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Abstract. Aerial coverage path planning is a type of path planning where the
sensor footprint covers all accessible parts of the area of interest. This type of
path planning finds application in precision agriculture, precision forestry and
service robots. Limited endurance of micro aerial vehicles has limited their
operations to small areas coverable in a single flight. New application domains
like geological survey cover vast areas exceeding endurances of most modern
aerial platforms and the available path planners do not address coverage of such
areas. This paper presents an approach for generating coverage paths for large-
scale aerial mapping. The planner applies voronoi partitioning to decompose
large areas into manageable cells. Then generates boustrophedon paths to cover
each cell. The proposed planner is incorporated into Mission Planner. Software
in the loop simulation results have ascertained the feasibility and completeness
of the generated paths, even with multiple micro aerial platforms.

Keywords: Aerial coverage path planning � Voronoi partitioning

1 Introduction

Coverage path planning (CPP) is a type of path planning where the generated trajectory
ensures the robot footprint covers all open spaces in the area of interest (AOI). It is key
to autonomous robotics and differs from start-to-goal path planning where a path from a
start point to a goal is sought. These path planners find application in mobile ground
robotics like vacuum cleaning, lawn mowing, security and surveillance, deicing of
airports, and harvesting or seeding, among others, and mobile aerial robotics like crop
sensing, geological documentation, urban planning, wetland management, search and
rescue, land-use monitoring, mapping and remote sensing among others.

Literature has many elegant solutions to the coverage problem. Unfortunately, most
of these solutions are specific to mobile ground robotic applications and do not scale
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optimally to aerial robotics. This limited generalizability together with advances in
aerial robotics and remote sensing have fueled intense research in the field of aerial
coverage path planning (ACPP).

According to PwC global report [1] on commercial applications of unmanned aerial
vehicle technology, the two leading industries, infrastructure and agriculture, account
for more than a half of the global market share Fig. 1. Clearly, all involved industrial
application are large-scale and coverage in nature.

These applications call for close proximity flights to the subject of interest, which
favors micro aerial vehicles (MAVs) as opposed to medium and large size vehicles.
Unfortunately, large coverage industrial applications oftentimes exceed the coverage
capability of most modern MAVs. Luckily, dropping prices have enabled acquisition of
multiple platforms, whose aggregate capability can easily satisfy most of the large-scale
coverage applications. It should be noted that even with a single platform and a path
planner, multiple flights can be systematically conducted in a short period of time,
owing to maneuverability and low operating costs of these aerial platforms.

To harness the cumulative power in numbers, partitioning schemes are necessary
for partitioning of large areas into manageable portions and assigning them to a fleet of
aerial platforms or flying them with one platform multiple times. To this point, we are
not aware of any coverage path planning methods capable of planning paths for large
areas exceeding the coverage capability of modern MAVs.

The problem overview is as follows, given a large-scale input area (impossible to
cover in one flight), partition it into manageable subareas coverable by a multirotor
MAV with limited endurance in multiple flights or a fleet of multirotor MAVs, and then
plan trajectories to cover each subarea whilst adhering to coverage requirements.

We propose an approach that partitions large input areas into manageable cells with
respect to endurance and flight speed, then plans coverage paths and assigns each cell
to the most suitable MAV (with minimum coverage time).

The planner is applicable to a single platform, homogeneous (similar endurance and
camera properties) and heterogeneous (varying endurance and camera properties) mul-
tirotor fleets. Furthermore, it guarantees complete coverage and resolution constraints.

Fig. 1. Predicted market value for UAV powered industrial solutions in US dollars [1]
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Guarantee of coverage is through exact cellular decomposition of the input area, and
designing paths that ensure coverage of each cell. This work strives to achieve a good
enough result but does not guarantee optimality.

2 Related Work

Generally, coverage path planning (CPP) considers four main set of factors, environ-
mental, robot, actuator/sensor and algorithmic factors. Table 1 highlights the properties
underlying each of the factors. Literature contains CPP algorithms based on permu-
tations of these properties. We refer readers to a survey of coverage path planning in
robotics [2] for a comprehensive characterization of the different approaches.

Two CPP surveys [2, 3] spread over a decade apart report the most influential
approaches up until 2013. Surveys [3] and [2] have 0% and <5% mention of ACPP
respectively. This could have been a consequence of the under-developed state of
unmanned aerial technology. The recent past has seen a surge in ACPP research works,
but mostly for fixed-wing type MAVs. Next, we cover some of the influential works.

To cover concave polygonal areas, the authors of [4] proposed four convex
decomposition strategies that yield minimum polygon altitude sub-regions. The
decomposition works by drawing edges at concave vertices oriented to yield minimum
width sum convex polygons. Entire adjacent cells with similar directions are then
combined into one cell to shorten coverage paths. The resulting cells are then trans-
formed into a minimum traversal undirected graph on which the minimum weight path
to all cells is generated. Individual cells are covered with boustrophedon paths.

Interesting work from marine robotics in [5] proposed a coverage method for
seabed using autonomous underwater vehicles (AUVs). K-means clustering segments
the area into a user-defined number of sub-regions within predefined depth ranges.
Morse exact cellular decomposition is applied to each cluster. Morse decomposition
applies a Morse function contour at critical points to divide the clusters further into
cells. Therefore, the number of cells depends on the number of critical points contained
within a cluster, which may result into impractically small cells. The cells form an
adjacency graph, where traveling-salesman algorithm plans a path to all cells. Each cell
is covered using boustrophedon sweep lines oriented perpendicular to surface gradient.

Table 1. Classification factors of coverage path planners

Component Property

Environment Static/dynamic, 2D/3D/2.5D, non-differentiable, size
Robot Aerial/ground/amphibian, holonomic/non-holonomic, finite energy

storage/infinite energy storage, single/multiple robots
Actuator/Sensor Footprint shape, mounting (Gimbal or no gimbal)
Algorithm Offline/online, optimality, completeness, complexity
Optimization
objective

Number of turns, path length, time-to-completion, area-per-distance
travelled, energy
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A spiral-like method proposed in [6] plans paths for a fleet of heterogeneous
unmanned aerial systems (UASs). The area is decomposed into triangular cells whose
size depend on the sensor field of view (FOV) and platform orientation. The cells are
transformed into an undirected graph whose vertices are assigned costs with the highest
cost at the root (border) and lowest at the leaves (center). Based on cost, a path is
generated from the border covering the entire area. Lloyd iterations and valley sensi-
tivity settings were applied to improve the path.

An application specific, complete coverage yet non-optimal algorithm in [7],
decomposes the area into triangular cells using Constrained Delaunay Triangulation
(CDT). It starts by assigning each platform an initial cell at the border from which all
the other cells are visited in a spiral-like pattern depending on their depth cost. This
work assumes the starting point to lie within the area of interest.

To address endurance limitations, some researchers have adopted energy mini-
mization objectives to maximize coverage per battery charge. In [8], a digital elevation
model combined with a power consumption model created an energy consumption map,
from which genetic algorithms generated an optimal coverage path. Although the
generated path is complete, it is highly convoluted and self-intersecting. The approach in
[9] generates a minimum energy complete coverage path using an energy model derived
from real measurements with resolution constraints. Here an active gimbal stabilized
camera is used, hence, the assumption of camera-ground parallelism. For coverage,
boustrophedon motion pattern is applied with flight lines oriented parallel to the longest
borderline. This approach performs poorly for areas with more than four edges, espe-
cially when the longest side is nearly parallel to the minor axis of variation of vertices.

Decomposition is a key step in most coverage approaches and one popular form of
decomposition is grid-based decomposition. In [10], a gradient ascending algorithm
tracks wavefront gradients on a grid-map selecting a sequence of waypoints that com-
pletely covers the area of interest while minimizing completion time. In case of multiple
waypoints with similar potentials, a backtracker keeps record of these waypoints.

The work presented in [11], implemented the dual of Delaunay Triangulation,
voronoi partitioning to partition the overlapping workspace of manipulator robots into
appropriate cells. A coverage path plan for each is then generated covering its specific
area plus the overlapping portion closest to it. We share the choice of partitioning
algorithm with this work, but differ in the way voronoi sites are treated. In our case, the
sites are user inputs whereas in [11] the site locations are the optimization variables.
Most usage of voronoi diagrams have been centered around generating paths through
narrow operating regions [12].

For complete coverage, spiral and boustrophedon trajectories are the most com-
monly used flight trajectories for both fixed-wing and multirotor micro aerial vehicles.
An empirical performance assessment based on three metrics: energy, time and dis-
tance showed that spiral trajectories were more suitable for fixed wing platforms,
whereas boustrophedon trajectories for multirotor platforms [13]. Based on this con-
clusion, boustrophedon trajectories are applied in our work for partition coverage.

The path planner describes in this paper involves techniques like home point-based
area decomposition as opposed to number of platforms, and path generation and path
splitting constrained by map resolution and platform endurance. The flexible placement
of home points ensures accessibility to all areas whereas path splitting ensured

254 N. Gyagenda et al.



complete coverage of even large cells. This level of flexibility, which is key to handling
of large-scale areas, lacks in most of the available path planners.

3 Aerial Coverage

Aerial maps support many data–driven processes. Satellites and manned airplanes have
for long been the main techniques for capturing raw aerial data. As depicted in Table 2,
these techniques exhibit low revisit cycles and generate low-resolution maps compared
to MAVs. Thus, MAVs provide a great alternative to satellite and manned mapping,
but their sensors have a limited field of view that is compensated for by capturing
numerous geo-referenced images at spatially distributed points within the input area.
The images are then stitched together to generate an orthorectified mosaic. Here, the
challenge is generating a path to all imaging geo-locations for completeness.

3.1 Mapping Process

We adopted a mapping process consisting of three sub-steps, input area preparation,
area partitioning and coverage path planning. The input area is defined by a set of
mouse selected unordered geo-coordinates from a customized interactive digital map in
Ardupilot Mission Planner software by Michael Oborne. The input area can be convex,
concave or complex in geometry. Operations on complex and nonconvex polygons for
tasks of aerial coverage add unnecessary levels of complexity.

Since mapping sensors have a nonzero footprint, a collage of such footprints
automatically converts complex polygons into nonconvex ones as illustrated in Figs. 2
and 3. Interesting for aerial mapping is moving the imaging sensor to all geo-locations
regardless of the overall area geometry. This reduces the problem to visiting a set of
waypoints as opposed to planning at the geometric level. This transformed problem is
solvable as a graph traversal problem or like in our case, with boustrophedon coverage
paths. Next, we look at input area preparation.

Input Area Preparation
Using the abundant arithmetic tools necessitated projecting the coordinates into a
planar space, this transformation and its inverse are implemented using Lambert azi-
muthal equal area projection [14]. Counter clockwise coordinates sorting done in the

Table 2. Comparison of MAV and satellite remote sensing solutions

System Repeat cycle GSD (m)

SPOT (Commercial satellites) 26 days 2.5, 10, 20
LANDSAT 1-7 16 days 30, 60
Sentinel-2 10 days 10, 20, 30
Sentinel-2 (two satellite constellation) 5 days 10, 20, 30
MODIS 1–2 days 250, 500, 1000
SPOT 6-7 (Commercial satellites) 1 day 1.5
Micro aerial vehicles (MAVs) <1 day 0.01–0.1
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polar space simplifies complex input areas to convex or concave areas. For concave
areas, a convex approximation is determined using the Quickhull algorithm [15].

Area Partitioning
Comparison of the input area to the platform’s endurance determines the need for
partitioning. The conditions for partitioning are expressed as follows,

DBB

60 � vN [ TE AND TC [ TE ð1Þ

where DBB is perimeter of the oriented bounding box around the area of interest
(m), vN is ground speed (m/s), TE is endurance (min) and TC is coverage time (min).

After ascertaining the necessity for partitioning, we then determine the number of
partitions nP. A partition is approximated by an oriented bounding box of area AN .

nP ¼ AT

AN
¼ 16AT

D2
N

; nP 2 Z ð2Þ

where AT is area of interest, AN is the maximum area associated with endurance TE, i.e.
the perimeter of AN is equal to the nominal coverage distance DN of a quadcopter.

Since the area is too huge to survey from the current home point, nP new home
points (discarding the original home point) are needed. These are the sites upon which
voronoi partitioning is based. Voronoi cells are generated based on Euclidean distance
and voronoi sites. Then, the final partitions are the regions of intersection between
voronoi cells and or input area. The result is an exact cellular decomposition where,

AOI ¼
XnP
i¼1

Pi ð3Þ

where Pi is the area of partition i. It should be noted that site placement plays a key role
in partitioning. For better results, the sites should be distributed spatially evenly within
and or around the area of interest. Most optimal locations for sites are near vertices of
the intersection between bounding box and convex hull. If only TC [ TE is true in
Eq. 1, no area partitioning is necessary, but path splitting.

Fig. 2. Complex area of interest covered
with sensor footprints

Fig. 3. Complex AOI automatically trans-
formed into a non-convex polygon by
sensor footprint coverage
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Coverage Path Planning
Before planning the actual path, let us look at optimal travel orientation determination
and system specifications, as they are key to quality path plans.
Optimal Travel Lines Orientation

The choice of sweep direction greatly influences the number of turns and number of
traversal lines and coverage distance [9, 16, 17]. The number of turns is proportional to
number of traversal lines. Therefore, minimizing number of turns minimizes coverage
distance, number of images and completion time.

Approaches for flight line heading determination include orientation of longest
edge of input polygon [9, 17], longest edge of an axis aligned minimum area-bounding
box, longest edge of an oriented minimum area bounding box and principal direction of
variation of convex hull vertices. Aligning flight lines parallel to the longest edge of an
oriented minimum area bounding box is the only method proven to yield optimal
number of turns [16]. We empirically ascertained this optimality assertion by moni-
toring the variations in coverage path length with respect to path orientation. Figure 5
shows distance variation as the coverage path in Fig. 4 is rotated through 180°. Such
characteristic is typical of a diameter function with global minima corresponding to
optimal flight lines orientation.
Specifications Elicitation

The following parameters constitute the independent variables for analysis:

• Camera parameters: focal length f , pixel pitch p, pixel count (m� n pixels) and
shutter speed, TS

• Quadrotor specifications: ground nominal speed vN , endurance TE
• Mission specifications: an interactive digital map, desired ground sample distance

(GSD), forward overlap fOVLP and side overlap sOVLP, area of interest AOI.

From the above independent variables, dependent variables are derived as follow:

(a) Flight height

AGL ¼ GSD � f
p

ð4Þ

(b) Image footprint/ground coverage/image size on the ground is the actual area on
the ground captured in an image.

Dw � Dh ¼ GSD � m� GSD � n ¼ GSD � ðm� nÞ ð5Þ

(c) Side gain, sgain and forward gain, fgain

sgain ¼ Dw � 100� sOVLPð Þ
100

; fgain ¼ Dh � 100� fOVLPð Þ
100

ð6Þ
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(d) Number of images per flight line ðNIMÞ and number of flight lines ðNFLÞ

NIM ¼ NFLþ ceil
XNFL
i¼1

li
fgain

 !
and NFL ¼ ceil

b
sgain

þ 1
� �

ð7Þ

where b is the diameter of convex hull and li is the length of flight line i

(e) Camera trigger time TT is given by the expression,

TT ¼ fgain
vN

, subject to TT [ TS ð8Þ

To guarantee adjacency and stereoscopic coverage, images are captured with
overlapping fields of view. Near vertical photos for aerial map generation overlap along
direction of flight (forward overlap) and between adjacent flight lines (side overlap).

Spatial resolution determines not only image quality, but also the amount of imagery
data needed for map generation. The amount of imagery data scales exponentially with

Fig. 4. Sample cell with coverage paths

Fig. 5. Distance variation as a function of path orientation. Critical point occurs at 13.90 km
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ground spatial resolution [18, 19], as indicated in Fig. 6. The dependence of GSD on
AGL and camera properties introduces a level of flexibility in terms of hardware
selection, as the required map quality is achievable through strategic selection of camera
properties and flight height. Flight altitude is upper bounded by air traffic regulations,
which for North Rhine-Westphalia in Germany is limited to 100 m [20].

Coverage Path
We generate coverage paths for each cell as a series of parallel flight lines oriented

towards the optimal travel direction. The generated coverage path may exceed the
nominal endurance of available aerial platforms, in which case a splitter function
automatically divides the area further into manageable paths. All planned paths are
cyclic in nature. This approach is generalizable to multiple homogeneous MAVs with
no modification whatsoever. Heterogeneous fleets require systematic scheduling.

Heterogeneous MAVs
Path planning for fleets of heterogeneous quadrotors is not as trivial as planning for a
single or homogenous fleet. To accommodate the variation in platform capabilities, the
previous planning steps are modified as follows:

Partitioning decision is based on minimum coverage quadrotor, Eq. 9. This ensures
accessibility to even the furthest imaging points by all aerial platform.

DBB

60 � vN;Emin
[ TEmin ð9Þ

where TEmin and vN;Emin are endurance and velocity of minimum coverage quadcopter.
For the definitions of other parameters see Eq. 1.

For eachplatform i, a coverage path is planned on each cell j, resulting in coverage time
TC;ij and number of flights nF;j. A scheduler then allocates cells to available quadrotors
with priority given to high endurance quadrotors and longest coverage time cells.

Fig. 6. Number of images scales exponentially with ground resolution. Results are based on a
Sony NEX-5 camera with 25 mm focal length, 5.07 µm pixel pitch and 4595 � 3056 pixel count
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4 Simulation Results

The approach presented in this paper has been incorporate into the C# based Ardupilot
Mission Planner to take advantage of the abundant functions available, and tested with
software in the loop (SITL) simulator. In the following test, we used DJI Matrice 100
(M100) quadcopter with endurance TE = 20 min and nominal (minimum camera
vibration) speed vN = 5 m/s, microdrones md4-1000 with endurance 45 min and
nominal speed 6 m/s, a gimbal stabilized Sony nex-5 camera with focal length 25 mm,
image size of 4595 � 3056 pixels, pixel pitch = 5.07 µm and sensor size of
23.5 � 15.6 mm. The flight altitude was set to 100 m, giving a ground resolution of
2.03 cm. The overlaps were set to 50% and 60% for forward and side overlap
respectively. On analyzing, the input area AT = 9838175 m2, DBB = 12.6 km, parti-
tions nP = 5.

Figure 7 shows the input area and the resultant coverage paths. The details for each
of the cells are available in Table 3.

For the homogeneous case, only M100 was considered. Since the cell coverage
paths exceeded the platform endurance, the paths were automatically split into seg-
ments matching quadrotor’s nominal coverage, which was 6000 m and output as
waypoint files. The individual mission files have been tested on SITL simulator.

For the heterogeneous case, M100 and md4-1000 were considered. Each platform
planned a coverage path for each cell. The resulting completion times are tabulated in

Fig. 7. (left) Input area partitioned into five cells according to the big green home points. (right)
complete coverage paths for the five cells (Color figure online)

Table 3. Results of AOI partitioning

Cells Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Area (m2) 1372337 2895632 1339350 1996098 2235851
Perimeter (m) 4500 5000 3900 4700 4800
Path length (m) 61660 123220 60160 86900 93520
TC (min) M100/nF 256/13 513/26 250/13 362/19 389/20
TC (min) md4-1000/nF 214/5 421/10 208/5 301/7 324/8
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Table 3. The cells were then scheduled on the quadrotors with priority given to high
coverage quadrotors and longest completion time cells. Cells 2, 1, 3 were assigned to
md4-1000 and 4, 5 to M100. The total completion time and total number of flights are
843 min and 20, 751 min and 39 for md4-1000 and M100 respectively.

5 Conclusion and Future Work

This paper has described and tested an offline large-scale aerial path planner that breaks
endurance barriers on the deployment of MAVs for large-scale mapping applications.
The planner uses voronoi exact cellular decomposition to partition large input areas
into manageable cells. The approach is applicable to tasks involving a single MAV,
heterogeneous and a homogeneous fleet of MAVs.

The planner accounts for location of home points, map resolution and multirotor
capabilities in the process of planning coverage paths. The resulting plans can support
decision-making processes, ensure recoverability of platforms and mission success.

SITL simulation tests conducted ascertained the feasibility and deploy-ability of the
conceptualized method. Assumptions of perfect waypoint tracking, constant endurance
and zero influence of environmental factors like wind on endurance do not hold in the
real world and may lead to performance degradation in the field.

Regarding future work, further improvements on Mission Planner will be con-
ducted to allow simultaneous tracking of multiple MAVs. Home points optimization
will be incorporated to minimize user inputs and improve coverage performance. Last
but not least, terrain effect on the performance of MAVs and map quality will be
studied.
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