(ω) the irreducible representation of H on Vλ
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given by

ρλ(ω)(h)[v] = ||a||−2ωρλ

(
a

||a||
)
[v]; v ∈ Vλ, h ∈ H ; h =

(
a 0
c d

)
.

Below we discuss differential operators acting on sections of homogeneous vector
bundles over M = G/H . We shall consider only bundles associated to irreducible
representations of the isotropic group H . Hence they are specified by a highest
weight λ giving an irreducible representation of Spin(m) and by a conformal weight
ω ∈ C. Such a bundle will be denoted by Vλ(ω). The following lemma gives the
action of G on C∞(Rm, Vλ(ω)).

Lemma 17.3.1 ([37]) The action of G on C∞(Rm, Vλ(ω)) is given by

[g · f ](x) = ||cx + d||−2ωρλ

(
c̃x + d

||cx + d||
)
f ((ax + b)(cx + d)−1),

where g−1 =
(
a b

c d

)
∈ G. “·′′ stands for the action of g on function f .

We now consider conformally invariant differential operators between sections of
�(M,Vλ(ω)) and �(M,Vλ′(ω′)) of order ω′ − ω, separately for the even and
odd dimension cases. Sections 3.2.1 and 3.2.2 are quoted from [37]. These only
cover generalizations of kth-power of the Dirac operator, which possess intertwining
properties, in higher spin spaces. For instance, twistor and dual twistor operators are
not included. A complete list can be found in [35].

17.3.2.1 Even Dimension m = 2n

The description in [35], Chapt. 8, uses a different notation for irreducible represen-
tations ofH , namely coefficients written in Dynkin diagrams over individual simple
roots are used there. There are n + 1 such coefficients, and in [37], the author uses
the symbols B;Di, i = 1, · · · , n − 2;A,C to denote them. The number B can be
any integer, all others should be positive integers.

To relate this notation to one used standardly in Clifford analysis, we shall use
the following labels for irreducible representations of Spin(m):

{λi = (1, · · · , 1, 0, · · · , 0) : i = 1, 2, · · · , n− 2, the first i entries are 1}

are highest weights of fundamental representations ∧i (Cm) and

σ± =
(

1

2
,

1

2
, · · · ,±1

2

)
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are highest weights of the basic spinor representations S± of Spin(m) [23]. Then
the (n + 1)-tuple (B,Di,A,C) specifies the irreducible representation ρλ(ω) for
Spin(m), where

λ =
n−2∑
i=1

(Di − 1)λi + (A− 1)σ+ + (C − 1)σ− (17.3.1)

and the conformal weight is given by

ω = n−
[
B +

n−2∑
i=1

Di + A+ C
2

]
. (17.3.2)

Let us now state Souček’s theorem on classification of nonstandard operators
(lower arrows in the corresponding diagrams in Theorem 8.13 in [35]), in the even
dimension case.

Theorem 17.3.2 [37] Let (λ, ω) and (λ′, ω′) be computed using Eqs. (17.3.1)
and (17.3.2), where the positive integersDi,A,C,D′

i , A
′, C′, i = 1, 2, · · · , n− 2,

may adopt any values in the columns to their right in the following table, and
where (λ′, ω′) are determined by primed coefficients. In the table, a, b, c, di, i =
1, 2, · · · , n− 2 are nonnegative integers, d =∑i di , and the integer e is defined by
e = a + b + c + d .

B −b − d −b − d + dn−2 · · · −b b
B ′ −e −e− dn−2 · · · −e − d −e− d

D1 = D′
1 b b · · · b + d1 d1

D2 = D′
2 d1 d1 · · · d2 d2

...
...

...
...

...
...

Dn−3 = D′
n−3 dn−4 dn−4 · · · dn−3 dn−3

Dn−2 = D′
n−2 dn−3 dn−3 + dn−2 · · · dn−2 dn−2

A = C′ a + dn−2 a · · · a a
C = A′ c + dn−2 c · · · c c

Then there exists (up to a multiple) unique nontrivial conformally invariant
differential operators between sections of �(M,Vλ(ω)) and �(M,Vλ′(ω′)); its
order is equal to ω′ − ω. This is a complete list of the so-called nonstandard
conformally invariant differential operators on spaces of even dimension.

17.3.2.2 Odd Dimension m = 2n + 1

In odd dimension, the highest weights of fundamental representations
i(Cm) are

{λi = (1, · · · , 1, 0, · · · , 0) : i = 1, · · · , n− 1, the first i entries are 1},
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and highest weights of the basic spinor representation S of Spin(m) [23] are n-
tuples

σ =
(

1

2
,

1

2
, · · · , 1

2

)
.

Then the (n+ 1)-tuple (B,Di,A,C) specifies the irreducible representation ρλ(ω)
for Spin(m), where

λ =
n−1∑
i=1

(Di − 1)λi + (A− 1)σ (17.3.3)

and the conformal weight is given by

ω = 2n+ 1

2
−
[
B +

n−1∑
i=1

Di + A

2

]
. (17.3.4)

Let us now state Souček’s theorem on classification of nonstandard operators, now
in the odd dimension case.

Theorem 17.3.3 [37] Let (λ, ω) and (λ′, ω′) be computed using Eqs. (17.3.3)
and (17.3.4), where the positive integersDi,A,C,D′

i , A
′, C′, i = 1, 2, · · · , n− 1,

may adopt any values in the columns to their right in the following table, and
where (λ′, ω′) are determined by primed coefficients. In the table, a, b, c, di, i =
1, 2, · · · , n−1 are nonnegative half-integers or integers (at least one of them being
half integral), d =∑i di , and the integer e is defined by e = a + b + d .

B −b − d −b − d + dn−1 · · · −b b
B ′ −e −e− dn−1 · · · −e − d −e− d

D1 = D′
1 b b · · · b + d1 d1

D2 = D′
2 d1 d1 · · · d2 d2

...
...

...
...

...
...

Dn−2 = D′
n−2 dn−3 dn−3 · · · dn−2 dn−2

Dn−1 = D′
n−1 dn−2 dn−2 + dn−1 · · · dn−1 dn−1

A = A′ a + dn−2 a · · · a a

Then there exists (up to a multiple) unique nontrivial conformally invariant
differential operators between sections of �(M,Vλ(ω)) and �(M,Vλ′(ω′)); its
order is equal to ω′ − ω. This is a complete list of the so-called nonstandard
conformally invariant differential operators on spaces of odd dimension.

17.3.2.3 Applications to Our Cases

Theorems 17.3.2 and 17.3.3 show existence of conformally invariant differential
operators as follows.
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Theorem 17.3.4 [37] Let (λ, ω) and (λ′, ω′) be one of couples for which there is a
(nontrivial) invariant differential operator

D : �(M,Vλ(ω)) −→ �(M,Vλ′(ω
′))

(the nonstandard operators are listed in Theorems 17.3.2 and 17.3.3; the complete
list is in [35]).

Let Tλ,ω(g), g−1 =
(
a b

c d

)
∈ G (similarly for Tλ′,ω′(g)) be the operator acting

on smooth maps from R
m to Vλ by

[
Tλ,ω(g)f

]
(x) = ||cx + d||−2ωρλ

(
c̃x + d

||cx + d||
)[
f ((ax + b)(cx + d)−1)

]
.

Then

D(Tλ,ω(g)f ) = Tλ′,ω′ (g)(Df ), g ∈ G, f ∈ C∞(Rm, Vλ).

This paper considers differential operators acting on functions f (x, u) ∈
C∞(Rm,Hj ) or f (x, u) ∈ C∞(Rm,Mj ). Here we only show existence of
conformally invariant differential operators on spaces of even dimensionm; the odd
dimensional case is similar. We work out the allowable highest weights, conformal
weights, and orders on operators acting on these function spaces.

From Theorem 17.3.2, we notice that highest weight λ is determined by Di, A
and C. From the table, we also have λ = λ′. In other words, conformally invariant
operators exist between C∞(Rm,Hj ) and itself or C∞(Rm,Mj ) and itself. We
consider each in turn.

Integer Spin Case: C∞(Rm,Hj ) −→ C∞(Rm,Hj )

As an irreducible representation of Spin(m), Hj has highest weight of n-tuple λ =
λ′ = (j, 0, · · · , 0). The group action ρλ is defined in Sect. 17.2.2.2. From the table
in Theorem 17.3.2 and

λ =
n−2∑
i=1

(Di − 1)λi + (A− 1)σ+ + (C − 1)σ−,

λi = (1, 1, · · · , 1, 0, · · · , 0), i = 1, 2, · · · , n− 2,

σ± =
(

1

2
,

1

2
, · · · ,±1

2

)
,

we know that D1 = j + 1, Di = 1, i = 2, · · · , n − 2 and A = C = 1. There is
exactly one possibility for all entries but the last column in the table, for which there
is a sequence of possibilities indexed by a nonnegative integer b. The last column
corresponds to the (2b + 2n + 2j − 2)-th order conformally invariant differential
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operator, with

d = j + n− 2, a = c = 1, e = b + j + n, B = b, B ′ = −b − 2j − 2n+ 2,

and conformal weights ω = 1 − b − j and ω′ = b + j + 2n− 1. Hence, we have

D1,2b+2n+2j−2Tλ,1−b−j = Tλ,b+j+2n−1D1,2b+2n+2j−2,

in other words,

D1,2b+2n+2j−2||cx + d||2j+2b−2 = ||cx + d||−2b−2j−4n+2D1,2b+2n+2j−2.

To see the above intertwining operators coincide with the forms of the intertwining
operators we have at the end of Sect. 17.3, we let 2b + 2n+ 2j − 2 = 2s and since
m = 2n, we have

D1,2s||cx + d||2s−m = ||cx + d||−m−2sD1,2s .

Similar considerations apply for spin j > 1.

Half-Integer Spin Case: C∞(Rm,Mj ) −→ C∞(Rm,Mj )

As an irreducible representation of Spin(m), Mj has highest weight as n-tuple

λ = λ′ =
(
j + 1

2
,

1

2
, · · · ,±1

2

)
. The group action ρλ is the action defined as in

Sect. 17.2.2.3. From the table and

λ =
n−2∑
i=1

(Di − 1)λi + (A− 1)σ+ + (C − 1)σ−,

λi = (1, 1, · · · , 1, 0, · · · , 0), i = 1, 2, · · · , n− 2,

σ± =
(

1

2
,

1

2
, · · · ,±1

2

)
,

we can find that D1 = j + 1,Di = 1, i = 2, · · · , n − 2 and A = 1, C = 0( or
A = 0, C = 1 depending on the last entry of λ is 1

2 or − 1
2 ). Similar as the previous

case, there is just one possibility for all but the last column in the table and there is a
sequence of possibilities indexed by a nonnegative integer b for the last column. The
last column corresponds to the (2j + 2n + 2b − 3)-th order conformally invariant
differential operator, with

d = j + n− 2, a = 1, c = 0 (or a = 0, c = 1), e = b + j + n− 1,

B = b, B ′ = −2j − 2n− b + 3,
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and conformal weights ω = −b− j + 3

2
and ω′ = j + 2n+ b− 3

2
. Hence, we have

D1,2j+2n+2b−3Tλ,−b−j+ 3
2
= Tλ,j+2n+b− 3

2
D1,2j+2n+2b−3,

in other words,

D1,2j+2n+2b−3||cx + d||2b+2j−3 c̃x + d
||cx + d||

= ||cx + d||−2j−4n−2b+3 c̃x + d
||cx + d||D1,2j+2n+2b−3.

To see the above intertwining operators coincide with the intertwining operators we
have at the end of Sect. 17.3, we let 2j + 2n+ 2b − 3 = 2s + 1 and since m = 2n,
we have

D1,2s+1
c̃x + d

||cx + d||m−2s =
c̃x + d

||cx + d||m+2s+2D1,2s+1.

Similar considerations apply for spin j > 3
2 .

Similar arguments apply for the odd dimensional cases. This establishes exis-
tence of the conformally invariant differential operators we wish to consider.
Further, even order conformally invariant differential operators only exist between
C∞(Rm,Hj ) and odd order ones only exist between C∞(Rm,Mj ). Intertwining
operators of conformally invariant differential operators in Theorem 17.3.21 can
also be recovered. Once we establish conformal invariance of the operators that we
construct between the desired higher spin spaces, uniqueness up to multiplicative
constant of these higher order higher spin operators is established by the preceding
theorems.

17.3.3 Construction and Conformal Invariance

We have established by arguments of Slovák [35] and Souček [37], for integers
j ≥ 0 and k > 0 there exist conformally invariant differential operators in the
higher spin setting

Dj,k : C∞(Rm,U) −→ C∞(Rm,U),

where U = Hj if k is even and U = Mj if k is odd. Note that the target space U
here is a function space. Then any element in C∞(Rm,U) is of the form f (x, u),
where f (x, u) ∈ U for each fixed x ∈ Rm and x is the variable on which D1,k acts.
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We introduce some nomenclature suggestive of massless spin fields in mathe-
matical physics, which we hope is adopted by others studying higher spin theory
in Clifford analysis. As a Spin representation Hj is associated with integer
spin j and particles of integer spin are called bosons, so the operators Dj,k :
C∞(Rm,Hj ) −→ C∞(Rm,Hj ) are named bosonic operators. Thus in the spin
0 case we have the Laplace operator and its k-powers, the spin 1 case the Maxwell
operator and its generalization to order k = 2n, and general higher spin Laplace
operators and their generalization to order k = 2n. Correspondingly, as a Spin
representation Mj is associated with half-integer spin j + 1

2 and particles of half-
integer spin are called fermions, so the operators Dj,k : C∞(Rm,Mj ) −→
C∞(Rm,Mj ) are named fermionic operators. Thus in the spin 1

2 case we have
the Dirac operator and its k = 2n + 1 powers, the spin 3

2 case the simplest
Rarita-Schwinger operator and its generalization to order k = 2n + 1, and general
Rarita-Schwinger operators and their generalization to order k = 2n+ 1. Note that
our notation indexes according to degree of homogeneity of the target space j and
differential order k, so fractions are not used in the notation; if we indexed according
to spin, fractional spins would need to be used for odd order operators.

Thus, we proceed to construct the bosonic operators of spin-1 and even order,
followed by the fermionic operators of spin- 3

2 and odd order.

k Even, k = 2n, n > 1 (The Bosonic Case)

Theorem 17.3.5 For positive integer n, the unique 2n-th order conformally invari-
ant differential operator of spin-1 D1,2n : C∞(Rm,H1) −→ C∞(Rm,H1) has the
following form, up to a multiplicative constant:

D1,2n = �nx −
4n

m+ 2n− 2
〈u,Dx 〉〈Du,Dx 〉�n−1

x .

This is the 2n-th order fermionic operator of spin-1. For the case n = 1, we
retrieve the Maxwell operator from [17]. Our proof of conformal invariance of these
operators follows closely the method of [17]. In order to explain what conformal
invariance means, we begin with the concept of a generalized symmetry (see [16]):

Definition 17.3.6 An operator η1 is a generalized symmetry for a differential
operatorD if and only if there exists another operator η2 such that Dη1 = η2D. Note
that for η1 = η2, this reduces to a definition of a (proper) symmetry: Dη1 = η1D.

One determines the first order generalized symmetries of an operator, which span a
Lie algebra [17, 27]. In this case, the first order symmetries will span a Lie algebra
isomorphic to the conformal Lie algebra so(1,m + 1); in this sense, the operators
we consider are conformally invariant. The operator D1,2n is so(m)-invariant
(rotation-invariant) because it is the composition of so(m)-invariant (rotation-
invariant) operators, which means the angular momentum operators Lxij + Lui,j
that generate these rotations are proper symmetries of D1,2n. The infinitesimal
translations ∂xj , j = 1, · · · , n, corresponding to linear momentum operators are
proper symmetries of D1,2n; this is an alternative way to say that D1,2n is invariant
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under translations that are generated by these infinitesimal translations. Readers
familiar with quantum mechanics will recognize the connection to isotropy and
homogeneity of space, the rotational and translational invariance of Hamiltonian,
and the conservation of angular and linear momentum [34]; see also [4] concerning
Rarita-Schwinger operators.

The remaining two of the first order generalized symmetries of D1,2n are the
Euler operator and special conformal transformations. The Euler operator Ex that
measures degree of homogeneity in x is a generalized symmetry becauseD1,2nEx =
(Ex + 2n)D1,2n; this is an alternative way to say that D1,2n is invariant under
dilations, which are generated by the Euler operator. The special conformal transfor-
mations are defined in Lemma 17.3.8 in terms of harmonic inversion for H1-valued
functions; harmonic inversion is defined in Definition 17.3.7 and is an involution
mapping solutions of D1,2n to D1,2n. Readers familiar with conformal field theory
will recognize that invariance under dilation corresponds to scale-invariance and that
special conformal transformations are another class of conformal transformations
arising on spacetime [20]. An alternative method of proving conformal invariance of
D1,2n is to prove the invariance ofD1,2n under those finite transformations generated
by these first order generalized symmetries (rotations, dilations, translations, and
special conformal transformations) to show invariance of D1,2n under actions of
the conformal group; this may be phrased in terms of Möbius transformations and
the Iwasawa decomposition. However, the first-order generalized symmetry method
emphasizes the connection to mathematical physics and is more amenable to our
proof of a certain property of harmonic inversion. It is also that used by earlier
authors [9, 17].

Definition 17.3.7 The harmonic inversion is a conformal transformation defined as

J2n : C∞(Rm,H1) −→ C∞(Rm,H1),

f (x, u) �→ J2n[f ](x, u) := ||x||2n−mf
(

x

||x||2 ,
xux

||x||2
)
.

Note that this inversion consists of Kelvin inversion J on Rm in the variable x
composed with a reflection u �→ ωuω acting on the dummy variable u (where
x = ||x||ω) and a multiplication by a conformal weight term ||x||2n−m; it satisfies
J 2

2n = 1.
Then we have the special conformal transformation defined in the following

lemma. The definition is an infinitesimal version of the fact that finite special
conformal transformations consist of a translation preceded and followed by an
inversion [20]: an infinitesimal translation preceded and followed by harmonic
inversion. The second equality in the lemma shares some terms in common with
the generators of special conformal transformations in conformal field theory [20],
and is a particular case of a result in [18].
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Lemma 17.3.8 The special conformal transformation given by C2n := J2n∂xjJ2n
satisfies

C2n = 2〈u, x〉∂uj − 2uj 〈x,Du〉 + ||x||2∂xj − xj (2Ex +m− 2n).

Proof A similar calculation as in Proposition A.1 in [9] will show the conclusion.
��

Then, we have the main proposition as follows.

Proposition 17.3.9 The special conformal transformations C2n are generalized
symmetries of D1,2n, where j ∈ {1, 2, . . . ,m}. More specifically,

[D1,2n, C2n] = −4nxjD1,2n.

In particular, this shows that

J2nD1,2nJ2n = ||x||4nD1,2n, (17.3.5)

which is the generalization of the case of the classical higher order Laplace operator
�nx [3]. This also implies D1,2n is invariant under inversion.

If the main proposition holds, then the conformal invariance can be summarized in
the following theorem:

Theorem 17.3.10 The first order generalized symmetries of D1,2n are given by:

1. The infinitesimal rotation Lxi,j + Lui,j , with 1 ≤ i < j ≤ m.

2. The shifted Euler operator Ex + m− 2n

2
.

3. The infinitesimal translations ∂xj , with 1 ≤ j ≤ m.
4. The special conformal transformations J2n∂xjJ2n, with 1 ≤ j ≤ m.

These operators span a Lie algebra which is isomorphic to the conformal Lie
algebra so(1,m+ 1), whereby the Lie bracket is the ordinary commutator.

Proof The proof is similar as in [18] via transvector algebras. Notice that the shift
in the shifted Euler operator Ex + ω defines the conformal weight (defined in

Sect. 17.3.2) ω = m− 2n

2
. ��

Detailed Proof of Proposition 17.3.9
First, let us prove a few technical lemmas. It is worth pointing out that since we
are dealing with degree-1 homogeneous polynomials in u, terms involving second
derivatives with respect to u disappear.

Lemma 17.3.11 For all 1 ≤ j ≤ m, we have

[�nx, C2n] = −4nxj�nx + 4n〈u,Dx〉∂uj �n−1
x − 4nuj 〈Du,Dx〉�n−1

x .
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Proof We prove this by induction. First, we have [9]

[�x, C2] = −4xj�x + 4〈u,Dx〉∂uj − 4uj 〈Du,Dx〉.

Assuming the lemma is true for �n−1, applying the fact that for general operators
A, B and C

[AB,C] = A[B,C] + [A,C]B

and

C2n = C2 + (2n− 2)xj ,

we have

[�nx, C2n] = �n−1
x [�x, C2n] + [�n−1

x , C2n]�x.

Since

C2n = C2n−2 + 2xj ,

a straightforward calculation leads to the conclusion. ��
Lemma 17.3.12 For all 1 ≤ j ≤ m, we have

[〈u,Dx〉〈Du,Dx〉�n−1
x , C2n] = −4nxj 〈u,Dx〉〈Du,Dx〉�n−1

x

+(m+ 2n− 2)
(〈u,Dx 〉∂uj − uj 〈Du,Dx〉)�n−1

x .

Proof First, we have [9]:

[〈u,Dx 〉〈Du,Dx〉, C2] = 2||u||2∂uj 〈Du,Dx〉 − 4xj 〈u,Dx〉〈Du,Dx〉
+(〈u,Dx〉∂uj − uj 〈Du,Dx〉)(2Eu +m− 2)

= −4xj 〈u,Dx 〉〈Du,Dx 〉 +m
(〈u,Dx 〉∂uj − uj 〈Du,Dx〉).

Then

[〈u,Dx〉〈Du,Dx〉�n−1
x , C2n]

= 〈u,Dx 〉〈Du,Dx〉[�n−1
x , C2n] + [〈u,Dx〉〈Du,Dx 〉, C2n]�n−1

x

together with the previous lemma prove the conclusion. ��
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With the help of Lemmas 17.3.11 and 17.3.12, a straightforward calculation
shows that

[D1,2n, C2n] = −4nxjD1,2n.

Since D1,2n is conformally invariant by Theorem 17.3.10 and Slovak’s results pro-
vide the uniqueness and intertwining operators of conformally invariant differential
operators, we have

J2nD1,2nJ2n = ||x||4nD1,2n

from the intertwining operators under (harmonic) inversion. This is a generalization
of the Laplacian case [3].

k Odd, k = 2n− 1, n > 1 (The Fermionic Case)

Theorem 17.3.13 For positive integer n, the unique (2n − 1)-th order confor-
mally invariant differential operator of spin- 3

2 is D1,2n−1 : C∞(Rm,M1) −→
C∞(Rm,M1) and has the following form, up to a multiplicative constant:

D1,2n−1 = Dx�
n−1
x − 2

m+ 2n− 2
u〈Du,Dx〉�n−1

x

− 4n− 4

m+ 2n− 2
〈u,Dx 〉〈Du,Dx〉�n−2

x Dx.

This is the (2n− 1)-th order fermionic operator of spin- 3
2 . When n = 1, we have

the Rarita-Schwinger operator appearing in [7, 15] and elsewhere. The same strategy
in the even case applies: we only must show the special conformal transformation
defined below is a generalized symmetry of D1,2n−1. We have the definition for
monogenic inversion as follows.

Definition 17.3.14 Monogenic inversion is a conformal transformation defined as

J2n+1 : C∞(Rm,M1) −→ C∞(Rm,M1),

f (x, u) �→ J2n+1[f ](x, u) := x

||x||m−2n f (
x

||x||2 ,
xux

||x||2 ).

Note that this inversion also consists of Kelvin inversion J on Rm in the variable
x composed with a reflection u �→ ωuω acting on the dummy variable u (where

x = ||x||ω) and a multiplication of a conformal weight term
x

||x||m−2n ; it satisfies

J 2
2n+1 = −1 instead. Similarly, monogenic inversion is an involution mapping

solutions for D1,2n−1 to solutions for D1,2n−1 [31]. Then we have the following
lemma.
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Lemma 17.3.15 The special conformal transformation is defined as

C2n−1 := J2n−1∂xjJ2n−1

= −ejx − 2〈u, x〉∂uj + 2uj 〈x,Du〉 − ||x||2∂xj + xj (2Ex +m− 2n),

C2n−1 = C2n−3 − 2xj = −C2n−2 − ejx − 2xj .

Proof As similar calculation as in Proposition A.1 in [9] will show the conclusion.
��

Then we arrive at the main proposition, stating that the special conformal transfor-
mations are generalized symmetries of operator D1,2n−1.

Proposition 17.3.16 The special conformal transformations C2n−1, with j ∈
{1, 2, . . . ,m} are generalized symmetries of D1,2n−1 (respectively D3,j ). More
specifically,

[D1,2n−1, C2n−1] = (4n− 2)xjD1,2n−1.

In particular, this shows that J2n−1D1,2n−1J2n−1 = ||x||4n−2D1,2n−1, which is the
generalization of the case of the classical higher order Dirac operator D2n−1

x [3].
This also implies D1,2n−1 is invariant under inversion.

Theorem 17.3.17 The first order generalized symmetries of D1,2n−1 are given
by:

1. The infinitesimal rotation Lxi,j + Lui,j −
1

2
eiej , with 1 ≤ i < j ≤ m.

2. The shifted Euler operator Ex + m− 2n+ 1

2
.

3. The infinitesimal translations ∂xj , with 1 ≤ j ≤ m.
4. The special conformal transformations J2n−1∂xjJ2n−1, with 1 ≤ j ≤ m.

These operators span a Lie algebra which is isomorphic to the conformal Lie
algebra so(1,m+ 1), whereby the Lie bracket is the ordinary commutator.

Detailed Proof of Proposition 17.3.16
To prove Proposition 17.3.16, as in the even case, we need a few technical lemmas.

Lemma 17.3.18 For all 1 ≤ j ≤ m, we have

[Dx�n−1
x , C2n−1] = (4n− 4)

(
uj 〈Du,Dx〉 − 〈u,Dx 〉∂uj

)
Dx�

n−2
x

−2u∂uj�
n−1
x + (4n− 2)xjDx�n−1

x .

Lemma 17.3.19 For all 1 ≤ j ≤ m, we have

[u〈Du,Dx〉�n−1
x , C2n−1] = (4n− 2)xju〈Du,Dx〉�n−1

x

−(m+ 2n− 2)u∂uj�
n−1
x − (2n− 2)uej 〈Du,Dx〉�n−2

x .
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Lemma 17.3.20 For all 1 ≤ j ≤ m, we have

[〈u,Dx〉〈Du,Dx〉�n−2
x Dx, C2n−1] = (4n− 2)xj 〈u,Dx 〉〈Du,Dx 〉�n−2

x Dx

−(m+ 2n− 2)
(〈u,Dx〉∂uj − uj 〈Du,Dx〉)�n−2

x Dx

+uej 〈Du,Dx〉�n−2
x Dx.

We combine Lemmas 17.3.18, 17.3.19 and 17.3.20 to get

[D1,2n−1, C2n−1] = (4n− 2)xjD1,2n−1.

This implies J2n−1D1,2n−1J2n−1 = ||x||4n−2D1,2n−1.

Conformal Invariance and Intertwining Operators, Both Cases
Strictly speaking, Theorem 17.3.4 together with the constructions in this subsection
provide the intertwining operators for the bosonic and fermionic operators in
this paper. However, for the sake of concreteness and to highlight the alternative
approach centering upon Möbius transformations, here we rely on the Iwasawa
decomposition for Möbius transformations to determine these intertwining opera-
tors. Let D1,k,x,u and D1,k,y,w be the higher order higher spin operators with respect
to x, u and y, w, respectively and y = φ(x) = (ax + b)(cx + d)−1 is a Möbius
transformation. Let

Jk = c̃x + d
||cx + d||m−2n , f or k = 2n+ 1;

Jk = 1

||cx + d||m−2n
, f or k = 2n;

J−k = c̃x + d
||cx + d||m+2n+2 , f or k = 2n+ 1;

J−k = 1

||cx + d||m+2n , f or k = 2n,

with n = 1, 2, 3, · · · . See [28]. Then we make the following claim.

Theorem 17.3.21 Let y = φ(x) = (ax+b)(cx+d)−1 be a Möbius transformation.
Then

J−kD1,k,y,wf (y,w) = D1,k,x,uJkf

(
φ(x),

(cx + d)u(c̃x + d)
||cx + d||2

)
,

where w = (cx + d)u(c̃x + d)
||cx + d||2 . The exact same result holds for all Dj,k , including

Dj,3 and Dj,3 for all integers j > 0; notably the intertwining operators depend
only on the order k, not the spin j or j + 1

2 ..
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We only prove the bosonic (order k = 2n) case for spin j = 1, as the other bosonic
cases (j > 0) and the fermionic (order k = 2n + 1) cases are similar. According
to the Iwasawa decomposition, we need only prove this with respect to orthogonal
transformation and inversion, since translation and dilation are trivial. Note that our
argument here requires the invariance under harmonic inversion established earlier.

Orthogonal Transformations a ∈ Pin(m)
Lemma 17.3.22 If x = ayã, u = awã, then

D1,2n,x,uf (x, u) = aD1,2n,y,wãf (y,w).

Proof

D1,2n,x,uf (x, u) =
(
Bx − 4n

m+ 2n− 2
〈u,Dx 〉〈Du,Dx〉

)
�n−1
x f (x, u)

=
(
aByã − 4n

m+ 2n− 2
a〈w,Dy〉ãa〈Dw,Dy〉ã

)
a�n−1

y ãf (y,w)

= a

(
By − 4n

m+ 2n− 2
〈w,Dy 〉〈Dw,Dy〉

)
�n−1
y ãf (y,w)

= aD1,2n,y,wãf (y,w).

��
Inversions
Lemma 17.3.23 Let x = y−1 and u = ywy

||y||2 , then

D1,2n,y,w||x||m−2nf (y,w) = ||x||m+2nD1,2n,x,uf (x, u).

Proof Recall that after we showed [D1,2n,J2n∂xjJ2n] = −4nxjD1,2n for J2n the
harmonic inversion, we claimed and later showed that J2nD1,2nJ2n = ||x||4nD1,2n.
This can also be written as

D1,2n,y,w||x||m−2nf (y,w) = ||x||m+2nD1,2n,x,uf (x, u).

��
Theorem 17.3.21 now follows using the Iwasawa decomposition. See [13] for the
first order case.
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17.4 Fundamental Solutions

To get the fundamental solutions of D1,k , we use techniques from [7]. It is worth
pointing out that the reproducing kernels of M1 and H1 below have simple
expressions, but we insist on using techniques used in [7], since they also work
for more general cases when we have Mj or Hj instead; indeed, the general case
is proved in our manuscript [14] by the present method, but it only provides us
the fundamental solutions up to a multiplicative constant. Though we provide the
appropriate constant here, it was determined by a different method in [14], based on
an iterative procedure that starts from known fundamental solutions of the lowest
order operators of arbitrary spin.

k Even, k = 2n (The Bosonic Case)
Recall that the reproducing kernel for j -homogeneous harmonic spherical polyno-
mials Zj(u, v) is called the zonal spherical harmonic of degree j , and is invariant
under reflections (and consequently rotations) in the variables u and v [3]. We
concern ourselves primarily with j = 1, in which case

Z1(u, v) = (m− 2)2ωm−1

m
〈u, v〉

is the zonal spherical harmonic of degree 1, where ωm−1 is the surface area of the
(m−1)-dimensional unit sphere and 〈u, v〉 is the standard inner product in Euclidean
space. It can be considered as the identity of End(H1) and satisfies

P1(v) = (Z1(u, v), P1(u))u :=
∫
Sm−1

Z1(u, v)P1(u)dS(u),

where ( , )u denotes the Fischer inner product with respect to u; we define the
Fischer inner product of two functions by the integral of their product over the
sphere, consistent with other work in higher spin theory [7, 15]. For an explicit
characterization of Zj(u, v), we refer the reader to [9].

A homogeneousEnd(H1)-valuedC∞-function x → E(x) onRm\{0} satisfying
D1,2nE(x) = δ(x)Z1(u, v) is referred to as a fundamental solution for the operator
D1,2n. We will show that such a fundamental solution has the form

E1,2n(x, u, v) = c1||x||2n−mZ1

(
xux

||x||2 , v
)
.

Since Z1(u, v) is a trivial solution of D1,2n, according to the invariance of D1,2n
under inversion, we obtain a non-trivial solution D1,2nE1,2n(x, u, v) = 0 in Rm\{0}.
Clearly the function E1,2n(x, u, v) is homogeneous of degree 2n − m in x, so
D1,2nE1,2n(x, u, v) is homogeneous of degree −m in x and it belongs to Lloc1 (Rm).
Because δ(x) is the only (up to a multiple) distribution homogeneous of degree −m
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with support at the origin, we have in the sense of distributions:

D1,2nE1,2n(x, u, v) = δ(x)P1(u, v)

for some P1(u, v) ∈ H1 ⊗H∗
1. Then we have

∫
Sm−1

D1,2nE1,2n(x, u, v)Q1(v)dS(v)

= δ(x)

∫
Sm−1

P1(u, v)Q1(v)dS(v).

Now, for all Q1 ∈ H1, we have

∫
Sm−1

D1,2nE1,2n(x, u, v)Q1(v)dS(v)

= D1,2n

∫
Sm−1

c1||x||2n−mZ1

(
xux

||x||2 , v
)
Q1(v)dS(v)

= D1,2n

∫
Sm−1

c1||x||2n−mZ1

(
xux

||x||2 ,
xv′x
||x||2

)
Q1

(
xv′x
||x||2

)
dS(v′),

where in the last line we made a change of variables in the second argument of Z1.

Since Z1(u, v) is invariant under reflection and
xux

||x||2 is a reflection of variable u in

the direction of x, the last line in the last equation becomes

D1,2n

∫
Sm−1

c1Z1(u, v′)||x||2n−mQ1

(
xv′x
||x||2

)
dS(v′)

= c1D1,2n||x||2n−mQ1

(
xux

||x||2
)
.

Hence, we obtain

δ(x)

∫
Sm−1

P1(u, v)Q1(v)dS(v) = c1D1,2n||x||2n−mQ1

(
xux

||x||2
)
.

As the reproducing kernelZ1(u, v) is invariant under the Spin(m)-representation
H : f (u, v) �→ s̃f (sus̃, svs̃)s, the kernelE1,2n(x, u, v) is also Spin(m)-invariant:

s̃E1,2n(sxs̃, sus̃, svs̃)s = E1,2n(x, u, v).

From this it follows that P1(u, v) must be also invariant under H . Let now φ be a
test function with φ(0) = 1. Let L be the action of Spin(m) given by L : f (u) �→
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s̃f (s̃us)s. Then

〈D1,2n
(
c1||x||2n−mL

(
x

||x||
)
L(s)Q1(u)

)
, φ(x)〉

=
∫
Sm−1

P1(u, v)L(s)Q1(v)dS(v)

= L(s)

∫
Sm−1

P1(u, v)Q1(v)dS(v)

= 〈L(s)(D1,2nc1||x||2n−mL
(
x

||x||
)
Q1(u)

)
, φ(x)〉.

In this way we have constructed an element of End(H1) commuting with the L-
representation of Spin(m) that is irreducible; see Sect. 17.2.2.2. By Schur’s Lemma
[22], it follows that P1(u, v) must be the reproducing kernel Z1(u, v) if we choose
c1 properly. Hence

D1,2nE1,2n(x, u, v) = δ(x)Z1(u, v).

We summarize these results in a theorem as follows.

Theorem 17.4.1 The 2n-th order bosonic operator of spin-1,

D1,2n : C∞(Rm,H1) −→ C∞(Rm,H1),

possesses the fundamental solution

E1,2n(x, u, v) = c1||x||2n−mZ1

(
xux

||x||2 , v
)
,

where Z1(u, v) is the reproducing kernel of H1 and the constant c1 is

(−1)n−2 (m− 2)�(m2 − 1)

4(4 −m)π m
2

n∏
s=2

2s(2s − 2)m(m− 2)

m2 − 4ms + 4s2 + 4m− 4s − 4

that was determined using a different technique in our recent paper [14].

Recall that in harmonic analysis, the fundamental solution of Laplacian equation
involves a logarithm function on the plane. However, we require that the dimension
of the Euclidean space m ≥ 3 in this paper, since we used a theorem of Liouville
that states the only conformal transformations are Möbius transformations when
dimension of the space m ≥ 3. Hence, logarithm functions are not involved in our
fundamental solutions here, as they corresponds to m = 2. A detailed calculation
for the fundamental solution of the second order conformally invariant differential
operator can be found in [9, 17]. Further, in light of familiar results from harmonic
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function theory, we must remark on dimensionality considerations. One would
initially expect when the dimension m is even, we must restrict order 2j or 2j − 1
to be less than m. This would be analogous to the powers of the Dirac operator
(see [32]), for which, when the order k is greater than m, the fundamental solution
contains a logarithm function. For an example of why this is necessary, consider
when m = k = 2n: the usual expression ||x||k−m is a constant, so it cannot be the
fundamental solution of Dkx . This does not happen in our case, however, since the

reproducing kernel factor term in the fundamental solutions,Zj

(
xux

||x||2 , v
)

, renders

this restriction on the order unnecessary for even dimensions.
More specifically, as an example, consider the operator D1,2n. Suppose

the dimension is not only even, but that it equals the order of the operator:
m = 2n. Then the candidate of the fundamental solution for D1,2n becomes

||x||2n−mZ1

(
xux

||x||2 , v
)
= Z1

(
xux

||x||2 , v
)

. Recall that

D1,2n = �nx −
4n

m+ 2n− 2
〈u,Dx 〉〈Du,Dx〉�n−1

x .

Now, if we apply�x to Z1

(
xux

||x||2 , v
)

and let ξ = xux

||x||2 = u− 2x〈u, x〉
||x||2 , in other

words, ξj = uj − 2xj 〈u, x〉
||x||2 . Then, we will have

�xZ1

(
xux

||x||2 , v
)
=

m∑
i,j=1

∂

∂xi

(
∂ξj

∂xi

∂Z1(ξ, v)

∂ξj

)

=
m∑

i,j=1

∂

∂xi

(
∂ξj

∂xi

)
∂Z1(ξ, v)

∂ξj
+

m∑
i,j,k=1

∂ξk

∂xi

∂ξj

∂xi

∂2Z1(ξ, v)

∂ξj ∂ξk
.

Notice that Z1(ξ, v) has homogeneity of degree-1 in the variable ξ , so the second
sum above vanishes. Hence, we only need to calculate the first sum, which becomes

−2
m∑

i,j=1

∂

∂xi

(
(δij 〈u, x〉 + xjui)||x||2 − 2xixj 〈u, x〉

||x||4
)
∂Z1(ξ, v)

∂ξj

= −2
m∑

i,j=1

∂

∂xi

(
δij 〈u, x〉
||x||2 + uixj

||x||2 − 2xixj 〈u, x〉
||x||4

)
∂Z1(ξ, v)

∂ξj

=
(−4〈u,Dξ 〉

||x||2 + 4m〈u, x〉〈x,Dξ 〉
||x||4

)
Z1(ξ, v),
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where 〈u,Dξ 〉 = ∑m
i=1 ui

∂

∂ξ
is the standard Euclidean inner product of u and the

Dirac operator Dξ . The ||x|| terms above allow the possibility of taking derivatives
in the distribution sense, which decreases the exponent of ||x||. Indeed, when 2n =
2, we already have (see [17])

D1,2
−�(m2 )

(m− 4)2π
m
2
||x||2−mZ1

(
xux

||x||2 , v
)
= δ(x)Z1(u, v).

Further we also have (see [14])

D1,2na2n||x||2n−mZ1

(
xux

||x||2 , v
)

= D1,2n−2a2n−2||x||2n−m−2Z1

(
xux

||x||2 , v
)

= · · · = D1,2||x||2−m −�(m2 )
(m− 4)2π

m
2
Z1

(
xux

||x||2 , v
)
= δ(x)Z1(u, v)

in the distribution sense, where for 2 ≤ j ≤ n, a2j is a constant given in [14].
In short, the Laplacian acting on the zonal spherical harmonic (or monogenic)
generates the powers of 1/||x|| needed to overcome the loss of the singularity in
the conformal weight factor in the fundamental solution.

k Odd, k = 2n− 1 (The Fermionic Case)
The reproducing kernel Zk(u, v) for degree k homogeneous monogenic spherical
polynomials, those in Mk , is called the zonal spherical monogenic [10]. (There
should be no confusion using the same notation for zonal spherical harmonics and
monogenics.) In our circumstance, for u, v ∈ S

m−1,

Z1(u, v) = 1

ωm−1

(
2μ+ 1

2μ
C
μ
1 (t)+ (u ∧ v)Cμ+1

0 (t)

)
,

where μ = m

2
− 1, t = 〈u, v〉, u ∧ v = uv + 〈u, v〉, and C

μ
k (t) are the

Gegenbauer polynomials [10]. With similar arguments and the fact that Z1(u, v)

is also Spin(m)-invariant under the same Spin(m)-action as in the even case, one
can show that

E1,2n−1(x, u, v) = c′1
x

||x||m−2n+2Z1

(
xux

||x||2 , v
)

is the fundamental solution of D1,2n−1 for some constant c′1 specified in the next
theorem. As before, we summarize with a theorem as follows.
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Theorem 17.4.2 The (2n − 1)-th order fermionic operator of spin- 3
2 , D1,2n−1 :

C∞(Rm,M1) −→ C∞(Rm,M1), possesses the fundamental solution

E1,2n−1(x, u, v) = c′1
x

||x||m−2n+2
Z1

(
xux

||x||2 , v
)

where Z1(u, v) is the reproducing kernel of M1 and the constant c′1 has the value

c′1 =
−m

(m− 2)ωm−1

n−1∏
s=1

m− 2s

(4s2 − 2ms − 4)(m− 2s)+ 4m

that was determined using a different technique in our recent paper [14].

Conformal Invariance and Intertwiners of Fundamental Solutions, j = 1
Recall that if E1,k(x, u, v) is the fundamental solution of D1,k , then we have

∫
Rm

∫
Sm−1

E1,k(x − y, u, v)D1,kψ(x, u)dS(u)dx
m = ψ(y, v),

where ψ(x, u) ∈ C∞(Rm,U) with compact support in x for each u ∈ Rm, U =
M1 when k is odd and U = H1 when k is even. Hence, we have D1,kE1,k = Id

and E1,k = D−1
1,k in the distribution sense. Now,

J−kD1,k,y,wψ(y,w) = D1,k,x,uJkψ

(
φ(x),

(cx + d)u(c̃x + d)
||cx + d||2

)
,

where y = φ(x) = (ax + b)(cx + d)−1 is a Möbius transformation and w =
(cx + d)u(c̃x + d)

||cx + d||2 as in Theorem 3, we get

J−1
k D−1

1,k,x,uJ−k = D−1
1,k,y,w,

alternatively,

J−1
k E1,k,x,uJ−k = E1,k,y,w.

This gives us the intertwiners of the fundamental solution E1,k under Möbious
transformations, which also reveals that the fundamental solutions are conformally
invariant under Möbius transformations.
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17.5 Ellipticity of the Operator D1,k

Notice that the bases of the target space H1 and M1 have simple expressions. We
can use techniques similar to those in [9, 17] to show that the operators D1,k are
elliptic. First, we introduce the definition for an elliptic operator.

Definition 17.5.1 A linear homogeneous differential operator of k-th order D1,k :
C∞(Rm, Vλ) −→ C∞(Rm, Vμ) is elliptic if for every non-zero vector x ∈ Rm its
principal symbol, the linear map σx(D1,k) : Vλ −→ Vμ obtained by replacing its
partial derivatives ∂xj with the corresponding variables xj , is a linear isomorphism.

Note Vλ stands for a representation space of Spin(m) with a dominant weight λ, see
Sect. 17.3.2. Then we prove ellipticity ofD1,k in the even and odd cases individually.

k Even, k = 2n (The Bosonic Case)

Theorem 17.5.2 The operator D1,2n :=
(
Bx− 4n

m+2n−2 〈u,Dx 〉〈Du,Dx〉
)
�n−1
x is

an elliptic operator when m �= 2n+ 2.

Proof In [17] it was shown that the operator Bx − 4
m
〈u,Dx〉〈Du,Dx〉 is elliptic.

In our case, the term in the parentheses is the same as the previous one up to a
constant coefficient, so a similar argument shows thatBx− 4n

m+2n−2 〈u,Dx 〉〈Du,Dx〉
is elliptic when 4n

m+2n−2 �= 1, in other words,m �= 2n+ 2. ��
k Odd, k = 2n− 1 (The Fermionic Case)
Theorem 17.5.3 The operator

D1,2n−1 := Dx�
n−1
x − 2

m+ 2n− 2
u〈Du,Dx〉�n−1

x

− 4n− 4

m+ 2n− 2
〈u,Dx 〉〈Du,Dx 〉�n−2

x Dx

is an elliptic operator.

Proof To prove the theorem, we show that, for fixed x ∈ Rm, the symbol of the
operator D1,2n−1, which is given by

x||x||2n−2 − 2u〈Du, x〉||x||2n−2

m+ 2n− 2
− 4n− 4

m+ 2n− 2
〈u, x〉〈Du, x〉||x||2n−4x,

is a linear isomorphism from M1 to M1. As the symbol is clearly a linear map,
it remains to be proven that the map is injective. Recall that M1 is actually
M1(R

m,S), however, if we can prove the symbol is injective for M1(Clm), then
this also implies that it is injective for M1(S) ⊂ M1(Clm(C)). From the Almansi-
Fischer decompositionH1 = M1⊕uM0, it is easy to obtain that dimM1 = m−1.
Since {ejum+ emuj }m−1

j=1 are in M1 and it is also a linearly independent set in M1.
Therefore, it is actually a basis of M1. Hence, an arbitrary element u ∈ M1 can be
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written as u = ∑m−1
j=1 αj (ejum + emuj ) with αj ∈ C for all 1 ≤ j ≤ m − 1. We

next show that the following system of equations has a unique solution when x �= 0:

(
x||x||2 − 2u〈Du, x〉||x||2

m+ 2n− 2
− 4n− 4

m+ 2n− 2
x〈u, x〉〈Du, x〉

)
u = 0.

With α = (α1, · · · , αm−1), c1 = 2
m+2n−2 , c2 = 4n−4

m+2n−2 , ai = (c1ei ||x||2 + c2xxi),
bj = xmej + xj em, and 1 ≤ i, j ≤ m − 1, this equation system can be written in
matrix notation as follows:

⎡
⎢⎢⎢⎣

−x||x||2em − a1b1 . . . −a1bm−1

−a2b1 . . . −a2bm−1
...

. . .
...

−am−1b1 . . . −x||x||2em − am−1bm−1

⎤
⎥⎥⎥⎦αT = 0.

Notice that the left side of the equation above is a Clifford-valued number, which
implies all coefficients for eA should be zero. Further, since

aibj = c1‖x‖2xmeiej + c1‖x‖2xj eiem + c2xxixmej + c2xxixjem

for 1 ≤ i, j ≤ m− 1, one can observe that the constant is

((1 + c1)xm‖x‖2I + 2A)αT = 0,

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

c2xmx
2
1 c2x1x2xm . . . c2x1xm−1xm

c2x1x2xm c2x
2
2xm . . . c2x2xm−1xm

c2x1x3xm c2x2x3xm . . . c2x3xm−1xm
...

...
. . .

...

c2x1xm−1xm c2x2xm−1xm . . . c2xmx
2
m−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In order to show the system above has a unique solution, we need to show
the determinant of its coefficient matrix is nonzero. Using the notation x =
(x1, x2, · · · , xm−1), then the determinant of the coefficient matrix above is equal
to

det
(
(1 + c1)xm‖x‖2I + 2c2xmxxT

) = (1 + c1)xm‖x‖2 + 2c2xm

m−1∑
j=1

x2
j .

Since 1 + c1 and c2 are both positive and x �= 0, then the only possibility for
the determinant to be zero is that xm = 0. In this case, aibj = c1‖x‖2xj eiem +
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c2xxixjem. Since x �= 0, without loss of generality, we assume that x1 �= 0. Since
the coefficient of e1em is zero, one can have

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 + c1)x1‖x‖2 + c2x
3
1 . . . c1xm−1‖x‖2 + c2x

2
1xm−1

c2x
2
1x2 . . . c2x1x2xm−1

c2x
2
1x3 . . . c2x1x3xm−1
...

. . .
...

c2x
2
1xm−1 . . . x1‖x‖2 + c2x1x

2
m−1

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎣

α1

α2

α3
...

αm−1

⎤
⎥⎥⎥⎥⎥⎦
= 0.

Let us denote the coefficient matrix above by A, then if x2 = 0, it is easy to see
that detA �= 0. When x2 �= 0, using basic row and column operations, one can
obtain that detA is equal to the determinant of the upper block triangular matrix[
A2,2 A2,m−3

0 Am−3,m−3

]
, where

A2,2 =
[
(1 + c1)x1‖x‖2 c1x2‖x‖2 − x2

1
x2
‖x‖2 −∑m−1

j=3 c1
x2
j

x2
‖x‖2

c2x
2
1x2 x1‖x‖2 + c2x1

∑m−1
j=2 x

2
j

]

and Am−3,m−3 = x1‖x‖2Im−3,m−3. Therefore, one can easily check that detA =
detA2,2 · detAm−3,m−3 �= 0. Therefore, one obtains that for non-zero x, the only
solution for the equation system above is that α1 = · · · = αm−1 = 0, which
completes the proof. ��
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Chapter 18
Clifford Möbius Geometry

Craig A. Nolder

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract The Riemann sphere is a compactification of the complex plane on which
the complex Möbius group naturally acts. This Möbius group is isomorphic to the
conformal orthogonal group SO+(1, 3). Here we give a unified approach to this
compactification and the corresponding Möbius groups for the Clifford algebras of
dimensions two and four.

Keywords Clifford composition algebras · Compactification · Conformal
Mobius groups

Mathematics Subject Classification (2010) Primary 22-06; Secondary 16-06

18.1 Introduction

Quadratic spaces and Clifford algebras are related both algebraically and geomet-
rically. In dimensions two and four, Clifford algebras generate a unique quadratic
form. The conformal compactification of the quadratic spaces then gives geometric
models for the compactification of corresponding Clifford algebras. The conformal
special orthogonal groups, which act on these compactifications, are isomorphic to
the corresponding Möbius groups of the Clifford algebras. These Möbius groups
are represented by appropriate two by two matrices with entries from the Clifford
algebras.

A goal is to understand in a unified way the action of Clifford Möbius groups
on a compactification of the algebra. We describe isomorphisms between linear
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Lie groups and corresponding orthogonal Lie groups. In particular we present
continuous group isomorphisms. Although well known, these constructions are
difficult to find in the literature, see [4]. We use here material from these notes.
What is interesting here is that in low dimensions, these groups are isomorphic to
the Möbius groups of Clifford algebras which act on the compactifications of the
corresponding quadratic spaces. These observations are perhaps new in the case of
the split complex numbers and the split quaternions.

18.2 Quadratic Spaces and Orthogonal Groups

Definition 18.2.1 For x, y ∈ R
n we define the bilinear form

〈x, y〉p,q = x1y1 + · · · + xpyp − xp+1yp+1 − · · · − xp+qyp+q
where p+q = n. The pair (Rp,q, 〈·〉p,q ) is a real quadratic space when Rp,q = Rn,

has the quadratic form

〈x, x〉p,q = Qp,q(x) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q

for x ∈ Rn.

Notice that

〈x, y〉p,q = Q(x)+Q(y)−Q(x + y).

Definition 18.2.2 The group of linear transformations of Rp,q which preserveQp,q
is denotedO(p, q). Hence if T ∈ O(p, q), then Qp,q(T x) = Qp,q(x).

When p, q �= 0, O(p, q) has four connected components and the special
orthogonal group SO(p, q), those with determinant one, has two. We denote the
connected component of the identity by SO+(p, q). With n = p+ q the dimension
of SO(p, q) is n(n−1)/2. The group SO(p, q) is isomorphic to SO(q, p). See [6].

18.2.1 Compactification of Quadratic Spaces

Notice

〈x, x〉p,q = [1 + 〈x, x〉p,q
2

]2 − [1 − 〈x, x〉p,q
2

]2. (18.2.1)
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So we have the identity

[1 − 〈x, x〉p,q
2

]2 +�pi=1x
2
i = �

p+q
i=p+1x

2
i + [1 + 〈x, x〉p,q

2
]2. (18.2.2)

We denote by S(x) the common value of the above quantities. We then have an
embedding of Rp,q into Rp+1,q+1 by the formula

τ (x) = 1

S(x)
(
1 − 〈x, x〉p,q

2
, x1, . . . , xn,

1 + 〈x, x〉p,q
2

). (18.2.3)

Hence the image of Rp,q under τ is a subset of the Cartesian product of spheres
Sp × Sq which lie in the sphere Sn+1 in R

n+2 of radius
√

2.
A conformal compactification of Rp,q is obtained by compactifying the projec-

tivisation of this embedding ( S(x) is positive ) :

(
1 − 〈x, x〉p,q

2
: x1 : . . . : xn : 1 + 〈x, x〉p,q

2
).

We denote this compactification byNp,q . As such Np,q is the projective product
Sp × Sq/.̃ See [7] for more details.

In dimensions 2 and 4, we discuss this compactification in the context of Clifford
algebras.

Definition 18.2.3 The real Clifford algebra C
r,s is the algebra generated over R by
the generators {e1, e2, . . . , en} where r + s = n with

e2
i = 1, i = 1, . . . , r, e2

i = −1, i = r + 1, . . . , n

and

eiej = −ej ei, i, j = 1, . . . , n, i �= j.

Using these relations we can reduce products to the form ei1ei2 · · · eik , i1 < i2 <

· · · < ik. So a Clifford algebra is a graded algebra

C
r,s = ⊕nk=0 C
(k)r,s .

Here C
(k)r,s are the reduced products of length k, moreover C
(0)r,s = R and C
(1)r,s =
Rn as vector spaces.

The subspace of even terms is a subalgebra.

C
0
r,s = ⊕k even C
(k)r,s .
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Definition 18.2.4 The group spin(r, s) is defined by

spin(r, s) = {x ∈ C
0
r,s,Qr,s(x) = 1| xvx ∈ R

n, v ∈ R
n, }

The Clifford products here, xvx, are products of reflections in Rn and as such are
orthogonal transformations. The action is trivial precisely when x = ±1. As such
spin(r, s) is a double cover of SO+(r, s). The groups spin(r, s) and spin(s, r) are
isomorphic. See [5, 6].

When n = 2, 4 we identify the Clifford algebras with the corresponding
quadratic spaces :

• The complex numbers are

C = C
0,1 = {ζ = x0 + x1i | x0, x1 ∈ R, i2 = −1}.

Here the conjugate is ζ = x0−x1i and so ζ ζ = x2
0+x2

1 .As such this corresponds
to R2,0.

• The split complex numbers

C
1,0 = {ζ = x0 + x1j |x0, x1 ∈ R, j2 = 1}

have conjugates ζ = x0 − x1j, so that ζ ζ = x2
0 − x2

1 corresponding to R1,1.

• The quaternions

H = C
0,2 = {ζ = x0+x1i+x2j+x3ij | x0, x1, x2, x3 ∈ R, i2 = −1, j2 = −1, ij = −ji},

ζ = x0 − x1i − x2j − x3ij, ζ ζ = x2
0 + x2

1 + x2
2 + x2

3 correspond to R4,0.

• The split quaternions

C
1,1 ∼= C
2,0 = {ζ = x0+x1i+x2j+x3ij | x0, x1, x2, x3 ∈ R, i2 = −1 j2 = 1, ij = −ji},

ζ = x0 − x1i − x2j − x3ij, ζ ζ = x2
0 + x2

1 − x2
2 − x2

3 , corresponds to R2,2.

In each case the corresponding quadratic form is given by the Clifford product
N(ζ ) = ζ ζ . The algebras are more complicated in higher dimensions. A Clifford
number ζ is invertible when this product is nonzero :

ζ−1 = ζ

N(ζ )
.

Moreover

N(ζ−1) = 1/N(ζ ).
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In the cases we consider, the above compactification allows the extension of
inversion to all embedded elements of the Clifford algebra.

In RP5,

ζ−1 → (
1 − 1

N(ζ)

2
: x0

N(ζ )
: −x1

N(ζ )
: −x2

N(ζ )
: −x3

N(ζ )
: 1 + 1

N(ζ)

2
)

= (
N(ζ )− 1

2
: x0 : −x1 : −x2 : −x3 : N(ζ )+ 1

2
).

The embeddings into RP3 lie in the subspace where x2 = x3 = 0.
Hence inversion extends to the compactification as the involution :

(y0 : y1 : y2 : y3 : y4 : y5)→ (−y0 : y1 : −y2 : −y3 : −y4 : y5).

The Möbius groups of the Clifford algebras are isomorphic to the conformal
groups of the compactifications. Moreover, these groups are represented by 2 by 2
matrices in the corresponding algebra [1, 2].

Notice that the algebras embed to points where y0 + y5 �= 0. The added points
for the compactification satisfy y0 + y5 = 0. The non invertible points embed as :

(1/2 : x0 : x1 : x2 : x3 : 1/2)

These invert to

(−1/2 : x0 : −x1 : −x2 : −x3 : 1/2).

For example zero embeds as (1 : 0 : 0 : 0 : 0 : 1) and 0−1 = (−1 : 0 : 0 : 0 :
0 : 1). In the case of the complex numbers and the quaternions, this inverse is only
added point in the compactification. The case is different for indefinite signatures.

In general there are other points needed to connect the above described pieces.
Let’s specify to C
1,1 and suppose that x1 = x3 = 0 and x0 = x2. These are

non-invertible elements.
Then

lim
x0→∞(1/2x0 : 1 : 0 : 1 : 0 : 1/2x0) = (0 : 1 : 0 : 1 : 0 : 0).

The inverse of this limit is also the limit along the path x0 = −x2.

lim
x0→∞(1/2x0 : 1 : 0 : −1 : 0 : 1/2x0) = (0 : 1 : 0 : −1 : 0 : 0).

Notice these points also satisfy y0 + y5 = 0.
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18.3 Möbius Groups

18.3.1 Lie Groups and Lie Algebras

We mention some relevant results from [6].
The matrix groups SL(2,R), SL(2,C), SL(2,R) × SL(2,R), SL(4,R) and

SL(4,C) are connected Lie groups. The connected component of the identity of
the orthogonal group SO+(p, q) is also a connected Lie group.

Definition 18.3.1 Two Lie groups G,G′ with identities e, e′, are isomorphic if
there exists and analytic isomorphism of G onto G′. The Lie groups are locally
isomorphic if there exist neighborhoods U,U ′ of e, e′ and an analytic diffeomor-
phism f of U onto U ′ so that x, y, xy ∈ U implies f (xy) = f (x)f (y) and
x ′, y ′, x ′y ′ ∈ U ′ implies f−1(x ′y ′) = f−1(x ′)f−1(y ′).

Theorem 18.3.2 (p. 99. Theorem 1.11, [6]) Lie groups are locally isomorphic if
and only is their Lie algebras are isomorphic.

Theorem 18.3.3 (p. 107, Theorem 2.6, [6]) Let G and H be Lie groups and φ a
continuous homomorphism of G into H . Then φ is analytic.

Below is a table of the Lie groups, along with their corresponding Lie algebras,
which we encounter.

Lie group SL(2,R) SL(2,C) SL(2,R) × SL(2,R)
Lie algebra sl(2,R) sl(2,C) sl(2,R) × sl(2,R)

SL(4,R) SL(2,H) SO(2, 1) SO(3, 1) SO(2, 2)

sl(4,R) sl(2,H) so(2, 1) so(3, 1) so(2, 2)

SO(5, 1) SO(3, 3)

so(5, 1) so(3, 3)

Theorem 18.3.4 (pp. 351–353, [6]) We have the following Lie algebra isomor-
phisms.

sl(2,R) ≈ so(2, 1)

sl(2,C) ≈ so(3, 1)

sl(2,R)× sl(2,R) ≈ so(2, 2)

sl(2,H) ≈ so(5, 1)

sl(4,R) ≈ so(3, 3)
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18.3.2 The Real Numbers

Theorem 18.3.5 The Lie groups PSL(2,R) and SO+(2, 1) are isomorphic.

Define the map

�2,1 : R2,1 → M(2,R)

by

�2,1 : x = (x1, x2, x3)→ �2,1(x) =
(

x1 x3 + x2

x3 − x2 x1

)
.

Notice Q2,1(x) = x2
1 + x2

2 − x2
3 = det�2,1(x).

For g ∈ SL(2,R) the map Tg : R2,1 → R2,1 is given by

Tg(x) = �−1
2,1(g�2,1(x)g

t ).

It follows that

Q2,1(Tg(x)) = det�2,1(Tg(x)) = det(g�2,1(x)g
t ) =

det�2,1(x) = Q2,1(x).

As such, Tg ∈ SO(2, 1) for all g ∈ SL(2,R).
Let g, h ∈ SL(2,R), then

Tg(Th(x)) = Tg[�−1
2,1h�2,1(x)h

t ] = �−1
2,1g�2,1[�−1

2,1h�2,1(x)h
t ]gt

= Tgh(x).

As such T is a homomorphism. The kernel of T is plus or minus the identity.
Since PSL(2,R) is connected, the image is in the connected component of the

identity SO+(2, 1).
We have the following diagram.

SL(2,R)
isomorphism

spin(2,1)

double cover double cover

PSL(2,R)
isomorphism

SO+(2,1)

The group SO+(2, 1) acts as the conformal automorphisms of S1 × S0/.̃ Notice
that PSL(2,R) is isomorphic to SU(1, 1), the conformal automorphisms of the
disk.

The dimension of both PSL(2,R) and SO+(2, 1) is three.
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18.3.3 C = C
0,1

Theorem 18.3.6 The Lie groups PSL(2,C) and SO+(3, 1) are isomorphic.

Define the map

�3,1 : R3,1 → M(2,C)

by

�2,1 : x = (x1, x2, x3, x4)→ �3,1(x) =
(
x1 + ix2 x4 + x3

x4 − x3 x1 − ix2

)
.

Notice Q3,1(x) = x2
1 + x2

2 + x2
3 − x2

4 = det�3,1(x).

For g ∈ SL(2,C) the map Tg : R3,1 → R3,1 is given by

Tg(x) = �−1
3,1(g�3,1(x)g

t ).

It follows that

Q3,1(Tg(x)) = det�3,1(Tg(x)) = det(g�3,1(x)g
t ) =

det�3,1(x) = Q3,1(x).

As such, Tg ∈ SO(3, 1) for all g ∈ SL(2,C).
Let g, h ∈ SL(2,C), then

Tg(Th(x)) = Tg[�−1
3,1h�3,1(x)h

t ] = �−1
3,1g�3,1[�−1

3,1h�3,1(x)h
t ]gt

= Tgh(x).

As such T is a homomorphism. The kernel of T is plus or minus the identity.
Since PSL(2,C) is connected, the image is in the connected component of the

identity SO+(3, 1). The dimensions of both PSL(2,C) and SO+(3, 1) is six. We
have the following diagram.

SL(2,C)
isomorphism

spin(3, 1)

double cover double cover

PSL(2,C) isomorphism
SO+(3, 1)

The group SO+(3, 1) acts as conformal automorphisms on N0,2 = (S0 × S2)/.̃
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18.3.4 C
1,0

Theorem 18.3.7 The Lie groups PSL(2,R) × PSL(2,R) and SO+(2, 2) are
isomorphic.

Recall that j2 = 1.We write j+ = (1+ j)/2 and j− = (1− j)/2. It follows that
j2+ = j+, j2− = j−, j+j− = j−j+ = 0, j+ + j− = 1 and j+ − j− = j.

As such we can rewrite a split complex number

ζ = x + jy = uj+ + vj−,

where u = x + y and v = x − y.We write ζi = uij+ + vij−, i = 1, 2, 3, 4. It is
immediate that

A =
(
ζ1 ζ2

ζ3 ζ4

)
=
(
u1 u2

u3 u4

)
j+ +

(
v1 v2

v3 v4

)
j− = A1j+ +A2j−. (18.3.1)

Moreover

AB = (A1j+ +A2j−)(B1j+ + B2j−) = A1B1j+ +A2B2j−,

and so

A−1 = A−1
1 j+ +A−1

2 j−.

Also a calculation shows that

detA = detA1j+ + detA2j−.

Hence detA = 1 if and only if detA1 = 1 and detA2 = 1.
In this way we see that SL(2, C
1,0) is isomorphic to SL(2,R)× SL(2,R).
Now we define the map

�2,2 : R2,2 → M(2,R)

by

�2,2 : x = (x1, x2, x3, x4)→ �2,2(x) =
(
x1 + x3 x4 + x2

x4 − x2 x1 − x3

)
.

Notice Q2,2(x) = x2
1 + x2

2 − x2
3 − x2

4 = det�2,2(x).

For (g, h) ∈ SL(2,R)× SL(2,R) the map T(g,h) : R2,2 → R2,2 is given by

T(g,h)(x) = �−1
2,2(g�2,2(x)h

t ).
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It follows that

Q2,2(T(g,h)(x)) = det�2,2(T(g,h)(x)) = det(g�2,2(x)h
t ) =

det�2,2(x) = Q2,2(x).

As such, T(g,h) ∈ SO(2, 2) for all g ∈ SL(2,R)× SL(2,R).
Let g, h ∈ SL(2,R), then

T(g1,h1)(T(g2,h2)(x)) = T(g1,h1)[�−1
2,2 g2�2,2(x) h

t
2] = �−1

2,2 g1�2,2[�−1
2,2 g2�2,2(x) h

t
2]ht1

= T(g1g2,h1h2)(x).

As such T is a homomorphism. The kernel of T is plus or minus the identity.
We have the following diagram. Both PSL(2,R) × PSL(2,R) and SO+(2, 2)

have dimension six.

SL(2, C 1,0) ∼= SL(2,R) × SL(2,R)
isomorphism

spin(2, 2)

double cover double cover

PSL(2, 1,0) PSL(2,R) PSL(2,R)
isomorphism

SO (2, 2)

The group SO+(2, 2) acts as conformal automorphisms on N1,1 = (S1 × S1)/,̃

see [1, 7].
In dimension four we use the following inner product.

Lemma 18.3.8 We use the standard basis ei = (δi,1, δi,2, δi,3, δi,4).

The inner product, with u, v ∈ 
2C4, defined by

u ∧ v = 〈u, v〉 e1 ∧ e2 ∧ e3 ∧ e4,

is invariant under g ∈ SL(4,C) with the action g(x ∧ y) = gx ∧ gy, x, y ∈ C4.

Notice this action is trivial if and only if g = ±I.
Proof Let x, y, z,w ∈ C4. We have

〈g(x ∧ y), g(z ∧w)〉e1 ∧ e2 ∧ e3 ∧ e4 = gx ∧ gy ∧ gz ∧ gw =

(detg) x ∧ y ∧ z ∧ w = 〈x ∧ y, z ∧ w〉e1 ∧ e2 ∧ e3 ∧ e4.

��
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18.3.5 H = C
0,2

Theorem 18.3.9 The Lie groups PSL(2,H) and SO+(1, 5) are isomorphic.

A quaternion can be rewritten :

ζ = α + βj, α = x0 + x1i, β = x2 + x3i.

We have a faithful representation φ : H → M(2,C)

φ(ζ ) =
(
α β

−β̄ ᾱ
)

(18.3.2)

We use the notation w =
(

0 −1
1 0

)
. We then have the characterization

H = {h ∈ M(2,C)| h̄ = whw−1}.

Hence we define

SL(2,H) = {g ∈ SL(4,C)| ḡ = WgW−1}

whereW =
(
w 0
0 w

)
.

Explicitly

SL(2,H) = {

⎛
⎜⎜⎝
α1 β1 α2 β2

−β̄1 ᾱ1 −β̄2 ᾱ2

α3 β3 α4 β4

−β̄3 ᾱ3 −β̄4 ᾱ4

⎞
⎟⎟⎠ | ζi = αi + βij, i = 1, 2, 3, 4.}. (18.3.3)

We identify R1,5 with a six dimensional R-subspace V of 
2C4. The subspace
V consists of elements invariant under the conjugate linear map J : 
2C4 → 
2C4

given by

J (u ∧ v) = Wu ∧Wv.
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An orthonormal basis of V is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

v4

v5

v6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e1 ∧ e2 + e3 ∧ e4

e1 ∧ e2 − e3 ∧ e4

e1 ∧ e3 + e2 ∧ e4

ie1 ∧ e3 − ie2 ∧ e4

e1 ∧ e4 − e2 ∧ e3

ie1 ∧ e4 + ie2 ∧ e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18.3.4)

For x = (x1, x2, x3, x4, x5, x6) ∈ R3,3 we define �1,5(x) = �6
i=1xivi .

Then 〈x, x〉1,5 = 〈�1,5(x),�1,5(x)〉. Both PSL(2,H) and SO+(1, 5) have
dimension 15.

We display this as follows.

SL(2,H)
isomorphism

spin(1, 5)

double-cover double cover

PSL(2, )
isomorphism

SO (1, 5)

The group SO+(1, 5) acts as conformal automorphisms on N0,4 = (S0 × S4)/.̃

18.3.6 C
1,1
∼= C
2,0

Theorem 18.3.10 The Lie groups PSL(4,R) and SO(3, 3)+ are isomorphic.

We write M(2, C
1,1) is the collection of 2×2 matrices with entries from C
1,1
and M(4,R) are the 4×4 real matrices. We denote elements of C
1,1 by ζk = αk +
βki + γkj + δkij, k = 1, 2, 3, 4. We write N(ζ ) = ζ ζ̄ = α2 + β2 − γ 2 − δ2.

We define the following map, see [3].

φ :
(
ζ1 ζ2

ζ3 ζ4

)
→

⎛
⎜⎜⎝
α1 + δ1 −β1 + γ1 α2 + δ2 −β2 + γ2

β1 + γ1 α1 − δ1 β2 + γ2 α2 − δ2

α3 + δ3 −β3 + γ3 α4 + δ4 −β4 + γ4

β3 + γ3 α3 − δ3 β4 + γ4 α4 − δ4

⎞
⎟⎟⎠ (18.3.5)

We have φ(AB) = φ(A)φ(B) and φ(Id) = Id. In fact, φ is an isometric
isomorphism of the monoidM(2, C
1,1) onto the monoidM(4,R). Notice it follows
that A ∈ M(2, C
1,1) is invertible if and only if φ(A) is invertible in M(4,R). We
define the group SL(2, C
1,1) as φ−1(SL(4,R)). See [3].
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We identify the quadratic space (R3,3, 〈·〉3,3) with (V , 〈·〉) where V = 
2
R

4 and
〈·〉 is defined by

x ∧ y = 〈x, y〉 e1 ∧ e2 ∧ e3 ∧ e4, x, y ∈ V,

where e1, e2, e3, e4 is the standard basis of R4.An orthonormal basis of V is defined
by

√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

v4

v5

v6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e1 ∧ e2 + e3 ∧ e4

e1 ∧ e3 − e2 ∧ e4

e1 ∧ e4 + e2 ∧ e3

e1 ∧ e2 − e3 ∧ e4

e1 ∧ e3 + e2 ∧ e4

e1 ∧ e4 − e2 ∧ e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18.3.6)

For x = (x1, x2, x3, x4, x5, x6) ∈ R3,3 we define �3,3(x) = �6
i=1xivi . Then

〈x, x〉3,3 = 〈�3,3(x),�3,3(x)〉. Both PSL(4,R) and SO+(3, 3) have dimension
15.

We have the following diagram.

SL(2, C 1,1) ∼= SL(4,R)
isomorphism

spin(3, 3)

double-cover double cover

PSL(2, 1,1) PSL(4, )
isomorphism

SO (3, 3)

The group SO+(3, 3) acts as conformal automorphisms on N2,2 = (S2 × S2)/.̃

We display some of the transformations in SO(3, 3) which correspond to those
in SL(2, C
1,1).

• Inversion
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18.3.7)

• Orthogonal, A

⎛
⎝1 0 0

0 A 0
0 0 1

⎞
⎠ (18.3.8)
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• Dilation
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + λ2 0 0 0 0 1 − λ2

0 2λ 0 0 0 0
0 0 2λ 0 0 0
0 0 0 2λ 0 0
0 0 0 0 2λ 0

1 − λ2 0 0 0 0 1 + λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18.3.9)

See [3, 7].
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Chapter 19
Separation of Variables in the Semistable
Range

Roman Lávička

Dedicated to Professor Wolfgang Sprößig

Abstract In this paper, we give an alternative proof of separation of variables for
scalar-valued polynomials P : (Rm)k → C in the semistable range m ≥ 2k − 1 for
the symmetry given by the orthogonal group O(m). It turns out that uniqueness
of the decomposition of polynomials into spherical harmonics is equivalent to
irreducibility of generalized Verma modules for the Howe dual partner sp(2k)
generated by spherical harmonics. We believe that this approach might be applied
to the case of spinor-valued polynomials and to other settings as well.

Keywords Fischer decomposition · Separation of variables · Spherical
harmonics · Monogenic polynomials · Dirac equation
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19.1 Introduction

It is well-known that each polynomial P in the Euclidean space Rm can be uniquely
written as a finite sum

P = H0 + r2H1 + · · · + r2jHj + · · ·
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where r2 = x2
1 + · · · + x2

m for x = (x1, . . . , xm) ∈ Rm and Hj are harmonic
polynomials in Rm, that is, �Hj = 0 for the Laplace operator

� = ∂2
x1
+ · · · + ∂2

xm
.

In other words, the space P of C-valued polynomials on Rm decomposes as

P =
∞⊕
n=0

r2nH

where H = Ker(�) ∩ P is the space of spherical harmonics in Rm. This result
is known as separation of variables or the Fischer decomposition. The underlying
symmetry is given by the orthogonal groupO(m). The invariant operators�, r2, h

generate the Lie algebra sl(2) where

h = x1∂x1 + · · · + xm∂xm +m/2

is the Euler operator. This is the so-called hidden symmetry in this case. Actually, it
is a simple example of Howe duality for Howe dual pair (O(m), sl(2)).

For separation of variables and Howe duality in various cases and for other
symmetry groups, see e.g. [1, 2, 4, 6, 10, 12, 13, 15–17, 19, 20].

For example, spinor valued polynomials in one variable of Rm decompose into
monogenic polynomials [7]. Let S be an irreducible spin representation of the group
Pin(m), the double cover ofO(m). The spinor space S is usually realized inside the
complex Clifford algebra Cm generated by the generators e1, . . . , em satisfying the
relations eiej + ej ei = −2δij . The Euclidean space Rm is embedded into Cm as

(x1, . . . , xm)→ x1e1 + · · · + xmem.

A polynomial P : Rm → S is called monogenic if it satisfies the equation ∂P = 0
where

∂ :=
m∑
i=1

ei∂xi

is the Dirac operator in Rm. Then each polynomial P : Rm → S has a unique
expression as a finite sum

P = M0 + xM1 + · · · + xjMj + · · ·

where x = x1e1 + · · · + xmem is the vector variable of Rm and Mj are
monogenic polynomials in Rm. Then the space of spinor-valued polynomials on
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Rm decomposes as

P ⊗ S =
∞⊕
n=0

xnM

where M = Ker(∂) ∩ (P ⊗ S) is the space of spherical monogenics in Rm. The
symmetry is given by the group Pin(m) and the invariant operators ∂, x generate
the Lie superalgebra osp(1|2). This is Howe duality (P in(m), osp(1|2)).

The case of scalar or spinor valued polynomials in more variables is more
interesting and involved.

19.1.1 Scalar-Valued Polynomials

Let us start with the scalar case which has been studied for a long time and is well-
understood. We consider C-valued polynomials in k vector variables xi of Rm. Here
xi = (xi1, . . . , x

i
m) ∈ R

m for i = 1, . . . , k. We take a natural action of O(m) on the
space P of polynomials P : (Rm)k → C. Then the invariant operators

�ij = ∂xi1
∂
x
j
1
+ · · · + ∂xim∂xjm, r

2
ij = xi1x

j
1 + · · · + ximxjm

hij = xi1∂xj1
+ · · · + xim∂xjm + (m/2)δij , i, j = 1, . . . , k

generate the Lie algebra sp(2k), and the mixed Euler operators hij its subalgebra
gl(k). This case is indeed Howe duality (O(m), sp(2k)). Spherical harmonics are
the polynomials in the kernel of all the mixed laplacians�ij . Thus we denote

H = Ker(�ij , 1 ≤ i ≤ j ≤ k) ∩ P .

Let us remark that �ij = �ji and r2
ij = r2

ji . Theorem A below describes, in
a semistable range m ≥ 2k − 1, a decomposition of polynomials into spherical
harmonics we can view as a proper generalization of the harmonic Fischer decom-
position to more variables.

Theorem A If m ≥ 2k − 1, then

P =
⊕
n

r2nH with r2n =
∏

1≤i≤j≤k
r

2nij
ij

where the sum is taken over all n = {nij , 1 ≤ i ≤ j ≤ k} ⊂ N0.



398 R. Lávička

This result at least in the stable range m ≥ 2k is well-known in invariant theory
and theory of Howe duality, see [13]. In the next section, we give an alternative
proof and extend the result even to the semistable rangem ≥ 2k−1. The non-stable
range is much more complicated and less understood.

19.1.2 Spinor-Valued Polynomials

The form of the Fischer decomposition for spinor-valued polynomials in the
semistable range was conjectured by Colombo et al. in 2004 in the book [3]. Before
recalling this, let us introduce some notations. On the space P ⊗ S of polynomials
P : (Rm)k → S, there is a natural action of the group Pin(m). In this case, we have
k vector variables xi ∈ R

m,

xi = e1x
i
1 + · · · + emxim

and k corresponding Dirac operators ∂i ,

∂i = e1∂xi1
+ · · · + em∂xim

for i = 1, . . . , k. Then the odd invariant operators xi, ∂i generate the Lie super-
algebra osp(1|2k), and its even part sp(2k) is generated by the ‘scalar’ operators
�ij , r

2
ij , hij we know from the scalar case. The role of spherical harmonics is played

by spherical monogenics, that is, polynomial solutions P : (Rm)k → S of the
system of all the Dirac equations ∂iP = 0 for i = 1, . . . , k. Denote

M = Ker(∂1, . . . , ∂k) ∩ (P ⊗ S).

Finally, for J ⊂ {1, 2, . . . , k}, put xJ = xj1 · · · xjr where J = {j1, · · · , jr } and
j1 < · · · < jr . Here x∅ := 1. Then we have the following result.

Theorem B If m ≥ 2k, then

P ⊗ S =
⊕
n,J

r2nxJM

where the sum is taken over all J ⊂ {1, . . . , k} and n = {nij , 1 ≤ i ≤ j ≤ k} ⊂ N0.

The decomposition of Theorem B was conjectured in [3] but even in the
semistable range m ≥ 2k − 1. Theorem B (that is, this decomposition only in the
stable range) was recently proved in [17] using the harmonic Fischer decomposition.
For the case of two variables, see [20]. Since the harmonic Fischer decomposition
is now extended to the semistable range there is a hope that the conjecture could be
proved in the full semistable range as well.
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It is known [2] that, in P ⊗ S, the isotypic components of Spin(m) form
irreducible lowest weight modules for osp(1|2k) with lowest weights (a1 +
(m/2), . . . , ak + (m/2)) for integers a1 ≥ · · · ≥ ak ≥ 0 when the dimension m
is even. Let us remark that there are not so many known explicit realizations of
such modules, see e.g. the paraboson Fock space [18]. For a classification of such
modules, we refer to [8, 9].

19.2 Proof of Theorem A

In this section, we prove the harmonic Fischer decomposition in the semistable
range. We divide the proof into three steps. The first two steps are quite standard. In
the last step, to show uniqueness of the decomposition of polynomials we study
irreducibility of generalized Verma modules for the Howe dual partner sp(2k)
generated by spherical harmonics. This approach seems to be very flexible and
to work well in other settings. In particular, we believe that, using this approach,
Theorem B might be proved in the full semistable range by studying the structure
of generalized Verma modules for osp(1|2k).
Step 1: Decomposition into Spherical Harmonics
First we show that each polynomial can be expressed in terms of spherical
harmonics. This is easy. But as we shall see the question of uniqueness of such
an expression is more difficult.

Lemma 19.1

(i) We have

P = H ⊕
∑

1≤i≤j≤k
r2
ij P

(ii) We have

P =
∑
n

r2nH with r2n =
∏

1≤i≤j≤k
r

2nij
ij (19.1)

where the sum is taken over all n = {nij , 1 ≤ i ≤ j ≤ k} ⊂ N0.

Proof

(i) This is an orthogonal decomposition with respect to the Fischer inner product
on the space P of polynomials. Here the Fischer inner product is defined, for
P,Q ∈ P , by

(P,Q) = [P(∂)(Q(x))]x=0
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where z̄ is the complex conjugation of z ∈ C and P(∂) denotes the constant
coefficient differential operator obtained by substituting derivatives ∂xij

for the

variables xij .
(ii) Use repeatedly (i).

��
It is known that, in general, the sum (19.1) is not direct. In Step 3, we show that

this sum is direct in the semistable range.

Step 2: Decomposition of Spherical Harmonics
It is easy to see that the space H of spherical harmonics is invariant with respect
not only to the symmetry groupO(m) but also to the Lie algebra gl(k) generated by
the mixed Euler operators hij . Before describing an irreducible decomposition of H
under the joint action ofO(m)× gl(k) let us recall some notations.

A partition a = (a1, . . . , am) of the length at most m is a non-negative integer
sequence a1 ≥ a2 ≥ · · · ≥ am ≥ 0. With a partition a we often identify the
corresponding Young diagram, that is, the array of square boxes arranged in left-
justified horizontal rows and with row i having just ai boxes. Then there is a one-to-
one correspondence between finite-dimensional irreducible representations ofO(m)
and partitions a satisfying the condition

(a′)1 + (a′)2 ≤ m. (19.2)

Here a′ denotes the transpose of the Young diagram a and thus the condition (19.2)
means that the sum of the first two columns of the Young diagram a is at most m.
See [11, Sections 5.2.2, 10.2.4 and 10.2.5] for details.

Finite-dimensional irreducible representations of gl(k) are indexed by highest
weights. In what follows, we use the triangular decomposition

gl(k) = t− ⊕ t0 ⊕ t+

with t− = span{hij , i < j }, t0 = span{hij , i = j }, t+ = span{hij , i > j }.
Theorem 19.1 Under the joint action of O(m) × gl(k), we have an irreducible
decomposition

H =
⊕
a

HS
a ⊗ Fã

where the sum is taken over all partitions a = (a1, . . . , ak) of the length at most
k and satisfying the condition (19.2) above, HS

a is O(m)-irreducible module with
the label a and Fã is gl(k)-irreducible module with the highest weight ã = (a1 +
m/2, . . . , ak +m/2).

This theorem is true in general, not only in the semistable or stable range.
Actually, in the case when k ≥ m, we can realize each finite-dimensional irreducible
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representation ofO(m) inside the space H of spherical harmonics. Indeed, we have

HS
a = H ∩ Ker(t−) ∩ Pa

where Pa is the subspace of polynomials of P homogeneous in xi of degree ai for
each i = 1, . . . , k and a satisfies the condition (19.2) above. Let us remark that
polynomials of HS = H ∩ Ker(t−) are sometimes called simplicial harmonics. For
a proof of Theorem 19.1 and for a construction of highest weight vectors, see [13,
3.6, pp. 37–40] and cf. [5].

Step 3: Uniqueness of the Decomposition
In the last step, we show uniqueness of the decomposition of polynomials in the
semistable range. By Steps 1 and 2, we know

P =
∑
n

r2nH and H =
⊕
a

HS
a ⊗ Fã

where the sums are taken over all n = {nij , i ≤ j } ⊂ N0 and all partitions a of the
length at most k and satisfying the condition (19.2), respectively. Then we have

P =
⊕
a

HS
a ⊗ Lã with Lã =

∑
n

r2nFã. (19.3)

Here the first sum in (19.3) is direct because this is an isotypic decomposition for
the groupO(m). Moreover, it is easy to see that Lã is a lowest weight module with
the lowest weight ã for the Howe dual partner sp(2k) generated by the invariant
operators. Actually, it is well-known that, using Howe duality (O(m), sp(2k)), the
module Lã is even irreducible. But we do not need this fact in our argument. But
what we really need is to observe that Lã is a quotient of a generalized Verma
module Vã for sp(2k). In the next section, we introduce generalized Verma modules
Vλ for sp(2k) and its parabolic subalgebra suitable for our purposes and find out
sufficient conditions on the weight λ under which Vλ is irreducible. It turns out
that uniqueness of the decomposition (19.1) is closely related to the structure of the
modulesLã . Indeed, the sum in Lã of (19.3) is direct if and only if Lã is isomorphic
to Vã . But we show that, in the semistable rangem ≥ 2k − 1, all modules Vã are in
fact irreducible (see Proposition 19.1 and Example below) and hence

P =
⊕
n

r2nH,

which completes the proof of Theorem A.
In the non-stable range, the module Lã is not, in general, isomorphic to Vã but

it is just a unique irreducible quotient of Vã . So, even in the non-stable range, the
study of the decomposition of polynomials (19.1) is closely related to the structure
of the modules Lã and representation theory might help much with this task.
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19.3 Generalized Verma Modules for sp(2k)

In this section, we introduce generalized Verma modules for sp(2k) we need in Step
3 of the proof of Theorem A. For an account of generalized Verma modules, we
refer to [14].

In our setting, the Lie algebra sp(2k) is generated by the invariant operators�ij ,
r2
ij and hij . We have a decomposition sp(2k) = p− ⊕ t⊕ p+ where

p− = span{�ij , 1 ≤ i ≤ j ≤ k}, p+ = span{r2
ij , 1 ≤ i ≤ j ≤ k},

t = span{hij , 1 ≤ i, j ≤ k}.

We take a parabolic subalgebra p = p− ⊕ t with its Levi subalgebra t � gl(k).

Definition 19.1 Let Fλ be a finite dimensional gl(k)-irreducible module with the
highest weight λ such that the action of p− on Fλ is trivial, that is, (p−) · Fλ = 0.
Then we define the generalized Verma module for g = sp(2k) and its parabolic
subalgebra p as the induced module

Vλ := Indgp Fλ.

It is well-known that, at least as vector spaces,

Vλ �
⊕
n

r2nFλ.

The following proposition [14, 9.12, p. 196] gives sufficient conditions on the
weight λ under which Vλ is irreducible.

Proposition 19.1 The generalized Verma module Vλ is irreducible if

(1) λi + λj − 2k + i + j − 2 �∈ −N for 1 ≤ i < j ≤ k, and
(2) λi − k + i − 1 �∈ −N for 1 ≤ i ≤ k.

Here λ = (λ1, . . . , λk).

Example Let a = (a1, . . . , ak) be a partition and ã = (a1 + m/2, . . . , ak + m/2).
Then the conditions of Proposition 19.1 for λ = ã read as

(1′) ai + aj +m− 2k + i + j − 2 �∈ −N for 1 ≤ i < j ≤ k, and
(2′) ai + (m/2)− k + i − 1 �∈ −N for 1 ≤ i ≤ k.

In particular, in the semistable range m ≥ 2k − 1, the conditions (1′) and (2′) are
always satisfied and hence the corresponding module Vã is irreducible.
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Chapter 20
Variety of Idempotents in Nonassociative
Algebras

Yakov Krasnov and Vladimir G. Tkachev

Dedicated to Professor Wolfgang Sprößig on the occasion
of his 70th birthday

Abstract In this paper, we study the variety of all nonassociative (NA) algebras
from the idempotent point of view. We are interested, in particular, in the spectral
properties of idempotents when algebra is generic, i.e. idempotents are in general
position. Our main result states that in this case, there exist at least n2 − 1 nontrivial
obstructions (syzygies) on the Peirce spectrum of a generic NA algebra of dimension
n. We also discuss the exceptionality of the eigenvalue λ = 1

2 which appears
in the spectrum of idempotents in many classical examples of NA algebras and
characterize its extremal properties in metrized algebras.

Keywords Idempotents · Nonassociative algebras · Metrized algebras · Peirce
spectrum · Axial algebras

20.1 Introduction

The Peirce decomposition is a central tool of nonassociative algebra. In associa-
tive algebras (for example in matrix algebras), idempotents are projections onto
subspaces, with eigenvalues 1 and 0 and play a distinguished role. In nonassociative
algebras the spectrum of an idempotent (which is known also as the Peirce numbers)
can be very arbitrarily. Still, many classical examples of nonassociative algebras
share the following basic feature: the set of idempotents in algebra is rich enough
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(for example spans or generates the algebra) while the number of possible distinct
Peirce numbers is few in comparison with the algebra dimension.

Let A be a commutative nonassociative algebra over a field K of char(K) = 0
unless otherwise stated explicitly. LetLu : x → ux be the operator of multiplication
by u on A. Any semisimple idempotent 0 �= c = c2 ∈ A induces the corresponding
Peirce decomposition:

A =
⊕
λ∈σ(c)

Ac(λ),

where Lcx = λx for any x ∈ Ac(λ) and σ(c) is the Peirce spectrum of c,
i.e. the multi-set (a set with repeated elements) of all eigenvalues of Lc. The
Peirce spectrum σ(A) = {λ1, . . . , λs} of the algebra A is the set of all possible
distinct eigenvalues λi in σ(c), when c runs all idempotents of A. A fusion (or
multiplication) rule is the inclusion of the following kind:

Ac(λi)Ac(λj ) ⊂
⊕

k∈F(i,j)
Ac(λk), F(i, j) ⊂ {1, 2 . . . , s}

For example, if A is power-associative (for instance, A is a Jordan algebra) then
its Peirce spectrum (i.e. the only possible Peirce numbers of A) is σ(A) = {0, 1

2 , 1},
see [1, 29]. The middle value 1

2 is crucial for structural properties and classification
of formally real Jordan algebras: a Jordan algebra A is simple if and only if the
corresponding eigenspace Ac( 1

2 ) is nontrivial for any nonzero idempotent c ∈ A

[9, p. 63]. It is also well-known that the fusion rules of a Jordan algebra are Z/2-
graded for any idempotent c ∈ A: if A0 = Ac(0) ⊕ Ac(1) and A1 = Ac(

1
2 ) then

AiAj ⊂ Ai+j mod 2.
Another important example is axial algebras appearing in connection with the

Monster sporadic simple group [23]. The most famous example here is the Griess
algebra generated by idempotents with Peirce numbers 1, 0, 1

4 , 1
32 and satisfying the

so-called Ising fusion rules [12, 14, 27]. These fusion rules are also Z/2-graded.
We also mention very recent examples of the so-called Hsiang algebras appearing

in the classification of cubic minimal cones (the REC-algebras in terminology of
[22, Chapter 6]). The Peirce spectrum of such an algebra consists of four numbers:
σ(A) = {1,−1,− 1

2 ,
1
2 }. The Hsiang algebras have nice fusion rules but they are not

graded. Furthermore, these algebras share a remarkable property: all idempotents
have the same spectrum. As we shall see below, the latter property is closely related
to the fact that 1

2 belongs to the algebra spectrum.
Traditionally, one defines a (nonassociative) algebra structure by virtue of

algebra identities (for example, Lie, Jordan and power-associative algebras) or a
multiplication table (for example, division algebras or evolution algebras [32]).
Also, an algebraic structure can be defined by postulating some distinguished
properties of idempotents, as in example of the axial algebras mentioned before.

One of the main goals of the present paper is to support the following conjectural
paradigm: Many essential or invariant properties of a non-associative algebra can
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be recovered directly from its Peirce spectrum. In other words, the knowledge of the
Peirce spectrum of an algebra allows one to determine the most important features
of the algebra.

In this connection, the following principal questions arise and will be discussed
in this paper.

(a) How arbitrary can the Peirce spectrum be? What kind of obstructions (syzy-
gyies) can exist?

(b) What can be said about the structure of an algebra with a prescribed set of the
Peirce numbers?

(c) Which Peirce numbers have ‘distinguished’ properties?
(d) If the Peirce spectrum is known, what can be said about the possible multiplic-

ities of the eigenvalues? For example, when the spectrum is independent of a
choice of an idempotent?

(e) Do there exist any obstructions/syzigies on the fusion table?

Thus formulated program is rather ambitious even for characteristic 0. To obtain
some significant results, we sometimes assume that K is a subfield of C. We
emphasize that in this paper we are more interested in discussing and illustrating
some new methods and phenomena with a clear analytical or topological flavor. We
outline only some of the possible directions and obtain some particular answers to
the above questions.

Our main result here describes syzygies (obstructions) on the idempotent set
of a finite dimensional generic commutative nonassociative algebra A under fairly
general assumptions. More precisely, we show (see Theorem 20.4.1 below) that

∑
c∈Idm0(A)

χc(t)

χc(
1
2 )

= 2n, ∀t ∈ R,

where n = dimA and χc(t) is the characteristic polynomial of an idempotent
c. In this paper, we only outline some general lines and discuss basic properties
of syzygies. The border-line case when an algebra contains 2-nilpotents and the
exceptional case when there exists infinitely many idempotents will be considered
elsewhere.

The paper is organized as follows. We recall some well-known concepts in
Sect. 20.2, then define the concept of a generic algebra and study its basic properties
in Sect. 20.3. We explain also here why the presence or absence of eigenvalue
1
2 in the algebra spectrum plays an exceptional role. The principal syzygies are

determined in Sect. 20.4 and some applications and explicit examples are given
in Sects. 20.4.2 and 20.4.3. Furthermore, applying the syzygy method we study
in Sect. 20.5 some examples of algebras with a prescribed Peirce spectrum. A
distinguished subclass of nonassociative algebras is algebras admitting an asso-
ciative bilinear form, the so-called metrized algebras. This class is in a natural
correspondence with the space of all cubic forms on the ground vector space. We
discuss the spectral properties of metrized algebras in Sect. 20.6 and establish an
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extremal property of λ = 1
2 in Sect. 20.6.2. We also show that the presence of 1

2 in
the algebra spectrum yields a fusion rule for the corresponding Peirce eigenspace.

20.2 Preliminaries

In choosing what material to include here, we have tried to concentrate on the class
of commutative nonassociative algebras over a field of characteristic 0. In fact,
many of our results, including the principal syzygies, remain similar in the non-
commutative case and for general finite fields but in that case some topics become
lengthy and require more careful analysis, and will be treated elsewhere.

Therefore, in what follows by A we mean an (always finite dimensional)
commutative nonassociative algebra over a filed K . We point out that ‘algebra’
always means a nonassociative algebra.

We need to make some additional assumptions on the ground field K . If not
explicitly stated otherwise, we shall assume that K is a subfield of C, the field
of complex numbers. By AC we denote the complexification of A obtained in an
obvious way by extending the ground field such that dimK A = dimC AC.

An element c is called idempotent if c2 = c and 2-nilpotent if c2 = 0. By

Idm(A) = {0 �= c ∈ A : c2 = c}
we denote the set of all nonzero idempotents of A and the complete set of
idempotents will be denoted by

Idm0(A) = {0} ∪ Idm(A).

The set of all idempotents and 2-nilpotents of A will be denoted by

P(A) = {x ∈ A : either x2 = x or x2 = 0}
If the algebra A is unital with unit e then given an idempotent c ∈ Idm0(A), its

conjugate c̄ := e − c is also idempotent:

c̄2 = (e − c)2 = e − 2c+ c = c̄.

It is also well known that c and c̄ are orthogonal in the sense that cc̄ = 0.
We follow the standard notation and denote by Lx the multiplication operator

(sometimes also called adjoint of x):

Lxy = xy = yx.

RegardingLx as an endomorphism in the vector space A, we define the correspond-
ing characteristic polynomial by

χx(t) = det(Lx − tI ), t ∈ K.



20 Variety of Idempotents 409

Let σ(x) denote the set of (in general complex) roots of the characteristic equation
χx(t) = 0 counting multiplicity. By the made assumption, σ(x) is well defined and
is said to be the Peirce spectrum of x. It is easy to see that if t ∈ K is a root of
χx(t) = 0 then the corresponding Peirce subspace

Ax(t) := ker(Lx − tI )
is nontrivial. Thus, any t ∈ σ(x) ∩K is actually an eigenvalue of Lx .

Now suppose that c ∈ Idm0(A) is a nonzero idempotent. Then t = 1 is an
obvious eigenvalue of Lc (corresponding to c), thus 1 ∈ σ(c). Distinct elements of
the Peirce spectrum σ(c) are called Peirce numbers.

An idempotent c is called semisimple if A is decomposable as the sum of the
corresponding Peirce subspaces:

A =
⊕
i

Ac(λi),

where λi are the Peirce numbers of c. We define in this case the corresponding
Peirce dimensions

nc(λ) = dim ker(Lc − λI).
Note that the number of idempotents in a (finite-dimensional) algebra can not be

very arbitrary. Namely, the set of idempotents can be studied by purely algebraic
geometry methods, an idea coming back to the classical paper of Segre [30]. More
precisely, Segre showed that the set P(A) can be described as the solution set of a
system of quadratic equations over K , actually as intersection of certain quadrics.
This in particular implies that a real or complex algebra without nilpotent elements
always admits idempotents.

For the following convenience we briefly recall Segre’s argument. Let us consider
an algebra over K , not necessarily commutative. Let us associate to A with the
multiplication map

ψA(u, v) = uv : A×A→ A

which is naturally identified with a corresponding element ψA ∈ V ∗ ⊗ V ∗ ⊗ V . If
e = {e1, . . . , en} is an arbitrary basis in A, where n = dimK A, then ψA induces a
K-quadratic polynomial map *A : Kn → Kn defined by

ψA ◦ ε = ε ◦*A, (20.1)

where ε is the coordinatization map

ε(x) :=
n∑
i=1

xiei : Kn → A, x = (x1, . . . , xn) ∈ Kn.
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In this setting, *A is a bilinear map on Kn. Then an element c = ε(x) ∈ A is
idempotent if and only if the corresponding x ∈ Kn is a fixed point of*A(x, x), i.e.

*A(x, x)− x = 0. (20.2)

It is convenient to consider the projectivization of the latter system. Namely, let

*P
A(X) = *A(x, x)− x0x,

where X = (x0, x1, . . . , xn) ∈ Kn+1. The modified equation

*P
A(X) = 0 (20.3)

is homogeneous of degree 2. By the made assumption on K , we can consider
both (20.2) and (20.3) as equations over the complex numbers. Furthermore, (20.3)
defines a variety in CPn. Clearly, if x solves (20.2) then X = (1, x) is a solution
of (20.3), and, conversely, if X = (x0, x) solves (20.3) with x0 �= 0 then 1

x0
x is a

solution of (20.2). In the exceptional case x0 = 0, one has �(x) = 0, i.e. ε(x) is a
2-nilpotent in A.

In summary, there exists a natural bijection (depending on a choice of a basis
in A) between the set P(AC) and all solutions of (20.3) in CPn. In this picture,
2-nilpotents correspond to the ‘infinite’ part of solutions of (20.2) (i.e. solutions
of (20.3) with x0 = 0).

Then the classical Bezóut’s theorem implies the following dichotomy: either
there are infinitely many solutions of (20.3) or the number of distinct solutions is
less or equal to 2n, where n = dimK A. Therefore if the set P(AC) is finite then
necessarily

card P(AC) ≤ 2n (20.4)

We point out that one should interpret a solution to (20.3) in the projective sense.
Some remarks are in order. First note that the above correspondence makes an

explicit bijection between idempotents and 2-nilpotents only in the complexification
AC. In general, if X = (x0, x) is a solution to (20.3) then x ∈ P(A) only if X ∈ Kn.
This, of course, also yields the corresponding inequality over K:

card P(AK) ≤ card P(AC) ≤ 2n. (20.5)

Note, however, that a priori it is possible that there can exist only finitely many
number solutions overK while there can be infinitely many solutions over C.
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20.3 Generic Nonassociative Algebras and the Exceptionality
of 1

2

It is well known that a generic (in the Zariski sense) polynomial system has Bézout’s
number of solutions. In our case, if K = C then an algebra having exactly 2dimA

idempotents (Bézout’s number for (20.3)) is generic in the sense that the subset of
nonassociative algebra structures on V with exactly 2dimA idempotents is an open
Zariski subset in V ∗ ⊗ V ∗ ⊗ V . This motivates the following definition.

Definition 20.3.1 An algebra A overK is called a generic nonassociative algebra,
or generic NA algebra, if its complexification AC contains exactly 2n distinct
idempotents, where n = dimA.

The definition given above should not be confused with similar definitions
of generic subsets for certain distinguished classes of algebras (like a generic
division algebra). Namely, our definition distinguish generic algebras in the class
of all nonassociative algebras. We refer also to [28, p. 196], where the generic
phenomenon is essentially interpreted as the absence of 2-nilpotents and the
presence of idempotents. This supports our definition.

Remark 20.3.2 Note that Definition 20.3.1 together with Bézout’s theorem imply
that if A is generic then neither AC nor A have nonzero 2-nilpotents.

The class of generic NA algebras can be thought of as the most natural model
for testing the above program. First note that the definition itself implies certain
obstructions on the algebras spectrum. The following criterium shows that the
property being a generic for an algebra is essentially equivalent to the fact that the
algebra spectrum does not contain 1

2 .

Theorem 20.3.3 If A is a commutative generic algebra then 1
2 �∈ σ(A). In the

converse direction: if 1
2 �∈ σ(A) and A does not contain 2-nilpotents then A is

generic.

Proof First let us define the associated quadratic map

*A(x) := *A(x, x) : Kn → Kn

and consider the fixed point equation

fA(x) := *A(x)− x = 0. (20.6)

By the commutativity assumption, the multiplication map

*A(x, y) = *A(y, x)
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is symmetric, therefore it is recovered from *A by polarization:

*A(x, y) = 1
2 (*A(x + y)−*A(x)−*A(y)) = 1

2D*A(x) y, (20.7)

in particular, this yields ε(Lxy) = 1
2D*A(x) y for all x, y ∈ Kn, i.e.

ε ◦ Lx = 1
2D*A(x). (20.8)

This yields that

det(D*A(c)− I) = det(2ε ◦ Lc − I)
= 2n det(ε ◦ Lc − 1

2 I)

= 2nχc( 1
2 ).

(20.9)

All the corresponding relations above, of course, are valid as well for D*AC
.

Now, suppose that A is generic. Since the number of idempotents in AC is
maximal (equal to Bézout’s number 2n) and all idempotents are distinct, it follows
that all solutions of (20.6) are regular points, see [10, Sec. 8], [31, Sec. 4], therefore

det(D*A(c)− I) �= 0, ∀c ∈ Idm(A),

therefore, it follows from (20.9) that for any idempotent c ∈ Idm(A): 1
2 �∈ σ(c).

In the converse direction, let 1
2 �∈ σ(A) and let AC does not contain nonzero

2-nilpotents. Arguing by contradiction, let AC have either (i) multiple idempotents
or (ii) infinitely many idempotents. Then (i) and (ii) are respectively equivalent to
saying that Eq. (20.6) has (i) multiple solutions and (ii) infinitely many solutions.

Now, if (i) holds then there is a multiple solution x of (20.6) representing a
multiple idempotent c = ε(x) ∈ Idm(AC). Then det fA(c) = det(D*A(c)−I) = 0,
thus (20.9) implies χc( 1

2 ) = 0, a contradiction. Next, suppose that (ii) holds and let
E := {xk}1≤k≤∞ ⊂ AC be a countable subset of distinct solutions of (20.6). Let
us equip AC with an Euclidean metric ‖x‖. If the set E is unbounded then there
exists a subsequence (we denote it by xk again) such that xk → ∞ as k → ∞,
therefore we have from (20.6) that limk→∞*A(xk/‖xk‖) = 0. This proves by the
standard compactness argument that there exists a unit vector y ∈ AC, ‖y‖ = 1 (an
accumulation point of xk/‖xk‖) such that *A(y) = 0, i.e. y2 = 0 on the algebra
level. The latter means that y is a 2-nilpotent, a contradiction. Finally, if the sequence
xk is bounded then one can find a finite accumulation point, say, z ∈ AC which is the
limit of a subsequence of xk. Clearly, z is a solution of (20.6), therefore ε(z) is an
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idempotent of AC. It also easily follows that z is a non-isolated solution of (20.6),
hence

0 = det(D*A(z)− I) = 2nχz( 1
2 )

a contradiction again. The theorem is proved. ��
Remark 20.3.4 The proof of Proposition 20.3.3 is also valid for the noncommuta-
tive case. But in this case one should require that the spectrum of the symmetrized
multiplication Lc + Rc does not contain 1.

It is interesting to point out here that the classical examples of nonassociative
algebras like Jordan and power-associative algebras are non-generic: indeed they
have 1

2 in the Peirce spectrum. The same property are shared by the Hsiang algebras
mentioned in Sect. 20.1. Furthermore, it was recently remarked in [12, 26] that the
classification of axial algebras depends very much on the inclusion 1

2 ∈ σ(A).
It was already pointed out that the non-generic case is essentially equivalent to the

inclusion 1
2 ∈ σ(AC) except for the case when AC contains nonzero 2-nilpotents.

The latter situation is still close to the generic case: indeed, one can prove that the
syzygies in Theorem 20.4.1 are also valid with some mild restrictions. But the case
1
2 ∈ σ(AC) is really peculiar because in that case normallyAC contains multiple or

infinite number of idempotents. In fact, it follows from Bezóut’s theorem that AC

contains some varieties of idempotents.

Remark 20.3.5 In the case when an algebra A over R or C admits a topological
structure consistent with the multiplicative structure of A, it is also interesting to
study the path connectivity between idempotents, see for example [3, 8]. It turns
out that the inclusion 1

2 ∈ σ(A) is also crucial here. In particularly, in [8], Esterle
proves that two homotopic idempotents may always be connected by a polynomial
idempotent-valued path.

We illustrate the latter remark by the following simple observation. Let A be a
commutative algebra over R containing a smooth path of idempotents (homotopic
idempotents), i.e. c = c(t) ∈ Idm(A), t ∈ � ⊂ R. Then differentiating c2(t) = c(t)

with respect to t yields c(t)c′(t) = 1
2c

′(t), thus 1
2 ∈ σ(c(t)) as long as c(t) is regular

at t . In fact, a stronger property holds.

Proposition 20.3.6 Let A be a commutative finite dimensional algebra over a field
K . If there are idempotents c1, c2 ∈ Idm(A) such that αc1 + (1 − α)c2 ∈ Idm(A)
for some α ∈ K with α(1 − α) �= 0 then αc1 + (1 − α)c2 ∈ Idm(A) for all α ∈ K
and c1 − c2 ∈ Nil2(A). In particular, if Nil2(A) = 0 then any three distinct nonzero
idempotents spans a two-dimensional subspace.

Proof We have

(αc1 + (1 − α)c2)
2 = αc1 + (1 − α)c2, (20.10)
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therefore 2α(1 − α)c1c2 = α(1 − α)(c1 + c2), implying by the made assumption
that c1 + c2 = 2c1c2, or equivalently (c1 − c2)

2 = 0, hence c1 − c2 ∈ Nil2(A). It
also follows that (20.10) holds true for all α ∈ K , as desired. ��

20.4 Syzygies in Generic NA Algebras

In this section we show that a commutative algebra cannot have an arbitrary
spectrum. More precisely, if 1

2 �∈ σ(A) then there exists n = dimA nontrivial
identities on σ(A). This remarkable phenomenon sheds a new light on the spectral
properties of many well-established examples. We discuss these in more detail in
Sect. 20.6 below.

20.4.1 The Principal Syzygies

We need the following version of the celebrated Euler-Jacobi formula which gives
an algebraic relation between the critical points of a polynomial map and their
indices, see [2, p. 106] (see also Theorem 4.3 in [4]).

Theorem (Euler-Jacobi Formula) Let F(x) = (F1(x), . . . , Fn(x)), x ∈ Km, be
a polynomial map and let F̃ (x) be the polynomial map, whose components are the
highest homogeneous terms of the components of F(x). Denote by SC(F ) the set of
all complex roots of F1(x) = F2(x) = . . . = Fn(x) = 0 and suppose that any root
a ∈ SC(F ) is simple and, furthermore, that SC(F̃ ) = {0}. Then, for any polynomial
h of degree less than the degree of the Jacobian: degh < N = −n+∑n

i=1 degFi ,
one has

∑
a∈S(F )

h(a)

det[DF(a)] = 0 (20.11)

where D(·) denotes the Jacobi matrix.

Now, let A be a commutative nonassociative algebra over K . Using the notation
of Sect. 20.2, associate to the multiplicative structure on A the bilinear map *A
by (20.1) such that the multiplication in the algebra ε-conjugates with the Jacobi
map: ε ◦ Lx = 1

2D*A. In this setting, the coordinatization x = ε(c) of an arbitrary
idempotent c ∈ Idm(A) is a fixed point of the quadratic map *A(x) and vice versa,
any fixed point of *A(x) gives rise to an idempotent of A. Then in the notation of
the Euler-Jacobi Formula and (20.6) we have

ε(Idm(A)) = SK(fA). (20.12)
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Similarly, the set of 2-nilpotents of A coincides with the set of solutions of the
reduced system f̃A ≡ *A:

ε(Nil2(A)) = SK(f̃A) = SK(*A).

Furthermore, we have from Theorem 20.3.3 that an idempotent c ∈ Idm(A) is a
regular point of the map fA if and only if

detDfA(c) = 2nχc( 1
2 ) �= 0. (20.13)

Now we are ready to prove the main result of this section.

Theorem 20.4.1 Let A be a generic commutative nonassociative algebra over K ,
dimA = n. Then

∑
c∈Idm0(A)

χc(t)

χc(
1
2 )

= 2n, ∀t ∈ R. (20.14)

In particular,

∑
c∈Idm0(A)

χ
(k)
c ( 1

2 )

χc(
1
2 )

= 0, k = 1, 2, . . . , n (20.15)

where χ(k) denotes the k-th derivative of χ .

Proof In notation of the Euler-Jacobi Formula, we have F(x) = fA(x), F̃ (x) =
*A(x). Since A is generic, it has exactly 2n distinct idempotents, thus they are all
regular points of fA(x), in particular, (20.13) holds for any c ∈ Idm(A). Since A is
generic, we also have from (20.12)

SK(fA) = SC(fA) = ε(Idm(A)) and SK(f̃A) = ε(Nil2(A)) = {0}.

Furthermore, the condition on h reads in the present notation as

degh < N = −n+
n∑
i=1

degFi = −n+ 2n = n.

Therefore, combining the Euler-Jacobi Formula with (20.13), we obtain for any
polynomial h of degree ≤ n− 1 in the variables x1, . . . , xn that

0 =
∑

c∈Idm(A)

h(xc)

det[DfA(xc] =
1

2n
∑

c∈Idm(A)

h(xc)

χc(
1
2 )

(20.16)

where xc ∈ Kn is defined by ε(xc) = c, and c runs over all idempotents in Idm(A).



416 Y. Krasnov and V. G. Tkachev

Let us rewrite the shifted characteristic polynomial as follows:

(−1)nχc(t − 1
2 ) = tn − a1t

n−1 + . . .+ (−1)nan, ak = ak(c).

Then each ak is an elementary symmetric function of the roots t1, . . . , tn of P(t).
By Newton’s identities, the coefficient ak is also expressible as a linear combination
of power sums

pi = pi(c) = t i1 + . . .+ t in.

For example,

a1 = T1(p1) := p1

a2 = T2(p1, p2) := 1
2 (p

2
1 − p2)

a3 = T3(p1, p2, p3) := 1
6 (p

3
1 − 3p1p2 + 2p3), . . .

Each polynomial Tk(p1, . . . , ps) has homogeneous degree s in the sense that all
monomials pm1

1 · · ·pmkk in Tk has the total degree k = m1 + 2m2 + . . .+ kmk .
Next, the power sums can be evaluated as the successive traces of Lc − 1

2 I :

pk(c) = tk1 + . . .+ tkn = tr(Lc − 1
2I)

k =: τk.

Therefore, ak = Tk(τ1, . . . , τk). Now, let us define h(x) in the Euler-Jacobi Formula
above by

hk(x) = Tk(trDfA(x), . . . , tr(DfA(x))k), 0 ≤ k ≤ n− 1.

Note that the entries of the Jacobi matrixDfA(x) are linear functions in the variables
xi , thus deghk = k, which is consistent with the degree condition in the Euler-
Jacobi Formula for all 0 ≤ k ≤ n− 1. By (20.8) and the homogeneity we have

hk(xc) = Tk(trDfA(xc), . . . , tr(DfA(xc))
k) = 2kak(c)

therefore applying (20.16) we obtain

∑
c∈Idm(A)

hk(xc)

χc(
1
2 )

=
∑

c∈Idm(A)

ak(c)

χc(
1
2 )

= 0, 0 ≤ k ≤ n− 1. (20.17)

Since ak(c) = bkχ
(k)
c ( 1

2 ), where bk = (−1)k/(n − k)! does not depend on c,
we derive the identities for the derivatives (20.15). Also, using Taylor’s expansion
χc(t) =∑n

k=0
1
k!χ

(k)
c ( 1

2 )(t − 1
2 )
k yields (20.14). ��
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Theorem 20.4.1 describes the so-called symmetric syzygies, i.e. when the
numerator in (20.14) is a symmetric function of eigenvalues of each c. It is also
convenient to have general scalar and vector syzygies. These are given in the
proposition below.

Proposition 20.4.2 Under conditions of Theorem 20.4.1, let H(x) : Kn → Ks be
a vector-valued polynomial map (s ≥ 1) such that for each coordinate degHi ≤
n− 1, 1 ≤ i ≤ n. Then

∑
c∈Idm0(A)

H(xc)

χc(
1
2 )

= 0, (20.18)

where xc ∈ Kn is defined by ε(xc) = c. In particular,

∑
c∈Idm(A)

c

χc(
1
2 )

= 0, (20.19)

Proof The first identity is just a corollary of (20.16). To prove (20.19), we
apply (20.18) forH(x) = x followed by homomorphism ε. ��
Corollary 20.4.3 Under conditions of Theorem 20.4.1

∑
c∈Idm(A)

χc(t)

χc(
1
2 )

= 2n(1 − tn) (20.20)

and

∑
c∈Idm(A)

χ̃c(t)

χ̃c(
1
2 )

= 2n−1(1+t+. . .+tn−1), where χ̃c(t) = χc(t)

t − 1
. (20.21)

Proof Since χ0(t) = tn, (20.20) follows from (20.14). Next, since 1 ∈ σ(c) for all
idempotents c, one can factorize χc(t) = (t−1)χ̃c(t) so that (20.20) yields (20.21).

��
Remark 20.4.4 Some remarks concerning the number of independent syzygies is in
order. Note first that we do not study this question in details because it requires a
more careful analysis even in the generic case. Formally, it may be thought that the
number of syzygies S is the degree of the polynomial identity in (20.14) minus the
tautological identity obtained when t = 1

2 , i.e. S = n2−1. This is true, for example,
for three scalar syzygies of the generic two-dimensional algebras, see Sect. 20.4.3
below. In fact, the number of nontrivial syzygies is sometimes less than n2 − 1, see
the discussion of unital algebras in the next section. In fact, any a priori assumption
on the algebra structure such as the existence of unity, an algebra identity etc,
of course, decreases the number of possible (‘extra’) syzygies defined by (20.14)
or (20.21). This question deserves a separate study.
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20.4.2 Syzygies in Unital Generic Algebras

Let us consider a unital commutative algebra A. Then the unit e is also a (nonzero)
idempotent. In fact, as we shall see below, the existence of a unit decreases the
number of nontrivial syzygies. This follows from the fact that the spectrum of each
idempotent in a unital algebra is partially prescribed. Indeed, first note that there is
a natural involution map on the set of idempotents in the algebraA: c̄ := e− c is an
idempotent if and only c is (the idempotent c̄ is called the conjugate to c). Then

cc̄ = c(e − c) = c − c = 0,

i.e. each nontrivial (i.e. distinct from the unit and the zero elements) idempotent has
at least the eigenvalues 1 and 0 in its spectrum:

{0, 1} ⊂ σ(c). (20.22)

Furthermore, if dimA = n then the corresponding characteristic polynomials are
obviously related as follows:

χc̄(t) = (−1)nχc(1 − t). (20.23)

For example, χ0(t) = tn and χe(t) = (t − 1)n.
Suppose now that A is generic. Then it has exactly 2n distinct idempotents

(including the zero and the unit elements). Observe that c̄ �= c because otherwise
c = c2 = cc̄ = 0 implying c = 0, and on the other hand, c = c̄ = e − c = e,
a contradiction. Thus, the conjugation c → c̄ splits up the set of all idempotents
Idm0(A) into 2n−1 distinct pairs of idempotents. Let

Idm+(A) := {c0 = 0, c1, . . . , c2n−1−1}

be set of some representatives of the pairs (of course, this choice is not unique).

Proposition 20.4.5 Let A be a unital generic algebra of dimension n ≥ 2 and let
Idm+(A) be set of some representatives of the pairs. Then

∑
c∈Idm+(A)

χc(
1
2 + s)+ χc( 1

2 − s)
χc(

1
2 )

= 2n. (20.24)

Proof We have from (20.23) for any c ∈ Idm+(A) that

χc̄(
1
2 + s) = (−1)nχc( 1

2 − s), (20.25)
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and therefore

χc̄(
1
2 ) = (−1)nχc( 1

2 ).

Therefore

PA(s) := −2n +
∑

c∈Idm0(A)

χc(t)

χc(
1
2 )

= −2n +
∑

c∈Idm+(A)

1

χc(
1
2 )
(χc(

1
2 + s)+ χc( 1

2 − s))

is an even polynomial. Also, according to (20.14) P(s) ≡ 0, as desired. ��
Below we consider some applications for small dimensions. First suppose that

n = 2. Then Idm+(A) = {c}, where Idm0(A) = {0, e, c, c̄}, and χc(t) = (t −
1)(t − λ), i.e. χc( 1

2 + s) = (s − 1
2 )(s + 1

2 − λ). Applying (20.24) yields

χc(
1
2 − s)+ χc( 1

2 + s)
χc(

1
2 )

= 4 − χ0(
1
2 − s)+ χ0(

1
2 + s)

χ0(
1
2 )

≡ 2(1 − 4s2),

therefore 8s2λ = 0, hence λ = 0 and χc(t) = (t − 1)t . The latter conclusion can
also easily be derived directly from (20.22).

Next consider the case n = 3. Then Idm+(A) = {0, c1, c2, c3} and (20.24)
yields

3∑
i=1

χci (
1
2 − s)+ χci ( 1

2 + s)
χci (

1
2 )

= 8 − χ0(
1
2 − s)+ χ0(

1
2 + s)

χ0(
1
2 )

≡ 6(1 − 4s2).

(20.26)

Since n = 3 and (20.22), the characteristic polynomials of ci is χci (t) = t (t−1)(t−
αi), i = 1, 2, 3, αi ∈ C. An easy analysis shows that (20.26) holds identically.

This shows that there are no nontrivial syzygies (on the eigenvalues) in a
3-dimensional unital algebra. See also (20.44) below for an example of a 3-
dimensional Matsuo algebra whose algebra spectrum is σ(A) = {0, 1, α, 1 − α},
α ∈ C.

Finally, consider n = 4. Then Idm+(A) = {0, c1, c2, c3, c4, c5, c6, c7} and
χci (t) = t (t − 1)(t − αi)(t − βi), 1 ≤ i ≤ 7, αi, βi ∈ C, hence (20.24) yields

7∑
i=1

χci (
1
2 − s)+ χci ( 1

2 + s)
χci (

1
2 )

= 2(1 − 4s2)(4s2 + 7). (20.27)
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Note that the left hand side (20.27) is an even degree polynomial, therefore (20.27)
implies totally three identities. But (20.27) is satisfied identically for s = 1

2 and
s = 0. Therefore there exists only one nontrivial syzygy. One can, for example,
equate the coefficients of s4 in (20.27), which yields

7∑
i=1

1

( 1
2 − αi)( 1

2 − βi)
= 4. (20.28)

20.4.3 Spectral Theory of Two-Dimensional Algebras

The algebras in dimension two are well-understood and classified, see for example
[6, 7, 24, 25, 37]. Below we revisit two-dimensional commutative algebras with
emphasis on the idempotent and syzygies aspects. Our main goal is to show that
in the two-dimensional case there exists essentially one nontrivial syzygy, which
agrees perfectly with Remark 20.4.4 above.

We want to point out that in that case it is possible to derive the principal
syzygy (20.14) by pure algebraic argument, without resorting to Bezóut’s theorem,
and for a field K of any characteristic (non necessarily algebraically closed).

Proposition 20.4.6 Let A be a nonassociative commutative algebra over a fieldK ,
dimK A = 2. Let c1 �= c2 and ci ∈ Idm(A). Then either of the following holds:

(i) 1
2 ∈ σ(ci) for some i = 1, 2;

(ii) there exists exactly three distinct nonzero idempotents in A;
(iii) there exists exactly two distinct nonzero idempotents c1 and c2 and a nonzero

2-nilpotent;

Proof Since c1 �= c2, they are linearly independent, thus form a basis in A. Write
c1c2 = αc1 + βc2, α, β ∈ K . Then σ(c1) = {1, β} and σ(c2) = {1, α}.

Let us assume that (i) does not hold, i.e. α, β �= 1
2 . Consider u = xc1 + yc2,

x, y ∈ K . Then

u2 = x(x + 2αy)c1 + y(2βx + y)c2. (20.29)

If the determinant

∣∣∣∣ 1 2α
2β 1

∣∣∣∣ = 1−4αβ = 0 then β = 1
4α , hence c1c2 = αc1+ 1

4α c2,

therefore

(c1 − 1
2α c2)

2 = 0.
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Therefore 0 �= c1− 1
2α c2 ∈ Nil2(A). Let us show that there are not other idempotents

in A except for c1 and c2. Indeed, if u is such an idempotent then xy �= 0 (otherwise
u = c1 or u = c2), hence (20.29) yields

{
x + 2αy = 1
2βx + y = 1

(20.30)

thus, using β = 1
4α implies 2α = 1, a contradiction. Therefore one comes to (iii).

If the determinant is nonzero:� := 1 − 4αβ �= 0 then there exists a solution

(x, y) =
(1 − 2α

�
,

1 − 2β

�

)

of (20.30) which implies u ∈ A such that u2 = u. Note that by the assumption
(1 − 2α)(1 − 2β) �= 0, hence xy �= 0, i.e. u is distinct from c1, c2. Therefore, we
have three distinct idempotents, i.e. (ii). It also follows that in that case there exists
exactly three idempotents. ��

Now, let us consider the case of a generic algebra of dimension 2.

Theorem 20.4.7 Let A be a nonassociative commutative algebra over a field K
with dimK A = 2. Suppose that there exists three distinct nonzero idempotents ci ,
i = 1, 2, 3. Then

4λ1λ2λ3 − λ1 − λ2 − λ3 + 1 = 0, (20.31)

where σ(ci) = {λi}.
Proof Any pair of distinct idempotents is a basis ofA. Decompose cicj = xci+ycj
for i �= j . Then σ(ci) = {1, y} and σ(cj ) = {1, x}. This yields

c1c2 = λ2c1 + λ1c2, (20.32)

c2c3 = λ3c2 + λ2c3, (20.33)

c3c1 = λ1c3 + λ3c1, (20.34)

for some λi ∈ K . In particular, this implies that each idempotent is semi-simple and
σ(ci) = {1, λi}, i = 1, 2, 3.

Next, by our assumption c1, c2, c3 are distinct, hence

c3 = a1c1 + a2c2, a1, a2 ∈ K, a1a2 �= 0, (20.35)

hence substituting the latter identity in (20.34)

(a1c1 + a2c2)c1 = λ1(a1c1 + a2c2)+ λ3c1,
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one finds by virtue of (20.32) that (a1(1 − λ1)+ a2λ2 − λ3)c1 = 0 implying

λ3 = (1 − λ1)a1 + λ2a2. (20.36)

Arguing similarly with (20.33) one arrives at

λ3 = λ1a1 + (1 − λ2)a2. (20.37)

This yields

a1(1 − 2λ1) = a2(1 − 2λ2).

Let first λ1 = 1
2 . Then by the assumption a2 �= 0, hence λ2 = 1

2 , which obviously
satisfies (20.31) for any λ3. Next, if λ1 �= 1

2 then λ2 �= 1
2 and we have

a2

a1
= 1 − 2λ1

1 − 2λ2
. (20.38)

On the other hand, rewriting (20.35) as

c1 = − 1

a1
c3 + a2

a1
c2 = b3c3 + b2c2,

we obtain for symmetry reasons that −a2 = b2
b3

= 1−2λ3
1−2λ2

, hence from (20.38) we

also have −a1 = 1−2λ3
1−2λ1

. Summing up (20.36) and (20.37) we obtain

2λ3 = a1 + a2 = −(1 − 2λ3)

(
1

1 − 2λ1
+ 1

1 − 2λ2

)
(20.39)

which readily yields (20.31). The proposition follows. ��
Remark 20.4.8 For any triple λ1, λ2, λ3 satisfying (20.31), it is easy to construct
an algebra with three idempotents having the spectrum σ(ci) = {1, λi}. The
relation (20.31) (as well as (20.41) below) appears in the classification of rank
three algebras by S. Walcher, see [37, p. 3407]. See also our recent discussion in
connection to idempotent geometry in [16].

Now we show that (20.31) is actually equivalent to the principal syzy-
gies (20.15). To this end, note that if λi �= 1

2 then (20.39) yields also another form
of (20.31), namely

1

1 − 2λ1
+ 1

1 − 2λ2
+ 1

1 − 2λ3
= 1. (20.40)
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Taking into account that χc0(t) = t2, where c0 = 0 is the trivial idempotent, the
latter equation can be written as

1

χc0(
1
2 )

+ 1

χc1(
1
2 )

+ 1

χc2(
1
2 )

+ 1

χc3(
1
2 )

= 0. (20.41)

This yields the syzygy in (20.15) for k = n = 2. Another (the last for n = 2)
possibility is k = 1 when (20.15) becomes

3∑
i=0

χ ′ci (
1
2 )

χci (
1
2 )

= 0. (20.42)

Since χ ′ci (
1
2 ) = −λi for i �= 0 and χ ′c0

( 1
2 ) = 1, one readily verifies that (20.42) is

in fact equivalent to (20.41).
We have two further corollaries of (20.41).

Corollary 20.4.9 Let A be a nonassociative commutative algebra over a field K ,
dimK A = 2, and let ci , i = 1, 2, 3 be three nonzero idempotents. If 1

2 ∈ σ(ci) for
some i then at least one of the remained idempotents has the same property.

Proof Indeed, let S(λ1, λ2, λ3) denote the left hand side of (20.31). Then S is
irreducible in C[λ1, λ2, λ3]. But if λi = 1

2 for some i, say λ3 = 1
2 then S factorizes

as follows:

S(λ1, λ2,
1

2
) = 1

2
(2λ1 − 1)(2λ2 − 1)

This yields the desired conclusion. ��
Corollary 20.4.10 Given two linearly independent idempotents e1, e2 in a two
dimensional non associative algebra A over a field K , its multiplication table
contains explicitly the Peirce numbers of e1, e2.

Proof It follows immediately from (20.32)–(20.34). ��
Remark 20.4.11 Such a multiplication table structure may be recognized as a
diagonal, where the spectral parameters are presented explicitly.

20.5 Algebras with a Prescribed Peirce Spectrum

The spectrum of any nonzero idempotent contains 1. If algebra is unital then the
spectrum of any nontrivial idempotent contains 0 and 1 (see Sect. 20.4.2). There are
many algebras sharing a remarkable property: the spectrum of all or a ‘large’ subset
of idempotents is constant or contains some prescribed values. It is interesting to
know which common properties such algebras have.
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20.5.1 Isospectral and Nearly Isospectral Algebras

The first natural and nontrivial example which can be treated by virtue of the
constructed syzygies are generic algebras with constant spectrum.

Definition 20.5.1 An algebra is said to be isospectral if all nonzero idempotents
have the same spectrum (counting multiplicities).

One such family is the Hsiang (or REC) algebras, see [22, 35, 36, sec. 6]. More
precisely, a Hsiang algebra A is a commutative algebra over R with a symmetric
bilinear form 〈; 〉 (see the definition (20.48) below) such that for any element x ∈ A
two following identities hold:

〈x2; x3〉 = 〈x; x2〉〈x; x〉, trLx = 0.

It can be proved that the spectrum of any idempotent in A is constant and contains
only the eigenvalues±1 and± 1

2 (with certain multiplicities independent on a choice

of an idempotent). However, since 1
2 ∈ σ(c), Hsiang algebras are not generic

(any Hsiang algebra contains infinitely many idempotents). Therefore, the above
syzygies are not applicable here.

Nevertheless, in two dimensions an algebra with constant spectrum can be easily
constructed. Let us consider a commutative two-dimensional algebra generated by
e1 and e2 with identities

e2
1 = −e2

2 = e1, e1e2 = e2e1 = −e2.

A simple analysis reveals that there is exactly 4 = 22 idempotents:

c0 = 0, c1 = e1, and c2,3 = − 1
2e1 ±

√
3

2
e2.

In particular, A is a generic algebra over R. It is easily verified that the algebra A
possesses the constant spectrum property: the spectrum of any nonzero idempotent
is the same:

σ(ci) = {1,−1}, i = 1, 2, 3.

One can readily prove that in dimension 2 any commutative algebra with the above
property is necessarily isomorphic to A.

In the general case, one has the following observation.

Corollary 20.5.2 If A is a generic algebra, n = dimA, such that all nonzero
idempotents has the same spectrum then for any c ∈ Idm0(A), χc(t) = (−1)n(tn −
1). In other words, if A is such an algebra then

σ(c) = {e 2πk
√−1
n , k = 0, 1, 2, . . . , n− 1} (20.43)

for any idempotent c �= 0.
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Proof Since the characteristic polynomial χc(t) is the same for all nonzero idem-
potents c then using (20.20) we obtain that

χc(t)

χc(
1
2 )

= 2n(1 − tn)
2n − 1

and the desired conclusion follows immediately from the last identity. ��
It is interesting to know whether an algebra satisfying the conditions of Corol-

lary 20.5.2 is realizable for any n ≥ 3. The following example shows that this holds
at least for n = 3.

Example 20.5.3 Let us consider a three dimensional commutative algebra over C
generated by idempotents c1, c2, c3 with the multiplication table

cicj = αci + βcj + γ ck, where (i, j, k) is a cyclic permutation of (1, 2, 3),

with the structure constants

α = γ − 1, β = −γ, where γ = 1
4 − 1

4

√−7

The algebra A is generic because, except for the basis idempotents ci , there exists
exactly 4 = 7 − 3 nonzero idempotents, namely

c4 = −γ (c1 + c2 + c3)

c5 = (γ − 1)c1 − γ c2 + γ c3,

c6 = γ c1 + (γ − 1)c2 − γ c3,

c7 = −γ c1 + γ c2 + (γ − 1)c3.

A straightforward verification shows that all idempotents have the same spectrum

σ(ci) = {1, 1
2 (−1 ±√−3}, ∀ci ∈ Idm0(A).

Note that the spectrum is constant and its elements are exactly the three roots of z3−
1 = 0 given in (20.43). Furthermore, it can be seen the validity of syzygies (20.19):

7∑
i=1

ci = 0.

One can prove that any three-dimensional generic algebra satisfying conditions of
Corollary 20.5.2 is necessarily isomorphic to the above algebra.

Remark 20.5.4 The above expressions for idempotents do not look very illumi-
nating, but closer inspection reveals some structure. In fact, one can see that the
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multiplication in an algebra constructed in Example 20.5.3 satisfies the medial
quasigroup identity [18, p. 270]: (xy)(zw) = (xz)(yw). We discuss this phe-
nomenon in more details and show that there exist isospectral algebras in any
dimension in a forthcoming paper [17].

Remark 20.5.5 Dropping the requirement that the algebraA is generic, yields many
other families of nonassociative isospectral or nearly isospectral algebras. See for
example an algebra with finitely many idempotents given in Sect. 20.6.10 below.

Let us relax the constant spectrum property and consider a generic algebra such
that all idempotents has a common value in the spectrum.

Corollary 20.5.6 Let A be a generic isospectral algebra. If α ∈ σ(c) for all
nonzero c ∈ Idm0(A) then αn = 1 and α �= 1.

Proof If α �= 1 is a common value of the spectrum σ(c) for all c �= 0 then it
is a common root of all χ̃c(t) in (20.21), hence t − α divides the right hand side
of (20.21), implying the desired conclusion. ��

20.5.2 Algebras with a Thin Spectrum

It was already mentioned in Sect. 20.1, that many interesting examples of nonas-
sociative algebras share another characteristic property: the spectrum of each
idempotent consists only of few distinct prescribed eigenvalues. The classically
known model examples here are associative algebras with the Peirce spectrum {0, 1}
and power-associative and Jordan algebras with the Peirce spectrum {0, 1

2 , 1}. In
general, if an algebra satisfies an identity of lower degree then its Peirce spectrum
is ‘thin’ and its explicit form can be characterized effectively, see [36].

Another prominent example is the 196,883-dimensional nonassociative commu-
tative Griess-Norton algebra M [11] whose authomorphism group is the Monster,
the largest sporadic simple group. The algebra M are generated by idempotents
with the Peirce spectrum {0, 1, 1

4 ,
1

32 } [13]. There are many interesting subalgebras
emerging in the context of M, for example, the Matsuo algebra 3Cα considered
below. It is a particular case of the so-called Matsuo algebras family [21, 27].

More precisely, let us consider the three-dimensional algebra A = 3Cα over
a field K containing α and char(K) �= 2 spanned by three idempotents e1, e2, e3
subject to the algebra identities

eiej = α
2 (ei + ej − ek), {i, j, k} = {1, 2, 3}. (20.44)

Then a simple analysis reveals that if α �= −1 and α �= 1
2 then there exists exactly

7 = 23 − 1 distinct nonzero idempotents, namely

e7 = 1
α+1 (e1 + e2 + e3),

e3+i = ēi , i = 1, 2, 3,
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where e7 is the algebra unit and c̄ = e7−c is the conjugate idempotent. In summary
we have (see also [26])

Proposition 20.5.7 If α �= −1, 1
2 then the Matsuo algebra 3Cα is a 3-dimensional

generic unital algebra. Its spectrum is given as follows:

σ(e0) = {0, 0, 0}, σ (e7) = {1, 1, 1},
σ (ei) = {0, α, 1}, σ (ēi ) = {0, 1 − α, 1},

where e0 = 0 and i = 1, 2, 3.

Remark 20.5.8 In the exceptional case α = 1
2 , there exists an infinite family of

idempotents cx := x1e1 + x2e2 + x3e3 on the circle

(x1 − 1
3 )

2 + (x2 − 1
3 )

2 + (x3 − 1
3 )

2 = 2
3 , x1 + x2 + x3 = 1. (20.45)

Then e1, e2, e3, e4, e5, e6 lie on the circle (20.45), while e0 = 0 and the unit e7 lies
outside, see the figure below.

e0

e7

e2 e5
e3

e4e1e6

One readily verifies that the Peirce spectrum of all c lying in (20.45) is the same
and is equal to σ(c) = { 1

2 , 1, 0}. In particular, the only Matsuo algebra 3C 1
2

is a
power associative.

20.5.3 The Generalized Matsuo Algebras

The last example admits the following generalization. Let us define A = 3Cα,ε
being the three-dimensional algebra overK containing α,ε, charK �= 2 and spanned
by three idempotents e1, e2, e3 subject to the algebra identities

eiej = α

2
(ei + ej )+ (ε − α)

2
ek, {i, j, k} = {1, 2, 3}. (20.46)
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This obviously determines a unique algebra structure on K3. Note that

3Cα = 3Cα,0,

and the new algebra structure can be thought of as a perturbation of the original
structure. Under conditions (20.46), the spectrum of each ei is found to be

σ(ei) = {1, α − 1
2ε,

1
2ε}.

Furthermore, a simple analysis reveals that if

(α + 1 + ε)(ε − 1)γ �= 0, (20.47)

γ := α + 1 + ε(ε − 2α − 1),

then there exists exactly 7 = 23 − 1 distinct nonzero idempotents in A, i.e. the
algebra 3Cα,ε is generic. In that case the remained four idempotents are

e7 = 1

α + 1 + ε (e1 + e2 + e3),

e3+i = (1 − ε)(α + 1 + ε)
γ

e7 − α + 1 − 2ε

γ
ei, i = 1, 2, 3.

One also can readily see that the idempotent e7 is the unity element in A if and only
if ε = 0 (in which case, the algebra 3Cα,0 is isomorphic to the Matsuo algebra 3Cα).
The Peirce spectrum then is found to be

σ(e7) = {1, μ,μ}, where μ = 1 − 3ε

2(1 + α + ε)
and

σ(ei+3) = {1, ε(2 − α − ε)
2γ

,
2(1 − α2)+ ε(3α − ε − 2)

2γ
}, i = 1, 2, 3.

In summary, for generic α and ε the Peirce spectrum of A except for 0 and
1 contains five distinct Peirce numbers.1 It is also straightforward to see that the
syzygies, for example in the form (20.21), hold for the obtained algebra spectrum.

Remark 20.5.9 In the exceptional cases ε = 1 and ε = 2α − 1, there exists an
infinite family of (non isolated) idempotents and for γ = 0 there are 2-nilpotent
elements.

1A three dimensional generic algebra may a priori have 14 = (23−1)×(3−1) distinct eigenvalues
except 0 and 1.
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20.6 Metrized Algebras

Note that many examples discussed in Introduction are metrized algebras: they obey
a non-trivial bilinear form 〈x; y〉 which associates with multiplication, i.e.

〈xy; z〉 = 〈x; yz〉 for all x, y, z ∈ A, (20.48)

(cf. [5], [15, p. 453]). The standard examples are Lie algebras with the Killing
form and Jordan algebras with the generic trace bilinear form. We say that A is
a Euclidean metrized algebra if the bilinear form

〈x; y〉

is positive definite. Sometimes an associative bilinear form is also called a trace
form [29].

The condition (20.48) is very strong and implies that the multiplication operator
Lx : y → xy is self-adjoint for any x ∈ A:

〈Lxy; z〉 = 〈y;Lxz〉, ∀x, y, z ∈ V. (20.49)

In particular, all idempotents are automatically semisimple. If additionally A is an
algebra over R then Lx has a real spectrum for any x.

20.6.1 Algebras of Cubic Forms

The category of metrized algebras is in a natural correspondence with the category
of cubic forms on vector spaces with a distinguished inner product. Since the latter
is an analytic object, it has many computational advances and is a useful tool for
constructing diverse examples of non-associative algebras. Below, we briefly recall
the correspondence, see also [22, 33, 34].

Let V be an inner product vector space, i.e. a vector space overK endowed with
a non-singular symmetricK-bilinear form 〈x; y〉. Given a cubic form u(x) on V we
define the multiplication by duality:

xy := the unique element satisfying 〈xy; z〉 = u(x, y, z) for all z ∈ V (20.50)

where

u(x, y, z) = u(x + y + z)− u(x + y)− u(x + z)− u(y + z)+ u(x)+ u(y)+ u(z)

is the linearization of u. Since 〈·; ·〉 is nonsingular, such an element xy exists and
unique. Thus defined algebra is denoted by V (u) if the bilinear form 〈; 〉 is obvious.
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Note also that the trilinear form u(x, y, z) is symmetric, hence the algebra V (u)
is always commutative. It follows from the homogeneity that the cubic form u is
recovered by

6u(x) = u(x, x, x) = 〈x; x2〉. (20.51)

Moreover, in this setting, the directional derivative (or the first linearization of u) is
expressed by

∂yu(x) = 1
2u(x, x, y) =: u(x; y) (20.52)

hence the multiplication is recovered explicitly by

xy = D2u(x)y = D2u(y)x, (20.53)

where D2u(x) is the Hessian matrix of u at x. In particular, the gradient of u(x) is
essentially the square of the element x (in V (u)):

Du(x) = 1
2xx = 1

2x
2. (20.54)

The following correspondence is an immediate corollary of the definitions.

Proposition 20.6.1 Given a vector space V with a non-singular symmetric bilinear
form 〈·; ·〉, there exists a canonical bijection between the vector space of all cubic
forms on V and commutative metrized algebras with the multiplication (x, y)→ xy

uniquely determined by (20.50).

Proposition 20.6.2 The metrized algebra V (u) is a zero algebra if and only if
u ≡ 0.

Proof Let A = V (u) be a non-zero metrized algebra. Suppose by contradiction
that u(x) ≡ 0, then 〈x; x2〉 ≡ 0 and the polarization yields 〈xy; z〉 ≡ 0 for all
x, y, z ∈ V , thus xy = 0 implying AA = {0}, a contradiction. In the converse
direction, if u(x) �≡ 0 then u(x0) = 1

6 〈x0; x2
0〉 �= 0 for some x0, which obviously

yields x0x0 �= 0, hence V (u) is a non-zero algebra. ��
Proposition 20.6.3 IfA is a nonzero Euclidean metrized algebra then Idm(A) �= ∅.

Proof Let S = {x ∈ V : 〈x; x〉 = 1} for the unit hypersphere S in V . Then S is
compact in the standard Euclidean topology on V . By Proposition 20.6.2, the cubic
form u(x) = 1

6 〈x2; x〉 �≡ 0. Since u is continuous as a function on S, it attains its
global maximum value there, say at some point y ∈ V , 〈y; y〉 = 1. Since u is an
odd function, the maximum value u(y) is strictly positive. We have the stationary
equation 0 = ∂xu|y whenever x ∈ V satisfies the tangential condition 〈x; y〉 = 0.
Thus, using (20.52) we obtain

0 = ∂xu|y = 3u(y; x) = 1
2 〈y2; x〉
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which implies immediately that y and y2 are parallel, i.e. y2 = ky, for some k ∈ R
×

(observe also that k > 0 by virtue of 0 < u(y) = 〈y2; y〉 = k〈y; y〉). Scaling y
appropriately, namely setting c = y/k yields c2 = c. ��
Definition 20.6.4 An idempotent c ∈ V (u) constructed in the course of proof of
Lemma 20.6.3 will be called extremal.

In other words, the set of extremal idempotents coincide with the set of suitably
normalized global maximum points of the (degree zero homogeneous) function
〈x; x2〉〈x; x〉−3/2. It follows that if c is an extremal idempotent and c1 is an arbitrary
idempotent then

1

‖c‖ = 〈c; c2〉
〈c; c〉3/2 ≥ 〈c1; c2

1〉
〈c1; c1〉3/2 = 1

‖c1‖ ,

i.e. the extremal idempotents have the minimal possible norm among all idempo-
tents in A.

Remark 20.6.5 See [19] for a topological proof of the existence of an idempotent
element in nonassociative algebras, and also [20] for further generalizations.

20.6.2 The Exceptional Property of 1
2 in Euclidean Metrized

Algebras

Proposition 20.6.6 Let A be a Euclidean metrized algebra. Then for any extremal
idempotent c there holds

σ(c) ⊂ (−∞, 1
2 ].

In particular, 1 is a simple eigenvalue of Lc.

Proof Then f (x) = 〈x2;x〉
|x|3 is a homogeneous of degree zero function which is

smooth outside the origin. We have

∂yf |x = 3(〈x2; y〉|x|2 − 〈x2; x〉〈x; y〉)
|x|5 , (20.55)

implying 1
3Df (x) = x2|x|2−〈x2;x〉x

|x|5 . Arguing similarly, we have for the second
derivative

1
3∂zDf (x) =

2|x|4xz − 3|x|2(x2〈x; z〉 + 〈x2; z〉x) − 〈x2; x〉|x|2z+ 5〈x; z〉〈x2; x〉x)
|x|7 ,
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hence

1
3D

2f (x) = 2|x|4Lx − 〈x2; x〉|x|2 − 3|x|2(x ⊗ x2 + x2 ⊗ x)+ 5〈x2; x〉x ⊗ x

|x|5 .

(20.56)

Now let c be an extremal idempotent of V . Then c2 = c and D2f (c) ≤ 0. The
second condition implies

2Lc − 1 ≤ c ⊗ c.

Since Lc is self-adjoint and Rc is an invariant subspace of Lc: Lc = 1 on Rc, the
orthogonal complement c⊥ = {x ∈ V : 〈x; c〉 = 0} is an invariant subspace too.
Indeed, if 〈x; c〉 = 0 then

〈Lcx; c〉 = 〈x;Lcc〉 = 〈x; c〉 = 0.

Therefore, using c ⊗ c = 0 on c⊥ = {x ∈ V : 〈x; c〉 = 0} we obtain 2Lc − 1 ≤ 0
there, which yields the desired conclusion. ��

The presence of the exceptional value 1
2 in the spectrum of a metrized algebra

implies that the corresponding Peirce subspace possesses a certain fusion rule.

Proposition 20.6.7 If c is an extremal idempotent and 1
2 ∈ σ(c) then 〈z2; z〉 = 0

for all z ∈ Ac( 1
2 ). In other words, the following fusion rule holds:

Ac(
1
2 )Ac(

1
2 ) ⊂ Ac(

1
2 )

⊥. (20.57)

Proof Let z ∈ Ac(
1
2 ). Using (20.55) and (20.56) for x = c yields the directional

derivatives respectively

∂f

∂z

∣∣
x=c=

∂2f

∂z2

∣∣
x=c= 0.

Therefore, since c is a local maximum point of f (x) = 〈x2;x〉
|x|3 , we have for the

higher derivatives ∂
3f

∂z3

∣∣
x=c= 0 and ∂4f

∂z4

∣∣
x=c ≥ 0. Using (20.56) we have

1

3

∂2f

∂z2 = 2|x|2〈x; z2〉 − 6|x|2〈x; z〉〈x2; z〉 + 5〈x2; x〉〈x; z〉2 − 〈x2; x〉|z|2
|x|7 .

Differentiating the latter identity and substituting x = c yields by virtue of c2 = c

and 〈c; z〉 = 0 that

1

6

∂3f

∂z3

∣∣
x=c =

〈z2; z〉
|x|3 = 0.
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Then polarization of 〈z2; z〉 = 0 in Ac( 1
2 ) yields the desired fusion rule (20.57). ��

The exceptionality of 1
2 has also been recently discussed in [36].

20.6.3 Some Examples of Algebras of Cubic Forms

Below, we consider some concrete examples of cubic forms on the Euclidean
space Rn and the corresponding metrized algebras. Recall that in this case, all
idempotents are semi-simple: roots of the characteristic polynomialχc(t) are always
real and the corresponding orthogonal decomposition in eigen-subspaces is the
Peirce decomposition associated with c.

Example 20.6.8 Let us consider the algebra of cubic form u1 = 1
6 (x

3
1 + . . .+ x3

n).
The algebra multiplication is determined by virtue of (20.53):

xy = (x1y1, . . . , xnyn),

i.e. the algebra V (u1) is reducible and isomorphic to the product R × . . .× R. It is
easy to see that V (u1) has exactly 2n idempotents which coincide with the vertices
of the unit cube in Rn:

cx = (x1, . . . , xn), where xi = 0 or 1,

The spectrum consists of two different values: λ ∈ {0, 1}. For each idempotent,

σ(cx) = {1m, 0n−m}, wherem = x1 + . . .+ xn.

Example 20.6.9 Let us consider a perturbation of the algebra V (u1) of the cubic
form from Sect. 20.6.8 for n = 3. Then V (u1) ∼= R×R×R with the total spectrum
(counting total multiplicities over all 8 = 23 idempotents in V (u1))

(
0︸︷︷︸
12

, 1︸︷︷︸
12

)

Define a perturbation by adding the term = εx1x2x3, ε ∈ R:

u1,ε(x) = εx1x2x3 + 1
6 (x

3
1 + x3

2 + x3
3).

Then one can show that for ε �∈ {± 1
2 ,

1
4 , 1} the new algebra is also generic and the

corresponding total spectrum is

(
0︸︷︷︸
3

, ε︸︷︷︸
3

, ε︸︷︷︸
3

,
2ε(1 − ε)

1 − 2ε + 4ε2︸ ︷︷ ︸
3

, 1︸︷︷︸
7

,
1 − ε
1 + 2ε︸ ︷︷ ︸

2

,
1 − 2ε − 2ε2

1 − 2ε + 4ε2︸ ︷︷ ︸
3

)
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Another interesting case when V (u1,ε) is still generic, is when ε = 1. Then the
total spectrum becomes much smaller:

(
0︸︷︷︸
8

, −1︸︷︷︸
6

, 1︸︷︷︸
10

)

In this case the algebra contains the maximal number (totally 8) idempotents with
resp. spectrum

(03)⊕ (02, 1)⊕ 3 · (0,−1, 1)⊕ 3 · (−1, 1, 1)

Example 20.6.10 Let u2 = 1
2x1(x

2
3 − x2

4) + ix2x3x4. The algebra V (u2) over C
has 9 (of 16 = 24 maximally possible) isolated nonzero idempotents, (normalized)
2-nilpotents that lie in the two dimensional subspace x3 = x4 = 0. All idempotents
have the same Peirce spectrum:

− 1
4 −

√
7

4
, − 1

2 , − 1
4 +

√
7

4
, 1

Note also that the trace trLc = 0.

Example 20.6.11 Let us consider the algebra V (u) of the cubic form

u(x) = 1
6 (3x

2
1 + 3x2

2 − (4k2 − 2)x2
3)x3, x ∈ R

3,

where k ∈ R×. Then except for c0 = (0, 0,− 1
4k2−2 ), all real nonzero idempotents

lie on the circle

c = {x ∈ R
3 : x2

1 + x2
2 = k2, x3 = 1

2 }.

There are no nontrivial 2-nilpotents in V (u). The idempotents c lying on the circle
have the same Peirce spectrum: σ(c) = {1, 1

2 ,
1
2 −2k2}, while the spectrum σ(c0) =

{1,− 1
4k2−2 ,− 1

4k2−2 }.
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21.1 Introduction

21.1.1 The State of Art

Some decades ago Gürlebeck and Sprössig have shown on their book [22] that the
theory of finite difference potentials offers the possibility to study the solution of
boundary value problems from the knowledge of the discrete fundamental solution,
when a finite difference approximation of the Dirac operator is considered. Such
method was sucessfully applied on the papers [13, 14] to compute numerically the
solution of boundary value problems.

There are already some recent contributions that recognizes that the theory of
finite difference potentials presented by Gürlebeck and Sprössig on their book may
also be used to describe the solution of boundary value problems on half-lattices
[5, 6] by a discrete version of the Hilbert transform.

It is almost well-known that the [discrete] Hilbert transform is nothing else than
a Riesz type transform in disguise (cf. [3, 4]), that may be derived formally from the
subordination formula

(−�h)−α = 1

�(α)

∫ ∞

0
exp (t�h) t

α dt

t

in the limit α → 1
2 (cf. [7, section 6]). Hereby �h denotes the star-Laplacian

operator on the lattice hZn (that will be introduced later on Sect. 21.1.2 via
Eq. (21.2)). Thereby, the solutions of Riemann-Hilbert type problems may be
recovered by the solution of a time-evolution problem of Cauchy-Riemann type
(cf. [7, Proposition 6]).

A great deal of work has been done recently by Dattoli and his collaborators to
extend the operational framework to relativistic wave equations of Dirac type (cf. [2,
10–12]). At the same time there has been interest in studying evolution problems
in the context of hypercomplex variables, namely discretized variants for the heat
equation (cf. [1]) and for the Cauchy-Kovaleskaya extension (cf. [8]).

21.1.2 Problem Setup

Let e1, e2, . . . , en, en+1, en+2 . . . , e2n be an orthogonal basis of the Minkowski
space-time Rn,n, and C
n,n the Clifford algebra of signature (n, n) generated from
the set of graded anti-commuting relations

ejek + ekej = −2δjk, 1 ≤ j, k ≤ n

ejen+k + en+kej = 0, 1 ≤ j, k ≤ n

en+j en+k + en+ken+j = 2δjk, 1 ≤ j, k ≤ n.

(21.1)
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Here we recall that the linear space isomorphism provided by the linear extension
of the mapping ej1ej2 . . . ejr �→ dxj1dxj2 . . . dxjr , with 1 ≤ j1 < j2 < . . . <

jr ≤ 2n, allows us to show that the resulting algebra has dimension 22n and
it is isomorphic to the exterior algebra

∧
(Rn,n) (cf. [31, Chapter 3]) so that

eJ = ej1ej2 . . . ejr corresponds to a basis of C
n,n. For J = ∅ (empty set)
we use the convention e∅ = 1. In particular, any vector (x1, x2 . . . , xn) of Rn

may be represented in terms of the linear combination x =
n∑
j=1

xjej carrying

the basis elements e1, e2, . . . , en with signature (0, n), whereas the translations
(x1, x2, . . . , xj ± ε, . . . , xn) on the lattice εZn ⊂ Rn with mesh width ε > 0 may
be represented in terms of the displacements x ± εej .

Along this paper we develop our results to lattices of the form

R
n
h,α := (1 − α)hZn ⊕ αhZn, with h > 0 and 0 < α <

1

2
.

Here we would like to stress that Rnh,α contains hZn. Indeed, for any x with
membership in hZn may be uniquely rewritten as x = (1−α)x+αx, with (1−α)x ∈
(1 − α)hZn and αx ∈ αhZn.

The class of discrete multivector functions R
n
α,h → C ⊗ C
n,n and R

n
α,h ×

T → C ⊗ C
n,n that are considered on the sequel admit one of the following
representations:

�(x) =
n∑
r=0

∑
|J |=r

φJ (x)eJ , with eJ = ej1ej2 . . . ejr

*(x, t) =
n∑
r=0

∑
|J |=r

ψJ (x, t)eJ , with eJ = ej1ej2 . . . ejr .

Hereby |J | denotes the cardinality of J . The scalar-valued functions �(x) resp.
*(x, t) are thus represented as�(x) = φ(x)e∅ resp. *(x, t) = ψ(x, t)e∅, whereas
the vector-fields

(φ1(x), φ2(x), . . . , φn(x)) resp. (ψ1(x, t), ψ2(x, t), . . . , ψn(x, t))

of Rn are described through the ansatz

�(x) =
n∑
j=1

φj (x)ej and *(x, t) =
n∑
j=1

ψj (x, t)ej ,

respectively.
The subscript notations φJ (x) and ψJ (x, t) are adopted to denote the complex-

valued functions Rnh,α → C resp. Rnh,α × T → C carrying the multivector basis eJ .
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The bold notations f, g, . . . ,�,*, . . . and so on will be considered when we refer to
discrete multivector functions with membership in the complexified Clifford algebra
C⊗ C
n,n.

Our purpose here is centered around the study of relativistic wave equations
of Klein-Gordon and Dirac-type on the space-time lattice R

n
h,α × T that exhibit

a differential-difference or a difference-difference character. That includes time-
evolution problems encoded by the discretized Klein-Gordon operatorL2

t −�h+m2,
carrying the mass term m > 0.

Here and elsewhere

�h*(x, t) =
n∑
j=1

*(x + hej , t)+*(x − hej , t)− 2*(x, t)

h2
(21.2)

denotes the discrete Laplacian on hZn ⊂ R
n
h,α , and Lt a degree-lowering operator.

The Dirac-Kähler discretizations Dε on the lattice εZn, already studied in the
author’s recent papers [19, 20]:

Dε*(x, t) =
n∑
j=1

ej
*(x + εej , t)−*(x − εej , t)

2ε
+

+
n∑
j=1

en+j
2*(x, t)− *(x + εej , t) −*(x − εej , t)

2ε

(21.3)

as well as the pseudo-scalar γ of C
n,n:

γ =
n∏
j=1

en+j ej (21.4)

are also considered with the aim of formulate a discrete counterpart for the time-
evolution equation of Dirac type.

From now on let us take a close look for the delta operators Lt from an umbral
calculus perspective (see e.g. [15, Chapter 1], [16, section 1], [17, subsection 2.1]
and [18, subsection 1.2. & subsection 2.2] for an abridged version of Roman’s book
[26]). In case where Lt = ∂t and T = [0,∞), it is well-known (and easy to check)
that the hypergeometric series representation of the following wave propagators
(cf. [11, p. 704]):

cosh(t
√
�h −m2) = 0F1

(
1

2
; t

2

4
(�h −m2)

)

sinh(t
√
�h −m2)√

�h −m2
= t 0F1

(
3

2
; t

2

4
(�h −m2)

)
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allows us to represent formally the null solutions of the differential-difference Klein-
Gordon operator ∂2

t − �h + m2 (cf. [9, Part I] & [30, Exercise 2.18]), while for
the difference-difference evolution problem associated to the discretization T =
{ kτ2 : k ∈ N0} of the continuous time-domain [0,∞) (the lattice τ

2Z≥0), and to the
finite difference operator

Lt*(x, t) = *
(
x, t + τ

2

)−* (x, t − τ
2

)
τ

(21.5)

(difference-difference evolution problem) it can be easily verified that Lt admits the
formal Taylor series expansion (cf. [18, Example 2.3])

Lt*(x, t) = 2

τ
sinh
(τ

2
∂t

)
*(x, t).

Using the fact that first order differential and difference operators are particular
cases of shift-invariant operators with respect to the exponentiation operator
exp (s∂t ):

Lt exp (s∂t ) = exp (s∂t ) Lt ,

we can obtain an amalgamation of our approach to delta operators Lt , represented
through the formal series expansion

Lt =
∞∑
k=1

bk
(∂t )

k

k! , with bk = [(Lt )ktk]t=0

in the same order of ideas of [15, Chapter 1], [17, section 2] & [18, section 1 &
section 2]. Indeed, from the combination of the shift-invariant property (cf. [26,
Corollary 2.2.8]) with the isomorphism between the algebra of formal power series
and the algebra of linear functionals associated to the ring of polynomials R[t] (cf.
[26, Theorem 2.1.1]), the null solutions of the wave-type operator L2

t − �h + m2

may be constructed from the exponential generating function (EGF)

G(s, t) =
∞∑
k=0

mk(t)

k! sk, s ∈ C⊗ C
n,n & t ∈ R (21.6)

associated to the Sheffer sequence {mk(t) : k ∈ N0} of Lt := L(∂t ).
More precisely, the following theorem (see Appendix for further details) goes

beyond the Pauli matrices identity obtained in [11, p. 701]:

Theorem 21.1.1 For the case where s = reiφω, with −π < φ ≤ π and ω is an
element of C
n,n satisfying ω2 = +1, the EGF G(s, t), defined through Eq. (21.6),
satisfies

G(reiφω, t) = cosh
(
tL−1(reiφ)

)
+ ω sinh

(
tL−1(reiφ)

)
.
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21.1.3 The Structure of the Paper

We turn next with the outline of the subsequent sections:

• In Sect. 21.2 we introduce, in a self-contained style, the basics of discrete
Fourier analysis on the lattice R

n
h,α (Sect. 21.2.1). Then we obtain an alternative

factorization for the discretized Klein-Gordon operator (Sect. 21.2.2), based on
the study of the Fourier multiplier underlying to the discrete Laplacian �h
defined by Eq. (21.2).

• In Sect. 21.3 we find some explicit representations underlying to the solution
of the discretized versions of the Klein-Gordon (Theorem 21.3.1) and Dirac
equation (Corollary 21.3.1) on the lattice Rnh,α×T . Here, the EGF representation
obtained in Theorem 21.1.1 as well as the discrete Fourier analysis toolbox
introduced in Sect. 21.2 play a central role.

• In Sect. 21.4 we study applications and generalizations for the results obtained
in Sect. 21.3. We start to find explicit representations for difference-difference
evolution problems of Klein-Gordon and Dirac type on the lattice R

n
h,α × τ

2Z≥0
by means of hypersingular integral representations involving Chebyshev polyno-
mials of first and second kind (cf. [23]), and of fractional integral representations
associated to a class of generalized Mittag-Leffler functions (cf. [28, Chapter 1]).
We also establish a comparison with the approaches considered in references
[1, 7, 8] (Sect. 21.4.2). In the end, we exploit the characterization obtained in
Sect. 21.3 to fractional operators of Riesz type (Sect. 21.4.3).

• In Sect. 21.5 we outline the main results of the paper and discuss further
directions of research.

21.2 Discrete Fourier Analysis Toolbox

21.2.1 Discrete Fourier Transform vs. Spaces of Tempered
Distributions

Let us define by 
p(Rnh,α;C ⊗ C
n,n) := 
p(R
n
h,α) ⊗

(
C⊗ C
n,n

)
(1 ≤ p ≤ ∞)

the right Banach-module endowed by the Clifford-valued sesquilinear form (cf. [21,
p. 533])

〈f(·, t), g(·, t)〉h,α =
∑
x∈Rnh,α

hn f(x, t)†g(x, t), (21.7)

and by S(Rnh,α;C
n,n) := S(Rnh,α) ⊗
(
C⊗ C
n,n

)
the space of rapidly decaying

functions f(·, t) (t ∈ T is fixed) with values on C ⊗ C
n,n, defined through the
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semi-norm condition

sup
x∈Rnh,α

(1 + ‖x‖2)M ‖f(x, t)‖ <∞

for any R-valued constant M <∞.
Here and elsewhere, the symbol † denotes the †-conjugation operation a �→ a†

on the complexified Clifford algebra C⊗ C
n,n, defined as

(ab)† = b†a†

(aeJ )† = aJ e†
jr
. . . e†

j2
e†
j1

(1 ≤ j1 < j2 < . . . < jr ≤ 2n)

e†
j = −ej and e†

n+j = en+j (1 ≤ j ≤ n)

, (21.8)

whereas ‖ · ‖—the norm of the complexified Clifford algebra C⊗C
n,n—is defined
by the square condition ‖a‖2 = a†a.

In the same order of ideas of [27, Exercise 3.1.7], under the seminorm constraint

sup
x∈Rnh,α

(1 + ‖x‖2)−M ‖g(x, t)‖ <∞

the mapping f(·, t) �→ 〈f(·, t), g(·, t)〉h,α defines the set of all continuous linear
functionals with membership in S(Rnh,α;C ⊗ C
n,n). The underlying family of
distributions g(·, t) : Rnh,α → C⊗ C
n,n (for a fixed t ∈ T ) belong to

S ′(Rnh,α;C⊗ C
n,n) := S ′(Rnh,α)⊗
(
C⊗ C
n,n

)
,

the multivector counterpart of the space of tempered distributions on the lattice Rnh,α .
Let us now take a close look to the discrete Fourier transform, defined as follows:

(Fh,αg)(ξ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hn

(2π)
n
2

∑
x∈Rnh,α

g(x, t)eix·ξ for ξ ∈ Qh

0 for ξ ∈ Rn \Qh

. (21.9)

HereQh =
(−π

h
, π
h

]n stands for the n-dimensional Brioullin zone representation
of the n-torus Rn/ 2π

h
Zn, as already depicted on Rabin’s seminal paper [25].

With the aid of the Fourier coefficients (cf. [22, subsection 5.2.1])

ĝh,α(x, t) = 1

(2π)
n
2

∫
Qh

(Fh,αg)(ξ, t)e−ix·ξdξ (21.10)
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we are able to derive, in a natural way, the isometric isomorphism

Fα,h : 
2(R
n
h,α;C⊗ C
n,n)→ L2(Qh;C⊗ C
n,n)

with inverse (F−1
h,αg)(x, t) = ĝh,α(x, t).

Here and elsewhere L2(Qh;C⊗ C
n,n) := L2(Qh)⊗
(
C⊗ C
n,n

)
denotes the

C⊗ C
n,n-Hilbert module endowed by the sesquilinear form

〈f(·, t), g(·, t)〉Qh =
∫
Qh

f(ξ, t)†g(ξ, t)dξ. (21.11)

Moreover, we can mimic the construction provided by [27, Exercise 3.1.15] &
[27, Definition 3.1.25] to show that S(Rnh,α;C ⊗ C
n,n) is dense in 
2(R

n
h,α;C ⊗

C
n,n), and that C∞(Qh;C ⊗ C
n,n) is embedded on C∞(Qh;C ⊗ C
n,n)
′, the

space of C⊗ C
n,n-valued distributions overQh.
As a consequence, we uniquely extend the discrete Fourier transform (21.9) as

a mapping Fh,α : S ′(Rnh,α;C ⊗ C
n,n) → C∞(Qh;C ⊗ C
n,n) by the Parseval
type relation, involving the sesquilinear forms (21.7) and (21.11) (cf. [27, Definition
3.1.27]):

〈Fh,αf(ξ, t), g(·, t)〉Qh =
〈
f(·, t), ĝh,α(·, t)

〉
h,α
,

underlying to f(·, t) ∈ S ′(Rnh,α;C⊗ C
n,n) and g(·, t) ∈ C∞(Qh;C⊗ C
n,n).
With the construction furnished above we can naturally define the convolution

between a discrete distribution f(·, t) with membership in S ′(Rnh,α;C⊗C
n,n), and
a discrete function�(x) with membership in S(Rnh,α;C⊗ C
n,n):

(
f(·, t) �h,α �

)
(x) =

∑
y∈Rnh,α

hn�(y)f(y − x, t) (21.12)

via the duality condition

〈
f(·, t) �h,α �, g(·, t) 〉

h,α
= 〈 f(·, t), �̃ �h,α g(·, t) 〉h,α, �̃(x) = [�(−x)]†,

for all g(·, t) ∈ S(Rnh,α;C⊗ C
n,n).
Also, the multiplication of a continuous distribution U ∈ C∞(Qh;C ⊗ C
n,n)

′
by a function Fh,α�(ξ) with membership in C∞(Qh;C ⊗ C
n,n) can be defined
via the sesquilinear identity

〈 (
Fh,α�

)
U,Fh,αg(·, t) 〉

Qh
=
〈
U,
(
Fh,α�

)† (Fh,αg(·, t)) 〉
Qh
.

As in [7, p. 123], the following discrete convolution formula property

Fh,α
[
f(·, t) �h,α �

] = (Fh,αf(·, t)) (Fh,α�) (21.13)
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that holds at the level of distributions, yields as an immediate consequence of the
sequence of identities

〈 Fh,α
[
f(·, t) �h,α �

]
, g(·, t) 〉Qh = 〈 f(·, t) �h,α �,F−1

h,α[g(·, t)] 〉h,α
= 〈 f(·, t), �̃ �h,α F−1

h,α[g(·, t)] 〉h,α
=
〈

f(·, t),F−1
h,α

(
Fh,α�̃ g(·, t)) 〉

h,α

= 〈 Fh,αf(·, t),Fh,α�̃ g(·, t) 〉
h,α

= 〈 (Fh,αf(·, t)) (Fh,α�) , g(·, t) 〉Qh.

21.2.2 Discrete Dirac-Kähler vs. Discrete Laplacian

Let us take now a close look to the Fourier multiplier of Fh,α ◦ (−�h) ◦ F−1
h,α

encoded by the discrete Laplacian (21.2). First, we observe that for −h ≤ ε ≤ h

the Clifford-valued sesquilinear form 〈·, ·〉h,α satisfies the summation property over
R
n
h,α (cf. [21, p. 536]):

∑
x∈Rnh,α

hn f(x, t)†g(x + εej , t) =
∑
x∈hZn

hn f(x − εej , t)†g(x, t).

In particular, for the substitutions

f(x, t)→ e−ix·ξ and g(x, t)→ *(x, t)

we can conclude that the translation action x �→ *(x + εej , t) over S(Rnh,α;C ⊗
C
n,n) gives rise to the property

Fh,α*(· + εej , t) = e−iεξjFh,α*(·, t). (21.14)

Therefore Fh,α(�h*)(ξ, t) = −dh(ξ)2Fh,α*(ξ, t) (cf. [22, Subsection 5.2.2]),
where

dh(ξ)
2 = 4

h2

∑
j=1

sin2
(
hξj

2

)
(21.15)

stands for the Fourier multiplier of Fh,α ◦ (−�h) ◦ F−1
h,α.

Next, we observe that the sequence of identities

4

h2
sin2
(
hξj

2

)
= 1

h2

(
1 − e−ihξj ) (1 − eihξj ) =

∣∣∣∣1 − e
−ihξj
h

eihθj

∣∣∣∣
2
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hold for every ξ = (ξ1, ξ2, . . . , ξn), and θ = (θ1, θ2, . . . , θn) with membership in
Qh =

(−π
h
, π
h

]n so that (21.15) may be rewritten as

dh(ξ)
2 =

n∑
j=1

∣∣∣∣1 − e
−ihξj
h

eihθj

∣∣∣∣
2

.

In particular, under the choice θj = (1−α)ξj the above identity may be expressed
in terms of the complex numbers

zh,α(ξj ) = ei(1−α)hξj − e−iαhξj
h

, with −π < hξj ≤ π & 0 < α <
1

2
.

Moreover, from the set of basic identities

|zh,α(ξj )|2 = 1

2

(
zh,α(ξj )zh,α(ξj )

† + zh,α(ξj )†zh,α(ξj )
)

=
(
zh,α(ξj )+ zh,α(ξj )†

2

)2

−
(
zh,α(ξj )− zh,α(ξj )†

2

)2

=
(

cos(αhξj )− cos((1 − α)hξj )
h

)2
+
(

sin(αhξj )+ sin((1 − α)hξj )
h

)2

=
(

en+j
cos(αhξj )− cos((1 − α)hξj )

h

)2
+

+
(
−iej

sin(αhξj )+ sin((1 − α)hξj )
h

)2

one readily has that the Clifford-vector-valued function

zh,α(ξ) =
n∑
j=1

−iej sin((1 − α)hξj )+ sin(αhξj )

h
+

+
n∑
j=1

en+j
cos(αhξj )− cos((1 − α)hξj )

h

(21.16)

satisfies the square condition zh,α(ξ)2 = dh(ξ)
2.

Let us now continue with the class of discrete Dirac-Kähler operators Dε
introduced in (21.3). By means of the †-conjugation (21.8), one can also define
formally the conjugation of Dε as follows:

D†
ε*(x, t) =

n∑
j=1

−ej
*(x + εej , t) −*(x − εej , t)

2ε
+

+
n∑
j=1

en+j
2*(x, t)−*(x + εej , t)− *(x − εej , t)

2ε
.
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Here we notice that the combination of the summation property (21.14) with the
†-conjugation properties e†

j = −ej and e†
n+j = en+j (j = 1, 2, . . . , n) shows in

turn that Dε and D†
ε are self-adjoint with respect to Clifford-valued sesquilinerar

form 〈·, ·〉h,α defined by Eq. (21.7), since

〈Dεf(·, t), g(·, t)〉h,α = 〈f(·, t),Dεg(·, t)〉h,α
〈D†

ε f(·, t), g(·, t)〉h,α = 〈f(·, t),D†
εg(·, t)〉h,α.

As a consequence of the above construction, the Clifford-vector-valued function
zh,α(ξ) defined by (21.16) is the Fourier multiplier of the operator

Fh,α ◦ ((1 − α)D(1−α)h − αD†
αh) ◦ F−1

h,α.

Therefore, for every 0 < α < 1
2 the mapping property

Dh,α : S(Rnh,α;C⊗ C
n,n)→ C∞(Qh;C⊗ C
n,n)

stands for the Dirac-Kähler type operator

Dh,α := (1 − α)D(1−α)h − αD†
αh, (21.17)

as well as the discrete Laplacian splitting
(
Dh,α
)2 = −�h.

Furthermore, the factorization property

−�h +m2 = (Dh,α −mγ )2 (21.18)

yields from the set of anti-commuting relations

γ ej + ej γ = 0 γ en+j + en+j γ = 0 γ 2 = +1, (21.19)

carrying the Clifford basis elements ej , en+j (j = 1, 2, . . . , n), and the pseudo-
scalar γ defined by Eq. (21.4) (cf. [19, Proposition 3.1]).

Remark 21.2.1 (Towards a Fractional Regularization of Discrete Dirac Operators)
We would like to stress here that the discretizations Dε and Dh,α , given by
Eqs. (21.3) and (21.17) respectively, are interrelated by the limit formula

lim
α→0

Dh,α = Dh.

On the other hand, the limit property

lim
α→ 1

2

Dh,α =
D+
h/2 +D−

h/2

2
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involving the finite difference Dirac operatorsD±
h/2 of forward/backward type:

D+
h/2*(x, t) =

n∑
j=1

ej
*
(
x + h

2 ej , t
) −* (x, t)

h/2

D−
h/2*(x, t) =

n∑
j=1

ej
* (x, t)− * (x − h

2 ej , t
)

h/2
.

shows us that Dh,α may also be seen as a fractional regularization for the discrete
Dirac operators on the lattice h

2Z
n, already considered in the series of papers [16,

18–20].

Remark 21.2.2 (The Lattice Fermion Doubling Gap) Since the Fourier multipliers

z
h, 1

2
(ξ) of Fh,α ◦

(
D+
h/2 +D−

h/2

2

)
◦F−1

h,α share the same set of zeros of the Fourier

multiplier dh(ξ)2 of Fh,α ◦ (−�h) ◦ F−1
h,α defined in terms of Eq. (21.15), we can

conclude that the spectrum doubling of Dh,α only occurs on the limit α → 1
2

(cf. [25, p. 323]).
At this stage, we have obtained from a multivector perspective that Rabin’s

homological approach [25, Section 6], based on the geometry of the n-torus
Rn/ 2π

h
Zn, also works on R

n
h,α for the discretized Dirac operators Dh,α . This

is indeed a direct consequence of the so-called lattice fermion doubling gap,
formulated by Nielsen & Ninomiya (cf. [24]). We also refer to [19, subsection 1.1
& section 4] for further details regarding the discussion of Nielsen–Ninomiya no-go
result.

21.3 Solution of Discretized Time-Evolution Problems

21.3.1 Discretized Klein-Gordon Equations

In this section we study the solutions of the second-order evolution problems of the
type

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L2
t *(x, t) = �h*(x, t)−m2*(x, t) , (x, t) ∈ R

n
h,α × T

*(x, 0) = �0(x) , x ∈ R
n
h,α

[Lt*(x, t)]t=0 = �1(x) , x ∈ R
n
h,α

(21.20)

on the space-time domain R
n
h,α × T , from an umbral calculus perspective.



21 Relativistic Wave Equations on the Lattice 451

In terms of the discrete Fourier transform (21.9), the formulation of the time-
evolution problem (21.20) on the momentum space Qh × T reads as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L2
t

[
Fh,α*(ξ, t)

] = − (dh(ξ)2 +m2
)
Fh,α*(ξ, t) , (ξ, t) ∈ Qh × T

Fh,α*(ξ, 0) = Fh,α�0(ξ) , ξ ∈ Qh
[
LtFh,α*(ξ, t)

]
t=0 = Fh,α�1(ξ) , ξ ∈ Qh

.(21.21)

With the aid of the hiperbolic functions (s, t) �→ cosh(tL−1(s)) and (s, t) �→
sinh(tL−1(s)) obtained in Theorem A.1 (see Appendix) we can describe the
solution of the discretized Klein-Gordon equation (21.20) as a discrete convolution
on R

n
h,α, endowed by the kernel functions

K0(x, t) = 1

(2π)
n
2

∫
Qh

cosh

(
t L−1

(
i

√
dh(ξ)2 +m2

))
e−ix·ξ dξ

K1(x, t) = 1

(2π)
n
2

∫
Qh

sinh
(
t L−1

(
i
√
dh(ξ)2 +m2

))

i
√
dh(ξ)2 +m2

e−ix·ξ dξ.

(21.22)

More precisely, for the discretized wave propagators defined in terms of the
discrete convolution formulae

cosh
(
t L−1

(√
�h −m2

))
�(x) =

∑
y∈Rnh,α

hn�(y)K0(x − y, t)

sinh
(
t L−1

(√
�h −m2

))
√
�h −m2

�(x) =
∑
y∈Rnh,α

hn�(x)K1(x − y, t)
(21.23)

we are able to mimic the so-called wave Duhamel formula in continuum (cf. [30,
Exercise 2.22] & [30, p. 71]). That corresponds to the following theorem:

Theorem 21.3.1 Let �0 and �1 be two Clifford-valued functions membership in
S(Rnh,α;C ⊗ C
n,n), and K0, K1 be the kernel functions defined by the integral
formulae (21.22). Then we have the following:

(i) The function

Fh,α*(ξ, t) = cosh
(
tL−1

(
i
√
dh(ξ)2 +m2

))
Fh,α�0(ξ)+

+
sinh
(
tL−1

(
i
√
dh(ξ)2 +m2

))

i
√
dh(ξ)2 +m2

Fh,α�1(ξ)

(21.24)

solves the time-evolution problem (21.21).



452 N. Faustino

(ii) The ansatz

*(x, t) = cosh
(
tL−1

(√
�h −m2

))
�0(x)+

+
sinh
(
tL−1

(√
�h −m2

))
√
�h −m2

�1(x)

(21.25)

solves the discretized Klein-Gordon equation (21.20).

Proof Proof of (i):
In the shed of Theorem 21.1.1 let us now take a close look to the ansatz functions

of the type

Fh,α*(ξ, t) = G(eiφrω, t)Fh,α�+(ξ)+ G(−eiφrω, t)Fh,α�−(ξ). (21.26)

From the eigenvalue property (21.44) one readily obtains that (21.26) satisfies
the equation

L2
t

[
Fh,α*(ξ, t)

] = −
(
dh(ξ)

2 +m2
)
Fh,α*(ξ, t)

whenever φ = π
2 , r = √dh(ξ)2 +m2 and ω2 = +1.

It is also straightforward to see that the initial conditions of the evolution problem
(21.21) lead to the system of equations

Fh,α�0(ξ) = Fh,α�+(ξ)+ Fh,α�−(ξ)

Fh,α�1(ξ) = iω

√
dh(ξ)2 +m2 Fh,α�+(ξ)− iω

√
dh(ξ)2 +m2 Fh,α�−(ξ).

Solving the above system of equations in order to Fh,α�±(ξ), it readily follows
that

Fh,α�±(ξ) = 1

2
Fh,α�0(ξ)± ω

2i
√
dh(ξ)2 +m2

Fh,α�1(ξ).

Therefore, we can recast (21.26) as

Fh,α*(ξ, t) =
G
(
iω
√
dh(ξ)2 +m2, t

)
+ G
(
−iω√dh(ξ)2 +m2, t

)

2
Fh,α�0(ξ)+

+ω
G
(
iω
√
dh(ξ)2 +m2, t

)
− G
(
−iω√dh(ξ)2 +m2, t

)

2i
√
dh(ξ)2 +m2

Fh,α�1(ξ).



21 Relativistic Wave Equations on the Lattice 453

Moreover, from Theorem 21.1.1 we immediately get that Eq. (21.27) is equiva-
lent to Eq. (21.24).

Proof of (ii):
By applying the discrete Fourier transform Fh,α to both sides of (21.23), the

Proof of (ii) follows straightforwardly from the discrete convolution property
(21.13), and from the fact that the function *(x, t) defined by Eq. (21.25) is also
a solution of the equation

L2
t

[
Fh,α*(ξ, t)

] = −
(
dh(ξ)

2 +m2
)
Fh,α*(ξ, t).

�

21.3.2 Discretized Dirac Equations

Let us now look to discretized version of the Dirac equation

⎧⎪⎨
⎪⎩
−iLt*(x, t) =

(
Dh,α −mγ

)
*(x, t) , (x, t) ∈ R

n
h,α × T

*(x, 0) = �0(x) , x ∈ R
n
h,α

, (21.27)

carrying the discrete Dirac operatorDh,α introduced via Eq. (21.17).
From the framework developed on the previous sections and on Appendix, the

solution of (21.27) can be easily found. In concrete, the formal solution of (21.27)
provided by the operational formula

*(x, t) = G
(
iDh,α − imγ, t

)
�0(x)

is a direct consequence of the set of identities

−iLt
[
Fh,α*(ξ, t)

] = (zh,α(ξ)−mγ )Fh,α*(ξ, t)
G
(
izh,α(ξ)− imγ, 0

) = 1

LtG
(
izh,α(ξ)− imγ, t

) = i
(
zh,α(ξ)−mγ

)
G
(
izh,α(ξ)− imγ, t

)
.

underlying to the Fourier multiplier zh,α(ξ) of Fh,α ◦Dh,α ◦F−1
h,α (see Eq. (21.16)),

and the EGF G(s, t) (see Eq. (21.6)). Then, the following corollary is rather obvious:

Corollary 21.3.1 Let �0 be a function with membership in S(Rnh,α;C ⊗ C
n,n).
Then, under the first order condition

[Lt*(x, t)]t=0 = i
(
Dh,α −mγ

)
�0(x)
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the ansatz (21.25) solves the discretized Dirac equation (21.27).

Proof First, we recall that the square relation

(zh,α(ξ)−mγ )2 = dh(ξ)
2 +m2

involving the Fourier multipliers dh(ξ)2 and zh,α(ξ), defined by Eqs. (21.15)
resp. (21.16), yields as a direct consequence of the factorization property (21.19)
involving the Clifford generators ej , en+j (j = 1, 2, . . . , n), and the pseudo-scalar
γ defined by Eq. (21.4). Then

ω = izh,α(ξ)− imγ
i
√
dh(ξ)2 +m2

is a unitary vector of C ⊗ C
n,n satisfying the property ω2 = +1. Thus, from
Theorem 21.1.1

G
(
izh,α(ξ)− imγ, t

) = cosh

(
tL−1

(
i

√
dh(ξ)2 +m2

))
+

+
sinh
(
tL−1

(
i
√
dh(ξ)2 +m2

))

i
√
dh(ξ)2 +m2

(
izh,α(ξ)− imγ

)
.

Moreover, from the property

Fh,α[i(Dh,α −mγ )�0](ξ) =
(
izh,α(ξ)− imγ

)
Fh,α�0(ξ)

it readily follows from direct application of statement (ii) of Theorem 21.3.1
that G

(
iDh,α − imγ, t

)
�0(x)—a formal solution of the discretized Dirac equa-

tion (21.27)—equals to the ansatz (21.24), whenever �1(x) = i(Dh,α − mγ )

�0(x). �
Remark 21.3.1 (The Zassenhaus Formula Gap) The framework that we have con-
sidered here to describe formally the solutions of the discretized Dirac equation
(21.27) may be seen as a multivector extension of the framework obtained in terms
of Pauli matrices by Dattoli and his collaborators on the papers [10, 11]. The
major difference here lies in fact that we have considered the EGF provided by
Theorem 21.1.1 to rid the limitations associated to the operational representation of
Dirac type propagators by means of the Zassenhaus formula (cf. [10, p. 8]).
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21.4 Further Applications

21.4.1 A Space-Time Fourier Inversion Formula Based
on Chebyshev Polynomials

Let us now discuss a difference-difference version of the evolution problems (21.20)
and (21.27) on the lattice R

n
h,α × τ

2Z≥0, associated to the finite diference operator
(21.5) defined on Sect. 21.1.2. From direct application of Theorem 21.3.1 it can be
easily seen that

Fh,α*(ξ, t) = cos

(
2t

τ
sin−1

(
τ

2

√
dh(ξ)2 +m2

))
Fh,α�0(ξ)+

+
sin

(
2t

τ
sin−1

(τ
2

√
dh(ξ)2 +m2

))
√
dh(ξ)2 +m2

Fh,α�1(ξ)

solves the second-order time-evolution problem (21.21) on the momentum space
Qh × Z≥0 (see statement (i)).

Here we recall that from the inverse trigonometric relation sin−1(z) =
cos−1(

√
1 − z2), that holds for every 0 ≤ z ≤ 1, we can recognize that the

above identity may be expressed in terms of Chebyshev polynomials of first and
second kind (cf. [23, p. 170]) for values of τ satisfying the following condition:

0 ≤
√
dh(ξ)2 +m2 ≤ 2

τ
.

That is,

Fh,α*(ξ, t) = T 2t
τ

(√
1 − τ 2

4

(
dh(ξ)2 +m2

))
Fh,α�0(ξ)+

+ τ

2
U 2t

τ
−1

(√
1 − τ 2

4

(
dh(ξ)2 +m2

))
Fh,α�1(ξ),

(21.28)

with Tk(λ) = cos(k cos−1(λ)) resp. Uk−1(λ) = sin(k cos−1(λ))√
1 − λ2

.

We recall here that the Chebyshev polynomials of first and second kind, Tk
resp. Uk−1, admit the following Cauchy principal value representations (cf. [23,
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subsection 4.1]):

∫ 1

−1

Uk−1(s)

s − λ (1 − s2)
1
2 ds = −πTk(λ)

∫ 1

−1

Tk(s)

s − λ(1 − s
2)−

1
2 ds = πUk−1(λ).

(21.29)

In particular, for the change of variable s = cos
(
ωτ
2

)
(0 ≤ ω ≤ 2π

τ
) the sequence

of identities

T 2t
τ
(λ) = − τ

2π

∫ 2π
τ

0

sin
(
ωτ
2

)
cos
(
ωτ
2

)− λ sin(ωt)dω

= τ

4π

∫ 2π
τ

− 2π
τ

−i sin
(
ωτ
2

)
cos
(
ωτ
2

)− λ e
−iωt dω

U 2t
τ −1(λ) =

τ

2π

∫ 2π
τ

0

1

cos
(
ωτ
2

)− λ cos(ωt)dω

= τ

4π

∫ 2π
τ

− 2π
τ

1

cos
(
ωτ
2

)− λ e
−iωt dω.

(21.30)

follow straightforwardly from parity arguments carrying the conjugation of the
complex exponential function eiωt = cos(ωt)+ i sin(ωt) (cf. [23, p. 173]).

Thus, based on (21.30) one finds that (21.28) admits the integral representation
formula

Fh,α*(ξ, t) = τ

4π

∫ 2π
τ

− 2π
τ

−i sin
(
ωτ
2

)
Fh,α�0(ξ)+ τ

2Fh,α�1(ξ)

cos
(
ωτ
2

)−
√

1 − τ 2

4

(
dh(ξ)2 +m2

) e−iωt dω.

(21.31)

Thereby, in the view of the Fourier inversion formula for Fh,α provived by
(21.10), the discrete convolution formula provided by statement (iii) of Theo-
rem 21.3.1 may be reformulated as a space-time Fourier inversion formula over

Qh ×
(
− 2π

τ
, 2π
τ

]
so that *(x, t) equals to

τ

2(2π)
n
2+1

∫
Qh

∫ 2π
τ

− 2π
τ

−i sin
(
ωτ
2

)
Fh,α�0(ξ)+ τ

2Fh,α�1(ξ)

cos
(
ωτ
2

)−
√

1 − τ 2

4

(
dh(ξ)2 +m2

) e−i(ωt+x·ξ)dωdξ.
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Moreover, through the substitution Fh,α�1(ξ) = i(zh,α(ξ) − mγ )Fh,α�0(ξ)

on the right-hand side of the above equality, we recognize that the above integral

representation over Qh ×
(
− 2π

τ
, 2π
τ

]
also fulfils for the discretized Dirac equation

(21.27) (see statement (ii) of Corollary 21.3.1).

Remark 21.4.1 (Connection with the Discrete Cauchy-Kovaleskaya Extension) The
solution of the discretized Dirac equation that we have considered here for the finite
difference operator Lt defined by Eq. (21.5) resembles the construction considered
by Constales and De Ridder on the paper [8], from a discrete Fourier analysis
perspective. Here we recall that from the isomorphism (cf. [25])

Qh ×
(
−2π

τ
,

2π

τ

]
∼=
(
R
n/

2π

h
Z
n

)
×
(
R/

4π

τ
Z

)
,

the resulting integral representation formula may be interpreted as a space-time
toroidal Fourier transform (cf. [27, section 3 of Part II]).

21.4.2 Connection with the Discrete Heat Semigroup

In this subsection we will explore the connection between the solutions of the
discretized Klein-Gordon and Dirac equations obtained in Sect. 21.4.1, and the
solution of the differential-difference heat equation

⎧⎪⎨
⎪⎩
∂s*(x, s) = �h*(x, s) , (x, s) ∈ R

n
h,α × [0,∞)

*(x, 0) = �(x) , x ∈ R
n
h,α

(21.32)

by means of the discrete heat semigroup {exp(s�h)}s≥0. Before we proceed, we
will revisit the construction of the discrete heat kernel obtained by Baaske et al. in
[1]. Along the same lines as in [7, section 2] one can show that exp(s�h) may be
expressed in terms of the discrete convolution formula

exp(s�h)�(x) =
∑
y∈Rnh,α

hn�(y)K(x − y, s), (21.33)

involving the kernel function

K(x, s) = 1

(2π)
n
2

∫
Qh

e−sdh(ξ)2e−ix·ξdξ. (21.34)
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On the other hand, in view of integral representation formula for the modified
Bessel functions of the first kind Ik(u):

Ik(u) = 1

π

∫ π

0
eu cos(θ) cos(kθ)dθ = 1

2π

∫ π

−π
eu cos(θ)e−ikθ dθ,

and the identity associated to the Fourier multipliers (21.15):

dh(ξ)
2 =

n∑
j=1

2

h2

(
1 − cos(hξj )

)

we thereby obtain the closed formula

K(x, s) = (2π)
n
2

hn
e
− 2ns
h2 I x1

h

(
2s

h2

)
I x2
h

(
2s

h2

)
. . . I xn

h

(
2s

h2

)
, (21.35)

after the change of variables ξj = θj
h

(−π < θj ≤ π) on (21.34).
Next, let us turn again our attention to the space-time Fourier inversion formula

(21.31) derived on Sect. 21.4.1. Starting from the Laplace transform identity (cf. [28,
p. 21] & [29, p. 282])

∫ ∞

0
epλ

2
pβ−1Eα,β

(
spα
)
dp = λ−2β

1 − sλ−2α , 5(λ2) > |s| 1
α & 5(β) > 0

(21.36)

involving the generalized Mittag-Leffler functions (cf. [21, subsection 4.2])

Eα,β(z) =
∞∑
k=0

zk

�(β + αk) , for 5(α) > 0 & 5(β) > 0,

we realize that

1

cos
(
ωτ
2

)−
√

1 − τ 2

4

(
dh(ξ)2 +m2

) =

= −
∫ ∞

0
e−

pτ2

4 dh(ξ)
2
E 1

2 ,
1
2

(
cos
(
ωτ
2

)√
p
)

√
p

e
p
(

1− τ2
4 m

2
)
dp
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so that (21.31) is equivalent to

Fh,α*(ξ, t) = − τ

2(2π)
n
2 +1

∫ 2π
τ

− 2π
τ

∫ ∞

0
e−

pτ2

4 dh(ξ)
2
E 1

2 ,
1
2

(
cos
(
ωτ
2

)√
p
)

√
p

×

×
(
−i sin

(ωτ
2

)
Fh,α�0(ξ)+ τ

2
Fh,α�1(ξ)

)
e
p
(

1− τ2
4 m

2
)
e−iωtdpdω.

By making again use of the inversion formula (21.10) associated to Fh,α and
after some straightforward simplifications involving the interchanging on the order
of integration, there holds

*(x, t) =
∫ ∞

0
exp

(
pτ 2

4
�h

)
[�(x, t;p)]dp, (21.37)

with

�(x, t;p) = − τ

4π

∫ 2π
τ

− 2π
τ

(
−i sin

(ωτ
2

)
�0(x)+ τ

2
�1(x)

)
×

×
E 1

2 ,
1
2

(
cos
(
ωτ
2

)√
p
)

√
p

e
p
(

1− τ2
4 m

2
)
e−iωtdω.

Here one notice that the substitution s = uτ 2

4 on (21.32) reveals that the action

exp
(
pτ 2

4 �h

)
[�(x, t;p)] corresponds to the discrete convolution formula (21.33),

written in terms of the discrete heat kernel K
(
x,

pτ 2

4

)
. The later may be computed

from (21.35) as a product of the modified Bessel functions of the first kind Ik(u).
Thus, as in [7] the solution of the discretized Klein-Gordon equation on the lattice
R
n
h,α× τ

2Z≥0 may be recovered from the discrete heat semigroup. On the other hand,
from the set of identities (cf. [29, p. 281])

Eα,β(u) = 1

u
Eα,β−α(u)− 1

u

1

�(β − α)
E 1

2 ,1
(u) = eu

2
erfc(−u)

involving the generalized Mittag-Leffler functions, and the complementary error
function

erfc(−u) = 2√
π

∫ ∞

−u
e−q2

dq
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we realize, after a short computation by means of the trigonometric identities (t ∈
τZ≥0 & − 2π

τ
< ω ≤ 2π

τ
):

1 + cos2
(ωτ

2

)
= 2 cos(ωτ)

sin
(ωτ

2

)
cos
(ωτ

2

)
= 1

2
sin(ωτ)

sin

(
2πt

τ

)
= 0,

and on parity arguments that the function�(x, t;p), defined as above, equals to

�(x, t;p) = − τ

8π

∫ 2π
τ

− 2π
τ

(
−i sin(ωτ)�0(x)+ τ cos

(ωτ
2

)
�1(x)

)
×

× erfc
(
− cos

(ωτ
2

)√
p
)
e
p
(

2 cos(ωτ)− τ2
4 m

2
)
e−iωtdω.

Remark 21.4.2 One notice here that the Laplace operational identity (21.37)
slightly differs from the one considered in [7, section 2] for the operational
representation of an analogue for the Poisson type semigroup. Here we have

considered a time Fourier inversion formula over
(
− 2π

τ
, 2π
τ

]
, that results from the

identity

1√
p

(
E 1

2 ,
1
2

(
cos
(ωτ

2

)√
p
)
+ 1√

π

)
=

= cos
(ωτ

2

)
ep cos2( ωτ2 ) erfc

(
− cos

(ωτ
2

)√
p
)

involving the complementary error function erfc(−u), instead of the subordination
formula

e−βt = t

2
√
π

∫ ∞

0

e− t2
4v

v
3
2

e−vβ2
dv (β > 0)

endowed by the kernel of the Weierstraß transform.
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21.4.3 A Discrete Fractional Calculus Insight

In Sect. 21.3 we have shown that a simple operational substitution s →
√
�h −m2

on the functions

cosh(tL−1(s)) and
sinh(tL−1(s))

s

allows us to express, in a simple way, the solutions of the discretized Klein-
Gordon and Dirac equations, (21.20) resp. (21.27). Such characterization may be
reformulated in terms of the fractional operators

(
−�h +m2

)−α
�(y) = 1

�(α)

∫ ∞

0
e−tm2

exp (t�h) [�(y)] tα
dt

t
(21.38)

for values 0 < α < 1
2 , in spite of the right-hand side of (21.17) does not absolutely

converges for α = 1
2 in the massless limit m → 0. This is due to the fact that the

Fourier multiplier
(
dh(ξ)

2
)− 1

2 of Fh,α ◦ (−�h)− 1
2 ◦ F−1

h,α does not belong to the
space C∞(Qh;C⊗ C
n,n).

The following result, which complements the construction of Theorem 21.3.1,
provides us an alternative way to obtain a solution for the discretized Klein-Gordon
equation (21.20) as a discrete convolution formula endowed by the kernel functions

K
(α)
0 (x, t) =

= 1

(2π)
n
2

∫
Qh

(dh(ξ)
2 +m2)α cosh

(
tL−1

(
i

√
dh(ξ)2 +m2

))
e−ix·ξdξ

K
(α)
1 (x, t) =

= 1

(2π)
n
2

∫
Qh

(dh(ξ)
2 +m2)α

sinh
(
tL−1

(
i
√
dh(ξ)2 +m2

))

i
√
dh(ξ)2 +m2

e−ix·ξdξ.

(21.39)

That corresponds to statement (i) of Theorem 21.4.1. Moreover, with the aid of
the lattice discretization

Rh,α =
(
Dh,α −mγ

)
(−�h +m2)−α (21.40)

of the Riesz type operator (D−mγ )(−�+m2)−α on R
n
h,α (cf. [3]), we are able to

recover the solution of the Dirac equation (21.27). Such construction corresponds
essentially to statements (iii) and (iv) of Theorem 21.4.1.

Theorem 21.4.1 Let Rh,α be the discretized Riesz transform defined by Eq. (21.40),
and K(α)

0 ,K
(α)
1 the kernel functions defined through the integral equations (21.39).
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Under the condition that �0 and �1 belong to S(Rnh,α;C ⊗ C
n,n), we have the
following:

(i) The ansatz function *(x, t) defined by means of the discrete convolution
formula

*(x, t) =
∑
y∈Rnh,α

hn(−�h +m2)−α�0(y) K
(α)
0 (x − y, t)

+
∑
y∈Rnh,α

hn(−�h +m2)−α�1(y) K
(α)
1 (x − y, t)

(21.41)

solves the discretized Klein-Gordon equation (21.20).
(ii) The ansatz function (21.41) solves the discretized Dirac equation (21.27)

whenever

(−�h +m2)−α�1(x) = iRh,α�0(x).

(iii) The inverse of the Riesz type operator Rh,α is given by

(
Rh,α

)−1 = (Dh,α −mγ )(−�h +m2)α−1.

(iv) If *0(x, t) = Pt [�0(x)] and

*1(x, t) = Pt [(Dh,α −mγ )(−�h +m2)−1�1(x)]

are two independent solutions of the discretized Dirac equation (21.27),
generated by the discrete convolution operator

Pt [�(x)] =
∑
y∈Rnh,α

hn(−�h +m2)−α�(y) K(α)
0 (x − y, t)

+
∑
y∈Rnh,α

hn iRh,α�(y) K
(α)
1 (x − y, t), (21.42)

then the function

*(x, t) = *0(x, t)+*0(x,−t)
2

+ *1(x, t)−*1(x,−t)
2i

solves the discretized Klein-Gordon equation (21.20).

Proof The proof of Theorem 21.4.1 follows the same train of thought of the proof
of Theorem 21.3.1 and Corollary 21.3.1. To avoid an overlap between the proof of
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these results we present only an abridged version of it, by sketching only the main
ideas:

Proof of (i):
From the Laplace transform identity

(dh(ξ)
2 +m2)−α = 1

�(α)

∫ ∞

0
e−tm2

e−tdh(ξ)2 tα dt
t

there holds the following identity for the operator (−�h + m2)−α defined through
Eq. (21.38):

Fh,α[(−�h +m2)−α�](ξ) = (dh(ξ)
2 +m2)−αFh,α�(ξ).

Therefore, the sequence of identities

Fh,α*(ξ, t) = Fh,α[(−�h +m2)−α�0(ξ)] Fh,αK(α)
0 (ξ, t)+

+ Fh,α[(−�h +m2)−α�1(ξ)] Fh,αK(α)
1 (ξ, t)

= (dh(ξ)
2 +m2)−αFh,α�0(ξ) Fh,αK(α)

0 (ξ, t)+
+ (dh(ξ)

2 +m2)−αFh,α�1(ξ) Fh,αK(α)
1 (ξ, t)

= cosh

(
tL−1

(
i

√
dh(ξ)2 +m2

))
Fh,α�0(ξ)+

+
sinh
(
tL−1

(
i
√
dh(ξ)2 +m2

))

i
√
dh(ξ)2 +m2

Fh,α�1(ξ)

yield straightforwardly from application of the discrete convolution property (21.13)
underlying to the discrete Fourier transform Fh,α, and from the standard identities
involving the wave kernels (21.39):

Fh,αK(α)
0 (ξ, t) = (dh(ξ)

2 +m2)α cosh

(
tL−1

(
i

√
dh(ξ)2 +m2

))

Fh,αK(α)
1 (ξ, t) = (dh(ξ)

2 +m2)α
sinh
(
tL−1

(
i
√
dh(ξ)2 +m2

))

i
√
dh(ξ)2 +m2

.

Thus, Fh,α*(ξ, t) is a solution of the evolution problem (21.21), and whence,
the ansatz (21.41) solves the discretized Klein-Gordon equation (21.20).

Proof of (ii):
The proof that the condition (−�h + m2)−α�1(x) = iRh,α�0(x) gives rise to

the solution of the discretized Dirac equation (21.27) is an immediate consequence
of Corollary 21.3.1 and of statement (i) of Theorem 21.4.1.
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Proof of (iii):
By noting that the Clifford vector

rh,α(ξ) = (zh,α(ξ)−mγ )(dh(ξ)2 +m2)−α

corresponds to the Fourier multiplier of Fh,α ◦Rh,α ◦F−1
h,α, and the Clifford vector

sh,α(ξ) = (zh,α(ξ)−mγ )(dh(ξ)2 +m2)α−1

to the inverse of rh,α(ξ), the proof that Sh,α = (Dh,α−mγ )(−�h+m2)α−1 equals

to
(
Rh,α

)−1 follows straightforwardly from the set of identities

Fh,α
[
Sh,αRh,α�

]
(ξ) = Fh,α

[
Rh,αSh,α�

]
(ξ) = Fh,α�(ξ).

Proof of (iv):
First, we recall that the splitting formulae

Pt [�(x)] + P−t [�(x)]
2

=
∑
y∈Rnh,α

hn(−�h +m2)−α�(y) K(α)
0 (x − y, t)

Pt [�(x)] − P−t [�(x)]
2i

=
∑
y∈Rnh,α

hn Rh,α�(y) K
(α)
1 (x − y, t)

yield from the parity properties involving the hyperbolic functions cosh (even
function) and sinh (odd function). By noting also that

(Dh,α −mγ )(−�h +m2)−1�1(y) = (−�h +m2)−αRh,1−α�1(x),

the proof that the function

*(x, t) = *0(x, t)+*0(x,−t)
2

+ *1(x, t)−*1(x,−t)
2i

provides a solution for the discretized Klein-Gordon equation (21.20) is rather
immediate, since *(x, t) coincides with the ansatz (21.41). �
Remark 21.4.2 (A Poisson Semigroup Counterpart) Statement (iii) of Theo-
rem 21.4.1 may be seen as an hypercomplex analogue for the differential-difference
Cauchy-Riemann equations, complementary to the one obtained in [7, Theorem
3.] in terms of Poisson semigroup based representations. In accordance with
the discussion depicted in the end of Sect. 21.4.2, we can also see that the
nonexistence of self-adjointness property for the discrete Dirac operators Dh,α
(see Remark 21.2.2) is not an obstacle to this approach.
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21.5 Outlook of the Main Results

This paper provides us a guideline to extend substancial part of the framework
already done in [1, 2, 7, 8, 10, 12] to the differential-difference and to the difference-
difference setting as well. To our best knowledge, there has been no literature paying
attention to the description of the solutions of time-evolution problems as a blending
between the continuous and the discrete side.

To mimic the construction depicted on [30, Chapter 2] (see Theorem 21.3.1,
Corollary 21.3.1 and Theorem 21.4.1) we adopted in Sect. 21.2 the toroidal Fourier
framework proposed by Ruzhansky and Turunen on their book [27, Part II, Chapter
3] to exploit the framework proposed by Gürlebeck and Sprössig in [22, subsection
5.2] to lattices of the type R

n
h,α = (1 − α)hZn + αhZn (h > 0 and 0 < α <

1
2 ), based on the one-to-one correspondence between the so-called n-Brioullin zone
Qh = (−π

h
, π
h

]n and the toroidal manifold Rn/ 2π
h
Zn (cf. [25]). We also propose

in Sect. 21.2 a fractional regularization for discrete Dirac operators acting on the
lattices hZn (α → 0) and h

2Z
n (α → 1

2 ), based on construction of a wide class of
Fourier multipliers with values on the Clifford algebra with signature (n, n).

From the results obtained in Sect. 21.4 (namely Theorem 21.4.1) we believe that
the proposed approach does not offer only a wise strategy to determine discrete
counterparts for the results provided by the papers [1, 2, 7, 8, 10, 12]. In the shed
of the fractional calculus formulation proposed recently by Bernstein (cf. [3, 4]),
it may also provides us a meaningful way to generalize the results of [5, 6], where
only the properties of the discrete Fourier transform depicted in [22, subsection 5.2]
were taken into account.

As a whole, the fractional integration approach combined with a space-time
Fourier inversion type formula has been revealed as an exceptionally well-suited
tool to represent, in an operational way, the discrete convolution representations
underlying to the solutions of an equation of Klein-Gordon type. As we have noticed
on Sect. 21.4.2, this is ultimately due to the possibility of describe the superposition
of the wave-type propagators

cosh(tL−1(�h −m2)) resp.
sinh(tL−1(

√
�h −m2))√

�h −m2

in terms of its Fourier-Laplace multipliers endowed by the discrete heat kernel

exp
(
pτ 2

4τ �h

)
(see, for instance, Remark 21.4.2). For a general overview of this

framework, we refer to [28, Chapter 5].

Summing Up The discrete Fourier transform framework brings into the representa-
tion of the solution for an evolution type equation over the momentum spaceQh×T .
In the future it can also be useful to look in depth for the associated hypersingular
operator representations on the space-time toroidal manifold (Rn/ 2π

h
Zn)×(R/ 4π

τ
Z)

(see, for instance, Remark 21.4.1). Although the Fourier-Laplace type multipliers
are a little trickier to compute, due to the fractional calculus technicalities, the
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Fourier modes e−i(ωt+x·ξ) associated to the space-time Fourier inversion formula
are more easier to treat on the space of tempered distributions, in comparison to the
description of fractional integro-differential operators on the manifold (Rn/hZn)×
[0,∞) (see, for instance, subsection 24.10 of [28, Chapter 5]).

Appendix: The Exponential Generating Function Connection

In the paper [18] we have considered the exponential generating function (EGF)
exp(tL−1(s)) to derive hypercomplex formulations for Appell sets and Exponential
Generating Function (EGF). With the aim of construct umbral counterparts for the
wave type propagators

cosh
(
t
√
�h −m2

)
resp.

sinh
(
t
√
�h −m2

)
√
�h −m2

,

we consider here a wise adaptation of [15, Corollary 1.1.15] for cosh(tL−1(s)) and
sinh(tL−1(s)). That corresponds to the following result:

Theorem A.1 The formal series representation of cosh(tL−1(s)) and
sinh(tL−1(s)) determined by the delta operator Lt = L(∂t ) are given by

cosh(tL−1(s)) =
∞∑
k=0

m2k(t)

(2k)! s
2k and sinh(tL−1(s)) =

∞∑
k=0

m2k+1(t)

(2k + 1)!s
2k+1,

where {mk(t) : k ∈ N0} is a basic polynomial sequence associated to Lt .

Proof of Theorem A.1 First, we recall that from [15, Corollary 1.1.15], the expo-
nentiation operator exp(s∂t ) may be formally represented as

exp(t∂s) =
∞∑
k=0

mk(t)

k! L(∂s)
k.

Then, we have

cosh(t∂s) = exp(t∂s)+ exp(−t∂s)
2

=
∞∑
k=0

m2k(t)

(2k)! L(∂s)
2k

sinh(t∂s) = exp(t∂s)− exp(−t∂s)
2

=
∞∑
k=0

m2k+1(t)

(2k + 1)!L(∂s)
2k+1.
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By applying the isomorphism theorem (cf. [26, Theorem 2.2.1]) one get a one-to-
one correspondence between cosh(t∂s) resp. sinh(t∂s) with the formal power series
expansions

cosh(ts) =
∞∑
k=0

m2k(t)

(2k)! L(s)
2k

sinh(ts) =
∞∑
k=0

m2k+1(t)

(2k + 1)!L(s)
2k+1.

(21.43)

The conclusion of Theorem A.1 for cosh(tL−1(s)) and sinh(tL−1(s)) then
follows from the substitution s → L−1(s) on both sides of (21.43). �

Let us now take a close look for the Exponential Generating Functions (EGF)
G(s, t) of hypercomplex type defined by means of Eq. (21.6).

It is quite easy to see that the condition m0(t) = 1 and the lowering properties
Ltmk(t) = kmk−1(t) (k ∈ N) lead us naturally to the condition G(s, 0) = 1, and to
the eigenvalue property

LtG(s, t) = sG(s, t). (21.44)

Also, it is worth stressing that Theorem A.1 may me extended/generalized
for hypercomplex variables. In particular, Theorem 21.1.1 corresponds to a wise
generalization of Theorem A.1. The proof proceeds as follows:

Proof of Theorem 21.1.1: First, we recall that the even resp. odd part of G(s, t)may
be expressed as

G(s, t) + G(−s, t)
2

=
∞∑
k=0

m2k(t)

(2k)! s2k

G(s, t) − G(−s, t)
2

=
∞∑
k=0

m2k+1(t)

(2k + 1)! s
2k+1.

Finally, from direct application of Theorem A.1, we recognize that for the
Clifford numbers of the form

s = reiφω, with r ≥ 0, − π < φ ≤ π & ω2 = +1
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the above set of identities equals to

G(reiφω, t) + G(−reiφω, t)
2

= cosh(tL−1
(
reiφ
)
)

G(reiφω, t) − G(−reiφω, t)
2

= ω sinh(tL−1
(
reiφ
)
),

since s2k = (
reiφ
)2k (

ω2
)k = (

reiφ
)2k

and s2k+1 = ss2k = (
reiφ
)2k+1

ω,
concluding in this way that

G(reiφω, t) = cosh
(
tL−1

(
reiφ
))

+ ω sinh
(
tL−1

(
reiφ
))
,

as desired. �

References

1. F. Baaske, S. Bernstein, H. De Ridder, F. Sommen, On solutions of a discretized heat equation
in discrete Clifford analysis. J. Differ. Equ. Appl. 20(2), 271–295 (2014)

2. D. Babusci, G. Dattoli, M. Quattromini, Relativistic equations with fractional and pseudodif-
ferential operators. Phys. Rev. A 83(6), 062109 (2011)

3. S. Bernstein, A fractional dirac operator, in Noncommutative Analysis, Operator Theory and
Applications (pp. 27–41) (Birkhäuser, Basel, 2016)

4. S. Bernstein, Fractional Riesz-Hilbert-type transforms and associated monogenic signals.
Compl. Anal. oper. Theory 11(5), 995–1015 (2017)

5. P. Cerejeiras, U. Kähler, M. Ku, F. Sommen, Discrete hardy spaces. J. Fourier Anal. Appl.
20(4), 715–750 (2011)

6. P. Cerejeiras, U. Kähler, M. Ku, Discrete Hilbert boundary value problems on half lattices. J.
Differ. Equ. Appl. 21(12), 1277–1304 (2015)

7. Ó. Ciaurri, T.A. Gillespie, L. Roncal, J.L. Torrea, J.L. Varona, Harmonic analysis associated
with a discrete Laplacian. J. d’Anal. Math. 132(1), 109–131 (2017)

8. D. Constales, H. De Ridder, A compact Cauchy-Kovalevskaya extension formula in discrete
clifford analysis. Adv. Appl. Clifford Algebr. 24(4), 1005–1010 (2014)

9. G. Dattoli, P.L. Ottaviani, A. Torre, L. Vazquez, Evolution operator equations: Integration with
algebraic and finite difference methods. Applications to physical problems in classical and
quantum mechanics and quantum field theory. La Rivista del Nuovo Cimento (1978-1999)
20(2), 3 (1997)

10. G. Dattoli, E. Sabia, K. Górska, A. Horzela, K.A. Penson, Relativistic wave equations: an
operational approach. J. Phys. A: Math. Theor. 48(12), 125203 (2015)

11. G. Dattoli, A. Torre, Root operators and “evolution equations”. Mathematics 3(3), 690–726
(2015)

12. G. Dattoli, K. Górska, A. Horzela, K.A. Penson, E. Sabia, Theory of relativistic heat
polynomials and one-sided Lévy distributions. J. Math. Phys. 58 (6), 063510 (2017)

13. N. Faustino, K. Gürlebeck, A. Hommel, U. Kähler, Difference potentials for the Navier-Stokes
equations in unbounded domains. J. Differ. Equ. Appl. 12(6), 577–595 (2006)

14. P. Cerejeiras, N. Faustino, N. Vieira, Numerical Clifford analysis for nonlinear Schrödinger
problem. Numer. Methods Partial Differ. Equ. 24(4), 1181–1202 (2008)



21 Relativistic Wave Equations on the Lattice 469

15. N.J.R. Faustino, Discrete Clifford analysis. Doctoral dissertation, Universidade de Aveiro
(Portugal), ix+130 pp, 2009

16. N. Faustino, Further results in discrete Clifford analysis, in Progress in Analysis and Its
Applications, pp. 205–211 (World Scientific, Singapore, 2010)

17. N. Faustino, G. Ren, (Discrete) Almansi type decompositions: an umbral calculus framework
based on osp(1|2) symmetries. Math. Methods Appl Sci. 34(16), 1961-1979 (2011)

18. N. Faustino, Classes of hypercomplex polynomials of discrete variable based on the quasi-
monomiality principle. Appl. Math. Comput. 247, 607–622 (2014)

19. N. Faustino, Solutions for the Klein-Gordon and Dirac equations on the lattice based on
Chebyshev polynomials. Compl. Anal. Oper. Theory 10(2), 379–399 (2016)

20. N. José, R. Faustino, A conformal group approach to the Dirac-Kähler system on the lattice.
Math. Methods Appl. Sci. 40(11), 4118–4127 (2017)

21. N. Faustino, Hypercomplex fock states for discrete electromagnetic Schrödinger operators: a
bayesian probability perspective. Appl. Math. Comput. 315, 531–548 (2017)

22. K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers
(Wiley, Hoboken, 1997)

23. J.C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation,
indefinite integration, and integral transforms. J. Comput. Appl. Math. 49(1-3), 169–178 (1993)

24. H.B. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions. Phys. Lett. B
105(2-3), 219–223 (1981)

25. J.M. Rabin, Homology theory of lattice fermion doubling. Nucl. Phys. B 201(2), 315–332
(1982)

26. S. Roman, The Umbral Calculus (Academic, Cambridge, 1984)
27. M. Ruzhansky, V. Turunen, Pseudo-Differential Operators and Symmetries: Background

Analysis and Advanced Topics, vol. 2 (Springer, Berlin, 2010)
28. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and

Applications, p. 44 (Gordon and Breach, Yverdon, 1993)
29. R.K. Saxena, A.M. Mathai, H.J. Haubold, On fractional kinetic equations. Astrophys. Space

Sci. 282(1), 281–287 (2002)
30. T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis (No. 106) (American

Mathematical Society, Providence, 2006)
31. J. Vaz Jr., R. da Rocha Jr., An Introduction to Clifford Algebras and Spinors (Oxford University

Press, Oxford, 2016)



Chapter 22
Cauchy-Pompeiu Formula for Discrete
Monogenic Functions

Guangbin Ren and Zeping Zhu

Dedicated to Wolfgang Sprößig on the occasion of his 70th
birthday

Abstract For the integral theory of discrete monogenic functions, we establish
a new version of Cauchy-Pompeiu formula via the notions ‘discrete boundary
measure’ and ‘discrete normal vector’. It shares the same form with the continuous
version of Cauchy-Pompeiu formula in contrast to the original Cauchy-Pompeiu
formula in discrete Clifford analysis. It has applications in the boundary theory of
discrete monogenic functions. We can thus set up the discrete Sokhotski-Plemelj
formula and provide an equivalent characterization of the Dirichlet problem with
the discrete Dirac operator in terms of the eigenvectors of certain operator.

Keywords Discrete monogenic function · Cauchy-Pompeiu formula ·
Sokhotski-Plemelj formula

Mathematics Subject Classification (2010) Primary 39A12; Secondary 30G35,
45E05

G. Ren (�)
Department of Mathematics, University of Science and Technology of China, Hefei, China
e-mail: rengb@ustc.edu.cn

Z. Zhu
Department of Mathematics, Chongqing Normal University, Chongqing, China
e-mail: zzp@mail.ustc.edu.cn

© Springer Nature Switzerland AG 2019
S. Bernstein (ed.), Topics in Clifford Analysis, Trends in Mathematics,
https://doi.org/10.1007/978-3-030-23854-4_22

471

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23854-4_22&domain=pdf
mailto:rengb@ustc.edu.cn
mailto:zzp@mail.ustc.edu.cn
https://doi.org/10.1007/978-3-030-23854-4_22


472 G. Ren and Z. Zhu

22.1 Introduction

The Cauchy-Pompeiu formula is the cornerstone of the integral theory in the
complex analysis [12]. It has been generalized to high dimensions in Clifford
analysis [1, 9]. Just as in the complex analysis, the high dimensional Cauchy-
Pompeiu formula plays a vital role in the boundary behaviour of monogenic
functions which are high dimensional analogs of holomorphic functions.

Over recent decades, there has been increasing interest in the discretization of
harmonic analysis and complex analysis, because it has important applications in
pure mathematics, physics, and computer science. Taking the discrete complex
analysis as an example, it has an elegant interaction with statistical physics as
demonstrated by Smirnov in [13]. He proved the convergence of the scaling limit of
specific discrete analytic quantities, the so-called pre-holomorphic fermions. This
reveals the important result of conformal invariance of 2-D Ising models.

Motivated by the numerical treatment of the potential theory and boundary
value problems [7, 8], the discrete Clifford analysis is developed which is a high
dimensional generalization of discrete complex analysis (see, e.g., [2–5, 10]).
Brackx et al. [2] established a discrete integral theory based on their version of
discrete Cauchy-Pompeiu formula. Unfortunately, there is a term called residue in
their formula which may cause difficulties in applications. It is worth trying to find
a better formula without a residue.

The purpose of this article is to establish a new version of discrete Cauchy-
Pompeiu formula without a residue. To achieve this goal, we need to introduce
notions ‘discrete boundary measure’ and ‘discrete normal vector’. In our new
version of the Cauchy-Pompeiu formula, the two kernels related to the surface
measure and the volume measure turn out to be different, in contrast to the classical
version in [2]. Moreover, our formula shares the same form with the continuous
version of Cauchy-Pompeiu formula in contrast to the original Cauchy-Pompeiu
formula in discrete Clifford analysis,

This new formula is very helpful to study the boundary behaviour of discrete
monogenic functions. It allows us to establish the Sokhotski-Plemelj formula for
the discrete Dirac operator, which leads to a solvability criterion for the Dirichlet
problem of the discrete Dirac operator.

Now we come to state our main theorems. We leave the detail notations to the
next section.

LetDhm be the discrete Dirac operator on the grid Z
m
h withm = 2, 3, · · · , andEhm

the fundamental solution ofDhm. Let S and .n = (n+1 , n
−
1 , · · · , n+m, n−m) stand for the

discrete boundary measure and the discrete outward normal vector on the discrete
boundary ∂B of a given subset B of Zmh , respectively. The surface Cauchy-Pompeiu
kernel is defined by

Khm(x, y) := −
m∑
l=1

(
Ehm(hel − x + y)n−l (x)e+l + Ehm(−hel − x + y)n+l (x)e−l

)
,
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where {e±k }mk=1 is the Witt basis of the complex Clifford algebra C2m.

Theorem 22.1.1 (Cauchy-Pompeiu) Let B be a bounded subset of Zmh . Then for
any function f : B −→ C2m we have

χB(y)f (y) =
∫
∂B

Khm(x, y)f (x)dS(x)+
∫
B

Ehm(y−x)Dhmf (x)dV hm(x). (22.1)

Denote by Fh
∂B the discrete Cauchy integral operator. Associated with Fh

∂B , we
construct the operator Sh∂B : F(∂B,C2m) −→ F(∂B,C2m) via

Sh∂Bf (y) := 2
∫
∂B

Khm(x, y)
(
f (x)− f (y))dS(x)+ f (y).

Here F(U,C2m) is the space of C2m-valued functions defined on U ⊂ Z
m
h . In the

following theorem, the discrete boundary ∂B is separated into the inner and outer
layers ∂±B, defined by

∂+B := B
⋂
∂B, ∂−B := B \ ∂B.

Theorem 22.1.2 (Sokhotski-Plemelj) Let B be a bounded set in Z
m
h . Then for any

f ∈ F(∂B,C2m) we have

Fh
∂Bf (y) =

1

2

(± f (y)+ Sh∂Bf (y)
)
, ∀ y ∈ ∂±B.

Based on the discrete Sokhotski-Plemelj formula, we can provide an equivalent
characterization for the Dirichlet problem of the discrete Dirac operator in terms of
the eigenvectors of the operator Sh∂B .

Theorem 22.1.3 (Dirichlet Problem) Let B be a bounded subset of Zmh and f ∈
F(∂B,C2m) be any given function. Then

(i) f is the boundary values of a discrete monogenic function defined on B if and
only if

Sh∂Bf (y) = f (y), ∀ y ∈ ∂B.

(ii) f is the boundary values of a discrete monogenic function defined on Z
m
h \ B

which vanishes at infinity if and only if

−Sh∂Bf (y) = f (y), ∀ y ∈ ∂B.
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22.2 Basic Concepts

Discrete Clifford analysis is a function theory built on the m-dimensional grid Z
m
h .

Here

Z
m
h := (hZ)m

with m � 2 and h > 0. This grid is embedded into the complex Clifford algebra
C2m by identifying the point (x1, · · · , xm) with the vector x1e1+· · ·+xmem, where
ek is the generators of the algebra subject to the following identities:

e2
k = −1 (1 � k � 2m), elen = −enel (1 � l < n � 2m).

22.2.1 Discrete Monogenicity

Definition 22.2.1 ([2]) The discrete Dirac operator on Z
m
h is defined by

Dhm :=
m∑
k=1

e+k ∂
+,h
k + e−k ∂−,hk .

Here ∂+,hk and ∂−,hk stand for the forward and backward difference operators along
the direction ek , i.e.,

∂
+,h
k f (x) = f (x + hek)− f (x)

h
,

∂
−,h
k f (x) = f (x)− f (x − hek)

h
,

and {e±k }mk=1 is the Witt basis of C2m, given by

e±k = 1

2
(ek ± iek+m).

Definition 22.2.2 Let B be a subset of Z
m
h . Its discrete closure and interior are

defined respectively as

B := B ∪ ∂B, B◦ := B \ ∂B,

where ∂B is the discrete boundary of B consisting of every point x ∈ Z
m
h whose

neighborhood

N(x) := {x, x ± he1, x ± he2, · · · , x ± hem}
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has some points inside B and some other points outside B, i.e.,

∂B :=
{
x ∈ Z

m
h : N(x) ∩ B �= ∅ and N(x) \ B �= ∅

}
.

A function is said to be discrete monogenic if it is annihilated by the discrete
Dirac operatorDhm.

Definition 22.2.3 ([2]) A function f : B −→ C2m with B ⊂ Z
m
h is said to be

discrete monogenic on B if for any x ∈ B we have Dhmf (x) = 0.

22.2.2 Discrete Boundary Measure and Discrete Outward
Normal Vector

In our previous work on the discrete quaternionic functions, we has established an
integral theory based on the concepts of discrete boundary measure and discrete
outward normal vector on the grid Z

4
h [11]. In this paper, we shall use the

same method to give a new version of Cauchy-Pompeiu formula for the discrete
monogenic functions.

Definition 22.2.4 Let B be a subset of Zmh . The discrete boundary measure S on
∂B is defined as

S(U) =
∑
x∈U

s(x), ∀ U ⊂ ∂B,

where s : ∂B −→ R is the density function

s = hm

2

√√√√ m∑
k=1

(
(∂

+,h
k χB)2 + (∂−,hk χB)2

)
, (22.2)

and χB stands for the characteristic function of B.

Definition 22.2.5 The discrete outward normal vector at a boundary point of B ⊂
Z
m
h is a vector

.n = (n+1 , n
−
1 , n

+
2 , n

−
2 , · · · , n+m, n−m),

defined by

n±l = −2 ∂±,hl χB√
m∑
k=1

(
(∂

+,h
k χB)2 + (∂−,hk χB)2

) , l = 1, · · · ,m.
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It is obvious that the Euclidean norm of .n is always equal to 2 on ∂B.
Denote by V hm the Haar measure on the discrete group Z

m
h . More precisely,

V hm(U) =
∑
x∈U

hm, ∀ U ⊂ Z
m
h .

Theorem 22.2.6 (Divergence Theorem) LetB be a bounded subset of Z4
h. For any

function f : B −→ R, we have

∫
∂B

f n±k dS =
∫
B

∂
∓,h
k f dV hm, (i = 1, · · · ,m).

Proof This theorem has been proved in the case m = 4, the generalization to the
other dimensions is quit trivial. One may refer to Section 3 in [11] about the details
in the 4-dimensional case. ��

22.3 Discrete Integral Formulae

In this section we rebuild the integral formulae for the discrete monogenic functions.
We define the discrete vector in C2m associated with the discrete outward normal

vector .n as

n̂ :=
m∑
k=1

(e+k n
−
k + e−k n+k ).

It plays the same role in the integral theory as its continuous counterpart
m∑
k=1

eknk .

Theorem 22.3.1 (Cauchy’s Theorem) Let B be a bounded subset of Zmh . If f :
B −→ C2m is discrete monogenic in B, then the following identity holds true

∫
∂B

n̂f dS = 0.

Proof According to the discrete divergence theorem (Theorem 22.2.6), we have

∫
∂B

n̂f dS =
∫
B

Dhmf dV
h
m.

Since f is discrete monogenic, the proof is completed. ��
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Theorem 22.3.2 (Morera’s Theorem) Let B be a subset of Zmh . A function f :
B −→ C2m is discrete monogenic if

∫
∂U

n̂f dS = 0,

for any bounded subset U of B.

Proof Again Theorem 22.2.6 yields

∫
U

Dhmf dV
h
m =
∫
∂U

n̂f dS = 0.

This means

∑
x∈U

Dhmf (x) = 0.

Hence by choosing U as each single point subset of B, we obtain Dhmf vanishes
on B. ��

Denote Vm by the Lebesgue measure on [−π, π]m. In [2, 3, 6] the fundamental
solution of the discrete Dirac operator has been extensively studied.

Definition 22.3.3 ([2]) The fundamental solution of the difference operator Dhm is
defined as

Ehm(x) =
1

hm−1Em

(x
h

)
.

Here

Em(x) = 1

(2π)m

∫
[−π,π]m

∑m
k=1(e

+
k ξ+k + e−k ξ−k)

4
∑m
k=1 sin2 ξk

2

e
−i

m∑
l=1

ξlxl
dVm(ξ)

with

ξ±k = ∓(1 − e∓iξk ).

Denote the discrete Dirac delta function on Z
m
h by δh,m0 , i.e.,

δ
h,m
0 (x) =

{
h−m, x = 0,
0, x �= 0.
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Ehm is called the fundamental solution of Dhm because it satisfies

DhmE
h
m = EhmD

h
m = δ

h,m
0 in Z

m
h .

We restate Theorem 22.1.1 as follows:
Let B be a bounded subset of Z

m
h . Then for any function f : B −→ C2m we

have

χB(y)f (y) =
∫
∂B

Khm(x, y)f (x)dS(x)+
∫
B

Ehm(y−x)Dhmf (x)dV hm(x). (22.3)

Here the Cauchy-Pompeiu kernel on the boundary ∂B is given by

Khm(x, y) := −
m∑
l=1

(
Ehm(hel − x + y)n−l (x)e+l + Ehm(−hel − x + y)n+l (x)e−l

)
.

Proof of Theorem 22.1.1 Applying Theorem 22.2.6 to the boundary integral

∫
∂B

Khm(x, y)f (x)dS(x),

we obtain

∫
∂B

Khm(x, y)f (x)dS(x) =−
∫
B

m∑
l=1

∂
+,h
l

(
Ehm(hel − · + y)e+l f

)
(x)

+ ∂−,hl

(
Ehm(−hel − · + y)e−l f

)
(x)dV hm(x).

(22.4)

By simple calculation, we have

∂
±,h
l

(
Ehm(±hel − · + y)e±l f

) = Ehm(− · +y)e±l (∂±,hl f )− (∂±,hl Ehm)(− · +y)e±l f.

Hence

m∑
l=1

∂
+,h
l

(
Ehm(hel − · + y)e+l f

)
(x)+ ∂−,hl

(
Ehm(−hel − · + y)e−l f

)
(x)

=Ehm(−x + y)Dhmf (x)− (EhmDhm)(−x + y)f (x)
=Ehm(−x + y)Dhmf (x)− δh,m0 (−x + y)f (x).
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Therefore, substituting the identity above into (22.4), we obtain

∫
∂B

Khm(x, y)f (x)dS(x) = −
∫
B

Ehm(y − x)Dhmf (x)− δh,m0 (y − x)f (x)dV hm(x).

It completes the proof. ��
Corollary 22.3.4 If f is discrete monogenic on a bounded subset B of Zmh , then

χB(y)f (y) =
∫
∂B

Khm(x, y)f (x)dS(x).

We observe that Khm(x, ·) is discrete monogenic away from the boundary ∂B.

Theorem 22.3.5 For any given x ∈ ∂B, the kernel Khm(x, ·) is discrete monogenic
on Z

m
h \ N(x).

Proof It follows from the fact that Ehm(±hel − x + ·) is discrete monogenic on
Z
m
h \ N(x). ��

22.4 Boundary Behaviour of Discrete Monogenic Functions

22.4.1 Discrete Sokhotski-Plemelj Formula

Firstly, we introduce some basic notations. Let F(X,C2m) stand for the space of
C2m-valued functions defined on X ⊂ Z

m
h .

Definition 22.4.1 Let B be a bounded set in Z
m
h . The operator

Fh
∂B : F(∂B,C2m) −→ F(Zmh ,C2m),

defined by

Fh
∂Bf (y) :=

∫
∂B

Khm(x, y)f (x)dS(x),

is called the discrete Cauchy integral operator. The operator

T h
B : F(B,C2m) −→ F(Zmh ,C2m),

defined by

T h
B f (y) :=

∫
B

Ehm(y − x)f (x)dV hm(x),

is called the discrete Teodorescu operator.
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As their continuous counterparts, the discrete Teodorescu operator T h
B is a right

inverse of the discrete Dirac operatorDhm. Namely, for any f ∈ F(B,C2m),

DhmT h
B f = f.

Remark 22.4.2 With these notations the discrete Cauchy-Pompeiu formula in
Theorem 22.1.1 can be rewritten in the form

Fh
∂Bf (y)+ T h

B (D
h
mf )(y) = χB(y)f (y).

Associated with the discrete Cauchy integral Fh
∂B , we introduce an important

integral operator

Sh∂B : F(∂B,C2m) −→ F(∂B,C2m)

defined by

Sh∂Bf (y) := 2
∫
∂B

Khm(x, y)
(
f (x)− f (y))dS(x)+ f (y).

Now we come to prove the discrete Sokhotski-Plemelj formula in Theorem
22.1.2.

Proof of Theorem 22.1.2 From the definition of Sh∂B , it follows immediately that for
any y ∈ ∂B

Sh∂Bf (y) = 2Fh
∂B(f − f (y))(y)+ f (y)

= 2Fh
∂Bf (y)− 2f (y)Fh

∂B(1)(y)+ f (y).

On the other hand, taking f = 1 in Remark 22.4.2 yields that

Fh
∂B(1)(y) =

⎧⎨
⎩

1, y ∈ ∂+B,

0, y ∈ ∂−B.

Therefore, we conclude that

Fh
∂Bf (y)−

1

2
Sh∂Bf (y) = f (y)Fh

∂B(1)(y)−
1

2
f (y)

=
⎧⎨
⎩
+ 1

2f (y), y ∈ ∂+B,

− 1
2f (y), y ∈ ∂−B.
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Namely,

Fh
∂Bf (y) =

1

2

(± f (y)+ Sh∂Bf (y)
)
, ∀ y ∈ ∂±B.

It completes the proof. ��

22.4.2 Characterizations of Boundary Values of Discrete
Monogenic Functions

In this section we shall give a characterization for the boundary data of discrete
monogenic functions.

In the work on the discrete Hardy space [3], a pointwise estimate for the
fundamental solution was given as

|Ehm(x)| �
C

|x|m−1 + hm−1 + Ch

|x|m + hm , ∀ x ∈ Z
m
h , (22.5)

where C is a positive constant independent of h and x. For more details, see Lemma
2.8 in [3]. We remark that the inequality is only proved in the case m = 3 but the
approach is valid in other dimensions.

The following Cauchy formula for discrete monogenic functions vanishing at
infinity is very useful.

Lemma 22.4.3 Let B be a bounded subset of Zmh . Then for any discrete monogenic

function u : Zmh \ B −→ C2m vanishing at infinity, we have

−Fh
∂Bu(y) = χZmh \B(y)u(y).

Proof For convenience, we identity the function u with its zero extension into the
whole lattice Z

m
h . Set

	n = {0,±h,±2h, · · · ,±nh}m

and apply Remark 22.4.2 to the bounded discrete domains	n and B. Then we get

Fh
∂	n

u = χ	nu− T h
	n
(Dhmu)

and

Fh
∂Bu = χBu− T h

B (D
h
mu).



482 G. Ren and Z. Zhu

Hence

Fh
∂	n

u− Fh
∂Bu = χ	n\Bu− T h

	n\B(D
h
mu).

Since Dhmu vanishes on 	n \ B, we have

T h
	n\B(D

h
mu) ≡ 0,

which indicates

Fh
∂	n

u− Fh
∂Bu = χ	n\Bu.

It is apparent that as n tends to +∞, the right side of this identity converges to
χZmh \Bu. We also claim that the first item in the left side converges to zero as n tends
to +∞, so that

−Fh
∂Bu = χZmh \Bu.

Now we come to prove that Fh
∂	n

u converges to zero point-wisely as n tends to
+∞. Because 	n has a quite simple structure, its discrete boundary can be easily
found. Indeed,

∂	n =
m⋃
k=1

{
x ∈ Z

m
h : |xk| = nh, (n+ 1)h and |xj | � nh (j �= k)

}
.

On the other hand, by direct calculation the discrete boundary measure S on ∂	n
satisfies the estimate

S(∂	n) � Chm−1(n+ 1)m−1,

where C is a positive constant independent of n. Consequently,

∣∣∣Fh
∂	n

u(y)

∣∣∣ =
∣∣∣∣∣∣∣
∫

∂	n

Khm(x, y)u(x)dS(x)

∣∣∣∣∣∣∣
� max

∂	n
|u| max

x∈∂	n
|Khm(x, y)|S(∂	n)

� Chm−1 max
∂	n

|u|
(

max
x∈∂	n

|Khm(x, y)|(n+ 1)m−1
)
.

It is easy to see that ∂	n moves towards infinity as n tends to +∞. Hence max
∂	n

|u|
converges to zero by assumption. Then it remains to show

max
x∈∂	n

|Khm(x, y)|nm−1 = O(1).
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Recall that the discrete kernel Khm can be expressed via the fundamental solution
Ehm and the discrete normal vector .n as

Khm(x, y) := −
m∑
l=1

Ehm(hel − x + y)n−l (x)e+l + Ehm(−hel − x + y)n+l (x)e−l .

Since

m∑
l=1

(n+l )
2 + (n−l )2 = 4,

we have

|Khm(x, y)| � 2
m∑
l=1

|Ehm(hel − x + y)| + |Ehm(−hel − x + y)|.

Let y be fixed. In virtue of (22.5) there exists a constant C such that for any x ∈ Z
m
h

with |x| > |y| + h we have

|Khm(x, y)| �
C

(|x| − |y| − h)m−1 + hm−1 + Ch

(|x| − |y| − h)m + hm

so that, when n is sufficiently large,

max
x∈∂	n

|Khm(x, y)| �
C

(nh− |y| − h)m−1 + hm−1 + Ch

(nh− |y| − h)m + hm .

Therefore,

max
x∈∂	n

|Khm(x, y)|nm−1 = O(1).

It completes the proof. ��
Let B be a bounded subset of Zmh and f ∈ F(∂B,C2m) be any given function,

not identically zero. Theorem 22.1.3 can be restated as follows:

(i) The nonzero function f ∈ F(∂B,C2m) is the boundary values of a discrete
monogenic function defined on B if and only if f is an eigenvector of the
operator Sh∂B : F(∂B,C2m) −→ F(∂B,C2m) with eigenvalue 1.

(ii) The nonzero function f ∈ F(∂B,C2m) is the boundary values of a discrete
monogenic function defined on Z

m
h \ B which vanishes at infinity if and only if

f is an eigenvector of the operator Sh∂B : F(∂B,C2m) −→ F(∂B,C2m) with
eigenvalue -1.
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Proof of Theorem 22.1.3 By Remark 22.4.2, for any function u : Zmh −→ C2m we
have

Fh
∂Bu(y) =

⎧⎨
⎩
u(y)− T h

B (D
h
mu)(y), y ∈ ∂+B,

−T h
B (D

h
mu)(y), y ∈ ∂−B.

Now we let u be an arbitrary extension of f from ∂B into Z
m
h . By Theorem 22.1.2

we then obtain

Sh∂Bf (y) = u(y)− 2T hB (Dhmu)(y), y ∈ ∂B. (22.6)

(i) Assume that

Sh∂Bf (y) = f (y), ∀ y ∈ ∂B.

Thus one can easily see that

f (y) = u(y)− T h
B (D

h
mu)(y), y ∈ ∂B.

Hence f represents the boundary data of the function

F(y) := u(y)− T h
B (D

h
mu)(y), y ∈ B,

which is discrete monogenic since

DhmF(y) = Dhmu(y)−(DhmT hB )(Dhmu)(y) = Dhmu(y)−Dhmu(y) = 0, y ∈ B.

(ii) Assume that f represents the boundary data of a discrete monogenic function
u : B → C2m. Then it follows immediately from (22.6) that

Sh∂Bf (y) = u(y)− 2T hB (Dhmu)(y) = u(y) = f (y), y ∈ ∂B.

Therefore we conclude that f is the boundary values of a discrete monogenic
function defined on B if and only if

Sh∂Bf (y) = f (y), ∀ y ∈ ∂B.

(iii) Assume that

Sh∂Bf (y) = −f (y), ∀ y ∈ ∂B.
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(22.6) yields

f (y) = T h
B (D

h
mu)(y), y ∈ ∂B.

Thus f represents the boundary data of the function

G(y) := T h
B (D

h
mu)(y), y ∈ Z

m
h \ B.

Moreover, since

DhmT h
B u(y) = χB(y)u(y), y ∈ Z

m
h

holds true for any function u : B → C2m, we have

DhmG(y) = (DhmT h
B )(D

h
mu)(y) = 0, y ∈ Z

m
h \ B.

Namely,G is discrete monogenic. On the other hand, (22.5) says

|Ehm(x)| �
C

|x|m−1 + hm−1 + Ch

|x|m + hm . (22.7)

Therefore,

|T h
B (D

h
mu)(y)|

� V hm(B)max
B

|Dhmu|max
x∈B |Ehm(y − x)|

� V hm(B)max
B

|Dhmu|
(

1

(|y| − ρ)m−1 + hm−1 + Ch

(|y| − ρ)m + hm
)
,

where ρ = max
x∈B |x|. This means T h

B (D
h
mu) vanishes at infinity.

(iiii) Assume that f represents the boundary data of a discrete monogenic function
u : Zmh \ B → C2m vanishing at infinity. By Lemma 22.4.3, we thus have

−Fh
∂Bu(y) = χZmh \B(y)u(y), y ∈ Z

m
h .

Then it follows from Theorem 22.1.2 that

χZmh \B(y)u(y) = −Fh
∂Bu(y) =

1

2

(∓ f (y)− Sh∂Bf (y)
)
, ∀ y ∈ ∂±B.

Hence, according to the definitions of ∂±B we have

Sh∂Bf (y) = −f (y), y ∈ ∂B.
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Therefore, we conclude that f is the boundary values of a discrete monogenic
function defined on Z

m
h \ B , which vanishes at infinity, if and only if

Sh∂Bf (y) = −f (y), y ∈ ∂B.

It completes the proof.
��
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23.1 The Transformation in the Classical Theory

In the continuous case equations of the form a uxx + 2b uxy + c uyy = f can be
rewritten in the form uω0,ω0 + uω1,ω1 = f̃ by applying the transformation

∂ω0

∂x
= b√

�

∂ω1

∂x
+ c√

�

∂ω1

∂y

∂ω0

∂y
= − a√

�

∂ω1

∂x
− b√

�

∂ω1

∂y

with � = ac − b2 > 0 . Many statements from analysis and geometry, such as
the problem of conforming a surface to a plane, lead to this problem. A further
development and application of the method on issues of quasi conformal mappings
can be found in the works of B. W. Bojarski.

Using the factorization of the Laplace operator each solution of the problem

(
uω0 − vω1

uω1 + vω0

)
=
(
T 2

1 [f̃ , g]
T 2

2 [f̃ , g]
)

(23.1.1)

fulfills the Poisson equation mentioned above, if T 2 =
(
T 2

1
T 2

2

)
is the right inverse

operator with the property

(
∂
∂ω0

∂
∂ω1

− ∂
∂ω1

∂
∂ω0

)(
T 2

1 [f̃ , g]
T 2

2 [f̃ , g]
)
=
(
f̃

g

)
. If Eq. (23.1.1) is

splitted into its two components, a system of equations of first order is obtained. On
the other hand it should be noted that by the help of the ansatz

(
uω0 − vω1

uω1 + vω0

)
=
(
a −b
b a

)(
u

−v
)

(23.1.2)

a solution of the problem uω0ω0 + uω1ω1 = (a2 + b2)u is described. Concretely
follows from

uω0ω0 − vω1ω0 = a uω0 + b vω0 and uω1ω1 + vω0ω1 = b uω1 − a vω1

by summation

uω0ω0 + uω1ω1 = a (uω0 − vω1)+ b (uω1 + vω0) = a (au+ bv)+ b(bu− av) .

Using this ansatz the relation to Vekua equations becomes obvious.
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23.2 The Discrete Case and the Discrete Beltrami Equation

Now the idea of transformation is generalized to the discrete situation. From now
(m1,m2) is used instead of (m1h,m2h) in all arguments to simplify the formulas.
Applying forward differences Djhu(k) = h−1(u(k + bj ) − u(k)) and backward

differences D−j
h u(k) = h−1(u(k)−u(k− bj )) for j ∈ {1, 2}, k = (k1, k2), b1 =

(1, 0) and b2 = (0, 1) it follows

um1 = D1
hu(ω0(m1 − 1,m2), ω1(m1,m2)) = uω0 ·D−1

h ω0 + uω1 ·D1
hω1

with

uω0 =
u(ω0(m1,m2), ω1(m1+1,m2))− u(ω0(m1−1,m2), ω1(m1+1,m2))

ω0(m1,m2)− ω0(m1−1,m2)

uω1 =
u(ω0(m1−1,m2), ω1(m1+1,m2))− u(ω0(m1−1,m2), ω1(m1,m2))

ω1(m1+1,m2)− ω1(m1,m2)
.

Another approximation is obtained if um2 = D2
hu(ω0(m1,m2 − 1), ω1(m1,m2)) is

chosen as starting point.
The second derivatives are calculated by using the product rules

D1
h(uv) = u(m1 + 1,m2)D

1
hv + v D1

hu and

D−1
h (uv) = u(m1 − 1,m2)D

−1
h v + v D−1

h u.

Let

um1m1 = uω0(m1 + 1,m2)D
1
hD

−1
h ω0 +D−1

h ω0D
1
huω0

+uω1(m1 − 1,m2)D
−1
h D1

hω1 +D1
hω1D

−1
h uω1

with D1
huω0 = uω0 ω0 D

−1
h ω0 + uω0 ω1 D

1
hω1 and

uω0 ω0 =
u(ω0(m1+1,m2), ω1(m1+2,m2)−u(ω0(m1,m2), ω1(m1+2,m2))

(ω0(m1+1,m2)− ω0(m1,m2))(ω0(m1,m2)− ω0(m1−1,m2))

+−u(ω0(m1,m2), ω1(m1+2,m2))+u(ω0(m1−1,m2), ω1(m1+2,m2))

(ω0(m1,m2)− ω0(m1−1,m2))(ω0(m1,m2)− ω0(m1−1,m2))

uω0 ω1 =
u(ω0(m1,m2), ω1(m1+2,m2)−u(ω0(m1−1,m2), ω1(m1+2,m2))

(ω0(m1,m2)− ω0(m1−1,m2))(ω1(m1+1,m2)− ω1(m1,m2))

+−u(ω0(m1,m2), ω1(m1+1,m2))+u(ω0(m1−1,m2), ω1(m1+1,m2))

(ω0(m1,m2)− ω0(m1−1,m2))(ω1(m1+1,m2)− ω1(m1,m2))
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as well as D−1
h uω1 = uω1ω0D

−1
h ω0 + uω1ω1D

1
hω1 with

uω1 ω0 =
u(ω0(m1−1,m2), ω1(m1+1,m2)−u(ω0(m1−1,m2), ω1(m1,m2))

(ω0(m1,m2)− ω0(m1−1,m2))(ω1(m1+1,m2)− ω1(m1,m2))

+−u(ω0(m1−2,m2), ω1(m1+1,m2))+u(ω0(m1−2,m2), ω1(m1,m2))

(ω0(m1,m2)− ω0(m1−1,m2))(ω1(m1+1,m2)− ω1(m1,m2))

uω01,ω1 =
u(ω0(m1−2,m2), ω1(m1+1,m2)−u(ω0(m1−2,m2), ω1(m1,m2))

(ω1(m1+1,m2)− ω1(m1,m2))(ω1(m1+1,m2)− ω1(m1,m2))

+−u(ω0(m1−2,m2), ω1(m1,m2))+u(ω0(m1−2,m2), ω1(m1−1,m2))

(ω1(m1,m2)− ω1(m1−1,m2))(ω1(m1+1,m2)− ω1(m1,m2))
.

Analogously can be defined

um1m2 = uω0(m1 + 1,m2)D
2
hD

−1
h ω0 +D−1

h ω0D
2
huω0

+uω1(m1 − 1,m2)D
−2
h D1

hω1 +D1
hω1D

−2
h uω1

um2m1 = uω0(m1 + 1,m2)D
1
hD

−2
h ω0 +D−2

h ω0D
1
huω0

+uω1(m1 − 1,m2)D
−1
h D2

hω1 +D2
hω1D

−1
h uω1

um2m2 = uω0(m1 + 1,m2)D
2
hD

−2
h ω0 +D−2

h ω0D
2
huω0

+uω1(m1 − 1,m2)D
−2
h D2

hω1 +D2
hω1D

−2
h uω1

with D2
huω0 = uω0ω0D

−2
h ω0 + uω0ω1D

2
hω1 and D−2

h uω1 = uω1ω0D
−2
h ω0 +

uω1ω1D
2
hω1.

To lead back the problem

f = a um1m1 + b um1m2 + b um2m1 + c um2m2

= a uω0(m1+1,m2)D
1
hD

−1
h ω0 + a D−1

h ω0(uω0ω0D
−1
h ω0 + uω0ω1D

1
hω1)

+a uω1(m1−1,m2)D
−1
h D1

hω1 + a D1
hω1(uω1ω0D

−1
h ω0 + uω1ω1D

1
hω1)

+b uω0(m1+1,m2)D
2
hD

−1
h ω0 + bD−1

h ω0(uω0ω0D
−2
h ω0 + uω0ω1D

2
hω1)

+b uω1(m1−1,m2)D
−2
h D1

hω1 + bD1
hω1(uω1ω0D

−2
h ω0 + uω1ω1D

2
hω1)

+b uω0(m1+1,m2)D
1
hD

−2
h ω0 + bD−2

h ω0(uω0 ω0D
−1
h ω0 + uω0 ω1 D

1
hω1)
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+b uω1(m1−1,m2)D
−1
h D2

hω1 + bD2
hω1(uω1ω0D

−1
h ω0 + uω1ω1D

1
hω1)

+c uω0(m1+1,m2)D
2
hD

−2
h ω0 + cD−2

h ω0(uω0ω0D
−2
h ω0 + uω0ω1D

2
hω1)

+c uω1(m1−1,m2)D
−2
h D2

hω1 + cD2
hω1(uω1ω0D

−2
h ω0 + uω1ω1D

2
hω1)

to the equation uω0ω0 + uω1ω1 = f̃ the following identities must be true:

a (D−1
h ω0)

2 + b (D−1
h ω0)(D

−2
h ω0)+b (D−2

h ω0)(D
−1
h ω0)+ c (D−2

h ω0)
2

= a (D1
hω1)

2 + b (D1
hω1)(D

2
hω1)+ b (D2

hω1)(D
1
hω1)+ c (D2

hω1)
2

0 = a (D−1
h ω0)(D

1
hω1)+ b (D−1

h ω0)(D
2
hω1)+ b (D−2

h ω0)(D
1
hω1)

+c (D−2
h ω0)(D

2
hω1)

0 = a D1
hD

−1
h ω0 + bD2

hD
−1
h ω0 + bD1

hD
−2
h ω0 + cD2

hD
−2
h ω0

0 = a D−1
h D1

hω1 + bD−2
h D1

hω1 + bD−1
h D2

hω1 + cD−2
h D2

hω1 .

In the next step it is proved that all these equations are fulfilled if the transforma-
tion

D−1
h ω0 = b√

�
D1
hω1 + c√

�
D2
hω1

−D−2
h ω0 = a√

�
D1
hω1 + b√

�
D2
hω1 (23.2.1)

with � = ac − b2 > 0 is applied. At the same time it follows from this
transformation

D2
hω1 = a√

�
D−1
h ω0 + b√

�
D−2
h ω0

−D1
hω1 = b√

�
D−1
h ω0 + c√

�
D−2
h ω0 . (23.2.2)

Let’s start with the first equation. It holds

a (D−1
h ω0)

2 + b (D−1
h ω0)(D

−2
h ω0)+ b (D−2

h ω0)(D
−1
h ω0)+ c (D−2

h ω0)
2

= a

(
b√
�
D1
hω1 + c√

�
D2
hω1

)2

+ c
(
− a√

�
D1
hω1 − b√

�
D2
hω1

)2

+2b

(
b√
�
D1
hω1 + c√

�
D2
hω1

)(
− a√

�
D1
hω1 − b√

�
D2
hω1

)
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= (D1
hω1)

2
(
ab2

�
− 2ab2

�
+ ca2

�

)
+ (D2

hω1)
2
(
ac2

�
− 2b2c

�
+ b2c

�

)

+(D1
hω1)(D

2
hω1)

(
2abc

�
− 2b3

�
− 2abc

�
+ 2abc

�

)

= a(D1
hω1)

2
(
ac − b2

�

)
+ 2b(D1

hω1)(D
2
hω1)

(
ac − b2

�

)
+ c(D2

hω1)
2
(
ac − b2

�

)

= a(D1
hω1)

2 + 2b(D1
hω1)(D

2
hω1)+ c(D2

hω1)
2 .

The right-hand side of the second equation can be written in the form

a (D−1
h
ω0)(D

1
hω1)+b (D−1

h
ω0)(D

2
hω1)+b (D−2

h
ω0)(D

1
hω1)+c (D−2

h
ω0)(D

2
hω1)

= a(D−1
h
ω0)

(
− b√

�
D−1
h
ω0− c√

�
D−2
h
ω0

)
+b(D−1

h
ω0)

(
a√
�
D−1
h
ω0+ b√

�
D−2
h
ω0

)

+b(D−2
h
ω0)

(
− b√

�
D−1
h
ω0− c√

�
D−2
h
ω0

)
+c(D−2

h
ω0)

(
a√
�
D−1
h
ω0+ b√

�
D−2
h
ω0

)

= (D−1
h ω0)

2
(
− ab√

�
+ ab√

�

)
+(D−1

h ω0)(D
−2
h ω0)

(
− ac√

�
+ b2
√
�
− b2
√
�
+ ac√

�

)

+(D − h−2ω0)
2
(
− bc√

�
+ bc√

�

)
= 0 .

Similar it can be proved in the last equations

a D1
hD

−1
h ω0 + bD2

hD
−1
h ω0 + bD1

hD
−2
h ω0 + cD2

hD
−2
h ω0

= aD1
h

(
b√
�
D1
hω1+ c√

�
D2
hω1

)
+ bD2

h

(
b√
�
D1
hω1+ c√

�
D2
hω1

)

+bD1
h

(
− a√

�
D1
hω1− b√

�
D2
hω1

)
+ cD2

h

(
− a√

�
D1
hω1− b√

�
D2
hω1

)

= D1
hD

1
hω1

(
ab√
�

− ab√
�

)
+D1

hD
2
hω1

(
ac√
�
+ b2
√
�
− b2
√
�
− ac√

�

)

+D2
hD

2
hω1

(
bc√
�
− bc√

�

)
= 0
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by using the relation D1
hD

2
hω1 = D2

hD
1
hω1 and

a D−1
h D1

hω1 + bD−2
h D1

hω1 + bD−1
h D2

hω1 + cD−2
h D2

hω1

= aD−1
h

(
− b√

�
D−1
h ω0− c√

�
D−2
h ω0

)
+bD−2

h

(
− b√

�
D−1
h ω0− c√

�
D−2
h ω0

)

+bD−1
h

(
a√
�
D−1
h ω0+ b√

�
D−2
h ω0

)
+cD−2

h

(
a√
�
D−1
h ω0+ b√

�
D−2
h ω0

)

= D−1
h D−1

h ω0

(
− ab√

�
+ ab√

�

)
+D−1

h D−2
h ω0

(
− ac√

�
− b2

√
�
+ b2

√
�
+ ac√

�

)

D−2
h D−2

h ω0

(
− bc√

	
+ bc√

	

)
= 0

by using the relation D−1
h D−2

h ω0 = D−2
h D−1

h ω0 .

Equations of the form uω0ω0 + uω1ω1 = f̃ can be solved analogously to
the continuous case, because in the discrete theory a factorization of the Laplace
operator is possible, too.

We now turn to the following question: Is a corresponding procedure similar to
the ansatz (23.1.2) available in the discrete theory? In order to investigate this fact,
the second derivatives with respect to ω0 and ω1 are rewritten. It holds

uω0ω0 =
uω0(ω0(m1+1,m2), ω1(m1+1,m2))−uω0 (ω0(m1,m2), ω1(m1+1,m2))

ω0(m1,m2)−ω0(m1−1,m2)

uω0ω1 =
uω0(ω0(m1,m2), ω1(m1+1,m2))−uω0 (ω0(m1,m2), ω1(m1,m2))

ω1(m1+1,m2)−ω1(m1,m2)

uω1ω0 =
uω1(ω0(m1,m2), ω1(m1,m2))−uω1 (ω0(m1−1,m2), ω1(m1,m2))

ω0(m1,m2)−ω0(m1−1,m2)

uω1ω1 =
uω1(ω0(m1−1,m2), ω1(m1,m2))−uω1 (ω0(m1−1,m2), ω1(m1−1,m2))

ω1(m1+1,m2)−ω1(m1,m2)
.

The following system of equations of first order is the discrete analogon to the
ansatz (23.1.2).

uω0(ω0(m1+1,m2), ω1(m1+1,m2))−vω1(ω0(m1,m2), ω1(m1,m2))

= a u(ω0(m1,m2), ω1(m1+2,m2))+b v(ω0(m1,m2), ω1(m1+2,m2))

uω1(ω0(m1−1,m2), ω1(m1,m2))+vω0(ω0(m1,m2), ω1(m1+1,m2))

= b u(ω0(m1−2,m2), ω1(m1+1,m2))−a v(ω0(m1−2,m2), ω1(m1+1,m2)) .
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Based on these equations it follows

uω0ω0 − vω1ω0

= uω0(ω0(m1+1,m2), ω1(m1+1,m2))−uω0 (ω0(m1,m2), ω1(m1+1,m2))

ω0(m1,m2)−ω0(m1−1,m2)

− vω1(ω0(m1,m2), ω1(m1,m2))−vω1 (ω0(m1−1,m2), ω1(m1,m2))

ω0(m1,m2)−ω0(m1−1,m2)

= a u(ω0(m1,m2), ω1(m1+2,m2)) + b v(ω0(m1,m2), ω1(m1+2,m2))

ω0(m1,m2)−ω0(m1−1,m2)

−a u(ω0(m1−1,m2), ω1(m1+2,m2))−b v(ω0(m1−1,m2), ω1(m1+2,m2))

ω0(m1,m2)−ω0(m1−1,m2)

= a
u(ω0(m1,m2), ω1(m1+2,m2))−u(ω0(m1−1,m2), ω1(m1+2,m2))

ω0(m1,m2)−ω0(m1−1,m2)

+b v(ω0(m1,m2), ω1(m1+2,m2))−v(ω0(m1−1,m2), ω1(m1+2,m2))

ω0(m1,m2)−ω0(m1−1,m2)

= a uω0(ω0(m1,m2), ω1(m1+1,m2))+b vω0 (ω0(m1,m2), ω1(m1+1,m2))

as well as

uω1ω1 + vω0ω1

= uω1(ω0(m1−1,m2), ω1(m1,m2))−uω1(ω0(m1−1,m2), ω1(m1−1,m2))

ω1(m1+1,m2)−ω1(m1,m2)

+vω0(ω0(m1,m2), ω1(m1+1,m2))−vω0(ω0(m1,m2), ω1(m1,m2))

ω1(m1+1,m2)−ω1(m1,m2)

= b u(ω0(m1−2,m2), ω1(m1+1,m2))−a v(ω0(m1−2,m2), ω1(m1+1,m2))

ω1(m1+1,m2)− ω1(m1,m2)

+−b u(ω0(m1−2,m2), ω1(m1,m2))+a v(ω0(m1−2,m2), ω1(m1,m2))

ω1(m1+1,m2)−ω1(m1,m2)

= b
u(ω0(m1−2,m2), ω1(m1+1,m2))−u(ω0(m1−2,m2), ω1(m1,m2))

ω1(m1+1,m2)−ω1(m1,m2)

−a v(ω0(m1−2,m2), ω1(m1+1,m2))−v(ω0(m1−2,m2), ω1(m1,m2))

ω1(m1+1,m2)−ω1(m1,m2)

= b uω1(ω0(m1−1,m2), ω1(m1,m2))−a vω1(ω0(m1−1,m2), ω1(m1,m2)) .

All these terms can be summed up to

uω0ω0 − vω1ω0 + uω1ω1 + vω0ω1

= a uω0(ω0(m1,m2), ω1(m1+1,m2))+b vω0 (ω0(m1,m2), ω1(m1+1,m2))

+b uω1(ω0(m1−1,m2), ω1(m1,m2))−a vω1(ω0(m1−1,m2), ω1(m1,m2))
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= a (uω0 (ω0(m1,m2), ω1(m1+1,m2))−vω1 (ω0(m1−1,m2), ω1(m1,m2)))

+b (vω0 (ω0(m1,m2), ω1(m1+1,m2))+uω1(ω0(m1−1,m2), ω1(m1,m2)))

= a(a u(ω0(m1−1,m2), ω1(m1+2,m2))+b v(ω0(m1−1,m2), ω1(m1+2,m2)))

+b(b u(ω0(m1−2,m2), ω1(m1+1,m2))−a v(ω0(m1−2,m2), ω1(m1+1,m2)))

= a2 u(ω0(m1−1,m2), ω1(m1+2,m2))+b2 u(ω0(m1−2,m2), ω1(m1+1,m2))

+ab v(ω0(m1−1,m2), ω1(m1+2,m2))−ab v(ω0(m1−2,m2), ω1(m1+1,m2)) .

Of course the equation in the discrete version is more complicated and especially
the summands associated with the function v can not be removed because of the
use of different mesh points. But if h tends to zero the relation to the classical
differential equation is recognizable. More detailed information with respect to the
convergence behaviour are possible, if the expression

ab v(ω0(m1,m2), ω1(m1,m2))

is subtracted and then added on the right-hand side in the sense of an additive zero.
By this way the differences

ab v(ω0(m1 − 1,m2), ω1(m1 + 2,m2))− ab v(ω0(m1,m2), ω1(m1,m2))

and

ab v(ω0(m1,m2), ω1(m1,m2))− ab v(ω0(m1 − 2,m2), ω1(m1 + 1,m2))

arise which can be considered as difference derivatives multiplied by h, even if the
mesh points are not directly adjacent. A remarkable fact is that a system of equations
of first order exists, which is very important for the problem of second order even if
many neighboring lattice points are included.

Now the Beltrami equation is considered. Its solution is based on the coordinate
transform introduced above in the continuous as well as in the discrete case.

Starting with the classical case, the equation

∂zw + q(z) ∂zw = 0 with ∂z = 1

2

(
∂

∂x
+ i ∂

∂y

)
, ∂z = 1

2

(
∂

∂x
− i ∂

∂y

)

and ω = ω0+iω1 is called Beltrami equation. In this notation the complex function

q(z) = q0 + iq1 = a − c + 2ib

a + c + 2
√
�

= a −√
�+ ib

a +√
�− ib with � = ac− b2 > 0



496 A. Hommel

is related to the constant coefficients in the differential equation

a uxx + 2b uxy + c uyy = f.

It is easy to prove that the Beltrami equation is fulfilled using the classical transform.
Accordingly, in the discrete theory the difference equation

(
0
0

)
= 1

2

(
D−1
h −D2

h

D−2
h D1

h

)(
ω0

ω1

)
(23.2.3)

+1

2

(
q0 −q1

q1 q0

)(
D1
h D2

h−hD−1
h D2

h

−D−2
h −hD1

hD
−2
h D−1

h

)(
ω0((m1−1),m2)

ω1((m1+1),m2)

)

is called discrete Beltrami equation, where the operators

D1h =
(
D−1
h −D2

h

D−2
h D1

h

)
and D2h =

(
D1
h D2

h

−D−2
h D−1

h

)

have the property D1hD2h = D2hD1h = I2�h with the 2 × 2 identity matrix I2
and the discrete Laplacian �h = D1

hD
−1
h +D2

hD
−2
h . Functions u with D1hu = 0

are called discrete holomorphic. Beside the operator D2h, a shift operator is used
in order to manage the problems of different mesh points.

It will be proved that the discrete Beltrami equation is fulfilled using the
transformation (23.2.2) as well as the relations

D1
hω0(m1−1,m2)

= h−1(ω0(m1,m2)−ω0(m1−1,m2)) = D−1
h ω0(m1,m2)

(D2
h−hD−1

h D2
h)ω1(m1+1,m2)

= D2
hω1(m1+1),m2)−D2

h((m1+1,m2)+D2
hω1(m1h,m2h)

= D2
hω1(m1h,m2h)

(−D−2
h −hD1

hD
−2
h )ω0(m1−1,m2)

= −D−2
h ω0(m1−1,m2)−D−2

h ω0(m1,m2)+D−2
h ω0(m1−1,m2)

= −D−2
h ω0(m1,m2)

D−1
h ω1(m1+1,m2)

= h−1(ω1(m1+1,m2)−ω1(m1,m2)) = D1
hω1(m1,m2) .



23 A Transformation for the Discrete Beltrami Equation 497

In the first component it holds

1

2
(D−1

h ω0 −D2
hω1)+ 1

2

a − c
a + c + 2

√
�
(D−1

h ω0 +D2
hω1)

−1

2

2b

a + c + 2
√
�
(−D−2

h ω0 +D1
hω1)

= 1

2

(
D−1
h ω0 − a√

�
D−1
h ω0 − b√

�
D−2
h ω0

)

+ 1

2

a − c
a + c + 2

√
�

(
D−1
h ω0 + a√

�
D−1
h ω0 + b√

�
D−2
h ω0

)

− 1

2

2b

a + c + 2
√
�

(
−D−2

h ω0 − b√
�
D−1
h ω0 − c√

�
D−2
h ω0

)

= 1

2(a + c + 2
√
�)

(
aD−1

h ω0 − a2

√
�
D−1
h ω0 − ab√

�
D−2
h ω0 + cD−1

h ω0

− ac√
�
D−1
h ω0 − bc√

�
D−2
h ω0 + 2

√
�D−1

h ω0 − 2aD−1
h ω0 − 2bD−2

h ω0

+aD−1
h ω0 + a2

√
�
D−1
h ω0 + ab√

�
D−2
h ω0 − cD−1

h ω0 − ac√
�
D−1
h ω0

− bc√
�
D−2
h ω0 + 2bD−2

h ω0 + 2b2
√
�
D−1
h ω0 + 2bc√

�
D−2
h ω0

)

= 1

2(a + c + 2
√
�)

((
− 2ac√

�
+ 2

√
�+ 2b2

√
�

)
D−1
h ω0

)
= 0 .

In the second component it can be proved

1

2
(D−2

h ω0 +D1
hω1)+ 1

2

2b

a + c + 2
√
�
(D−1

h ω0 +D2
hω1)

+1

2

a − c
a + c + 2

√
�
(−D−2

h ω0 +D1
hω1)

= 1

2

(
D−2
h ω0 − b√

�
D−1
h ω0 − c√

�
D−2
h ω0

)

+ 1

2

2b

a + c + 2
√
�

(
D−1
h ω0 + a√

�
D−1
h ω0 + b√

�
D−2
h ω0

)

+ 1

2

a − c
a + c + 2

√
�

(
−D−2

h ω0 − b√
�
D−1
h ω0 − c√

�
D−2
h ω0

)
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= 1

2(a + c + 2
√
�)

(
aD−2

h ω0 − ab√
�
D−1
h ω0 − ac√

�
D−2
h ω0 + cD−2

h ω0

− bc√
�
D−1
h ω0 − c2

√
�
D−2
h ω0 + 2

√
�D−2

h ω0 − 2bD−1
h ω0 − 2cD−2

h ω0

+2bD−1
h ω0 + 2ab√

�
D−1
h ω0 + 2b2

√
�
D−2
h ω0 − aD−2

h ω0 − ab√
�
D−1
h ω0

− ac√
�
D−2
h ω0 + cD−2

h ω0 + bc√
�
D−1
h ω0 + c2

√
�
D−2
h ω0

)

= 1

2(a + c + 2
√
�)

((
− 2ac√

�
+ 2

√
�+ 2b2

√
�

)
D−2
h ω0

)
= 0 .

23.3 Definition of the Discrete �-Operator

First results concerning the discretization of the " operator and a discrete Beltrami
equation are published in [1] and [2]. Now the theory is completed and more
properties and relations are available.

Let G ⊂ R2 be a bounded domain andGh = G ∩ R2
h be the corresponding

discrete domain with R2
h = {mh = (m1h,m2h) and m1,m2 ∈ Z}. In order to

define a discrete "-operator the scalar product

< u, v >=
∑

mh∈Gh
h2
(
u0(m)

u1(m)

)T (
v0(m)

v1(m)

)

is considered. In all arguments the step size h is omitted in order to simplify the
notation. Additionally u(r) = v(r) = (0, 0)T is required in all mesh points rh
outside the domain Gh. The right inverse operator T 1h = (T 1

h1, T
1
h2)

T of the
operator D1h has the componentwise structure

(T 1
hku)(m) =

∑
lh∈Gh

h2
(
E1
hk1(m− l)

E1
hk2(m− l)

)T (
u0(l)

u1(l)

)

with the discrete fundamental solution

E1
h(m) =

(
E1
h11(m) E

1
h12(m)

E1
h21(m) E

1
h22(m)

)
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and its components

E1
h11(m) =

1

(2π)2

∫

ξ∈Qh

ξh−1

d2
e−ih<m,ξ>dξ

E1
h12(m) =

1

(2π)2

∫

ξ∈Qh

ξh−2

d2 e
−ih<m,ξ>dξ

E1
h21(m) =

1

(2π)2

∫

ξ∈Qh

ξh2

d2 e
−ih<m,ξ>dξ

E1
h22(m) =

1

(2π)2

∫

ξ∈Qh

−ξh1
d2 e−ih<m,ξ>dξ .

Especially for j ∈ {1, 2} the notation Qh = {ξ ∈ R2 : −π/h < ξj < π/h},
ξh−j = h−1(1 − e−ihξj ) and ξhj = h−1(1 − eihξj ) is used.

Now the aim is to find the adjoint operator T 1h with the property

< T 1hu, v >=< u, T 1hv > .

In order to do this, the relation between the discrete fundamental solution E1
h(m)

and the fundamental solution E2
h(m) corresponding to the difference operator D2h,

and the properties of E2
h(m) themself are studied. Especially it holds E1

h11(m) =
E2
h22(m), E1

h12(m) = −E2
h12(m), E1

h21(m) = −E2
h21(m) and E1

h22(m) =
E2
h11(m).

Using the substitution ξ new1 = −ξ1 and ξ new2 = −ξ2 it is possible to prove for
each component

1

(2π)2

∫

ξ∈Qh

ξh± l
d2 e−ih<m−l,ξ>dξ = 1

(2π)2

∫

ξ∈Qh

ξh∓ l
d2 e−ih<l−m,ξ>dξ

with l ∈ {1, 2}. By this way the properties

E 2
h11(m− l) = −E 2

h22(l −m) and E 2
h12(m− l) = E 2

h21(l −m)



500 A. Hommel

are fulfilled. For the scalar product it can be proved

< T 1hu, v >

=
∑

mh∈Gh
h2

⎡
⎣ ∑
lh∈Gh

h2(E1
h11(m−l) u0(l)+ E1

h12(m−l) u1(l)
)
v0(m)

+
∑
lh∈Gh

h2(E1
h21(m−l) u0(l)+ E1

h22(m−l) u1(l)
)
v1(m)

⎤
⎦

=
∑

mh∈Gh
h2

⎡
⎣ ∑
lh∈Gh

h2(E2
h22(m−l) u0(l)− E2

h12(m−l) u1(l)
)
v0(m)

+
∑
lh∈Gh

h2(− E2
h21(m−l) u0(l)+ E2

h11(m−l) u1(l)
)
v1(m)

⎤
⎦

=
∑
lh∈Gh

h2

⎡
⎣ ∑
mh∈Gh

h2(− E2
h11(l−m) v0(m)− E2

h12(l−m) v1(m)
)
u0(l)

+
∑

mh∈Gh
h2(− E2

h21(l−m) v0(m)− E2
h22(l−m) v1(m)

)
u1(l)

⎤
⎦

= < u,− T 2hv > ,

where T 2h = (T 2
h1, T

2
h2)

T with the components

(T 2
hku)(m) =

∑
lh∈Gh

h2
(
E2
hk1(m− l)

E2
hk2(m− l)

)T (
u0(l)

u1(l)

)
k ∈ {1, 2}

is the right inverse operator of D2h if all boundary values of the function u are
equal to zero. Especially it holds (D2h(T 2hu))(mh)=u(mh) ∀mh ∈ Gh . Here we
proved T 1h=−T 2h.

Analogous to the continuous case the operator "1h = −D1h T 2h is called
discrete "-operator. By repeating all steps a second operator "2h = −D2h T 1h

can be defined. These definitions provide important properties in discrete theory.
In particular, the operator is defined by the derivation of a right-inverse operator.
Note that these definitions are not unique, as there are different factorizations of the
discrete Laplace operator. In terms of a closed theory, it is important at this point
that all proven properties build on each other. Further, for holomorphic functions,
the following well-known properties can be proved:
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Lemma 23.3.1 For discrete holomorphic functions u with D1hu = 0 and u(r) =
(0, 0)T on the boundary, by the factorization D1h D2h = D2h D1h = I2�h it
follows

D2h "1hu = D2h(−D1h T 2hu) = −D1h(D2h T 2hu) = −D1hu = 0 .

If the property D2hu = 0 is fulfilled, the relation D1h "2hu = 0 is obtained.

23.4 The Solution of the Discrete Beltrami Equation
Constructed by the �-Operator

Now the operator "2h is used to describe the solution of the discrete Beltrami
equation (23.2.3) from Sect. 23.2. In the first step the ansatz

(
W0(m1,m2)

W1(m1,m2)

)
= 1

2

(
m1h

m2h

)
+
(
(T 1
h1f )(m)

(T 1
h2f )(m)

)

with the unknown function f = (f0, f1)
T is substituted into the Beltrami equation.

It should be noted that for 1 < p < 2 and q < 2p
2−p the operator T 1h : lp(Gh)→

lq(Gh) is bounded.
Using the operator ("2hf )(m) = (("2

h1f )(m), ("
2
h2f )(m))

T it holds

(
0
0

)
=1

2
D1h
(

1

2

(
m1h

m2h

)
+
(
(T 1
h1f )(m)

(T 1
h2f )(m)

))

+1

2

(
q0 −q1

q1 q0

)
D2h
(

1

2

(
(m1 − 1)h
m2h

)
+
(
(T 1
h1f )(m1 − 1,m2)

(T 1
h2f )(m1 + 1,m2)

))

−h
2

(
q0 −q1

q1 q0

)⎛
⎝ D−1

h D2
h

(
1
2m2h+ (T 1

h2f )(m1 + 1,m2)
)

D1
hD

−2
h

(
1
2 (m1 − 1)h+ (T 1

h1f )(m1 − 1,m2)
)
⎞
⎠

=1

4
D1h
(
m1h

m2h

)
+ 1

2

(
f0(m1,m2)

f1(m1,m2)

)

+1

2

(
q0 −q1

q1 q0

)(
1

2
D2h
(
(m1 − 1)h
m2h

)
−
(
("2

h1f )(m1 − 1,m2)

("2
h2f )(m1 + 1,m2)

))

−h
2

(
q0 −q1

q1 q0

)⎛
⎝ D−1

h D2
h

(
1
2m2h+ (T 1

h2f )(m1 + 1,m2)
)

D1
hD

−2
h

(
1
2 (m1 − 1)h+ (T 1

h1f )(m1 − 1,m2)
)
⎞
⎠ .
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Based on the relations

D1h
(
m1h

m2h

)
=
(

0
0

)
and

1

2
D2h
(
(m1 − 1)h
m2h

)
=
(

1
0

)

the above equation becomes the structure

(
0
0

)
= 1

2

(
f0(m1,m2)

f1(m1,m2)

)
+ 1

2

(
q0 −q1

q1 q0

)((
1
0

)
−
(
("2

h1f )(m1−1,m2)

("2
h2f )(m1+1,m2)

))

−h
2

(
q0 −q1

q1 q0

)⎛
⎝ D−1

h D2
h

(
1
2m2h+ (T 1

h2f )(m1 + 1,m2)
)

D1
hD

−2
h

(
1
2 (m1 − 1)h+ (T 1

h1f )(m1 − 1,m2)
)
⎞
⎠ .

Consequently the unknown function f = (f0, f1)
T has to fulfill the equation

(
q0

q1

)
= −
(
f0(m1,m2)

f1(m1,m2)

)
+
(
q0 −q1

q1 q0

)(
("2

h1f )(m1 − 1,m2)

("2
h2f )(m1 + 1,m2)

)

+h
(
q0 −q1

q1 q0

)⎛
⎝ D−1

h D2
h

(
1
2m2h+ (T 1

h2f )(m1 + 1,m2)
)

D1
hD

−2
h

(
1
2 (m1 − 1)h+ (T 1

h1f )(m1 − 1,m2)
)
⎞
⎠ .

This equation approximates the well known equation q = −f + q"f from
the classical theory, which was studied especially by Tricomi (see [3]). If the last
summand is omitted for a moment (because it tends to zero for h → 0 ) and the
process of shifting the mesh points in the second summand is neglected too (which
can be described with a shift operator of norm 1), then the question arises whether
the operator I2 − q "2h is invertible. Looking at Banach’s fixed point theorem, it
is to prove that the norm of the operator "2h is bounded. Based on the property
D1h (T 1hf )(mh) = f (mh) as well as < w,D2hs >= − < D1hw, s > and
< w,D1hs >= − < D2hw, s > it follows

< "2hf,"2hg >=< −D2h(T 1hf ),−D2h(T 1hg) >

= < D1hD2h(T 1hf ),−T 1hg >=< D2hD1h(T 1hf ),−T 1hg >

= < D2hf,−T 1hg >=< f,D1h(T 1hg) > = < f, g > .

This isometry is also valid in the special case f = g . Thus, the norm of the operator
"2h is equal to 1 and the boundedness is guaranteed. With regard to q, it should be
noted that assuming � = ac − b2 ≥ �0 > 0, a > 0 the inequality |q(z)| =
(a−√�)2+b2

(a+√�)2+b2 ≤ q∗ < 1 with q∗ = const holds.

Finally it should be mentioned that the difference equation studied here has for
fixed step size h no singularity, because of the special structure of the discrete
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fundamental solution. The fact, that the singular behavior appears only if h tends
to zero is very beneficial for further examination of the equation.

First of all the explanations show that there are many similarities between the
continuous and the discrete case of Beltrami equations. The results obtained can be
used as a starting point for further extension of the discrete theory.
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