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Preface

Materials containing fibers are present in a large variety of applications due to their
high mechanical performances at low weight. Reinforcement of continua with fibers
has a long history which led to the widely used class of fiber-reinforced composites.
Examples include polymers reinforced with fiberglass, high-performance compos-
ites made from woven yarns, and 3D woven composites used in cutting-edge areas
such as aeronautics.

Different classes of fibrous materials are those containing a crosslinked network
of fibers, which may or may not be embedded in a matrix. A prominent example is
nonwovens, which are used in many applications such as sound and thermal
insulation, clothing, filtration, and geotextiles. Many biological materials have a
random complex fibrous structure. Examples include soft connective tissue, such as
tendons and ligaments, the arterial walls, and the cellular cytoskeleton. Damage
accumulation, fracture, and the related nonlinear behavior under large deformations
are important considerations in all these materials.

Due to their discrete architecture, fibrous media have a rather complex
mechanical response, especially since multiscale aspects are essential in such
structures. Individual fibers or filaments may be assembled in multiscale architec-
tures, from fibers to complex yarns up to woven or braided structures. Their geo-
metrical configuration, which results from the manufacturing method used and the
geometry of the fibers, are not easy to capture and characterize. Moreover, they
exhibit strong geometrical and material nonlinearities due to the collective motion
of the fibers, fiber bundles or yarns, associated nonlinear interactions that include
friction and adhesion, and the presence of large local and global deformations with
evolving anisotropy and couplings between different deformation modes.

This book brings together lecture notes organized for the CISM course titled
Mechanics of Fibrous Materials and Applications: Physical and Modelling
Aspects, held in Udine from July 9 to July 13, 2018. The course objective was to
present the state-of-the-art understanding in this area and to provide an overview
of the theoretical, modeling and practical aspects of designing and working with
fibrous materials. Six lecturers contributed to the course: Philippe Boisse (INSA
Lyon, France), Jean-Francois Ganghoffer (Universite de Lorraine, France), Edoardo
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Mazza (ETH Zurich, Switzerland), Mohammad Mofrad (Berkeley University,
USA), Catalin Picu (Rensselaer Polytechnic Institute, USA), and Luca Placidi
(Universita Uninettuno, Italy). This book summarizes this information through the
perspective of four of these six lecturers, and their collaborators.

Chapter 1 by Catalin Picu, titled “Mechanics of Random Fiber Networks:
Structure–Properties Relation”, discusses aspects of the mechanical behavior of
fibrous materials containing a random network of fibers. The focus is on identifying
the network parameters that control the mechanics of the structure. Such random
networks are encountered in biological tissues, scaffolds for tissue growth, and
many engineering materials. The chapter presents a classification of networks based
on their architecture, the type of fibers, and the essential interactions that define their
overall mechanical behavior. Further, it presents key results for the linear and
nonlinear response of networks subjected to tension and compression, including
relations between various parameters of the network and the described mechanical
behavior. A similar analysis is presented for the strength of networks and its
dependence on network parameters. A separate subsection is devoted to crosslinked
and non-crosslinked networks in which fibers interact adhesively. In this case,
adhesion reorganizes the network and imparts a particular mechanical behavior to
the ensemble.

Chapter 2 by Jean-François Ganghoffer, Ibrahim Goda, Khaled ElNady, and
Yosra Rahali, titled “Prediction of the Effective Mechanical Properties of Regular
and Random Fibrous Materials Based on the Mechanics of Generalized Continua”,
presents homogenization approaches for fibrous materials, leading to nonlocal
continuum formulations. Periodic fibrous preforms and composites are discussed
first, for which a dedicated discrete homogenization approach is developed to derive
the effective mechanical response of the unit cell, successively in the small and
large transformations frameworks. This captures the effect of geometric and
mechanical micro-parameters of the fibrous architecture on the overall response
of the equivalent continuum. Such computational homogenization methods allow
identifying hyperelastic models for fibrous media. Further, this methodology is
extended to the more complex random fibrous media. The mechanical response of
such random networks is analyzed in both the affine and non-affine deformation
regimes, as a function of network density and window size. The homogenization
techniques discussed are computationally efficient, are versatile with respect to the
topology of the textile, which allows exploring single layer and multilayer 3D
textile architectures, and account for intrinsic microstructural effects within the
framework of generalized continua.

Chapter 3 by Luca Placidi, Francesco dell’Isola, and Emilio Barchiesi, titled
“Heuristic Homogenization of Euler and Pantographic Beams”, discusses designs
that allow producing at the macro-level a beam which can be both extensible and
flexible. Using an asymptotic expansion and rescaling suitably the relevant stiff-
nesses, it is shown that a pantographic microstructure does induce, at the
macro-level, such desired mechanical behavior. Thus, in an analogous fashion to
that of variational asymptotic methods, and following a mathematical approach
resembling that used by Piola, the asymptotic expansions of kinematic descriptors
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are used directly into the postulated energy functional and a heuristic homoge-
nization procedure is presented and applied to the cases of Euler and pantographic
beams.

Chapter 4 by Philippe Boisse, titled “Simulation of Continuous Fiber Composite
Forming”, addresses the issue of forming dry and prepreg continuous fiber composite
reinforcements. The manufacture of composite parts often requires the draping of the
textile reinforcement on a surface, which involves complex deformations of the
prepreg. The prediction and optimization of this process are complicated by the fact
that fibers are almost rigid in tension, but slide easily relative to each other. The
simulation of the draping process requires specific approaches and constitutive
models. The material is modeled macroscopically as a continuum using shell finite
elements. The tests necessary to identify the tensile, shear, and bending behavior of the
textile material are presented. The influence of different stiffnesses on the modeling of
wrinkles is analyzed. The second part of the chapter is devoted to thermoforming,
which is a coupled thermo-mechanical problem with temperature-dependent consti-
tutive behavior and heat transfer between material and tool.

We wish to express our gratitude to the lecturers for their efforts and dedication,
to the Board of CISM for making this course possible, and to the participants for
their interest in this subject and engaging discussions during the course. We also
thank Prof. Paolo Serafini, the Executive Editor of the CISM Publications series,
and all those involved in the preparation of the present book for publication.

Troy, USA Catalin Picu
Vandœuvre-lès-Nancy, France Jean-François Ganghoffer
May 2019
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Chapter 1
Mechanics of Random Fiber Networks:
Structure–Properties Relation

Catalin R. Picu

Abstract This chapter presents an overview of the mechanics of random fiber net-
works with emphasis on the structure–properties relationship. The discussion begins
with a classification of the types of fibers, including thermal and athermal fibers,
and the types of crosslinks commonly encountered in engineered and biological
networks. Further, a classification of networks is presented. The parameters used to
describe the network structure are introduced alongwith geometric relations between
quantities such as the density, mean fiber segment length, and crosslink density. The
large strains behavior of networks measured in tension and compression, as revealed
by models and experiments performed with various types of network materials, is
presented. This is characterized by strong non-linearity, large sensitivity of the over-
all response to network structural parameters, and a large Poisson effect. The strength
of networks is discussed in the context of structures with and without pre-existing
cracks. It is shown that the strength is independent of the fiber properties and depends
on the density and strength of the crosslinks, as well as on the mean fiber segment
length. Finally, the structure and mechanical behavior of networks with inter-fiber
adhesive interactions are evaluated. These are controlled by the strength of adhesion.
In networks with strong adhesion and relatively thin fibers, the fibers self-organize
leading to the formation of a cellular network of fiber bundles. Such cellular net-
works are stable and have a mechanical behavior qualitatively similar to that of
crosslinked networks of individual fibers. This discussion demonstrates the broad
range of mechanical behaviors that can be obtained with various network structures,
hinting to the usefulness of fiber networks in many applications.

C. R. Picu (B)
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute,
Troy, NY 12180, USA
e-mail: picuc@rpi.edu

© CISM International Centre for Mechanical Sciences 2020
C. Picu and J.-F. Ganghoffer (eds.), Mechanics of Fibrous Materials
and Applications, CISM International Centre for Mechanical Sciences 596,
https://doi.org/10.1007/978-3-030-23846-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23846-9_1&domain=pdf
mailto:picuc@rpi.edu
https://doi.org/10.1007/978-3-030-23846-9_1


2 C. R. Picu

Introduction and Examples of Random Fiber Networks

Materials are, according to theMerriam-WebsterDictionary, “elements, constituents,
or substances from which something can be made.” In an attempt to make this very
general definition more specific, let us imagine a box which we intend to fill with “a
material.” We could (at least imaginarily) fill this volume with a continuum, i.e., a
substance with no subscale structure, which can be infinitely subdivided into smaller,
similar, and featureless parts. We could also fill it with discrete entities such as beads
or filaments. In this case, the condition is to “properly fill the box,” in the sense that
a load applied on it would be transmitted across, such that the content of the box
has nonzero stiffness. It is clear that the two situations are not identical. In the first
case, the box is filled entirely and there is no free volume, while in the second case,
there are many empty spaces due to the way the discrete objects are packed. In the
continuum case, the box has nonzero stiffness in all loading modes, while in the
second, there may exist zero stiffness loading modes, as, for example, when a box
filled with beads is stretched equally in all directions.

Although one may be inclined to prefer to work with the continuum, which is
what technology has been doing for a long time, one observes that the second type of
“material” presents some interesting advantages. First, it is much lighter and poten-
tially cheaper to make since it uses less “building material.” In the fiber-based case,
percolation can be obtained at much smaller volume fractions than in the granular
case. In principle, one needs only three fibers orthogonal to one another and which
span the box to gain nonzero stiffness in the three directions of space, and in this
case, the volume fraction of “building material” used is vanishingly small. The sec-
ond observation is that a “material” made from discrete entities exhibits behaviors
which are qualitatively different from those observed in the case of a continuum and
hence this offers new engineering opportunities.

This comparison of continuum-like, granular, and fibrous materials points to the
benefits that materials made from distinct constituents, and in particular, fibrous
materials present. They are of much lower density, potentially cheaper since very
little solid material is used for their construction, and exhibit an interesting set of
thermomechanical properties. Therefore, it is not surprising thatmaterialsmade from
fibers are a common occurrence in our everyday life. The purpose of this chapter is to
provide a broad overview of the mechanical behavior of a subset of fibrous materials,
which have a random fiber network as their main constituent.

Anetworkdiffers fromacollectionoffibers by the simple fact that in a network, the
fibers interact and the overall behavior emerges as the net effect of these interactions
mediated by the behavior of individual fibers. Furthermore, the network should span
the entire problem domain in order to provide nonvanishing stiffness. We define the
class of materials in which a network of filaments is the main structural component
and plays the main mechanical function as “network materials.”

The following brief outline indicates that network materials are ubiquitous in
nature.
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The cytoskeleton of eukaryotic cells is composed of a set of interpenetrating
semiflexible macromolecular networks which provide the structural integrity of the
cell, host the cellular organelle, and perform important functions in cellular divi-
sion, migration, and chemo-mechanical transduction (Boal 2012). The cytoskeleton
mechanics is a subject of intense research today driven by the desire to gain control
of the biochemical activity of the cell. F-actin forms the main component of this net-
work. It is a dense structure which is assembled from and decomposes into separate
actinmonomers as dictated by biochemical signals. F-actin filaments branch forming
a tree-like structure. The filaments are crosslinked by myosin motors which apply
forces causing the overall contraction of the network. Microtubules are polymeric
chains of tubulin that are generally oriented from the nucleus to the cell membrane
(Boal 2012; Mofrad 2009). These interpenetrate with the F-actin network and play a
critical role in transport to and from the nucleus. Both F-actin and microtubules are
semiflexible filaments, i.e., they are rather stiff in bending and have large persistence
length which, in the case of the microtubules, is larger than the size of the cell. It
is generally considered that microtubules are loaded mostly in compression, while
the F-actin network, which concentrates and transmits the contractile force of the
cell, is mostly loaded in tension (Fletcher and Mullins 2010; Ingber et al. 2014).
Understanding the biomechanics of this complex network is of central importance
in cellular biology.

Connective tissue restricts the relativemotion of bones and other tissues, transmits
loads between muscles and bones, and generally performs structural functions in the
human and animal bodies. Tendons, cartilage, and ligaments belong to this class. The
main component of connective tissue is collagen, which has a hierarchical fibrillar
structure, Fig. 1.1a. Tropocollagen, composed of three polypeptide chains coiled
around each other, forms the elementary building block of collagen. Tropocollagen
organizes into bundles of collagen fibrils, which organize further at larger scales
in networks of collagen fibers (Scheibel 2008). The fibers are bundles of fibrils
crosslinked internally. The resulting network structure is complex and differs from

Fig. 1.1 Examples of a collagen network and b thermally bonded polypropylene nonwoven. b A
thermal bond surrounded by the nonwoven mat. The image was obtained with cross-polarizers
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one connective tissue to another. For example, in the facet capsule ligament of the
cervical spine, collagen fibers are organized in sub-domains, each sub-domain having
preferential orientation in space (Ban et al. 2017). The orientation in neighboring sub-
domains is not correlated, such that the tissue appears as a patchworkof sub-networks.
Cartilage is another example of an exquisitely organized collagen structure. Cartilage
is a hydrated collagen network which embeds polar molecules called proteoglycans.
These comb-likemolecules bindwater and swell the collagennetwork.Their swelling
function is essential for the proper function of cartilage. It controls the response of the
tissue to compressive loads and, importantly, the rate of drainage of free water when
the tissue is loaded (Athesian 2009). Collagen is oriented in the direction tangential
to the cartilage surface close to the surface, and acquires a more random orientation
in the tissuemedian layers (Federico andHerzog 2008). Collagen orientation close to
the bone insertion is also preferential perpendicular to the bone. Collagen networks
are omnipresent in the body, beyond the examples discussed here, in skin (dermis),
membranes such as the liver capsule and the amnion, trachea, blood vessels, etc.

Other protein-based fibers in the body are fibrin and elastin. Fibrin is a non-
globular protein which polymerizes to form a hemostatic network which embeds
platelet and assists wound healing (Weisel and Litvinov 2013). Elastin typically
forms co-networks with collagen and ensures the elasticity of blood vessels and
other tissues. The elastin network component has higher stiffness than the collagen
component at small strains, but collagen strain stiffens much more at large strains
(Omelyanenko et al. 2017). Therefore, in elastin-rich tissue, the elasticity of the
co-network is provided mainly by the elastin, while protection against overloads is
provided by the collagen component.

Many artificial materials include fibers and a subset of them can be classified as
network materials. Fiber composites include cases in which a matrix is reinforced
with short fibers randomly distributed and oriented. High-performance composites
contain woven fabric layers stacked together and embedded in a matrix. Such fabrics
are woven with fiber bundles, as opposed to individual fibers. The fibers are long,
nominally spanning the composite, and are the main load-carrying components of
the material. The fabric can be regarded as a periodic network of bundles. The
mechanics of woven, whether in the context of textiles or composites, has been
studied extensively and is outside the scope of this discussion.

Composites that embed a percolating randomnetwork can be classified as network
materials. Gels belong to this category. Gels are molecular networks, in which the
molecular strands are either physically or chemically crosslinked, and which contain
a fluid medium (water). The fluid is usually non-draining, and hence the network is
constrained to deform at constant volume, as dictated by the matrix. Since the gel
is swollen and the molecular strands are not closely packed, the material exhibits
substantial elasticity and can undergo large deformations. On the other hand, a dehy-
drated gel has lost its hyperelasticity and is brittle. This is due to the fact that the
molecular strands interact closely and are much less mobile in this case.

A classic example of network material is rubber. Natural rubber is a network of
polyisoprene chains crosslinked with sulfur. Before vulcanization, rubber is a liquid,
while after it becomes a thermoset. Vulcanized natural rubber does not contain addi-
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tives and is a network material with no matrix or embedded phases. The network
is continuous across the volume occupied by the material. However, there is much
less free volume in rubber compared with hydrated gels. The molecular strands are
densely packed—although, in absence of strain-induced crystallization, they remain
random—and volume filling. In ambient conditions, rubber is above the glass tran-
sition temperature and hence the chains have sufficient mobility to accommodate
relative deformation despite the packed structure of the material on the molecular
scale. Therefore, themechanical behavior of rubber is dictatedmuch less by theweak
intermolecular interactions than by the response of the network. If the material is
cooled below the glass transition temperature, chain mobility is drastically reduced
and the network response, which requires large local deformations, is not reflected
in the material behavior; rubber becomes brittle and loses its hyperelasticity under
these conditions.

Paper is a man-made material with a 2,000 years history. It is a dense network
of cellulose fibers with a large density of crosslinks. The fibers are ribbon-like and
hollow (Rigdahl and Hallmark 1986). The nature of the crosslinks is still a mat-
ter of debate. These are generally considered to be produced by hydrogen bonds
between fiber surfaces brought in close contact. However, fine fibrils have been
observed emerging from the contact area when pulling apart two initially bonded
fibers (Schmied et al. 2013). This suggests a finer scale structure to the bond, which
could be nevertheless mediated by hydrogen bonding on even finer scales. Because
of its high density and crosslink density, regular paper does not exhibit hyperelastic
behavior and fails at relatively small strains (Alava and Niskanen 2006).

Nonwovens form a large family of materials with applications in textiles, packag-
ing, consumer, and hygiene products, to name a few. These are made from polymeric
fibers spun from themelt onto a support surface. The fibers solidify during deposition
and form a fiber mat. Standard fiber spinning obtained by forcing the melt through
a spinneret produces fibers with diameter on the order of tens of microns, while
electrospinning, which accelerates further the spinning filament using an electric
field, can produce fibers with diameter smaller than 1 µm (Wendorff et al. 2012).
The as-deposited mat is not bonded. Fibers are continuous, of large length, and are
curved and randomly oriented in the plane of the mat. If the support on which the
mat is deposited moves during deposition, preferential fiber alignment results on the
scale of the mat, but a large degree of disorder of the fibrous structure is preserved on
local scales. In most commercial products, nonwovens are used after bonding. This
is usually performed by passing the mat between calendering rollers with heated
punches. The fibers coming in contact with these punches melt and resolidify fast
upon exit. A thermal bond results which blends together a large number of fibers
(Fig. 1.1b). These bonds are distributed in a periodic pattern over the mat while the
remainder of the nonwoven is not modified by the bonding process. Thermal bonds
impart substantial strength and toughness to the mat and make possible the use of
this cheap material (Fig. 1.1b) in a large range of applications.
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Network Types and Classification

The diversity of networks encountered in applications is large and a classification is
desirable. Multiple criteria can be used for classification and any network material
may belong to multiple categories function of the criterion used. The classification
proposed below emphasizes commonalities between various network materials.

(i) Based on fiber arrangement

Fiber networks can be woven or nonwoven/random. Obviously, woven materials are
artificial, while all biological networks, and many man-made fibrous materials, have
random structure. Wovens have a repeat structure and this implies that deformation
is affine on the length scale of periodicity. Nonwovens have no repeat unit and
deformation is entirely non-affine, in the sense that the strain measured on the local
scale is different from that applied in the far field and varies spatially. This is an
important difference which has implications for the overall mechanical behavior of
the material. This chapter focuses on the properties of random networks.

(ii) Based on the presence of components other than the network

For the purpose of this discussion, we divide networks into three categories. The
first category includes situations in which the network is the only constituent of the
respective network material, as, for example, in the case of fiberglass insulation and
nonwovens. We call these, simply, “networks.” The second category encompasses
cases in which the network is embedded in a matrix which, in turn, can be a solid or
a fluid. This category includes most biological networks, gels, and some composites.
In a two-phase networkmaterial, thematrix is space-filling and no pores or additional
components are present in the structure. We call these “embedded networks.” The
third category includes networks with or without matrix which embed inclusions.
These can be particles of various shapes, vesicles, or fiber-like inclusions which
are not crosslinked to the network, but are trapped in the network structure. Most
biological networks embed such entities, specifically, the cytoskeleton embeds var-
ious organelle and connective tissue embeds proteoglycans and cells. We call these
“networks with inclusions.”

These three categories correspond to generic problems of interest in network
mechanics. It is of importance to consider generic network structures and establish
how their parameters are related to various aspects of the mechanical behavior of the
network material. The matrix, whether solid or fluid, makes a significant contribu-
tion to the behavior of the network material. Finally, one may consider, with broad
generality and applicability, networks embedding various types of inclusions, and
inquire how the presence of such inclusions reflects in the behavior of the network
material. In the present chapter, we only review results relevant for the first category
of generic networks.

(iii) Based on the nature of interfiber interactions

Interactions betweenfibers are of various types. Excluded volume interactions,which
amount to the condition that fibers cannot penetrate or cross each other, are always
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present. Such interactions are important in compression, but are largely irrelevant in
tension. Excluded volume interactions are expected to be importantwhen the network
volume is a large fraction of the volume of thematerial. In all networkswithoutmatrix
and in swollen networks, the network occupies a small volume fraction, the free
volume is large, and hence excluded volume interactions are of minimal importance.

Fibers can be crosslinked or not. In addition, fibers may interact through surface
forces such as adhesion. In absence of surface interactions and crosslinks, fibers inter-
act exclusively through excluded volume interactions and the ensemble is generally
stable only in compression.

The mechanics of these three classes of networks—crosslinked networks,
networks without crosslinks and with interfiber surface interactions, and networks
without crosslinks and without surface interactions but with excluded volume
interactions—is very different. In this chapter, we review the mechanical behavior of
crosslinked networks and the behavior of crosslinked and un-crosslinked networks
with surface interactions.

(iv) Based on the nature of constituent fibers

Given the broad range of network materials, one expects a multitude of “fiber” types.
These can be molecules in molecular networks, such as rubber and gels, filaments
composed of many molecular strands, as in the case of tropocollagen, filaments of
submicron diameter, as in the case of nanofibermats, and polymeric fibers of diameter
larger than 10 µm, as in most nonwovens. Here, we divide this broad spectrum
of “fibers” into thermal and athermal. Athermal fibers are large enough such that
thermal fluctuations do not influence their mechanical behavior, which is entirely
enthalpic. Thermal fibers are flexible molecular strands which are entirely subjected
to thermal fluctuations and behave entropically. Semiflexible fibers are defined at the
transition between thermal and athermal. These are subjected to thermal fluctuations,
but the enthalpic contribution to the free energy is not negligible. They have large
persistence length, which represents the length along the fiber over which thermal
fluctuations perturb filament orientation. The persistence length is proportional to the
fiber bending rigidity, Ef If , and inversely proportional to the thermal energy, kBT ,
such that, as the filament bending rigidity increases, the behavior approaches that of
athermal fibers.

Yet another way to classify the fibers is based on their mechanical properties. One
may envision situations in which a network is made from the same type of fibers,
and cases in which fibers of different type are used. In the case of athermal fibers,
the important fiber parameters are their bending, Ef If , and axial, Ef Af , rigidities. If
both these parameters are identical for all fibers in the network, the respective case is
considered a “homogeneous network.” Otherwise, the structure is a “composite net-
work.” It is interesting to observe that, based on this definition, all thermal networks
are composite. The effective stiffness of a thermal strand depends on the number of
repeat units or Kuhn segments in the strand and, since strand lengths in the network
are polydisperse, strand stiffnesses are also polydisperse. This detail is generally not
considered in the classical model for thermal networks.
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Types of Fibers and Interfiber Interactions

This section is divided into three parts that discuss the representation of fibers, of
crosslinks, and of interfiber surface interactions. In each case, the focus is on abstract-
ing the actual mechanical behavior such as to be representative, as well as useful, in
large-scale network models.

Representation of Fibers

Based on the classification of the previous section, fibers are considered thermal or
athermal, function of whether thermal fluctuations play a role in their mechanics or
not.

Athermal Fibers

Athermal fibers are treated as beams and the important parameters describing them
are the axial, bending, and shear rigidities, Ef If , Ef Af , andGf Af , respectively, where
Ef and Gf are the Young’s and shear moduli of the fiber material. Assuming a linear
behavior for the fiber material, the total energy of the system is the sum of the strain
energies associated with bending, axial, and shear deformation of each fiber, i.e.,

U = 1

2

∑

fibers

∫
Ef If

(
dψ(s)

ds

)2

+ Ef Af

(
du(s)

ds

)2

+ λGf Af

(
dv(s)

ds
− ψ(s)

)2

ds

(1.1)

In this expression, v(s) represents the transverse displacement and du(s)
ds is the

axial strain at position s along the fiber. The rotation of the fiber cross section is
dv(s)
ds , while ψ(s) represents the rotation of a plane which remains perpendicular to

the neutral axis of the beam. Hence, dv(s)
ds −ψ(s) quantifies the shear deformation of

the beam. λ is a constant which takes the value 0.88 for beams with circular cross
section. This equation corresponds to the Timoshenko model of the beam. Note that
the Euler–Bernoulli model is more often used for fibers. In this case, the energy of the
system is computed with the same expression (Eq. 1.1), without the third term under
the integral. The twomodels give identical predictions for long, slender beams (beam
length significantly larger than the cross-sectional dimension), while the Timoshenko
model gives more accurate predictions for short beams. A discussion of conditions
under which using a Euler–Bernoulli model is appropriate is presented in Shahsavari
and Picu (2012).

It is important to observe that the energy associated with the torsion mode of
the beams is not included in Eq. (1.1). This is a result of multiple observations
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made using models representing various network structures in 3D indicating that,
in random networks, the torsion mode does not store significant amounts of strain
energy and hence can be neglected. Given the complexity of the network structure,
the physical explanation for this result is not apparent. However, representations in
which the torsion energy is and is not accounted for provide essentially identical
results for realistic selection of parameters.

The advantage of using a beam model for fibers is that of simplicity and reduced
computational cost. The disadvantage is associated with the fact that beam represen-
tations do not enforce the excluded volume constraints if no additional conditions
are imposed. Alternative representations are based on the bead-spring and discrete
element models (Rodney et al. 2005; Picu and Subramanian 2011), which are com-
monly employed as coarse-grained representations of polymeric chains in polymer
physics (e.g., Kremer and Grest 1990). The advantage of these models is that the
excluded volume constraint is enforced at all times during deformation. However,
they are much more computationally expensive than models representing fibers as
beams or trusses. In addition, the presence of a large number of degrees of freedom,
which are not essential to the mechanics of fibers, increases the dimensionality of
the phase space and the degree of degeneracy of the solution. Bead-spring and dis-
crete element representations also introduce artificial fiber surface roughness which
produces spurious interlocking at fiber contacts, particularly at segments which are
not straight.

When writing Eq. (1.1), fibers are assumed to be akin to macroscopic beams
and made from a homogeneous, isotropic, and linear material. By the fact that a
single value of Ef If is used, it is also implicit that fibers have the same bending
rigidity in all directions. Given the broad range of physical filaments that are to be
represented by athermalmodels, it may be considered adequate to relax some of these
assumptions. Fibers with noncircular cross section having two principal directions
of inertia leading to two principal bending rigidities have been considered (Deogekar
and Picu 2017). This is a natural option when investigating paper mechanics since
fibers have close to rectangular hollow cross sections. It was observed that, in such
situations and in 3D, the torsional mode of fibers becomes important. In presence
of a soft and a stiff bending mode, it may be energetically favorable for the fiber to
twist and bend in the soft mode, rather than engaging in bending in a stiff mode. This
leads to such coupling between bending and torsion.

It should be also observed that the three rigidities in Eq. (1.1) do not have to
be related to each other (as is the case when the fiber cross section is circular,
for example). Fibers may represent molecular bundles which may exhibit beam-like
mechanics, butwith effective rigiditieswhich are independent parameters. A separate
homogenization is needed to be performed on the scale of individual filaments in
such circumstances in order to determine the best effective beam-like representation
of the actual mechanics.

The mechanical behavior of the fiber material may not be linear elastic. It can
be rendered time dependent (e.g., viscoelastic), nonlinear elastic or elastic–plastic,
as needed in specific applications. A vast amount of work has been performed on
characterizing the properties of various types of fibers and placing this behavior
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in relation to fiber processing conditions (Wendorff et al. 2012; Magnusson et al.
2013; Quigley et al. 2018). The constitutive nonlinearity of fibers can be of strain-
stiffening or strain-softening type. In some situations, fibers may exhibit behavior
quite different from that of the corresponding bulkmaterial. For example, polystyrene
nanofibers become very ductile and neck in tension, despite that large diameter fibers
of the same material are quite brittle (Kolluru and Chasiotis 2015). With all these
complexities, the main question is to what extent these details reflect in the behavior
of the network. While the answer to this question should depend on the property
of interest, a consideration that appears to provide some level of simplification and
generality is the following. In randomnetworkswhich are not densely crosslinked and
exhibit hyperelastic overall behavior, the nonlinearity is predominantly geometric in
nature. Fibers orient in the direction of loading leading to drastic changes in the
network structure, strong Poisson effect, and strongly nonlinear stress–strain curves
(Picu et al. 2018). In this process, fiber-level strains remain rather small, despite
the large strains reached on the scale of the network (Puxkandl et al. 2002). Hence,
in such networks, fibers stand a good chance to remain in the elastic regime and
therefore their constitutive nonlinearity is not reflected on the scale of the network.
The fiber constitutive behavior reflects more closely in the network behavior in dense
and/or densely crosslinked networks which are important in some applications (e.g.,
paper), but less important in most biological and artificial soft materials.

Thermal Fibers

Fibers of small diameter and small persistence length are strongly affected by thermal
fluctuations. The entropic spring concept is a popular representation of such situation
(Neumann 1977). This model starts from the thermodynamic definition of the force
produced by a strand as the derivative of the free energy relative to the imposed
perturbation which, in this case, is the variation of the strand length. This implies
that the force has energetic and entropic components associated with the variation of
the enthalpy and entropy with the variation of the strand length. The entropic spring
model postulates that the enthalpic component is much smaller than the entropic
one and hence can be neglected. Further, it relies on the estimate of the entropy
of a chain of links function of the distance between the two ends of the chain to
evaluate the force. Specifically, considering a chain of n links, each of length a, and
assuming these are rotating independent of each other, the model leads to a tensile
force required to hold the end-to-end distance at a specified value R of magnitude
(e.g., Rubinstein and Colby 2003):

f = 3kBT

na2
R (1.2)

The strand behaves similar to a linear elastic spring of stiffness linear in temper-
ature (the signature of the entropic nature of the model) and inversely proportional
to na2. This quantity is also the square of the mean end-to-end distance of a random
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walk of n steps, each of length a. It is important to note that the force is always tensile
and vanishes when the two ends are co-located. This would imply that a network of
such strands would need to be always stretched to prevent it from collapsing. The
balance force which internally equilibrates the network comes, in this model, from
the excluded volume of the network. While this argument may be considered valid
in the case of rubber, which has a small free volume, it cannot hold for gels and other
swollen networks. Nevertheless, the entropic spring concept is the dominant model
of stress production in molecular thermal networks.

Equation (1.2) applies for small extensions of the strand and for contour lengths na
much larger than the persistence length lp = Ef If /kBT (a beam of length lp subjected
to bending and storing kBT strain energy has a deflection on the order of lp). For
large extensions, when the end-to-end vector length, R, becomes comparable to the
maximum possible stretch of the chain, R ∼ Rmax = na, one obtains (Bustamante
et al. 1994; Marko and Siggia 1995)

f = kBT

2a

(
Rmax

Rmax − R

)2

(1.3)

Accounting for both the enthalpic and entropic contributions to the constitutive
response of a filament is more involving (Fixman and Kovac 1973; Odijk 1995; Krog
and Frey 1996; Morse 1998; Storm et al. 2005; Wilhelm and Frey 1996). Thermal
fluctuations producing transverse vibrations of the filament act against the filament
bending stiffness. If the energy equipartition condition requiring that the sameamount
of energy is associated with all vibration modes is imposed, one may compute the
amplitudes of all modes and hence estimate the set of shapes the chain may take. This
derivation was performed in Hendricks et al. (1995), van Dillen et al. (2008) where
the relation between the applied force and the end-to-end vector length is given in
the implicit form:

R(f ) − R(0) = R2
max

π2lp

∞∑

i=1

f /f0

i2
(
i2 + f

f0

) , (1.4)

with f0 = π2Ef If /R2
max and R(0) some conventional reference end-to-end length.

This provides a Langevin-like relationship between the applied force, f , and the
variation of the strand end-to-end length.

All thermal models are concerned with the axial force required to modify the
length of the strand. Filaments are always in tension. If this model is used as constitu-
tive description of fibers in the network, the fibers represent central force interactions
which are asymmetric in tension and compression. This imposes severe limitations
on the stability of the network, as discussed in section “Stability Considerations” of
this chapter.
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Representation of Crosslinks

Crosslinks are connectors bonding two fibers at specific sites. They impose kinematic
constraints that force thefibers to have the samedisplacement and/or the same rotation
at the respective site.

The nature of the crosslinks depends on the way the network is constructed. In
some nonwovens, the fibers are bonded by pressing the mat between heated plates,
which allows surface interdiffusion at contacts between polymeric fibers. The cross
sections of fibers subjected to this operation merge partially. The crosslink in this
case is a “weld” tightly connecting the two participating fibers. An extreme case of
fiber interpenetration is shown schematically in Fig. 1.2a.

Inmost other situations, fibers also precede network formation, but their bonding is
insured by separate additives or physical entities. Individual molecules or molecular
complexes (as in the case of collagen), or smaller scale fibrils (as in paper and
cellulose products) may form the connector. Figure 1.2b shows a situation in which
a single fibril or molecule binds the two fibers, while Fig. 1.2c indicates that multiple
fibrils may contribute to the formation of a crosslink. In both cases, the two fibers
are continuous through the crosslink.

The distinction made between configurations shown in Fig. 1.2b, c suggests that
these behave mechanically differently. In case Fig. 1.2b, the crosslink restricts the
relative translation of the two fibers at the contact point, but allows relative rotation.
The crosslink in Fig. 1.2c, coupled with the excluded volume constraint for the two
fibers, restricts both the relative translation and rotation.

Figure 1.3 shows three conceptual mechanical models which capture the broad
range of behaviors encountered in diverse applications, while neglecting the details
of the load transfer at the scale of the crosslink. The crosslinks are “pin joints,”
“rotating,” or “welded.” The pin joint represents a situation in which the crosslink
imposes only translational constraints and transmits only forces. A rotating joint
transmits forces between fibers, but allows the fibers to be continuous across and
hence both forces and moments are transmitted along each individual fiber. This

Fig. 1.2 Schematic representation showing three possible types of crosslinks. In a the two fibers
interpenetrate, while in b and c they are connected by smaller scale fibrils, molecules, or molecular
complexes. A single such fibril forms the crosslink in (b), while multiple fibrils are involved in (c)
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Fig. 1.3 Schematic
representation of three types
of crosslinks: a pin joint,
b rotating joint, and c a
welded joint

case corresponds to the situation in Fig. 1.2b. A weld constrains both translations
and rotation at the crosslink site and hence both forces and moments are transmitted
along and between fibers. This corresponds to the situations in Fig. 1.2a, c.

It should be noted that crosslinks may have their own constitutive behavior. A soft
and deformable crosslink does not enforce fully the respective kinematic constraints.
Furthermore, given the stochastic process bywhich random networks are crosslinked
in most situations, the properties of crosslinks, their stiffness, and strength may not
be identical for all such sites in a specific network. Considering the large variability
of possible practical situations, it is important to inquire under what conditions the
internal crosslink behavior, beyond the distinction between the three cases shown in
Fig. 1.3, reflects in the overall network behavior. This question has been only partly,
and indirectly, addressed in the current literature (Kasza et al. 2010).

The situation is more complex in transient networks in which crosslinks can
break and reform at other locations (e.g., Astrom et al. 2008). A subset of this
class is composed of networks in which fibers are only topologically interlocked
and interact frictionally. Entanglements in thermoplastic polymers are of this type
and are often represented in conceptual models as transient crosslinks (Vernerey
2018). In the realm of athermal filaments of micrometer diameter, fibers may not
be chemically bonded at all, but the network may still exist due to topological and
frictional interactions (Benitez andWalther 2017; Negi and Picu 2019b). Themodels
in Fig. 1.3 may represent such cases only in the small deformation limit.

Surface Interactions

Crosslinks are thought to apply moments and/or forces between specific sites along
fibers. On the other hand, surface interactions are more uniformly distributed along
fibers. These may be of Van der Waals type, and produce adhesion, or may be
interactions between sites of specific chemistrywhich are distributed along filaments.
While the nature of interactions and the energeticsmay be different in these two cases,
the mechanics is essentially identical, as the two can be mapped to an effective
interaction energy which leads to a work of adhesion.

The difference between crosslinks and surface interactions can be understood by
comparing the schematics in Figs. 1.2 and 1.4. In Fig. 1.4a, twofibers are shown form-
ing a bundle over some portion of their length (BC). They are held in the respective
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Fig. 1.4 a Two fibers interacting via surface forces along segment BC. Both fibers bend to allow
the formation of the contact along BC. bAdhesion between two fiber bundles. Fibers end and begin
at stochastic sites along the bundle. They are held together by interfiber surface forces

configuration by short-range interactions taking place between their surfaces. These
interactions favor fiber bonding but, if the two fibers are connected in the network,
the formation of the bundle BC requires paying an energetic penalty associated with
the bending of segments AB and CD.

The short-range nature of surface interactions limits their ability to organize the
network and drive its evolution from the crosslinked state of Fig. 1.3 to the bun-
dled state of Fig. 1.4a. In order to produce configurations similar to that shown in
Fig. 1.4a, fibers have to be brought in contact by some other means. These include
capillary forces or simple mechanical mixing. Once in contact, surface interactions
are engaged and play a significant role in the overall mechanics of the network (Picu
and Sengab 2018), as discussed in section “Networks with Adhesive Fiber Interac-
tions—Networks of Bundles” of this chapter.

Figure 1.4b shows a structure similar to that shown in Fig. 1.4a, but involving
fiber bundles. Segment BC is the common region of two bundles and the structure is
stabilized by surface interactions between fibers in the bundle and between bundles.
Fibers may be long compared with the scale of the picture, or may end and start at
random sites along the bundle. Bundles can be homogenized and rendered equivalent
to “effective fibers.” Through such procedure, the structure in Fig. 1.4b is mapped
to that shown in Fig. 1.4a.

Characterization of Network Structure

A physical network is defined by the underlying graph, i.e., by the connectivity, and
by the positions of the crosslinks. A random network has random connectivity and
random nodal positions. Fiber networks are less general than this definition due to
the fact that connectivity is limited by the fiber length and shape, while crosslink
positions must coincide with fiber locations.

Physical networks have diverse structures, but can be classified in two broad
categories: fibrous and cellular networks. Most real networks are of fibrous type.
In such structures, the fibers are longer than the distance between two crosslinks,
and therefore each fiber has multiple crosslinks with other fibers. Figure 1.5 shows
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Fig. 1.5 Fibrous and
cellular networks. The first
line shows three-dimensional
realizations, while the
second line shows equivalent
two-dimensional structures

3D and 2D examples of fibrous networks, with the 2D version being also called
Mikado. In 2D, fibers of specified length, Lf , are placed with random orientations
and random positions of their centers of mass in a two-dimensional domain, and
crosslinks are defined at all fiber crossing points (the “fully crosslinked” case) or
at a subset of these. In 3D, fibers are also placed randomly in the problem domain
and crosslinks are defined wherever the minimum distance between fibers is smaller
than some threshold (e.g., smaller than one fiber diameter). The number of fiber
segments merging into a crosslink, or the connectivity number, is z = 4 in both
2D and 3D. Note that segments at the end of fibers may be “dangling,” i.e., may
have only one crosslink to the rest of the network. Therefore, these segments do not
store strain energy and do not contribute directly to the network mechanics. They
may contribute to the excluded volume, but are expected to influence the network
mechanical behavior only in dense networks. If dangling ends are excluded, the
connectivity number becomes polydisperse. In such cases, most crosslinks have
z = 4, but crosslinks with z = 3 and even with z = 2 appear. Therefore, the average
connectivity number z becomes smaller than 4.

Common office paper has a structure very close to that of a 2D Mikado network,
but with large crosslink density and short mean segment lengths between crosslinks
(Alava andNiskanen 2006).Nonwovenmats are, in projection on the plane of themat,
also of Mikado type, but their degree of crosslinking is smaller. Collagen structures
are also of fibrous type. Collagen is laid down by cells as continuous fibrils that
become crosslinked by proteoglycans or surface interactions. Mycelium foams are
made from filaments (hyphae) that grow independently in search of nutrition (Glass
et al. 2004). Filaments may merge if they meet at some points in space creating
a crosslink. Mycelium forms dense fiber networks in the ground and was recently
used to bind cellulose particles into a biodegradable material (Islam et al. 2018).
Cytoskeleton is a special type of fibrous network. F-actin creates a tree-like, branched
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structure as it polymerizes. Crosslinks between such branched “fibers” are introduced
by myosin and other actin-binding proteins (Mofrad 2009; Boal 2012).

Cellular networks are similar toVoronoi tessellations of space. They are composed
of fibers with only two crosslinks per fiber, located at the two ends. The connectivity
number is z = 3 in 2D and z = 4 in 3D. Dangling segments do not exist or are only
exceptionally present. Examples of such networks are the open cell foams, which can
be made from various materials, ranging from liquids to metal (Gibson and Ashby
1999).

These structures are characterized by a set of parameters which are either con-
trollable or may be directly measured. The key such parameters are as follows:

– Fiber density, ρ, represents the total length of fiber per unit volume (in 3D) or
area (in 2D) of the network. It is directly controllable when a network is produced.
It is related to the volume fraction of the network, φ, through φ = ρAf , with Af

being the cross-sectional area of fibers. The volume fraction represents the volume
occupied by the fiber material out of the total volume of the network. The units of
ρ are m−1 or m−2 in 2D and 3D, respectively.

– Bond density, ρb, represents the number of crosslinks per unit volume of network.
Its units are m−2 and m−3 in 2D and 3D, respectively.

– Themean connectivity number, z, represents the average number of fiber segments
merging into a crosslink.

An important derivedparameter is themeanfiber segment length, lc, or the distance
between two successive crosslinks along given fiber. The segment length is Poisson
distributed in most networks, with the probability to find a segment of length l being
p(l) = 1/lc exp(−l/lc). The fact that segment lengths are Poisson distributed is
inherited from, and is representative for, the random nature of the network structure.
The Kallmes–Corte relation for Mikado fibrous networks in 2D indicates that lc and
the network density are related as ρlc = π/2 (Kallmes and Corte 1960). In 3D, the
equivalent relation is ρl2c = q, so one can write (Deogekar et al. 2019)

ρlD−1
c = q (1.5)

where q is a constant andD is the embedding space dimensionality. Figure 1.6 shows
the scaling of ρ with lc for 3D networks (D = 3) of several types. Circles correspond
to cases in which fibers are straight.

In most situations, fibers are not straight, rather their contour length is larger than
the end-to-end length. Denote by lc the mean end-to-end segment length, and by lcl
the mean contour length of segments. The crimp parameter, c, is defined as lc = clcl ,
with c < 1. In presence of crimp, the fiber density becomes a function of c, ρ(c). If
all fibers have the same crimp, ρ(c) = ρ(1)/c, where ρ(1) ≡ ρ in the straight fiber
case.

In presence of crimp, Eq. (1.5) becomes

ρ(c)lD−1
cl = q/c3 (1.6)
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which becomes Eq. (1.5) if all fibers are straight and c = 1. Figure 1.6 includes data
from networks with crimp, with various values of parameter c, and demonstrates the
validity of both Eqs. (1.5) and (1.6).

Another geometric relation between network parameters is

ρ(c) = ρblclz/2 (1.7)

which emerges from the mass balance written at the scale of the average crosslink.
The orientation of fibers and fiber segments is an important parameter controlling

the mechanical behavior of the network. Orientation is usually computed based on
the end-to-end vector of the respective segment and may be quantified using the
second Legendre polynomial P2(θ) = 1/2

(
3cos2θ − 1

)
(This expression is to be

used in 3D. The corresponding expression for 2D is P2(θ) = 2cos2θ − 1.), where
θ is the angle between the respective vector and a fixed direction in space (e.g., one
of the axes of the coordinate system). Random orientation of vectors leads to the
system average value P2 = 0, while perfect alignment in the reference direction
gives P̄2 = 1. Preferential fiber orientation induces strong mechanical anisotropy.

The structure of networks can be characterized in a number of other ways which
are less important for mechanics, but hold relevance for transport across the network.
In 2D, fiber crossing defines polygons. Goudsmit (1945) derived several geometric
properties of such materials, including the number of polygons formed by given
number of lines. Miles (1964) showed that the fraction of polygons that are triangles
is 36% and the mean number of sides per polygon is 4. The distribution of pore radii
is well approximated by the gamma distribution (Richards 1964; Dodson and Samp-
son 1996; Eichhom and Sampson 2005). For a detailed discussion of the geometry
of polygons in structures formed by randomly depositing lines in 2D, see Stoyan
et al. (1987). The effect of accounting for the nonzero fiber diameter is discussed in
Eichhorn and Sampson (2005). The broad distribution of pore sizes indicates that
such structures are multiscale, with small polygons embedded in larger polygons,
which are then embedded in even larger polygons.

Fig. 1.6 Relation between
network density, ρ, and the
mean contour length of fiber
segments, lcl , and the fiber
tortuosity, c. The red circles
represent networks with no
tortuosity, case in which
lcl ≡ lc and α = 1. Adapted
from Deogekar et al. (2019)



18 C. R. Picu

Small and Large Strain Mechanical Behavior

The literature on the mechanics of fiber networks is rich, with the first studies, mostly
related to paper, being reported more than half a century ago (see a review in Rig-
dahl and Hollmark 1986). During approximately the same period of time, but in a
different community, work has been performed on thermal molecular networks such
as rubber (Guth and James 1941; Treloar 1975). The objective was to derive consti-
tutive equations describing deformation at the macroscopic scale and to relate this
behavior to smaller scale parameters of the network. This is in line with the general
trend in Mechanics of Materials over the last part of the twentieth century, when
micromechanics (and more recently, multiscale methods) was used to place macro-
scopic constitutive behavior on a firm ground. Recently, significant attention was
devoted to semiflexible random networks, due to their applications in the mechan-
ics of the cell, tissue, and artificial tissue constructs; see reviews of their physical
behavior in Picu (2011), Broedersz and MacKintosh (2014).

As with other materials, the mechanical behavior of networks encompasses the
study of the constitutive response and that of damage and rupture. The objective
is to associate features of the observed behavior with structural parameters of the
network, which would render network mechanics controllable. This section refers to
the constitutive response of networks, while the discussion of damage and strength
is deferred to section “Damage and Rupture in Random Networks.”

For simplicity, only isostatic networks with no matrix, no embedded particles or
reinforcements, andnoprestress are discussedhere. This represents the reference case
against which more complex cases, including networks with matrix and embedded
entities, are compared.

Stability Considerations

The Maxwell criterion (Maxwell 1864) defines the conditions in which a pin-jointed
structure of trusses is stable, i.e., has nonzero stiffness. Such structures are called
isostatic. A structure composed of Nt trusses, having Nb crosslinks and defined in
a space of dimensionality D is stable if Nt ≥ NbD. Considering that a truss has a
crosslink at each end and each crosslink has, in average, a connectivity number z, it
results that Nt = Nbz/2. Therefore, the Maxwell criterion requires

z ≥ 2D (1.8)

for the structure to be isostatic.
To account for situations in which fibers are added to the structure without con-

straining additional degrees of freedom, the Maxwell formula may be modified as
(Calladine 1978), Nt − NbD ≥ C − M , where C is the number of overconstraints
andM is the number of mechanisms. For example, for two-dimensional frames, the
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formula becomes Nt − NbD ≥ −3, where the three mechanisms are two rigid body
translations and one in-plane rotation.

Most physical networks being fibrous, their connectivity number is between z = 3
and 4. Equation (1.8) indicates that in 3D, with D = 3, all such structures with pin-
jointed crosslinks are sub-isostatic and are mechanisms with zero stiffness in the
unloaded state.

Networks can be stabilized in various ways without modifying z. The simplest
route is to consider that athermal fibers are actually beams of finite bending stiffness.
The bending rigidity stabilizes the network and structures with z much smaller than
the Maxwell threshold gain nonzero stiffness.

A related perspective is based on the dichotomy between transport and stiffness
percolation. Transport percolation refers to the formation of a continuous path of
fibers across the problem domain during the process of network generation. The
density of the network at the percolation threshold ρth in two-dimensional arrange-
ments is related to the dimensions of the fibers, in particular to their length, through
ρthLf = 5.71. Clearly, longer fibers allow percolation to happen at a smaller fiber
number density and a smaller ρ. If fibers have nonzero bending stiffness, the trans-
port and stiffness percolation thresholds are identical, ρth. If fibers have only axial
stiffness and the network is a network of trusses, the stiffness percolation threshold
is larger than the transport threshold, as required by the Maxwell criterion, Eq. (1.8).
The transition is continuous in all cases, with the elastic moduli increasing smoothly
from zero. It is generally considered that both Young’s and shear moduli become
nonzero simultaneously, at the same value of the density. However, this is not of
universal validity given the fact that networks may be floppy in one deformation
mode and rigid in a different deformation mode.

The presence of residual, self-equilibrated internal stressmay alter themechanical
stability of the network (Alexander 1998). Internal stresses restrict the applicability
of the Maxwell counting rule (Connelly and Whiteley 1966), and hence may change
conclusions regarding the rigidity state of the network. Head (2004) has shown that
the presence of an internal stress field in a random spring network changes the nature
of the rigidity transition from continuous to first order (elastic moduli take finite
values at the onset of rigidity). First-order percolation transitions were observed
in Bethe lattices (Moukarzel and Duxbury 1995) and in some networks of infinitely
rigid rods (Obukhov 1995) in the absence of residual stresses, but not in other random
networks. The observation is important because it applies to systems which are not
relaxed to their minimum energy state as are many of the systems encountered in the
physical world.

Mechanical Behavior in Tension and Compression

Network materials are usually soft and are subjected to large deformations. The
consistent way of representing their material behavior requires using work conjugate
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definitions of stress and strain. Several other representations are used in the literature.
These are reviewed here, for completeness.

Stress formulations used are the Cauchy, σ, and first and second Piola–Kirchhoff
(PK) stresses, S and �, respectively. These quantities are related as

S = JσF−T (1.9)

and

� = JF−1σF−T , (1.10)

where F is the deformation gradient and J = det F is the Jacobian of the trans-
formation. The first PK stress, S, is work conjugate with F, while the second PK
stress, �, is work conjugate with the Green strain E, which is related to the defor-
mation gradient as E = 1/2

(
FTF − I

)
. Under small strains, the three measures of

stress become approximately identical and E becomes equivalent to the small strain
tensor, ε.

This implies that it is optimal to express the mechanical behavior as �(E), or as
S(F). In uniaxial deformation (e.g., applied in direction x1), one may use 	11(E11)

or S11(λ), where λ is the stretch ratio in the loading direction.
A popular way of representing the response in uniaxial loading is by using the

true stress, σt , and true strain, εt . The true stress is the Cauchy stress, σt ≡ σ11

(with loading in direction x1). It is important to note that σt = (1/J )λS11. In metals,
which deform plastically at constant volume, J ≈ 1 and hence σt ≈ λS11. However,
networks donot deformat constant volumeand the simplified formula is not adequate.
The true strain is given by εt = ln λ. The true stress and true strain are not work
conjugates.

Tension
The generic response of a network to uniaxial tension is shown schematically in
Fig. 1.7. Displacements are applied on the top and bottom surfaces of the sample,
while the lateral faces are kept traction free. In order for the test to be representative
of the material behavior, the points where displacements are applied should be kept
free in the directions perpendicular to the direction of the load. If the sample is

Fig. 1.7 Generic behavior of a network without matrix subjected to uniaxial tension
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constrained laterally, it develops an hourglass shape (in tension) and the various
sub-volumes experience different stress states and loading path histories.

The tensile stress–strain curve typically exhibits three regimes (Broedersz and
Mackintosh 2014):

Regime I: at small strains, the network response is linear elastic, with effective
Young’s and shear moduli, E0 and G0. The stiffness of most matrix-free networks is
small and stress in this regime remains rather small.

Regime II: in this regime, the network strain stiffens and the load-carrying capacity
increases by orders of magnitude. This is primarily due to the gradual alignment of
fibers in the loading direction. Hence, the nonlinearity is, in most cases, of geometric
type. The strain in fibers in this regime is rather limited and, unless the mechanical
behavior of the fiber material is nonlinear at very small values of the stress, most
fibers deform in a linear elastic manner. Exceptions from this behavior are discussed
below.

Regime III: once strain-stiffening ends, the response becomes linear again. As
fibers become oriented in the loading direction, paths along which the load is pref-
erentially transmitted develop (Zagar et al. 2015). Many fibers do not participate in
load transmission in this regime. The structure of the load-bearing sub-network in
this regime depends on the structure of the initial network and on the loading path.
If the fiber material is nonlinear elastic, this regime would not be linear and would
follow the type of nonlinearity (with stiffening or softening) characteristic for the
fibers.

The schematics associated with the tensile loading in Fig. 1.7 indicates that lateral
contraction is limited in regime I, but is pronounced in regime II. Once the loading
paths composed of strongly aligned fibers form, as shown in the rightmost network
representation in Fig. 1.7, the incremental contraction is weak again.

Two notable exceptions from the tensile response shown in Fig. 1.7 should be
mentioned.Networkswith large z, which are stiff in the initial configuration, typically
exhibit an intermediate softening regime between regimes I and II. In such cases, the
structure is very stable and fiber orientation in the loading direction cannot happen
unless a number of fibers lose stability. Buckling occurring at the end of regime I leads
to softening and facilitates the further orientation of fibers, which is characteristic
for regime II.

Another exception refers to the opposite situation in which fibers are very soft in
bending. In this case, the stiffness in regime I is very small. Inmany biological tissues,
the initial stiffness of samples is so small that stress may be below the resolution limit
of the testing system and the material appears to have vanishing stiffness. Defining
the origin of the strain axis in such experiments is challenging and regime I may be
difficult to observe.

Figure 1.8 shows experimental stress–strain curves of two fibrous biomaterials:
the dermis of human skin (Bancelin et al. 2015) and renal tubes (Welling et al. 1995).
A behavior similar to that shown schematically in Fig. 1.7 is observed with a poorly
developed regime I (likely due to the uncertainty associated with identifying the
origin of the stress and strain axes) and a well-developed regime II seen in both
cases. This response is common to most biological tissues.
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Fig. 1.8 Cauchy
stress–stretch curves
representing the tensile
deformation of renal tubes
(data from Welling et al.
1995) and human skin
dermis (data from Bancelin
et al. 2015)

An alternative representation of these curves results by plotting the tangent stiff-
ness, Et = dσ/dλ, versus stress, σ . In this format, regimes I and III of the tensile
response are horizontal plateaus, while regime II corresponds to a continuously rising
branch. Figure 1.9a shows schematically the expected shape of the tensile stress–s-

Fig. 1.9 a Schematic representation of the tensile stress–strain curve reproduced from Fig. 1.7.
b Equivalent representation of the curve in (a) in terms of the tangent stiffness versus stress. The
three regimes are labeled in both (a) and (b), but are clearly visible in (b). c Experimental data
obtained with reconstructed collagen type I gel subjected to shear at 37 °C. Adapted from Licup
et al. (2015)
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train curve (similar to Fig. 1.7), while Fig. 1.9b shows the equivalent representation
as logEt versus log σ . The three regimes are clearly visible in Fig. 1.9b. The strong
stiffening of the network is also obvious, with the difference between the small strain
modulus corresponding to regime I, E0, and the effective stiffness of regime III being
large. Figure 1.9c shows a set of experimental curves obtained with reconstructed
collagen type I networks of different concentrations (Licup et al. 2015). E0 increases
with increasing the concentration, i.e., the network density, ρ. However, regime II is
largely insensitive to ρ.

The regime II branch in Fig. 1.9c can be approximated by a straight line of slope
1. Hence, Et ∼ σ , which, in turn, implies that σ ∼ exp(λ − 1), i.e., the network
stiffens exponentially. This type of stiffening is broadly observed in biological fibrous
materials (e.g., Mauri et al. 2015; Licup et al. 2015) where it is due to the gradual
alignment of fibers in the loading (tensile) direction.

As noted above, densely crosslinked networks, networks with high connectivity
number, z, and/or networks of high density, which are too constrained for significant
fiber alignment to be manifest, do not exhibit these three regimes. Their response
is limited to regime I. Since their stiffness is large, large stresses are reached. This
increases the probability of failure of crosslinks and/or of fibers before the network
enters regime II. Failure introduces a softening trend. Softening may be caused by
fiber yielding or by a combination of fiber nonlinear deformation and inelastic pro-
cesses at crosslinks. Figure 1.10 shows an example of this type of behavior obtained
with paper of base weight 27 g/m2 loaded in tension (Borodulina et al. 2012). The
initial linear elastic regime is followed by an apparent yield point and subsequent
softening. Unloading beyond the yield point leads to a residual strain. Damage accu-
mulates gradually in the nonlinear regime leading to macroscopic localization at
peak stress.

If significant damage does not occur in regime I, fibers oriented initially roughly
perpendicular to the tensile loading direction undergo a buckling instability. This
causes a short softening regime at the end of regime I. Beyond this stage, the material

Fig. 1.10 Stress–strain curve for paper of base weight 27 g/m2. Adapted from Borodulina et al.
(2012)



24 C. R. Picu

Fig. 1.11 Generic behavior of a network without matrix subjected to uniaxial compression

strain stiffens quickly since the instability removes part of the kinematic constraints
and fibers are subsequently free to align in the loading direction.

Compression
The generic response of a network to uniaxial compression is shown schematically
in Fig. 1.11.

The compressive stress–strain curve also exhibits three regimes:
Regime I: at small strains, the network response is linear elastic, with effective

Young’s and shear moduli, E0 and G0, typically equal to those measured in tension
in regime I.

Regime II: softening is observed in compression after regime I. This behavior is
similar to that observed in foams and is associated with strain localization (Gibson
and Ashby 1999). Due to the random structure of the network, localization is diffuse
and, at least in the initial phases of regime II, no clearly defined strain bands are
observed by unaided eye. However, digital image correlation evidences incipient
localization bands forming once strain softening is first observed in the stress–strain
curve. These bands evolve stochastically and eventually merge forming a compacted
region.

Regime III: stiffening is observed in the third regime of the stress–strain curve.
This is also similar to the behavior observed in foams. This stiffening regime is
due to excluded volume interactions. Specifically, the material becomes sufficiently
compacted for the fibers to come in direct, nonbonded contact with each other.
Since the number of contacts increases rapidly with compression, the stiffness also
increases fast.

The schematic network images in Fig. 1.11 indicate that lateral contraction is
limited in compression. This is clearly different from the situation observed in tension
(Fig. 1.7).

The regimes discussed above are demonstrated experimentally using a crosslinked
glass fiber wool (Mezeix et al. 2009). The microstructure of this material is shown
in the inset to Fig. 1.12. It is composed of long glass fibers which are crosslinked by
spraying epoxy onto the entangled network. Epoxy beads form at sites where fibers
are sufficiently close to each other effectively crosslinking the network. The curve
shows clearly the three regimes, in particular regime II and the stiffening regime III
shown in Fig. 1.11 are well defined.
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Fig. 1.12 Compression
stress–strain curve for a
crosslinked glass fiber wool.
The fibers are crosslinked
with epoxy beads. Adapted
from Mezeix et al. (2009).
The insets show an image of
this fibrous network and the
boundary conditions applied
during loading

Figure 1.13 demonstrates that the softening transition taking place during com-
pression at the onset of regime II is associated with strain localization. These results
are obtained with amycelium network (Islam et al. 2017). An image of such structure
is shown in Fig. 1.13a. The network is obtained by growing mycelium on a nutritive
substrate in controlled atmosphere and at controlled temperature. After the network

Fig. 1.13 a Scanning electron microscopy image of a mycelium network, b stress–strain curve of
the network in (a) subjected to compression, and c DIC images of the strain field on the surface
of mycelium samples. Snapshots A, B, D, and F correspond to the respective positions indicated
by red diamonds in (b). Red corresponds to 0 strain and dark blue corresponds to 8% compressive
strain, in all images in (c). Adapted from Islam et al. (2017)



26 C. R. Picu

Fig. 1.14 Stress–stretch
curves for fibrous and
cellular models loaded in
compression. The dashed
lines correspond to models in
which excluded volume
interactions are accounted
for, while symbols
correspond to the same
models with the excluded
volume interactions turned
off

develops to the desired density, the material is thermally treated to remove the bio-
logical component and stop the growth. The hyphae are tubules of outer diameter
~1.3 µm and up to centimeters in length. These chitin filaments are entangled and
randomly oriented and packed. The hyphae are sparsely crosslinked, but the degree of
crosslinking is difficult to estimate. This material was tested in compression and the
nominal stress–strain curve is shown in Fig. 1.13b (Islam et al. 2017). Only regime
I and the initial part of regime II are shown.

The figure also shows a series of digital image correlation images of the sample
surface taken at various stages during deformation. It is seen that localization bands
develop at random locations in the sample. As the deformation proceeds, some of
these may recede and some others grow. Further compression leads to the densifica-
tion of the sample corresponding to the regime II part of the stress–strain curve. Due
to its very small volume fraction and given the small hyphae diameter, the network
has to be compacted significantly in order to reach regime III. Similar behavior has
been observed in random foams (Gibson and Ashby 1999). While in periodic foams
localization takes the form of a single band which advances across the gage of the
sample, in random foams and networks subjected to compression, localization has
the diffuse character as shown in Fig. 1.13.

Figure 1.14 demonstrates that the rapid stiffening observed in regime III is due
to the excluded volume interaction of fibers. It shows stress–strain curves obtained
with models of cellular and fibrous networks of same density. The dashed curves are
obtained with models that account for all interfiber interactions, including excluded
volume interaction (the conditions that fibers do not cross or overlap). The symbols
correspond to curves obtained with the same models after the excluded volume con-
straint is removed. These curves do not exhibit the stiffening regime III. Furthermore,
the strain hardening observed in regime II is muchweaker than in the curves obtained
with all interactions activated.

Poisson effect
Networks with no embedding matrix exhibit strong Poisson contraction when loaded
in uniaxial tension. This is observed in nonwovens and in biological tissue in which
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Fig. 1.15 aCross-sectional view of human amnion in the unloaded state (left) and after stretching in
the direction shown by 24% (adapted fromMauri et al. 2015). b Top view of a nonwoven polymeric
felt subjected to uniaxial stretching (adapted from Kabla and Mahadevan 2007). The transverse
contraction in both cases is of about 50%

drainage is allowed to happen. Examples are shown in Fig. 1.15. Figure 1.15a shows
the cross section of the human amnion in the unloaded state (left image) and after
stretching by 24% (Mauri et al. 2015). The thickness of the sample decreases to about
half of the original one and the transverse strain is approximately 50%. Figure 1.15b
shows a similar result obtained with a polymeric felt (Kabla and Mahadevan 2007).
The lateral contraction upon a uniaxial stretch of 40% is close to 50%.

Both examples provided in Fig. 1.15 refer to membranes, with the constituent
filaments strongly oriented in the plane of the structure. In both cases, it is observed
that the contraction in the in-plane direction is smaller than that in the out-of-plane
direction. This indicates that fiber orientation strongly influences the Poisson con-
traction. Specifically, preferential fiber orientation in the direction of the tensile load
leads to a more pronounced Poisson effect.

To quantify the Poisson contraction, we use the incremental Poisson ratio defined
by

νi = −d ln λ2

d ln λ1
(1.11)

which is computed based on the true strains in the transverse and longitudinal
direction. This quantity reduces to the usual definition of the Poisson ratio under
small strains. The incremental Poisson ratio is more relevant than the secant version
(νs = − ln λ2/ ln λ1) since it represents the incremental response of the structure
relative to the current state.

Figure 1.16 shows the variation of the incremental Poisson ratio for a model net-
workwith parameters representing collagen at concentrations relevant for connective
tissue, i.e., 1 and 4 mg/ml (Picu et al. 2018). The stress–strain curves for these model
networks resemble closely to those measured in several collagen constructs. The
Poisson ratio is plotted versus the applied longitudinal stretch ratio, λ1.

The Poisson ratio is smaller than 0.5 in the initial state and throughout regime I of
the deformation.Once the sample enters regime II, the Poisson ratio increases rapidly.
The transition between regimes is marked by the vertical arrows in Fig. 1.16. Very
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Fig. 1.16 Variation of the incremental Poisson ratio with the stretch ratio for models with c = 1
and 4mg/ml. The red symbols mark the transition between regimes I, II, and III. The figure includes
experimental data for reconstructed collagen gels (orange circles) (Lake and Barocas 2011), human
amnion (green squares) (Mauri et al. 2015), and mouse skin (blue triangles) (Bancelin et al. 2015).
Reproduced with permission from Picu et al. (2018)

large values of the incremental Poisson ratio are reached. These are much larger than
the upper limit of 0.5 allowed by thermodynamics considerations in the continuum
theory. The network is not a continuum and hence the respective limit does not apply.
Incidentally, it should be noted that even in the continuum case, values of the Poisson
ratio larger than 0.5 are thermodynamically acceptable in anisotropic elasticity (Ting
and Chen 2005).

The maximum value of the incremental Poisson ratio is reached at the transition
from regime II to regime III. Once the fibers are strongly aligned and the stress paths
are formed across the sample, the driving force for lateral contraction is reduced. In
addition, lateral contraction is limited by the confining effect of fibers which remain
oriented in directions other than the loading direction andwhich are strongly distorted
at this stage.

Figure 1.16 includes three sets of experimental data obtained with reconstructed
collagen gels (orange circles) (Lake and Barocas 2011), human amnion (green
squares) (Mauri et al. 2015), and mouse skin (blue triangles) (Bancelin et al. 2015).
The trends observed experimentally, including the rate of increase of νi in regime II,
are identical to those obtained with the model. The experimental curves are shifted
in the horizontal direction due to the uncertainty related to the origin of the strain
axis, which is always an issue when working with very soft specimens.

The effect of fiber alignment on the Poisson ratio is shown in Fig. 1.17 (Picu
et al. 2018). During uniaxial tension, fibers align and the degree of alignment is
measured by the orientation parameter P2 defined in section “Characterization of
Network Structure.” Figure 1.17 shows the incremental Poisson ratio versus P2. The
data indicates that the Poisson effect is more pronounced as the network is more
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Fig. 1.17 Relationship between the incremental Poisson ratio and the orientation index for models
with c = 4 mg/ml and various levels of pre-alignment in the initial, unloaded configuration (P0

2).
The dotted blue line shows the variation of the small strain Poisson ratio with the degree of pre-
alignment. The blue triangles represent the measured in-plane incremental Poisson ratio for a pre-
aligned sample of mouse skin (Bancelin et al. 2015). Reproduced with permission from Picu et al.
(2018)

aligned. This agrees with the observation made above, in connection with Fig. 1.15,
that the Poisson contraction of a fibrous membrane in the out-of-plane direction is
more pronounced than that in-plane.

Figure 1.17 includes several curves obtained with networks of the same density,
butwith preferentially orientedfibers in the initial, unloaded configuration (the degree
of initial orientation is defined by P0

2). The blue dotted line shows the variation of
the small strain Poisson ratio with the degree of initial orientation. It is seen that the
ratio increases slightly with P0

2 , but the effect is not significant. However, the rate of
increase of νi with increasing P2 is much more pronounced in the aligned samples
than in samples with random initial fiber orientation. The figure includes data for the
mouse skin dermis from Bancelin et al. (2015). The experimental data aligns with
the model prediction.

Networks without embedding matrix exhibit strong asymmetry in tension and
compression with respect to the Poisson effect. In compression, the Poisson effect is
weak and samples preserve their lateral dimensions during loading.

Hysteresis
The discussion above refers to the loading part of the stress–strain curve. In principle,
in absence of damage (which may occur in the form of crosslink and/or fiber rupture)
and with linear elastic fibers, the network behavior is hyperelastic and unloading
retraces the loading curve. In reality, additional interfiber interactions occur in most
fibrous materials, which introduces dissipation and leads to hysteretic stress–strain
curves.

Interactions leading to dissipation include friction between filaments at contacts
other than the crosslinks, and the interaction of fibers with an embedding fluidic
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matrix. The first occurs, for example, in dense nonwovens, while the second may
take place in tissue such as cartilage and ligaments. With nanofilaments, friction is
primarily viscous, with the friction force per unit area of contact being a constant
(Bowden and Tabor 2001). Adhesion may help preserve fibers in contact. Interaction
with an embedding fluidic medium amounts to the flow of fluid within the fibrous
body leading to viscous drag and dissipation. Such internal flow may take place
under non-draining conditions due to the heterogeneous nature of the structure and
the associated non-affine deformation. This phenomenon is known in cartilage which
is considered to be a three-phase material, i.e., a collagen fiber network, a soft solid
phase formed by proteoglycans, and a fluid. It leads to time-dependent mechanical
behavior of cartilage, which is key in the biomechanics of the joint. If the fiber
material is elastic–plastic or viscoelastic, dissipation occurs in the fibers as well.

Figure 1.18 shows an example of hysteretic behavior for a mycelium network
of the type shown in Fig. 1.13a (Islam et al. 2017). The network is subjected to
uniaxial compression in this case. However, similar response is expected under shear.
Dissipation occurs in this case due to interfiber friction. The material is dry and there
is no embedding matrix. Dissipation is weaker in tension since, due to the open
structure of the network, interfiber contacts are sparse at low and moderate strains.

Figure 1.18a shows the response under cyclic loading of 2% strain amplitude.
The loading branches are different from cycle to cycle, indicating that the material
settles under loading. The unloading branches overlap. A residual strain is measured
in each cycle relative to the initial configuration. The cyclic response settles to a
stable hysteresis loop after two or three cycles.

Figure 1.18b shows the equivalent behavior under larger strain amplitudes. The
maximum strain imposed is sufficiently large to cause strain localization which,
in turn, causes softening of the loading branch of the stress–strain curve; see also
Fig. 1.13. The cyclic curve settles after few cycles to a stable hysteresis loop, similar
to the response observed under small strain amplitude, but the dissipation is much
more pronounced.

Fig. 1.18 Compressive response of mycelium subjected to cyclic loading under constant strain
amplitude. The curve in (a) is reproduced in (b) for comparison. Adapted from Islam et al. (2017)
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It is also of interest that this network exhibits the Mullins effect, as commonly
observed in filled rubbers (Mullins 1969). The Mullins effect refers to the reloading
branch of the stress–strain curve under cyclic deformation with increasing amplitude
from cycle to cycle. The loading branch follows the unloading branch of the previous
cycle (say, the curve labeled “cycle 3”) up to the maximum strain of the previous
cycle. Beyond this strain, the reloading curve follows that which would have been
obtained with a sample loaded monotonically. This similarity with the phenomenol-
ogy observed in rubber is surprising at the first glance due to the very different nature
of the two types of networks. The mycelium network discussed here is composed of
athermal filaments and has large free volume, with no embedding matrix. Rubber is a
molecular, thermal network with essentially no free volume. In rubbers, the Mullins
effect is associated with damage produced during loading. Damage is produced in
the first cycle, while cycling at constant strain amplitude does not produce additional
damage. Damage continues to accumulate when the strain amplitude increases. As
in the case of rubber, the origin of the Mullins effect in athermal networks with large
free volume is not precisely understood.
Biaxial loading
Biological fibrous membranes and nonwoven mats are generally loaded biaxially. It
is therefore of interest to discuss the response of networks to multiaxial loading.

Due to their large Poisson effect observed in uniaxial tension, it is expected that the
stress required to deform a fibrous structure in regime II and beyond under multiaxial
conditions is larger than that required for uniaxial deformation. Under small strains,
the effective Poisson ratio is smaller than 0.5 and the equibiaxial modulus is E0/(1−
ν0), where E0 and ν0 are the regime I (small strains) Young’s modulus and Poisson
ratio. ν0 is equal to the instantaneous value at small strains. Therefore, the effective
small strain modulus measured in equibiaxial tension is expected to be larger than
E0.

In regime II of the uniaxial deformation, the Poisson effect is important, with
νi > 1 (Fig. 1.16), and the difference between equibiaxial and uniaxial tension curves
should be significant. In this regime, the structure becomes strongly anisotropic
(transversely isotropic under uniaxial and equibiaxial loading) and the simple linear
elastic relation between the effective moduli in the two loading modes does not hold.

Figure 1.19 shows the uniaxial and equibiaxial tension stress–strain curves for
a Voronoi network of parameters and density relevant for collagen structures (at
collagen concentration of 4 mg/ml) (Picu et al. 2018). The nominal stress–stretch
curves are shown in Fig. 1.19a, while the corresponding tangent stiffness–stress
curves are shown in Fig. 1.19b. The curves in Fig. 1.19b indicate the two regimes
of deformation which are equally well defined under uniaxial and biaxial loading.
Similar results are obtained experimentally with nonwovens (Ridruejo et al. 2012).

The stress required to deform the sample biaxially is always larger than that
measured in uniaxial deformation. The small strain biaxial modulus (see regime I
in Fig. 1.19b) is larger than E0, as discussed above. Interestingly, the slope of the
tangent stiffness versus stress curve in regime II is 1 in both uniaxial and biaxial
loading modes. This indicates that the stress is an exponential function of stretch in
both cases.
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Fig. 1.19 aNominal stress–stretch curves for the uniaxial and equibiaxial deformation of aVoronoi
network with characteristics similar to a collagen structure of concentration 4 mg/ml. The tangent
stiffness versus stress curve is shown in (b) to emphasize regimes I and II of the deformation.
Reproduced with permission from Picu et al. (2018)

As the ratio of the tensile stress applied in the two in-plane directions of loading
becomes smaller than 1, the biaxial curve shifts to smaller stresses. The uniaxial and
equibiaxial curves in Fig. 1.19a are the extremes of all possible biaxial cases.

Affine versus non-affine deformation
Affine deformation refers to a situation in which the fiber-level deformation gradi-
ent is identical to the far field, imposed deformation gradient. Each sub-domain of
the network, down to individual fibers, follows the kinematics imposed on the net-
work at the macroscale. This type of deformation is not encountered in practice as
networks generally deform non-affinely. In fact, all heterogeneous continua deform
non-affinely and random fiber networks are, by definition, highly heterogeneous.

The non-affinity can be evaluated using various measures (Picu 2011) and is quite
large in most networks without matrix of practical interest. In presence of a solid
matrix, the degree of non-affinity is lower.

Given that the affine deformation is an approximation of the real behavior, one
may wonder why it is of any importance. The reason is rooted in the simplicity of this
model. Since the kinematics is fully defined and the constitutive response of each
fiber is known, the stress can be computed analytically. Therefore, the affine model
provides the upper bound for the constitutive behavior of real networks. Given its
importance in network studies, we outline here the main features of the model.

Given a deformation gradient F applied macroscopically, a generic fiber of the
network of end-to-end vector R0 deforms into a configuration defined by R = FR0.
If the fiber is initially straight, it remains straight during deformation. Therefore,
bending is not engaged and only the axial deformation mode is activated. The model
implies that fibers, even if of beam type, deform as trusses. This is themajor limitation
of the affine model: fiber kinematics being restricted to the axial mode, lower energy
states that require bending deformation of filaments cannot be represented by the
model. Therefore, the effective stiffness predicted by the affinemodel is always larger
than that measured in cases in which multiple deformation modes are possible.
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Under the affine assumption, the force that develops in each fiber, i, is given by
Fi = ki(‖Ri‖ − ‖R0i‖), where the effective axial stiffness is ki = Ef Af /‖R0i‖. The
stress can be calculated using the virial formula:

σ = 1

2V

∑

i

Fi ⊗ Ri = 1

2
ρEf Af

〈 ‖Ri‖
‖R0i‖ − 1

〉
〈ri ⊗ ri〉 (1.12)

where V is the volume of the network and the summation is performed over all fibers.
ri represents the versor of Ri. The system average of the dyadic ri ⊗ ri includes
information about the orientation of fibers and hence accounts for anisotropy. The
ratio ‖Ri‖/‖R0i‖ is the stretch ratio of fiber i and 〈‖Ri‖/‖R0i‖ − 1〉 is the system
average axial engineering strain of fibers.

Equation (1.12) indicates that, within the affine approximation, the stress is pro-
portional to the network density, ρ, and to the fiber axial rigidity, Ef Af . The fact that
the only relevant fiber property is Ef Af is a consequence of the kinematic restric-
tion imposed on fiber deformation. Therefore, the stiffness of the network follows
Eaffine
0 ∼ ρEf Af .

Parameters characterizing the mechanical behavior and their dependence on net-
work structure
In this section, we are concerned with the relationship between network microstruc-
ture and its mechanical behavior. The response to uniaxial loading is considered
representative for the mechanical behavior. This relation is of importance for the
overall understanding of network mechanics as well as for network design.

Networks usually perform their function in regimes I and II of the stress–strain
curve, Fig. 1.7. Regime I is characterized by the small strain modulus, E0, and
the Poisson ratio, ν0. Regime II is characterized by the functional form of strain
hardening, or the slope of the regime II branch of the curve in Fig. 1.9b (see also
Fig. 1.19b).

As discussed in section “Characterization of Network Structure,” characterizing
the network structure is a complex task. Here we refer to athermal networks with
average connectivity z close to 4, which are representative for essentially all non-
molecular networks, including networks of semiflexible filaments with persistence
length much larger than the mean network segment length, lp � lc. The key param-
eters of the network are (i) the density, ρ, or the mean segment length, lc; these two
parameters are related through Eq. (1.6), (ii) the crimp, c, (iii) fiber properties, and
(iv) fiber preferential orientation, P2.

To reduce the complexity,we consider the fibermaterial to be linear elastic.Hence,
the fiber behavior is characterized by the axial and bending rigidities, i.e., Ef Af and
Ef If . The bond density is related to ρ, z, and c through Eq. (1.7). As discussed in
section “Athermal Fibers,” fibers do not store significant strain energy in the shear
and torsion modes; therefore, the rigidities of these two deformation modes are
not included in the list of fiber properties. It should be also noted that Ef Af and
Ef If may differ from fiber to fiber; such composite networks are not considered
in the present discussion, but relevant data can be found in Ban et al. (2016b).
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Also, fibers may not be cylindrical. If so, the cross section has two independent
moments of inertia and two parameters, Ef Iminf and Ef Imaxf , should be considered.
This, again, adds to the complexity and we leave this discussion out. Relevant data
on the effect of noncircular cross sections of filaments can be found in Deogekar and
Picu (2017). Furthermore, we consider structures with random fiber orientation in
the initial configuration, P2 = 0. The behavior of networks with preferential fiber
alignment in the undeformed state is anisotropic, but qualitatively similar to that
discussed here.

The dependence of the network stiffness, E0, on network parameters was studied
by several groups (Head et al. 2003; Heussinger et al. 2007; Shahsavari and Picu
2013a, b). The results are summarized in the plot of Fig. 1.20 for networks without
crimp, c = 1. The plot is obtained by evaluating the stiffness of many networks with
various sets of parameters. The data is then cast in terms of three nondimensional
parameters: E0/E

affine
0 , L0/lc, and lb/L0. Note that L0/lc represents the number of

crosslinks per fiber. The length-like parameter lb is known as the “bending length”
and is given by lb = √

Ef If /Ef Af . For fibers with circular cross section, lb = d/4,
where d is the fiber diameter. Therefore, in this case lb/L0 represents the aspect ratio
of the fiber.

To shed light on the origin of these nondimensional parameters, in the absence
of density fluctuations on scales much larger than lc (flocculation), these structures
have three characteristic lengths: d, lc, and L0. With one of these taken as unit of
length, the two ratios L0/lc and lb/L0 result as the only independent parameter of the
geometry. In networks of “infinite” fibers, such as electrospun networks of polymeric
fibers, L0 is not defined. Its role is taken by the fiber persistence length, lp.

It is observed that with the proper selection of the exponents of the two nondi-
mensional groups on the horizontal axis, the data points collapse on a master curve.

Fig. 1.20 Dependence of the small strain modulus, E0, on structural parameters of the network
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The curve has two regimes. At large values ofw,E0 = Eaffine
0 . In this regime, either

or both L0/lc and lb/L0 are large. This happens in networks of high density (small
lc) and of fibers of large enough diameter such as to render the bending deformation
mode prohibitively expensive. If the bending mode is inhibited, fibers deform in the
axial mode and the network kinematics becomes approximately affine. We note that
the deformation is never perfectly affine on the individual fiber scale, but the overall
behavior is well approximated by the affine model. As noted above, in this regime
E0 ∼ ρEf Af .

The behavior is quite different at small values of w. This regime is reached at
small ρ (large lc) and/or when the fiber diameter decreases sufficiently to enable the
bending deformation mode. Consequently, it is observed that E0 ∼ Ef Af l2b = Ef If ,
i.e., the network stiffness is proportional to the bending rigidity of fibers, while being
independent of their axial rigidity. Network deformation is bending dominated in this
regime. Therefore, it appears as if the two deformation modes are connected in series
and the softer mode controls the overall behavior. This is quite surprising, given the
complex geometry and kinematics of the network.

Interestingly, the bulk modulus in the small strain regime,K0, has the same behav-
ior at allw values and scales asK0 ∼ ρEf Af . The bulkmodulus is probed by applying
hydrostatic loading to the sample. Under these conditions, the deformation of the
network is close to affine and this leads to the observed linear scaling of K0 with the
density and its proportionality to the axial rigidity of fibers.

Network models can be used to compute the partition of energy between the
various fiber deformation modes. Figure 1.21 shows such an example. The total
strain energy is divided into three components associated with bending, axial, and
shear deformation of fibers. The partition is evaluated across the range of variation
of parameter w (Fig. 1.20).

Fig. 1.21 Partition of strain
energy in bending, axial, and
shear modes function of the
structural parameter
w defined in Fig. 1.20
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The energy is primarily stored in the bending mode for non-affinely deforming
networks with small w values, while it is primarily stored in the axial mode when
the network deforms affinely, at large w. A small fraction of the energy is stored in
the shear mode at very large w. Note that extending the plot into the large w range by
decreasing lc should be done carefully, such as to ensure that fiber segments retain
an aspect ratio that allows representing them as beams.

The master plot in Fig. 1.20 indicates that, at small w, in the non-affine regime,
E0 ∼ ρl−x

c . Combining Eqs. (1.5) and (1.7), it results that lc ∼ (zρb)
−1/D. Therefore,

one can write E0 ∼ ρρ
x/D
b . Specifically, one may keep the density of the network

constant and reduce the number of crosslinks per fiber, hence increasing lc. Then,
the density and crosslink density become independent parameters. This expression
indicates that the stiffness is more sensitive to ρb than to ρ. This issue is discussed,
in the context of 2D Mikado networks, in Shahsavari and Picu (2013a).

The exponent x of the nondimensional group L0/lc in w requires discussion. This
exponent controls the sensitivity of the small strain stiffness to the density of the
network and the density of crosslinks. Numerical models determined that x depends
on the dimensionality of the embedding space, D. Also, x is different in cellular and
fibrous networks, being therefore sensitive to aspects of the architecture which are
not quantified by the parameter set used here. Specifically, in 2D Mikado networks,
x = 7 for all crosslink densities, whether the network is crosslinked at all fiber
crossing points, or sparsely (Shahsavari and Picu 2013a). Fibrous 3D networks have
x = 2 (Broedersz et al. 2012; Islam and Picu 2018; Vader et al. 2009), while cellular
3D network have x = 1 (Gibson and Ashby 1999; Islam and Picu 2018). Since in
cellular networks fibers have exactly two crosslinks per fiber, one may write directly
E0 ∼ ρ2. This relation was also established for 3D open cell foams and can be
obtained analytically from a simple periodic model of the cellular structure (Gibson
and Ashby 1999).

The transition from a soft regime, with E0 much smaller than the affine prediction,
to a regime in which the affine model holds is supported by the data in Fig. 1.22.
This is a collection of experimental results obtained with paper samples of various

Fig. 1.22 Variation of
Young’s modulus of paper
with the density along with
the affine model prediction.
Adapted from Rigdahl and
Hollmark (1986)
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densities and two fiber lengths. The affine prediction is included in the figure for
reference. In agreement with the results in Fig. 1.20, the effective network stiffness
matches the affine prediction at large fiber densities, but falls below it as the density
decreases.

In many networks, fibers are not straight. The degree of crimp in the initial,
undeformed configuration is one of the essential parameters describing the network
structure. It is of interest to inquire how crimp reflects in the stress–strain response
of the material. This issue has been studied by many groups (Huisman et al. 2007;
Wen et al. 2012; Raina and Linder 2014; Ban et al. 2016a).

Crimp leads to two importantmodifications of the stress–strain curve: (i) it reduces
E0 and (ii) postpones the transition from regime I to regime II to larger strains. The
nonlinear behavior in regime II is not modified by the presence of crimp. Figure 1.23
demonstrates these effects based on data obtainedwith a cellular networkmodel (Ban
et al. 2016a). The tangent stiffness is plotted versus stress, both axes being normalized
by the small strain stiffness of the network with no crimp (c = 1). It results that E0

decreases continuously with increasing the degree of crimp (decreasing c), while
the strain stiffening in regime II remains exponential (slope of 1 in Fig. 1.23) for all
cases with c < 1, and identical to that of the equivalent network without crimp.

Finally, the dependence of the regime II strain hardening on network parameters
should be discussed. Strain hardening is typically either of exponential type or of
power type. Most works in tissue mechanics report exponential stiffening. In non-
wovens, often the stiffening regime is overshadowed by a softening trend associated
with the failure of bonds or fibers, and a general conclusion cannot be reached. Mod-
els representing various types of networks report generally exponential stiffening
(Broedersz and MacKintosh 2011; Picu et al. 2018), but exceptions have been also
reported (Zagar et al. 2015; van Dillen et al. 2008). An association of exponential
stiffening with cellular networks and of power law stiffening with fibrous networks
has been reported in Islam and Picu (2018). The type of behavior shown in Fig. 1.9c
and Fig. 1.23 is quite common: varying a parameter of the network (e.g., the network
density in Fig. 1.9c and the crimp in Fig. 1.23) leads to the variation of E0, but the
tangent stiffness–stress curves merge in regime II. It is concluded that the nature

Fig. 1.23 Tangent stiffness
versus stress for networks
with increasing degree of
crimp. The inset shows the
definition of the crimp
parameter, c. Both axes are
normalized with the small
strain modulus of the
network without crimp,
E0(c = 1). Adapted from
Ban et al. (2016a)
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of stiffening depends on network architecture (cellular versus fibrous), but, within
given network type, it is independent of network parameters. This can be rationalized
considering that stiffening is due to the continuous alignment of fibers in the direction
of the macroscopic tensile load. The rate at which fibers become aligned depends on
their kinematic constraints which, in turn, depend on network architecture.

Thermal networks
Molecular networks, such as gels and rubber, are thermal. Gels are swollenmolecular
networks in which the network material occupies a small fraction of the total gel vol-
ume—a situation similar to that of the non-embedded athermal networks discussed
above. Rubber is a non-swollen network above its glass transition temperature (in
ambient conditions). The network segments are subjected to thermal fluctuations and
are free to sample their configuration phase space.

It is currently believed that the nature of stress in these networks is entropic, while
the energetic component can be neglected. Therefore, network segments behave like
entropic springs in tension. These can be either linear (Eq. 1.2) or nonlinear Langevin
springs (Treloar 1975). The strands do not store energy in the bending, shear, or
torsional modes. Therefore, thermal networks can be represented schematically as
central force networks with a specific type of constitutive behavior for the strands.

Central force networks in 3D, with connectivity below z = 6, are sub-isostatic.
They acquire stiffness upon stretching and the strain required to reach stability
increases with increasing the distance from the isostatic point, 6 − z (Sharma et al.
2016).

Treloar (1954) and Treloar and Riding (1979) developed a network theory in
which chains have full spatial distribution of end-to-end vector orientations and the
global stress is obtained by averaging over this distribution. Chain deformation is
considered affine, i.e., each end-to-end vector stretches and rotates as dictated by the
far field. A simple formula is derived for Young and shear moduli of such networks:

E0 ∼ G0 = NkBT . (1.13)

Equation (1.13) indicates that the stiffness is proportional to the density of strands,
which is a consequence of the affine assumption. It is also proportional to kBT
(increases with increasing temperature), which is a consequence of the entropic
nature of stress production.

The affine assumption is a major approximation in these theories. In reality, net-
work nodes are free to fluctuate and move non-affinely in order to reduce the overall
free energy. The effect of fluctuations was incorporated in Eq. (1.13) leading to a
smaller estimate for the shear modulus:

E0 ∼ G0 = NkBT
z − 2

z
. (1.14)

The modulus depends on the coordination number. As z increases, the non-affine
prediction (Eq. 1.14) converges to the affine result, Eq. (1.13). For z = 4, the ratio of
the non-affine to the affine moduli is only ½, which is small compared to the corre-
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sponding value inferred from Fig. 1.20. This large difference is due to the presence
of free volume in the networks considered in Fig. 1.20. A review of developments
starting from the affine network model is presented in Boyce and Arruda (2000).

It should be observed that the condition of isochoric deformation reduces signif-
icantly the degree of non-affinity of the deformation, especially in regime II. Even
an athermal network with no embedding matrix and with large free volume would
deform almost affinely if subjected to constant volume deformation in the far field.
Therefore, isochoricity in the thermal as well as athermal cases renders the affine
model approximately applicable.

Damage and Rupture in Random Networks

The discussion of network rupture is divided here in (a) the analysis of the failure of
the material with no initial flaws and (b) that of the growth of pre-existing cracks.

Networks with No Pre-existing Flaws

The rupture of networks presents complexities caused by the following specificities:

– Networks have discrete structure. The local mechanics is different from that of a
continuum and hence the problem of nucleation of “flaws” is also quite different.

– Networks have stochastic structure. They present fluctuations of fiber and crosslink
densities on multiple scales, from lc to the scale of the network. In this regard,
they are similar to composites with stochastic microstructure, whose failure is
notoriously difficult to interpret.

– Rupture requires the failure of fibers and/or the failure of crosslinks. Experiments
are needed in each application to determine the primary failure mode.

The evolution of rupture can be qualitatively evaluated by direct inspection of the
stress–strain curves. These have different appearance in different types of networks.
Two examples are provided in Fig. 1.24.

Figure 1.24a shows several stress–stretch curves obtained with a reconstructed
collagen network (Ovaska et al. 2017). The collagen is harvested from the sea cucum-
bers—a marine organism. Several features can be observed. The most obvious is the
large variability from sample to sample. This is characteristic for materials with
stochastic structure, but is particularly pronounced in network materials. The vari-
ability is generally associated with damage accumulation and is most pronounced in
the post-critical behavior. The peak of the stress–strain curve defining the material
strength is also affected by strong variability.

The material behavior before the peak stress in Fig. 1.24a is typical for network
materials and is similar to that presented in Fig. 1.7. The stress–strain curve exhibits
all three regimes, including a well-defined strain-hardening regime II, and failure
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Fig. 1.24 Stress–strain curve of networks that exhibits failure. a Reconstructed collagen extracted
from sea cucumber; adapted from Ovaska et al. (2017), and b geotextile of polypropylene fibers of
~50 µm diameter; adapted from Chen et al. (2016a)

takes place at high stresses, in regime III. Failure is brittle and no sign of damage
accumulation exists (the tangent modulus in regime III does not decrease before
failure). This type of behavior is also observed in brittle gels.

The behavior shown in Fig. 1.24b (Chen et al. 2016a) is quite different and is
characteristic for a broad range of network materials, including paper, nonwovens,
and some biological tissue. The response exhibits sample-to-sample variability in
this case too; however, the variability is associated with damage accumulation. The
figure shows the limit (maximum and minimum) curves obtained with the respective
lot of nonwoven samples, and a specific curve for which cyclic loading has been
performed. The curves are identical over their initial part, which indicates that the
effective, homogenized behavior in absence of damage is not affected by variability.
The peak stress and the post-critical branch of the curve exhibit pronounced variabil-
ity. The material does not exhibit the three regimes outlined in Fig. 1.7 since damage
accumulation begins at small stresses. It leads to a gradual reduction of the tangent
stiffness before the peak and to gradual softening in the post-critical regime.

The cyclic curve provides useful information. Unloading and reloading cycles
are performed at various strains and hysteresis is observed in all cycles. In these
materials, hysteresis is associated primarily with interfiber friction. The slope of the
reloading branch decreases gradually as the total stretch increases, which is a result
of damage accumulation in the sample.

The parameter of interest in all these cases is the value of the peak stress, or the
strength of the network. The toughness, represented here by the total area under
the stress–strain curve, is also of interest in some applications. However, predicting
toughness is particularly difficult given that the material reorganizes during loading,
which leads to load redistribution. In addition, material strength and toughness are
expected to be significantly load path dependent. We focus the discussion here on
the relation between network strength and structure.

To demonstrate the general trends expected when adjusting network parameters,
consider the results shown in Fig. 1.25 (Deogekar and Picu 2018). Cellular networks
in which crosslinks are allowed to fail at specified effective force, and with a broad
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Fig. 1.25 The stress–stretch curves of four networks selected from the non-affine region of the
master curve in (a) and labeled A, B, C, and D are shown in (b). c Shows the variation of the incre-
mental Poisson ratio for these networks during deformation. The curve corresponding to network A
in which crosslink rupture is prevented is shown in (c). Reproduced with permission fromDeogekar
and Picu (2018)

range of parameters, are constructed. These are classified in terms of a master plot
similar to that of Fig. 1.20, which provides the variation of the effective small strain
modulus with a nondimensional group of network parameters, ρd2. For cellular
networks, this group is equivalent to parameter w in Fig. 1.20. Four networks from
the non-affine range of the master plot are selected (labeled A, B, C, and D in
Fig. 1.25a). Their stress–stretch curves are shown in Fig. 1.25b. These networks fail
in regime I and II of the deformation. As ρd2 decreases, both themodulus,E0, and the
strength, σc, decrease, while the stretch corresponding to the peak stress increases.
The more non-affine the deformation is, the more stretchy, but weaker, the network
becomes.

It is observed that a relatively small (order of 5%) number of crosslinks break
before the peak stress is reached (Chen et al. 2016b; Deogekar and Picu 2018).
The stress–stretch curve departs from that of the equivalent network in which rup-
ture is prevented only close to peak stress. Beyond peak stress, the network softens
continuously to full rupture.

Figure 1.25c shows the variation of the incremental Poisson ratio (Eq. 1.11) during
deformation for the networks whose stress–stretch curves are shown in Fig. 1.25b
(Deogekar and Picu 2018). The Poisson ratio follows the curve corresponding to the
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case in which damage is prevented (labeled “no damage”) up to the peak stress. A
maximum is observed in the incremental Poisson ratio at peak stress. As the network
softens, the incremental Poisson ratio decreases. The intense bond failure after peak
stress leads to a reduction of the rate of fiber alignment. It also allows the network to
rebound laterally under the action of the fibers which run predominantly transverse to
the main tensile loading direction. These transverse fibers are highly bent in order to
accommodate the formation of load-bearing paths oriented in the loading direction.
Bond failure allows their partial relaxation which causes a reduction of the rate of
Poisson contraction with increasing stretch.

A detailed analysis of the effect of various network parameters on strength, σc,
is desirable. Experimental studies of various fibrous materials such as nonwovens
(Chocron et al. 2008; Jearanaisilawong 2004), paper (Clark 1985; Forsstrom et al.
2005; Marais et al. 2014; Torgnysdotter and Wågberg 2003), and biological tissues
(Akins et al. 2011) highlight various aspects of the structure–strength correlation.Key
parameters affecting the overall strength of fiber networks are the network anisotropy
(due to preferential fiber alignment) (Farukh et al. 2014; Koh et al. 2013), network
density (Heyden and Gustafsson 1998), and the properties of the crosslinks (Berhan
and Sastry 2003; Heyden and Gustafsson 1998; Magnusson 2016).

Numerical studies of cellulose networks (Heyden andGustafsson1998) and exper-
iments on nonwovens (Chen et al. 2016a) indicate that strength scales linearly with
the density. The dependence of material strength on the number of crosslinks and
crosslink properties is discussed extensively in the literature on paper mechanics. An
increase of the number of interfiber contacts per fiber, due to an increase of fiber flex-
ibility (Clark 1985; Forsstrom et al. 2005) or due to treatment by polyamines (Marais
et al. 2014), leads to increased network strength. A similar relation between tensile
strength and the number of interfiber crosslinks was also observed in experimental
studies on biological tissues (Akins et al. 2011), although a quantitative relation was
not established. The strength of crosslinks, which in turn depends on the area of
the contact (Malakhovsky and Michels 2007), the strength of molecular adhesion
(Marais et al. 2014), and the crosslink failure mode (Magnusson 2016) have a direct
relationship with the network strength.

Effect of bond strength
The relationship between network and crosslink strength was studied numerically
in Borodulina et al. (2016), Deogekar and Picu (2018). The bonds are of type (c) in
Fig. 1.2 and may fail due to mode I (opening) or mode II (shear) loading. Torsion of
the crosslink due to the relative rotation of the two fibers about the axis normal to the
plane of the contact is not considered to be essential in this mechanics. Rolling of one
fiber relative to the other leads to failure in mode I. The crosslink is considered to fail
when the effective force transmitted exceeds a critical force, fc, which is considered
a material parameter. The effective force transmitted by the crosslink is

Feq =
√

F2
b1 + F2

b2 +
〈
Fb3 − 6

Db

√
M 2

b1 + M 2
b2

〉2
(1.15)
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where Fb1, Fb2, and Fb3 are the forces loading the bond in the direction of the three
coordinate axes tied to the contact surface (axes xb1 and xb2 define the contact plane
and xb3 is perpendicular to the contact), andMb1 andMb2 are themoments transmitted
acting along local axes xb1 and xb2. Db represents the characteristic size of the bond
(Db < d) and < > indicates Macaulay bracket, which vanishes if the quantity in the
bracket is negative and is equal to the respective quantity when it is positive.

Figure 1.26 shows the variation of the network strength with fc as obtained from
models of cellular networks. The data corresponds to a broad range of non-affinely
deforming networks, with parameter log10ρd2 of the horizontal axis of the master
curve in Fig. 1.25a ranging from −3.3 to 0.9. Parameter fc can be used to control
the regime of the network deformation in which the peak stress is reached. Small
values of fc lead to the peak stress occurring in regime I or early regime II of network
deformation (e.g., a situation such as that shown in Fig. 1.24b), while large values of
fc shift the peak stress to regime III (see Fig. 1.24a). It is observed that for this broad
range of parameters,

σc ∼ fc. (1.16)

Similar scaling is observed in the small strain simulations reported in Heyden
(2000) and is supported by the experimental results in Forsstrom et al. (2005). In
Forsstrom et al. (2005), various types of cellulose networks were tested and the
crosslink strengths were measured in separate experiments. A linear relationship
between the mean values of the network and crosslink strengths is reported for all
pulp types used.

A note should be made regarding the effect of crosslink strength variability.
Clearly, in physical networks not all crosslinks have the same strength. It becomes
then important to inquire whether increasing the variance of the bond strength distri-

Fig. 1.26 Variation of network strength with the strength of the crosslinks obtainedwith 3Dmodels
of cellular networks.Red circles correspond to peak stress occurring in regime II,while blue triangles
indicate that the peak stress occurs in regime III. In the blue triangle case, the network is aligned in
the loading direction at the onset of bond failure. In all cases, bond deformation is less than a tenth
of the fiber diameter, d
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bution, while keeping the mean of the distribution constant, has any effect on σc. This
issue was discussed in Borodulina et al. (2016) and Deogekar and Picu (2018) with
different conclusions. In Borodulina et al. (2016), it is concluded that variability has a
weak effect on σc; however, the mean crosslink strength was not kept constant while
varying the variance of the respective distribution. In Deogekar and Picu (2018), it is
observed that σc decreases monotonically with increasing the coefficient of variation
of fc, while keeping the mean fc constant.

Effect of the density and crosslink density
Experimental indications exist that σc is proportional to the network density, ρ.
However, in most situations, the network density, ρ, and the bond number density,
ρb, are proportional. The relative contribution of these two parameters to defining the
network strengthwas analyzed inDeogekar et al. (2019) by independently varying ρb

at constant ρ. Figure 1.27 shows such results for fibrous and cellular networks, with
the network strength plotted against each of these two parameters. In Fig. 1.27b, the
strength of fibrous networks scales linearly with ρ because for these networks ρ is
proportional to ρb. However, in cellular networks in which ρ and ρb are independent,
the strength takes multiple values at prescribed ρ. It results that

σc ∼ ρb, (1.17)

The lack of scaling with ρ can be understood considering a network containing
fibers with a large number of dangling ends. The network density is computed based
on the total length of fiber per unit volume and includes the dangling ends. However,
these are not loaded and hence have no effect on strength as long as excluded volume
interactions are not critical (which is the case in uniaxial and multiaxial tension).

General strength–structure relation
A rather general study of the relation between network structure and strength is
presented in Deogekar et al. (2019). This study starts from the observations summa-
rized in Eqs. (1.16) and (1.17) and takes a step further by considering the effect of

Fig. 1.27 Variation of network strength, σc, with a the bond number density, ρb, and b the network
density, ρ, for fibrous (open symbols) and cellular (filled circles) networks. For the fibrous networks,
symbols of same type indicate networks of same density, ρ. For the cellular networks, the network
density is kept constant for all cases shown here (Deogekar et al. 2019)
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the fiber bending and axial stiffness and that of fiber tortuosity on network strength.
These parameters were varied in a broad range covering a variety of applications.
The results are presented in Fig. 1.28 which shows data collapse indicating that

(i) Relations (1.16) and (1.17) apply,
(ii) Network strength is independent of fiber properties (e.g., axial and bending

rigidities), and
(iii) Network strength does not depend on fiber tortuosity, c.

The data indicates that, with broad generality,

σc ∼ fcρblc. (1.18)

With Eqs. (1.6) and (1.7), Eq. (1.18) can be rearranged as

σc ∼ fc
l2c

(1.19)

which emphasizes a physical interpretation of strength: the network responds as if
the load is carried by a set of crosslinks arranged in an array of average inter-crosslink
distance lc. The peak stress is reached when these crosslinks are loaded with a force
at the critical value of fc. The constant of proportionality in Eq. (1.19) is identical in
fibrous and cellular networks considered in Deogekar et al. (2019), but, in general,
may depend on network structure.

Fig. 1.28 Variation of network strength, σc, with the nondimensional group ρbfclc/Ef for cellular
and fibrous networks with a broad range of network parameters. Generalized C/S stands for the
generalized cross-section model of fibers in which the fiber bending and axial rigidities are varied
independently and in a broad range of values. Filled symbols represent cellular networks, while
open symbols represent fibrous networks (Deogekar et al. 2019)
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Growth of Cracks in Fibrous Materials

The fracture mechanics perspective on material strength is based on the concept that
cracks pre-exist. Then, predicting strength is equivalent to predicting crack growth.
Given the stochastic structure of networks, it is difficult to definepre-existing “cracks”
of length comparable with lc, while cracks much larger than this characteristic length
scale of themicrostructure rarely exist. The problemof network rupture has to include
the nucleation of damage and its evolution up to a state atwhichmacroscopic localiza-
tion canhappen.This point of view is taken in section “NetworkswithNoPre-existing
Flaws.”

Nevertheless, some useful resultswere obtained from studies of networks inwhich
cuts were introduced to mimic macroscopic cracks (Koh et al. 2013; Ridruejo et al.
2015; Chen et al. 2016b). The central result of these studies is the fact that networks
are notch insensitive. Figure 1.29 shows results obtained with a series of nonwoven
mats of the shape indicated in the inset (Ridruejo et al. 2015). The samples are
similar to the common double-notched specimens used in fracture mechanics and
are characterized by the width, W, and the ligament size, B. Samples with a range
of value for W and B were tested by applying tension perpendicular to the plane of
the cracks and ligament. The material is a polypropylene nonwoven with “infinite”
fibers. The fibers are bonded at contact points by applying pressure perpendicular to
the mat plane, while increasing the temperature. The stress–strain curves resulting
from such tests are similar to those shown in Fig. 1.24b.

The data in Fig. 1.29 shows that the nominal strength of notched samples is
actually larger than that of unnotched equivalents, and the difference increases as the

Fig. 1.29 Nominal strength
of notched samples. The
nominal strength is evaluated
as indicated in the figure.
Data from samples with and
without notches is included.
Adapted from Ridruejo et al.
(2015)
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respective characteristic length (either the sample width in the unnotched case or the
ligament size in the notched case) decreases.

The crosslinks fail first in the ligament region. This provides fibers with sufficient
kinematic freedom to orient in the loading direction. The structure of the network in
the ligament becomes therefore different from that elsewhere and the sample breaks
only when the aligned fibers in the ligament break. This situation is not encoun-
tered in the unnotched sample which accumulates damage gradually during loading
(section “Networks with No Pre-existing Flaws”). Similar toughening introduced by
notches was also observed in collagen membranes (Oyen et al. 2004).

Similar situations are expected in the vicinity of other stress concentration sites,
such as reentrant corners, macroscopic holes, and blunt notches. Fibers align in the
direction of themaximum tensile principal stress,which toughens thematerial locally
and prevents further evolution of damage in the respective region. Notch insensitivity
is a very useful property of nonwoven mats and biological tissue.

Networks with Adhesive Fiber Interactions—Networks
of Bundles

The role of surface interactions in organizing the network structure is outlined in
section “Surface Interactions.” Adhesion is a special type of surface interaction. It
has short range and can be rather strong and effective in holding filaments together
in bundles. These bundles can organize on larger scales to form networks of bun-
dles. While such networks are broadly encountered, as, for example, in buckypaper,
nanofilament assemblies and collagen networks, and their structure and mechanics
are poorly understood. This section is based on recent articles (Picu and Sengab 2018;
Sengab and Picu 2018; Negi and Picu 2019a) which address the problem of adhesion-
driven networks self-organization in both crosslinked (Negi and Picu 2019a) and
non-crosslinked networks (Picu and Sengab 2018; Sengab and Picu 2018). It was
observed that in the case without crosslinks, adhesive interactions lead to the forma-
tion of a network structure in which the role of fibers is played by fiber bundles and
the crosslinks are specific triangular constructs of fiber bundles which stabilize the
network of bundles. The structure resulting upon network self-organization depends
on a nondimensional parameter which represents the interplay between adhesive and
bending energies. A crosslinked network of fibers which is isostatic, shrinks under
the action of adhesive forces. The degree of shrinkage depends on the strength of
adhesion. If the network is sub-isostatic, the shrinkage is particularly pronounced.
The mechanical behavior of such networks is controlled in part by the adhesive
interactions and, in part, by the underlying crosslinked network structure.
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Some Basic Considerations Regarding Adhesion of Filaments

To understand the effect of adhesion in this context, it is useful to consider first simple
structures constructed from several fibers.

Example 1 Consider fibers of identical diameter, d , identical length, L, and made
from the same linear elasticmaterial characterizedbyYoung’smodulus,Ef .Adhesion
is defined by parameter γ which represents the energy gain per unit length of contact
when two surfaces are brought together. Note that γ has units ofN and is related to the
specific work of adhesion, γ0, and to the elasticity of the two contacting fibers. The
Johnson–Kendall–Roberts (JKR) theory (Johnson et al. 1971) predicts γ ∼ γ

4/3
0 E1/3

f ,
such that a softer fiber material implies a stronger adhesive effect for given γ0.

Consider further the initial configuration shown in Fig. 1.30 and its corresponding
final state after the fibers are allowed to stick. The crosslink at B is a pin joint which
allows free rotation, and the motion of ends A and C is constrained in the horizontal
direction. After adhering, fibers form a common segment of length s. The length of
this segment can be evaluated analytically and is given by

s

L
= cos

α

2
−

(
9
Ef If
γL2

sin2
α

2

)1/4

. (1.20)

The solution depends on a single nondimensional material parameter:

� = γL2

Ef If
(1.21)

which represents the interplay of adhesion andbending resistance. This parameter can
be rearranged as� = (L/LEC)2, where the characteristic length LEC = √

Ef If /γ has
been defined in the literature as the elastocapillarity length (Roman and Bico 2010).
With this, � can be interpreted as expressing a comparison between a characteristic
geometric length scale of the problem and the material parameter LEC .

Fig. 1.30 Evolution of two
pin-jointed fibers under the
action of adhesion. a and
b Show the initial and final
states
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Fig. 1.31 Parameters
defining a triangle of fiber
bundles. Reproduced with
permission from Picu and
Sengab (2018)

It is important to observe that s/L decreases rapidly as the fiber diameter increases
at constant γ since If ∼ d4. Hence, for given γ0, fibers of nanoscale diameter are
more susceptible to adhesion than fibers of larger diameter.

The total energy, computed as the difference between the bending and adhesion
energies, decreases continuously from 0 in the state in Fig. 1.30a to a minimum in the
state of Fig. 1.30b. Hence, no activation is needed to initiate the bundling process.

Example 2 Consider now the triangular structure of fiber bundles shown in Fig. 1.31.
This structure emerges upon the relaxation of a non-crosslinked network of fibers
with interfiber adhesion (Picu and Sengab 2018). All nodes of the resulting network
of bundles are of this type. Here we show that the structure is self-equilibrated and
define some of its geometric characteristics.

Each branch of this structure is a bundle of parallel fibers which are much longer
than any dimension in Fig. 1.31. The number of fibers in each bundle segment is
defined by n. External bundles AA′, BB′, and CC′ are of size n1, n2, and n3 and form
angles α1, α2, and α3. The sub-bundles connecting nodes A, B, and C are of size ni1,
ni2, and ni3 and the obvious conservation conditions n1 = ni1 + ni3, n2 = ni1 + ni2,
and n3 = ni2 + ni3 hold.

Bundles AB, BC, and AC forming the triangle are loaded in pure bending and
hence are arcs of circle of radii R1, R2, and R3. Since these circles must be tangent to
each other at A, B, and C, segments OA, OB, and OC are also of equal length, ltr . If
the incoming bundles AA′, BB′, and CC′ are straight, i.e., the entire bending energy
is concentrated in the triangle, the bending moments loading the three edges of the
triangle are equal, Mtr .

The equilibrium configuration of the structure results by minimizing the total
energy, for given bundle sizes and set of angles, relative to the size of the triangle,
ltr . The bending moment results are as given below:

Mtr =
√
2γEf If

π
B (1.22)
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where B depends only on the bundle sizes and angles αi:

B =
∑

k=1,3

niknc(nk) tan
π − αk

2
− niknc(nik)(π − αk) (1.23)

Structure of Networks with Interfiber Adhesion and No
Crosslinks

Assemblies of non-crosslinked athermal fibers that interact adhesively are consid-
ered here. This problem has been studied in the context of carbon nanotube (CNT)
structures and buckypaper in Li and Kroger (2012), Volkov and Zighilei (2010).
CNTs have very strong adhesion and, when in sufficient proximity, self-assemble
into bundles (Volkov and Zighilei 2010). Once deposited, further adhesion-driven
self-organization of the mat is possible provided the level of friction with the back-
ground is not too high. The resulting structure is a network of CNT bundles. The
present section discusses the geometric features of such network.

The concept of self-organization of a fibrous structure under the action of surface
interactions is shown in Fig. 1.32. Consider a network of fibers deposited on a sub-
strate and forming a quasi-2D mat. The structure is three dimensional, but fibers are
laying on top of each other and are preferentially oriented in the plane of the mat. It
is not particularly important if the fibers are straight or crimped in the initial state. If
friction is low (as is the case with CNTs), and if some activation is provided, either
by mechanical means or by capillarity, the fibers begin to assemble under the action
of adhesion. The cellular structure shown in the right panel of Fig. 1.32 is a network
of fiber bundles. The crosslinks of this network are triangles of bundles such as that
shown in Fig. 1.31. These triangles play the central role in the stabilization of the
network of bundles.

Fig. 1.32 Self-organization of a mat of fibers interacting adhesively
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It is of interest to inquire how the parameters of the system influence the structure
of the network of bundles in Fig. 1.32. The system parameters are the fiber length, Lf ,
the initial network density, defined as the total length of fiber per unit (projected) area
of the mat, ρ, fiber properties, such as Ef Af and Ef If , and the strength of adhesion
representedbyparameterγ .Adimensional analysis (Sengab andPicu2018) indicates
that there are only two important nondimensional groups in this problem: ρLf and
� = γL2f /Ef If .

Such networks can take one of three possible states. These are represented in the
phase diagram of Fig. 1.33 drawn in the space of the two system parameters, ρLf
and � = γL2f /Ef If .

The figure indicates that for small ρLf , ρLf < 5.71, the initial set of fibers do
not form a network. Such initial structures are too sparse to percolate (the limit
value of 5.71 represents the transport percolation threshold of 2D noninteracting
structures of fibers) and hence the problem addressed here is not defined. For larger
ρLf , as-deposited fiber networks may evolve under the action of surface forces and
three possible final states exist, function of the nondimensional parameter Ψ . The
boundary AB in Fig. 1.33 defines the percolation limit.

Small values of � correspond to weak adhesion. Specifically, small � results
either when γ is small or when fibers are stiff in bending, i.e., Ef If is large. Under
such conditions, the structure does not evolve and remains locked in the initial state.
For large values of �, the structure of fibers evolves. The boundary between the
domains of locked and evolving structures (AC in Fig. 1.33) is described by the
equation � ∼ (

ρLf
)2
, which is derived in Picu and Sengab (2018). This boundary

also depends on interfiber friction Sengab and Picu (2018). With nanofibers, friction
is usually not Coulombic (friction force proportional to the normal force on the
contact), rather, a situation in which the resistant force is constant or scales weakly
with the relative velocity of the two surfaces (viscous) is more probable. If friction

Fig. 1.33 Phase diagram in the field of nondimensional network parameters ρLf and Ψ indicating
the stable states of the system of non-crosslinked, adhesively interacting fibers. Adapted from Picu
and Sengab (2018)
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takes place at contacts between fibers, boundary AC moves up, increasing the range
of locked structures.We conclude that, in order for the structure to evolve, the strength
of adhesion should be sufficiently large, fibers should be thin and flexible, with low
Ef If , the density should be low, such that the length of fiber segments between two
contacts along given fiber, lc, is large enough to allow fibers to bend, and friction
should be relatively weak. These conditions are expected to be fulfilled in the case
of nanofilaments, such as CNTs, collagen, and fibrin.

Evolving structures may fully disintegrate or may form stable cellular structures
similar to that shown in Fig. 1.33. To understand the cause of network disintegration,
consider two aligned fibers, each of length Lf . In order to minimize the potential
energy, these will align along their entire length forming a bundle of length Lf . In
complex networks of filaments, this lowest energy state cannot be reached due to
topological reasons. However, the network may separate in a multitude of isolated
bundles. This is shown in the left upper panel of Fig. 1.33. This phenomenon is
expected to occur at low ρLf .

When ρLf is sufficiently large, the topology of the evolving network of bundles
prevents disintegration. This argument is discussed in detail in Picu and Sengab
(2018). Under such conditions, cellular structures such as that shown in the right
upper panel of Fig. 1.33 form and become stable.

Cellular networks of bundles are stabilized by the triangular features of Fig. 1.31.
These store strain energy and are self-equilibrated. The entire structure stores adhe-
sion energy. Bundle segments between triangles (i.e., the cellwalls) tend to be straight
and hence do not store strain energy. These structures are stable as long as the cell
size remains small relative to Lf , such that, during evolution, the structure does not
cross the vertical boundary between cellular and disintegrating domains in Fig. 1.33.

Structure of Networks with Interfiber Adhesion and Crosslinks

In the presence of crosslinks, fibers are not entirely free to rearrange under the
action of surface forces. Therefore, the degree of structural reorganization of the
network is expected to be much smaller than in the case of non-crosslinked networks
(section “Structure of Networks with Interfiber Adhesion and No Crosslinks”). This
issue was studied in Negi and Picu (2019a) using a novel finite-element-based tech-
nology applied to 2D models of fiber networks.

It is of interest to discuss separately networks which are isostatic and sub-isostatic
in the absence of surface interactions. It is observed that in both cases, adhesive
interactions lead to a reduction of the network volume (or area, in 2D). In the isostatic
case, this contraction is opposed by the intrinsic elasticity of the network. In the sub-
isostatic case, the contraction is much more pronounced since the structure acquires
stiffness only after some degree of deformation.

Figure 1.34 shows the variation of the network area associated with the action of
adhesive interactions. Figure 1.34a refers to an isostatic network, while Fig. 1.34b
refers to a sub-isostatic network. The vertical axis shows the engineering volumetric
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Fig. 1.34 Variation of the reduction of area function of � for a an isostatic network and b a
sub-isostatic network. Reproduced with permission from Negi and Picu (2019a)

strain. It is observed that as the strength of adhesion, �, increases, the network
shrinks. This trend is well defined in the isostatic case, but is weak in the sub-isostatic
case. Sub-isostatic networks aremuch floppier and can shrink bymore than 80%even
with weak adhesion. In these cases, further increasing the strength of adhesion does
not lead to a substantial increase in shrinkage.

Tensile Behavior of Networks with Interfiber Adhesion
and Crosslinks

Networks with adhesive interactions and crosslinks exhibit a specific behavior under
external loading. Consider a structure which is collapsed under the action of adhesive
forces, as described in section “Structure of Networks with Interfiber Adhesion and
Crosslinks.” The degree of bundling in such states is much less extensive than that
observed with non-crosslinked networks simply because the kinematic constraints
imposed by the crosslinks prevent the formation of large bundles. Nevertheless, even
bundling of pairs of fibers emerging from a common crosslink leads to stress–strain
curves quite different from those typically observed in absence of adhesion. This
problemwas studied in Negi and Picu (2019a) and a brief account of the main results
is presented here.

Figure 1.35a shows a set of stress–strain curves for networks with increasing
�. The representation of these curves as tangent stiffness versus stress is shown
in Fig. 1.35b. The central observations are (i) the small strain modulus decreases
significantly as the strength of adhesion increases. The network becomes very soft
and the strain range of the linear regime I increases considerably. While regime I
barely extends to 1% strain in the reference case without adhesion, it extends to
almost 20% strain when � = 11.11, the largest value considered in the respective
study. (ii) At larger strains, the network with adhesion strain stiffens (regime II) just
like the reference network without surface interactions (� = 0).
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Fig. 1.35 aNormalized second Piola–Kirchhoff stress versus Green–Lagrange strain for Delaunay
networks with various � subjected to uniaxial tension. The side panels represent deformed config-
urations with � = 1.23 at 5% strain and with � = 11.11 at 25% strain. The data in (a) is replotted
in (b) as normalized tangent stiffness, K

∧

t, versus stress. Reproduced with permission from Negi
and Picu (2019a)

The behavior is controlled by adhesion at small strains, and by the underlying
crosslinked network at large strains. The observation that adhesion drastically trans-
forms the network behavior in the small strain regime is of importance in applications.
It implies that the softness of some “soft materials” is not that much related to the
network structure, as it is with the effect of interfiber surface interactions of adhesive
type. It is of great interest that adhesion transforms a network which at � = 0 has
a strongly nonlinear response into a much softer material with linear constitutive
behavior up to large strains.

Sub-isostatic networkswith adhesion also exhibit interesting behavior. Figure 1.36
shows stress–strain curves forVoronoi networkswith various values of�. In the� =
0 state, these networks have zero stiffness at small strains. Figure 1.36a shows that, in
presence of adhesion, the small strain stiffness is finite and increases with increasing
�. At small strains, this structure unbundles as it deforms. The stress–strain curve
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Fig. 1.36 a Second
Piola–Kirchhoff stress versus
Green–Lagrange strain for
Voronoi networks with
various � subjected to
uniaxial tension. b Extension
of the curve in
(a) corresponding to � = 2
to large strains. Reproduced
with permission from Negi
and Picu (2019a)

softens as unbundling progresses. Stress–strain curve with softening is not observed
in networks without interfiber surface interactions and in absence of failure.

The response becomes controlled by the crosslinked structure of the network at
larger strains. This can be seen in Fig. 1.36b where one of the curves in Fig. 1.36a
is extended to large strains (Negi and Picu 2019a). Strain stiffening is observed in
this regime. Hence, once again, adhesion introduces a bimodal response, controlled
by adhesion at small strains and more akin to that of the reference network without
adhesion at large strains.
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Concluding Remarks and Outlook

Network materials are ubiquitous in our daily lives. In biological materials, in bio-
engineering constructs and other artificial engineering materials, random networks
perform structural functions ensuring the integrity of the respective materials under
loads. Most network materials have random microstructures and this motivates the
focus of this chapter on networks with stochastic architecture. A separate branch of
activity is devoted to periodic or quasiperiodic structures made from filaments. A
common example is that of woven composites in which fiber bundles are weaved
into an approximately periodic structure. Intense activity is devoted at present to the
class of so-called metamaterials, which are periodic structures made from trusses
or beams designed such to exhibit specific behaviors at the macroscopic scale. The
viewpoint taken in this sub-field is that, in principle, any type of mechanical response
can be obtained with the proper design of the network architecture. Periodicity is
desirable in order to keep the phase space of possible designs limited. Once a repeat
unit is defined, a material can be constructed (e.g., by additive manufacturing) which
reproduces at the macroscale the behavior of the unit cell or a collective, emerg-
ing behavior of a group of repeat units. Although related, this area or research is
sufficiently different from the topics discussed here to prevent its inclusion in this
review.

The discussion in this section is limited to networks without an embeddingmatrix.
Many biological fibrous materials have a fluid or viscoelastic solid matrix. The inter-
action of the network with the matrix is complex and the quantitative understanding
available at this time in this area is sparse. This limitation notwithstanding, there are
situations in which the material response is controlled by the network and the matrix
has secondary role. The results discussed here apply in such situations.

It is also of interest to further investigate the behavior of networks with interfiber
surface interactions. The results discussed in this chapter indicate that interesting
effects result from the competition of these interactions with the behavior of the
underlying network and such synergies may be exploited to great advantage in spe-
cific applications. This is likely occurring in many biological applications in which
fibers are composed of smaller scale filaments organized in bundles. Networks of
bundles have complex microstructures, which are quite different from those of cel-
lular and fibrous networks discussed here. Examples of this type are discussed in the
last part of the present chapter.

Significant progress has been made in this field over the last two decades. It is
envisioned that the near future will see the development of new fibrous materials that
make use of the principles discussed here. These also provide an avenue to deepen
our understanding of the role of mechanics in biomaterials and biology.
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Chapter 2
Prediction of the Effective Mechanical
Properties of Regular and Random
Fibrous Materials Based
on the Mechanics of Generalized
Continua

Jean-François Ganghoffer, Ibrahim Goda, Khaled ElNady and Yosra Rahali

Abstract The micromechanics of regular fibrous materials is first investigated to
evaluate the large strains effective elastic response of repetitive fibrous microstruc-
tures at the level of a repetitive unit cell. This is representative for instance of 3D
interlocks subjected to complex macroscopic loadings leading to internal stresses;
unit cell based analyses are convenient to derive an effective constitutive law at
the intermediate scale which can be used to perform macroscopic scale compu-
tations at a reasonable computational cost. A dedicated discrete homogenization
approach has been developed to derive the effective mechanical response of the
unit cell successively in a small and large transformations framework. The proposed
micromechanical approach is particularly appealing, due to the difficulty to measure
the effective properties for textiles considering their discreteness. The computed full
set of effective ansotropic properties of fibrous media structures in the small strains
regime reflect the influence of the geometrical and mechanical micro-parameters of
the fibrous architecture on the overall response of the chosen equivalent continuum.
Internal scale and microstructural effects are captured by a micropolar effective con-
tinuum model, capturing the pronounced rotations of fibers responsible for the large
shape capacity of fibrous materials. The setting up of such computational homoge-
nization methods allows to identify hyperelastic models for fibrous media. The same
methodology for the identification of the overall properties has been extended to
the more complex random fibrous media. The deformation of random fibrous net-
works is extremely non-affine (the motion of the fibers do in general not follow the
imposed strain over the boundary of the WOA), especially for such structures that
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store energy predominantly in the bending deformation mode of fibers. The degree
of non-affinity increases rapidly with decreasing bending stiffness of the filaments,
the importance of which being quantified by the internal bending length, the ratio of
the fiber bendingmodulus to its axial stiffness.We especially analyze the mechanical
response of such RFN in both affine and non affine deformation regimes, depending
on the network density and window size. The ability of such generalized continua to
reach a response that become independent of the size of the window of analysis is
one objective of the performed analyses.

Introduction

The micromechanics of fibrous materials is investigated to evaluate the large strains
effective elastic response of repetitive fibrous microstructures at the level of a repeti-
tive unit cell. A systematic methodology is established, allowing the prediction of the
full set of effective properties of these structures in the small strains regime, reflect-
ing the influence of the geometrical and mechanical micro-parameters of the fibrous
architecture on the overall response of the chosen equivalent continuum. Internal
scale effects of the initially discrete structure are captured by a micropolar effective
continuum model.

The outline of this contribution is as follows: section “EffectiveMechanical Prop-
erties of Periodic Fibrous Materials in the Small Strains Regime” is devoted to the
modeling of periodic fibrous materials as effective micropolar continua, whereby the
effective classical and micropolar properties are evaluated in the small strains range.
The extension to the computation of the effective large strains response is done in
section “Large Configuration Changes of Lattices Based on Discrete Homogeniza-
tion Method”, with applications to textiles monolayers and 3D interlock done in
section “Computed Response of Monolayers and 3D Interlocks”. In section “Identi-
fication of Hyperelastic Models for Textile Monolayers”, virtual simulations based
on the developed discrete homogenization technique are used for the calibration of a
strain energy density of a hyperelastic model for textiles. The construction of gener-
alized continuum models for random fibrous media is performed in section “Gener-
alized ContinuumModels of Random Fibrous Networks”, focusing on couple stress
models. We conclude by a summary of the work and perspectives of developments
in section “Summary and Future Work”.

A few words regarding notations are in order. Vectors and higher order tensors
are denoted with boldface symbols. The summation convention on repeated indices
is presently adopted, otherwise explicitly stated. The second-order identity tensor is
denoted as I.
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Effective Mechanical Properties of Periodic Fibrous
Materials in the Small Strains Regime

The discrete homogenization technique can be described as amathematical approach
used to derive the equivalent continuousmediumbehavior of periodic discretemedia.
It is inspired from the homogenization of periodic media developed, since more than
30 years by Sanchez-Palencia (1980) and more recently applied by Warren and
Byskov (2002), Mourad et al. (2003). This technique has been also combined with
the energymethod by Sab and Pradel (2009) and applied to discrete homogenization.
The importance of the discrete homogenization technique is that it delivers the full
compliance (or rigidity) matrix, reflecting the sometimes complex anisotropy of
the so-built equivalent continuum; it is worth noting that the material symmetry
group of the discrete media is encompassed in the material symmetry group of the
homogenized medium (Trovalusci and Masiani 1999). Such complex constitutive
laws may then nurture macroscopic simulations (Feyel and Chaboche 2000).

In the present approach, we rely on the so-called discrete homogenization method
(DH in shortcut) suitable for lattice materials comprising a periodic array of beams;
instead of making full structural computations over the entire lattice—which would
be computationally too expensive—we derive a nonlinear constitutive model at the
mesoscopic scale based on a continuum description, avoiding the explicit description
of the individual struts of the initial lattice (ElNady et al. 2016).

Initially, the DH approach is exposed in the linear small strains regime in order to
compute the initial effective moduli of the effective substitution continuum. Then, it
is extended to the nonlinear regime in order to account for the variation of the lattice
geometry under a kinematic loading prescribed over an identified representative unit
cell (RUC in short). The nonlinear response of the lattice is homogenized at the level
of RUC, thereby providing the stress–strain relation, based on an incremental scheme
accounting in essence for geometrical nonlinearities.

As a first step, the nonlinear computations include the calculation of the elastic
properties in the small strains regime, followed by a succession of updating steps
at the microstructure level of the unit cell geometry. This entails an update of the
homogenized mechanical variables (strain and stress) at the mesoscopic level of the
effective continuum.

Small Strains Homogenization: Determination of the Initial
Elastic Response

We consider a repetitive beam like network material in which a unit cell can be iden-
tified. A small parameter can be defined as the ratio of unit cell size to a macroscopic
characteristic length of the entire network.

The asymptotic expansion of the nodal displacement uε is written up to the second
order as
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uε(βε) = u0(β
ε) + ε u1(β

ε) + ε2u2(β
ε) (2.1)

where ε is the ratio of unit cell size to a characteristic size of the entire structure.
The displacement difference�Ubε between the extremity and origin node of each

beam is expressed by a Taylor series development, according to

�Ubε = uε(E(b)) − uε(O(b))

= ε
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with δib the shift factor (equal to ±1) for nodes belonging to a neighboring cell, and
nil for nodes located inside the considered cell.

The asymptotic expansion of nodal microrotation ϕnε is limited to the first order
in ε. It is defined successively at the origin and extremity of each beam as

ϕO(b)ε = ϕ
OR(b)

0 + εϕ
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1 ;ϕE(b)ε = ϕ
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0 + ε

(
∂ϕ0

∂β i
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)
(2.3)

wherein we have parameterized any point within the surface element representative
of the lattice by curvilinear coordinates β i (viewed as continuous lines within the
body). This allows treating lattice structures with curved material lines following the
fibers in their reference state.

In the framework of 3D Timoshenko beams, the normal and transverse forces
as well as the moments exerted on the beam extremities are obtained after lengthy
calculations and expressed as follows:
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wherein Eb
s and Gb

s are the tensile and shear modulus of bulk material, and with

�ε
y = 12Eb

s I
εb
z

Gb
s A

εbks(Lεb)
2 ,�ε

z = 12Eb
s I

εb
y

Gb
s A
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2 , ks successively the shear correction factors and

the shear coefficient. In the forthcoming development, a circular section of the beams
is considered; hence, the following geometrical parameters are computed: the cross-
sectional area Aεb = π (εr)2, the quadratic moment of the beam I εb

y = I εb
z = π (εr)4

4 ,

and the torsional constant J εb = π (εr)4

2 .
The asymptotic development of the virtual velocity and rotation rate are next

expressed. For any virtual velocity field vε(β), a Taylor series expansion truncated at
first order leads to

vε(O(b)) − vε(E(b)) ≈ ε
∂v(βε)

∂βi
δib (2.10)

The rotation rate field is similarly expanded taking into account the central node of
the beam, so that a change of curvature of any beam can be captured:

wO(b)ε(β) = w(β); wE(b)ε
(
β + εδi

) = w(β) + ε
∂w(β)

∂βi
δi (2.11)

Note that the present beammodel and subsequent derivations of the effectivemechan-
ical response are not specific to textile materials but can be applied to any lattice
materials showing interactions between tension, bending, and torsion.
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Fig. 2.1 Direction cosines associated with the x-axis (Goda et al. 2013b)

We introduce the unit vectors ex = [
Cxx′ Cyx′ Czx′ ]T , ey = [

Cxy′ Cyy′ Czy′ ]T ,
and ez = [

Cxz′ Cyz′ Czz′ ]T , in which Cxx′ = cos θx, Cyx′ = cos θy, and Czx′ =
cos θz are the direction cosines of x′, describing the transformation between the local
and global coordinate systems in 3D (Fig. 2.1). Similarly, the components of ey and
ez are the direction cosines of y′ and z′, respectively.

The equilibrium of forces in the absence of external forces for the whole lattice
is written in virtual power form and after asymptotic development as follows:

∑
υ i∈Z2

∑
b∈BR

Fεb · (vε(O(b)) − vε(E(b))
) = 0 (2.12)

where v(·) is the virtual velocity field vanishing on the unit cell edges. The vector of
effort Fεb splits into a normal and transverse forces as

Fεb = Fεb
x ex + Fεb

y ey + Fεb
z ez (2.13)

We denote by BR, the set of beams within the reference unit cell.
We then write the discrete equilibrium of moments. It can be expressed in two

different ways: first one considers the equilibrium of moments for the unit cell nodes.
This is actually essential to solve for the kinematic unknowns; it is written in asymp-
totic form as

∑
υ i∈Z3

∑
b∈BR

(
MO(b)ε · wε(O(b)) + ME(b)ε · wε(E(b))

) = 0 (2.14)

Another writing involving the local equilibrium of each individual beam is con-
sidered for the purpose of homogenization. The equilibrium is written at the center
of each beam in asymptotic form as
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∑
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with w(·) the rotation rate field. More details related to the homogenization in the
micropolar framework can be found in Goda et al. (2014). The homogenization of
the equilibrium of forces leads to the following continuous self-equilibrium equation
in virtual power form

∫
�
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dβ = 0 (2.16)

with the stress vector Si therein decomposing into first- and second-order contribu-
tions, viz., Si = Si
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2, with
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Likewise to the development of the force equilibrium, the equilibrium of moment
(2.14) is homogenized by inserting the asymptotic expansion, expression (2.11) of
the virtual rotation rate. Passing to the limit ε → 0 in the discrete sum, this in turn
leads to the following continuous self-equilibrium in virtual power:

∫
�

μi · ∂w(β)

∂β i
dβ = 0 (2.17)

with the couple stress vector μi that incorporate moments, also identified on two
orders, viz., μi = εμi

1 + ε2μi
2, with

μi
1 =

∑
b∈BR

(
1

2

(
ME(b)

1y − MO(b)
1y

)
ey + 1

2

(
ME(b)

1z − MO(b)
1z

)
ez

)
δib,

μi
2 =

∑
b∈BR

(
ME(b)

2x ex + 1

2

(
ME(b)

2y − MO(b)
2y

)
ey + 1

2

(
ME(b)

2z − MO(b)
2z

)
ez

)
δib (2.18)

The general form of the continuum constitutive law can presently be identified
from the expressions of the homogenized stress and couple stress tensors together
with the expressions of the stress and couple stress vectors Si and μi:
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σ = 1

g
Si ⊗ ∂R

∂β i
= 1

g

(
Si
1 + εSi

2

) ⊗ ∂R
∂β i

= 1

g
Si
1 ⊗ ∂R

∂β i︸ ︷︷ ︸
[Ks]{ε}

+ 1

g
εSi

2 ⊗ ∂R
∂β i︸ ︷︷ ︸

[B]{χ}

m = 1

g
μi ⊗ ∂R

∂β i
= 1

g

(
εμi

1 + ε2μi
2

) ⊗ ∂R
∂β i

= 1

g
εμi

1 ⊗ ∂R
∂β i︸ ︷︷ ︸

[B]{ε}

+ 1

g
ε2μi

2 ⊗ ∂R
∂λi︸ ︷︷ ︸

[Kμ]{χ}
(2.19)

where g is the Jacobian of the transformation from Cartesian to curvilinear coordi-
nates and R is the position vector of any material point within the lattice.

Because all periodical uniform structures are endowed with a central symmetry,
the stiffness coefficients are invariant under a coordinate inversion. This in turn entails
that the pseudo-tensor Bijkl vanishes in (2.19). The previous constitutive equations
then imply that both vectors μi

1 and Si
2 in (2.19) vanish; this leads to an important

simplification of the stress and couple stress vectors in (2.19), successively

Si = Si
1 = ∑

b∈BR

(
Fb
x1ex + Fb

y1ey + Fb
z1ez

)
δib

μi = μi
2=

∑
b∈BR

(
ME(b)

2x ex + 1
2

(
ME(b)

2y − MO(b)
2y

)
ey + 1

2

(
ME(b)

2z − MO(b)
2z

)
ez
)
δib

(2.20)

with Fb
x1, F

b
y1, F

b
z1, M

n
2x, M

n
2y, and Mn

2z , respectively, the first-order longitudinal and
transverse forces and the second-ordermoment about x′, y′, and z′. These expressions
still in fact involve the unknown displacements un

1, un
2 and rotations ϕn

0, ϕn
1, which

are determined for all nodes by solving the equilibrium Eqs. (2.12) and (2.14).
The algorithm for the computation of the effective moduli in the framework of

micropolar theory is explained as follows:

1. Definition of the position vector R such that x = R(λ1, λ2, λ3).
2. Transformation of the displacement gradients and rotation gradients from Carte-

sian to curvilinear coordinates (Dos Reis and Ganghoffer 2012).(
∂U

∂λi

)
(Y1,Y2,Y3)

�→
(

∂U

∂λi

)
(ex,ey,ez)

(
∂φ

∂λi

)
(Y1,Y2,Y3)

�→
(

∂φ

∂λi

)
(ex,ey,ez)

3. For each beam b within the unit cell, we define

(a) The origin node O = OR(b) and the extremity node E = ER(b) of a beam.

(b) The tensile rigidityKb
l = Eb

s A
εb

lεb , flexural rigidityKb
f = 12Eb

s I

(lεb)
3

εb
, and torsional

rigidity Kb
r = Gb

s J
εb

lεb with Eb
s , G

b
s the tensile and shear moduli of the beam

material, Aεb, Lεb the beam section and beam length, respectively, I εb the
quadratic moment and J εb the torsional rigidity.

(c) The first-order displacement difference between the beam extremity nodes
�Ub

1 = uEb
1 − uOb

1 + ∂U
∂λi

δib, with δi ∈ {−1, 0, 1} the shift factor. The Taylor
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series expansion of the relative displacement between the beam extremity
nodes is written

�Ubε = uε(E(b)) − uε(O(b))

= ε

(
u
E(b)

1 (λε) − u
O(b)

1 (λε) + ∂U(λε)

∂λi
δib

)
︸ ︷︷ ︸

�Ub
1

+ ε2
(
u
E(b)

2 (λε) − u
O(b)

2 (λε)
)

︸ ︷︷ ︸
�Ub

2

The asymptotic expansion of the microrotation φεn = (ϕx, ϕy, ϕz) written at the
extremity nodes of any beam written as

φO(b)ε = φ
O(b)

0 + εφ
O(b)

1 ;φEε = φ
E(b)

0 + ε

(
∂φ0

∂λi
δib + φ

E(b)

1

)

Material points within the microstructure have been parameterized by curvilinear
coordinates λi; they can represent, for instance, parameterization along the fibers or
yarns within regular fibrous microstructures.

(d) Expressions of the efforts and moments at the beam extremities in the context
of (3D) Timoshenko beam model (Goda et al. 2013a).

4. Computation of the unknown kinematic variables (displacements and rotations
un1, φn

0) by solving the so-called unit cell localization problem from the equilib-
rium of forces and moments:

∑
υ i∈Z3

∑
b∈BR

Fεb · (vε(O(b)) − vε(E(b))) = 0

∑
υ i∈Z3

∑
b∈BR

(
MO(b)ε · wε(O(b)) + ME(b)εwε(E(b))

) = 0

vε and wε are, respectively, the virtual velocity and rotation.

5. Identification of the microrotation over the unit cell, variable φ = (
φx, φy, φz

)
.

6. Repeat items 3 and 4 for the second-order displacements and rotations un2, φ
n
1 ,

such that

�Ub
2 = uE2 − uO2

Fb
x2 = Ebs A

b

Lb

(
ex ·

(
�Ub

2

))

Fb
y2 = 12Ebs I

b
z

L3b
(
1 + �y

)
(
ey ·

(
�Ub

2

)
− Lb

2

(
ez ·

(
φO1 + φE1 + ∂φ0

∂λi
δib

)))

Fb
z2 = 12Ebs I

b
y

L3b(1 + �z)

(
ez ·

(
�Ub

2

)
+ Lb

2

(
ey ·

(
φO1 + φE1 + ∂φ0

∂λi
δib

)))

MO
2x = Gb

s J
b

Lb

(
ex ·

(
φO1 −

(
∂φ0
∂λi

δib + φE1

)))
, ME

2x = Gb
s J

b

Lb

(
ex ·

(
φE1 − φO1 + ∂φ0

∂λi
δib

))
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MO
2y = Ebs I

b
y

L2b(1 + �z)

((
6 ez ·

(
�Ub

2

))
+ Lb

(
ey ·

(
(4 + �z)φ

O
1 + (2 − �z)φ

E
1 + (2 − �z)

∂φ0
∂λi

δib
)))

ME
2y = Ebs I

b
y

L2b(1 + �z)
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6 ez ·

(
�Ub

2

))
+ Lb

(
ey ·

(
(2 − �z)φ

O
1 + (4 + �z)φ

E
1 + (4 + �z)

∂φ0
∂λi

δib
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MO
2z = Ebs I

b
z

L2b(1 + �y)

((
−6 ey ·

(
�Ub

2

))
+ Lb

(
ez ·

(
(4 + �y)φ

O
1 + (2 − �y)φ

E
1 + (2 − �y)

∂φ0
∂λi

δib
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ME
2z = Ebs I

b
z

L2b(1 + �y)

((
−6 ey ·

(
�Ub

2
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+ Lb

(
ez ·

(
(2 − �y)φ

O
1 + (4 + �y)φ

E
1 + (4 + �y)

∂φ0
∂λi

δib
)))

7. Building of the stress vector Si and couple stress vector μi.

8. Building of the Cauchy stress [σ] = 1
gS

i ⊗ ∂R
∂λi = 1

g
Si1 ⊗ ∂R

∂λi︸ ︷︷ ︸
[Ks]{ε}

+ 1

g
εSi2 ⊗ ∂R

∂λi︸ ︷︷ ︸
[B]{χ}

and couple stress tensor [m] = 1
gμi⊗ ∂R

∂λi = 1

g
εμi

1 ⊗ ∂R

∂λi︸ ︷︷ ︸
[B]{ε}

+ 1

g
ε2μi

2 ⊗ ∂R

∂λi︸ ︷︷ ︸
[Kμ]{χ}

, with

g the determinant of the Jacobian matrix of the transformation of Cartesian to
curvilinear coordinates, R the position vector of a material point within the
microstructure, {ε} the strain tensor and {χ} the microcurvature tensor.

9. Building of the homogenized rigidity matrices
[
KS

]
, [B].

10. Extraction and identification of the effective mechanical properties in engineer-
ing format from the compliance matrix [S] = [

KS
]−1

:

– Homogenized tensile moduli: E∗
x = [1/S11], E∗

y = [1/S22], E∗
z = [1/S33].

– Homogenized shear moduli G∗
xy,G

∗
yz,G

∗
xz , with G∗ = μ∗ + κ/2, and μ∗, κ

therein the effective micropolar moduli.
– Poisson’s coefficients: ν∗

xy = −S21E∗
x , ν∗

yx = −S12E∗
y , ν∗

zx = −S13E∗
z .

– Define the characteristic lengths in flexion and torsion as the ratio of the
second-order moduli to first-gradient moduli, viz.,

lbxy =
√
Kμ
xz/2

(
Ks
xy + Ks

yx

)
, ltyx =

√(
Kμ
yz + Kμ

zy
)
/
(
Ks
yx + Ks

xy

)

lbyx =
√
Kμ
yz/2

(
Ks
yx + Ks

xy

)
; ltxy =

√(
Kμ
xz + Kμ

zx
)
/
(
Ks
xy + Ks

yx

)
(2.21)

Couple Stress Models of Textile Preforms

Homogeneous anisotropic couple stress models as substitutes for 3D heterogeneous
woven reinforcements are developed by both discrete homogenization and finite ele-
ment methods in the sequel. The architecture of the woven preforms is obtained from
an idealized geometry and a model of the yarns organization within a representative
unit cell (RUC in short). In order to predict the effective elastic constants based on
the discrete homogenization method; the RUC is represented as a set of structural
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beam-like elements that describe the representative volume element, with periodic-
ity boundary conditions. The effective properties of the RUC are also obtained from
its finite element response under prescribed boundary conditions. Specific bound-
ary conditions, including both traction and displacement boundary conditions, are
applied to the boundaries of theRUC.The classical Cauchy and nonclassicalmechan-
ical moduli are deduced on the basis of the extended Hill–Mandel principle of energy
equivalence, stating that the average microscopic strain energy over the RUC is given
by the corresponding strain energy of the postulated effective generalized continuum
(here the couple stress medium). The characteristic bending lengths will be identified
from the resulting homogenized moduli. The proposed approach is quite general and
applicable to any textile preforms and composite materials.

The Orthogonal 3D Interlock

It consists of a network of yarns oriented in three orthogonal directions, two of
which are oriented in the warp and weft directions, which can either be mutually
interlaced or stacked at 0°/90°, and a network of yarns to strengthen the preform
in the thickness, building the binder yarns. Figure 2.2 shows an example of such a
3D reinforcement deserving the name interlock. A homogenized micropolar model
is next constructed as a substitution medium, in which the discrete rotations at the
nodes (the yarns crossing points) become after homogenization a microrotation field
which completes the kinematic description of the identified couple stress continuous
medium (homogenized). The mechanical and geometrical parameters of the warp,
weft, and binding yarns are given in Table 2.1. The mechanical properties of the
yarns are taken from Younes and Zaki (2011). It is essential to be noted that the
same mechanical properties are used for all the 3D preforms studied. The indices
f, p, b, and c refer, respectively, to the weft, warp, binder yarns, and contact beams
(beams connecting the warp/weft son and binder/weft yarns at the cross points).
Beams of elliptical cross section are chosen,which determines the quadraticmoments
Iy = π a b3

4 , Iz = π b a3

4 , the torsional rigidity J = πa3b3

a2+b2 , and the Timoshenko shear
coefficient is calculated as

ks = 6 a2
(
3 a2 + b2

)
(1 + ν)2

20 a4 + 8 a2b2 + ν
(
37 a4 + 10 a2 b2 + b4

) + ν2
(
17 a4 + 2 a2b2 − 3b4

)

wherein a, b are, respectively, the big and small radii of the elliptic section of the
yarn, and ν is the Poisson’s ratio.

The spacing between thewarp andweft yarns is equal to Lf2 andLp1, respectively.
The geometrical model of the elementary cell of the orthogonal interlock reinforce-
ment is shown schematically in Fig. 2.3. The different yarns and their intercrossing
are represented by a network of beams connected at nodes and the interaction between
yarns is modeled by contact beams whose radius is equal to the average of the radii
of the two beams in contact (Goda et al. 2013a).
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Fig. 2.2 Schematic representation of the 3D orthogonal interlock (Rahali et al. 2016)

Table 2.1 Mechanical and geometrical properties of the yarns

Fiber Density
(g/cm3)

Young modulus (GPa) Poisson’s
ratio

Shear modulus (GPa)

T300 1.76 230 0.34 85.82

Width (mm) Thickness
(mm)

Beam lengths (mm)

Weft yarn 0.27 0.15 Lf1 = 0.473
Lf2 = 0.2365

Warp yarn 0.25 0.15 Lp1 = 0.429
Lp2 = Lp1/2

Binding yarns 0.08 0.05 Lb1 = 0.096
Lb2 = 0.101
Lb3 = 0.609

Radii of the contact beams
[41] rc1 = radiusweft + radiuswarp

2

rc2=
rayonweft + radiusbinder

2

Lc1 = 0.15
Lc2 = 0.1
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Fig. 2.3 Geometrical model of the RUC of the 3D orthogonal interlock (Rahali et al. 2016)

The periodicity vectors Y1 = (
1 0 0

)
, Y2 = (

0 1 0
)
, Y3 = (

0 0 1
)
pictured

in Fig. 2.3 define the translation vectors which generate the complete structure; their
lengths are L1 = 2Lp1, L2 = 2Lf1, L3 = 1.

3D Layer-to-Layer Orthogonal Interlock

Figure 2.4 shows a schematic representation of a 3D orthogonal layer-to-layer inter-
lock preform created with the TexGen software by choosing the same number of weft
and warp layers and the same geometric parameters of the yarns as previously, in
order to compare it with the 3D orthogonal reinforcement. The difference between
the two reinforcements is the arrangement of the binding threads. As mentioned
before, the geometrical parameters of the different yarns are the same as for 3D
orthogonal preform, as exposed in Table 2.1; only the lengths of the beams of the
binding threads differ, denoted Lb, namely, Lb1 = 0.041, Lb2 = 0.072, and Lb3 =
0.251.

The geometric model of the RUC of the layer-to-layer interlock reinforcement is
shown schematically in Fig. 2.5, with the periodicity vectors given by Y1 = (1, 0, 0),
Y2 = (0, 1, 0), and Y3 = (0, 0, 1); they are the translation vectors that generate the
complete structure; their lengths are, respectively, equal to L1 = 2Lp1, L2 = 2Lf1,
and L3 = 1.
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3D Through-the-Thickness Angle Interlock

The preform of the 3D through-the-thickness angle interlock is weaved with three
types of yarns (in warp and weft directions, and with a third yarn crossing the sample
thickness around the weft layers) as indicated in Fig. 2.6. The beam lengths of the
binder yarns are chosen as Lb1 = 0.08, Lb2 = 0.16, and Lb3 = 1.1. The spacing
between warp and binder yarns and weft yarns is equal to Lf2 and Lp2, respectively.
The geometrical model of the RUC is shown in Fig. 2.7, such that the periodicity
vector lengths are L1 = 5Lp1, L2 = 5Lf1, and L3 = 1.

2.5D Layer-to-Layer and Layer–Layer Angle Interlock Preforms

The 2.5D angle interlock includes a wide set of possible arrangements of the yarns
within the RUC; we shall here focus on types of waves in this family, namely, the
2.5D layer-to-layer angle interlock and the 2.5D layer–layer angle interlock, with
geometrical parameters given in Table 2.2.

Fig. 2.4 Schematic representation of the 3D layer-to-layer orthogonal interlock (Rahali et al. 2016)
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Fig. 2.5 Geometrical model
of the RUC of the 3D
layer-to-layer orthogonal
interlock (Rahali et al. 2016)

Fig. 2.6 Preform of the 3D through-the-thickness angle interlock (Rahali et al. 2016)
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Fig. 2.7 Geometrical model
of the RUC of the
through-the-thickness angle
interlock (Rahali et al. 2016)

Parameters CL and CT therein are, respectively, the distances between the two
adjacent weft and warp in the same layer.

The set of warp crimps through the successive layers of the weft and different
arrangements of the yarns can be envisaged. The specific architecture of the 2.5D
layer-to-layer angle interlock preform considered in this work is shown in Fig. 2.8.
The geometrical model of this RUC reinforcement is also given in Fig. 2.9.

The architecture and geometrical model of the RUC of the considered 2.5D
layer–layer angle interlock preform are, respectively, illustrated in Figs. 2.10 and
2.11.

Effective Properties of the Micropolar Constitutive Law
for Textile Preforms

We next expose the micropolar constitutive law adopted for the effective medium of
these textile preforms, which will be identified. For a centrosymmetric anisotropic
medium, the linear elastic constitutive law is expressed as (Rahali et al. 2016)

σij = Ks
ijkl εkl

mij = Kμ

ijkl χkl (2.22)

Table 2.2 Geometrical
parameters of the 2.5 angle
interlock woven fabrics

Width
(mm)

Thickness (mm) Distance between
yarns (mm)

Warp 0.25 0.15 CT = 0.5

Weft 0.25 0.15 CL = 1
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Fig. 2.8 Representation of the architecture of the layer-to-layer 2.5D angle interlock (Rahali et al.
2016)

Fig. 2.9 Geometrical model
of the RUC of the
layer-to-layer 2.5D angle
interlock (Rahali et al. 2016)

with Ks
ijkl, K

μ

ijkl therein, the Cauchy and micropolar fourth-order rigidity tensors:
tensor Ks

ijkl relates the Cauchy stress σij to the linearized strain tensor εkl , while K
μ

ijkl
relates the couple stress tensor mij to the microcurvature tensor χkl . In explicit form,
Eqs. (2.22) can be written as
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Fig. 2.10 Representation of
the architecture of the RUC
of the 2.5D layer–layer
interlock (Rahali et al. 2016)

Fig. 2.11 Geometrical
model of the RUC of the
2.5D layer–layer interlock
(Rahali et al. 2016)
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with the strain and stress tensors conveniently written in vector format:

ε =
[

∂ux
∂x

∂uy
∂y

∂uz
∂z

∂uy
∂x − φz

∂ux
∂y + φz

∂uz
∂y − φx

∂uy
∂z + φx

∂ux
∂z − φy

∂uz
∂x + φy

]T

χ =
[

∂φx

∂x
∂φy

∂y
∂φz

∂z
∂φy

∂x
∂φx

∂y
∂φz

∂y
∂φy

∂z
∂φx

∂z
∂φz

∂x

]T

The components mxx,myy,mzz are the torsional couple stresses, and the com-
ponents mxy, myz, mxz are the flexural couple stresses. The computed classical and
couple stress effective moduli together with the associated characteristic lengths are
evaluated in Table 2.3 for the studied preforms denoted with the abbreviations OR,
AI, TTT, LL, and LTL, which stand successively for the orthogonal, angle inter-
lock, through-the-thickness, layer–layer, and layer-to-layer. The Poisson’s ratio is
found close to zero, which means that the preforms do nearly not change their lateral
dimensions due to the dense packing of yarns.

One can notice that for the same geometric and mechanical parameters, the effec-
tive properties calculated for both the 3Dorthogonal and 3D layer-to-layer orthogonal
preforms are almost similar. This result tends to show that the effective properties are
little affected by the combinations of arrangement of the yarns in the 3D orthogonal
preforms. Compared to the first two reinforcements, the 3D interlock angle “through-
the-thickness” has much higher moduli (since it contains more layers), which allows
it to have a better resistance to delamination.
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Table 2.3 Effective mechanical properties of the set of 2.5D and 3D preforms

3D OR 3D LTL OR 3D TTT AI 2.5D LL AI 2.5D LTL
AI

Ks
xx (MPa) 34583.41 32475.47 49542.81 20660.11 11038.1

Ks
yy (MPa) 60907.34 57280.49 77057.84 26149.73 20565.52

Ks
zz (MPa) 5565.63 6412.45 8872.95 299 8032.22

G∗
xy = Ks

xy (MPa) 538.26 460.56 3055.07 1368.175 790.5

G∗
yz = Ks

yz (MPa) 1280 1080.64 3904.3 1037.69 805

G∗
xz = Ks

xz (MPa) 1241 890.3 3546.83 3304.38 2756.044

Kμ
xz (N) 133.81 136.22 962 253.94 303.18

Kμ
yz (N) 214.38 236.7 813.44 1853.3 1696.86

lb xy (mm) 0.249 0.271 0.258 0.251 0.265

lb yx (mm) 0.239 0.314 0.248 0.272 0.472

lt xy (mm) 0.352 0.384 0.364 0.304 0.333

lt yx (mm) 0.339 0.444 0.35 0.385 0.668

H (mm) 0.85 0.85 1.15 1.35 1.35

L1 (mm) 0.858 0.858 2.145 4 2

L2 (mm) 0.946 0.946 2.365 2 1

The characteristic lengths in bending and torsion of the 3D orthogonal and the
3D layer-to-layer orthogonal are smaller by a factor of 3 and 2, respectively, in the
x-y and y-x directions with respect to the periodicity lengths L1 and L2. In order
to further assess the importance of micropolar effects, we compare in the case of
plane stress the simplified equation of a micropolar beam incorporating an interlock
angle microstructure (3D or 2.5D) in pure bending. This amounts considering a
one-dimensional beam with many elementary cells repeated periodically along the
longitudinal direction, and a single unit cell in the thickness direction.

The equilibrium equation of a micropolar beam subjected to a uniform bending
moment is written in both x-z and y-z planes:

(
E∗
x Iz + Kμ

xzH
)

︸ ︷︷ ︸
κ

μ
xz

∂φz

∂x
= −M ,

(
E∗
y Iz + Kμ

yzH
)

︸ ︷︷ ︸
κ

μ
yz

∂φz

∂y
= −M (2.25)

with E∗
x ,E

∗
y therein are the homogenized moduli of a macroscopic beam with a

fibrous microstructure,M is the moment of flexion, Iz = H 3

12 is the quadratic moment
of the beam along z, and Kμ

xz,K
μ
yz are the micropolar moduli. Parameter H is the

height of the unit cell; this means that the size effect of the RUC is analyzed via
parameter H. When the micropolar effect is not accounted for, the beam bending
response is analyzed based on the classical flexural rigidities κc

xz and κc
yz such that

the homogenized beam bending obeys the equations:
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Table 2.4 Classical and micropolar effective bending rigidities for the macrobeam under pure
flexion

3D
orthogonal

3D TTT angle
interlock

2.5D LL angle
interlock

2.5D LTL angle
interlock

kμ
xz (Nmm) 1883.61 7385.33 4578.78 2672.44

kcxz (Nmm) 1769.87 6279.03 4235.96 2263.15

%grxz 6.42 17.61 8.09 18.08

kμ
yz (Nmm) 3299.28 10701.73 7863.46 6507.33

kcyz (Nmm) 3117.06 9766.27 5361.51 4216.57

%gryz 5.84 9.57 46.66 54.32

H (mm) 0.85 1.15 1.35 1.35

(
E∗
x Iz

)
︸ ︷︷ ︸

κC
xz

∂φz

∂x
= −M ,

(
E∗
y Iz

)
︸ ︷︷ ︸

κC
yz

∂φz

∂y
= −M (2.26)

The values computed for the classical and micropolar flexural rigidities are given
in Table 2.4.

The gain in flexural rigidity accounting for the micropolar effect is defined as
the scalar %gr = κμ−κc

κc × 100. It is noticed that the flexural gain is significant in
comparison with a conventional beam (without a micropolar effect), since it varies
between 6 and 18% for the x-z plane, and between 5 and 54% for the y-z plane. It
can also be seen that the gain in flexural rigidity is greater in the layer-to-layer 2.5D
interlock angle preform than for the other preforms: this result is in agreement with
the characteristic lengths calculated for the different interlocks in Table 2.3.

Comparison of the Homogenized Moduli with the FE
Computations

In this section, a 3DFEmodel of 3D orthogonal interlock preform and the 2.5D layer-
to-layer angle interlock is developed at the unit cell level to evaluate the accuracy of
the predicted effective properties from the discrete homogenization method previ-
ously discussed. One here aims to estimate the mechanical properties of the RUC of
a woven-reinforced composite with a minimum modeling and computational effort.
To this end, the geometrical modeling of the RUC is done with the open-source code
TexGen, while the simulation aspects are performed using ABAQUS. The geometric
models of the elementary cells made in TexGen are exported in an ABAQUS file,
whether in “ABAQUS Dry Fiber file” to predict the effective properties of a dry
reinforcement or in “ABAQUS Voxel file” to predict the effective properties of the
composite (when the resin is also considered). In this method, the elementary cell
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is divided into a regular grid (voxel) of hexahedral elements whose number in each
direction is set by the user, see Fig. 2.12. The advantage of this method is its rapidity
in comparison to traditional FE models that require much more time. The type of
element chosen for meshing woven structures is C3D8, since it proves to be the most
relevant element for these analyses (Dixit et al. 2013). The previous Tables 2.1 and
2.2 provide a complete and detailed description of the mechanical and geometrical
parameters needed to build the FE models. Based on these parameters, the geometry
of the RUC is constructed. This procedure involves modeling the unit cell instead of
modeling the entire structure of the weave.

For anisotropic materials, the micropolar constitutive equations for centrosym-
metric microstructures are written in decoupled form as follows: the Cauchy stress
is related to the elastic strain (equal to the total strain) with the elastic rigidity matrix
[Ks] as

{σ } = [
Ks

]{ε} (2.27)

Similarly, the couple stress is related to the microcurvature through the couple
stress rigidity matrix [Kμ] as follows:

{m} = [
Kμ

]{χ} (2.28)

The set of effective moduli is next evaluated in a sequential manner based on the
Hill–Mandel energy equivalence principle: a set of kinematic boundary conditions is
applied over the RUC boundary, each displacement field allowing the identification
of one modulus. Thereby, the average microscopic strain energy Ucell evaluated
numerically by FE simulations is equated to the energy of the equivalent micropolar
continuum (Goda and Ganghoffer 2015), so that it holds the identity

Fig. 2.12 RUC for the 3D
orthogonal interlock with 80
voxels per direction (Rahali
et al. 2016)
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Ucell = Ucouple stress = V

2

[
εijK

s
ijklεkl + χijK

μ

ijklχkl

]
(2.29)

with V = |�| the volume of the RUC. In the couple stress theory, the microrotation
φi is identical to the macrorotation accounted for by the antisymmetric part of the
displacement gradient, so that it holds

φx = 1

2

(
∂uz
∂y

− ∂uy
∂z

)
; φy = 1

2

(
∂ux
∂z

− ∂uz
∂x

)
; φz = 1

2

(
∂uy
∂x

− ∂ux
∂y

)
(2.30)

and

∂φx

∂x
= 1

2

(
∂2uz
∂x∂y

− ∂2uy
∂z∂x

)
; ∂φy

∂y
= 1

2

(
∂2ux
∂y∂z

− ∂2uz
∂x∂y

)
; ∂φz

∂z
= 1

2

(
∂2uy
∂x∂z

− ∂2ux
∂y∂z

)
;

∂φy

∂x
= 1

2

(
∂2ux
∂z∂x

− ∂2uz
∂x2

)
; ∂φz

∂y
= 1

2

(
∂2uy
∂x∂y

− ∂2ux
∂y2

)
; ∂φz

∂x
= 1

2

(
∂2uy
∂x2

− ∂2ux
∂x∂y

)
(2.31)

Adopting displacement boundary conditions (uniform strain for the identification
of the or uniform curvature), the components of the rigidity tensors [Ks], and [Kμ] of
the elementary unit cell can be evaluated. Themotivation for applying such boundary
conditions lies in the fact that periodicity boundary conditions cannot be used for the
evaluation of the second gradient effective rigidity tensor [Kμ], since they lead to a
deformation field which is not periodical (Goda and Ganghoffer 2015; Goda et al.
2016). Eight elementary virtual tests are performed for the sequential evaluation of
the entire set of effective moduli, including six virtual tests to evaluate the tensile and
shear effective moduli in [Ks] and two virtual tests to compute the flexural rigidities
Kμ
xz and K

μ
yz in the effective couple stress rigidity tensor [Kμ]. Only one test for each

of the two types of moduli is exposed in this chapter.
In order to evaluate Ks

xy (shear mode), one applies a uniform strain component
εxy = 1 on the boundary of the unit cell, by imposing the following linear displace-
ment:

ux(x) = y/2 edgewith normal ny

uy(x) = x/2 edgewith normal nx

uz(x) = 0 edgewith normal nz

(2.32)

This displacement field entails the shear modulus Ks
xy = 2U cell

V .
In order to determine the curvature component Kμ

yz, a uniform unit curvature
χyz = 1 is applied to the unit cell boundary by imposing the following quadratic
displacement field:

ux(x) = −y2/2 edgewith normal nx

uy(x) = xy edgewith normal ny

uz(x) = 0 edgewith normal nz

(2.33)
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Fig. 2.13 Displacement distributions on the RUC of a 3D orthogonal interlock and b 2.5D layer-
to-layer angle interlock submitted to in-plane shear (εxy = 1) (Rahali et al. 2016)

Table 2.5 Effective elastic moduli for the 3D orthogonal and 2.5 D layer-to-layer interlock based
on FE simulations and the discrete homogenization method

Discrete homogenization FE simulations (voxel 80) Relative variation (%)

3D OR 2.5D LTL AI 3D OR 2.5D LTL AI 3D OR 2.5D LTL AI

KS
xx

(MPa)
34583.41 11038.1 34231.61 11620.43 1.01 5.01

KS
yy

(MPa)
60907.34 20565.52 61254.25 21610.03 0.56 4.83

KS
zz

(MPa)
5565.63 8032.22 5705.34 8227.45 2.44 2.37

Gxy
(MPa)

538.26 790.5 505.8 846 6.03 6.56

Gyz
(MPa)

1280 805 1408.77 676.83 9.14 15.92

Gxz
(MPa)

1241 2756.044 1449.44 2711.78 14.37 1.6

Kμ
xz (N) 133.81 303.18 132.61 276.45 0.89 8.81

Kμ
yz (N) 214.38 1726.86 185.2 2280.57 13.61 24.27

This displacement field entails the flexural rigidity Kμ
yz = 2U cell

V − Ks
yyx

2.
When the coordinates of the origin are placed in the center of the elementary cell

(center of gravity), the additional geometric contribution in the previous expression
vanishes. The deformation modes for these two virtual tests, within the elementary
cells of the 3D orthogonal interlock and the 2.5D layer-to-layer angle interlock
preforms, are illustrated in Figs. 2.13 and 2.14.

The effective moduli in traction, simple shear, and flexion computed, thanks to
discrete homogenization, and by FE simulations are summarized in Table 2.5 for the
set of tested textile preforms.
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Fig. 2.14 Displacement distribution on the RUC of a 3D orthogonal interlock and b 2.5D layer-
to-layer angle interlock submitted to a uniform curvature χyz = 1 (Rahali et al. 2016)

A good agreement is obtained between the homogenized moduli and their numer-
ical FE counterpart, with 14.37% maximum difference for the 3D orthogonal fabric
for the shear modulus in x-z plane and 24.27% for the 2.5D layer-to-layer inter-
lock for the flexion modulus. The percentage of difference for the other moduli
varies between 0.56 and 13.61% for the 3D orthogonal interlock, and between 1.6
and 15.92% for the 2.5D layer-to-layer angle interlock. These differences can be
attributed to several factors that will be next analyzed.

In the discrete homogenization scheme, the geometric representation of the ele-
mentary cells of the preforms has some limitations, which are underlined in the
following. Whether in TexGen or in finite element simulations, the curvilinear tra-
jectories of the strands in the 3D geometric models have been described by Bezier
curves, while in the discrete homogenization, the trajectories of the beams are mod-
eled by straight lines with sharp angles at crossing points; this implies that the line
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Fig. 2.15 Distributions of von Mises stress and of the displacement within the unit cell for the 3D
orthogonal interlock under in-plane shear (in x-y plane) (Chaouachi et al. 2014)

will not follow the trajectory precisely and that the weaving of the yarns will be
slightly different from the finite element model, which will in turn have an impact
on the macroscopic behaviors.

Incorporation of a Hertz Contact Model Between Yarns

Another limitation of the homogenized models is the use of a sticky, nonslip contact,
so if we do a shear test in the xy plane by a finite element simulation in ABAQUS on
one of the considered preforms (for example the 3D orthogonal interlock, Fig. 2.15),
by allowing sliding between yarns, a very small value is obtained for the shear
modulus (of the order of 3 MPa), in comparison with that calculated by the discrete
homogenization. In order to take into account the possible displacements between
the yarns, a contact with friction is introduced with a master/slave approach. The
tangential behavior at the contact surfaces is defined using the penalty method with
a coefficient of friction chosen here equal to 0.05.

The interactions between the various yarns (weft, warp, and binders) within the
reinforcements are modeled by contact beams whose radius is equal to the average of
the radii of the two beams into contact: this hypothesis also increases the percentage
of error since the extent of the contact area is not precisely calculated. A more
accurate method is to find a general formulation for the contact reactions at each
yarn intersection in the multilayer fabrics, based on the theory of unilateral Hertz
contact, in order to more accurately account for the extent of the contact surface. This
point will be analyzed in the sequel for the plain weave. We conduct a comparative
analysis by varying the point contact area to an extended (elliptical) contact based
on Hertz contact theory, as detailed in Chaouachi et al. (2014). The wording “point”
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Fig. 2.16 Distribution of the
displacement within the
plain weave elementary cell
under uniaxial tension along
x (Chaouachi et al. 2014)

refers to the use of contact beam elements with a circular cross section. This approach
allows estimating the effect of the contact on the moduli of plain weave (represent in
Fig. 2.16) and to compare them with those computed by finite elements. We further
assume that the contact between yarns is perfect and does not induce relative slip. In
the sequel, we rely on the following expressions of the small and large radii of the
contact ellipse (Chaouachi et al. 2014)

a = m1
3

√
3πN (k1 + k2)

2(C1 + C ′
1 + C2 + C ′

2)
, b = m2

m1
a (2.34)

in order to estimate the contact area more accurately than based on the contact radius

given by rbcontact = rbweft+rbwarp
2 (Goda et al. 2013a).

In Eq. (2.34), m1, m2 are two coefficients expressed in Aublin et al. (1998) in
terms of a fictive angle ϕ depending on the curvatures (C1, C1

′, C2, C2
′) and on the

angle θ between the planes of principal curvatures, viz.,

ϕ = arccos

(√
(C1 − C ′

1)
2 + (C2 − C ′

2)
2 + 2(C1 − C ′

1)(C2 − C ′
2) cos(2θ)

C1 + C ′
1 + C2 + C ′

2

)

(2.35)

In expression (2.34), N denotes the normal resultant on the contact zone, noted
N1 in the initial state (in the absence of external load) (Chaouachi et al. 2014). The
relation between the applied normal effort and the yarn crimp is written for plain
weave as
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Table 2.6 Effective moduli obtained in situations of punctual contact or extended contact between
yarns, based on discrete homogenization or FE simulations

Mechanical properties Discrete homogenization FE predictions

Punctual contact Elliptic contact area

KS
xx = KS

yy (MPa) 82.5 92.4 96

KS
xy (MPa) 26.3 31.6 28

Ex* = Ey* (MPa) 74.2 81.57 86.7

νxy = νyx 0.318 0.32 0.292

N1 = π4

2

BchN 3
tr

L3ch
wj,k
so−ch (2.36)

The effective moduli of plain weave for the situations of a punctual and extended
contact area are given for plain weave in Table 2.6. Note that the proposed method-
ology for the modeling of an extended contact area between yarns within preforms is
general, although its numerical implementation is more involved for complex fibrous
microstructures.

The evolution of the contact surface between the two sets of yarns seems to have
a significant effect on the actual elastic constants, which become closer to the values
found by FE simulations, with a maximum percentage of difference that does not
exceed 11%, compared to those found with the hypothesis of a point contact that
shows an error of 20%. The contact surface for multilayer textiles is more difficult
to model and requires an independent and specific study for each type of preform.

Amicromechanical model based on the discrete homogenizationmethod has been
developed to calculate the effective mechanical properties of 3D textile preforms.
The yarns are described as corrugated beams with tensile and bending stiffnesses.
The method is able to calculate very efficiently (with a low computational cost) the
entire set of homogenized anisotropic mechanical properties, including flexural and
torsional moduli, taking into account the effects of internal scales. In comparison
with the FE computations of these moduli requiring the application of many loads in
a sequential manner on the selected RVE, the entire set of classical and nonclassical
moduli is here obtained in a single step, since the periodicity is embedded into the
DH method. In addition, the description of the yarns within the preform by beam
elements is an effective way to model the complex organization of the yarns within
these 3Dpreforms. The proposed approach is particularly interesting, considering the
difficulty of measuring the out-of-plane effective properties of complex interlocking
weaves. The nonclassical moduli have a significant impact on the bending response
of 3D textiles, as shown by calculations of the bending behavior of the macroscopic
beam, so they need to be accounted for directly at the constitutive level. A good
agreement is obtained between the moduli obtained by homogenization and those
calculated by FE. Apart from a few limitations, all the obtained results underline the
relevance of the proposedmodel, in particular,wehave shown from initial simulations
performed on monolayer textiles that the incorporation of the true area of contact
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between yarns improves the predictions of the DH model. The implementation of
unilateral contact conditions based on the Hertz model in the case of nonslip of the
yarns in combination with the proposed homogenization technique is a promising
development prospect.

Since the fibers and yarns are prone to large rotations within the preform, large
deformation aspects need to be accounted for, especially geometrical nonlinearity;
this is the object of the next section.

Large Configuration Changes of Lattices Based on Discrete
Homogenization Method

To account for the large changes of configuration of the networks, we next expose the
extension of the previous discrete homogenization method to the nonlinear regime.
This should result in an algorithm for the computation of the large strains response
of the underlined networks. Here, the analysis is performed on the RUC chosen as
the lattice unit cell, based on recent results (Vigliotti et al. 2014). This demonstrates
that the size of RUC has no effect on the predicted effective homogenized response
in the nonlinear regime, as long as no bifurcations happen.

Microscopic Incremental Problem over the RUC

We next extend the linear framework developed in section “Effective Mechanical
Properties of Periodic Fibrous Materials in the Small Strains Regime” and consider
the impact of a variation of the RUC geometry on the effective structure behavior.
Thus, we write down the nonlinear equilibrium problem associated to the large per-
turbations of the lattice network. The geometrical nonlinearity is induced due to the
beam directors and beam lengths changing with the loading applied over the RUC.

As a starting point, the principle of virtual displacements in continuummechanics
is expressed in incremental form as

δWext − δWint = 0 ⇒ δV =
∫
D

σ · δEGdV = Fe · δu (2.37)

with Wext, Wint, V, EG, Fe therein the virtual variation of the external and internal
works, the total potential energy, the Green-Lagrange strain and the external applied
force, respectively.

We next write the problem of nonlinear equilibrium linked to the large pertur-
bations of the lattice. The nonlinearity is as a result of the large displacements and
microrotations, which in turn are responsible for the large changes of beam direc-
tors orientation and beam lengths. Relying on this, we set up a kinematically driven
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Fig. 2.17 Variation of the
beam orientation (a) and
length (b) (ElNady et al.
2016)

(a) (b)

scheme which will be based on the incremental writing of the equilibrium equations
of forces and moments, sequentially the two following equations:

∀v ∈ R3,∑
b∈BR

(
δFεb(k)

x eb(k)x + Fεb(k)
x δeb(k)x

) · �v+
∑
b∈BR

(
Fεb(k)
x eb(k)x

) · �v

+
∑
b∈BR

(
δFεb(k)

y eb(k)y + Fεb(k)
y δeb(k)y

)
· �v +

∑
b∈BR

(
Fεb(k)
y eb(k)y

)
·�v

+
∑
b∈BR

(
δFεb(k)

z eb(k)z + Fεb(k)
z δeb(k)z

) · �v +
∑
b∈BR

(
Fεb(k)
z eb(k)z

)·�v = 0

∀w ∈ R3,
∑
b∈BR

⎛
⎜⎝ δ

(
MεE(b)(k)

x eb(k)x + MεE(b)(k)
y eb(k)y + MεE(b)(k)

z eb(k)z

)
· wE(b)+

δ
(
MεO(b)(k)

x eb(k)x + MεO(b)(k)
y eb(k)y + MεO(b)(k)

z eb(k)z

)
· wO(b)

⎞
⎟⎠

+
∑
b∈BR

δ
(
εLb

(
ex ∧ Fεb

)) · wC(b) +
∑
b∈BR

(
MεE(b)(k) · wE(b) + MεO(b)(k) · wO(b)

)

+
∑
b∈BR

(
εlb

(
ex ∧ Fεb

) · wC(b)
) = 0 (2.38)

where�v = v(ER(b))−v(OR(b)) is the relative virtual velocity of the two extremity
nodes of any beam, andw is the virtual rotational velocity. Introducing the beam vec-
torBb = lbebx (Fig. 2.17) with l

b the beam length and unit beam director, respectively,
the quantities lb = ∥∥Bb

∥∥ and ebx = Bb

lb
.

For any beam in the lattice b ∈ BR, the beam vector is evaluated from the imposed
transformation gradientGj and the relative position vector between the two extremity
nodes, quantity RER(b) − ROR(b) as

Bb := RER(b) − ROR(b) + Gjδjb (2.39)

In a similar manner, the relative microrotationϕb is defined and expressed against
the imposed microcurvature M as

ϕb := ϕER(b) − ϕOR(b) =
(
ϕ
ER(b)

1 − ϕ
OR(b)

1 + Mjδib
)

(2.40)
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The following symbolizations are introduced: Gj = ∂R
∂β j , Mj = ∂ϕ0

∂β j are, respec-
tively, the imposedmesoscopic transformation gradient andmicrocurvaturemapping
over the unit cell, and RER(b) − ROR(b) and ϕ

ER(b)
1 − ϕ

OR(b)
1 are the unknowns kine-

matic relative positions and rotations; they are computed incrementally, as will be
described afterward.

Insertion of the subsequent expressions of the increments of forces and moments
into the incremental equilibrium (2.38) entails identification and extraction of the
total tangent stiffness matrix KT, which in turn is divided to the stress stiffness
KS

T and the micropolar stiffness Km
T . It is noticed that the stress stiffness leads to

identify three type of stiffness matrices KSo, Ku, Kσ, respectively, the linear stiffness
matrix, the initial displacement stiffness matrix, and initial stress stiffness matrix; it
is obtained as follows:

KS
T =

∑
b∈BR

(
Kb

So + Kb
u + Kb

σ

)
(2.41)

For the micropolar nonlinear response, the tangent stiffness matrix is written as

Km
T =

∑
b∈BR

(
Kb

mo + Kb
m

)
(2.42)

where Kb
mo is the initial micropolar stiffness matrix and Kb

m is the tangent micropolar
stiffness matrix, which are next expressed.

We shall consider lattices which are much softer in bending in comparison to
tension, so that we shall presently address geometrical nonlinearities, which are
traduced by changes of beam orientation and length, pictured in Fig. 2.17.

These variations are obtained after straightforward calculations as follows:

δebx = C · P · δBb/lb,

δeby = �z · δebx, δebz = �y · δebx,

δlb = B · [I + C · P] · δBb/lb (2.43)

In (2.43), the projection operators P and C are expressed as

P := (
I − ebx ⊗ ebx

)
, C :=

(
I − 1

2
ebx ⊗ ebx

)
(2.44)

We also introduced the two orthogonal transformations:

�z

(
ebx, eby, z

)
=

⎡
⎣ cos

(
π
2

) − sin
(

π
2

)
0

sin
(

π
2

)
cos

(
π
2

)
0

0 0 1

⎤
⎦, �y

(
ebx, ebz , y

) =
⎡
⎣ cos

(
π
2

)
0 sin

(
π
2

)
0 1 0

− sin
(

π
2

)
0 cos

(
π
2

)
⎤
⎦

(2.45)
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In the large strains regime, the beam length is changing, so we have to expand it
versus the asymptotic expansion parameter ε like for all other static and kinematic
variables:

lb = lb0 + ε lb1 + ε2lb2 + · · · + εplbp (2.46)

The induced perturbations of the efforts and moments are then obtained as

δFb(k)x ebx = 1

lb
dFb(k)x

dlb
(
Bb ⊗ Bb[I + C · P]

) · δBb

δFb(k)y eby = 1

lb
dFb(k)y

dlb

(
eby ⊗ Bb[I + C · P]

)
· δBb +

(
−6Eb

s Iz(
lb
)2

)[(
eby ⊗ ebz

)
· δϕO(b) +

(
eby ⊗ ebz

)
· δϕE(b)

]

δFb(k)z ebz = 1

lb
dFb(k)z

dlb
(
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) · δBb +
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6Eb

s Iy(
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)2

)[(
ebz ⊗ eby

)
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(
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· δϕE(b)
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(2.47)

The total tangent stiffness matrix KS
T = ∑

b∈BR

(
Kb

So + Kb
u + Kb

σ

)
, with

KSo, Ku, Kσ therein, respectively, the linear stiffness, the initial displacement stiff-
ness, and initial stress stiffness are expressed in closed form in the sequel. The linear
stiffness receives the expression:

Kb
So = Eb

SA
b

lb
(
ebx ⊗ ebx

) +
(
12Eb

SI
b
y(

lb
)3

)(
eby ⊗ eby

)
+

(
12Eb

SI
b
z(

lb
)3

)(
ebz ⊗ ebz

)
(2.48)

The initial displacement stiffness matrix is expressed as

Kb
u = Eb

SA
b

L

[(
1

lb

)(
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o
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)
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)
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⎟⎟⎟⎠
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⎥⎥⎥⎦
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+
(
12Eb

SI
b
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⎢⎢⎢⎣

⎛
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)(
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(
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))
· (�y · C · P

)−
(
B − Bb
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)
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The initial stress stiffness matrix is expressed as

Kb
σ =

[(
Fbx
lb

)
C · P

]
+

[(
2Fby(
lb
)2
)((

eby ⊗ Bb
)

· [I + C · P]
)]

+
[(

2Fbz(
lb
)2
) ((

ebz ⊗ Bb
) · [I + C · P]

)]

+
[(

Fby
lb

)
(�z · C · P)

]
+

[(
Fbz
lb

)(
�y · C · P

)]
(2.50)

Likewise, the tangent stiffness matrix for the micropolar nonlinear response is
expressed as

Km
T =

∑
b∈BR

(
Kb

mo + Kb
m

)
(2.51)

with the tangent coupled stress stiffness matrix therein given by
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(2.52)

The left-hand side of Eqs. (2.39) and (2.40) contains both the imposedmesoscopic
transformation gradientGj = ∂Ro

∂β j and themicrocurvatureMj = ∂ϕ0

∂βj
over the elemen-

tary unit cell, and the unknown differences of the kinematic quantitiesRER(b)−ROR(b)

andϕER(b)−ϕOR(b).We get the solution for these differences by solving iteratively the
previous incremental scheme based on the method of modified Newton–Raphson.

The incremental scheme provides an update for the kinematic variables
Bb(k+1),ϕb(k+1) at any iteration (k + 1), from their values at previous iteration k
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within the reference unit cell. For a given imposed mesoscopic transformation gradi-
ent and microcurvature, respectively, the variables Gj, Mj, the update of the position,
and microrotation vectors are written as follows:

Bb(k+1) = Bb(k) + δBb(k),

with Bb(k) = RER(b)(k) − ROR(b)(k) + Gjδjb

ϕb(k+1) = ϕb(k) + δϕb(k) ⇒ ϕb(k) = ϕER(b)(k) − ϕOR(b)(k) + Mjδjb (2.53)

For a given βε and for each ∂R
∂β j δ

jb,
∂ϕ

∂β j δ
jb, j = 1, 2, 3, we can determine the quan-

tities Bb, ebx , eby , ebz ,F
b
x ,F

b
y ,F

b
z ,M

b
x ,Mb

y ,Mb
z , for any b ∈ BR, allowing to calculate

the stress and the couple stress vectors Si and μi, respectively.
The mesoscopic incremental equations are next written at the continuum level of

the lattice RUC.

Mesoscopic Equations over the Reference Unit Cell

Similar to the small displacements theory described in the previous subsection, the
discrete equilibrium takes after homogenization a form similar to its continuum
counterpart, viz.,

∑
υ i∈ Zε

∑
b∈BR

Fb · vε +
∑

υ i∈ Zε

∑
b∈BR

Mb · Wε = 0 ⇒
∫
Ω

δSi(k) · ∂v
∂βi

dβ +
∫
Ω

δμi(k) · ∂w
∂βi

dβ = 0

(2.54)

where δSi(k) and δmi(k) are, respectively, the incremental stress and couple stress
vectors. The integral formulation in (2.54) constitutes the incremental variational
form of the self-equilibrium posed over the Lagrangian domain � occupied by the
reference unit cell.

Wenext aim towrite the incremental constitutive lawat themesoscopic level. First,
we recall a few needed symbols from nonlinear continuum mechanics. A generic
particle occupies a reference position X. When the body deforms due to prescribed
tractions or displacements, the spatial position of the particle originally occupying
the spatial position X is given by x = f(X), with the function f supposed to be a
smooth one-to-one point mapping. The displacement u(X) of the particle is defined
by u(X) = f(X) − X, and the deformation gradient elaborated as F(X) = ∇f(X).

We shall perform kinematic-controlled loadings over the lattice unit cell; we
impose at each increment the discretized version of F, or the microcurvature, which
is specific to each type of loading.We subsequently investigate the response of lattices
under uniaxial tension, equibiaxial tension, simple shear, and bending. The kinematic
load parameter is started at zero and incremented, and the equilibrium solution is
computed at each increment; we shall in the sequel denote n the step number.
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In the view of setting up the incremental scheme for the resolution of the non-
linear mesoscopic BVP (boundary value problem), we shall in the sequel write the
discretized version of the elastic constitutive equation between the incremental stress
�S(k)

n and the incremental strain �E(k)
Gn, and between the incremental couple stress

�M(k)
n and incremental curvature tensor ��(k)

n . These two increments are in fact
imposed over the RUC as follows:

�S(k)
n = KS

T, n : �E(k)
Gn, �M(k)

n = Km
T,n : ��(k)

n (2.55)

The Green-Lagrange strain EG in (2.55) is defined as EG = 1
2

(
FT · F − I

)
. The

natural Lagrangian wryness � is next expressed as versus the selected definition
of the finite rotation vector written as ϕ = ϕiei, among other possible choices
(Pietraszkiewicz and Eremeyev 2009). The natural Lagrangian wryness measure
� written in the following second-order tensor:

� = Gradϕ

[
sin(‖ϕ‖)

‖ϕ‖ I − 1 − cos(‖ϕ‖)
‖ϕ‖2 ϕ × I + ‖ϕ‖ − sin(‖ϕ‖)

‖ϕ‖3 ϕ ⊗ ϕ

]
(2.56)

The second-order identity tensor is denoted I. One can rewrite this rotation by
three successive rotations φx, φy, φz about the axes x, y, z.

For a given elementary loading characterized by a continuously varying scalar
loading parameter λn, the incremental Lagrangian strain�EGn is related to the incre-
ment of the loading parameter λn and the increment �Fn as given in Holzapfel et al.
(2000):

�EGn(λn,�λn) = sym(Fn(λn) · grad�un) ≡ sym(Fn(λn) · �Fn(�λn)) (2.57)

together with the relation

Fn(λn) = I + gradun → �Fn(�λn) = �gradun ≡ grad�un (2.58)

The algorithmic tangent stiffness matrix KS
T,n therein results from the assembly of

the microscopic tangent stiffness matrices; it is obtained at each increment as given
in relations (2.48) and (2.51). We recall that the stress increment �S(k)

n is expressed
versus the strain increment �EGn according to Eq. (2.55).

We next obtain the updated Cauchy stress tensor by a push forward of the incre-
mental Lagrangian stress �S(k)

n from configuration �n to �n+1, as

σ
(k)
n+1 = (

J−1
n Fn · S(k)

n · FT
n

)
︸ ︷︷ ︸

σ
(k)
n

+ (
J−1
n Fn · (�S(k)

n

) · FT
n

)
︸ ︷︷ ︸

�σ
(k)
n

(2.59)

with J := det(F) the Jacobian, defined as the determinant of the deformation gradient
tensor, k stands for iteration index which is inside the increment loop. The Cauchy
stress at increment n+1 is therefore given from its counterpart at previous increment
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n, based on the initial stress S(k)
n (the first contribution on the RHS of (2.59)) and the

incremental stress �σ(k)
n (the second term on the RHS).

To obtain an update for the incremental couple stress tensor, we have to exploit a
similar relation beforehand derived for the Cauchy stress

m(k)
n+1 = (

R̄n · M(k)
n · FT

n

)
︸ ︷︷ ︸

m(k)
n

+ (
R̄n · (�M(k)

n

) · FT
n

)
︸ ︷︷ ︸

�m(k)
n

(2.60)

with R̄n therein the micropolar rotation tensor. It is defined as R̄n = exp(spn(ϕ))

and expressed in closed form using the Euler–Rodrigues formula.
Within a specified type of loading (either imposed transformation gradient or

microcurvature over the unit cell), one has to determine the adequate macroscopic
displacement boundary conditions that have to be imposed over the RUC; this is next
done for uniaxial tension, simple shear, equibiaxial tension, and bending considered
as elementary loadings.

Additionally, in the linear situation, the internal bending lengths of the micropolar
effective nonlinear continuum are evaluated from both the effective classical and
micropolar tangent stiffness matrices. Then, these internal lengths are computed at
each increment of the (incremental) scheme; an example shall be given later on in
this work. The DH in large strains can be summarized in the algorithmic format as
follows. The homogenized constitutive law is first evaluated in the linear framework.
Then, we set up a kinematic driven algorithm by which, for each load increment,
the incremental stress and couple stress tensors are computed versus the imposed
mesoscopic loading (transformation gradient and microcurvature). The evolution of
the kinematic and static quantities follows the update of the unit cell geometry.

In order to solve for the nodal displacements andmicrorotations unknowns of each
beamwithin the repetitive unit cell, a dedicated code is constructed from the proposed
algorithm. This code uses an input file the initial reference unit cell geometry and
mechanical properties and delivers as an output the effective classical andmicropolar
moduli and stress–strain response for a given deformation path. The response is
evaluated more specifically for each of the aforementioned elementary loadings.
The algorithm is exposed as follows:

For each load increment �E(k)
Gn, ��(k)

n :
For each iteration k inside the increment loop:

1. Compute the effective mechanical properties in the linear regime based
on the linear DH framework, Eq. (2.19).

2. Define the incrementally imposed strain andmicrocurvature applied over
the RUC.

3. Compute the incremental second Piola-Kirchhoff stress tensor and cou-
ple stress tensor, Eq. (2.55).
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4. Check convergence at iteration k; if it is attained, go to next step.
5. Compute the incremental deformation gradient, Eq. (2.58), and its Jaco-

bian.
6. Update Cauchy stress and couple stress at increment (n + 1), by a push

forward of their Lagrangian counterpart from �n to �n+1, Eqs. (2.59)
and (2.60):

7. Update the network configuration from �n to �n+1.

In the next sections, different examples are exposed to illustrate the proposed
computational method. We will compute the nonlinear mechanical response for dry
woven textiles including 2D and 3D geometries.

Computed Response of Monolayers and 3D Interlocks

In the present section, we compute the nonlinear response of dry textile preforms
which exhibit strong geometrical nonlinearities. In fact, several modeling approaches
have been used to analyze the mechanical behavior of fabrics, which can be divided
into analytical and numerical models. Many analytical models at the mesostruc-
ture level have been developed for the study of the behavior of dry woven fabrics
(Goda et al. 2013a) and references therein. The literature survey done in ElNady
et al. (2016) displays that FE analyses and analytical methods are powerful tools for
studying the mechanical properties of woven fabrics. However, the complexity of the
microstructure is proportional to the number of parameters controlling the mechan-
ical properties. Therefore, in order to simplify the analysis, various assumptions
should be proposed.

Nonlinear Response of Monolayer Fabrics

In order to be specific, plain weave and twill monolayer fabrics patterns are con-
sidered as representative examples of 2D preforms (Fig. 2.18). In this work, we
construct and model the RUC of the monolayer fabric as a network of beams con-
nected by nodes at cross points of the interwoven yarnswithin the fabric. These beams
have extensional and flexural rigidities to represent yarn stretching and flexion. The
interactions between yarns at the crossover points are captured by beam segments
connecting the nodes. The proposed methodology is used for the analysis of mono-
layer fabrics subjected to large applied strains. The responses of stress–strain are
assessed after applying boundary condition to the RUC, considering the following
three elementary loading cases: uniaxial tension, biaxial tension, and simple shear.
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Fig. 2.18 Representative
unit cells of plain weave and
twill woven fabric (ElNady
et al. 2016)

Weft

Warp

Twill

Plain weave

Weft

Warp 

Contact 

Fig. 2.19 Geometric representation of the unit cell of plain weave (top) and twill (bottom) (ElNady
et al. 2016)

Most woven fabrics models are based on the definition of the geometry of the unit
cell and include themain architectural parameters to evaluate the effectivemechanical
properties. The elementary cell is chosen as the smallest unit of fabric that, when tiled,
will produce the full-scale fabric. The initial geometricmodel of the elementary cell is
generated using the free- and open-source software TexGen. After that, the geometric
files are exported to ABAQUS software where the FE analysis is subsequently done.

For the selected applications of (a) plain weave and (b) twill, the geometrical
parameters for the unit cell pattern and the associatedperiodicity vectors are displayed
in Fig. 2.19. The geometrical and mechanical parameters of these two fabrics are
given, respectively, in Tables 2.7 and 2.8.

The elastic properties of the yarns of plain weave and twill unit cells are the same.
The tensile, flexural, and torsion rigidities of the connected beams are exposed in
Table 2.9.
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Table 2.7 Geometrical parameters of plain weave and twill fabrics

Weave Set of input geometric data required for modeling

Plain

Weft Lf1 = 0.618 mm – θf = 40° df = 0.27 mm

Warp Lp1 = 0.56 mm – θp = 40° dp = 0.25 mm

Twill

Weft Lf1 = 0.618 mm Lf2 = 0.487 mm θf = 40° df = 0.27 mm

Warp Lp1 = 0.56 mm Lp2 = 0.41 mm θp = 40° dp = 0.25 mm

Table 2.8 Mechanical
properties of weft and warp
yarns

Set of input material data

Weft Esf = 1889 MPa Gsf = 756 MPa νf = 0.25

Warp Esp = 13853 Mpa Gsp = 5541 Mpa νp = 0.25

Table 2.9 Tensile, bending, and torsional rigidities of weft, warp, and contact beams

Beam rigidity Beams at

Weft Warp Contact

Tensile klf1,2 = Esf Af
Lf1,2

klp1,2 = EspAp
Lp1,2

klc1,2 = EscAc
Lc1,2

.

Flexural ktf 1 = 12Esf If

(Lf 1)
3 ktp1 = 12EspIp

(Lp1)
3 ktc1,2 = 12EscIc(

Lc1,2

)3

Torsional krf 1 = Gsf Jf
Lf 1

krp1 = GspJp
Lp1

krc1,2 = GscJc
Lc1,2

Moreover, for the contact beam, the geometric and material parameters are as
follows: Lc1,2 = Lf1Sinθf ,Lp1Sinθp, rc = rf +rp

2 , Gsc = Gsf +Gpf

2 , and Esc = Esf +Epf

2 ,
where Lc1,2, rc, Gsc, and Esc, respectively, stand for the lengths, radius, shear, and
Young’s modulus of beams connecting the warp and weft yarns at their crossing
points.

Small strains DH schemes were developed in Goda et al. (2014) to compute the
effectivemechanical properties of textilesmonolayers, with the stiffnessmatrix com-
ponents expressed in terms of thematerial andmicrostructural geometric parameters.
The DH approach as detailed in section “Large Configuration Changes of Lattices
Based onDiscrete HomogenizationMethod” has been implemented for the two types
of woven fabric. Analyses of periodic reinforcements modeled as RUC are imple-
mented within a dedicated code considering the impact of a variation of the structure
geometry simultaneously in a nestedmanner.We next perform a comparison between
the mechanical response of plain weave and twill fabrics under three different types
of loading (uniaxial tension, biaxial tension, and simple shear).

Uniaxial tensile test: We illustrate in Fig. 2.20 a comparison between the Cauchy
stress response versus stretch under a uniaxial tensile loading test, for both plain
weave and twill fabrics. The initial effective tensile rigidities in the weft direction
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Fig. 2.20 Evolutions of
Cauchy stress against stretch
for plain weave and twill
fabric (ElNady et al. 2016)
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Fig. 2.21 Comparison
between Cauchy stress
evolutions versus stretch for
plain weave and twill in
a x-direction and
b y-direction versus strain
with a biaxial strain ratio
equal to two (ElNady et al.
2016) 0

10

20

30

40

50

60

1 1.05 1.1 1.15 1.2 1.25

σ 11
(M

Pa
)

σ 22
(M

Pa
)

Stretch (λ1)

Plain weave
Twill

0
50

100
150
200
250
300
350

1 1.05 1.1 1.15 1.2 1.25

Plain weave
Twill

Stretch (λ1)

(a)

(b)

are, respectively, 113.5 MPa and 170.4 MPa for plain weave and twill. The most
stiff response obtained for twill can be explained by the fact that yarns within the
representative unit cell are more aligned in the direction of traction; we anticipate
this tendency to be valid for any loading.

Biaxial tensile test: We perform the biaxial tension simulation by applying a
strain in the longitudinal direction of warp and weft yarns. The biaxial strain ratio
shall be defined as ε2/ε1, with ε1 the primary textile strain corresponding to weft
direction, and ε2 the secondary strain inwarp direction. The comparison of the biaxial
response for plain weave and twill configuration is shown in Fig. 2.21. Twill pattern
shows as for uniaxial tension a stiffer response.

Simple shear test: For both fabric types, the shear response shows nearly the
same trend up to a shear strain of 0.15, with a small difference occurring for large
strains, as shown in Fig. 2.22. This can be explained by the fact that the initial yarn
crimp does not play an important role in simple shear; this is contrary to uniaxial
loading conditions.
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Fig. 2.22 Large shear
response for plain weave and
twill (ElNady et al. 2016)

Fig. 2.23 Nonlinear and
linear responses of the
couple stress versus
microcurvature for twill
fabric (ElNady et al. 2016)

Bending test: In this test, bending is applied to the twill fabric by impos-
ing an increasing microcurvature over the representative unit cell; the incremental
bending response is then computed based on the incremental scheme exposed in
section “Large Configuration Changes of Lattices Based on Discrete Homogeniza-
tion Method”. Note that although we perform a pure bending test, we need to solve
both the equilibrium equations of forces and moments (see Fig. 2.23). Since we
shall focus on bending applied along one coordinate axis, a straightforward com-
putation shows that the natural Lagrangian wryness expressed in (2.56) simplifies
to �n(βn) = Grad

(
ϕn

)
. As an illustration, we compute the out-of-plane bending

response of twill performed over its representative unit cell. The small bending stiff-
ness which is needed to initiate the nonlinear bending computations is related to the
linearized curvature (χxy = ∂ϕy/∂x) by

mxy = Km
T ,xy χxy (2.61)

We then evaluate the internal bending length for twill pattern from the computed
effective rigidities by the expression built from the ratio of the tangent bending
modulus to the summation of the corresponding tangent shear moduli as follows:
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Fig. 2.24 Characteristic
length of twill versus
curvature (ElNady et al.
2016)

Y1: Weft Y2: Warp

Fig. 2.25 Schematic representations of 2.5D layer-to-layer angle interlock: RUC (left) and geo-
metrical model of an elementary cell (right) (ElNady et al. 2016)

lc =
√(

Km
T , xy/2

(
KS
T ,xz + KS

T ,yz

))
(2.62)

Figure 2.24 shows a linear increase of the characteristic length versus the applied
curvature. The components of the tangent stiffness therein evolve versus the imposed
curvature based on the effective constitutive law under bending, relation (2.61).

The next section is devoted to the computation of the large strains response of
2.5D layer-to-layer angle interlock preform.

Large Strain Response of 2.5D Layer-to-Layer Interlock

The homogenizationmethod is quite general to be applicable for any networks having
a periodical architecture. In view of this generalization, a 3D textile multilayer is
analyzed. We consider as specific structures textile multilayer fabrics patterns, viz.,
2.5D layer-to-layer angle interlock. In the same way, an RUC of the 3D fabric is
constructed and modeled as a network of beams connected by nodes at cross points
of the interwoven yarns within the fabric (Fig. 2.25).
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Table 2.10 2.5D
layer-to-layer interlock yarn
geometrical parameters

Width (mm) Thickness (mm)

Weft 0.25 0.15

Warp 0.25 0.15

Fig. 2.26 Evolution of
Cauchy stress versus stretch
for 2.5D layer-to-layer
interlock (ElNady et al.
2016)
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The material data for the plain weave and twill, which are used to define the mate-
rial parameter for the 2.5D interlock RUC, are provided in Tables 2.8 and 2.9. The
entire geometry of the unit cell is constructed based on the geometrical parameters
as summarized in Table 2.10.

The proposed DH method is used to analyze the deformation of the 2.5D layer-
to-layer interlock which will be subjected to uniaxial and equibiaxial loading tests.
Similarly, we plot the Cauchy stress component versus the corresponding stretch (see
Fig. 2.26). Results of uniaxial tension in warp direction depict an essential difference
between the linear and the geometrical nonlinear analysis.

The response of 2.5D layer-to-layer interlock fabric under equibiaxial tension is
displayed in Fig. 2.27, in terms of the evolution of Cauchy stress components along
x and y.

The noticeable nonlinearity of the response along x reveals the change of crimp of
the yarn which tends to align in this direction as the stretch level is increased (for both
uniaxial and biaxial tensions). On the opposite, since the transverse yarn is initially
straight, it does not produce geometrical nonlinearities, as one can deduce from the
rather linear response observed in Fig. 2.27b. Such behavior obviously demonstrates
geometrical nonlinearities present in these fabric structures.

Comparison of the Responses from DH with FE Simulations

We here make evident the practicality of the unit cell approach in FE analyses to
calculate the uniaxial, biaxial, and shear mechanical responses accounting for large
configuration changes. A comparison to FE results in targets to evaluate the effec-
tiveness and exactness of the DH approach. The FE method consists in determining
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Fig. 2.27 Cauchy stress of
a x-direction and
b y-direction versus stretch
for 2.5D layer-to-layer
interlock (ElNady et al.
2016)

the overall effective nonlinear mechanical response over an RUC of the considered
fabric structure, relying on an FE discretization of the unit cell geometry.

The homogenized nonlinear responses previously obtained for the considered
fabric structures plain weave, twill, and 2.5D layer-to-layer interlock are validated by
comparing the evolution of stresses with those obtained, thanks to FE computations
implemented over the corresponding RUC.

FE Validation of the Nonlinear Responses of Plain Weave and Twill
Fabrics

In the present section, 3DFEmodels of woven fabrics at mesostructure are developed
to evaluate the accuracy of the homogenized mechanical properties predicted from
DH. The FE model is capable of simulating elementary cells under simultaneous
axial loadings along both yarn directions. The previous results for the stress–strain
response obtained with the DH technique are now compared with numerical results
obtained from the FE method (ABAQUS), under the specified types of loadings
(we restrict the validation of the computed response to uniaxial and biaxial tests),
with appropriate boundary conditions. The warp and weft yarns are meshed with
the eight-node solid linear hexahedral element (ABAQUS element-type C3D8). We
use a total of 14,804 elements to model the balanced plain weave fabric. To account
for the possible relative displacements between the yarns, a contact with friction
is considered with a master/slave approach. Contact is considered to be an intrinsic
character of woven fabrics which cannot be neglected during themeso-level analysis.
Contact conditions are prescribed between the possible interlacing surfaces of the
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Fig. 2.28 Comparison of
the uniaxial tensile response
for a balanced plain weave
b twill between the DH
method and FE simulations
(ElNady et al. 2016)

yarns under loading and are the same for all loading cases. The tangential behavior
at the contact surfaces in the frame of Coulomb friction model is defined using the
penalty method with a friction coefficient selected as 0.05.

The uniaxial response for the balanced plain weave is depicted in Fig. 2.28a. A
good agreement is obtained using both methods (DH and FE simulations), with a
maximum discrepancy close to 1.41% in the uniaxial test for the considered unit cell
of plain weave (Fig. 2.28a), and close to 6% at 20% for twill submitted to uniaxial
strain (Fig. 2.28b).

The distribution of displacement over the RUC for both plain weave and twill
patterns are displayed in Fig. 2.29.

Validation of the Homogenized Nonlinear Response of 3D Textile
Structures

The stress–strain responses obtained with the DHmethod are validated with FE com-
putations implemented under the specified types of loadings (uniaxial and equibiax-
ial) applied on the RUC of 2.5D layer-to-layer interlock (Fig. 2.30).

The displacement distributions over the RUC of the 2.5D layer-to-layer interlock
under both uniaxial and biaxial testing conditions are given in Fig. 2.31.
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Fig. 2.29 Displacement distributions over a balanced plain weave b twill subjected to a uniaxial
test in x-direction (ElNady et al. 2016)

The difference of about 15% at 20% strain is observed between the response
computed by DH and FE simulations. This is possibly due to the choice of the
contact beam rigidities. Accordingly, we next perform a sensitivity analysis to asses
the influence of the contact beam rigidities including tensile, flexural, and torsional
rigidities on the overall behavior of the 2.5D layer-to-layer angle interlock. The range
of variation of the contact beam rigidity is selected to be 0.1–10 times the longitudinal
beam rigidity. The evolutions of the x component of the Cauchy stress versus stretch
obtained with the DH technique are compared with FE results, under an equibiaxial
loading, for five values of the flexural rigidity of the contact beams.

The computations demonstrate that the tensile and torsion rigidities of the contact
beams have relatively small influence on the nonlinear response. On the contrary, a
variation of the flexural rigidity shows a noteworthy effect, with the percentage of
different variations between DH and FE results from 13.31 to 2.89% for the Cauchy
stress in x-direction and from 14 to 9.52% for the stress in y-direction, as illustrated
in Fig. 2.32.
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Fig. 2.30 Comparison of
a the uniaxial tensile
response and b the
equibiaxial tensile response
for the 2.5D layer-to-layer
interlock between the DH
method and FE simulations
(ElNady et al. 2016)

Regarding the computation cost of the employed DH method compared to FE
computations, considering to be specific the 2.5D layer-to-layer interlock is explained
as follows: the computational time is much reduced with the DH method (about
10 min) compared to FE computations (1 h on the same machine). This reduction
of the computation cost is essentially due to the strong reduction of the number of
degrees of freedom, within the RUC for the DH method, in comparison with the FE
computations.

Identification of Hyperelastic Models for Textile Monolayers

Since the DH method is predictive, it can be conceived as a virtual testing method to
provide a database of responses in different loading conditions (uniaxial, equibiaxial,
shear) to identify a strain energy density for an assumed hyperelastic effective homo-
geneous material. The nonlinear response of such networks can be captured by either
hypoelastic or hyperelastic models; the former, however, may suffer from a well-
known fictitious hysteresis (Holzapfel et al. 2000, 2002); thus, one shall presently
instead adopt a hyperelastic modeling framework.

The selected strain energy density is expressed versus the two relative stretches
in the global coordinate system λ1,λ2 and the shear angle ϑ according to
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Fig. 2.31 Displacement field within the 2.5D layer-to-layer interlock due to a uniaxial extension
in x-direction b equibiaxial extension in xy-direction (ElNady et al. 2016)
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where aα, bβ, cγ, kr1, kr2 are the set of material parameters to be identified. It shall
be noticed that the two coefficients kr1, kr2 therein are required to introduce a depen-
dency of the two stress components S11,S22 versus both stretches. The second Piola-
Kirchhoff stress is then formally obtained from the previous density as
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Fig. 2.32 Effect of the flexural rigidity of the contact beam on the tensile stress–strain response
from nonlinear discrete homogenization in comparison with FE simulations (ElNady et al. 2016)
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Previous expression leads to the three independent stress components
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The material parameters are identified based on a combination of virtual tensile,
equibiaxial, and simple shear tests performed over the unit cell of the considered
unit cell of twill (so that a sufficiently rich database of responses is produced);
their identification proceeds from the minimization of the following functional with
respect to the set of parameters aα, bβ, cγ, kr1, kr2:

Min
aα,bβ,cγ,kr1,kr2

Se
(
aα, bβ, cγ, kr1, kr2

) :=
{∥∥SDH

11 − S11

∥∥2 + ∥∥SDH
22 − S22

∥∥2 + ∥∥SDH
12 − S12

∥∥2}1/2 (2.66)

The function Se
(
aα, bβ, cγ, kr1, kr2

)
is built as the quadratic measure of the error

between the DH stress components and their analytical counterpart, obtained from
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Table 2.11 Optimal material parameters of the potential function for multiple deformation modes.
Units in MPa

a1 a2 a3 b1 b2 b3 kr1 kr2 c1 c2 c3

−340.2 −101.2 197.8 674.6 −999.1 −271.9 360.4 −58.49 8.81 7.7 99.1

the hyperelastic potential. Note that it is necessary to incorporate therein the stresses
obtained from the three considered deformation modes simultaneously, so that the
identified strain energy density has the capability to properly describe the response of
the networks under different loadings not based on these used for the identification of
the strain energy density in (2.66). The stress responses are adjustedwith a third-order
polynomial, using the least square procedure in the Matlab toolbox.

In order to exemplify the methodology, the strain energy density is identified for
the 2D structures textile monolayer fabrics patterns, namely, twill. The response
of this structure is computed under uniaxial tension (applied in weft and warp
directions), biaxial tension, and simple shear load tests. The stress–strain responses
obtained from the nonlinear DH technique for those loadings are illustrated in
Fig. 2.33 together with their third-order polynomial adjustments. The material con-
stants of the model are identified from a least square method (nine sampling points
are used), using uniaxial tension, biaxial tension (with strain ratio k= 2), and simple
shear as loading tests, as shown below. A function Lsqcurvefit in the Optimization
Toolbox of MATLAB has been used. The identified optimal parameters of the strain
energy function are recorded in Table 2.11.

Based on the identified hyperelastic strain energy density for the twill tows, we
predict the response of the twill structure under an equibiaxial test; an excellent
agreement is obtained between the stress–strain results determined from discrete
homogenization and those computed based on the strain energy function (Fig. 2.34).

Generalized Continuum Models of Random Fibrous
Networks

Nature exhibits a large diversity of materials presenting a stochastic fibrous
microstructure, building highly complex, and multifunctional parts. Protein, for
instance, is frequently found in nature in a fibrous form; the most abundant fibrous
protein in mammals is collagen, which constitutes the major part of tendons and
ligaments, and most of the organic matrix in bone and dentin. It confers mechan-
ical stability, strength, and toughness of these tissues (Fratzl 2008). The structural
characteristics of random fibrous networks depend upon the properties of the fibers,
and thus their modeling is necessary in order to understand the mechanism of defor-
mation and failure on system subscale, due to the difficulty of measuring the in situ
deformation mechanisms of the fibrous microstructure. The tradeoff between local
axial stretching and bending deformations of the fibers has an important impact on
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Fig. 2.33 Second Piola-Kirchhoff stress components for a biaxial tension (k= 2)b uniaxial tension
in weft direction c simple shear responses evaluated from nonlinear discrete homogenization and
from the hyperelastic model (ElNady et al. 2016)

Fig. 2.34 Second
Piola-Kirchhoff stress
components from nonlinear
discrete homogenization
(solid line) and equivalent
response computed from the
hyperelastic model (dots)
(ElNady et al. 2016)
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the overall mechanical response; especially, the response of the network to imposed
deformations is likely to be non-affine, the degree of non-affinity being controlled by
the fiber bending length, a scalar quantity which quantifies the relative importance
of the bending to the stretching stiffness, as pointed out in Hatami-Marbini and Picu
(2008, 2009), who evidenced that the network shifts from the non-affinely deform-
ing structure to an affinely deforming one by increasing the fiber bending length. In
Shahsavari and Picu (2013) and Lee and Jasiuk (1995), the authors further concluded
that the degree of heterogeneity decreases by increasing the network density; one of
the most important results as to scale effects is that the heterogeneity leads to a strong
dependency of the apparent moduli on the size of the probed network domain; this
has been modeled in Hatami-Marbini and Picu (2008) by evaluating the correlation
functions of the tensile modulus versus window size. As described in Lee and Jasiuk
(1995), models in the literature developed to simulate the mechanical behavior of
fibrous networks fall into two main categories, namely, phenomenological models
and micromechanical models. Micromechanical models overcome the shortcomings
of the phenomenological models, which very often are not able to capture the relation
of the fiber properties to the model parameters. The primary focus of micromechani-
cally based constitutive models of nonwoven fibrous networks is the elastic behavior.
Cox (1952) was one of the first authors to propose a model for the elastic modulus
of paper based on the mechanics of the fiber network, with all fibers extending from
one end of the mat to the other, and assuming stretching of the fibers as the dominant
deformation mechanism. However, since fibers have a relatively low stiffness and
are randomly oriented, bending is an important feature, particularly in the absence
of a supporting medium (Petterson 1959; Wu and Dzenis 2005).

Generation of Random Fibrous Networks RVEs

According to the criteria identified in Kallmes and Corte (1960), we consider random
structures to be a special class of stochastic fibrous networks and classify a random
process as one where the events are independent of each other and equally likely.

The generated random network consists of finite fibers distributed with a random
orientation, each passing through a point distributed according to a Poisson point
process in a plane. Many fibrous networks are very close to being two-dimensional
because the dimensions perpendicular to their plane are very small relative to the
in-plane dimensions. Here, we consider systems of 2D networks in which the fibers
are of uniform length L0 and are deposited on squared regions of dimensions L. A
typical fibrous network generated under the abovementioned conditions is displayed
in Fig. 2.35.

The mutual interactions of fibers be responsible for the network connectivity;
its nonuniformity can be captured by the fiber number density N which is defined
as the number of fiber centers per unit area or rather the density of network, scalar
quantityD = NL0, within differentwindows of linear sizeL occupying amuch bigger
network. The window size is taken large enough in all simulations to avoid any scale
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Fig. 2.35 Typical window
of analysis (WOA) for a
random fibrous network
(Berkache et al. 2018)

effect. In fact, we checked numerically that the homogenized moduli are stable when
we increase the window size. In practice, window sizes such that the ratio L/L0 > 10
are selected. The cross-links are introduced at all points where fibers intersect, at
which the coordination number is z = 4; they are here modeled as welded, so that
the fibers are loaded both axially and in bending. The angle between intersecting
fibers is preserved and leads to a transfer of the bending moments between fibers.
Numerical computations with welded joints type are more stable than those with pin
joints type, as discussed in Shahsavari and Picu (2013). Nevertheless, computations
point out that there is no influence on the type of interactions (welded or free) on the
homogenized classical and nonclassical moduli.

Computation of the Homogenized Properties Based on Couple
Stress Continua

The deformation of random fibrous networks is extremely non-affine (the motion of
the fibers do not follow the imposed strain over the boundary of the WOA), espe-
cially for such structures that store energy predominantly in the bending deformation
mode of fibers (Hatami-Marbini and Picu 2008). The degree of non-affinity increases
rapidly with decreasing bending stiffness of the filaments, the importance of which
being quantified by the internal bending length lb = √

Ef I/Ef A, a parameter elabo-
rated from the ratio of the fiber bending modulus to its axial stiffness, where Ef is the
fiber tensile modulus, I is the quadratic moment of inertia, and A is the fiber section
area. Increasing the level of heterogeneity leads to more pronounced size effects,
which have deserved previous works (Hatami-Marbini and Picu 2008). Size effects
can be computed by generalized continuum theories, as it has been demonstrated for
a wide class of materials in the literature, including biomaterials (Goda et al. 2013b,
2014; ElNady et al. 2016).
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Fig. 2.36 Distribution of the rotation field in the affine and non-affine deformation regime inside
the WOA of a random fibrous network subjected to bending (Berkache et al. 2018)

The rotation field inside theWOA of a random network submitted to pure bending
in FE simulations (in the small strains regime) is reconstructed from the discrete fiber
rotations, as depicted in Fig. 2.36, in both affine and non-affine regimes. The abbre-
viations ADR and NADR are used here to represent the affine deformation regime
and non-affine deformation regime, respectively. The rotation field is normalized by
maximum value φmax in each regime of deformation. The fiber rotation shows a
nearly uniform gradient in the affine deformation regime (left view in Fig. 2.36),
since it is controlled by the flexion applied to the boundary of theWOA, whereas the
rotation field clearly does not follow the kinematics of the boundary for the non-affine
situation (right view in Fig. 2.36). The presence of pronounced microrotations and
their gradients therefore motivates the identification of a couple stress substitution
medium for the initial discrete random fibrous network.

In the theory of micropolar, the deformation is defined by the displacement vector
u and an independent rotation vector φ, whereas in the couple stress theory, the
rotation vectorφ is not independent from the displacement vector, since it is identified
as the antisymmetric part of the displacement gradient. This leads in the present 2D
context to the expression of the microrotation around the z-axis as

φ = 1

2

(
∂v

∂x
− ∂u

∂y

)
(2.67)

Based on couple stress theory in a 2D plane stress condition, the stress tensor has
four independent components σxx, σyy, σxy, σyx and the couple stress tensor has two
components mxz,myz . The four independent deformation components and the two
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independent microcurvature components κxz, κyz are expressed versus the displace-
ment gradients and the microrotation as follows:

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εxy = ∂v

∂x
− φ, εyx = ∂u

∂y
+ φ; κxz = ∂φ

∂x
, κyz = ∂φ

∂y
(2.68)

Due to of the kinematic coupling (2.67) in the couple stress theory, the strain
tensor εij is symmetrical with components defined as

εxy = εyx = 1

2

(
∂v

∂x
+ ∂u

∂y

)
(2.69)

The dynamical equilibrium in translation and rotation after ignoring body forces
and body moments is written as

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σyx

∂x
+ ∂σyy

∂y
= 0,

∂mxz

∂x
+ ∂myz

∂y
+ σxy − σyx = 0 (2.70)

The balance equation of internal bending momentum (2.70) implies the equality
of both shear stress components σxy = σyx. Therefore, the constitutive equation for a
centrally symmetric unit cell structure can be expressed in the following uncoupled
form:
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in which the coefficients Aij are the classical moduli, and coefficients Dij are the
micropolar moduli that relate the two independent non-nil couple stress components
to the corresponding curvatures. The effective Young’s moduli can be expressed
versus coefficients Aij as

Ex = A11 − A2
12

A22
, Ey = A22 − A2

12

A11
(2.72)

Moreover, the effective Poisson ratios are computed as

νxy = A12

A22
and νyx = A12

A11
(2.73)

The main objective of this section is then to determine the effective constitu-
tive constants of the couple stress continuum from the response of random fibrous
networks within the WOA of different sizes. We design different boundary condi-
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Fig. 2.37 Displacement distributions corresponding to boundary conditions applied to determine
the effective constitutive coefficient D11 (Berkache et al. 2018)

tions for the identification of the independent components of the constitutive elas-
tic constants over a domain � with boundary ∂�. An example of the deformed
shape of the WOA subjected to in-plane bending for the identification of a couple
stress coefficient is shown in Fig. 2.37 based on the following boundary conditions
u = −xy, v = x2/2, on ∂�. For each test, we force the WOA to bear a set of spe-
cific deformation, as described in Berkache et al. (2018), and compute numerically
the total elastic strain energy UWOA stored in the WOA under the corresponding
boundary conditions.

To identify the effective elastic constants, we follow the same procedures as used
in Goda et al. but here restricted to a 2D situation. In this approach, the total strain
energy stored in the WOA is equated to the energy of an equivalent homogeneous
couple stress continuum as follows:

UWOA = Ucouple−stress = V

2

[
εijAijklεkl + κijDijklκkl

]
(2.74)

where V is the volume of theWOA. The strain energy stored in the effective homoge-
neous couple stress continuum can be obtained by the prescribed strain/stress fields.
The fiber bending length is defined as the ratio between the axial stiffness to the
bending stiffness, parameter lb = √

Ef I/Ef A. In Figs. 2.38 and 2.39, we plot in
logarithmic scales the evolution of the Cauchy and couple stress moduli versus the
fiber bending length lb, for a constant network density. Low values of lb enhance
local rotations of the fibers, which do not follow the imposed deformation over the
boundary of the window of analysis, and thus the network responds essentially in a
non-affine manner; opposite to this, high values of lb lead to a rather affine response,
while intermediate lb values correspond to the transition regime. The variation of
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Fig. 2.38 Evolution of classical elastic constants versus normalized fiber bending length lb/L0 for
a constant normalized network density (Berkache et al. 2018)

Fig. 2.39 Evolution of couple stress moduli versus normalized fiber bending length lb/L0 for a
constant normalized network density DL0 = 75 (Berkache et al. 2018)

two out of the four classical moduli with lb (A11 and A33) is shown in Fig. 2.38;
the vertical axis is normalized with the tensile rigidity of the fibers, quantity Ef A,
and the horizontal axis is normalized by the fiber length L0. In these computations,
the network density is kept constant at DL0 = 75. It is noticed that the variable in
the horizontal axis is proportional to the aspect ratio of fibers lb

L0
∝ d

L0
, where d is

the fiber diameter. The transition from affine to non-affine regimes is controlled by
a number of parameters: lb, the network densityD which is inversely proportional to
the distance between cross-links l̄ = π

2D , and the coordination number z (Shahsavari
and Picu 2012; Onck et al. 2005).
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For large lb/L0 values, the classical moduli are proportional to Ef A, and thus the
strain energy is stored predominantly in the axial deformation mode of fibers and the
deformation field is approximately affine. At small lb/L0 ratio, the classical moduli

are proportional to the mechanical parameter Ef A
(

lb
L0

)s
α Ef I , and accordingly the

strain energy is stored predominantly in the bending deformation mode of fibers
and the deformation is non-affine. Figure 2.39 shows the variation of couple stress
moduliD11 andD22; interestingly, the nonclassical moduli exhibit the same behavior
as the classical moduli. Additionally, the transition from ADR to NADR happens in
the same range of values of the ratio lb/L0.

The influence of large strains developed by random fibrous networks and the
consideration of time-dependent effects due to the viscoelastic properties of the
fibers on wave propagation are important aspects encountered in real situations that
shall be investigated in future contributions.

Summary and Future Work

The development of suitable micromechanical schemes for the computation of the
effective mechanical response of fibrous materials is quite important, in order to have
at hand predictive models to analyze the overall computed response in terms of the
underlying microscopic mechanisms. When a RUC can be identified for a quasi-
periodic fibrous network, it is possible to develop specific homogenization schemes
relying on the assumption of inherent periodicity. Although a lot of attention has been
devoted to replacing fibrous large-scale structures by effective continuum models,
less attention has been paid to the consideration of both geometrical nonlinearities
and microstructure effects leading to generalized continua at the continuum level.

We presently extended the linear discrete asymptotic homogenization framework
to the nonlinear setting, based on an update of the lattice geometry and elastic com-
putations done incrementally under a kinematic control. A novel procedure for pre-
dicting the effective nonlinear elastic responses of these repetitive lattices through a
combined linear and nonlinear discrete homogenization scheme has been presented.
The nonlinear stress–strain response has been analyzed incrementally for different
2D and 3D structures under different loading cases including uniaxial, biaxial, simple
shear, and bending, taking into consideration changes of the structure geometry. The
combination of the incremental scheme with the homogenization method delivers
both the classical and nonclassical properties; especially, the micropolar framework
allows deriving the bending response. These theoretical developments have been
implemented into a dedicated code using the lattice geometry and microstructural
properties as an input, and delivering as an output the effective response in the
nonlinear range at the mesoscopic continuum level of the RUC. These nonlinear
homogenization schemes have been applied to meso-level analyses of the mechan-
ical behavior of textile monolayers, 2.5D layer-to-layer interlock to construct their
effective anisotropic micropolar continuum response at the mesoscopic level.
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The proposed micromechanical approach is particularly appealing, due to the dif-
ficulty tomeasure such effective properties for textiles considering their discreteness.
The proposed homogenization technique proves efficient from a numerical point of
view, and it has a great versatility as to the topology of the textile armor, which
makes it a suitable tool to explore and compare in future developments various tex-
tile architectures for both single and multilayer 3D configurations in terms of their
mechanical performances. More generally speaking, the potentiality and versatility
of themethod shall enable to compute themechanical response of architecturedmate-
rials having a repetitive microstructure and assess intrinsic microstructural effects in
the framework of effective generalized continua.
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Chapter 3
Heuristic Homogenization of Euler
and Pantographic Beams

Luca Placidi, Francesco dell’Isola and Emilio Barchiesi

Abstract In the present contribution, we address the following problem: is it pos-
sible to find a microstructure producing, at the macro-level and under loads of the
same order ofmagnitude, a beamwhich can be both extensible and flexible? Using an
asymptotic expansion and rescaling suitably the involved stiffnesses, we prove that
a pantographic microstructure does induce, at the macro-level, the aforementioned
desired mechanical behavior. Thus, in an analogous fashion to that of variational
asymptotic methods, and following a mathematical approach resembling that used
by Piola, we have employed asymptotic expansions of kinematic descriptors directly
into the postulated energy functional and a heuristic homogenization procedure is
presented and applied to the cases of Euler and pantographic beams.

Introduction

While in the standard finite deformation Euler beam theory the energy functional
depends only on the material curvature, i.e., the normalized projection of the second
gradient of the placement on the normal vector to the current configuration, the energy
functional for the nearly inextensible pantographic beam model depends also on the
projection of the second gradient of the placement on the tangent vector to the current
configuration. Thus, the full decomposition of the second gradient of the placement
is present in the latter model. In order to analyze this fact, a heuristic homogenization
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procedure is presented and applied to the cases of Euler (in section“Euler Beams”)
and pantographic (in section“Pantographic Beams”) beams.

Pantographic structures belong to the class of metamaterials that have to be
treated as non-standard (or generalized) continua. Generalized continua (Alibert
et al. 2003; Carcaterra et al. 2015; Abali et al. 2017; Pietraszkiewicz and Eremeyev
2009; Altenbach and Eremeyev 2009), and in particular higher gradient theories, see
dell’Isola et al. (2016b) or dell Isola et al. (2015) for a comprehensive review, are
able to describe behaviors which cannot be accounted for in classical Cauchy theories
(dell’Isola et al. 2015b, 2016a, e; Reiher et al. 2016; Boutin et al. 2017; Seppecher
et al. 2011; Cuomo et al. 2016; Placidi et al. 2016c). In the literature, several examples
can be found motivating the importance of generalized continua: electromechanical
(Enakoutsa et al. 2015) and biomechanical (Placidi et al. 2016a; Giorgio et al. 2015;
Andreaus et al. 2013, 2014) applications, elasticity theory (Andreaus et al. 2010;
Giorgio et al. 2017; Turco et al. 2017; Placidi et al. 2015; dell’Isola et al. 2015a;
Abali et al. 2015), capillary fluids analysis (Auffray et al. 2015), granular microme-
chanics (Yang and Misra 2012; Misra and Poorsolhjouy 2015; Misra and Singh
2015), robotic systems analysis (Della Corte et al. 2016; Del Vescovo and Giorgio
2014), damage theory (Rinaldi and Placidi 2014; Placidi 2015; Madeo et al. 2014c;
Misra 2002; Misra and Singh 2013; Yang and Misra 2010), and wave propagation
analysis (Madeo et al. 2014a; Bersani et al. 2016; Placidi et al. 2008; Madeo et al.
2014b, 2016). Furthermore, second gradient continuummodels always appear when
the considered micro-system is a pantographic structure (Giorgio 2016; dell’Isola
et al. 2016c, d; Scerrato et al. 2016; Giorgio et al. 2016; Rahali et al. 2015; Alib-
ert and Della Corte 2015; Eremeyev et al. 2017). A comprehensive review of the
modeling of pantographic structures can be found in Placidi et al. (2016b), Barchiesi
and Placidi (2017). Several results of numerical investigations can be found in Turco
et al. (2016a, b, c, d), Spagnuolo et al. (2017), Andreaus et al. (2010), Battista et al.
(2015, 2016), Greco et al. (2016), and Turco and Rizzi (2016), while for an outline
of recent experimental results we refer to dell’Isola et al. (2015c) and Ganzosch et al.
(2016).

Euler Beams

Introduction

Customarily, the theory of nonlinear beams is either postulated bymeans of a suitable
least action principle in the so-called “direct way” or is deduced, by means of a more
or less rigorous procedure, starting from a three-dimensional elasticity theory. The
first example of direct model can be found in the original paper by Euler (Euler and
Carathéodory 1952). Many epigones of Euler used this approach: a comprehensive
account for this procedure can be found inAntmanAntman (1995).On the other hand,
by following the procedure described by De Saint-Venant, one can try to identify
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the constitutive equation of a Euler type (1D) model in terms of the geometrical and
mechanical properties, at microlevel, of the considered mechanical systems. This is
done, in more modern textbooks, using a more or less standard asymptotic micro–
macro identification procedure, which generalizes the one used by De Saint-Venant
for bodies with cylindrical shape (see, for instance, Placidi et al. 2017). It can be
rigorously proven, under a series of well-precised assumptions, that only flexible
and inextensible beams can be obtained (Murat and Sili 1999; Mora and Müller
2004; Jamal and Sanchez-Palencia 1996; Pideri and Seppecher 2006; Allaire 1992;
Bensoussan et al. 1978).

Long fibers are often modeled as Euler beams. Here, we will define a Euler
beam from a continuum point of view for the extensible and for the inextensible
cases. A discrete model for the same beam will be also introduced and a heuristic
homogenization procedure, see, e.g., dell’Isola et al. (2016d), applied. A rescaling
law will be derived for the extensible and for the inextensible cases.

Continuous Euler Beams

Kinematics

At each point S of C0, see Fig. 3.1, is associated a copy of the rigid sectionR through
O such that C0 andR are orthogonal. B0 is the reference configuration of a beam. B
is the present configuration, which is defined as

(i) A vector function χ (S) that gives the present position of q0 (S).
(ii) An orthogonal tensor field R (S) that gives the rotation of R from the reference

to the present configuration.

The kinematics is therefore defined by the following fields (Fig. 3.2):

χ (S) ,R (S) . (3.1)

The admissible motion is, e.g., for a cantilever, those kinematic fields such that

χ (0) = 0, R (0) = 0.

Fig. 3.1 Reference configuration B0. q0 (S) is the position of the origin O of the section R
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Fig. 3.2 Definition of the
fundamental kinematical
fields, where the rotation ϕ
defines the rotation matrix R,
in the two-dimensional case
via Eq. (3.7)

Action

Physical intuition and definition of the action functional

A =
[∫ L

0
W

(
χ,R,χ′,R′) − Wext (χ,R)

]
− Wext

S

∣∣
S=0,S=L ,

where W is the strain energy that is assumed to depend upon the fundamental kine-
matical fields and their derivative. Wext is the energy of the distributed forces and
Wext

S that of the concentrated ones.

Objectivity and Representation of the Invariants

Let us assume that the fundamental kinematical fields in one frame of reference are
represented in (3.1). In another frame of reference they are as

χ̃ = U + Qχ, R̃ = QR, (3.2)

where U and Q are the translation and the rotation of the second frame of reference
with respect to the first one. The derivative of (3.2) yields

χ̃′ = Qχ′, R̃′ = QR′. (3.3)

Let us define the following two fields in the first frame of reference

E = RTR′ (3.4)

e = RTχ′ − q′
0 (S) . (3.5)

In the second frame of reference, they are from (3.2) to (3.5)

Ẽ = R̃T R̃′ = RTQTQR′ = RTR′ = E

ẽ = R̃T χ̃′ − q′
0 (S) = RTQTQχ′ − q′

0 (S) = RTχ′ − q′
0 (S) = e,

which means that they are invariant. In order to represent E and e, we assume a
Cartesian frame of reference. The origin of such a frame of reference is q0 (0)with
basis
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D1 = q′
0, D2 D3.

If S is a curvilinear abscissa of straight frame of reference

q0 = S D1

that yields

q′
0 = D1 =

⎛
⎝ 1
0
0

⎞
⎠ .

The 2D assumption is
χ ∈ span {D1,D2} .

We define the displacement vector field

u = χ − q0,

and therefore its derivative

u′ = χ′ − D1 ⇒ u′ =
(
u′
1

u′
2

)
=

(
χ′
1 − 1
χ′
2

)
,

so that the derivative of the placement is

χ′ =
(

χ′
1

χ′
2

)
=

(
1 + u′

1
u′
2

)

and its squared modulus, ∥∥χ′∥∥2 = (
1 + u′

1

)2 + u′2
2 .

A representation of R is given in terms of the rotation angle ϕ,

R = cosϕD1 ⊗ D1 − sinϕD1 ⊗ D2 + sinϕD2 ⊗ D1 + cosϕD2 ⊗ D2 (3.6)

=
(
cosϕ − sinϕ
sinϕ cosϕ

)
. (3.7)

Thus, the two invariants are represented as follows:

E = RTR′ =
(

cosϕ sinϕ
− sinϕ cosϕ

)(− sinϕ − cosϕ
cosϕ − sinϕ

)
ϕ′ (3.8)

=
(

0 −ϕ′
ϕ′ 0

)
=

(
0 −κ
κ 0

)
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e =
(

ε
γ

)
= RTχ′ − q′

0 (S) = (3.9)

=
(

cosϕ sinϕ
− sinϕ cosϕ

)(
1 + u′

1
u′
2

)
−

(
1
0

)

=
((

1 + u′
1

)
cosϕ + u′

2 sinϕ − 1
− (

1 + u′
1

)
sinϕ + u′

2 cosϕ

)
,

which means in terms of κ, ε, and γ. A representation of the internal energy W that
is compatible with the indifference frame principle is given by the function g

W
(
χ,R,χ′,R′) = g (κ, ε, γ) .

Let us give a representation for κ andε whether the beam is assumed to be shear
un-deformable, i.e., with γ = 0. Thus, from the second equation of (3.9) we have

(
1 + u′

1

)
sinϕ = u′

2 cosϕ, ⇒ tanϕ = u′
2

1 + u′
1

, (3.10)

that means

ϕ = arctan
u′
2

1 + u′
1

= arctan
χ′
2

χ′
1

. (3.11)

Besides from the first equation of (3.9), we have

ε = −1 + (
1 + u′

1

)
cosϕ + u′

2 sinϕ (3.12)

Keeping in mind that

tan2 ϕ = sin2 ϕ

cos2 ϕ
= 1 − cos2 ϕ

cos2 ϕ
= 1

cos2 ϕ
− 1

that yields

1 + tan2 ϕ = 1

cos2 ϕ
,

we have from (3.10)

cos2 ϕ = 1

1 + tan2 ϕ
= 1

1 +
(

u′
2

1+u′
1

)2 =
(
1 + u′

1

)2
(
1 + u′

1

)2 + u′2
2

,

that yields

cosϕ = 1 + u′
1√(

1 + u′
1

)2 + u′2
2

(3.13)
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and

sinϕ = tanϕ cosϕ = u′
2

1 + u′
1

1 + u′
1√(

1 + u′
1

)2 + u′2
2

= u′
2√(

1 + u′
1

)2 + u′2
2

. (3.14)

Therefore, from (3.12), (3.13), and (3.14)

1 + ε = (
1 + u′

1

) 1 + u′
1√(

1 + u′
1

)2 + u′2
2

+ u′
2

u′
2√(

1 + u′
1

)2 + u′2
2

= (3.15)

=
(
1 + u′

1

)2 + u′2
2√(

1 + u′
1

)2 + u′2
2

=
√(

1 + u′
1

)2 + u′2
2 = ∥∥.χ′∥∥ (3.16)

Besides, the derivative of (3.11) is

κ = ϕ′ = 1

1 +
(

χ′
2

χ′
1

)2 χ′′
2χ

′
1 − χ′

2χ
′′
1

χ′2
1

= χ′′ · (∗χ′)
‖χ′‖2 , (3.17)

where the 90◦ rotation matrix is defined as follows:

∗ =
(
0 −1
1 0

)
,

so that

χ′′ · (∗χ′) = (
χ′′
1 χ′′

2

) (0 −1
1 0

)(
χ′
1

χ′
2

)
(3.18)

= (
χ′′
1 χ′′

2

) (−χ′
2

χ′
1

)
= −χ′

2χ
′′
1 + χ′′

2χ
′
1. (3.19)

Let us call

ê = χ′

‖χ′‖ , c̃ = χ′′

‖χ′‖ . (3.20)

Thus, the curvature (3.17) is
κ = ϕ′ = (∗ê) · c̃. (3.21)

Macroscopic Strain Energy for the General Case

A quadratic form of the strain energy in terms of the two invariants κ, from (3.21),
and ε, from (3.16), is
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Umacro =
∫ l

0

[
1

2
Kbκ

2 + 1

2
keε

2

]
dS (3.22)

=
∫ l

0

⎡
⎣1

2
Kb

(
χ′′ · (∗χ′)

‖χ′‖2
)2

+ 1

2
Ke

(∥∥χ′∥∥ − 1
)
2

⎤
⎦ dS. (3.23)

It is worth to be noted that the strain energy is of second gradient type only for
the normal component

(∗ê) · χ′′. The tangential component ê · χ′′ do not have any
contribution in the strain energy. In pantographic structures, we will see that also this
tangential contribution is able to accumulate strain energy.

Macroscopic Strain Energy for the Inextensible Case

For inextensible beams, χ′ is the unit vector ê,

∥∥χ′∥∥2 = 1 = χ′ · χ′ (3.24)

that means
χ′′ · χ′ + χ′ · χ′′ = 0 =⇒ χ′ · χ′′ = 0,

and

∥∥χ′′∥∥2 = χ′′ · χ′′ = χ′′ · [((∗χ′) · χ′′) ∗ χ′ + ((
χ′) · χ′′)χ′] =

= χ′′ · [((∗χ′) · χ′′) ∗ χ′] = [
χ′′ · (∗χ′)]2 . (3.25)

Thus, from (3.24) and (3.25), the strain energy (3.23) for the inextensible case is

Umacro =
∫ l

0

⎡
⎣1

2
Kb

(
χ′′ · (∗χ′)

‖χ′‖2
)2

⎤
⎦ dS =

∫ l

0

1

2
Kb

∥∥χ′′∥∥2 dS. (3.26)

Discrete Henky-Type Beam

Microscopic models for the inextensible Euler beams in the reference configuration
are plotted in Fig. 3.3 (bottom). The bars are rigid and of length ε

Piola’s Ansatz
pi = χ (Pi) , (3.27)

Thus, the position of the other points is
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Fig. 3.3 Microscopic models for the inextensible Euler beams in (bottom) the reference configu-
ration. Definition (top) of the angle θi

pi+1 = χ (Pi+1) = χ (Pi) + εχ′ (Pi) + 1

2
ε2χ′′ (Pi) . (3.28)

pi−1 = χ (Pi) − εχ′ (Pi) + 1

2
ε2χ′′ (Pi) , (3.29)

so that the cosine of the angle θi is defined, in the inextensible case (3.24), by

cos θi = (pi+1 − pi) · (pi−1 − pi)

‖pi+1 − pi‖ ‖pi−1 − pi‖ (3.30)

=
[
εχ′ (Pi) + 1

2ε
2χ′′ (Pi)

] · [−εχ′ (Pi) + 1
2ε

2χ′′ (Pi)
]

ε2
, (3.31)

= −ε2
∥∥χ′∥∥2 + 1

2ε
3χ′ · χ′′ − 1

2ε
3χ′ · χ′′ + 1

4ε
4χ′′ · χ′′

ε2
(3.32)

= −1 + 1

4
ε2χ′′ · χ′′. (3.33)

Discrete energy in the inextensible case is defined as

Umicro =
N∑
i=1

kb (1 + cos θi) =
N∑
i=1

1

4
kbε

2
∥∥χ′′∥∥2 .

With the homogenization formula,

N∑
i=1

ε (·) −→
∫ l

0
(·) dS, (3.34)

we have

Umicro =
∫ l

0

1

4
kbε

∥∥χ′′∥∥2 dS. (3.35)
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An identification of (3.26) and (3.35) implies

kbε = 2Kb. (3.36)

Thus, in order to have a finite macro-energy, even in the limit ε → 0, we need to
impose the scaling law (3.36). This means that, if one wants a finite macro-energy,
then the lower the size of the cell, the higher is the rigidity of the rotational spring.
Besides, in the limit of ε → 0, kb should be infinite, i.e., kb → ∞.

For extensible beams, the distance between internal hinges is not fixed to be equal
to ε. The extensible bar at the right-hand side of Pi has the following length:

‖pi+1 − pi‖ =
√[

εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]
·
[
εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]
(3.37)

=
√

ε2 ‖χ′‖2 + 1

2
ε3χ′ · χ′′ + 1

2
ε3χ′ · χ′′ + 1

4
ε4χ′′ · χ′′ (3.38)

= ε

√
‖χ′‖2 + εχ′ · χ′′ + 1

4
ε2χ′′ · χ′′ = ε

∥∥χ′∥∥ + ε2
χ′ · χ′′

2 ‖χ′‖ . (3.39)

The extensible bar on the left-hand side of Pi has the following length:

‖pi−1 − pi‖ =
√[

−εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]
·
[
−εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]

=
√

ε2 ‖χ′‖2 − 1

2
ε3χ′ · χ′′ − 1

2
ε3χ′ · χ′′ + 1

4
ε4χ′′ · χ′′

= ε

√
‖χ′‖2 − εχ′ · χ′′ + 1

4
ε2χ′′ · χ′′ = ε

∥∥χ′∥∥ − ε2
χ′ · χ′′

2 ‖χ′‖ .

The representation of the cosine of the angle θi in the extensible case, from (3.31) to
(3.33), is

cos θi = (pi+1 − pi) · (pi−1 − pi)

‖pi+1 − pi‖ ‖pi−1 − pi‖ (3.40)

=
[
εχ′ (Pi) + 1

2ε
2χ′′ (Pi)

] · [−εχ′ (Pi) + 1
2ε

2χ′′ (Pi)
]

(
ε ‖χ′‖ + ε2 χ′ ·χ′′

2‖χ′‖
) (

ε ‖χ′‖ − ε2 χ′ ·χ′′
2‖χ′‖

) (3.41)

= −ε2
∥∥χ′∥∥2 + 1

4ε
4χ′′ · χ′′

ε2 ‖χ′‖2 − 1
4ε

4
(

χ′ ·χ′′
‖χ′‖

)2 = − ∥∥χ′∥∥2 + 1
4ε

2χ′′ · χ′′

‖χ′‖2 − 1
4ε

2
(

χ′ ·χ′′
‖χ′‖

)2 . (3.42)

The Taylor series expansion of the function f (x) around x = 0
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f (x) = −a + bx

a − cx
= −1 + f ′ (0) x, (3.43)

f ′ (x) = b (a − cx) − (−a + bx) (−c)

(a − cx)2
, (3.44)

f ′ (0) = ba − ac

a2
= b − c

a
(3.45)

that imply

cos θi = −1 +
χ′′ · χ′′ −

(
χ′ ·χ′′
‖χ′‖

)2
4 ‖χ′‖2 ε2. (3.46)

Discrete energy for the extensible case is therefore

Umicro =
N∑
i=1

ke
2

(‖pi+1 − pi‖ − ε)2 + kb (1 + cos θi) ,

that, because of (3.39) and (3.46)

Umicro =
N∑
i=1

ke
2

(‖pi+1 − pi‖ − ε)2 + kb (1 + cos θi) (3.47)

=
N∑
i=1

ke
2

ε2
(∥∥χ′∥∥ − 1

)2 + kb
χ′′ · χ′′ −

(
χ′·χ′′
‖χ′‖

)2
4 ‖χ′‖2 ε2. (3.48)

The last addend, because of the definitions (3.20), is rearranged as

χ′′ · χ′′ −
(

χ′·χ′′
‖χ′‖

)2
‖χ′‖2 = c̃ · c̃ − (

c̃ · ê)2 (3.49)

= c̃ · (c̃ − ê
(
c̃ · ê)) = c̃ · c̃⊥ = c̃⊥ · c̃⊥ = [

c̃ · (∗ê)]2 , (3.50)

which imply another form of the discrete strain energy

Umicro =
N∑
i=1

ke
2

ε2
(∥∥χ′∥∥ − 1

)2 + 1

4
kb

[
χ′′ · (∗χ′)

‖χ′‖2
]2

ε2. (3.51)

With the homogenization formula (3.34), the equation (3.51) yields

Umicro =
∫ l

0

1

2
εke

(∥∥χ′∥∥ − 1
)2 + 1

4
kbε

[
χ′′ · (∗χ′)

‖χ′‖2
]2

dS.
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Thus, in order to have a finite macro-energy, we need to impose the following rescal-
ing law:

kbε = 2Kb, εke = Ke. (3.52)

Thus, in order to have a finite macro-energy, even in the limit ε → 0, we need to
impose the scaling laws (3.52). This means that, if one wants a finite macro-energy,
then the lower the size of the cell, the higher is the rigidity of the tensional and of the
rotational springs. Besides, in the limit of ε → 0, kb should be infinite, i.e., kb → ∞.

Pantographic Beams

Introduction

In this section, we discuss the discrete micro-mechanical model which is employed
throughout this paper. We begin giving a geometrical description and then we give a
mechanical characterization, by choosing a deformation energy. It is a Hencky-type
spring model with the geometrical arrangement of a pantographic strip. Once the
energy of the micro-model is chosen in its general form, we assume a particular
asymptotic behavior for some relevant kinematic quantities, i.e., the elongation of
oblique springs, as will be clear in the sequel. We consider the quasi-inextensibility
case, i.e., the relative elongation of the oblique springs is small. As a further spe-
cialization, the inextensibility case is considered. Finally, after having defined a
micro–macro identification, we express the energy of the micro-system in terms of
macroscopic kinematic descriptors to prepare the field to the homogenization pro-
cedure which will be discussed in details in the next section.

Discrete Micro-model

Geometry

In the spirit of dell’Isola et al. (2016d), Alibert and Della Corte (2015), and Alibert
et al. (2017), in this section, we introduce a discrete-spring model (also referred to
as the micro-model, since it resembles the features of a specific microstructure). The
topology and features of the undeformed and deformed discrete-spring system are
summarized in Figs. 3.4 and 3.5, respectively. In the undeformed configuration, N +
1material particles are arranged upon a straight line at positionsPi’s, i ∈ [0;N ], with
a uniform spacing ε. The basic ith unit cell centered in Pi is formed by four springs
joined together by a hinge placed at Pi. Between two oblique springs, belonging to
the same cell and lying on the same diagonal, a rotational spring opposing to their
relative rotation is placed. Rotational springs are colored in Fig. 3.4 in blue and red.
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Fig. 3.4 Undeformed spring system resembling the microstructure

Fig. 3.5 Deformed spring system resembling the microstructure

We denote with pi the position in the deformed configuration corresponding to posi-
tion Pi in the reference one. In order to completely describe the kinematics of the
micro-model, we have to introduce other descriptors. At this end, the length of the
oblique deformed springs, indicated with lαβ

i , is introduced, the indices α and β
belonging, respectively, to the sets {1, 2} and {D, S} and referring to the first and
second diagonal and left and right, respectively. Referring to Fig. 3.5, we consider
the ith node, notwithstanding that the same quantities can be defined for each node.
We define αi as the angle between the vectors pi − pi−1 and pi − pi+1, respectively.
We define as ϑα

i the angle measuring the deviation of two opposite oblique springs
from being collinear. In order to illustrate the definition of ϕ

αβ
i , we consider the case

α = 1 and β = D. The quantityϕ1D
i is the angle between the vector pi+1 − pi and the

upper oblique spring hinged at pi.Bymeans of elementary geometric considerations,
we have that
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ϑ1
i = αi + ϕ1D

i − ϕ1S
i

ϑ2
i = αi + ϕ2S

i − ϕ2D
i , i ∈ [0;N ] . (3.53)

In the undeformed configuration, see Fig. 3.4, we have

lαβ
i =

√
2

2
ε, α = 1, 2 β = D, S i ∈ [0;N ]

ϑ1
i = ϑ2

i = 0

‖pi − pi−1‖ = ε, i ∈ [0;N ] . (3.54)

Considering that ϕαD
i ,ϕαS

i ∈ [0,π], by means of the law of cosines, we get

ϕ1D
i = cos−1

(
‖pi+1 − pi‖2 + (

l1Di
)2 − (

l2Si+1

)2
2l1Di ‖pi+1 − pi‖

)

ϕ2D
i = cos−1

(
‖pi+1 − pi‖2 + (

l2Di
)2 − (

l1Si+1

)2
2l2Di ‖pi+1 − pi‖

)

ϕ1S
i = cos−1

(
‖pi − pi−1‖2 + (

l1Si
)2 − (

l2Di−1

)2
2l1Si ‖pi − pi−1‖

)

ϕ2S
i = cos−1

(
‖pi − pi−1‖2 + (

l2Si
)2 − (

l1Di−1

)2
2l2Si ‖pi − pi−1‖

)
. (3.55)

Mechanical Model

Themicro-model energy, written as a combination of the elastic energy contributions
of the springs, is defined as

M =
∑
i

∑
α,β

keαβ,i

2

(
lαβ
i −

√
2

2
ε

)2

+
∑
i

∑
α

kfα,i

2

(
ϑα
i

)2 +

+
∑
i

kmi
2

(‖pi+1 − pi‖ − ε)2 . (3.56)

Reminding that ϑα
i = αi + (−1)α

(
ϕαS
i − ϕαD

i

)
, then (3.56) recasts as

M =
∑
i

∑
α,β

keαβ,i

2

(
lαβ
i −

√
2

2
ε

)2

(3.57)
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+
∑
i

∑
α

kfα,i

2

[
αi + (−1)α

(
ϕαS
i − ϕαD

i

)]2 +

+
∑
i

kmi
2

(‖pi+1 − pi‖ − ε)2 .

In the next subsections, we will specialize this form of the energy by means of
assumptions on the properties of the micro-system. In particular, we will discuss in
detail the representation of the micro-energy for the quasi-inextensibility assumption
that will be made clear next and, subsequently, for the (complete) inextensibility
cases.

Toward the Continuum Model

Asymptotic Expansion and Quasi-inextensibility Assumption

We postulate that the following asymptotic expansion holds for lαβ
i :

lαβ
i = εl̃αβ

i1 + ε2 l̃αβ
i2 + o

(
ε2
)
, (3.58)

where the constant (with respect to ε) term is not present. We now turn to what
we refer to as the quasi-inextensibility case. It consists in fixing the value of the
first-order term in (3.58) as l̃αβ

i1 =
√
2
2 . Moreover, to lighten the notation, we drop the

subscript “2” of l̃αβ
i2 , i.e., l̃αβ

i = l̃αβ
i2 . Hence, (3.58) reads as

lαβ
i =

√
2

2
ε + ε2 l̃αβ

i + o
(
ε2
)
. (3.59)

Piola’s Ansatz

The reference shape of the macro-model is a one-dimensional straight segment S
and we introduce on it an abscissa s ∈ [0,B] – where B = Nε is the length of S
which labels each position in S. Proceeding as in the pioneering works of Gabrio
Piola, an Italian mathematician and physicist who lived in the 1800s (see Dell’Isola
et al. 2015 for a historical review), we introduce the so-called kinematical maps, i.e.,
some fields in the macro-model that uniquely determine pi and l̃αβ

i :

χ : [0,B] → E
l̃αβ : [0,B] → R

+, (3.60)
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with E the Euclidean space on V ≡ R
2. We choose χ to be the placement function

of the 1D continuum and, hence, it has to be injective. The current shape can be
regarded as the image of the (sufficiently smooth) curve χ : [0,B] → E and, unlike
the reference shape, it is not parameterized by its arc length and it is not a straight line
in general. In order for these fields to uniquely determine the kinematical descriptors
of the micro-model (i.e., pi and l̃αβ

i ), we use the Piola’s Ansatz and impose

χ (si) = pi

l̃αβ (si) = l̃αβ
i , ∀i ∈ [0;N ] . (3.61)

Micro-model Energy as a Function of Macro-model Descriptors

In this subsection, we obtain the micro-model energy for the quasi-inextensibility
case in terms of the macroscopic kinematical maps. Assuming that χ is at least twice
continuously differentiable with respect to the space variable in si’s, we have

χ (si+1) = χ (si) + εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)

χ (si−1) = χ (si) − εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)
. (3.62)

Plugging (3.61) in (3.59) and (3.62), we get the following expressions:

lαβ
i =

√
2

2
ε + ε2 l̃αβ (si) + o

(
ε2
)

pi+1 − pi = εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)

pi−1 − pi = −εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)
. (3.63)

Substituting (3.63) into (3.55) and expandingϕαS
i − ϕαD

i up to first orderwith respect
to ε, we get

ϕαS
i − ϕαD

i =
√
2
4

[‖χ′ (si) ‖2]′ + [
l̃(3−α)D (si−1) − l̃(3−α)S (si+1)

]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

ε +

+
[‖χ′ (si) ‖2 − 1

] [
l̃αS (si) − l̃αD (si)

]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

ε + o (ε) . (3.64)
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Finally, substituting (3.64) in (3.57) yields the micro-model energyM as a function
of the kinematical descriptors χ and l̃αβ of the macro-model

M =
∑
i

∑
α,β

keαβ,iε
4

2

(
l̃αβ
i

)2 +
∑
i

kmi ε2

2

(‖χ′
i‖ − 1

)2
(3.65)

+
∑
i

∑
α

kfα,iε
2

2

{
ϑ′ (si)

+ (−1)α

√
2
4

[‖χ′ (si) ‖2]′ + [
l̃(3−α)D
i (si−1) − l̃i

(3−α)S
(si+1)

]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

+

+ (−1)α

[‖χ′ (si) ‖2 − 1
] [

l̃αSi (si) − l̃i
αD

(si)
]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

}2

,

where αi = εϑ′ (si) has been used and

ϑ′ = χ′
⊥ · χ′′

‖χ′‖2 ,

with χ′
⊥ the 90◦ anticlockwise rotation of χ′, is the material curvature, i.e., rate

of change with respect to the reference abscissa of the orientation of the tangent
χ′ (s) = ρ (s) [cosϑ (s) e1 + sin ϑ (s) e2] to the deformed centerline. We remark that
the micro-model energy, when written in terms of macroscopic fields, contains
already a contribution from the second gradient of χ(s). Finally, it is worth to
be noticed that, for a fixed ε, Eq. (3.65) provides an upper bound for ||χ′||, i.e.,
‖χ′‖ <

√
2, even if no kinematic restrictions directly affect ||χ′||.

The Case of Inextensible Fibers

We consider now the case of inextensible oblique springs. This translates in con-
sidering l̃αβ

i = 0 and it is referred as the inextensibility case. Moreover, for the
sake of simplicity, we consider the elastic constants of the rotational springs to
satisfy k1F,i = k2F,i := kF,i, ∀i ∈ [1;N ]. We remark that l̃αβ

i = 0 implies, through a
purely geometric argument, that ϕS1

i+1 = ϕS2
i+1 = ϕD1

i = ϕD2
i := ϕi. Once the kine-

matic restrictions implied by the inextensibility assumption have been presented, we
are ready to define the micro-model energy (3.57) as

I =
∑
i

kfi
∑

α

[
αi + (−1)α (ϕi − ϕi−1)

]2
2

(3.66)
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+
∑
i

kmi
2

(‖pi+1 − pi‖ − ε)2 .

Proceeding in analogy with the previous construction, we introduce the kinematical
map

ϕ : [0,B] →
[
0,

π

2

]

and, then, we perform the Piola’s Ansatz by imposing

ϕ (si) = ϕi, ∀i ∈ [0;N ] . (3.67)

Assuming both χ and ϕ to be at least one time continuously differentiable with
respect to the space variable in si and taking into account the Piola’s Ansatz (3.67),
we have

pi+1 − pi = εχ′ (si) + o(ε)

ϕi−1 − ϕi = −εϕ′ (si) + o(ε). (3.68)

Substituting (3.68) into (3.66) yields the micro-model energy for the inextensibility
case in terms of the kinematical quantities of the macro-model

I =∑
i

kfi ε
2 [ϑ′2 (si) + ϕ′

i
2 (si)

] +
∑
i

kmi ε2

2

(‖χ′
i‖ − 1

)2
. (3.69)

We now impose the so-called internal connection constraint:

√
2ε cosϕ (si) = ‖χ (si+1) − χ (si) ‖, (3.70)

which, up to ε-terms of order higher than one, reads

√
2 cosϕ = ‖χ′‖. (3.71)

This constraint ensures that, in the deformed configuration, the upper-left spring of
the ith cell is hinge joint with the upper-right spring of the (i − 1)th cell, and the
lower-left spring of the ith cell is hinge joint with lower-right spring of the (i − 1)th
cell. Due to this constraint, the maps ϕ and χ are not independent and it is possible
to rewrite the expression of the micro-model energy in terms of the placement field
χ(s) only. Indeed, deriving (3.71) with respect to the space variable yields

− √
2ϕ′ (si) sinϕ (si) = ‖χ′ (si) ‖′, (3.72)
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which, in turn, implies

ϕ′ (si) = − ‖χ′ (si) ‖′
√
2 sinϕ (si)

.

Reminding ϕ ∈ [0,π] and taking into account (3.71), we get

ϕ′
i = − ‖χ′

i‖′
√
2
√
1 − cos2ϕ (si)

=

= − ‖χ′
i‖′√

2 − ‖χ′
i‖2

.

Hence, in the inextensibility case, the micro-model energy (3.69) can be recast, as a
function of the macro-model descriptor χ only, as

I = (3.73)

∑
i

kfi ε
2

⎡
⎣[

ϑ′ (si)
]2 +

(
‖χ′ (si) ‖′√

2 − ‖χ′ (si) ‖2
)2

⎤
⎦ +

∑
i

kmi ε2

2

(‖χ′ (si) ‖ − 1
)2

.

Clearly, since the inextensibility case is just a special case of the quasi-inextensibility
case, it is possible to show that this expression can be also obtained in a more direct
way from (3.65) by setting l̃αS (si) = 0 and k1F,i = k2F,i := kF,i.

Continuum-Limit Macro-model

In this section, by performing the final steps of the heuristic homogenization proce-
dure presented throughout this paper, we derive a 1D continuummodel, also referred
to as themacro-model, associated to the aforementioned microstructure. Besides, we
analyze the quasi-inextensibility and inextensibility cases and we obtain the corre-
sponding macro-model energies in terms of the displacement field χ.

Rescaling of Stiffnesses and Heuristic Homogenization

The preliminary step to perform the homogenization procedure consists of the def-
inition of the quantities Ke

αβ,i, K
f
α,i, and K

m
i . These quantities are scale-invariant,

meaning that they do not depend on ε. Their role is to keep track of the asymptotic
behavior of the stiffnesses keα,β,i, k

f
α,i, and kmi of the micro-model springs. More

explicitly, we assume

keαβ,i(ε) = K
e
αβ,i

ε3
; kfα,i(ε) = K

f
α,i

ε
; kmi (ε) = K

m
i

ε
. (3.74)
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We remark that in this rescaling, as ε approaches zero, the ratio between the stiffness
keαβ,i of the oblique springs and the stiffness kfα,i will approach infinity with a rate

of divergence in ε equal to two, i.e.,
keαβ,i

keα,i
∼ ε2. Now, we are ready to perform the

homogenization procedure. First, we consider the more general quasi-inextensibility
case. For simplicity, let us set

K
e
1D,i = K

e
1S,i = K

e
2D,i = K

e
2S,i := K

e
i ; K

f
1,i = K

f
2,i := K

f
i . (3.75)

Let us introduce the kinematical maps

K
e : [0,B] → R

+; K
f : [0,B] → R

+; K
m : [0,B] → R

+

such that they satisfy the following Piola’s Ansatz:

K
e (si) = K

e
i ; K

f (si) = K
f
i ; K

m (si) = K
m
i . (3.76)

Substituting (3.74) in (3.65), taking into account (3.75) and (3.76), and letting ε → 0
yield

E =∫
S

K
e

2

(
l̃1S

)2
ds +

∫
S

K
e

2

(
l̃1D

)2
ds

+
∫
S

K
e

2

(
l̃2S

)2
ds +

∫
S

K
e

2

(
l̃2D

)2
ds +

+
∫
S

K
f

2

{
ϑ′

+
−√

2
(‖χ′‖2)′ − 4

[(
l̃2D − l̃2S

)
− (‖χ′‖2 − 1

) (
l̃1D − l̃1S

)]

‖χ′‖√2 − ‖χ′‖2

⎫⎬
⎭

2

ds +

+
∫
S

K
f

2

{
ϑ′

+
√
2
(‖χ′‖2)′ + 4

[(
l̃1D − l̃1S

)
+ (‖χ′‖2 − 1

) (
l̃2S − l̃2D

)]

‖χ′‖√2 − ‖χ′‖2

⎫⎬
⎭

2

ds +

+
∫
S

K
m

2

(‖χ′‖ − 1
)2
ds, (3.77)

which is the continuum-limit macro-model energy for a 1D pantographic beam under
the hypothesis of quasi-inextensible oblique micro-springs. It is worth to remark
that, when K

m = 0, l̃αβ = 0 and χ (s) = Cse1, with C ∈ R, the beam undergoes a
floppymode, i.e., (3.77) vanishes. Thus, under the above conditions, the configuration
χ (s) = Cse1 is isoenergetic to the undeformed configuration for any C. For a fixed
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ε, considering kmi = 0 and l̃i
αβ = 0 in the micro-model energy (3.65), we have that

χ(si) = Csie1 is a floppy mode for the micro-model as well. This means that the
homogenization procedure that we have carried out has preserved a key feature of
the micro-model. Up to now, the expression of the continuum-limit homogenized
energy depends both on the kinematical maps χ and l̃. In the next section, we show
that, at equilibrium, it is possible to write the macro-energy in terms of the placement
field only.

Macro-model Energy as a Function of the Placement Field

We now equate to zero the first variations of (3.77) with respect to l̃αβ’s, i.e., we look
for stationary points, with respect to l̃αβ , of (3.77). This is a necessary first-order
condition for optimality. In the continuum limit homogenized energy, no spatial
derivatives of l̃αβ appear. Such energy depends only by linear and quadratic con-
tributions in l̃αβ . Hence, this process yields four algebraic linear equations in l̃αβ .
Solving these equations gives l̃αβ at equilibrium

l̃1D =
√
2

2
K

f
(
χ′′ · C + ϑ′D

)

l̃2D =
√
2

2
K

f
(
χ′′ · C − ϑ′D

)

l̃1S =
√
2

2
K

f
(−χ′′ · C − ϑ′D

)

l̃2S =
√
2

2
K

f
(−χ′′ · C + ϑ′D

)
(3.78)

with

C = χ′

2Kf ‖χ′‖2 − 1
2

(
Ke‖χ′‖2 + 8Kf

)

D = ‖χ′‖
√
4L̃2 − ‖χ′‖2

KeL̃2
(‖χ′‖2 − 2

) − 2Kf ‖χ′‖2 .

From (3.78), we can get, in some particular cases, interesting information about
the properties of the pantographic beam. First, let us notice that l̃1D = −l̃1S and
l̃2D = −l̃2S . Moreover, we also notice that when χ′ = ρe1, with ρ independent of
the abscissa s, then, as χ′′ vanishes, l̃αβ = 0, i.e., the fibers undergo no elongation.
Instead, when χ′ (s) = ρ (s) e1, with ρ depending on s, then l̃1D = l̃2D = −l̃1S =
−l̃2S . This remarkable and counterintuitive feature can be used as a possible bench-
mark test to validate, as ε approaches zero, a numerical scheme based on the discrete
micro-model. Let us consider the case of nonzero bending curvature, i.e., ϑ′ �= 0,
when χ′′ · C << ϑ′D, which implies that l̃1D = −l̃2D = −l̃1S = l̃2S . If ϑ′ > 0 then
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l̃1D, l̃2S > 0 and l̃2D, l̃1S < 0 while, if ϑ′ < 0 then l̃1D, l̃2S < 0 and l̃2D, l̃1S > 0. We
are now ready to express themacro-model energyE (χ) as a function of the placement
χ only, by substituting (3.78) in (3.77):

E (χ (·)) = min
l̃αβ(·)

E = (3.79)

∫
S
K

e
K

f

{ (
ρ2 − 2

)
ρ2

(
Ke − 4Kf

) − 2Ke
ϑ′2

+ ρ2(
2 − ρ2

) [
ρ2

(
Ke − 4Kf

) + 8Kf
]ρ′2

}
ds +

+
∫
S

K
m

2
(ρ − 1)2 ds =

=
∫
S

K
e
K

f
(‖χ′‖2 − 2

)
‖χ′‖4 [‖χ′‖2 (Ke − 4Kf

) − 2Ke
] (χ′

⊥ · χ′′)2 ds +

+
∫
S

K
e
K

f(
2 − ‖χ′‖2) [‖χ′‖2 (Ke − 4Kf

) + 8Kf
] (χ′ · χ′′)2 ds +

+
∫
S

K
m

2

(‖χ′‖ − 1
)2
ds.

Weobserve that, for 0 < ρ <
√
2 and for any choice of the positivemacro-stiffnesses

K
e, Kf , and K

m, (3.79) is positive definite. Moreover, not only we can classify this
homogenized model as a second gradient theory, but we notice that the full second
gradient χ′′ of χ contributes to the strain energy. Indeed, beyond the usual term(
χ′

⊥ · χ′′) related to the Lagrangian curvature, also the term (
χ′ · χ′′), deriving from

the presence of the oblique springs, appears. There is a remarkable feature in this
model which deserves to be discussed. From (3.79), it is clear that in the limit
||χ′|| → √

2 the model exhibits a so-called phase transition: it locally degenerates
into the model of an uniformly extensible cable, notwithstanding that

√
2 is an upper

bound for ρ. Indeed,

(
ρ2 − 2

)
ρ2

(
Ke − 4Kf

) − 2Ke
→ 0

ρ2(
2 − ρ2

) [
ρ2

(
Ke − 4Kf

) + 8Kf
] → +∞,

so that no deformation energy is stored for finite bending curvature and, in order
for the energy to be bounded for bounded deformations, ρ′ must approach zero,
meaning that the elongation must be locally uniform. Further developments of this
model could consist in contemplating a phase transition to a model that, for finite
bending curvature, entails a nonzero stored deformation energy.
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Nondimensionalization

In order to handle more easily the model in the numerical implementation and in
the interpretation of the corresponding results, we turn to the use of nondimensional
quantities. Therefore, we introduce the following nondimensional fields:

s = Bs; χ = Bχ; K
e = KK

e; K
f = KK

f ; K
m = Km

K
m
.

In terms of these new quantities, we can recast (3.79) as

K

B

∫ 1

0

K
e
K

f
(
‖χ′‖2 − 2

)

‖χ′‖4
[
‖χ′‖2

(
K

e − 4K
f
)

− 2K
e
] (

χ′
⊥ · χ′′

)2
ds +

+K

B

∫ 1

0

K
e
K

f
(
χ′ · χ′′

)2
(
2 − ‖χ′‖2

) [
‖χ′‖2

(
K

e − 4K
f
)

+ 8K
f
]ds +

+KmB
∫ 1

0

K
m

2

(
‖χ′‖ − 1

)2
ds, (3.80)

where the symbol ′ denotes differentiation with respect to the dimensionless abscissa
s.

The Inextensibility Case

Let us focus now on the inextensibility case. The homogenization procedure follows
the same lines of the previous case. Indeed, keeping in mind (3.75) and (3.76), letting
ε → 0 in (3.73) yields the continuum-limit macro-model energy for the inextensi-
bility case

∫
S

{
K

f

[
ϑ′2 + ρ′2

2 − ρ2

]
+ K

m

2
(ρ − 1)2

}
ds =

=
∫
S

{
K

f

[(
χ⊥ · χ′′)2
‖χ′‖4 +

(
χ · χ′′)2

‖χ′‖2 (2 − ‖χ′‖2)
]

+ K
m

2

(‖χ′‖ − 1
)2}

ds.

(3.81)

This result is consistent with the quasi-inextensibility case. Indeed, we could have
found (3.81) also by letting K

e → +∞ in (3.79). Let us remark that, also in this
case, the homogenized continuum model, due to the richness of the microstructure,
gives rise to a full second gradient theory.
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Linearization

An interesting connection can be tracedwith the existing literature on the formulation
of 1D continuum homogenized model for microstructured media and, in particular,
for pantographic ones. Indeed, this connection is traced by considering a linearization
of the pantographic beamenergy in the (complete) inextensibility case.We setχ (s) =(
s
0

)
+ ηũ, with ũ independent of η, i.e., we linearizewith respect to the displacement

u = χ (s) −
(
s
0

)
, and K

m = 0. By means of simple algebra manipulations, it is

possible to derive the deformation energy in Eq. (5) (withK+ = K−) of Alibert et al.
(2003) (see also Seppecher et al. 2011):

∫
S
K

f ‖u′′‖2 ds. (3.82)

We remark that in the linearized energy (3.82) the transverse displacement and the
axial one decouple.

Numerical Simulations of the Continuous Model

Preliminaries

Using the so-obtained 1D continuum model, we show some equilibrium shapes
exhibiting highly non-standard features, essentially related to the complete depen-
dence of the homogenized continuum energy density functional on the second gra-
dient of the placement field.

In the sequel,Km = 0 will be considered, whichmeans that the standard quadratic
additive elongation/shortening contribution to the deformation energy will be turned
off. This is made in order to better highlight some non-standard features of the
nearly inextensible pantographic beam model. In this section, we show numerical
results for the quasi-inextensible and inextensible pantographic beam model and
for the geometrically nonlinear Euler model. We remind that these cases stand for
K

e < +∞ andKe → +∞, respectively. Two benchmark tests are exploited in order
to illustrate peculiar and non-standard features of the pantographic beam model.
Convergence of the quasi-inextensible pantographic beam model to the completely
inextensible one is shown, by means of a numerical example, as the macro-stiffness
K

e related to elongation of the oblique springs approaches +∞. This is due to the
fact that, as it is clear from Eq. (3.77), if Ke → +∞, then l̃αβ → 0. Of course, the
same discussion and simulations can be made for the micro-model and this could be
the subject of a further investigation. For the sake of self-consistence, we recall that
the deformation energy of the geometrically nonlinear Euler model employed in the
following simulations is the following:
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∫
S

{
Ke

2

(‖χ′‖ − 1
)2 + Kb

2

[
χ′′ · χ′′

‖χ′‖2 −
(

χ′ · χ′′

‖χ′‖2
)2

]}
ds =

=
∫
S

{
Ke

2
(ρ − 1)2 + Kb

2
ϑ′2

}
ds,

and we notice that, while in the nearly inextensible pantographic beam model both ρ
and ϑ can be enforced at the boundary, for the nonlinear Euler model it can be done
for ϑ only, as no spatial derivative of ρ appears in the energy.

Semi-circle Test

We consider for both the nearly inextensible pantographic beam model and the geo-
metrically nonlinearEuler beammodel the referencedomain tobe the interval [0, 2π].
We enforce the following boundary conditions for both models

1. χ (0) = 0; 2. χ (2π) = 2e1; 3. ϑ (0) = −π

2
; 4. ϑ (2π) = π

2

and, for the nearly inextensible pantographic beammodel, we also have the following
two additional constraints:

5. ρ (0) = ρ0; 6. ρ (2π) = ρ0.

In Fig. 3.6 (up), the deformed shapes for the nearly inextensible pantographic beam
model and for the geometrically nonlinear Euler beam model (GNEM) are shown
for different values of ρ0 reported in the legend. In Fig. 3.6 (down), the elongation
ρ − 1 for the nearly inextensible pantographic beammodel and for the geometrically
nonlinear Euler beam model (GNEM) is shown for different values of ρ0 reported
in the legend. It is remarkable that passing from ρ0 > 1 to ρ < 1, there is a change

Fig. 3.6 Semi-circle test. Deformed shapes for the nearly inextensible pantographic beam model
and for the geometrically nonlinear Euler beam model (GNEM). (left) Elongation ρ − 1 versus
the reference abscissa for the nearly inextensible pantographic beam model and for the geomet-
rically nonlinear Euler beam model (GNEM) (right). Numbers in the legends stand for different
dimensionless values of ρ0
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Fig. 3.7 Semi-circle test. Deformed shapes for the nearly inextensible pantographic beam model
(blue) and for the inextensible pantographic beam model (green) with ρ0 = 1.4 (left). Energy of
the nearly inextensible pantographic beam model (ordinate) asymptotically tends to the energy of
the inextensible pantographic beam model (asymptote) as Ke (abscissa) → +∞ (right)

of concavity in the elongation for the pantographic beam model. In Fig. 3.7 (up), the
deformed shapes for the nearly inextensible pantographic beammodel (blue) and for
the inextensible pantographic beam model (green) with ρ0 = 1.4 are compared. Of
course, the area spanned by the quasi-inextensible pantographic beam includes that of
the (completely) inextensible one. In Fig. 3.7 (down), it is numerically shown that the
energy of the nearly inextensible pantographic beammodel (ordinate) asymptotically
tends to the energy of the inextensible pantographic beam model (asymptote) as
K

e (abscissa) → +∞.

Three-Point Test

We consider for both the quasi-inextensible pantographic beam model and the geo-
metrically nonlinear Euler beammodel the reference domain to be the interval [0, 2].
We enforce the following boundary conditions for both models:

1. χ (0) = 0; 2. χ (1) · e2 = u; 3. χ (2) = 0;
4. ϑ (0) = 0; 5. ϑ (2) = 0.

In Fig. 3.8, the deformed shapes for the nearly inextensible pantographic beammodel
(red, light blue) and for the geometrically nonlinear Euler beam model (blue, green)
are shown for different values of u in the legend. Figure3.9 shows, for different values
of the parameter u, the elongation ρ − 1 versus the reference abscissa for the nearly
inextensible pantographic beammodel. The parameter u is increasing from bottom to
top. We observe that, as u increases, at some point, there is a concavity change in the
elongation plot and, increasing further the parameter u, curves start to intersect. This
means that, for some points of the beam, an increase of the prescribed displacement
u implies a decrease in the elongation. Figure3.10 shows the pulling force, i.e.,
Lagrange multiplier associated to the weak constraint χ (1) · e2 = u, changed of
sign, applied at the midpoint in order to vertically displace it of an amount u. In the
nearly inextensible pantographic beam model (blue) negative stiffness property, also



3 Heuristic Homogenization of Euler and Pantographic Beams 149

Fig. 3.8 Three-point test. Deformed shapes for the nearly inextensible pantographic beam model
(red, light blue) and for the geometrically nonlinear Euler beam model (blue, green) for different
values of u in the legend

Fig. 3.9 Three-point test. Elongation ρ − 1 versus the reference abscissa for the nearly inextensible
pantographic beammodel. The parameter u is increasing from bottom to top.We observe that, while
increasing u, there is a concavity change at some point. Increasing further the parameter u, curves
start to intersect

known as elastic softening, is observed, while in the geometrically nonlinear Euler
beam model (green) elastic softening is not observed. Figure3.11 shows the plot of
l̃1D versus reference abscissa for different values of u in the legend. Analogous plots
hold for l̃2D, l̃1S , and l̃2S .
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Fig. 3.10 Three-point test. Pulling force (i.e., Lagrangemultiplier associated to the weak constraint
χ (1) · e2 = u), changed of sign, applied at themidpoint in order to vertically displace it of an amount
u (abscissa). In the nearly inextensible pantographic beammodel (blue) elastic softening is observed,
while in the geometrically nonlinear beam model (green) elastic softening is not observed

Fig. 3.11 Three-point test. Plot of l̃1D versus reference abscissa for different values of u in the
legend. Analogous plots hold for l̃2D, l̃1S and l̃2S

Modified Three-Point Test

We consider for both the quasi-inextensible pantographic beam model and the geo-
metrically nonlinear Euler beammodel the reference domain to be the interval [0, 2].
We enforce the three-point test boundary conditions for both models

1. χ (0) = 0; 2. χ (1) · e2 = u; 3. χ (2) = 0;
4. ϑ (0) = 0; 5. ϑ (2) = 0
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Fig. 3.12 Modified three-point test. Deformed configuration for the nearly inextensible panto-
graphic beam model

Fig. 3.13 Modified three-point test. Elongation ρ − 1 versus reference abscissa for the nearly
inextensible pantographic beam model

with the additional condition, at the midpoint s = 1,

6. ρ (1) � √
2.

Figure3.12 shows the deformed configuration for the nearly inextensible panto-
graphic beam model, while in Fig. 3.13 the elongation ρ − 1 versus the reference
abscissa for the nearly inextensible pantographic beam model is shown.
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Chapter 4
Simulation of Continuous Fibre
Composite Forming

Philippe Boisse

Abstract The quality and properties of a composite material part depend not only
on the fibres andmatrix but also on how they have beenmanufactured. The numerical
simulation of the forming of composites makes it possible not only to analyse the
feasibility of a process and its defects but also to determine the directions of the
reinforcements after the forming process. These directions strongly influence the
mechanical behaviour of the composite part in service. Some approaches used to
simulate the forming of woven reinforcements are described. In particular, a stress
resultant triangular shell finite element specific to textile reinforcements is presented.
The tests used for textile reinforcements in biaxial tension, in-plane shear and bending
are presented. Finally, the simulation of thermoforming of thermoplastic prepreg is
presented. During simulations, thermal and mechanical calculations are performed
sequentially to update themechanical propertieswith the evolution of the temperature
field and the temperature field with the contact with the tools.

Introduction

The manufacture of composite textiles on doubly curved surfaces needs draping of
prepreg or dry fabrics. In the case of dry reinforcements, the injection moulding
process (LCM) consists in giving the form of the final part to a dry reinforcement
and then to be injected the resin (Advani 1994; Rudd and Long 1997). The textile
reinforcement can be subjected to large strains. Large in-plane shear angles may
be necessary to obtain the desired shape. Depending on the geometry of the parts,
the type of reinforcement and the manufacturing parameters (loading of the tools,
blank holder loads, …), doubly curved shapes can be correctly manufactured or not.
Simulations are necessary to avoid the long and costly development by trial and error
of the manufacturing processes. Simulation software for composites forming have
been developed to determine the parameters of feasibility of the process (De Luca
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and Pickett 1998; Hsiao and Kikuchi 1999; Pickett 2002; Hamila and Boisse 2007;
Boisse 2007; Hamila et al. 2009; Gereke et al. 2013; Bussetta andCorreia 2018). This
chapter is based on a simplified form of internal virtual work in the case of textile
reinforcements. The virtual work in tension, in-plane shear and bending of each ele-
mentary cell are decoupled. The form of these virtual works is simple and close to the
physics of textile materials. The material parameters involved are directly identified
by mechanical tests developed for textile reinforcements. Mechanical tests include
biaxial tension tests for the tension rigidity (Buet and Boisse 2001; Carvelli et al.
2008), picture frame and bias-extension test for in-plane shear stiffness (Prodromou
and Chen 1997; Potter 2002; Lebrun et al. 2003; Sharma et al. 2003; Zhu et al. 2009;
Boisse et al. 2017) and bending tests (Lahey 2004; De Bilbao et al. 2010; Boisse et al.
2018). A three-node shell finite element specific to woven reinforcements, based on
this form of virtual work, has been developed (Hamila et al. 2009). It is used to sim-
ulate the draping of textile composite reinforcements. The in-plane shear stiffness
of a woven fabric increases significantly with shear angle and reaches a ‘locking
angle’. It is nevertheless difficult to establish a simple relationship between shear
and appearance of wrinkles (Boisse et al. 2011). After the analysis of the simulation
of the forming simulation of dry textile reinforcements used for LCM processes, the
chapter presents the modelling of the thermoforming of thermoplastic prepregs.

Mechanical Behaviour of the Textile Composite
Reinforcements: Stiffnesses of an Elementary Woven Cell

Acomposite textile reinforcement consists of representative unit cells (RUCs). These
are geometric patterns, which through simple translation allow to represent the entire
woven fabric. Themechanical behaviour of a fibrous fabric is specific due to possible
relative slippage between the yarns and relative slippage between the fibres inside
the yarns. The following stress resultants can be distinguished (Fig. 4.1a):

– The tensions T1 and T2 are the tensile loads on the warp and weft yarns, respec-
tively, corresponding to the strains in the directions f1 and f2 of the yarns (Fig. 4.2a).

– The plane shear moment Ms, in the centre of the RUC in the direction of the
normal to the surface of the fabric, results from the interactions between warp
and weft yarns. It is associated with the shear angle between warp and weft yarns
(Fig. 4.2b).

– The bending moments M1 and M2 are on warp and weft yarns, associated to the
curvatures in both directions (Fig. 4.2c).

This is a simplified modelling, but the physical meaning of these quantities is
quantifiable. In addition, they can directly be measured during standard tests on
composite reinforcements for different cases of strains. Finally, these loads T1, T2,
Ms, M1 and M2 are, respectively, associated to axial strains ε11 and ε22 in warp
and weft direction, at γ the shear angle in the plane, and curvatures χ11 and χ22 in



4 Simulation of Continuous Fibre Composite Forming 159

Fig. 4.1 Loads on an RUC

Fig. 4.2 Stress resultants on an RUC: a tensions, b in-plane shear moment, c bending moments

warp and weft directions. This leads to the simple form of the internal virtual work
presented below.

Noting Wext(η),Wint(η) and Wacc(η) the virtual external, internal and inertial
virtual works in a virtual displacement field η equal to zero on the boundary with
prescribed displacements:

Wext(η) − Wint(η) = Wacc(η) (4.1)

with
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Wint(η) = Wt
int(η) + Wb

int(η) + Ws
int(η) (4.2)

Wt
int(η), Wb

int(η), Ws
int(η), are the virtual internal works of tension, and bending and

in-plane shear.

Wt
int(η) =

ncell∑

p=1

pε11(η) pT1
pL1 +p ε22(η) pT2

pL2 (4.3)

Wb
int(η) =

ncell∑

p=1

pχ11(η) pM1
pL1 +p χ22(η) pM2

pL2 (4.4)

Ws
int(η) =

ncell∑

p=1

pγ(η) pMs (4.5)

The quantity A is noted pA when it is associated to the RUC p. The internal virtual
work Wb

int(η) is due to tensions. ε11(η) and ε22(η) are the virtual deformations due
to elongation of the fibres in the warp and weft directions. L1 and L2 are the lengths
of the warp and weft yarns. Ws

int(η) is the internal virtual work due to in-plane
shear in the plane. γ(η) is the virtual angle variation between directions warp and
weft in the virtual displacement field η. Wb

int(η) is the internal virtual work due to
bending.χ11(η) andχ22(η) are virtual curvatures in warp and weft directions. Virtual
kinematic quantities ε11(η), ε22(η), γ(η), χ11(η) and χ22(η) are only function of the
virtual displacement field η.

Stress Resultant Shell Finite Element for Textile Composite
Reinforcements

The three-node shell finite element used in this chapter is based on the simplified form
of the principle of virtual work given in Eqs. (4.1)–(4.5). Details of its formulation
are given in Hamila and Boisse (2007), Hamila et al. (2009). It is summarized below.
Tension, in-plane shear and bending stiffnesses are separatedwhichmakes it possible
to analyse their influences in particular on wrinkle onset and development.

The three-node shell finite element M1M2M3 (Fig. 4.3) is composed of ncelle
woven RUC. The vectors k1 = AM2 and k2 = BM3, respectively, in the warp and
weft directions are defined. The virtual internal work in the element due to tensions
(Eq. 4.3) defines the elementary nodal loads Fte

int:

ncelle∑

p=1

pε11(η) pT1
pL1 +p ε22(η) pT2

pL2 = ηeTFte
int (4.6)
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Fig. 4.3 Three-node shell finite element composed of elementary cells

The components of the nodal loads in tension are calculated from the tensions T1

and T2:

(
Fteint

)
ij = ncelle

(
B1ijT1

L1∥∥k1
∥∥2 + B2ijT2

L2∥∥k2
∥∥2

)
(4.7)

i is the index of the dimension in space (i = 1–3), and j is the index of the node (j =
1–3). B1ij and B2ij are the interpolations of the tensile strains. They are constant on
the element because the interpolation functions are linear.

In order to avoid increasing the number of degrees, the bending stiffness is pro-
cessed using an approach with no degrees of freedom in rotation (Onate et al. 2000;
Sabourin and Brunet 2006). To do this, the element curvatures are calculated from the
positions of the nodes of adjacent elements (Fig. 4.3). The virtual internal bending
work of the element (Eq. 4.4) makes it possible to express the bending elementary
nodal loads:

ncelle∑

p=1

pχ11(η) pM1
pL1 + pχ22(η)pM2

pL2 = ηeTFbe
int (4.8)

(
Fbeint

)
km = ncelle

(
Bb1kmM

11 L1∥∥k1
∥∥2 + Bb2kmM

22 L2∥∥k2
∥∥2

)
(4.9)

The internal in-plane shear virtual work in the element (Eq. 4.5) defines the internal
elementary loads:

ncelle∑

p=1

pγ(η)pMs = ηeTFse
int (4.10)
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(
Fseint

)
ij = ncelle Bγ ijMs(γ) (4.11)

Experimental Analyses of the Tensile, In-plane Shear
and Bending Stiffnesses of Textile Composite Reinforcements

The objective is to determine experimentally for a given textile reinforcement, the
relationship between the stress resultants T1, T2, M1, M2 and Ms and the associated
deformations ε11, ε22, γ, χ11 and χ22. These behaviours are necessary to perform a
finite element simulation based on Eqs. 4.6–4.11.

Biaxial Tension

Tensile tests carried out on the fabric in the yarn directions (Figs. 4.4 and 4.5) typically
show the presence of progressive stiffening followed by a linear behaviour (Fig. 4.7).
The non-linearity at the beginning of loading is explained by phenomena occurring
at lower scales. Due to the weaving of the yarns, the fabric has a natural waving of
its tows. However, under the effect of tension, the yarns tend to become straight.
In an extreme case where the other direction is left free to move, the yarns under
load become straight and the others strongly undulated (Fig. 4.6). In intermediate
cases, an equilibrium state is reached, where both directions undergo variations in

Fig. 4.4 Biaxial tensile test on a cross-shaped specimen
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Fig. 4.5 Cross-shaped specimen for biaxial tensile test

Fig. 4.6 Undulations and
interactions during biaxial
tension

undulation. It is clear that this phenomenon is biaxial and that the two yarn directions
interact. These non-linear phenomena, of geometric origin, are mesoscopic (scale of
theRUC). Their effect is complemented and amplified by phenomena at the fibre level
(microscopic scale). Under the effect of the different tensile forces along the yarn
directions, and transverse compression at the contact between the two networks,
the filaments rearrange themselves, and the shape of the transverse section of the
yarns varies. The non-linearities involved at this scale are related to friction between
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the fibres and generate geometric non-linearities at the mesoscopic scale. All these
phenomena are at the origin of the material non-linearities observed in tension at the
macroscopic scale of the fabric, during its deformation.

In order to understand the specific behaviour of the textiles and to highlight the
characteristics mentioned, it is necessary to carry out tests using a device capable
of testing woven materials in two directions simultaneously. The device shown in
Figs. 4.4 and 4.5 is based on the principle of two deformable lozenges (Buet and
Boisse 2001). Strain measurements are made either by optical methods (Launay
et al. 2002) or by mechanical systems. Figure 4.7 shows the results of the stress tests
for different ratios k = warp strain/weft strain. The yarns used are identical in the
warp and weft. These yarns are made of 6000 high-strength carbon fibres assembled
without torsion. The fabric is almost balanced, which means that the results are

Fig. 4.7 Biaxial tensile test
on a 2 × 2 carbon twill
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only presented in one direction. Although the yarns alone have a linear behaviour,
the tension–deformation behaviour curves of the fabric are very clearly non-linear
at low forces and then linear at higher forces. This non-linearity of behaviour is
a consequence of non-linear phenomena occurring at lower scales (variations in
undulation) and crushing of the yarns. The extent of the non-linear zone is important
with respect to fracture strain. In addition, it depends on the ratio k of imposed
strains, which highlights the biaxial nature of tissue behaviour, with each direction
influencing the behaviour of the other. The non-linearity zone is maximum for tests
where a direction is free. The yarns tend towards a completely straight state under
very low forces. When the straightness of the yarn is reached, the behaviour of the
yarn alone is found. The value of the deformation corresponding to this transition is
significant for the crimp of the fabric in this direction. Finally, the non-linear zone
is followed by a linear part of the behaviour characterized by a rigidity close to that
of the single yarn in tension.

In-plane Shear

The strongest stiffnesses of a woven reinforcement are those of tension. They are
the ones who mainly drive the shape changes when manufacturing a composite by
forming the reinforcement. The in-plane shear stiffness is low (at least initially)
and results from large distortions which are the main membrane forming mode. This
shear stiffness can be increased if the fabric is coated with amatrix (non-polymerized
thermoset or thermoplastic above the melting temperature) or significantly increased
if the shear locking angle is exceeded. Studies concerning in-plane shear behaviour
are numerous, probably because it is themajormode of deformation of woven fabrics
(Prodromou et al. 1997; Harrison et al. 2004; Launay et al. 2008; Cao et al. 2008;
Boisse et al. 2017).

There are two main tests available to experimentally analyse the in-plane shear of
textile composite reinforcements: the picture frame (Fig. 4.8) and the bias-extension
test (Fig. 4.9). Their relative merit has been discussed in several studies (Harrison
et al. 2004; Launay et al. 2008). The bias-extension test is more complex to analyse
because there are three areas where the shear is different. In addition, there is a
tendency for slippage between the warp and weft yarns when the shear angle exceeds
40°. On the other hand, the tension forces in the bias-extension test specimen are
effectively zero, whereas they are not always zero in the picture frame (especially in
the event of a misalignment of the specimen fibres). They then disrupt the test result
in a major way (Launay et al. 2008). The picture frame device shown in Fig. 4.8
is based on the principle of a frame with four equal and articulated sides whose
directions are those of the yarns of the fabric. It is installed on a conventional tensile
machine. A pre-tension can be applied to the yarns before shearing.
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Fig. 4.8 In-plane shear analysis by picture frame and optical measurements

Fig. 4.9 Bias-extension test
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Fig. 4.10 Load versus
in-plane shear in a picture
frame on a glass plain weave

Shear analysis can also be performed by the bias-extension test on a specimen
where thewarp andweft yarns are oriented at 45° (Boisse et al. 2017; d’Agostino et al.
2015). Deformation measurements can be carried out by optical methods (Fig. 4.8).
This makes it possible to effectively measure the deformations of the woven fabric in
the useful area of the specimen and to make measurements from images of the entire
frame (macro scale) or only a small number of meshes or a single yarn (meso- and
micro-scale). In the case of a specimen made of glass plain weave, Fig. 4.10 shows
the measurement of shear force as a function of shear strain (Boisse et al. 2005).
The shear response curve can be divided into three areas. Figure 4.11a shows during
phase 1 (see Fig. 4.10 for the different zones), the movements at the micro-scale, i.e.
inside the fibrous yarns. The average displacement was subtracted from all measured
displacements. It can be seen that the yarns are subjected to a rigid body rotation
which, given the lack of contact with the adjacent wicks, results in fabric shearing
(seen as a continuous medium). There is no shear inside the yarns. This explains why
the fabric shear corresponds to low forces since only the rotational frictions between
warp and weft yarns are opposed to shear. The passage to zone 2 corresponds to a
limit angle sometimes called shear locking angle. From this angle, the yarns come
into contact with their neighbours and are compressed laterally (Fig. 4.11b), first
partially (zone 2) and then completely (zone 3) which explains the rapid increase in
shear stress and therefore in shear stiffness. In practice, in zone 3, wrinkles appear,
caused by the shear locking.

Bending

Textile material bending rigidity is low. In geometrical approaches (Fishnet) (Van
Der Ween 1991; Long and Rudd 1994; Potluri et al. 2001) and in membrane-based
methods (Lin et al. 2007; Lee et al. 2007; Ten Thije et al. 2007), bending stiffness is
not taken into account. Bending rigidity is low because of the possible slip between
the fibres during bending.
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Fig. 4.11 Displacement fields of fibres within a yarn during a picture frame. a In zone 1, b beyond
shear angle locking
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Fig. 4.12 Slippage between fibres during bending

The three-point bending Fig. 4.12 of a 3D textile reinforcement shows that the
bending of the reinforcement is mainly due to the slip between the fibres. From the
macroscopic point of view, this deformation is a shear stress. The strains in zone
A (Fig. 4.12) are of the same type as that of the A′ zone during a shear test. The
potential slippage results in low shear rigidity of fibrous reinforcements.

The fibre quasi-inextensibility is the second specific feature of the textile rein-
forcement behaviour. The normals after deformation are fixed by inextensibility in
the bending test shown in Fig. 4.12. These normals are not perpendicular to the mean
surface in the deformed state. Bending of textile materials does not correspond to
standard plate theories (Kirchhoff,Mindlin) because it is driven by the inextensibility
of the fibres and the slippage between the fibres. For metal sheet or other continuous
materials, membrane and bending rigidities are linked in plate theories and given
by the thickness of the plate and properties of the material. The bending stiffness of
textile material would be overestimated by this approach that does not account for
the slippage between fibres. Therefore, it is not possible to use classical shell finite
elements that are used in commercial programmes, the bending stiffness of which is
calculated from membrane modulus. To carry out a correct analysis of the forming
of fibrous reinforcements, membrane and bending stiffnesses must be decoupled in
the analysis (Hamila et al. 2009; Döbrich et al. 2014).
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The relationship between the curvature and the bendingmomentM(χ) is necessary
to take into account bending in the simulation by shell elements of the deformation
of a textile reinforcement. Among the experimental analyses of textile bending,
the cantilever bending test (Peirce 1930) has been proposed by Peirce (1930). Its
extensions are still in use today (ASTM 2002, ISO 2011). In this test, a textile
specimen is subjected to cantilever bending under its own weight. The sample is
gradually pushed forwarduntil the free end contacts the slopedplane of the instrument
(Fig. 4.13). The position of a point on the centerline of the textile sample is in (x, y)
(Fig. 4.13). w is the linear weight and � is the cantilever length of the sample.

Fig. 4.13 Peirce’s cantilever tester
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The relationship M(χ) is assumed to be linear. (This is a simplifying hypothesis.)
Noting G the bending stiffness:

M = Gχ (4.12)

For small deflections, by integration of the curvature (χ = y′′), the deflection at the
free edge of the specimen is

δ = y(�) = w�4

8G
(4.13)

The flexural rigidity S is

S = G

w
= �3

8tg θ
(4.14)

A corrective function cos θ/2 has been introduced for large displacements,

S = G

w
= �3 cos θ/2

8tg θ
(4.15)

For a given angle θ, the length of the overhang � gives the stiffnesses S and G.
The inclined plane is fixed at 41.5° in the standard flexometers (Fig. 4.13). In this

case,

S = G

w
≈ �3

8
(4.16)

Although empirical, the use of the term cos θ/2 in the case of geometrical non-
linearities (Eq. 4.15) can be justified by a finite element analysis of the bending of
a specimen (Boisse et al. 2018). The error made using the empirical Eq. 4.15 is
less than 3%. The realization of the test with a 41.5° inclined plane associated with
Eq. 4.16 is very simple to carry out. However, it gives a bending modulus G constant
in function of the curvature, which is not always true.

Cantilever tests for vertical samples at the beginning were developed by Dangora
et al. (2015a, b, 2018) andAlshahrani andHojjati (2017) in order to reduce the effects
of gravity.

Methods have been developed that make it possible to carry out an optical analysis
of the deflected line over the entire bending specimen (De Bilbao et al. 2010; Liang
et al. 2014, 2017). In Fig. 4.14, the centre line of the deformed sample is obtained from
the image and approached by an analytical function. The curvature can be determined
at any point. The bending moment at each point is given by the dead weight. By
analysing a single test, the bending moment curve is obtained as a function of the
curvature which varies from zero at the free end to a maximum value at the fixed
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Fig. 4.14 Moment–curvature identification curve in a single cantilever bending test

end. Larger curvatures may be required, especially to model wrinkles. An additional
mass can be added at the free end of the sample (Liang et al. 2014).

The second type of bending test is the Kawabata test (KES-FB2) (Fig. 4.15)
(Kawabata 1980) and its extensions (Sachs 2017). The rotation of a clamp imposes
a constant curvature on a textile sample. The required moment is measured and
corresponds to the bending moment.

It is possible on this type of device to control the bending test rate. The identifica-
tion of parameters of bending models depending on the loading rate is then possible
(Sachs et al. 2017; Dörr et al. 2017; Margossian et al. 2015).

Influence of the Different Stiffnesses on Wrinkles

Draping on a Hemispherical Shape

Awoven reinforcement is draped on a hemisphere (Fig. 4.16a). The initial geometry
of the fabric is 150mm× 150mmsquare. The diameter of the hemisphere is 100mm.
The tensile stiffness of the fabric is 1000 N/yarn in warp and weft directions. The
in-plane shear torque is in the form
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Fig. 4.15 Kawabatta test

Ms(γ) = 0.37044γ − 0.84105γ3 + 1.03113γ5 (4.17)

The first deformed shape (Fig. 4.16b) only takes into account the tensile stiffness
(Eq. 4.3). The draping is obtained with an absence of wrinkling, but the shear angles
near the corners of the fabric are close to the 90°. The obtained solution is close
to that given by a fishnet algorithm. Only the deformations in the direction of the
yarns due to tension be the difference. But these strains are small because of the low
tensions during draping.
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Fig. 4.16 Textile reinforcement forming on a hemisphere, a punch and fabric dimensions, b ten-
sile stiffness only, c in-plane shear and tensile stiffnesses, d in-plane shear, tensile and bending
stiffnesses, e isotropic sheet
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The second deformed shape (Fig. 4.16c) is obtained when the tension (Eq. 4.3)
and in-plane shear (Eq. 4.5) stiffnesses are taken into account. Many small wrinkles
are present. The third deformed shape (Fig. 4.16d) is obtained by taking into account
all the rigidities. In this case, the draping leads to wrinkles less numerous, larger and
more realistic in shape.

Forming an Unbalanced Textile Reinforcement

The textile reinforcement shown in Fig. 4.17 is very unbalanced. The tension stiffness
is equal to 50N/yarn in thewarp direction and 0.2N/yarn in theweft direction (Daniel
et al. 2003). A forming test with a hemispherical punch was carried out (Fig. 4.18).
In order to avoid the appearance of wrinkles in the hemispheric area, a 6 kg circular
blank holder was used. Figure 4.20e shows the experimental deformed shape. The

Fig. 4.17 Unbalanced fabric. Warp and weft tensile behaviours

Fig. 4.18 Unbalanced fabric: tool geometry
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deformation in warp and weft directions are very different with no movement in the
weft direction. A square drawn on the fabric in the initial state becomes a rectangle
after forming with a ratio of 1.8 between the two sides. The tension stiffness is only
taken into account in Fig. 4.19b. The dissymmetry of the shape is properly achieved.
But the simulation gives no wrinkles. In-plane shear and tensile stiffnesses are taken
into account in Fig. 4.20d.Many small wrinkles are obtained.When bending stiffness
is added (Fig. 4.19c), the wrinkles are much broader and their general forms are
in fairly good agreement with the experience. In all three simulations, the tensile
strain ratio in the hemisphere (1.8) is properly calculated. On the other hand, the
form and the number of wrinkles are very different. If this case is analysed using a
fishnet algorithm, the deformation in warp and weft directions are identical and there
are no wrinkles.

Fig. 4.19 Simulation, b with only the tension stiffness, c with all the rigidities

Fig. 4.20 Simulation d with the tension and in-plane shear stiffness e experiments
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Fig. 4.21 Stages of the thermostamping process

Thermostamping of Prepreg Composites with Thermoplastic
Matrix

The Thermostamping Process

Thermostamping is an interesting solution for the mass production of composite
structures. This process is rather close to sheet metal forming.

After heating above the melting temperature, the material is transported to the
press (Fig. 4.21). The forming is done between two complementary tools. The next
step is the consolidation phase where the composite is maintained under pressure
in order to remove porosity and ensure cohesion between the different layers. The
structure is finally cooled with ambient air. All the steps are completed in a few
minutes. Thermostamping can be used for the mass production of composite parts,
particularly in the automotive sector.

Viscohyperelastic Model for Prepreg Forming

A prepreg reinforcement can be considered as an orthotropic material. The three
orthotropic directions (L1, L2, L3) are defined by the warp, weft and weft and per-
pendicular directions, respectively, and a third direction to the two previous ones.
Some hyperelastic models have been developed for dry fabrics (Criscione et al. 2001;
Charmetant et al. 2012). This type of formulation is based on a decoupling of the
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deformation modes. The deformation modes considered in the case of a composite
reinforcement initially orthotropic as well as its respective invariants are as follows:

Elongation invariant in the warp direction:

I 1elong = 1

2
ln

(
C : L1 ⊗ L1

)
(4.18)

Elongation invariant in the weft direction:

I 2elong = 1

2
ln

(
C : L2 ⊗ L2

)
(4.19)

In-plane shear invariant:

Ish =
(

C : L1 ⊗ L2

)

√(
C : L1 ⊗ L1

)(
C : L2 ⊗ L2

) = sin(γ ) (4.20)

Bending invariants:

I 1bending = l1 · χ · l1 = χ11 I 2bending = l2 · χ · l2 = χ22 (4.21)

C is the right Cauchy Green strain tensor. χ is the tensor of curvatures and l1, l2 are

the unit vector in the warp and weft directions.
The deformation energy is expressed as a function of these physical invariants:

S = 2
∂w

∂C
= 2

∂wk

∂ Ik

∂ Ik

∂C
(4.22)

The internal energy potential is defined as the sum of the energy potentials associated
with membrane deformations and bending.

w = wmem + wbend (4.23)

A viscoelastic behaviour is only associated with in-plane shear. For this purpose, a
non-linear viscohyperelastic model is constructed (Simo 1987).
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(4.24)

where Qi represents a set of internal variables that cannot be measured in the ref-
erence configuration. These variables are associated with the different mechanisms
of relaxation due to interactions within the material. � is a function of internal
variables. The second Piola–Kirchhoff tensor can be decomposed according to the
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different deformation modes:

S = S
elong1

+ S
elong2

+ S
sh

(4.25)

S
elong1

and S
elong2

represent the purely hyperelastic contributions linked to elonga-

tion in the warp and weft directions, respectively, and S
sh

is the viscohyperelastic
contribution related to in-plane shear:

S
sh

= 2
∂wsh(C)

∂C
−

N∑

i=1

Q
i

(4.26)

The internal variables Q
i
are determined from the following system of evolution

equations:
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whereγi and τi represent the differentmaterial viscoelastic parameters and associated
relaxation times.

Finally, the second Piola–Kirchhoff tensor associated with the viscohyperelastic
membrane contribution is given (in its convolution form) by

S(t) = S
elong1

+ S
elong2

+
∫ t

−∞
G(t − s)

d

ds

[
2
∂wsh

∂C

]
ds (4.28)

with G(t) the associated relaxation function:

G(t) = γ∞ +
N∑

i=1

exp

(−t

τi

)
γi (4.29)

Identification of Parameters

This section describes possible tests for determining the parameters of the hypervis-
coelastic model presented above. The material taken as an example in this chapter
is a pre-consolidated thermoplastic composite. The plate is composed of five layers
of Satin-8 fibreglass and prepregs of a Polyamide 6.6 resin (Fig. 4.2a). The melting
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Fig. 4.22 Microtomography of the thermoplastic prepreg

temperature of the thermoplastic resin varies between 257 and 265 °C depending on
the speed of heating. A micro-CT image shows the prepreg in Fig. 4.22.

The characterization of the in-plane shear behaviour can be performed using a
bias-extension test at high temperatures (Fig. 4.23) (Lebrun et al. 2003; Wang et al.
2012; Guzman-Maldonado et al. 2015). Other tests can be used, such as the picture
frame (Harrison et al. 2004; Dangora et al. 2015a, b). In the case of thermoplastic
prepregs, the bias extension test is rather delicate to implement. In order to study the
behaviour of prepregs during forming process, the specimen must be brought above
the melting point. Boundary conditions must be insured, and the temperature must
be controlled within the material.

To characterize the in-plane shear viscoelastic behaviour, the bias-extension test
is carried out by steps (Fig. 4.24). From experimental results, an inverse approach
(Schnur and Zabaras 1992) is used to identify the material parameters, the relaxation
times, as well as the psh coefficients of the potential wsh, defined by

wsh =
3∑

i=1

psh(Ish)
2i (4.30)
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Fig. 4.23 Bias-extension test at high temperature

Fig. 4.24 Bias-extension test performed at 270 °C. Applied load versus time and imposed clamp
displacement
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The external load Fext is deduced from the power developed by the in-plane shear
loads:

∫

	0

1

2
S : ĊdV = Fext ḋ (4.31)

Identification is performed from four temperatures between 260 and 300 °C. The
intermediate parameters can be interpolated linearly according to the temperature.

A cantilever test at high temperatures was performed to characterize the bending
properties (Liang et al. 2014; Liang 2016). The principle of the test is to bend a can-
tilevered sample subjected to its own weight and for a given temperature (Figs. 4.25
and 4.26). The resulting profile is recorded by optical capture for different temper-
atures. The bending moment is plotted as a function of the curvature, and then a
stiffness as a function of temperature can be associated. In order to ensure a homo-
geneous temperature distribution, a set of thermocouples are placed in the vicinity
of the specimen in the device.

A series of tests were carried out in the warp and weft direction on specimens
over a temperature range [260–320 °C]. The deformed shapes as well as the bending
moment versus curvature curve are shown in Fig. 4.27. The maximum deformation
is obtained at a temperature of 300 °C. Above this temperature, the bending stiffness
remains constant and is close to that of dry fabric. The bending stiffness in the case

Fig. 4.25 Cantilever bending test at high temperature
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Fig. 4.26 Deformed shape of the bending specimen

x (mm) Curvature (mm-1) 

Fig. 4.27 Deflection and moment–curvature curves

of thermoplastics is highly dependent on the temperature. The potential associated
with bending mode can be represented by a quadratic function:

wben
(
Iχi

) = pχi (T )
(
Iχi

)2
(4.32)

where pxi depended on the temperature

pχi (T ) = αben
i · T + βben

i (4.33)
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In a first step, it is assumed that the elongation stiffness of the material depends only
on the stiffness of the fibres Ef. The tensile response of yarn is almost linear. The
tensile potential of the prepreg is defined by

welongi = pelongi (Ielongi )
2 i = 1, 2 (4.34)

where v fi is the volume fraction of fibres in the direction i.

pelongi ≈ E f · v fi

2
(4.35)

v fi is, for instance, obtained from micro-CT image of the prepreg (Naouar et al.
2015).

Examples of Numerical Simulations of Thermoforming

The double-dome benchmark has been proposed in (Woven composites 2008;
Willems et al. 2006, 2008; Fetfatsidis et al. 2009). The reasonably complex shape is
double curved with flat surfaces. The geometry is shown in Fig. 4.28 (Khan 2009).
The benchmark can be performed at room temperature (Khan et al. 2010; Peng and
Rehman 2011) or at high temperature (Willems et al. 2008; Lee et al. 2010; Harrison
et al. 2013) using corresponding constitutive models.

The viscohyperelastic model described in sections “Viscohyperelastic Model for
Shaping Prepregs” and “Identification of Parameters” has been implemented in an
explicit finite element code (Plasfib 2015). The prepreg is modelled by three-node
shell elements (Hamila et al. 2009) where membrane and bending contributions
are decoupled. The curvature is calculated from the position of the neighbouring

Fig. 4.28 Die, punch and
blank holder of the
double-dome benchmark
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elements (Fig. 4.3) (Sabourin and Brunet 2006; Hamila et al. 2009). This reduces
the overall number of degrees of freedom and therefore the calculation time.

The finite element model is composed of a punch, a die and the rectangular blank
measuring 270× 190mmheld in contact with the die by six blank holders (Fig. 4.29).
The simulation was carried out for two material orientations: 0°/90° and +45°/−45°
(Guzman-Maldonado 2016). The temperature before forming is assumed to be equal
to 300°. The temperature of the tools is set at 250°. The speed of the punch is equal
to 240 mm/min with a total displacement of 60 mm.

Simulations for both prepreg configurations (0°/90° and +45°/−45°) are first per-
formed with a blank temperature kept constant during the shaping process. Then, the
thermoforming simulations are carried out with an update of the temperature.

Fig. 4.29 Finite element model of the double-dome benchmark
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The results obtained in both cases are compared. The mechanical and thermal
problems are coupled. The temperature field at time t is obtained by solving the
heat equation in the case of a transient conduction transfer, between t and t + �tth
where�tth represents the thermal update step. This calculation takes into account the
orientation and the shear angle given by the mechanical calculation to at time t. The
new temperaturemap is then considered for the determination ofmechanicalmaterial
parameters. The thermal update process goes on until the end of the forming process.
Figure 4.30 shows the evolution of the temperature (averaged in the thickness) during
the forming simulation. This temperature evolution in the prepreg is conditioned by
the contact with the tools.

Fig. 4.30 Evolution of the temperature field during the forming process
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The in-plane shear angles obtained by considering a homogeneous and constant
temperature are presented in Fig. 4.31. Figure 4.32 shows in-plane shear angles
obtained by taking into account the evolution of the temperature (and therefore the
mechanical properties of the prepreg) during the process.

The comparison between the two results shows a difference between the shear
angles in the range of 3°–5° and a slight change in the shape of the in-plane shear
field.

Finally, Fig. 4.33 shows the temperature gradient in the thickness of the part at
the end of the process. These temperatures in the thickness are known at any time
of the process. The temperature is colder than the initial process temperature with
lower values on the upper and lower surfaces of the prepreg that are in contact with
the tools. These temperatures are 25–50 °C lower than the initial temperature, which
is important with regard to mechanical properties.

Concerning thermoforming of thermoplastic prepregs and its simulation, details
of the formulations, complementary simulations and other examples can be found in
Guzman-Maldonado et al. (2015, 2016, 2018).

Fig. 4.31 Shear angle (in
degree) in the case of a
simulation at constant
temperature T = 300 °C

Initial fibre orientation: 0/90° 

Initial fibre orientation: +45/-45° 
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Fig. 4.32 Shear angle (in
degree) in the case of a
simulation taking into
account the temperature
evolution

Initial fibre orientation: 0/90° 

Initial fibre orientation: +45/-45° 

Conclusions and Perspectives

Simulation of the forming processes of composite reinforcements is an important
instrument for the development of these materials. It determines the conditions for
processes to be carried out satisfactorily for a given geometry and material. The
simulation also provides the position of the fibres after forming, which determines
the mechanical properties of the composite part. Not all geometries can be achieved
with a continuous fibre reinforcement. It is also a question that can be answered by
simulation.

The simulation approaches described in this chapter are macroscopic, i.e. dry
fibrous reinforcements or prepregs are modelled as continuous media, generally of
the shell type. These macroscopic approaches are currently the most common for
applications.Nevertheless, simulations at themicroscopic (fibre scale) ormesoscopic
scale are currently being developed (Durville 2010; Gatouillat et al. 2013; Rahali
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Fig. 4.33 Temperature gradient in the thickness at the end of process

et al. 2016). They have the advantage of naturally describing the physics of the
deformation of the fibrous medium made up of fibres in contact. If they require a
significant numerical effort, these approaches will probably develop in the future.
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