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1	� Introduction

This chapter provides an overview of a particular aspect of stochastic 
frontier analysis (SFA). The SF model is typically used to estimate best- 
practice ‘frontier’ functions that explain production or cost and predict 
firm efficiency relative to these. Extensive reviews of the broad stochas-
tic frontier (SF) methodology are undertaken by Kumbhakar and Lovell 
(2000), Murillo-Zamorano (2004), Coelli et al. (2005), Greene (2008), and 
Parmeter and Kumbhakar (2014). This review will focus on the many differ-
ent uses of various distributional forms.

Section 2 begins with a brief account of the motivation and development 
of efficiency analysis and prediction based on the standard SF model. A key 
feature of SF models is the focus on unobserved disturbance in the economet-
ric model. This entails a deconvolution of the disturbance into a firm ineffi-
ciency component— quantification of which is the goal of the analysis—and a 
statistical noise term. Following this general outline, we discuss approaches to 
dealing with some key specification issues. Section 3 considers alternative dis-
tributional assumptions for inefficiency. Section 4 examines panel data issues. 
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Section 5 considers modelling heteroskedasticity in error terms and its use-
fulness for policy analysis. Section 6 considers alternative noise distributions 
within SF models. Section 7 considers amendments to the standard SF model 
when the data contains efficient firms. Section 8 considers other received pro-
posals relevant to appropriate distributional assumptions in SFA. Section 9 
concludes.

2	� Departure Points

The standard theory of the firm holds that firms seek to maximise profit. 
Under certain assumptions, a profit function exists that reflects the maximum 
profit attainable by the firm. The profit function is derived from the firm’s 
cost function, which represents the minimum cost given outputs and input 
prices, and its production function, which describes the firm’s technology. 
These are ‘frontier’ functions in the sense that they represent optimal out-
comes that firms cannot improve upon given their existing technology. The 
duality of the production and cost functions was demonstrated by Shephard 
(1953). Debreu (1951) introduced the notion of a distance function to 
describe a multiple output technology and proposed that the radial distance 
of a producer’s outputs from the distance function be used as a measure of 
technical inefficiency. Koopmans (1951) provided a definition of technical 
efficiency.

The idea that firms might depart from profit maximisation was first 
suggested in passing by Hicks (1935), who speculated that firms with 
market power in particular may choose to enjoy some of their rents not 
as profit, but as reduced effort to maximise profits, or ‘a quiet life’. Later, 
Leibenstein (1966, 1975) discussed various empirical indications of firm-
level ‘X-inefficiency’ and how it might arise. The debate between Leibenstein 
(1978) and Stigler (1976) highlighted two alternative characterisations of 
inefficiency: as a result of selective rationality and non-maximising behav-
iour, resulting in non-allocative welfare loss, or as the redistribution of rents 
within the firm, and therefore consistent with the idea of maximising out-
ward behaviour. The latter characterisation essentially posits that firms are 
maximising an objective function including factors other than profit, and 
encompasses a wide range of specific hypotheses about firm behaviour. The 
revenue maximisation hypothesis of Baumol (1967), the balanced growth 
maximisation hypothesis of Marris (1964) and the expense preference 
hypothesis of Williamson (1963) are examples of hypotheses within which 
the firm (or its managers, given informational asymmetry between principal 
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and agent) pursues other objectives jointly with profit or subject to a profit 
constraint. We should therefore bear in mind that when we discuss effi-
ciency, it is relative to an objective that we define, and not necessarily that of 
the firm (or its agents).

The early literature on econometric estimation of cost functions has focal 
points at Johnston (1960) for the UK coal industry and Nerlove (1963) for 
US electricity generation. These authors focused primarily on estimation of 
the shape of the empirical cost or production functions. Typically, ordinary 
least squares (OLS) was used to estimate a linear model:

where yi is cost or output, β is a vector of parameters to be estimated, εi  
is a random error term, i = 1, 2, . . . , I denotes an observed sample of data 
and xi is the vector of independent variables. In the case of a production 
function, independent variables include input quantities and other fac-
tors affecting production, while in the case of a cost frontier, independent 
variables include output quantities and input prices, along with other factors 
affecting cost (Shephard 1953). Commonly, the dependent and independ-
ent variables are logged, in order to linearise what is assumed to be a multi-
plicative functional form. Note that the estimation of (1) via least squares, 
where a symmetric error term is assumed, is only consistent with the idea 
of a frontier function if we assume that firms are all fully efficient, and that 
departures from the estimated frontier are explained purely by measurement 
error and other random factors, such as luck. This fact has motivated many 
alternative proposals that are consistent with the notion of a frontier. Farrell 
(1957) proposed the use of linear programming to construct, assuming con-
stant returns to scale, a piecewise linear isoquant and to define technical 
inefficiency as the radial distance of the firm from this isoquant.

An approach that amends (1) so the error is one-sided, yields a deter-
ministic or ‘full’ frontier specification, in which the residuals are attributed 
entirely to inefficiency. Since a firm must be operating on or below its pro-
duction frontier, and on or above its cost frontier, this means that sεi ≤ 0, 
where s = 1 for a production frontier and s = −1 for a cost frontier. Aigner 
and Chu (1968) suggested linear or quadratic programming approaches 
to deterministic frontier estimation. Respectively, these minimise 

∑I
i=1 εi 

or 
∑I

i=1 ε
2
i , subject to the constraint that sεi ≤ 0. Schmidt (1976) noted 

that these are maximum likelihood (ML) estimators under the assumptions 
that the error term is exponentially or half normally distributed. Omitting 
the restriction that the residuals be one-sided leads to OLS and least abso-
lute deviations (LAD) estimation, which would be ML estimation under the 

(1)yi = xiβ + εi,
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assumptions that εi follows the normal or Laplace distributions, two-sided 
counterparts of the half-normal and exponential distributions, respectively. 
Afriat (1972) proposed a deterministic frontier model in which exp (εi) fol-
lows a two-parameter beta distribution, to be estimated via ML, which as 
Richmond (1974) noted is equivalent to assuming a gamma distribution for 
εi. The usual regularity conditions for ML estimation do not hold for deter-
ministic frontier functions, since the range of variation of the dependent 
variable depends upon the parameters. Greene (1980) points out that under 
certain specific assumptions, this irregularity is actually not the relevant con-
straint. Specifically, if both the density and first derivative of the density of ε 
converge to zero at the origin, then the log-likelihood function is regular for 
ML estimation purposes. Deterministic frontier models with gamma and log-
normal error term are examples.

Deterministic frontier models suffer from a serious conceptual weakness. 
They do not account for noise caused by random factors such as measure-
ment error or luck. A firm whose production is impacted by a natural dis-
aster might by construction appear to be inefficient. In order to account 
for measurement error, Timmer (1971) suggested amending the method 
so that the constraint sεi ≤ 0 holds only with a given probability, thereby 
allowing a proportion of firms to lie above (below) the production (cost) 
frontier. However, this probability must be specified in advance in an arbi-
trary fashion. An alternative proposal made by Aigner et al. (1976) has the 
error drawn from a normal distribution with variance σ 2θ when sεi ≤ 0 
and σ 2(1− θ) when sεi > 0, where 0 < θ < 1. Essentially, though this 
is not made explicit, this allows for normally distributed noise with var-
iance σ 2(1− θ) and inefficiency implicitly following a half-normal distri
bution with variance (1− 2/π)σ 2(1− θ), under the assumption that 
where sεi ≤ 0 firms are fully efficient. The resulting likelihood function is 
that of a 50:50 mixture of two differently scaled normal distributions trun-
cated at zero from the left and right, respectively. The discontinuity of this 
specification once again violates the standard regularity conditions for ML 
estimation.

The issues with the models suggested by Timmer (1971) and Aigner et al. 
(1976) stem in both cases from their peculiar assumption that firms must be 
fully efficient when sεi ≤ 0, which remains rooted in an essentially deter-
ministic view of frontier estimation. The current literature on SFA, which 
overcomes these issues, begins with Aigner et al. (1977) and Meeusen and 
van Den Broeck (1977). They proposed a composed error:

(2)εi = vi − sui
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where vi is a normally distributed noise term with zero mean, capturing ran-
dom factors such as measurement error and luck, and ui is a non-negative 
random variable capturing inefficiency and is drawn from a one-sided distri-
bution. Battese and Corra (1977) proposed an alternative parameterisation 
of the model. Given particular distributional assumptions about the two 
error components, the marginal distribution of the composed error εi may 
be derived by marginalising ui out of the joint probability;

where fε, fv, and fu are the density functions for εi, vi, and ui, respectively. The 
half-normal and exponential distributions were originally proposed for ui.  
Assuming a normal distribution for vi, the resulting distributions for εi are 
the skew-normal distribution, studied by Weinstein (1964) and Azzalini 
(1985), and the exponentially modified Gaussian distribution originally 
derived by Grushka (1972).

The ultimate objective of SFA is deconvolution of estimated residuals into 
separate predictions for the noise and inefficiency components. The latter is 
the focus of efficiency analysis. Since the parameters of fu are outputs of the 
estimation process, we obtain an estimated distribution of efficiency, and as 
proposed by Lee and Tyler (1978), the first moment of this estimated distri-
bution may be used to predict overall average efficiency. However, decom-
posing estimated residuals into observation-specific noise and efficiency 
estimates was elusive until Jondrow et al. (1982) suggested predicting based 
on the conditional distribution of ui|εi, which is given by

They derived (4) for the normal-half normal and normal-exponential cases. 
The mean, E(ui|εi), and mode, M(ui|εi), of this distribution were pro-
posed as predictors. Waldman (1984) examined the performance of these 
and other computable predictors. Battese and Coelli (1988) suggest the 
use of E

[

exp (−ui)|εi
]

 when the frontier is log-linear. Kumbhakar and 
Lovell (2000) suggest that this is more accurate than exp [−E(ui|εi)], espe-
cially when ui is large. In practice, the difference often tends to be very 
small. It should be noted that the distribution of the efficiency predic-
tions, E(ui|εi) will not match the unconditional, marginal distribution of 

(3)fε(εi) =

∞
∫

0

fv(εi + sui)fu(ui)dui

(4)f u|ε(ui|εi) =
fv(εi + sui)fu(ui)

fε(εi)
.
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the true, unobserved ui. Wang and Schmidt (2009) derived the distribu-
tion of E(ui|εi) and show that it is a shrinkage of ui towards E(ui), with 
E(ui|εi)− ui approaching zero as σ 2

v → 0.

3	� Alternative Inefficiency Distributions

The efficiency predictions of the stochastic frontier model are sensitive to 
the assumed distribution of ui. A number of alternatives have been pro-
posed. Several two-parameter generalisations of the half-normal and expo-
nential distributions, respectively, allow for greater flexibility in the shape of 
the inefficiency distribution, with non-zero modes in particular. The flexi-
ble forms generally enable testing against their simpler nested distributions. 
Stevenson (1980) proposed the truncated normal model1; Greene (1990) 
and Stevenson (1980) proposed gamma distributions. The truncated nor-
mal distribution, denoted N+

(

µ, σ 2
u

)

, nests the half normal when its loca-
tion parameter µ (the pre-truncation mean) is zero, and its mode is µ when 
µ ≥ 0. The similar ‘folded normal distribution’ denoted 

∣

∣N
(

µ, σ 2
u

)∣

∣, i.e. that 
of the absolute value of an N

(

µ, σ 2
u

)

 normal random variable, also nests the 
half normal when µ is zero, but has a non-zero mode only when µ ≥ σu 
(Tsagris et al. 2014; Hajargasht 2014).

The gamma distribution with shape parameter k and scale parameter σu 
nests the exponential distribution when k = 1. A two-parameter lognormal 
distribution, which resembles the gamma distribution, for ui is adopted by 
Migon and Medici (2001). It is possible to adopt even more flexible dis-
tributional assumptions; Lee (1983) proposed using a very general four- 
parameter Pearson distribution for ui as a means of nesting several simpler 
distributions. On the other hand, Hajargasht (2015) proposed a one- 
parameter Rayleigh distribution for ui which has the attraction of being a 
parsimonious way of allowing for a non-zero mode. Griffin and Steel (2008) 
proposed a three-parameter extension of Greene’s two-parameter gamma 
model that nests the gamma, exponential, half-normal and (heretofore never 
considered) Weibull models. Some of these represent minor extensions of 
the base case models. In all cases, however, the motivation is a more flexible, 
perhaps less restrictive characterisation of the variation of efficiency across 

1In the SF literature, ‘truncated normal’ refers specifically to the left truncation at zero of a normal dis-
tribution with mean µ and variance σ 2

u .
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firms. In many cases, the more general formulations nest more restrictive, 
but common distributional forms.

The inefficiency distributions discussed above were proposed to ena-
ble more flexible distributional assumptions about ui. Other propos-
als have addressed specific practical and theoretical issues. One is the 
‘wrong skew’ problem, which is discussed in more detail below. Broadly, 
the skewness of sui should be negative, both in the theory and as esti-
mated using data. In estimation, it often happens that the information 
extracted from the data suggests skewness in the wrong direction. This 
would seem to conflict with the central assumption of the stochastic fron-
tier model. The problem for the theoretical specification is that, since 
Skew(εi) = Skew(vi)− sSkew(ui) = −sSkew(ui) when vi is symmet-
rically distributed, the skewness of the composed error εi is determined by 
that of ui. Therefore, imposing Skew(ui) > 0 implies that −sSkew(εi) > 0. 
Since all of the aforementioned distributions for ui allow only for positive 
skewness, this means that the resulting SF models cannot handle skewness 
in the ‘wrong’ direction. An estimated model based on sample data will typ-
ically give an estimate of zero for Var(ui) if the estimated skewness (however 
obtained) goes in the wrong direction.

‘Wrong skew’ could be viewed as a finite sample issue, as demonstrated 
by Simar and Wilson (2010). Even when the assumed distribution of εi 
is correct, samples drawn from this distribution can have skewness in the 
‘wrong’ direction with some probability that decreases with the sample size. 
Alternatively, it may indeed be the case that, though non-negative, the dis-
tribution of ui has a zero or negative skew, and therefore, our distributional 
assumptions need to be changed accordingly. To this end, Li (1996) and Lee 
and Lee (2014)2 consider a uniform distribution, ui ∼ U(a, b), so that ui 
and εi are both symmetric, and Carree (2002) and Tsionas (2007) consider 
the binomial distribution and Weibull distributions, respectively, which 
both allow for skewness in either direction. Arguably, these ‘solutions’ are 
ad hoc remedies to what might be a fundamental conflict between the data 
and the theory. Notwithstanding the availability of these remedies, negative 
skewness, defined appropriately is a central feature of the model.

Also relevant here are SF models with ‘bounded inefficiency’. These are 
motivated by the idea that there is an upper bound on inefficiency beyond 

2Lee and Lee (2014) focus on the upper bound on inefficiency in the normal-uniform model and 
appear to have been unaware of the model’s earlier introduction by Li (1996), who was motivated by 
the skewness issue.
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which firms cannot survive. Such a boundary could be due to competitive 
pressure, as suggested by Qian and Sickles (2008). However, we also con-
sider that it could arise in monopolistic infrastructure industries which are 
subject to economic regulation, since depending on the strength of the regu-
latory regime, some inefficiency is likely to be tolerated.3

Implementation of bounded inefficiency involves the right-truncation of 
one of the canonical inefficiency distributions found in the SF literature. 
The upper tail truncation point is a parameter that would be freely esti-
mated and is interpreted as the inefficiency bound. Lee (1996) proposed a 
tail-truncated half-normal distribution for inefficiency, and Qian and Sickles 
(2008) and Almanidis and Sickles (2012) propose a more general ‘doubly 
truncated normal’ distribution (i.e. the tail truncation of a truncated normal 
distribution). Almanidis et al. (2014) discuss the tail-truncated half-normal, 
tail-truncated exponential and doubly truncated normal inefficiency distri-
butions. The latter of these may have positive or negative skewness depend-
ing on its parameter values. In fact, it is clear that this may be true of the 
right-truncation of many other non-negative distributions with non-zero 
mode.

A difficulty with certain distributional assumptions is that the inte-
gral in (3) may not have a closed-form solution, so that there may not 
be an analytical expression for the log-likelihood function. This issue 
first arose in the SF literature in the case of the normal-gamma model, 
in which case the problem was addressed in several different ways. 
Stevenson (1980) noted that relatively straightforward closed-form expres-
sions exist for integer values of the shape parameter k, of the normal- 
gamma model and derived the marginal density of εi for k = 0, k = 1,  
and k = 2. Restricting k to integer values gives the Erlang distribu-
tion, so this proposal amounts to a restrictive normal-Erlang model. 
The need to derive distinct formulae for every possible integer value of k 
makes this approach unattractive. Beckers and Hammond (1987) derived 
a complete log-likelihood for the normal-gamma model, but due to its  
complexity their approach has not been implemented. Greene (1990) 
approximated the integral using quadrature, but this approximation 
proved rather crude (Ritter and Simar 1997). An alternative approach, 
proposed by Greene (2003), is to approximate the integral via simulation  

3Such ‘tolerance’ does not necessarily reflect the technical competence or experience of regulators per 
se. It could reflect the perceived limitations on the robustness of the analysis (e.g. data quality), which 
necessitates a risk averse efficiency finding from a regulatory review.
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in order to arrive at a maximum simulated likelihood (MSL) solution.  
For more detail on MSL estimation, see Train (2009). In the context of 
SFA, Greene and Misra (2003) note that the simulation approach could be 
used to approximate the integral in (3) for many distributional assumptions 
as long as the marginal variable ui can be simulated. Since the integral is the 
expectation of fv(εi + sui) given the assumed distribution for ui, it can be 
approximated by averaging over Q draws from the distribution of ui:

where dq is draw number q from the standard uniform distribution, trans-
formed by the quantile function F−1

u  into a draw from the distribution of 
ui. In cases in which there is no analytical F−1

u , such as the normal-gamma 
model, the integral may nevertheless be expressed in terms of an expectation 
that may be approximated via simulation. Greene (2003) recommends using 
Halton sequences, which aim for good coverage of the unit interval, rather 
than random draws from the uniform distribution, in order to reduce the 
number of draws needed for a reasonable approximation of the integral.

As an alternative to simulation, various numerical quadrature approaches 
may be used. Numerical quadrature involves approximating an integral by 
a weighted sum of values of the integrand at various points. In many cases, 
this involves partitioning the integration interval and approximating the 
area under the curve within each of the resulting subintervals using some 
interpolating function. The advantage of quadrature over simulation lies 
in speed of computation, given that the latter’s time-consuming need to 
obtain potentially large numbers of independent draws for each observa-
tion. However, it may be challenging to find appropriate quadrature rules in 
many cases. Another alternative, proposed by Tsionas (2012), is to approxi-
mate fε using the (inverse) fast Fourier transform of the characteristic func-
tion of fε. The characteristic function, ϕε, is the Fourier transform of fε, and 
as shown by Lévy’s inversion theorem (see Theorem 1.5.4 in Lukacs and 
Laha 1964), the inverse Fourier transform of the characteristic function can 
be used to obtain fε. Since the Fourier transform of a convolution of two 
functions is simply the product of their Fourier transforms, i.e. ϕε = ϕvϕu 
(see Bracewell 1978, p. 110), ϕε may be relatively simple even when fε has 
no closed form, and fε may be approximated by the inverse fast Fourier 
transform of ϕε. On the basis of Monte Carlo experiments, Tsionas (2012) 
finds that this is a faster method for approximating fε in the normal-gamma 

(5)fε(εi) =

∞
∫

0

fv(εi + sui)fu(ui)dui ≈
1

Q

Q
∑

q=1

fv

[

εi + sF−1
u

(

dq
)

]
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and normal-beta cases than either Gaussian quadrature or Monte Carlo 
simulation, with the former requiring a large number of quadrature points 
and the latter an even larger number of draws for comparable accuracy. This 
approach has not yet been adopted as widely as simulation, perhaps due to 
its relative complexity.

A natural question would be which, of the many alternatives discussed 
above, is the most appropriate distribution for inefficiency? Unfortunately, 
theory provides little guidance on this question. Oikawa (2016) argues that 
a simple Bayesian learning-by-doing model such as that of Jovanovic and 
Nyarko (1996), in which a firm (or manager) maximises technical efficiency 
given prior beliefs about and previous realisations of an unknown technol-
ogy parameter, supports a gamma distribution for inefficiency. However, 
Tsionas (2017) shows that this conclusion is sensitive to the sampling of, 
and assumed prior for, the firm-specific parameter, and that under alter-
native formulations there is no basis for favouring the gamma distribution 
(or any known distribution). Furthermore, both authors assume that firms 
maximise expected profits, whereas alternative behavioural assumptions may 
yield very different results. Of course, the choice of inefficiency distribu-
tion may be driven by practical considerations, such as a need to allow for 
wrong skewness or to estimate an upper bound on inefficiency. The ques-
tion of which inefficiency distribution to use is an empirical one and leads 
us to consider testing in the context of SFA. As noted previously, some of 
the more flexible inefficiency distributions nest simpler distributions. In 
these cases, we may test against to simpler nested models. For example, we 
may test down from the normal-gamma to the normal-exponential model 
by testing the null hypothesis that k = 1. We may test down from the nor-
mal-truncated normal (or the normal-folded normal) to the normal-half 
normal model by testing the null hypothesis that µ = 0. These are standard 
problems.

There are some remaining complications in the specification search for 
the SF model. We may wish to test for the presence of the one-sided error, 
often interpreted as a test for the presence of inefficiency. In this case, the 
errors are normally distributed under the null hypothesis H0 : σu = 0. This 
is a non-standard problem because the scale parameter σu is at a boundary of 
the parameter space under H0. Case 5 in Self and Liang (1987) shows that 
where a single parameter of interest lies on the boundary of the parameter 
space under the null hypothesis, the likelihood ratio (LR) statistic follows 
a 50:50 mixture of χ2

0 , and χ2
1  distributions, denoted χ2

1:0, for which the 
95% value is 2.706 (Critical values are presented in Kodde and Palm 1986). 
Lee (1993) finds that this is the case under H0 : σu = 0 in the normal-half 
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normal model. A Lagrange multiplier test for this case in the SF model is 
developed in Lee and Chesher (1986).

This result does not apply when fu has two or more parameters. Coelli 
(1995) states that, in the normal-truncated normal model, the LR statistic 
under H0 : σu = µ = 0 follows a 25:50:25 mixture of χ2

0 , χ2
1  and χ2

2  dis-
tributions, and that this is a special case of the result for two restrictions 
in Gouriéroux et al. (1982), which deals with inequality restrictions.4 This 
result matches Case 7 in Self and Liang (1987), in which two parameters of 
interest lie on the boundary of the parameter space under the null. The test 
seems to have been incorrectly applied; under H0 : σu = µ = 0, only one 
parameter lies on the boundary. Equivalently, viewing the test as a one-tailed 
test of H0 : σu ≤ 0,µ = 0, we only have one inequality restriction. Case 6 
in Self and Liang (1987), in which there are two parameters of interest, one 
on a boundary, and one not on a boundary, seems to be more applicable, 
suggesting a 50:50 mixture of χ2

1  and χ2
2  distributions, denoted χ2

2:1. More 
fundamentally, H0 : σu = µ = 0 may not be the appropriate null hypothe-
sis: when the scale parameter of the inefficiency distribution is set to zero, all 
other parameters of the distribution are in fact unidentified. Equivalently, a 
normal distribution for εi can be recovered in the normal-truncated normal 
case as µ → −∞, for any value of σu. The general problem of testing when 
there are unidentified nuisance parameters under the null hypothesis is dis-
cussed by Andrews (1993a, b) and Hansen (1996). To our knowledge has 
not been addressed in the SF literature.

We may wish to choose between two non-nested distributions. In this 
case, Wang et al. (2011) suggest testing goodness of fit by comparing the 
distribution of the estimated residuals to the theoretical distribution of  
the compound error term. This is a simpler method than, for example, 
comparing the distribution of the efficiency predictions to the theoretical 
distribution of E(u|ε) as derived by Wang and Schmidt (2009), since the 
distribution of the compound error is much simpler. For example, as dis-
cussed previously, εi follows a skew-normal distribution in the normal-half 
normal model, and an exponentially modified Gaussian distribution in the 
normal-exponential model. Under alternative specifications, the distribution 
of the estimated residuals may become rather complex, however.

4If we view the normal-half normal model as a skew-normal regression model in which we expect (but 
do not restrict) the skewness parameter σu/σv to be positive, then we view the test for the presence of 
inefficiency as a one-tailed test of the H0 that σu ≤ 0, or equivalently that σu/σv = 0, rather than as a 
test involving a boundary issue. Comparing the case of one inequality constraint in Gouriéroux et al. 
(1982) to Case 5 in Self and Liang (1987), we see the same result.
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4	� Panel Data

The basic panel data SF model in the contemporary literature is as in (1) 
with the addition of a t subscript to denote the added time dimension of the 
data:

where t = 1, 2, . . . , T . The composite error term is now

Along with the usual advantages of panel data, Schmidt and Sickles (1984) 
identify three benefits specific to the context of SFA. First, under the 
assumption that inefficiency is either time invariant or that it varies in a 
deterministic way, efficiency prediction is consistent as T → ∞. In contrast, 
this is not the case as N → ∞. Second, distributional assumptions can be 
rendered less important, or avoided altogether, in certain panel data specifi-
cations. In particular skewness in the residual distribution does not have to 
be the only defining factor of inefficiency. Instead, time persistence in ineffi-
ciency can be exploited to identify it from random noise. Third, it becomes 
possible, using a fixed-effects approach, to allow for correlation between 
inefficiency and the variables in the frontier.5 In addition, the use of panel 
data allows for the modelling of dynamic effects.

In the context of panel data SF modelling, one of the main issues is 
the assumption made about the variation (or lack thereof ) of inefficiency 
over time. Another is the way in which we control (or do not control) for 
firm-specific unobserved heterogeneity and distinguishes this from ineffi-
ciency. For the purposes of this discussion, we divide the received panel 
data SF models into three classes: models in which inefficiency is assumed 
to be time-invariant, models in which inefficiency is time-varying, and 
models which control for unobserved heterogeneity with either time-in-
variant or time-varying inefficiency. To finish this section, we consider 
briefly multi-level panel datasets and the opportunities that they provide 
for analysis.

(6)yit = xitβ + εit ,

(7)εit = αi + vit − suit .

5However, since Schmidt and Sickles (1984), cross-sectional models have been proposed, such as those 
of Kumbhakar et al. (1991), Huang and Liu (1994), and Battese and Coelli (1995), that allow for 
dependence between inefficiency and frontier variables. These are discussed in Sect. 4.
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4.1	� Time-invariant Efficiency

One approach to panel data SFA is to assume that efficiency varies 
between firms but does not change over time, as first proposed by Pitt and 
Lee (1981). Referring to (6) and (7), the basic panel data SF model with 
time-invariant efficiency assumes that αi = 0, uit = ui, so that we have:

This specification has the advantage that prediction (or estimation) of ui is 
consistent as T → ∞. The appeal of this result is diminished given that the 
assumption of time-invariance is increasingly hard to justify as the length of 
the panel increases. In contrast to the cross-sectional case, there is no need 
to assume that ui is a random variable with a particular distribution, and 
therefore, there are several different methods may be used to estimate (8), 
depending on our assumptions about ui.

Schmidt and Sickles (1984) proposed four alternative approaches. 
First, we may assume that ui is a firm-specific fixed effect, and to estimate 
the model using either a least squares dummy variable (LSDV) approach, 
in which ui is obtained as the estimated parameter on the dummy variable 
for firm i, or equivalently by applying the within transformation, in which 
case ui is obtained as firm i ’s mean residual. Second, we may assume that ui  
is a firm-specific random effect and estimate the model using feasible gen-
eralised least squares (FGLS). The difference between the fixed-effects and 
random-effects approaches is that the latter assumes that the firm-specific 
effects are uncorrelated with the regressors, while the former does not. Third, 
Schmidt and Sickles (1984) suggested instrumental variable (IV) estimation 
of the error components model proposed by Hausman and Taylor (1981) 
and Amemiya and MaCurdy (1986), which allows for the firm-specific effect 
to be correlated with some of the regressors and uncorrelated with oth-
ers, and is thus intermediate between the fixed-effects and random-effects 
models. Fourth, as in Pitt and Lee (1981), ui could be regarded as an inde-
pendent random variable with a given distribution, as in the cross-sectional 
setting, with the model being estimated via ML.

The first three approaches share the advantage that no specific distribu-
tional assumption about ui is required. As a consequence, the estimated 
firm-specific effects could be positive. As a result, firm-specific efficiency 
can only be measured relative to the best in the sample, not to an absolute 
benchmark. The estimated ui is given by

(8)yit = xitβ + vit − sui.

(9)ui = max
j

saj − sai,
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where ai is the estimated firm-specific effect for firm i. The fixed-effects 
specification has the advantage of allowing for correlation between ui and 
xit. But the drawback is that time-invariant regressors cannot be included, 
meaning that efficiency estimates will be contaminated by any differences 
due to time-invariant variables. The assumption that the factors are uncorre-
lated with errors (noise or inefficiency) can be examined using the Hausman 
test (Hausman 1978; Hausman and Taylor 1981). If this assumption 
appears to hold, a random effects approach such as Pitt and Lee (1981) may 
be preferred. Another approach is to estimate a correlated random-effects 
model using Chamberlain-Mundlak variables—see Mundlak (1978) and 
Chamberlain (1984)—to allow for correlation between the random effects 
and the regressors. Griffiths and Hajargasht (2016) propose correlated ran-
dom effects SF models using Chamberlain-Mundlak variables to allow for 
correlation between regressors and error components, including inefficiency 
terms.

The ML approach to estimation of (8) was first suggested by Pitt and 
Lee (1981), who derived an SF model for balanced panel data with a half- 
normal distribution for ui and a normal distribution for vit. This model 
therefore nests the basic cross-sectional model of Aigner et al. (1977) when 
T = 1. As in the cross-sectional setting, alternative distributional assump-
tions may be made. Battese and Coelli (1988) generalise the Pitt and Lee 
(1981) model in two ways: first, by allowing for an unbalanced panel 
and second, by assuming a truncated normal distribution for ui. Normal-
exponential, normal-gamma and normal-Rayleigh variants of the Pitt and 
Lee (1981) model are implemented in LIMDEP Version 11 (Greene 2016). 
As in the cross-sectional setting, parameter estimates and efficiency predic-
tions obtained under the ML approach are more efficient than those from 
semi-parametric models if the distributional assumptions made are valid. If 
those assumptions are not valid, they may be inconsistent and biased. To be 
sure, the ability to test distributional assumptions is very limited.

4.2	� Time-Varying Efficiency

Allowing for variation in efficiency over time is attractive for a number of 
reasons. As already noted, the assumption that efficiency is time-invariant 
is increasingly hard to justify as T increases. We would expect average effi-
ciency to change over time. There may also be changes in the relative posi-
tions of firms, in terms of convergence or divergence in efficiency between 
firms, and potentially also changes in rankings through firms overtaking 
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each other. A wide variety of time-varying efficiency SF specifications have 
been proposed, each differing with respect to their flexibility in model-
ling the time path of efficiency and each having their own advantages and 
disadvantages.

As Amsler et al. (2014) note, panel data SF specifications can be grouped 
into four categories with respect to how uit changes over time. One of these, 
covered in the preceding section, is models with time-invariant efficiency, so 
that uit = ui. Second, we could assume independence of uit over t. In this 
case, we may simply estimate a pooled cross-sectional SF model, the possi-
bility of unobserved heterogeneity notwithstanding. The advantages of this 
approach are the flexibility of uit—and by extension, that of E(uit|εit)—over 
time, its simplicity and its sparsity, given that it adds no additional param-
eters to the model. However, the assumption of independence over time is 
clearly inappropriate.

Third, we may treat uit as varying deterministically over time. One 
approach is to include time-varying fixed or random effects, ait, with uit 
being given by

Of course, given that N ≤ IT firm- and time-specific parameters6 cannot be 
identified, some structure must be imposed. Kumbhakar (1991, 1993) pro-
posed combining firm-specific (but time-invariant) and time-specific (but 
firm-invariant) effects, such that ait = �i +

∑T
t=2 �t. This imposes a com-

mon trend in uit among firms, albeit one that may be quite erratic. Lee and 
Schmidt (1993) proposed a specification, ait = �tαi, which again imposes 
a trend over time. This is common for all firms, but complicates estimation 
due to its non-linearity. An alternative approach is to specify that ait = g(t) 
as proposed by Cornwell et al. (1990), who specifically suggested a quadratic 
time trend with firm-specific parameters, such that ait = �i + �i1t + �i2t

2.  
This specification is flexible, in that it allows for firms to converge, diverge 
or change rankings in terms of efficiency. Ahn et al. (2007) propose a spec-
ification which nests both the Lee and Schmidt (1993) and Cornwell et al. 
(1990) models, in which ait =

∑p
j=1 �jtαji, thus allowing for arbitrary, 

firm-specific time trends. This specification nests the Lee and Schmidt 
(1993) model when p = 1, and the Cornwell et al. (1990) model when 
p = 3, �1t = 1, �2t = t, �3t = t2. The value of p is estimated along with 

(10)uit = max
j

sajt − sait .

6N being the total number of observations, so that N = IT in the case of a balanced panel.
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the model parameters. The authors discuss estimation and identification of 
model parameters. Ahn et al. (2013) discuss estimation of this model when 
there are observable variables correlated with the firm-specific effects, but 
not with vit. An alternative approach based on factor modelling and allowing 
for arbitrary, smooth, firm-specific efficiency trends is proposed by Kneip 
et al. (2012).

Because semi-parametric models yield only relative estimates of efficiency, 
it is not possible to disentangle the effects of technical change (movement of 
the frontier) and efficiency change. An analogous approach in the context of 
parametric specifications is to use a ‘scaling function’, so that

Here, ui is a time-invariant random variable following a one-sided distri-
bution—as in the time-invariant specification of Pitt and Lee (1981)—
and g(t ) is a non-negative function of t. Kumbhakar (1990) proposed 
g(t) = 1/

[

1+ exp
(

�1t + �2t
2
)]

; Battese and Coelli (1992) proposed 
g(t) = exp

[

�1(t − T)
]

 and g(t) = exp
[

�1(t − T)+ �2(t − T)2
]

. In 
each case, ui is assumed to follow half-normal distribution. In these mod-
els, efficiency moves in the same direction for all firms, but there may be 
convergence of firms over time. In addition, with the exception of the 
one-parameter Battese and Coelli (1992) scaling function, these allow for 
non-monotonic trends in uit over time. However, they do not allow for 
changes in rank over time, which requires firm-specific time trends.

Cuesta (2000) generalised the one-parameter Battese and Coelli 
(1992) scaling function to allow for firm-specific time trends, so that 
g(t) = exp

[

�1i(t − T)
]

. An extension to the two-parameter case would 
be straightforward. This allows for firm-specific time trends, as in the 
Cornwell et al. (1990) model, but again at the cost of increasing the num-
ber of parameters in the model by a factor of I. However, Wheat and Smith 
(2012) show that the Cuesta (2000) specification, unlike that of Battese and 
Coelli (1992), can lead to a counterintuitive ‘falling off’ of firms with high 
E(uit|εit) in the final year of the sample They propose a model in which 
g(t) = exp

[

�1i(t − �2i)
]

, that does not have the same feature.7 More gener-
ally, as Wheat and Smith (2012) note, the many different models using that 
use functions are sensitive to the precise form of g(t ) in terms of parameter 
estimates, fit and efficiency predictions.

(11)uit = g(t)ui.

7Clearly, this model is far from parsimonious, since g(t ) includes 2I parameters. In fact, the authors 
apply a simpler model, g(t) = exp

[

�1i(t − �2)
]

 after failing to reject H0 : �2i = �2.
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A fourth approach to time-variation of uit in panel data SF models is to 
allow for correlation between uit over time by assuming that (ui1, . . . , uiT ) 
are drawn from an appropriate multivariate distribution. Among their var-
ious proposals, Pitt and Lee (1981) suggested that (ui1, . . . , uiT ) could be 
drawn from a multivariate truncated normal distribution. They abandoned 
this approach, after noting that the likelihood function for this model 
involves intractable T-dimensional integrals.8 In addition, Horrace (2005) 
showed that the marginal distribution of uit in this case is not truncated nor-
mal. However, as suggested by Amsler et al. (2014), it is possible to specify 
a multivariate distribution with the desired marginal distributions, and also 
obviate T-dimensional integration when evaluating ln L, by using a copula 
function. Sklar’s theorem—see Nelsen (2006, pp. 17–14)—states that any 
multivariate cumulative density function can be expressed in terms of a set 
of marginal cumulative density functions and a copula. For example, we 
have

where Hu is a multivariate cumulative density function for (ui1, . . . , uiT ), 
C[.] is the copula function, and Fu1(ui1), . . . ,FuT (uiT ) are the marginal 
cumulative density functions for uit for each time period. We would nor-
mally assume that Fut = Fu for all t, so that we have

From this, it can be seen that the probability density function is given by

where c is the derivative of the copula. It follows from this that a multivar-
iate density h(ui1, . . . , uiT ) with the desired marginal densities given by fu 
can be obtained by combining fu and Fu with an appropriate copula den-
sity c. Many different copula functions exist—it is beyond the scope of 
this chapter to review the various candidates—each embodying differ-
ent dependence structures. Note that c = 1 relates to the special case of 
independence. This allows marginal distributions to be specified, but the 

(12)Hu(ui1, . . . , uiT ) = C[Fu1(ui1), . . . ,FuT (uiT )]

(13)Hu(ui1, . . . , uiT ) = C[Fu(ui1), . . . ,Fu(uiT )].

(14)hu(ui1, . . . , uiT ) =

T
∏

t=1

[

fu(uit)
]

c[Fu(ui1), . . . ,Fu(uiT )]

8The authors instead estimate a system of T equations via the seemingly unrelated regressions (SUR) 
model proposed by Zellner (1962). However, this approach offers no way of predicting observa-
tion-specific efficiencies.
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problem of T-dimensional integration to evaluate the log-likelihood persists. 
For this reason, Amsler et al. (2014) propose and implement an alternative 
approach whereby instead of specifying a copula for (ui1, . . . , uiT ), a copula 
is specified for the composite errors (εi1, . . . , εiT ). In this case, we have

where hε is the multivariate distribution for (εi1, . . . , εiT ) and Fε is the mar-
ginal cumulative density function for εit. In this case, an appropriate mar-
ginal distribution for εit is chosen, such as the skew-normal distribution. 
In this case, the correlation is between the composite errors, introducing 
dependency between both error components. Amsler et al. (2014) take 
both approaches, estimating a model in which (εi1, . . . , εiT ) is drawn from 
a joint distribution as in (15) via ML, and a model in which (ui1, . . . , uiT ) 
is drawn from a joint distribution as in (14), while vit is assumed independ-
ent, via MSL. A Gaussian copula function is used in both cases. The authors 
discuss prediction of efficiency. In this case, it is based on uit|εi1, . . . , εiT. 
This results in improved predictions relative to those based on uit|εit, since 
the composite errors from all years are informative about uit when there is 
dependency between them.

The copula approach proposed by Amsler et al. (2014) is attractive, 
since it can be seen as intermediate between the pooled SF approach and 
the approach of specifying SF models with deterministically time-varying 
uit. As such, it retains the advantage of the latter approach in allowing for 
dependency over time, without specifying a particular functional form for 
the time trend. It also obviates the large number of additional parameters 
otherwise needed to allow flexibility with respect to time trends. Rather than 
some factor of I, the number of new parameters is limited to the correlation 
coefficients ρts∀t �= s. A number of simplifying assumptions can be made to 
reduce the number of these while retaining flexibility. Firms may converge 
or diverge, or change rankings, using a relatively parsimonious specification 
under this approach.

4.3	� Unobserved Heterogeneity

Aside from considerations of the appropriate way to model trends in uit over 
time, which is peculiar to the panel data SF context, more general panel 
data issues are also relevant. Primary among these is the need to account 

(15)hε(εi1, . . . , εiT ) =

T
∏

t=1

[

fε(εit)
]

c[Fε(εi1), . . . ,Fε(εiT )]
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for possible unobserved heterogeneity between firms. In general, this means 
incorporating firm-specific effects which are time-invariant but not captured 
by the regressors included in the frontier. These may be either correlated or 
uncorrelated with the regressors, i.e. they may be fixed or random effects, 
respectively. In general, failure to account for fixed effects may bias parame-
ter estimates, while failure to account for random effects generally will not.9 
In the SF context, failure to account for fixed or random effects means such 
effects may be attributed to uit.

A number of models have been proposed which incorporate fixed or ran-
dom effects. These are interpreted as capturing unobserved heterogeneity 
rather than as inefficiency effects. Kumbhakar (1991) proposed extending 
the pooled cross-section model to incorporate firm and time effects uncorre-
lated with the regressors, so that

where ai and at are firm- and time-specific fixed or random effects. In the 
fixed-effects case, Kumbhakar (1991) suggests estimation via ML with 
firm dummy variables, under the assumptions that ai, at, and vit are drawn 
from normal distributions with zero means and constant variances, and uit 
is drawn from a truncated normal distribution. A simplified version of this 
model, omitting at and treating ai as a fixed effect, was used by Heshmati 
and Kumbhakar (1994). This model was also considered by Greene (2004, 
2005a, b), who proposed the specification

where ai is a time-invariant fixed or random effect, and the specification is 
referred to as the ‘true fixed effects’ (TFE) or ‘true random effects’ (TRE) 
model, accordingly. In the TFE case, estimation proceeds by simply replac-
ing the constant term in the standard pooled with a full set of firm dummies 
and estimating the model via ML. However, evidence presented by Greene 
(2005b) from Monte Carlo experiments suggests that this approach suffers 
from the incidental parameters problem. As a result, Chen et al. (2014) pro-
pose an alternative ML approach based on the within transformation, which 
is not subject to this problem, and Belotti and Ilardi (2018) extend this 
approach to allow for heteroscedastic uit.

(16)εit = vit + ai + at − suit

(17)εit = vit + ai − suit

9However, in the context of a log-linear model, the estimate of the intercept will be biased in either 
case.
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In the TRE case, Greene (2004, 2005a, b) proposed estimation of the 
model via MSL, assuming that ai ∼ N

(

0, σ 2
a

)

. Greene (2005b) notes that 
the TRE approach—and indeed the standard SF model—can be seen as spe-
cial cases of a random parameters model and proposes a random parameters 
specification incorporating heterogeneity in β, so that

where βi is assumed to follow a multivariate normal distribution with mean 
vector β and covariance matrix 

∑

. The random intercept is β0i = β0 + ai 
in terms of the TRE notation. The model is estimated via MSL. The resem-
blance of this approach to the Bayesian SF specifications considered by 
Tsionas (2002) is noted. However, the Bayesian approach has the draw-
back of requiring some prior distribution to be chosen for all parameters, 
including those of fu. Greene (2008) notes that in the classical framework, 
‘randomness’ of the parameters reflects technological heterogeneity between 
firms, whereas in the Bayesian framework, ‘randomness’ of the parameters is 
supposed to reflect the uncertainty of the analyst.10

A discrete approximation to the random parameters SF model is possible 
using a latent class approach to capture heterogeneity in some or all of the 
β parameters, as proposed by Orea and Kumbhakar (2004). In this speci-
fication, each firm belongs to one of J classes, each class having a distinct 
technology, so that for class j, we have technology parameters βj. Class mem-
bership is unknown. Each firm is treated as belonging to class j with uncon-
ditional probability pj, where the unconditional probabilities are estimated 
as parameters after normalising such that 

∑J
j=1 pj = 1 (leaving J − 1 addi-

tional parameters to be estimated). The model may be estimated via ML. 
Conditional probabilities of class membership for each observation obtained 
by

The primary issue with the TFE and TRE and similar models is that any 
time-invariant effects are attributed to ai, when it is entirely possible that 
they should, partly or wholly, be attributed to uit. Several recent proposals 
therefore extend this modelling approach to allow for uit to be broken down 

(18)yit − xiβi = εit = vit − suit

(19)pij =
pjfε

(

yit − xiβj
)

∑J
j=1

[

pjfε
(

yit − xiβj
)]

10Despite this, Tsionas (2002) does interpret the models as incorporating technological heterogeneity.
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into separate time-invariant and time-varying components capturing ‘persis-
tent’ and ‘transient’ inefficiency effects, respectively. Thus,

where typically both wi and wit are random variables drawn from some one-
sided distribution. A similar decomposition of uit was first suggested by 
Kumbhakar and Heshmati (1995), who proposed that uit = ai + wit and 
Kumbhakar and Hjalmarsson (1995), who proposed uit = ai + αt + wit, 
where ai and αt are firm- and time-specific fixed or random effects, respec-
tively.11 Colombi et al. (2014) and Tsionas and Kumbhakar (2014) propose 
an extension of the TRE model, accordingly referred to as the generalised 
true random effects (GTRE) model, in which

This model therefore includes four error components, allowing for noise, 
unobserved heterogeneity, and persistent and transient inefficiency. 
Identification requires specific distributional assumptions to be made about 
either ai or wi, or both. The following distributional assumptions are typ-
ically made: vit ∼ N

(

0, σ 2
v

)

, ai ∼ N
(

0, σ 2
a

)

 and wi and wit are follow 
half-normal distributions with constant variances. Each of the error com-
ponents is assumed to be independent. Various approaches to estimation of 
the GTRE model have been proposed. Kumbhakar et al. (2014) suggest a 
multi-step approach. In the first step, a standard random effects panel data 
model including a noise component v∗it = vit + wit and a time-invariant 
random effects component a∗i = ai + wi. This can be estimated via FGLS, 
avoiding any explicit distributional assumptions. Subsequently, the estimates 
of these error components are used as the dependent variables in separate 
constant-only SF models, which decompose them into their two-sided and 
one-sided components. This is straightforward to implement using standard 
software packages.

Alternatively, Colombi et al. (2014) use the result that εit in the GTRE 
model is the sum of two random variables, each drawn from an independ-
ent closed skew-normal distribution.12 As its name suggests, the closed 

(20)uit = wi + wit

(21)εit = vit + ai − s(wi + wit)

11Note that these proposals are very similar to those of Kumbhakar (1991) and Heshmati and 
Kumbhakar (1994), the difference being the interpretation of ai and αt as picking up inefficiency 
effects, rather than unobserved heterogeneity.
12The univariate skew normal distribution is a special case of the closed skew-normal distribu-
tion. To see that εit is the sum of two closed skew-normal random variables, therefore, consider that 
v∗it = vit + wit. and a∗i = ai + wi both follow skew-normal distributions. For details on the closed 
skew-normal distribution, see González-Farías et al. (2004).
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skew-normal distribution is closed under summation—see Proposition 2.5.1 
of González-Farı́as et al. (2004b) or Theorem 1 in González-Farı́as et al. 
(2004a). Therefore, εit follows a skew-normal distribution. This enables esti-
mation of the model via ML. However, Filippini and Greene (2016) note 
that this is extremely challenging, since the log-likelihood involves the prob-
ability density function for a T-variate normal distribution and the cumula-
tive density function for a T + 1-variate normal distribution. They proposed 
a simpler approach based on MSL, which exploits the fact that the GTRE 
model is simply the TRE model in which the time-invariant error compo-
nent follows a skew-normal distribution. Colombi et al. (2014) show how to 
obtain predictions for wi and wit.

The attraction of the GTRE model is that it is quite general, in that it 
allows for the decomposition of the composite error into noise, random 
effects, persistent inefficiency, and transient inefficiency components. It also 
nests various simpler models, such as the TRE model, the standard pooled 
SF model, the Pitt and Lee (1981) model, and a standard random-effects 
model. However, Badunenko and Kumbhakar (2016) recently concluded on 
the basis of Monte Carlo experiments that the model is very limited in its 
ability to precisely predict the individual error components in practice, and 
suggest that the model may not outperform simpler models in many cases.

4.4	� Multi-level Panel Datasets

This section has outlined how panel data allows for a richer characterisation 
of efficiency and thus panel data is desirable for undertaking efficiency anal-
ysis. Both Smith and Wheat (2012) and Brorsen and Kim (2013) have con-
sidered using data on a number of organisations over time, but disaggregated 
on sub-firm divisions (henceforth: plants) for each organisation. Thus, there 
are two levels of data

which is (6) but with the addition of a plant subscript j. There are two key 
advantages to considering data of this form. Firstly, such an approach allows 
for the measurement of internal efficiency variation within an organisation, 
as well as simultaneously measuring efficiency against comparator organ-
isations (external efficiency). Smith and Wheat (2012) propose a model 
(ignoring the time dimension for simplicity) in which uij = ui + u∗ij, where 
ui is a one-sided component common to all of firm i ’s plants, and u∗ij is a 
plant-specific component assumed to follow a half-normal distribution. The 

(22)yits = xijtβ + τits + vits
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authors suggest estimating the model using a two-step approach, in which 
ui is obtained from a fixed or random effect in the first step. Note that, in 
the one-period or pooled cross-section cases, this is simply the panel data 
specification of Kumbhakar and Hjalmarsson (1995) and Kumbhakar and 
Heshmati (1995).

Lai and Huang (2013) argue that there is likely to be intra-firm corre-
lation between both plant-level efficiency and noise effects. Rather than 
allow for separate correlations between the vij and the uij, the authors pro-
pose a model in which the εij are correlated such that ρ

(

εij, εil
)

= ρ. The 
components and vij and uij are assumed to be drawn from marginal normal 
and half-normal distributions, respectively, the authors allow for correlation 
between the composed errors using a Gaussian copula.

Secondly, both Brorsen and Kim (2013) and Smith and Wheat (2012) 
demonstrate that there is a need to model costs at the level that management 
autonomy resides. Failure to do so can result in misleading predictions of 
efficiency as it mismatches returns to scale properties of the cost function 
with efficiency. Brorsen and Kim (2013) used data on schools and school 
districts to show that if the model were estimated using data at district level 
then returns to scale are found to be decreasing rather than finding that 
these schools are inefficient. Ultimately, the aggregation bias is resulting in 
correlation between errors and regressors, since true measures of scale/den-
sity (at the disaggregate level) are not included in the model.

5	� Heteroscedasticity and Modelling 
Inefficiency

In many applications of SFA, the analyst is interested in not only in the 
estimation or prediction of efficiency, but also in its variation in terms of 
a set of observable variables. However, the standard SF model assumes that 
ui is independent of observed variables. Many applications, including Pitt 
and Lee (1981) as an early example, take a two-step approach to modelling 
efficiency: first, a standard SF model is estimated and used to generate effi-
ciency predictions, and second, these predictions are regressed on a vector 
of explanatory variables. However, the second-step regression violates the 
assumption of independence in the first step, and Wang and Schmidt (2002) 
show that the two-step approach is severely biased. Given that ui is a ran-
dom variable, appropriate approaches involve specifying one or more param-
eters of the error distributions as a function of a set of covariates.
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Deprins and Simar (1989a, b), Reifschneider and Stevenson (1991), 
Kumbhakar et al. (1991), Huang and Liu (1994), and Battese and Coelli 
(1995) all propose extensions of the basic SF model whereby

where zi is a vector of ‘environmental’ variables influencing inefficiency, 
δ is a vector of coefficients, and wi is a random error. In the Deprins and 
Simar (1989a, b) specification, g(zi, δ) = exp (ziδ) and wi = 0, and the 
model may estimated via non-linear least squares or via ML assuming 
vi ∼ N

(

0, σ 2
v

)

.13 Reifschneider and Stevenson (1991) propose restricting 
both components of ui to be non-negative, i.e. g(zi, δ),wi ≥ 0, though as 
Kumbhakar and Lovell (2000) and Greene (2008) note, this is not required 
for ui ≥ 0. An alternative approach was proposed by Kumbhakar et al. 
(1991), in which g(zi, δ) = 0 and wi is the truncation at zero of a normally 
distributed variable with mean ziδ and variance σ 2

u . Huang and Liu (1994) 
proposed a model in which g(zi, δ) = ziδ and wi is the truncation at −ziδ 
of an N

(

0, σ 2
u

)

 random variable. The latter two models are in fact equiva-
lent, as noted by and Battese and Coelli (1995). In simple terms, the model 
assumes that vi ∼ N

(

0, σ 2
v

)

 and u ∼ N+
(

µi, σ
2
u

)

, where µi = ziδ. Note that 
a constant term is included in zi, so that the model nests the normal-trun-
cated normal model of Stevenson (1980) and the normal-half normal 
model.

Another set of models, motivated by the desire to allow for heteroskedas-
ticity in ui, specify the scale parameter, rather than the location parameter, of 
the distribution of ui as a function of a set of covariates.14 Reifschneider and 
Stevenson (1991) first proposed amending the normal-half normal model 
so that σui = h(zi), h(zi) ∈ (0,∞), but did not make any particular sugges-
tions about h(zi) other than noting that the function must be constrained 
to be non-negative. Caudill and Ford (1993) suggested the functional form 
σui = σu(ziγ )

α, which nests the standard homoskedastic normal-half nor-
mal model when α = 0. Caudill et al. (1995) suggested a slightly sparser 
specification in which σui = σu exp (ziγ ), and Hadri (1999) proposed a 
similar ‘doubly heteroskedastic’ SF model, σvi = exp (ziθ), σui = exp (ziγ ).

(23)ui = g(zi, δ)+ wi

13Note that the authors in fact proposed a deterministic frontier model in which E(ui|zi) = exp (ziδ), 
but if we interpret the random error as vi rather than a component of ui, we have an SF model with a 
deterministic ui.
14Note, however, that since the (post-truncation) variance of the truncated normal distribution is a 
function of the pre-truncation mean, the Kumbhakar et al. (1991), Huang and Liu (1994), and Battese 
and Coelli (1995) model also implies heteroskedasticity in ui.
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The approaches discussed above can be combined for an encompassing 
model in which both the location and scale parameters are functions of zi. 
Wang (2002) proposed a model in which ui ∼ N+

(

µi, σ
2
ui

)

, where µi = ziδ 
and σ 2

ui = exp (ziγ ), while Kumbhakar and Sun (2013) took this a step 
further, estimating a model in which ui ∼ N+

(

µi, σ
2
ui

)

 and vi ∼ N
(

0, σ 2
vi

)

, 
where µi = ziδ, σvi = exp (ziθ), and σui = exp (ziγ ), effectively combining 
the Hadri (1999) ‘doubly heteroskedastic’ model with that of Kumbhakar 
et al. (1991), Huang and Liu (1994), and Battese and Coelli (1995).15

Given the motivation of explaining efficiency in terms of zi, and since zi 
enters the model in a non-linear way. It is desirable to calculate the marginal 
effect of these zli, the lth environmental variable, on efficiency. Of course, 
given that ui is a random variable, we can only predict the marginal effect 
of zl on predicted efficiency, and this means that the marginal effects formula 
used depends fundamentally on the efficiency predictor adopted. Where 
ui ∼ N+

(

µi, σ
2
ui

)

,µi = ziδ, the parameter δl is the marginal effect of zli on 
the mode of the distribution of ui, except when ziδ ≤ 0. The derivative of 
the unconditional mode predictor,

Therefore, the unconditional mode yields a relatively simple marginal effect. 
Alternatively, Wang (2002) derived a marginal effects formula based on the 
derivative of the unconditional mean, ∂E(ui)/∂zli. As the author shows, 
since E(ui) depends on the scale parameter, as well as the location param-
eter, of the distribution, marginal effects calculated using this formula can 
be non-monotonic even if zli enters both functions in a linear fashion. This 
lends itself to potentially useful discussion of the ‘optimal’ (i.e. efficiency 
maximising) level of zli. As noted by Hadri (1999), the variables entering µi, 
σvi, and σui need not be the same in practice.

The efficiency prediction is usually based on the distribution of ui|εi (spe-
cifically its mean) rather than ui. Kumbhakar and Sun (2013) argue that 
marginal effects should be based on ∂E(ui|εi)/∂zli rather than ∂E(ui)/∂zl.  
and show that in this case, marginal effects depend upon the param-
eters not only of fu but also of fv and upon εi, i.e. all of the mod-
el’s variables and parameters. Stead (2017) derives a marginal effects 
formula based on the conditional mode, ∂M(ui|εi)/∂zli, which is somewhat 

(24)∂M(ui)/∂zli =

{

δl, ziδ > 0

0, ziδ ≤ 0
.

15Note the two similar but subtly different parameterisations, σui = exp (ziγ ) and σ 2
ui = exp (ziγ ).
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simpler, particularly when both σvi = σv and σui = σu in which case 
∂M(ui|εi)/∂zli = δl

[

σ 2
v /

(

σ 2
v + σ 2

u

)]

 when M(ui|εi) > 0. Note that the 
marginal effects formulae discussed so far relate to changes in predicted 
ui rather than predicted efficiency: Stead (2017) derives a marginal effect 
based on the Battese and Coelli (1988) predictor, ∂E

[

exp (−ui)|εi
]

/∂zli,,  
and notes that other formulae should be transformed into inefficiency 
space by multiplying by − exp

(

−ûi
)

 where ûi is the predictor for ui since 
∂ exp

(

−ûi
)

/∂zli = −(∂ ûi/∂zli)exp
(

−ûi
)

. The choice between condi-
tional and unconditional marginal effects formulae is between prediction of 
marginal effects for specific observations, and quantifying the relationship 
between environmental variables and inefficiency in general.

The idea that marginal effects should be based on a predictor of ui|εi 
rather than ui has the appeal that the marginal effects discussed are consist-
ent with the preferred efficiency predictor, in the sense that they indicate the 
change in predicted efficiency resulting from a change in zli. On the other 
hand, such marginal effects are sensitive to changes in the frontier variables 
and parameters and the parameters of fv, despite the fact that efficiency is 
not specified in this way. Another drawback is that while ∂E(ui)/∂zli and 
∂M(ui)/∂zli are parameters for which standard errors and confidence inter-
vals may be estimated, ∂E(ui|εi)/∂zli and ∂M(ui|εi)/∂zli are random var-
iables for which prediction intervals are the only appropriate estimate of 
uncertainty, making hypothesis testing impossible. Kumbhakar and Sun 
(2013) suggest a bootstrapping approach to derive confidence intervals for 
∂E(ui|εi)/∂zli, but this is inappropriate since it treats εi as known.16

Given the rather complex marginal effects implied by the models dis-
cussed above, alternative specifications with simpler marginal effects have 
been proposed. Simar et al. (1994) propose that zi should enter as a scal-
ing function, such that ui = f (ziη)u

∗
i , where u∗i  is assumed to follow 

some non-negative distribution that does not depend on zi, and f (ziη) is 
a non-negative scaling function similar to those used in Battese and Coelli 
(1992) type panel data models. Wang and Schmidt (2002) note several 
features of this formulation: first, the shape of the distribution of ui is the 
same for all observations, with f (ziη) simply scaling the distribution; 
models with this property are described as having the ‘scaling property’. 
Second, it may yield relatively simple marginal effects expressions, e.g. when 

16Note the similarity of the issues here to those around ‘confidence intervals’ and prediction intervals 
for E(ui|εi), discussed by Wheat et al. (2014).
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f (ziη) = exp (ziη) or similar.17 Third, as suggested by Simar et al. (1994), 
the β and η may be estimated via non-linear least squares without specifying 
a particular distribution for u∗i . The scaling property is discussed further by 
Alvarez et al. (2006), who suggested testing for the scaling property.

More recently, Amsler et al. (2015) suggested an alternative param-
eterisation such that zi enters the model through the post-trunca-
tion, rather than the pre-truncation, parameters of fu. For example, 
the left truncation at zero of an N

(

µi, σ
2
ui

)

 random variable, which we 
have denoted N+

(

µi, σ
2
ui

)

, may be reparameterised in terms of E(ui) 
and VAR(ui); that is, fu may be expressed in terms of these parame-
ters, and as a result, so may fε. The authors show that marginal effects 
are simpler and easier to interpret when environmental variables enter 
the model such that E(ui) = g(zi, δ), VAR(ui) = h(zi, γ ) than when 
µi, σ

2
ui = g(zi, δ), σ

2
ui = h(zi, γ ). This is intuitive, given that we predict 

based on post-truncation parameters of fu or f u|ε. This approach is compli-
cated somewhat by the requirement that E(ui) > VAR(ui), as shown by 
Eq. (3) in Barrow and Cohen (1954), Eq. (16) in Bera and Sharma (1999), 
and Lemma 1 of Horrace (2015). For this reason, the authors suggest a spec-
ification in which VAR(ui) = exp (ziγ ) and E(ui) = VAR(ui)+ exp (zi, δ).

An additional motivation for the models discussed in this section is the 
analysis of production risk. Bera and Sharma (1999) proposed, in the con-
text of a production frontier model, that VAR(ui|εi) be used as a measure of 
‘production uncertainty or risk. Note however that this is a far more restric-
tive measure than that used in the wider literature on production risk, which 
is variability of output, measured, for example, by VAR(yi). Nevertheless, 
these models offer considerable flexibility in modelling production risk 
according to this definition. Just and Pope (1978) showed that a drawback 
of log-linear (non-frontier) production function specifications, in which 
qi = exp (yi), is that the marginal production risk (i.e. the partial deriva-
tive of production risk) with respect to a given variable must always be the 
same as that variable’s marginal product. The authors proposed an alterna-
tive specification with an additive error term multiplied by a scaling func-
tion. The form allows for variables that affect production and production 
risk in potentially opposite directions for variables that affect one but not 
the other. Kumbhakar (1993) and Battese et al. (1997) proposed SF variants 

17However, the authors’ discussion overstates the simplicity of marginal effects in this case, since it 
focuses on ∂ ln ûi/∂zli, which is ηl regardless of the distribution of u∗i  (or indeed the choice of predic-
tor). However, ∂ ûi/∂zli is more complex, and as previously noted, the translation into efficiency space 
via ∂ exp

(

−ûi
)

/∂zli adds additional complexity.
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of this model by including an inefficiency term ui. Note, however, that any 
SF model in which one or both error terms are heteroskedastic allows for 
observation-specific production risk.

6	� Alternative Noise Distributions

In the standard SF model, the noise term is assumed to follow a normal dis-
tribution. In contrast to the many different proposals concerning the distri-
bution of ui, discussed in Sect. 3, the distribution of vi has received relatively 
little attention. This is perhaps natural, given that the main focus of SFA is 
on estimation or prediction of the former component. Nevertheless, consid-
eration of alternative distributions for vi is important for at least two main 
reasons. First, the standard model is not robust to outliers caused by noise, 
i.e. when the true noise distribution has thick tails. Second, and perhaps 
more importantly, the distribution of vi has implications for the deconvolu-
tion of εi into noise and inefficiency components. Specifically, the distribu-
tion of ui|εi, on which efficiency prediction is typically based, is influenced 
by fv as well as fu, as shown in (4).

The latter point in particular is not trivial. A change in distributional 
assumptions regarding vi affects the degree of shrinkage of ui towards 
E(ui) using E(ui).18 A change in the assumed noise distribution can even 
be sufficient to change the rankings of firms19 by altering the monotonic-
ity properties of E(ui|εi) with respect to εi, which are in turn linked to 
the log-concavity properties of fv. Ondrich and Ruggiero (2001) prove 
that E(ui|εi) is a weakly (strictly) monotonic function of εi for any weakly 
(strictly) log-concave fv. Since the normal density is strictly log-concave 
everywhere, E(ui|εi) is a monotonic function of εi in the standard model. 
Under alternative noise distributions for which fv is not strictly log-concave 
everywhere, there may be a weakly monotonic or even non-monotonic rela-
tionship between E(ui|εi) and εi. Such relationships have been noted in sev-
eral studies proposing alternative, heavy tailed, noise distributions, which are 
discussed below.

Nguyen (2010) proposed SF models with Cauchy and Laplace distri-
butions for vi, pairing the former with half Cauchy and truncated Cauchy, 

18For an explanation of shrinkage in the context of the predictor E(ui|εi), see Wang and Schmidt 
(2009).
19Holding β constant.
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and the latter with exponential and truncated Laplace distributed for has 
received vi terms.20 Gupta and Nguyen (2010) derive a Cauchy-half Cauchy 
panel data model with time-invariant inefficiency. Horrace and Parmeter 
(2018) consider the Laplace-truncated Laplace and Laplace-exponential SF 
models further, showing that f u|ε (and therefore also E(ui|εi), or for that 
matter any predictor based on f u|ε) is constant for sεi ≥ 0. The authors 
conjecture that the assumption of a Laplace distributed vi may be advan-
tageous in terms of estimation of fu, and therefore for the deconvolution of 
the composed error. Fan (1991) showed that optimal rates of convergence 
in deconvolution problems decrease with the smoothness of the noise dis-
tribution and are considerably faster for ordinary smooth distributions, such 
as the Laplace, than for super smooth distributions, such as the normal dis-
tribution. Optimal convergence rates for nonparametric Gaussian deconvo-
lution are discussed by Fan (1992). Horrace and Parmeter (2011) find that 
consistent estimation of the distribution of ui in a semparametric SF model, 
in which vi ∼ N

(

0, σ 2
v

)

 and fu is unknown, has a ln n convergence rate. This 
implies that convergence rates when vi ∼ N

(

0, σ 2
v

)

 are rather slow.
In the aforementioned proposals, the distribution of ui is the left trun-

cation at zero of the distribution of vi. In many cases, this ensures that fε 
can be expressed analytically. Proposition 9 of Azzalini and Capitanio (2003) 
shows the density of the sum of a random variable and the absolute value 
of another random variable following the same elliptical distribution. Stead 
et al. (2018) propose the use of MSL to pair a thick-tailed distribution for 
vi with any given distribution for ui, and estimate a logistic-half normal SF 
model. The authors show that the model yields a narrower range of effi-
ciency scores compared to the normal-half normal model.

There are two drawbacks of the above proposals for vi. First, they have 
fixed shapes, so there is no flexibility in the heaviness of their tails. Second, 
they do not nest the normal distribution, which makes testing against the 
standard SF model difficult. One potential noise distribution with neither 
of these shortcomings is the Student’s t distribution, which has a ‘degrees of 
freedom’ parameter α that determines the heaviness of the tails, and which 
approaches the normal distribution as α → ∞. Tancredi (2002) proposed 
an SF model in which vi and ui follow non-standard Student’s t distribu-
tion and half t distributions, with scale parameters σv and σu, respectively, 

20In keeping with previous terminology, ‘truncated’ (without further qualification) refers specifically to 
the left truncation at zero of a distribution with mean µ, and ‘half ’ refers to the special case where 
µ = 0. Note that truncating the Laplace distribution thus yields the exponential distribution whenever 
µ ≤ 0 due to the memorylessness property of the exponential distribution.
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and a common degrees of freedom parameter α. The author shows that 
f u|ε → 0 as sεi → ∞ and that E

[

exp (−ui|εi)
]

 and VAR
[

exp (−ui|εi)
]

 are 
non-monotonic functions of εi. Wheat et al. (2019) estimate a t-half normal 
model via MSL, similarly finding that E(ui|εi) is non-monotonic, decreas-
ing with sεi at either tail, and discuss testing against the normal-half normal 
SF model. Bayesian estimation of the t-half t model, and of t-half normal, 
t-exponential, and t-gamma SF models are discussed by Tchumtchoua and 
Dey (2007) and Griffin and Steel (2007), respectively.

Another proposal which nests the standard SF model and allows for flex-
ibility in the kurtosis of vi, is that of Wheat et al. (2017), in which vi fol-
lows a mixture of two normal distributions with zero means, variances σ 2

v1 
and σ 2

v2, respectively, and mixing parameter p. This is often referred to as 
the contaminated normal distribution.21 Alternatively, the model can be 
interpreted as a latent class model with two regimes having differing noise 
variances. Efficiency prediction in latent class and mixture SF models is dis-
cussed, and E(ui|εi) is shown to be non-monotonic in the contaminated 
normal-half normal case, as in the t-half normal. Testing down to the stand-
ard SF model is less straightforward in this case, since there is an unidenti-
fied parameter under the null hypothesis.

The proposals discussed in this section have all been motivated to one 
degree or another by the need to accommodate outliers in a satisfactory way. 
An exception to this general rule is Bonanno et al. (2017), who propose an 
SF model with correlated error components—for a discussion of such mod-
els, see Sect. 8.1—in which the marginal distributions of vi and ui are skew 
logistic and exponential, respectively. The motivation in this case is to allow 
for non-zero efficiency predictions in the presence of ‘wrong skew’, which 
the model ascribes to the skewness of vi.

7	� Presence of Efficient Firms

A number of papers have considered SFA in the case where some signifi-
cant proportion of firms lie on the frontier—i.e. are fully efficient—and dis-
cussed SF specifications and efficiency prediction appropriate for this case, 
along with methods used to identify subset of efficient firms.

Horrace and Schmidt (2000) discuss multiple comparisons with the best 
(MCB)—see Hsu (1981, 1984) for background on MCB—in which there 

21Or more specifically, the scale contaminated normal distribution.
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are I populations each with their own distinct parameter values, ai, one of 
which—e.g. the maximum or the minimum—is the ‘best’ in some sense, 
against which we want to compare the remaining I − 1 populations. Rather 
than make individual comparisons, e.g. by testing H0 : ai = ab where 
ab = maxj �=i saj), MCB constructs joint confidence intervals for a vector 
of differences 

(

ab − a1 ab − a2 . . . ab − aI−1

)

. This is motivated by the 
need to consider the ‘multiplicity effect’ (Hochberg and Tamhane 1987), i.e. 
the fact that if a large enough number of comparisons are made, some dif-
ferences are bound to appear significant. MCB is also concerned with con-
structing a set of populations which could be the best. Horrace and Schmidt 
(2000) discuss application of MCB to derive such multivariate intervals in 
the context of the fixed effects, time-invariant efficiency panel SF model of 
Schmidt and Sickles (1984), and the selection of a set of efficient (or proba-
bly efficient) firms based on these.

An alternative approach proposed by Jung (2017) is to use a least abso-
lute shrinkage and selection operator (LASSO) variant of the Schmidt and 
Sickles (1984) model. LASSO is a method used for variable selection and to 
penalise overfitting by shrinking the parameter estimates towards zero and 
was introduced by Tibshirani (1996) in the context of OLS, such that

where K is the number of regressors, and � is a tuning parameter that deter-
mines the strength of the penalty (or the degree of shrinkage). The constant 
term β0 is excluded from the penalty term. The penalty is such that it forces 
some of the coefficients to be zero, hence, its usefulness in variable selec-
tion. It is straightforward to extend the approach to a fixed-effects panel 
data model. Jung (2017) proposes extending the approach to the Schmidt 
and Sickles (1984) fixed effects SF model, in which β0 = maxj saj and 
ui = maxj saj − sai, and introduces an additional penalty term such that 
the inefficiency parameters are shrunk towards zero, and ui = 0 for a sub-
set of firms. The author discusses the properties of the model, and in apply-
ing the model to a dataset used by Horrace and Schmidt (2000), notes that 
the resulting set of efficient firms is similar to that obtained using the MCB 
approach.

Kumbhakar et al. (2013) proposed a zero inefficiency stochastic frontier 
(ZISF) model. The ZISF model adapts the standard parametric SF model 
to account for the possibility that a proportion, p, of the firms in the sample 

(25)β̂LASSO = argmin
β

[

1

I

I
∑

i=1

ε2i + �

K
∑

k=1

|βk|

]
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are fully efficient using a latent class approach in which ui = 0 with proba-
bility p. That is, the ZISF model is a latent class model in which

where fv is the density of vi and assumed noise distribution, and fu is the 
density of ui in the second regime. In the first regime, ui can be thought 
of as belonging to a degenerate distribution at zero. The ZISF model nests 
the standard SF model when p = 0, and testing down to the SF model is a 
standard problem. On the other hand, testing H0 : p = 1, i.e. that all firms 
are fully efficient, is more complicated, that the splitting proportion p lies on 
the boundary of the parameter space in this case. The authors suggest that 
the LR statistic follows a χ2

1:0 distribution.22 That is, a 50:50 mixture of χ2
0  

and χ2
1  distributions. However, Rho and Schmidt (2015) question the appli-

cability of this result, noting an additional complication: under Ho : p = 1, 
σu is not identified. Equivalently, p is not identified under Ho : σu = 0. 
Simulation evidence provided by the authors suggests that estimates of these 
two parameters are likely to be imprecise when either is small.

Kumbhakar et al. (2013) suggest several approaches to efficiency pre-
diction from the ZISF model. First, the authors suggest weighting 
regime-specific efficiency predictions by unconditional probabilities of 
regime membership. Since ûi = 0 in the first regime regardless of the pre-
dictor used, this amounts to using (1− p)E(ui|εi). This is clearly unsatis-
factory, as each firm is assigned the same (unconditional) probabilities for 
regime membership. A preferable alternative, suggested by both Kumbhakar 
et al. (2013) and Rho and Schmidt (2015), suggest using (1− pi)E(ui|εi), 
where pi = pfv(εi)/fε(εi), which is a firm-specific probability conditional 
on εi. Note that (1− p)E(ui|εi) and (1− pi)E(ui|εi) for all i and any 
value of εi will yield non-zero predictions of ui under the assumption that 
vi ∼ N

(

0, σ 2
v

)

 (see the discussion of the monotonicity properties of E(ui|εi)  
in Sect. 6), despite the fact we expect pI efficient firms in the sample. 
Kumbhakar et al. (2013) suggest identifying firms as efficient when pi is 
greater than some cut-off point; however, the choice of such a cut-off point 
is arbitrary.

(26)fε(εi) = pfv(εi)+ (1− p)

∞
∫

0

fv(εi + sui)fu(ui)dui

22As discussed in Sect. 3, see Case 5 in Self and Liang (1987).
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Despite the ZISF model’s motivation, efficient firms cannot be identified 
on the basis of the resulting point predictions of efficiency or conditional 
probabilities of regime membership. Firms may be predicted as fully efficient 
if the conditional mode predictor is used, or possibly if an alternative distri-
bution for vi is assumed (again, refer to Sect. 6), but this is equally true in 
the standard SF context. An appropriate approach to classifying firms would 
be to identify those with minimum width prediction intervals, analogous 
to those derived by Wheat et al. (2014) for ui|εi in the standard SF model, 
including zero.

There are trade-offs between each of the three proposed methods. 
Compared to the ZISF model, the MCB and LASSO approaches have the 
advantage that no particular distribution for ui is imposed, and efficient 
firms can be identified on the basis of hypothesis tests. In contrast, the 
ZISF model limits us to examining prediction intervals. On the other hand, 
Horrace and Schmidt (2000) and Jung (2017) assume time-invariant effi-
ciency. While Horrace and Schmidt (2000) state that the MCB approach 
could be adapted to allow for time-varying efficiency (and the same may be 
true of the LASSO approach), the ZISF approach is the only one that can 
be applied to cross-sectional data. In addition, it would be straightforward 
to extend the ZISF approach to incorporate many features found in the SF 
literature.

8	� Miscellaneous Proposals

In this section, we discuss several of the lesser and relatively tangential 
strands of the SF literature which have adopted novel distributional forms.

8.1	� Correlated Errors

A common assumption across all of the aforementioned SF specifications 
is that the error components, including all noise, inefficiency and random 
effects components are distributed independently of one another.23 Relaxing 
this assumption seems particularly justified in cases in which there are two 
or more inefficiency components. Independence between noise and ineffi-
ciency terms is usually assumed on the basis that noise represents random 

23Again, as an exception to this, dependency between error components may be introduced via ‘envi-
ronmental’ variables influencing the parameters of their distributions as discussed in Sect. 5.
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factors unrelated to efficiency. On the other hand, it has been argued that 
such factors may affect firm decision making and therefore efficiency.

Similar to the panel data case discussed in Sect. 4.1, one approach to 
modelling dependence between errors has been to specify some multivari-
ate analogue to common distributional assumptions under independence. 
Schmidt and Lovell (1980), Pal and Sengupta (1999), and Bandyopadhyay 
and Das (2006) consider a left truncated a bivariate normal distribution at 
zero with respect to a one-sided inefficiency component.24 The two-sided 
component represents noise in the latter two cases and allocative ineffi-
ciency in the former. Pal and Sengupta (1999) likewise included allocative 
inefficiency components, which are assumed to follow a multivariate normal 
distribution. However, the marginal distributions of the error components 
are not those commonly used under independence and, more importantly, 
that they may be inappropriate. Bandyopadhyay and Das (2006) show that 
while the marginal distribution of ui in their model is half normal, that of 
vi is skew normal, with skewness determined by the correlation between the 
two error components. An unusual approach was proposed by Pal (2004), 
in which conditional distributions for the error components are specified 
directly along with their marginal distributions. Prediction of efficiency is 
based on f u|ε as in the case of independence.

The use of a copula function to allow for dependence between vi and ui 
was proposed by Smith (2008) and El Mehdi and Hafner (2014). Various 
alternatives are considered, including the Ali-Mikhail-Haq, Clayton, Fairlie-
Gumbel-Morgenstern, Frank and Gaussian copula. From Sklar’s theorem, 
the joint density fv,u is the product of the marginal densities and the density 
of the copula. It follows that (3) and (4) must be modified such that

and

(27)fε(εi) =

∞
∫

0

fv(εi + sui)fu(ui)cv,u[Fv(εi + sui),Fu(ui)]dui

(28)fui|εi(ui|εi) =
fv(εi + sui)fu(ui)cv,u[Fv(εi + sui),Fu(ui)]

fε(εi)

24Schmidt and Lovell (1980) fold, rather than truncate.
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where cv,u is the copula density. Gómez-Déniz and Pérez-Rodríguez (2015) 
specify a bivariate Sarmanov distribution for vi and ui with normal and 
half-normal marginal distributions, respectively. Again, the advantage of the 
copula approach is that the desired marginal distributions are obtained, with 
the dependence between the error components captured by cv,u.

8.2	� Sample Selection and Endogenous Switching

In the context of linear regression, the sample selection model of Heckman 
(1976, 1979) is such that

where symmetric error terms εi and wi are assumed to follow a bivariate 
normal distribution with zero means, variances σ 2

ε  and 1, and correlation 
coefficient ρ. Unless ρ = 0, least squares will yield biased estimates. Since 
E(yi|xi, di = 1) = xiβ + ρσεfw(ziα)/Fw(ziα), Heckman (1979) proposed 
a two-step, limited information method in which yi is regressed on xi and 
the inverse Mills’ ratio fw

(

ziα̂
)

/Fw

(

ziα̂
)

, where α̂ is obtained from a sin-
gle equation probit model estimated by ML. Alternatively, a full information 
ML approach may be used to estimate the parameters of the model simulta-
neously, as in Heckman (1976) and Maddala (1983).

A similar problem is that of endogenous switching. The endogenous 
switching model of Heckman (1978) has two regimes, membership of 
which is dependent upon a binary switching dummy:

where ε1i, ε2i and wi are assumed to follow a trivariate normal distribution 
with zero means, and variances σ 2

1ε, σ
2
2ε, and σ 2

w. The correlations of ε1i 
and ε2i with wi are given by ρ1 and ρ2, respectively, while ρ12 is the correla-
tion between ε1i and ε2i. Again, both two-step partial information and full 
information ML approaches may be used to estimate the parameters of the 
model.

In recent years, SF models incorporating sample selection and endog-
enous switching have been proposed. Bradford et al. (2001) and 
Sipiläinen and Oude Lansink (2005) use the Heckman (1979) two-step 

(29)yi =

{

xiβ + εi, di = 1

unobserved, di = 0
, di = I

(

d∗i = ziα + wi > 0
)

,

(30)yi =

{

xiβ1 + ε1i, di = 1

xiβ2 + ε2i, di = 0
, di = I

(

d∗i = ziα + wi > 0
)
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approach, including the estimated inverse Mills’ ratios from single equa-
tion probit selection and switching models, respectively, as independ-
ent variables in their SF models. However, this is inappropriate in 
non-linear settings such as SFA, since it is generally not the case that 
E
[

g(xiβ + εi)|di = 1
]

= g
[

xiβ + ρσεfw(ziα)/Fw(ziα)
]

 where g is some 
non-linear function. Terza (2009) discusses ML estimation of non-linear 
models with endogenous switching or sample selection in general.

In the SF context, there are many alternative assumptions that may be 
made about the relationship between noise, inefficiency, and the stochas-
tic component of the selection (or switching) equation. Perhaps the natu-
ral approach, implicit in Bradford et al. (2001) and Sipiläinen and Oude 
Lansink (2005), is to assume that the symmetric noise terms follow a mul-
tivariate normal distribution as in the linear model, while the inefficiency 
terms are drawn from independent one-sided univariate distributions. 
This is proposed by Greene (2010), who estimates an SF model with sam-
ple selection via MSL, and also by Lai (2015), who uses the result that, in 
both the sample selection and endogenous switching cases, f ε|d follows a 
closed skew-normal distribution when the inefficiency terms are truncated 
normal. This results in analytical log-likelihoods, and the author proposes 
to predict efficiency based on the distribution of ui|(εi|di), specifically using 
E
[

exp (−ui)|(εi|di)
]

.
Note that the distributional assumptions in Greene (2010) and Lai 

(2015) ensure appropriate marginal distributions for each error compo-
nent, but do not allow for correlation between the inefficiency terms and the 
symmetric errors. Lai et al. (2009) introduce correlation between εi (rather 
than its components) and wi through a copula function. Departing from 
the usual approach, Kumbhakar et al. (2009) propose an SF model with an 
endogenous switching equation in which d∗i = ziα + δui + wi. That is, they 
include the inefficiency term as a determinant of regime membership.25 The 
various error components are assumed to be independent of one another, 
and both the log-likelihood of the model and E[ui|(εi|di)] are obtained by 
quadrature.

25Kumbhakar et al. (2009), using panel data, also include a lagged regime membership (i.e. technology 
choice) dummy in their selection equation.
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8.3	� Two-Tiered Models

SF methods have been widely applied outside of the context of produc-
tion and cost frontier estimation. Most applications have utilised stand-
ard cross-section or panel data SF specifications, or some of the variants 
discussed above. However, one area of application which has seen its own 
distinct methodological developments is modelling of earnings determina-
tion. Polachek and Yoon (1987) proposed a ‘two-tiered’ SF (2TSF) model in 
which

where vi is again a normally distributed noise component, and ui and wi 
follow exponential distributions with means σu and σw, respectively.26 The 
dependent variable is a worker’s actual wage. The ui component captures 
deviations from the firm’s reservation wage—i.e. the maximum wage offers 
the firm would make—as a result of incomplete information on the part of 
the employee. Similarly, wi captures deviations from the worker’s reservation 
wage—i.e. the minimum wage offer the worker would accept—as a result of 
incomplete information on the part of the employer. The inclusion of these 
two terms therefore allows estimation of the extent of average employee and 
employer incomplete information, and even observation-specific predictions 
of these. The assumption of exponentially distributed ui and wi makes der-
ivation of fε, and therefore the log-likelihood, straightforward. However, as 
in the standard SF model, alternative distributional assumptions have been 
proposed: Papadopoulos (2015) derive a closed form for fε when ui and wi 
follow half-normal distributions, and Tsionas (2012) estimates the model 
assuming that they follow gamma distributions via inverse fast Fourier trans-
form of the characteristic function as discussed in Sect. 3.

In general, developments of the 2TSF model have tended to parallel 
those of the standard SF model. A panel data 2TSF model was proposed by 
Polachek and Yoon (1996), in which

where the subscript f denotes the firm. The employee incomplete informa-
tion component uit and the employer incomplete information component 

(31)εi = vi − ui + wi,

(32)εift = vift − uit + wft

26The authors actually use ui to denote the noise term and vi and wi for the one-sided errors. In the 
interest of consistency and to avoid confusion, we use vi to refer to the noise term and ui and wi for the 
one-sided errors.
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wft, which is assumed to be constant across all employees, are further decom-
posed such that uit = ui + u∗it and wft = wf + w∗

ft, where ui and wf are 
time-invariant fixed effects and u∗it and w∗

ft follow independent exponential 
distributions. It is clear that many alternative panel data specifications could 
be proposed, particularly considering the numerous possible extensions of 
the models discussed in Sect. 4.

In addition, and analogous to the models discussed in Sect. 5, modelling 
of ui and wi in terms of vectors of explanatory variables has been proposed. 
Assuming exponential ui and wi, Groot and Oosterbeek (1994) propose 
modelling the inverse signal-to-noise ratios σv/σu and σv/σw as linear func-
tions of vectors zui and zwi. This specification introduces heteroskedasticity 
of each of the error components, but in rather an odd way, and is problem-
atic in that it does not restrict σu or σw to be positive. This issue is resolved 
by Kumbhakar and Parmeter (2010), who propose a specification in which 
σui = exp (zuidu) and σwi = exp (zwidw). Note that this model has the scal-
ing property. Parmeter (2018) proposes estimating a 2TSF model with the 
scaling property, avoiding explicit distributional assumptions, by non-linear 
least squares.

Finally, tying back to the previous section, Blanco (2017) proposes an 
extension of the basic Polachek and Yoon (1987) model to account for 
sample selection, assuming that the symmetric error components follow a 
bivariate normal distribution, while the one-sided errors follow independent 
univariate exponential distributions.

9	� Conclusion

The methodological literature on SFA has developed considerably since the 
first SF models were developed by Aigner et al. (1977) and Meeusen and 
van Den Broeck (1977). The defining feature of SFA models is the focus 
on determining observation-specific predictions for inefficiency. This in turn 
requires a prediction of an inefficiency error terms which is present in tan-
dem with a noise error. Hence, there is a deconvolution problem associated 
with the error in the model. As such, distributional assumptions are not just 
required to get ‘best’ estimates of the underlying frontier relationship (cost 
frontier, production frontier, etc.), but also essential for enabling appropriate 
predictions of the quantity of interest: firm inefficiency.

This review has considered numerous ways in which SFA has been inno-
vated, which in turn has involved the use of differing distributional forms. 
One strand of literature concerns alternative distributional assumptions for 
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the inefficiency error term, and more recently, the noise error term. This 
raises the obvious question as to which to choose. Given economic theory 
only requires the inefficiency error to be one-sided, it is generally an empir-
ical matter as to which is to be preferred. Formulations which nest other 
forms as special cases have obvious appeal; however, there are also non-
nested tests, such as those developed by Wang et al. (2011) to aid selection.

Another strand of literature considers alternative distributions in the 
presence of specific empirical issues. The ‘wrong-skew’ problem is a good 
example, where it is entirely plausible that inefficiency could be found to 
have skewness counter to the direction imposed by the use of the common, 
half-normal, truncated-normal or exponential inefficiency distributions. 
Without a change to the distributional assumptions, the model estimation 
would indicate no evidence of inefficiency which is often difficult to justify 
in the context of knowledge and other available evidence of the performance 
of the industries that these techniques are applied to.

Other innovations include models for sample selection, the presence of 
efficient firms and two-tier SF models. Panel data is a data structure which 
greatly increases the scope of modelling possibilities. It potentially allows 
for construction of predictors of inefficiency without appeal to ‘full’ dis-
tributional assumptions on the noise and inefficiency (instead only requir-
ing moment assumptions), by exploiting time persistency in inefficiency. 
Alternatively, full parametric approaches can be adopted, with the benefit of 
being able to obtain separate predictions for inefficiency—which may have 
both time-invariant and time-varying components—and time-invariant 
unobserved heterogeneity.

Finally, a strand of literature has developed characterising heteroskedas-
ticity in the error components. This is of particular interest as it allows for 
quantification of the determinants of inefficiency, which is important in 
beginning to explain why there is a performance gap for a firm in addition 
to providing a prediction of the size of such a gap. This, in turn can be used 
by stakeholders to guide implementation of better performance.

Overall it is misleading to think of SFA as representing a single approach 
to efficiency analysis. Instead, SFA characterises a broad set of models, where 
different approaches will be relevant given the empirical context. The limited 
scope of this review has excluded several topics such as nonparametric SF 
models, Bayesian SF models, metafrontiers, and estimation of distance func-
tions. Inefficiency is an unobserved error component, and so by definition, 
the predictor of such an error will be sensitive to distributional assumptions 
regarding inefficiency and the other unobserved error components, such as 
noise and unobserved heterogeneity. Thus, the conclusion is that for any 
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given empirical application of efficiency analysis, several SFA models will 
need to be considered in order to establish the sensitivity of the efficiency 
predictions to the distributional assumptions adopted. This review should 
provide a useful starting point for such an exercise.
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