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During the June 2015 European Workshop on Efficiency and Productivity 
Analysis in Helsinki, we sat together and tried to map a broad view of per-
formance analysis. The prevailing approach is frontier analysis. The pro-
duction frontier of a “decision making unit” (such as a firm, an industry, 
an economy, or conglomerates of the aforementioned) maps the maxi-
mum amount of output given the available input, where input and output 
are multidimensional objects, comprising different types of labor, capital, 
intermediate inputs, goods, services, and other products. If the “distance” 
between the actual input-output combination of a decision making unit 
and the frontier is small, then the unit is efficient. If the frontier is far out, 
then efficient units are productive. This framework is amenable to precise 
measurements of efficiency and productivity, but numerous issues surround 
it and cast shadows on numerical results. This compendium collects a set of 
works that explore these issues.

First, the framework suggests there are given, fixed lists of input compo-
nents and output components, but what about new inputs, outputs, and 
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intermediate products? Innovation ought to play a role in performance 
analysis. Second, the production frontiers reflect the best practices, or 
benchmarks, of producing outputs given inputs. But are these benchmarks 
relevant to competing decision making units? Observed or unobserved con-
ditions may be favorable to the benchmarks. Third, in which direction do 
we measure the distance between an actual input-output combination and 
the frontier? The literature analyzes alternatives and shows when results dif-
fer and when they don’t. But the bulk of it is mechanical and we believe 
this issue should be related to the objective of an economy. Fourth, what 
is the appropriate or most informative level of analysis, individuals, firms, 
industries, or economies? The majority of frontier analyses are industry stud-
ies, such as banking, and the same techniques, particularly data envelopment 
analysis and stochastic frontier analysis, are applied without much further 
ado at either a more microlevel, such as productivity rankings of work-
ers, or a more macrolevel, such as the performance of national economies. 
However, the more aggregated the level of analysis, the more scope there 
is for eliminating sources of inefficiencies, because of the assumptions that 
inputs are considered given water down, or at least are averaged away. Fifth, 
by directly working with inputs and outputs, frontier analysis can exam-
ine the role that prices pay. Technical frontier analysis does not need price 
information. Yet prices play a shadow role. In evaluating the frontier out-
put given the available inputs, one solves a mathematical program, and the 
Lagrange multipliers of the constraints are shadow prices which measure the 
productivities of the inputs. This raises the issue which prices are relevant: 
observed market prices or shadow prices?

These issues are the focus of this Handbook. To address them, we will 
review new developments in frontier analysis. We will extend the analysis by 
including contributions to the performance literature which we think throw 
fresh light on the issues. A topic not included in the Handbook was engi-
neering performance, such as reliability analysis. The title of the volume is 
Handbook of Economic Performance Analysis. Economic theory is also used 
to organize the related issues of distance directions, objective functions, and 
performance measures.

Although the focus of the performance literature is on production, we 
believe that the issues can also be addressed by bearing in mind that the ulti-
mate aim of an economy is to serve the well being of consumers. Consumers 
maximize utility U(x ) subject to the budget constraint px ≤ pω, where x is 
an n-dimensional commodity bundle, p is the n-dimensional market price 
(row) vector, and ω is the n-dimensional endowment of the consumer. The 
first-order condition is that the marginal utilities are proportional to the 



Introduction     3

prices, ∂U/∂x = λp, where λ ≥ 0 is the marginal utility of income. Hence, 
the direction of steepest utility increase is the market price, irrespective of 
the specifics of utility, i.e., for all consumers. So market price is a natural 
direction to measure efficiency. Productivity, however, measures the level of 
utility attainable given the resources. Utility differences do not matter, so the 
principle is easiest explained by assuming all consumers have the same utility 
function U. The frontier is determined by maximizing U(x ) subject to the 
material balance constraint x ≤ y + ω where y is an n-dimensional member 
of the production possibility set Y and ω is the n-dimensional endowment 
of all consumers. This maximization problem does feature prices. Assuming 
constant returns to scale in production (at the aggregate level), the first- 
order condition is that the marginal utilities are proportional to the prices, 
∂U/∂x = p*, where p* ≥ 0 is now the shadow price vector of the balance con-
straint. So shadow price is a natural direction to measure productivity.

Performance is related to both efficiency and productivity. Roughly speak-
ing, performance can be improved by raising efficiency or by pushing out 
the frontier. This Handbook presents useful formulas that illuminate the 
connections in a variety of settings. Clearly, an important, complicating 
issue is the choice of price. The Handbook discusses more such issues and 
we think that this broad approach will prove fruitful in advancing perfor-
mance analysis. For example, the markup between a market price and the 
shadow price measures market power and this insight may be used to inter-
connect the efficiency and productivity components of performance in an 
industrial organization framework.

We attempt to bridge the gap between the two main methodologies of 
performance analysis, data envelopment analysis (nonparametric) and sto-
chastic frontier analysis (parametric). Often it is not clear what variables are 
included, if they can be controlled, what their nature is, from a mathemat-
ical or statistical point of view. For example, do some firms perform better 
because their technology is superior or because they are more innovative? 
Standard practice is to divide variables between inputs, outputs, and envi-
ronmental variables, to use the inputs and outputs for performance meas-
urement using either methodology, and finally to analyze the relationship 
between performance results and the environment. This practice, however, 
raises theoretical and statistical issues. We approach the methodological 
issues by reviewing variants of stochastic frontier analysis, e.g., with discrete 
variables and alternative distributions, and by exploring statistical analyses 
of nonparametric performance measurement, by Bayesian analysis. We will 
conclude by reviewing commonalities between nonparametric and paramet-
ric analyses.
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One of the novelties of this Handbook is the coverage and interrelation of 
microeconomic, mesoeconomic, and macroeconomic performance analysis, 
in this order, intertwined by methodological contributions.

The first topic is “Micro Foundations of Earnings Differences,” in next 
chapter, by Tirthatanmoy Das and Solomon W. Polachek. The authors 
review the distribution of earning differences. The paper finds one’s ability to 
learn and one’s ability to retain knowledge are most influential in explaining 
earnings variations. The chapter is a detailed overview of the human capital 
view of earnings differentials.

In chapter “Performance: The Output/Input Ratio,” Thijs ten Raa crit-
ically reviews and interrelates the fundamental concepts of performance 
analysis, including total factor productivity, the Solow residual, the Farrell 
efficiency measure, the Debreu-Diewert coefficient of resource utilization, 
and the Malmquist, Törnqvist, and Fisher indices, for alternative numbers of 
outputs and inputs.

The main drivers of performance analysis are reviewed in chapter “R&D, 
Innovation and Productivity,” by Pierre Mohnen. He analyzes the indica-
tors used to perform firm R&D, innovation, and performance analyses and 
explains the theoretical link between innovation and productivity growth. 
He then considers the estimated magnitudes in that relationship using the 
different innovation indicators.

In chapter “The Choice of Comparable DMUs and Environmental 
Variables,” John Ruggiero addresses the important issues of choosing com-
parable decision making units and environmental variables in efficiency 
analysis. In standard nonparametric analysis, decision making units produce 
common outputs from common inputs, under common conditions. There 
are methodological trade-offs. On the one hand, the commonality assump-
tions are better fulfilled by limiting the analysis to smaller numbers of more 
comparable decision making units. As a consequence, however, the reduc-
tion in the number of potentially competing benchmarks increases the effi-
ciency estimates, often toward 100% when the number of production units 
goes down to the number of outputs. And if the number of environmental 
values goes up to the number of production units, all inefficiencies may be 
explained away as well.

Scale efficiency is an important form of efficiency. Shubash Ray analyzes 
this case in chapter “Data Envelopment Analysis with Alternative Returns to 
Scale.” Production units are more efficient when they operate at a scale with 
lower average costs and data envelopment analysis is a convenient methodol-
ogy in which to model this outcome.
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In chapter “Ranking Methods Within Data Envelopment Analysis,” 
Nicole Adler and Nicola Volta present the issue of rankings. They address 
the lack of discrimination in DEA applications, in particular when the num-
ber of inputs and outputs is relatively high in comparison with the number 
of production units, borrowing techniques from the social sciences, includ-
ing multiple-criteria decision making.

The Handbook proceeds in chapter “Distributional Forms in Stochastic 
Frontier Analysis,” to stochastic frontier analysis. In chapter “Distributional 
Forms in Stochastic Frontier Analysis,” Alexander Stead, Phill Wheat, and 
William Greene survey the developments in stochastic frontier modeling. 
The basic function in this literature is models of errors of measurement 
based on the normal distribution and (in)efficiency, a signed concept, by the 
half-normal distribution. The former distribution is well vested in theory, 
building around the central limit theorem. But the latter is ad hoc and vari-
ous alternatives have emerged. These are reviewed from a practitioner’s point 
of view.

In chapter “Stochastic Frontier Models for Discrete Output Variables,” 
Eduardo Fé addresses another important issue, encountered in labor, indus-
trial, and health economics, where outputs are nontangible and nonpecu-
niary outcomes and often measured through indicators of achievement 
(employment status, academic certification, success in a labor market 
scheme), ordered categories (like scales describing job satisfaction, health sta-
tus, personality traits), or counts (numbers of patents or infant deaths). This 
chapter generalizes the standard stochastic frontier model to encompass such 
situations.

The gap between the two main frontier methodologies has attracted 
developers of intermediate approaches, which are reviewed in the next three 
chapters. Chapter “Nonparametric Statistical Analysis of Production,” by 
Camilla Mastromarco, Leopold Simar, and Paul Wilson, analyzes the data 
envelopment analysis of chapters “The Choice of Comparable DMUs and 
Environmental Variables”, “Data Envelopment Analysis with Alternative 
Returns to Scale” and “Ranking Methods Within Data Envelopment 
Analysis,” but attaches that approach to a statistical analysis. Their approach 
requires large samples of, e.g., production units (with their input-output 
combinations), but then combines the strengths of nonparametric analysis 
and stochastic frontier analysis to make statements about expected perfor-
mance measures and their confidence intervals.

Ultimately distributional assumptions differentiate the differ-
ent approaches presented thus far. A natural variant is reviewed in 
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chapter “Bayesian Performance Evaluation,” by Mike Tsionas. The Bayesian 
approach provides a formal and straightforward way to facilitate statistical 
inference, which is always a problem in data envelopment analysis, despite 
the recent advances exposited in the previous chapters.

Chapter “Common Methodological Choices in Parametric and 
Nonparametric Analyses of Firms’ Performance,” by Luis Orea and José 
Zofío finds common ground for the two frontier analyses, using distance 
functions as the organizing principle, which is standard in data envelopment 
analysis, but novel in stochastic frontier analysis. Key issues related to alter-
native technological assumptions and alternative economic objectives of the 
firm are thus reviewed. The issues of the number of production units rela-
tive to the numbers of outputs and inputs and the number of environmental 
variables are addressed. The choice of direction of the distance function is 
discussed.

The next four chapters take us from microproduction analysis to meso- 
and macroeconomics. The crucial choice of prices is related to the objec-
tive of an economy in chapter “Pricing Inputs and Outputs: Market Prices 
Versus Shadow Prices, Market Power and Welfare Analysis,” by Aditi 
Bhattacharyya, Levent Kutlu, and Robin C. Sickles. Market prices can-
not be simply taken to signal the social value of production. There are two 
ways forward: (i) correct the observed market prices to derive the shadow 
price and (ii) try to derive the shadow price directly without using market 
prices (e.g., when market prices do not exist). The chapter surveys the meth-
ods used in the literature to derive social valuations when market prices are 
not accurate or not available due to the following considerations: imperfect 
competition, effects on income distribution and growth that are not factored 
into prices and external effects, like on the environment.

Chapter “Aggregation of Individual Efficiency Measures and Productivity 
Indices,” by Andreas Mayer and Valentin Zelenyuk, reviews the key existing 
results on aggregate efficiency measures and aggregate productivity indices 
and outlines new results for the aggregation of the Hicks-Moorsteen produc-
tivity index, and outlines some insights into ongoing and future directions 
of research in this area.

Chapter “Intermediate Inputs and Industry Studies: Input-Output 
Analysis,” by Victoria Shestalova, reviews performance measurement for 
industries and the whole economy, taking into account the interindus-
try deliveries, using the workhorse of applied general equilibrium analy-
sis, the modern input-output model with possibly different numbers of 
inputs, outputs, and industries. The methodology, a synthesis of frontier 
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and input-output analyses, is suitable for performance measurements within 
both national and international industrial studies, environmental analy-
sis, and other policy-relevant analyses. Data requirements and international 
databases are reviewed, as are applications, including the assessment of 
emission caps and pricing policies supporting the adjustments in industrial 
outputs.

In chapter “Modeling Environmental Adjustments of Production 
Technologies: A Literature Review,” Hervé Dakpo and Frederic Angwe pres-
ent a theoretical discussion of negative externalities, including the produc-
tion of “bads,” without an explicit allusion to performance. They summarize 
the lessons from the different models in the literature and the challenges 
that need to be dealt with in modeling environmentally adjusted production 
technologies.

The last two chapters are macroeconomic. In chapter “An Overview of 
Issues in Measuring the Performance of National Economies,” Anthony 
Glass, Karligash Kenjegalieva, Robin Sickles, and Thomas Weyman-Jones 
measure the aggregate economic performance of national economies, con-
sidering a wide range of different measures including the value-added defi-
nition of GDP and economic welfare. They show how stochastic frontier 
analysis and data envelopment analysis modeling has been able through the 
idea of total factor productivity (TFP) decomposition and the measurement 
of inefficiency to tell us much more about TFP than the more conventional 
approaches. They review the issue of whether the performance of national 
economies converges over time, or whether, as suggested by endogenous 
growth models, the individual performance of different countries is endog-
enous to the country itself. Technological spillovers among neighboring 
countries at the level of the aggregate production function are analyzed.

In chapter “Productivity Indexes and National Statistics: Theories, 
Methods and Challenges,” Erwin Diewert and Kevin Fox provide the theo-
retical justifications for the index number formulae for productivity growth 
measurement that are commonly used by national statistical offices. They 
then turn to a discussion of data used in index number construction in prac-
tice and highlight the measurement challenges. The choice of index number 
formula is examined based on an “axiomatic” approach and from the per-
spective of economic theory, recognizing that the resulting indexes are meas-
uring economic concepts. The results provide the justification for the index 
number choices made by national statistical offices in constructing produc-
tivity growth estimates. Data needs for constructing the productivity indexes 
are discussed and the concepts, sources, and methods that are used for the 
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output, labor, and capital components are reviewed. National statistical 
offices face several difficult measurement problems and this chapter suggests 
ways forward.

We are grateful that our proposal to edit a Handbook which high-
lights issues of mainstream efficiency and productivity analysis and offers 
a broad perspective on economic performance analysis, was well received 
and accepted by the chapter contributors we had in mind and thank them 
for their work. We are also grateful to the referees who wrote anonymous 
reports, but whom we now reveal. Thank you Antonio Amores, Bert Balk, 
Jan Boone, Walter Briec, Maria da Conceição Andrade e Silva, Rolf Färe, 
Shawna Grosskopf, Reza Hajargasht, Joop Hartog, Jens Krüger, Chris 
O’Donnell, Raquel Ortega-Argilés, Inmaculada Sirvent Quilez, Mark Steel, 
and Emmanuel Thanassoulis.
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1  Introduction

Modern labor economics considers workers as a conglomeration of hetero-
geneous units each differing in productivity. As such, most labor economists 
now focus on how skills differ between individuals, and as a result, how dis-
similar capabilities give rise to each worker commanding a different wage. 
Thus, rather than concentrating on the functional distribution of income 
between labor and capital, as had been the case in the past, economists now 
focus more attention to pay differences across various segments of the pop-
ulation. Indeed, some of these differences have vastly widened in the last 
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35 years.1 This chapter examines the microeconomic basis of such variations 
in earnings, why they occur, and why they have changed over time.

We begin by examining patterns in current data. Repeatedly and over-
whelmingly, one finds earnings are significantly correlated with one’s years 
of school and one’s age. Indeed, education appears to be the surest path to 
success, as all data indicate an individual’s earnings to be higher the greater 
the years of schooling completed. With regard to age, one typically observes 
earnings to rise as one gets older, but at a diminishing rate. Earnings also vary 
by occupation, industry, size of firm, location, and a myriad of other factors. 
But there are other patterns too: Males earn more than females, whites earn 
more than blacks, but the gender gap within race is smaller for blacks than 
whites. Single childless women earn almost as much as single men, but mar-
ried women lag far behind married men. Children exacerbate the gender wage 
gap. Immigrants earn less than natives, but over time in the receiving country, 
immigrant earnings eventually converge to natives’ earnings.

Many theories have been used to explain some but not all these patterns. 
These include stochastic models entailing sheer luck, whereby circumstances 
largely outside one’s control determine success; agency models whereby 
wage structures perhaps instigated by institutional forces such as tax pol-
icy or unions determine well-being; efficiency wage models that link wages 
to unemployment; matching models which account for why job turno-
ver declines with tenure; crowding models that elucidate why women earn 
less than men; screening models which describe why education enhances 
earnings; occupational segregation models that portray why women are in 
lower-paying occupations than men; and productivity-enhancing contract 
models that provide an explanation for upward sloping age-earnings profiles. 
Whereas each of these theories has some predictive power, they individu-
ally deal with a single narrow aspect of earnings. In our opinion, only the 
life-cycle human capital model appears to explain the preponderance of all 
patterns simultaneously. Thus, this chapter focuses on human capital theory 
and the empirical work emanating from it.

Human capital theory postulates a person’s earnings capacity to be 
directly proportional to his or her labor market skills and knowledge, 

1One reason for the increased attention, at least in the USA, stems from the rising share going to labor 
until the 1970s (Krueger 1999; Armenter 2015). However, of late, there has been a reversal of this 
trend and a renewed interest in the functional distribution of income, only now dealing with the rising 
share to capital, especially since the 2000s (Mike Elsby et al. 2013; Karabarbounis and Neiman 2013). 
One new theory attributes this change to firm heterogeneity. In particular, Autor et al. (2017) describe 
“superstar firms” where labor’s share fell relatively more.
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collectively known as human capital. Each year a person augments human 
capital stock by the amount of new human capital he or she creates, and 
diminishes it by the amount he or she depreciates. Creating new human 
capital entails combining time and existing human capital. The greater one’s 
ability, the more human capital one can produce, and the more rapidly one’s 
earnings rise.

Of course, measuring ability is tricky. Most studies use IQ or achieve-
ment tests, but these standardized tests have been criticized because they 
get at analytic academic capabilities that usually lead to success in school, 
but not necessarily a proficiency that translates into real-world accomplish-
ments (Sternberg 1985). On the other hand, the human capital model con-
tains five parameters related to the production of human capital. Of these, 
three correspond directly to one’s ability to create human capital, one to 
skill depreciation, and one to a person’s time discount rate. New research 
(Polachek et al. 2015) enables one to back out these parameters for individ-
uals rather than the population as a whole and show how they relate to labor 
market success.

These human capital parameters are also important in other domains 
of economics. For example, they are used in earnings dynamics models 
(Blundell 2014; Hoffmann 2016; Meghir and Pistaferri 2011), dynamic 
general equilibrium models (King and Rebelo 1999), but more importantly 
they are used to interpret skill formation (Cunha et al. 2006) in under-
standing earnings distributions. Typically, due to the lack of panel data and 
cumbersome computation, past studies estimate these parameters popula-
tion-wide in a more or less representative agent framework. However, rep-
resentative agent models are limited and can yield misleading inferences 
(Browning et al. 1999). Polachek et al. (2015) estimate these parameters per-
son by person. Getting at these individual-specific human capital parameters 
enables them to test predictions of the human capital model. It allows us in 
this chapter to evaluate the importance of ability and other factors in shap-
ing the earnings distribution. Our results suggest these five measures to be 
the most important explanatory factors related to labor earnings.

Much current research adopts a Mincer’s log-linear specification of the 
human capital model. Many implications emerge from such analyses. These 
include how earnings rise with age at a diminishing rate over the life cycle, 
how earnings differ by demographic group, but most important how school 
relates to earnings. Early studies viewed education as an exogenous variable 
and obtained estimates of rates of return to schooling. However, because 
many recognized the endogeneity of schooling, subsequent researchers uti-
lized quasi-experimental analyses to assess the value of education.
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Quasi-experimental methods are not the panacea for identification. For 
example, instrumental variable results estimating the rate of return to school-
ing vary widely between 3.6 and 94.0% (Card 2001). Many question the 
validity of the exclusion restriction requirement for these instruments. But 
independent of this criticism, employing linear models, as these studies typ-
ically do, necessarily yields erroneous parameter estimates even with a valid 
instrument. This is because there exists an omitted nonlinear component of 
the earnings–schooling relationship which then constitutes a part of the error 
term. As such, the instrumental variable is correlated with the error. Moreover, 
ignoring heterogeneity further exacerbates the endogeneity problem.

We begin this chapter by describing inherent earnings patterns. We argue 
these patterns can be explained using the life-cycle human capital model. We 
utilize a simplified Mincer formulation and its extensions to explore observed 
demographic earnings differences and their trends. We then utilize the five 
parameters mentioned above which have been obtained from a structurally 
derived complex nonlinear earnings function and discuss their implications 
regarding predictions obtained from theory. From here, we exploit per-
son-specific differences in these five parameters to explain earnings inequal-
ity. We concentrate on determining the importance of ability compared to 
the importance of schooling. We review studies that evaluate the impact 
of schooling using OLS and quasi-experimental approaches, and then we 
explain their pitfalls. We conclude by showing that the ability parameters 
obtained from structural human capital earnings function models are the 
most important determinants of earnings distribution. From a policy perspec-
tive, we claim treatments that enhance ability such as through early childhood 
interventions are the most effective in reducing earnings inequality.

2  Earnings Patterns

Earnings differ by age, schooling level, gender, race, and many more demo-
graphic factors. Understanding why these differences arise is important because 
the answers can help improve individual and societal well-being. Policymakers 
can use the answers to devise strategies to help ease poverty and eventually to 
help put countries on a path of increased growth and prosperity. To set the 
stage, we examine a number of these demographic earnings differences. We do 
so in five tables and one figure.2 Each explores aspects of earnings inequality.

2These tables update data previously presented in Polachek (2008).
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Table 1 depicts average US weekly wages in 2000 dollars by race, gender 
age, and education. As can be seen, women earn less than men, and blacks 
earn less than whites. Men’s earnings both rise with age, but at a diminishing 
rate, even turning down at older ages between 1980 and 2000. For women, 
earnings also rise with age, but not as quickly. Conspicuously, earnings rise 
with years of school for both men and women.

Of these patterns, a number of outcomes are particularly surprising. First, 
the gender gap (in percent terms) for whites is almost twice as great as that 
of blacks. In 1980, white women earned 58% as much as white males, but 
black women earned 76% as much as black men yielding gender gaps of 42 
and 24%, respectively. In 2016, these figures were 75% for whites and 86% 
for blacks, yielding gender gaps 25 and 14%. Clearly, during this 36-year 
period, women’s earnings rose relative to men’s, such that the gender gap 
diminished equally by about 40% for both whites and blacks. Second, as 
also seen in Fig. 1, the gender wage gap starts out relative small for younger 
workers (24% for 20- to 24-year-olds in 1980 and only 13% in 2012), but 
more than doubles by the time employees reach the 54–65 age bracket. 
Thus, older women fair far worse relative to men than younger women. 
Third, the level of education has no effect on the gender wage gap. In 1980, 
women high school graduates and below earned about 60% of male earnings 
(a 40% gap) which was similar to college-educated women. In 2016, the pay 
ratio was about 70%, which again was similar at each level of education. So 
on average, women don’t fare any worse with little education compared to 
women with college degrees. Fourth, the black–white earnings gap for men 
remains relatively constant, being 27% in 1980 and 25% in 2016.

Table 2 gives US results based on age and marital status. Again, earnings 
rise with age at a diminishing rate. However, here, the gender wage gap is 
far smaller for singles than marrieds. As before, the gender wage gap rises 
with age for marrieds, but not so much for singles. When accounting for 
children, the results are more stark. Table 3 indicates only a 5% gender gap 
in 2012 for single childless women, but a 28% gap for married men and 
women with children 6–17 years of age. Finally, spacing children more 
widely exacerbates the gender gap further (Polachek 1975b).

Taken together, we find earnings rise with education and age, differ by 
gender but more so for whites than blacks, and that being married and hav-
ing children widely spaced apart intensifies gender earnings differences. In 
short, earnings disparities abound throughout the USA.

Patterns observed in the USA also hold true in other countries. The 
Luxembourg Income Study (LIS) contains harmonized survey microdata 
from over 47 upper- and middle-income countries. Tabulations in Table 4 
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contain earnings data (2011 PPP US dollars) by age, education, and gender 
for 23 countries contained in the LIS. As in the USA, earnings rise with age 
and schooling level. Men’s age-earnings profiles are steeper than women’s. 
The gender earnings gap is smaller for the young (indeed women have the 
advantage in at least four countries), but rises as employees get older. Also, 
as in the USA, the gender earnings gap appears independent of one’s years 
of school. Finally, Table 5 examines LIS data by gender and marital status 
(again in 2011 PPP US dollars). For most countries, wage parity is observed 
for unmarried men and women. (Exceptions are France, Israel, Japan, and 
surprisingly Norway and Sweden with the biggest gaps for the unmarried.) 
As in the USA, the gap varies from 13 to 50% for married men and women, 
with the largest gaps being in France, Norway, and Sweden.

In summary, earnings are not uniform across demographic groups. 
Instead, they differ by race, gender, age, education. Some patterns are 
expected, such as how earnings rise with schooling, but other patterns are 
not, such as how the gender earnings gap rises with age, but not years of 

Fig. 1 Gender wage differentials (by age group) (Source US Bureau of Labor 
Statistics)
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school. Also less obvious, the gender gap is almost nonexistent between sin-
gle childless men and women, but large between married men and women 
with children.

3  Why Do Earnings Differ?

The predominant explanation entails human capital theory (Bowles et al. 
2001). This theory postulates earnings power results when individuals pro-
duce human capital through inputs as parental time, schooling, on-the-job 
training, and perhaps a bit of luck. Its roots go back at least to early 1691 
when economists began to consider the value of wealth embodied in individ-
uals (Kiker 1966). Sir William Petty’s essay “On the Value of People” written 
around 1655 (Hull 1899, pp. 108–112) computed the worth of people based 
on deducting property rent from national income. Later economists who con-
sidered human value include Adam Smith (1723–1790), Gaspar Melchor de 
Jovellanos (1744–1811), Jean-Baptiste Say (1767–1832), Nassau William 
Senior (1790–1864), Friedrich List (1789–1846), Johann Heinrich von 
Thϋnen 1783–1850), Ernst Engel (1821–1896), Léon Walras (1834–1910), 
and Irving Fisher (1867–1947) who formally used the term “human cap-
ital” in 1897. These economists tended to consider aggregate labor which 
they applied to measuring national wealth and its changes resulting from 
war, migration, and disease. Not until 1935 did John Walsh, and later in 
1945 did Milton Friedman and Simon Kuznets, consider specific occupa-
tions. Although human capital theory evolved over a long period of time,  
it did not really take off until 1958 when Jacob Mincer embedded school-
ing into a cogent parsimonious investment framework showing precisely 
how years of education translate into earnings power. Slightly later, Gary 
Becker and Barry Chiswick (1966), Yoram Ben-Porath (1967), and then  

Table 3 Median usual weekly earnings of full-time wage and salary workers, by sex, 
marital status, and presence and age of own children under 18 years old, 2012 annual 
averages

aIncludes never married, divorced, separated, and widowed persons
Source https://www.bls.gov/ted/2013/ted_20131203.htm

Men Women Ratio (%)

Total married, spouse present 981 751 77
With children 6–17 years, none younger 1035 746 72
Total other marital statusesa

With no children under 18 years 687 654 95
With children 6–17 years, none younger 790 614 78

https://www.bls.gov/ted/2013/ted_20131203.htm
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Table 5 Average labor earnings, by countries (in 2011 PPP US dollars)

Country Unmarrieda Married

Australia Male 39,150 53,317
Australia Female 36,584 39,391

0.93 0.74
Belgium Male 26,006 39,847
Belgium Female 22,551 23,008

0.87 0.58
Brazil Male 9538 16,314
Brazil Female 8866 12,281

0.93 0.75
Canada Male 37,965 55,504
Canada Female 37,214 39,481

0.98 0.71
China Male 9513 13,563
China Female 8646 10,900

0.91 0.80
Denmark Male 44,992 60,304
Denmark Female 40,626 44,111

0.90 0.73
Finland Male 40,098 53,305
Finland Female 35,188 39,316

0.88 0.74
France Male 8893 19,815
France Female 7059 11,229

0.79 0.57
Germany Male 47,753 60,477
Germany Female 42,542 46,145

0.89 0.76
India Male 4271 5293
India Female 5000 3391

1.17 0.64
Israel Male 17,452 36,809
Israel Female 14,735 27,239

0.84 0.74
Italy Male 21,763 28,483
Italy Female 22,022 23,496

1.01 0.82
Japan Male 30,352 43,727
Japan Female 22,229 21,940

0.73 0.50
Luxembourg Male 50,986 62,921
Luxembourg Female 52,562 54,068

1.03 0.86
Mexico Male 6416 8701
Mexico Female 6655 6980

1.04 0.80

(continued)
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Jacob Mincer (1974) extended the human capital model to incorporate 
work experience obtained over the life cycle. Even later, Finis Welch (1974), 
Chiswick (1978), and George Borjas (1982, 1985, 1993) applied the model 
to analyze race, ethnicity, and country of origin. Finally, Solomon Polachek 
(1975a) modified the model to understand gender differences. Of course, many 
other factors besides human capital can influence individual earnings. These 
comprise institutional factors including unions, market structure, government 
legislation, discrimination, corporate payment schemes to enhance productiv-
ity, as well as individual factors such as non-cognitive personality traits.

Before the human capital approach became popular, the predominant 
theory of earnings distribution attributed success mostly to luck. Earnings 
were depicted by purely stochastic nonrandom walk models. One approach 
(Roy 1950) argues that individuals possess various characteristics, each is 
independent of each other and distributed approximately normally across 
the population. By the central limit theorem, output and hence income 
will be log-normal if production can be depicted as the product of each 

aNever married
Source LIS datasets

Table 5 (continued)

Country Unmarrieda Married

The Netherlands Male 48,355 63,600
The Netherlands Female 46,096 55,547

0.95 0.87
Norway Male 18,481 42,371
Norway Female 12,358 24,595

0.67 0.58
Poland Male 4131 9640
Poland Female 3451 5287

0.84 0.55
Russia Male 13,265 16,161
Russia Female 11,994 10,284

0.90 0.64
Spain Male 25,974 34,959
Spain Female 24,950 29,035

0.96 0.83
Sweden Male 22,016 26,713
Sweden Female 15,793 16,562

0.72 0.62
UK Male 30,974 43,954
UK Female 31,371 35,331

1.01 0.80
USA Male 45,385 73,602
USA Female 41,191 50,473

0.91 0.69
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characteristic and there are a large number of characteristics. Such a theory 
offers no economic rationale into the earnings generation process because 
the individual characteristics have no behavioral content (von Weizsäder 
1993); in short, earnings are the product of random variables.

Since the development of human capital theory, other models evolved to 
consider various factors that affect earnings. These include occupational seg-
regation models, crowding models, efficiency wage models, matching mod-
els, and models depicting productivity-enhancing contracts. Occupational 
segregation and crowding models describe why women’s and minority 
groups’ outcomes differ from the majority group’s, based on differences in 
the occupational distribution of men and women, blacks and whites, as well 
as other demographic groups (Bergmann 1971, 1974). Presumably, dis-
crimination motivates employers to pigeonhole job applicants into selected 
occupations based on preconceived notions, often referred to as statisti-
cal discrimination, namely the stereotyping of individuals based on aggre-
gate group perceptions. Such categorization can lead to crowding of women 
and minorities into particularly low-paying more menial occupations. The 
increased supply of workers in these occupations exacerbates a downward 
pressure on wages, and the resulting shortage of employees in the so-called 
good occupations raises wages there. Clearly, the power of this theory 
depends upon how occupation is defined. Defining occupations broadly 
weakens its explanatory power, whereas defining occupations narrowly 
strengthens it (Polachek 1987). Further, the theory does not explain why the 
gender wage gap widens with age or why family characteristics such as mar-
ital status and children are related to earnings in the opposite way for men 
and women, or why the gender gap is smaller for blacks than whites.

Efficiency wage models argue that some individuals earn more than compet-
itive market wages. Paying more than the competitive wage is said to enhance 
productivity. First, employees work harder and shirk less for the fear of being 
laid off because, at best, a layoff results in a rehire at or below the competitive 
wage, especially if a layoff signals weak job performance. Second, employers 
better screen heterogeneous job applicants, choosing to employ only the best. 
Whereas such models justify unemployment, they don’t explain why efficiency 
wages vary over the life cycle or why earnings vary by race and gender.

Matching models explain how wages rise over the life cycle as worker–
firm combinations improve in quality and as turnover declines with tenure 
(Jovanovic 1979; Hosios 1990). However, they are weak in explaining the 
rate at which earnings rise and the periodicity of labor turnover (Polachek 
2012; Polachek and Horvath 2012). Further, they don’t explain gender, 
racial, or other demographic earnings differences.
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Productivity-enhancing contract models design compensation packages to 
maximize employee performance not just at a point in time, but throughout a 
worker’s potential life with a given employer. By providing appropriate incen-
tives, such pay schemes have implications regarding earnings over a worker’s life 
cycle. For example, piece-rate pay and bonuses increase employee pay and hence 
effort within a given timeframe. Promotions, often modeled as a rank-order 
tournament (Lazear and Rosen 1981), increase future pay as a reward for ear-
lier efforts and as a result imply upward sloping earnings profiles (Lazear 1995). 
However, they give little insight regarding earnings profile concavity, and indeed, 
some models predict convex earnings over the life cycle as might be the case for 
superstars and CEOs (Rosen 1981). To get at gender wage differences, such 
models rely on statistical discrimination in that firms predict women on average 
work less over their lives, thus requiring a higher ability than for men to achieve 
comparable promotions to enable firms to recoup specific training costs (Lazear 
and Rosen 1990). However, the problem with this approach is it predicts rela-
tively more able women than men move up the job ladder which should imply 
higher female productivity and hence greater female wages at more senior jobs, 
an observation that does not appear to be the case in the data.

Each of the above theories offers some insight for particular aspects of 
earnings. However, none give a unified framework that explains each of the 
observed earnings patterns illustrated above. We believe only the life-cycle 
human capital model accounts for the preponderance of all patterns simul-
taneously. Thus, we focus on human capital theory and the empirical work 
emanating from it.

4  The Human Capital Model

The backbone behind formal structural human capital models originates with 
Adam Smith (1776). He argued job characteristics shape labor market equi-
libria because workers need to be compensated for taking “unpleasant” jobs. 
Though going to school and investing in on-the-job training need not be 
unpleasant, these activities typically take time away from paid work and for 
this reason yield a wage premium.3 As such, the extra money needed to forgo 
pay while undertaking human capital purchases is a “compensating wage 

3Human capital investment comprises of general and specific training. Specific training enhances pro-
ductivity in the firm and nowhere else. Firms provide such training because of its limited applicability. 
However, to reduce turnover, incentive compatible contracts can arise in which firms equally share with 
its employees the costs and benefits of such training (Kuratani 1973). This survey deals mainly with 
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differential.” Couched in an investment framework, this means the present 
value of earnings an individual needs to obtain must exceed the costs of such 
expenditures, of course including direct and indirect opportunity outlays.

At first, only schooling investments were considered (Mincer 1958 and 
Becker 1964), but rigorous lifetime models (Ben-Porath 1967) imply some-
thing more. Assuming a finite working life and opportunities for post-school 
investments, such as through on-the-job training, individuals have an incen-
tive to invest throughout their lives, but at a diminishing rate. Large human 
capital investments during school, followed by gradually diminishing human 
capital investments throughout the life cycle, lead to the typically observed 
concave earnings profile. Ben-Porath derived this result by assuming individ-
uals invest in themselves to maximize lifetime earnings subject to their initial 
human capital (E 0) and the production technology associated with further 
human capital creation:

where J is the total discounted disposable earnings over the working life 
cycle, r is the personal time discount rate, and N is the number of years after 
which one retires (assumed known with certainty).4 Disposable earnings are 
Yt = R[Et − Kt] where R is the rental rate for human capital Et, and Kt is 
the fraction of human capital stock reinvested. Individuals create human 
capital using various inputs. This activity can be modeled using a very gen-
eral production function, but for simplicity most employ a Cobb-Douglas 
model combining own time and existing human capital. Typical studies 
denote the human capital accumulation process as Qt = βKb

t  where b and 
β are production function parameters.5 The parameter b indicates the rate 

(1)MaxKt J =

N∫

0

Yte
−rtdt

4Initial human capital is determined by genetics as well as initial parental and other investments. We 
examine parental investments later in this chapter.
5Ben-Porath (1967) assumed a more general production function employing “goods” inputs such as 
teachers and books qt = βK

b1
t D

b2
t  where Dt equals other inputs. Because goods inputs are difficult 

to measure, most analyses subsequent to Ben-Porath omit this factor. These include Haley (1976), 
Johnson (1978), and Wallace and Ihnen (1975).

general training which enhances productivity throughout the economy. The cost of general training is 
usually borne by the individual, though because of its social value, much of schooling is subsidized by 
the government. Bishop (1997) presents evidence that employers can pay for general (as opposed to 
only specific) training. Acemoglu and Pischke (1999) argue firms can pay for general training because 
even general training can have a specific component. In this chapter, we concentrate on the costs and 
benefits of that part of human capital an individual purchases either in school or on the job.
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at which current human capital stock is transformed to new human capital. 
It reflects how one acquires new knowledge from old and as such exhibits 
how quickly one learns. The β parameter depicts the “scale” at which one 
learns and hence represents total factor productivity. Both β and b reflect 
an individual’s ability to learn. An individual’s initial human capital stock 
(E0) becomes relevant when determining Kt during the process of life-
time earnings maximization. One can interpret E0 to be a person’s initial 
ability to earn. The rate of change in human capital stock Et is expressed 
as the amount of human capital produced Qt minus depreciation so that 
Ė = Qt − δEt where δ is the constant rate of human capital stock depreci-
ation. This depreciation parameter is symbolic of one’s ability to retain (or 
not retain) knowledge.6

Maximization of lifetime earnings requires producing human capi-
tal to equate its marginal costs and marginal benefits in each time period. 
This yields a complex nonlinear (in the parameters) earnings function that 
expresses earnings in terms of school and labor market experience, and con-
tains parameters (E0,β, and b) as well as discount (r ) and depreciation rates 
(δ ) as identifiable coefficients.7 Given its complexity, only a handful of stud-
ies estimate this (or related) earnings function. These include Johnson and 
Hebein (1974), Rosen (1976), Haley (1976), Heckman (1976), Heckman 
et al. (1998), Theeuwes et al. (1985), Song and Jones (2006), Wu (2007), 
and Liu (2009), all of whom do so by aggregating across the entire popu-
lation. An alternative theoretical version designed to get at some aspects of 
heterogeneity is given in Magnac et al. (2018).

Three issues underlie this earnings equation. First, the derivation assumes 
a continuous employment history. However, not all individuals work con-
tinuously throughout their career. This is particularly the case with women. 
According to Polachek (1975a) and later Weis and Gronau (1981), discon-
tinuous (also referred to as intermittent) work implies a non-monotonic 
decline in human capital investment over one’s lifetime. To date, no one  
to our knowledge has derived the resulting earnings function for such 

6Parameters b, β, r, δ, and E0 are assumed constant throughout one’s life. Obviously, this need not 
be the case, but is consistent with the notion that IQ remains constant (Tucker-Drob 2009). Of the 
parameters, skill depreciation seems most likely to increase as one ages, but to our knowledge, no one 
has estimated how skill depreciation increases with age in the context of a life-cycle human capital 
model.
7A derivation of the exact function is given as Eq. (7) in Polachek et al. (2015) and derived in their 
Appendix 1. Their specification differs slightly from Haley (1976) in that it assumes a two-term Taylor 
expansion for the third term in Haley’s earnings function, thus enabling them to identify all five earn-
ings function parameters. We present this equation in Appendix 1 because it is used later in this chapter 
to assess the importance of ability E0,β, b compared to schooling and experience which is used in more 
traditional approaches to explain earnings.
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a discontinuous worker. Second, at the time it was initially derived, the 
human capital life cycle earnings function model proved difficult to esti-
mate given its complex nonlinear structure. As such, most analyses adopted 
a quadratic approximation derived by Mincer (1974). Third, because its 
derivation is based on an individual’s optimization of lifetime earnings, one 
should estimate the earnings function using lifetime data for a given person. 
Instead, at least until recently, all analyses used cross-sectional or panel data 
to obtain aggregate population-wide estimates.

Polachek et al. (2015) and Verdon (2018) exploit panel data to estimate 
separate equations by individual. Doing so enables one not only to get at 
heterogeneity, but also to test, at the time, previously unverified theorems of 
the life-cycle human capital model, which we will explain further in Sect. 6.

5  Simplification of the Earnings Function

Estimation of nonlinear functions derived from a life-cycle model is diffi-
cult because the equation’s complex nonlinear specification impedes conver-
gence. Polachek et al. (2015), hereafter PDT, utilize the Genetic Algorithm 
to optimize numeric strings using genetic reproduction, crossover, and 
mutation concepts (Goldberg 1989).8 These techniques globally search the 
parameter space leading to convergence more efficiently than traditional 
Newton-Raphson hill-climbing algorithms which rely on a point-to-point 
gradient-based search (Dorsey and Mayer 1995). Even so, the technique is 
computationally time-intensive, especially when estimating the earnings 
function person by person.

The complexity of estimating these nonlinear equations is probably why 
most analyses use a simplified formulation based on Mincer (1958, 1974). 
Further, because long enough panel data were not available, all prior anal-
yses estimated aggregate population-wide earnings functions. Given this 
extensive research, we now examine Mincer’s formulation as well as various 
extensions of it. This entails describing his specification and interpreting 
its implications. Following this, we use Mincer’s results as a benchmark to 
evaluate what can be learned from obtaining individual-specific parameters. 
Then finally, we deal with techniques current researchers use to get at exoge-
neity issues regarding returns to human capital investment.

8The algorithm was originally developed by Holland (1975). PDT use a version of GA written by 
Czarnitzki and Doherr (2009).
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5.1  The Mincer Model

By equating the present value of school investment benefits to its costs, 
Mincer (1958) derived his original earnings function

where Y is earnings and S is schooling, which he estimated using cross-sec-
tional US census data. Of prime interest was the rs coefficient that depicts 
the rate of return to school. Of less interest is α0 that represents the loga-
rithm of earnings assuming no school. Even in the 1960s when Mincer first 
estimated this equation, he realized the equation had shortcomings. Most 
obvious was an omitted experience variable which is necessary in order to 
introduce life-cycle considerations into the model. This omission causes rs 
to underestimate the true rate of return because both schooling and labor 
market experience are positively related to earnings, but schooling and labor 
market experience are inversely correlated.9 Becker and Chiswick (1966) 
as well as Mincer (1974)10 incorporate Ben-Porath’s (1967) theorem that 
human capital investments decline monotonically with age assuming a finite 
(and continuous) work horizon. This inclusion yields a concave earnings 
function. Although Mincer experimented with several specifications,11 the 
following log-linear model is the one that prevailed, probably because of its 
simplicity

where all variables are the same as before, except now t represents work 
experience.12 The coefficient α0 is related to initial earnings capacity, and 
β1 andβ2 are a combination of the amount and the return to human capital 

(2)ln Yi = α0 + rsSi

(3)ln Yi = α0 + rsSi + β1ti + β2t
2
i + ǫi

9Of course, there were other biases but these were considered later.
10Also Tom Johnson (1970).
11These include a Gompertz specification as well as various interaction terms.
12Murphy and Welch (1990) experiment with cubic and quadratic functional forms. Heckman and 
Polachek (1974) use Box-Cox and Box-Tidwell transformations to show the log-linear fit works best 
when compared to a set of other common functional forms. Heckman et al. (2003) modify the Mincer 
model to incorporate individuals choosing their education levels to maximize their present value of life-
time earnings. They also relax other restrictions such as the constraint that log earnings increase line-
arly with schooling and the constraint that log earnings-experience profiles are parallel across schooling 
classes, but Mincer also relaxes these latter constraints in a number of his specifications which contain 
an interaction term between experience and schooling. Indeed, he finds (1974, pp. 92–93) nonparallel 
profile shifts, as well.
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investments.13 Numerous examples of this equation appear in the literature. 
All yield positive returns to schooling (in the 3–20% range) and all yield 
concave earnings profiles (exhibited by negative β2 coefficients), but here 
too, there are biases.

Mincer estimated (3) using the 1960 Public Use US Census data to 
obtain:

Given there are four coefficients representing five aspects of human capital, 
one must make an identifying restriction.14 Assuming equal rates of return 
for schooling and post-school investment (rs = rt) yields an E0 of $1185.59 
in 1960 dollars, or $9778 in 2016 dollars, which reflects the earnings power 
of an individual with no human capital. The initial time-equivalent invest-
ment when just completing school (k 0) equals 0.492 meaning that one 
initially spends about 50% of the time on one’s first job investing in on-the-
job training. Finally, T equals 25.82, implying that earnings peak just after 
25 years in the labor force.15

According to the Ben-Porath optimization model, human capital invest-
ment declines continuously over one’s lifetime. If going to school entails 
100% use of one’s time, then time investment just after completing school 
should be slightly below 1.0, but not as low as the 0.5 observed above. One 
explanation centers on governmental and familial subsidies to those attend-
ing school (Johnson 1978). According to this argument, school enrollees 
receive subsidies if and only if they remain in school. To obtain the maxi-
mum subsidy, individuals stay in school longer than otherwise (a distortion), 
but revert back to the non-subvention investment patterns when the subsidy 

(4)ln Y = 6.20+ .107 S + .081 t − .0012 t2

14The parameters are the initial human capital stock (E 0), the rate of return to schooling (r s), the rate of 
return to post-school human capital investment (r t), and the time when gross human capital investment 
just equals depreciation which is the experience level at which net human capital investment goes to 
zero (T ).
15The computation results from solving the following equations:

 lnE0 − k

(
1+ k

2

)
= 6.2; rs = .107; rt k +

k

T
(1+ k) = .081; −rt

k

2T
+ k

2

2T2
= −.0012; rs = rt ; for T , k, rs , rt and Y .

13These five aspects are related to, but not exactly the same as, PDT’s five parameters. The coeffi-
cients α0 = lnE0 − k0[1+

k0
2
], β1 = rtk0 +

k0
T
(1+ k0) and β2 = −

[
rt k0
2T

+
(k0)

2

2T

]
 assuming a lin-

early declining post-school investment function kt = k0 −
k0
T
t where k0 is initial and kt concurrent 

“time-equivalent” investment and T is the total period of positive investments. Mincer also considered 
three other specifications for kt. These entail (1) a linear declining dollar specification, (2) an exponen-
tially declining dollar specification, and (3) an exponentially declining time-equivalent investment spec-
ification. These yielded nonlinear in the parameters less popular earnings functions that by and large 
have been ignored in the literature.
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disappears. Given possible social benefits from an educated population, this 
seemingly overinvestment in school is not necessarily suboptimal from a 
national perspective.16

5.2  Direct Applications of the Mincer Earnings 
Function

At least three important empirical implications emerge directly from the 
Mincer earnings function. First, earnings rise with human capital invest-
ments. This means the coefficient on schooling should be positive, and it is 
bigger the better the quality of education. Second, the coefficient on experi-
ence-squared should be negative indicating less earnings growth mid-career. 
Third, earnings distribution should be related to both levels and variations 
in human capital accumulation. This means the variance of earnings widens 
as schooling levels increase and as a population ages. However, interestingly, 
holding schooling level constant, relative earnings differences (as measured by 
the variance of the logarithm of earnings) should narrow with experience and 
then widen, exhibiting a U-shaped log variance of earnings (Polachek 2003).

Each of these is widely observed. Literally, dozens of studies estimate 
schooling rates of return. These entail multiple countries and cover numer-
ous years. One survey (Patrinos and Psacharopoulos 2010) contains rate 
of return estimates for over 70 countries spanning more than 25 years. A 
second (Trostel et al. 2002) contains estimates for 28 countries. A third 
(Montenegro and Patrinos 2014) utilizes the World Bank International 
Income Distribution Database to estimate rates of return for 139 economies 
mostly since 2000. In a meta-analysis using 97 rate of return estimates from 
27 studies, Orley Ashenfelter et al. (1999) find “little controversy … school-
ing adds considerably to the earnings of individuals,” that “rates of return 
to schooling appear to be higher in the USA than elsewhere (p. 466),” and 
these returns have increased between 1980 and 1999. Philip Oreopoulos 
and Uros Petronijevic (2013) in a survey on the returns to college education 
also claim that “the earnings premium associated with a college education 
has risen substantially” and that college is still a “sound investment” (p. 1).

Although more school is associated with higher earnings, it is not obvious 
schooling actually raises productivity. A number of theories claim not. For 
example, signaling models argue that better workers “signal” their prowess by 

16See Psacharopoulos and Patrinos (2004) and Psacharopoulos (2006) for an analysis of social rates of 
return to education.
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going to school, but school itself doesn’t affect productivity. Similarly screen-
ing models claim that firms screen on certain characteristics such as com-
pleting a degree because “finishing” signals stick-to-itiveness a characteristic 
defining potentially “better” workers, but again schooling by itself doesn’t 
affect productivity. Finally, long-term contract models yield escalating life-cy-
cle earnings. However, these pay schemes reflect techniques firms use to hire 
the best workers, decrease turnover and minimize job shirking, but do not 
necessarily increase worker productivity. Although actual employee produc-
tivity is hard to measure, and few data sets actually have such information, 
some studies exist linking educational investments to actual productivity. For 
example, utilizing productivity data on 296 household farms in West Bengal, 
India, Kumbhakar (1996, p. 188) showed “that education increases [actual] 
productivity” and that this enhanced productivity increased farmers’ wages. 
Generalizing these results to economic growth, Barro and Sala-i-Martin 
(1999) find that the higher the population’s education, the higher its GDP 
and GDP growth per capita. Related to actual productivity, Craig Riddell 
and Xueda Song (2017) using Canadian data find education increases the 
probability a worker will be using a computer on the job. With regard to 
sheepskin effects, Clark and Martorell (2014) find little evidence of signaling 
when comparing the earnings of workers who barely passed and barely failed 
exams leading to a high school diploma. With respect to social effects of 
school, Lochner and Moretti (2004) show that schooling reduces the prob-
ability of incarceration and arrest. In another realm, Benmelech and Berrebi 
(2006), based on a unique data detailing the biographies of Palestinian sui-
cide bombers, find that more educated suicide bombers are more likely to 
succeed in their mission and are more likely to induce casualties when they 
attack. In addition, education positively affects non-labor market activi-
ties. For example, Michael (1973) shows that education improves one’s effi-
ciency in consuming everyday commodities. Polachek and Polachek (1989) 
illustrate “reverse intergenerational transfers” by showing that even one’s 
children’s education positively affects the way one consumes. In summary, 
schools appear to increase cognitive and non-cognitive skills. However, not 
obvious is whether these acquisitions primarily come about because of school 
or simply because of students’ innate abilities. More on this later.

Also universal is earnings function concavity exhibited by a negative β2 
coefficient found when estimating Eq. (3). Early studies (Mincer 1974) 
tested this proposition using OLS regression with cross-sectional data.17 This 

17Some use panel data, but one can question how these adjust for price changes. Another exception is 
in executive pay late in some individuals’ career paths.
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result is universal across countries and years (Polachek 2008). These results 
also hold when one adjusts for selectivity biases (Hartog et al. 1989; Kiker 
and Mendes de Oliveira 1992; Baldwin et al. 1994; Gibson and Fatai 2006) 
and for individual-specific heterogeneity using standard and not so standard 
fixed-effects techniques (Mincer and Polachek 1978; Licht and Steiner 1991; 
Kim and Polachek 1994; Light and Ureta 1995; Bhuller et al. 2014).

Finally, as Mincer predicts, the distribution of earnings varies over the life 
cycle. According to Mincer, σ 2(ln Yit) where i denotes an individual and t 
denotes an experience level is likely U-shaped over t, with the trough occur-
ring near Mincer’s “overtaking” point” 1/rs years after finishing school.18 
Predicting this trough is unique to the human capital model. At the over-
taking point (1/rs), observed earnings (YS) are equivalent to potential earn-
ings (ES) from school alone, because at that point in life, the cost of and 
the returns to on-the-job training cancel each other out, and this is true 
for all individuals independent of the amount of training. Here, all earn-
ings variation is simply σ 2(ES). However, earlier in one’s career, say when 
one just leaves school, earnings variation arises from both earnings variation 
in potential earnings σ 2(ES) and variation in the cost of training. Later in 
life, as annual training declines, earnings variation amounts to the variations 
in both original potential earnings σ 2(ES) and the returns to past on-the-
job post-school training. Mincer verified this U-shape with US data, Brown 
(1980) also found some evidence of this, and Polachek (2003) corroborated 
this with LIS data based on nine countries.

5.3  Extending the Mincer Earnings Function

Adding categorical dummy variables to the basic Mincer earnings func-
tion yields estimates of earnings differences across population subgroups. 
In this vein, numerous studies proliferated beginning with analyses of the 
union/nonunion wage gap (Lewis 1963, 1986), race (Welch 1974), gender 
(Fuchs 1967; Suter and Miller 1973) migration and ethnicity (Chiswick 
1978; Borjas 1982, 1985, 1993), and health status (Grossman 1972). 
Nowadays, a host of other factors related to earnings are considered. For 
example, beauty (Hamermesh and Biddle 1994; Scholz and Sicinski 2015), 
height (Lundborg et al. 2014), dress (Hamermesh et al. 2002), hair color 
(Dechter 2015), grooming (Robins et al. 2011), sexual orientation (Sabia 
2015; Klawitter 2015), college major (Webber 2014), bilingualism (Saiz and 

18Proof is given in Mincer (1974, p. 103).
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Zoido 2005), social skills (Weinberger 2014), personality (Groves 2005), 
mental state (Cseh 2008), childhood disorders (Fletcher 2014), teenage 
drug use (Burgess and Propper 1998), veteran status (Gabriel 2016), religion 
(Steen 2004), and more.

Interpreting these earnings differences is tricky as many of these varia-
bles might not be truly exogenous. This is certainly the case for schooling. If 
higher ability students go to school longer, then part of the often measured 
return to school may be a return to student ability, and not school per se. 
A long literature spells out and attempts to correct for this endogeneity bias 
arising from omitted ability. We will discuss this later. But it is also the case 
that other seemingly more likely exogenous variables are not truly exogenous.

Take the case of gender. Many define gender wage differences holding edu-
cation, experience (though most studies use potential rather than actual experi-
ence), and other variables constant to constitute discrimination. Such regression 
models indicate women earn less than men. In the USA, the gap is approximately 
22%. Among OECD countries, the gap averages 15%. One might argue this 
indicates rampant discrimination, namely that firms pay women lower wages 
despite seemingly equal qualifications. But the story is far more complicated.

An exogenous variable must be randomly assigned independent of other 
variables. Certainly, in the USA and OECD countries where there is no 
apparent child preference, gender is typically thought to be randomly assigned 
at birth. True, gender does not appear to affect or be affected by other varia-
bles in the human capital model. However, there still are a number of endo-
geneity issues. For one, gender is not independent of other omitted variables, 
but instead it is correlated with other confounding factors that may affect 
earnings. Expected lifetime labor force participation is the most notable. For 
example, marriage and motherhood are often cited as the prime reasons for 
intermittent participation. Women who do not get married or have children 
have comparable lifetime work histories and wages relative to non-married 
childless single men. But married women with children have wildly different 
lifetime labor force participation than their men counterparts.

To see the effects of these omitted variables, we modify the Mincer earn-
ings function to include marital status and number of children, along with a 
set of interaction terms between these and gender. One such specification is:

where ln(Y ) is the logarithm of earnings, S represents years of schooling, t 
and t2 depict years of experience and its square, as have already been defined; 

(5)
ln Yi(t) = a0 + a1Si + a2ti + a3t

2
i + α5Fi + α6Mi + α7F ∗Mi

+ α8Ci + α9F ∗ Ci + α10F ∗M ∗ Ci + α11Xi + εi
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and F is a categorical gender dummy variable for being female, M a categor-
ical dummy variable for marital status, F ∗M an interaction term between 
gender and marital status, C the number of children, F ∗ C an interaction 
term between gender and number of children, F ∗M ∗ C a three-way inter-
action term, X other relevant exogenous variables, and εi a random error 
term for each individual observation. This specification yields estimates of 
the gender wage gap for married men and women separately from single 
men and women. It also estimates the effect of children on the gender wage 
gap. The interesting result is a “family wage gap” in which the gender dif-
ference in earnings is relatively small for single men and single women, yet 
large for married men and married women, and especially large for those 
married men and women with children. Polachek (1975b) was the first to 
find the “family wage gap” for US data. Later, Sanders Korenman and David 
Neumark (1992) also documented the gap for the USA. Francine Blau and 
Lawrence Kahn (1992) corroborate marital status differences using interna-
tional data, as does Polachek (2008) who presents results for 14 countries 
using the LIS data. Independent of country or year, the gender gap for sin-
gles varies between 20% in favor of men and 4% in favor of women (the 
unweighted average is about 8% in favor of single men over single women) 
to between 3 and 56% (with an unweighted average of about 30%) for mar-
ried men and over married women. This means the gender wage gap is not 
uniform. It is small for childless single men and women, but relatively large 
for married men and women with children. Why?

The reason is an omitted variable. To see this note that marriage and chil-
dren are related to lifetime labor force participation, but both marriage and 
children influence lifetime work differently for men and women. For men, 
being married having children is associated with higher lifetime work, but 
for women marriage and children decrease lifetime work. These work pat-
terns are illustrated in both cross-sectional data and retrospective work histo-
ries. Figure 2 depicts gender–marital status labor force participation patterns 
for the USA in 1970 and 2010. Married men in 1970 have the highest life-
time labor force participation. Married women have the lowest, peaking at 
about 47% between the ages of 20 and 24. The drop between ages 25 and 
35 reflects intermittent labor force participation related to childbearing. The 
gap between single males and females is the narrowest. By 2010, the gen-
der differences are appreciably smaller, but still remain. Figure 3 shows how 
female labor force participation decreases with children. It indicates younger 
children have a larger negative effect on work.

The same lifetime work patterns emerge from retrospective data. Using 
the 1980 Panel Study of Income Dynamics Data (PSID), Miller (1993) 
finds that married women average 10.04 years out of the labor force. 
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Similarly, using a panel of 2659 individuals from the 1976 to 1987 PSID 
data, Kim and Polachek (1994) find that women averaged 9.62 years out of 
the labor force relative to men’s 2.22 years. Current data for foreign coun-
tries are comparable. Using Canadian data, Simpson (2000) finds that in 
1993 married women with children averaged 7.6 years (or 36.4% of their 
work years) out of the labor force, whereas single women spent 1.5 (or 
12.9%) of their work years out of the labor force. For men, this figure is 

Fig. 2 US labor force participation rate (by gender, marital status, age) (Source US 
Bureau of Labor Statistics)

Fig. 3 Labor force participation rate of mothers (Source US Bureau of Labor 
Statistics)
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0.9 years (or 8.1%). Data within narrow professions yield similar results. 
Catalyst (2003) finds that only 29% of women MBA graduates worked 
full-time continuously since graduation compared to 69% for men, and 
similarly only 35% of women law graduates worked continuously since 
graduation compared to 61% for men.

The Segmented Earnings Function

Mincer and Polachek (1974) modified earnings function (3) to incorporate 
discontinuous labor force participation.19 They did so by dividing Eq. (3)’s 
potential experience (t ) into its components: actual experience and time out of 
the labor force. Whereas many work and non-work segments can be used, for 
simplicity here we adopt two work segments (e1 and e2) and one “home-time” 
segment (h ). The empirical specification is derived assuming linearly declining 
human capital investments in each work/non-work segment to obtain

where e1, h, and e3 are the work and non-work segments.20

The α1 and α2 coefficients range from 1.2 to 4.0%, depending on the 
population subgroup studied and on one’s level of education. The δ coeffi-
cient ranges from −4.5 to −0.5% depending on the respondent’s amount 
and type of education. In general, the higher one’s education and the more 
skilled one’s job, the greater the magnitude of these coefficients. Also, α2 
often exceeds α1 because upon reentering the labor one has a greater com-
mitment to working more continuously (Polachek 1975a). By now, numer-
ous studies adopted this approach to assess the effect of work interruptions. 
Examples include Albrecht et al. (1999), Baum (2002), Corcoran and 
Duncan (1979), Corcoran et al. (1983), Hotchkiss and Pitts (2003, 2005), 

(6)ln Yt = a0 + rsS + α1e1 + δhh+ α2e3 + ε

19In empirical work, Mincer and Polachek (1978) adjust for endogenous lifetime work using two-stage 
least-squares estimation. Also see Gronau (1988).
20Assuming a linear human capital investment function k(t) = ai + bit where ai is the initial 
“time-equivalent” investment and bi is the rate of change in investment taking place in one of the n 
work/non-work segments i yields lnEt = lnE0 + rsS + rp

∑n
i=1

∫ ei
0
(ai + bit)dt. For the three-period 

case (n = 3), the earnings function is a quadratic in each work/non-work segment:

Taking a linear approximation of the quadratic in each segment and denoting segment e2 as h (since it 
represents time at home out of the labor force) yields (6).

lnEt = lnE0 + rsS + rp

(
a1e1 +

1

2
b1e

2
1 + a2e2 +

1

2
b2e

2
2 + a3e3 +

1

2
b3e

2
3

)
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Jacobsen and Levin (1995), Kim and Polachek (1994), Light and Ureta 
(1995), Mincer and Ofek (1982), Mincer and Polachek (1974), Phipps et al. 
(2001), Rummery (1992), Sandell and Shapiro (1980), Sen (2001), Stafford 
and Sundstrom (1996), Stratton (1995), and Spivey (2005).

Intermittent Labor Force Participation and Human Capital 
Investment

As already illustrated, the lower the expected lifetime work, the smaller the gains 
from human capital investment, and the lower the amount invested. For this 
reason, a worker who anticipates discontinuous labor force participation pro-
cures less on-the-job training than the continuously employed worker. As a 
result, women’s earnings need not exhibit the typical concave age-earnings pro-
file characteristic of men. Instead, they are flatter and often exhibit a non-mono-
tonic pattern depending on the degree of intermittent work behavior.

To see this analytically modify the life-cycle optimization model spelled 
out in Eqs. (1)–(3) above by introducing the possibility that labor force 
participation can vary year-by-year over the life cycle (Polachek 1975a). As 
such, modify (1) so that

where N(t ) is the proportion of time available spent working in the labor 
force and investing in human capital. Assume N(t ) is exogenous to the 
investment process, but dependent on gender, marital status, and the num-
ber of children. Allowing for such intermittent labor force participation 
implies N(t ) is not constant in each period. This yields the following mar-
ginal gain from investment21:

where again w0 is the rental rate per unit of human capital, r the discount 
rate, and t one’s current age.

The first term represents the marginal revenue if labor force participation 
was constant each time period. It is negative and identical to Ben-Porath’s 
declining marginal gain from investment over the life cycle. The second term 
represents the incremental change to marginal revenue when labor force 

Y(t) = R[N(t)E(t)− K(t)]

ψ̇(t) = −w0N(t)er(t−T) + w0re
rt

T∫

t

[N(τ )− N(t)]dτ

21See Polachek (1975a) for a derivation.
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participation is not constant over the life cycle. This term is positive if future 
labor force participation is expected to rise, as in the case when a woman 
anticipates reentering the labor force after raising her children. A sufficiently 
large second term implies an increasing present value of human capital 
investment. This means that intermittent labor force participation can cause 
human capital investment to rise during and after one’s childrearing years 
instead of falling monotonically as Ben-Porath predicted. As such, post-
school human capital investment (on-the-job training) crucially depends on 
expected lifetime labor force participation.

Most current studies of the gender wage gap do not take account of 
expected future labor force participation. As such, most overestimate the 
amount of the unexplained wage gap. However, one set of studies accounts 
for these biases. Polachek (1975a), Goldin and Polachek (1987), and Kao 
et al. (1994) analyze wage differences for the USA and for Taiwan. In con-
trast to traditional decomposition studies which explain 30–50% of the gen-
der wage gap, these results explain up to 93% of the gap. To illustrate the 
robustness of the procedure, the technique used in these studies was applied 
within each gender to account for marital status wage differentials, specifi-
cally that married men earn more than single men, but married women earn 
less than single women. Here, these studies explain 82% of the marital sta-
tus wage gap within each gender. Thus, lifetime work, governed by gender, 
marital status, and children, affects human capital acquisition, which in turn 
explains both why there is a gender wage gap and why there is a marital 
status gap that is opposite in magnitude for men and women. Whereas the 
human capital model emphasizes expected lifetime labor force participa-
tion, other studies also look at willingness to work long hours (Goldin 2014; 
Cortés and Pan 2016), workplace preferences (Wiswall and Zafar 2016), as 
well as psychological and motivational differences. These include payment 
scheme preferences (Dohmen and Falk 2001), time preference (Brown and 
van der Pol 2015), non-cognitive skills (Cobb-Clark and Tan 2011), mor-
tality risk (Hammitt and Tuncel 2015), and risk preference (Booth and 
Katic 2013; Rai and Kimmel 2015). A survey of such articles is contained in 
Croson and Gneezy (2009).

Gender Wage Gap: Whites vs. Blacks

Related to lifetime work is the gender pay gap between whites and blacks. As 
indicated in Table 1, the gender earnings gap for blacks is smaller than for 
whites. One reason is lifetime labor force participation. At least in the past, 
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black women worked slightly more over their lifetimes than white women, 
but black men compared to white men worked less. Figure 4 indicates racial 
differences in labor force participation. Although the data constitute annual 
rates, the figure is indicative of lifetime trends. The female–male earnings 
ratio for whites in 2015 is 0.78, but for blacks it is 0.90.22

Changes in Lifetime Labor Force Participation  
and the Gender Wage Gap

Changes in lifetime labor force participation can answer the second question, 
why the gender wage gap narrowed. At least since the time data have been 
collected, women’s, especially married women’s, labor force participation has 
risen. In 1890, only 4.9% of US married women participated. In 1948, this 
figure was approximately 33%, and in 2015, it was 57%. Figure 5 illustrates 
these labor force participation rates from 1948 to 2015. Higher labor force 
participation raises expected lifetime work and as a result increases human 
capital investments and wages. At the same time, male labor force partici-
pation declined moderately from 86% in 1948 to 70% in 2015. As such, 
female human capital investments most likely rose relative to males’ human 

Fig. 4 Labor force participation by gender and race (Source https://www.dol.gov/wb/
stats/facts_over_time.htm#labor)

22Based on data from: https://www.dol.gov/wb/resources/Womens_Earnings_and_the_Wage_Gap_17.
pdf.

https://www.dol.gov/wb/stats/facts_over_time.htm#labor
https://www.dol.gov/wb/stats/facts_over_time.htm#labor
https://www.dol.gov/wb/resources/Womens_Earnings_and_the_Wage_Gap_17.pdf
https://www.dol.gov/wb/resources/Womens_Earnings_and_the_Wage_Gap_17.pdf
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capital investments, thereby resulting in a higher female-to-male wage ratio. 
This is precisely what is observed in Fig. 6. However, there are exceptions, 
such as between 1960 and 1975. Polachek and Robst (2001, p. 869) found 
that the rapid rise in “new female labor force entrants in the 1970s brought 
down mean female wages, thereby driving down female wage growth.” This 
is probably the case for the 1940s, as well, which witnessed an unprece-
dented influx of women workers during World War II.

Whereas the Mincer earnings function can be used to explain these demo-
graphic patterns of the earnings data, this formulation is insufficient with 
regard to other theoretical implications. For example, one shortcoming is 
that it does not explain how much schooling individuals actually accumu-
late in the first place. Indeed, within his model, individuals are indifferent 
between various amounts of school because each amount yields the same 
present value of lifetime earnings, thus making years of school an exogenous 

Fig. 5 Labor force participation rate by gender (1948–2015 annual averages) (Notes 
Includes persons in the civilian noninstitutional population that are employed or 
actively looking for work. Based on persons 16 years of age and older. Source 1948–
2015 annual averages, Current Population Survey, US Bureau of Labor Statistics)
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variable. But as is well known from the life-cycle human capital model, an 
individual chooses his or her years of schooling based on the five parameters 
(b, β, E0, δ, and r ) alluded to earlier in this chapter. Thus, one must estimate 
these five structural parameters person by person to test the theory’s impli-
cations. Nowadays, sufficiently long panel data are available to follow each 
person for a long enough time period to obtain person-specific estimates. 
We do so now.

6  Human Capital Production Function 
Parameter Values

Among the first to estimate nonlinear (in the parameters) earnings func-
tions was Haley (1976). He used CPS (Series P-60, No. 56) schooling and 
earnings (unfortunately earned and unearned income) data for individuals 
18–64 in 1956, 1958, 1961, 1963, 1964, and 1966, thus implying the pool-
ing of 6 cross sections. However, his slightly more complex formulation had 
identification problems precluding his capability to estimate E0,β, andR. 

Fig. 6 Gender earnings ratio (March 1960–2014) (Source US Bureau of Labor 
Statistics)
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Nevertheless, the crucial parameters b, r, and δ were obtained for seven 
schooling levels, along with parameters defining earnings growth across 
cohorts. Most of Haley’s estimates are as expected. For example, discount rate 
(r ) estimates are between 5 and 7%, the b ability coefficient is about 0.6, 
and depreciation (δ ) is between 0.019 and 0.043. These estimates compare 
favorably to other studies that estimate aggregate Ben-Porath-based models, 
though understandably there are differences due to alternative methodologies 
and data. More specifically, with respect to the Cobb-Douglas production 
function exponent b, Heckman’s (1975) 0.67, Heckman’s (1976) 0.51–0.54, 
Heckman et al.’s (1998) 0.80, Song and Jones’s (2006) 0.5, and Liu’s (2009) 
0.52 span Haley’s 0.54–0.60. For depreciation (δ ), Johnson and Hebein’s 
(1974) 0.022 and Heckman’s (1976) 0.04–0.07 estimates compare favorably 
to Haley’s 0.017–0.043. Similarly, Rosen’s (1976) 0.07 discount rate (r ) esti-
mate is Haley’s upper bound 0.07. Further, as already mentioned, each uses 
slightly different human capital production functions, and some incorporate 
life-cycle labor supply. On the other hand, not all the human capital theo-
ry’s predictions are observed in Haley’s estimates. For one, a higher b should 
imply more schooling, but Haley does not find this. Also, the relationship 
between skill depreciation and schooling level should be negative, but this is 
not the case in Haley’s empirical work. One weakness in these studies is not 
adequately taking account of heterogeneity.

6.1  Heterogeneity

The advent of speedier computers, better optimization routines, and longer 
panels than in the past now enables one to retrieve individual-specific param-
eters of the human capital life-cycle model by estimating appropriate earnings 
functions individual-by-individual. This allows one to account for heterogene-
ity because ability-type parameters can be estimated for each person. The first 
to do this is PDT (2015). They obtain the five parameters b, r, δ, E0, andβ, 
for about 1700 male workers contained in the National Longitudinal Survey 
of Youth (NLS-Y), as well as a population-wide value for the rental rate of 
human capital R. They plot kernel density functions and find significant het-
erogeneity. Important to macroeconomists, accounting for this heterogeneity 
dramatically reduces estimates of population-wide persistence of permanent 
and transitory shocks in earnings dynamics models by over 50%.23

23Other studies concentrate on heterogeneity by allowing ARMA processes to vary across individu-
als (e.g., Browning and Ejrnӕs 2013). Some present decile ranges of key parameters illustrating that 
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PDT’s technique also yields a number of additional new findings. For exam-
ple, on the microlevel, they find that blacks have higher rates of skill depreci-
ation than whites. Here in this chapter, we extend PDT’s work to include 
Hispanics and present average coefficient estimates for them as well as for 
blacks and whites in Table 6. More interestingly, whereas typical ability meas-
ures obtained from Armed Forces Qualification Test (AFQT) test scores24 differ 
widely between Hispanics, blacks, and whites, there are far smaller differences 
in the human capital ability parameters b,β, andE0 indicating possible racial 
biases in typical psychology-based aptitude, achievement, and intelligence test 
scores. This is consistent with Fryer and Levitt (2004, 2013) who find small 
racial differences in IQ once adjusting for a number of demographic factors.

6.2  Implications Regarding Individual-Specific  
Human Capital Parameters

Schooling Levels and Human Capital Parameters

Obtaining individual-specific parameters enabled PDT to verify a num-
ber of previously untested theorems based on the life-cycle human capital 
model. More specifically, human capital theory predicts a positive correlation 
between ability measures b andβ and one’s years of schooling, a negative rela-
tion between initial stock of human capital E0 and schooling level, and neg-
ative correlations between a person’s years of school and his/her discount (r ) 
and skill depreciation (δ ) rates. Greater ability to learn raises the amount of 
human capital one can produce per unit of time, thus lowering the cost of 
human capital acquisition and increasing the amount of school obtained. On 
the other hand, more initial human capital E0 is a substitute for schooling 
and thus leads one to stop school earlier. Higher depreciation rates lower the 
amount of human capital retained, thus making school relatively more costly 
and decreasing the amount purchased. Finally, schooling levels decrease with 
time discount (r ) because individuals with high discount rates are more 
reluctant to put off the gratification of current market earnings.

 
heterogeneity affects the speed individuals respond to shocks (e.g., Browning et al. 2010; Browning and 
Ejrnæs 2013). In other realms, Greene (2005, 2010) examines heterogeneity by using fixed- and ran-
dom-effects models.
24AFQT scores are computed using the Standard Scores from four ASVAB subtests: Arithmetic Reasoning 
(AR), Mathematics Knowledge (MK), Paragraph Comprehension (PC), and Word Knowledge (WK).
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Personality and Human Capital Parameters

Similarly, PDT find human capital parameters to be related to person-
ality. They observe greater ability as well as lower skill depreciation and  
time discount rates for those individuals with a high internal locus of con-
trol and for those individuals who demonstrate high levels of self-esteem. 
Individuals inclined toward mental depression have a higher time discount. 
At the same time, family background, such as higher parental education, 
is associated with a greater ability to learn, lower skill depreciation, and a 
smaller rate of time discount. Educational stimuli, such as growing up in a 
household that subscribed to newspapers and magazines, are associated with  

Table 6 Mean and standard deviation of the parameter estimate (by race)

Source Based on the data in Polachek et al. (2015)

Mean SD

Hispanic (436 persons)
b 0.33 0.09
β 0.61 0.18
E0 2.95 3.42
δ 0.028 0.017
r 0.044 0.041
Average weekly earnings (1982–1984$) 354 258
t 31.58 8.48
t* 17.07 2.39
AFQT 30.61 26.10

Black (596 persons)
b 0.32 0.12
β 0.57 0.16
E0 2.73 3.41
δ 0.029 0.016
r 0.043 0.042
Average weekly earnings (1982–1984$) 309 243
t 31.94 8.48
t* 17.71 1.87
AFQT 20.41 19.49

White (1230 persons)
b 0.36 0.09
β 0.65 0.17
E0 2.76 2.69
δ 0.026 0.014
r 0.041 0.038
Average weekly earnings (1982–1984$) 443 358
t 32.05 8.48
t* 18.18 2.22
AFQT 52.35 27.78
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a higher ability. Conversely, growing up poor is associated with lower levels 
of ability. These correlations which are now broken down by race and eth-
nicity are given in Table 7.

6.3  Homogeneity vs. Heterogeneity of Human 
Capital

Strictly speaking, the human capital model assumes potential earnings are 
directly related to the amount of human capital one purchases throughout 
one’s life (YP

t = REt) and observed earnings equal potential earnings minus 
current investments Yt = R[Et − Kt]. Observed earnings rise with age as one 
accumulates more human capital, but eventually fall when skill depreciation 
outweighs new investments in human capital. Underlying this approach 
is an assumption that all human capital is homogeneous because everyone 
faces the same rental rate per unit of human capital. One earns more because 
one has accumulated more human capital, but not because one has a differ-
ent type of human capital. But it is not obvious that human capital is homo-
geneous, and thus, it is not obvious that all earnings variations come about 
because amounts and not types of human capital differ from person to per-
son across the population. For example, holding years of school constant, do 
newly graduating engineers earn more than new humanities majors because 
engineers have more human capital, or do new engineers earn more because 
they bought a different type human capital? In other words, is human capi-
tal homogeneous or is it heterogeneous?

A number of papers claim the latter. For example, Polachek (1979, 1981) 
argues in favor of heterogeneity. He devises a matching model in which 
the production function for human capital varies by occupation. Although 
many human capital production function parameters can vary, because of 
his interest in gender occupational segregation he concentrates simply on 
skill depreciation due to non-use of human capital (atrophy) when dropping 
out of the labor force. As such, he assumes Ė = f (Kt)− [δ + (1− Nt)ξ ]Et 
where ξ is an occupation-specific atrophy rate and Nt is the proportion of 
time working in year t.25 Given that compensating market differentials likely 
rewards high-depreciation occupations more generously, the human cap-
ital rental rate (R ) should increase with atrophy, implying R = R(ξ) such 
that R′(ξ) > 0. He shows that those individuals more likely to drop out 

25Atrophy is zero when Nt is 1, but is ξEt when Nt is 0.
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will plausibly choose occupations with low atrophy rates. Based on this, he 
explains a large amount of gender-based occupational differences.26

One aspect of the PDT identification strategy is their approach to meas-
ure R, the population-wide human capital rental rate.27 PDT can do this 
because the human capital model assumes everyone faces a common mar-
ket-wide rental rate R determined solely by aggregate market forces. In con-
trast, the parameters governing the production of human capital vary by 
individual based on each person’s ability. But one can go farther by deter-
mining whether R is indeed constant across the population. Checking this 
hypothesis gets at a direct test of human capital homogeneity. Homogeneity 
implies that each basic human capital unit rents for the common price 
determined in the market. Under homogeneity, this rental rate should be 
the same, independent of any factor, since human capital in all endeavors 
is comparable. However, heterogeneity implies rental rates can differ if the 
market rewards various types of human capital dissimilarly. In short, human 
capital is homogeneous if rental rates remain constant, but is heterogeneous 
if rental rates vary by type of human capital. Obviously, nonmarket consid-
erations such as discrimination, regional variations, or time-varying macro-
economic conditions can tweak the rental rate, since supply and demand 
fluctuations can alter spot market prices.

PDT test for homogeneity. They find very little variation in rental rates 
across industries, across broad occupations, or across schooling levels. Only 
unemployment is negatively correlated with rental rates, which makes sense 
since a weak economy lowers aggregate demand, but they also find slight 
race differences, perhaps getting at discrimination. Preliminary research 
by Andrew Verdon (2018) corroborates this for the UK (using the British 
Household Panel Survey) and Korea (using the Korean Labor and Income 
Panel Study), but finds rental rate differs by industry in Germany (using 
German Socio-Economic Panel) and by occupation in the USA using PSID 
data, though more research on this is needed.

26Heckman, Layne-Farrar, and Todd (1996) also claim heterogeneity in human capital. They do so 
by exploiting three interactions: (1) between school quality and education, (2) between regional labor 
shocks and education, and (3) between place of birth and place of residence.
27Heckman et al. (1998) adopt an alternative identification strategy to determine R. Their approach 
exploits the fact that all observed earnings changes (adjusted for hours) between two time periods 
must be attributed to rental rates changes when in “flat periods” a time when human capital stock (E t) 
remains constant. Typically, flat spots occur late in life, usually around the mid-fifties, an age greater 
than any current respondent in the NLSY. Bowlus and Robinson (2012), who apply the flat spot iden-
tification approach with CPS data, obtain similar results to PDT.
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One limitation of PDT is they perform the analysis only for men. As 
stated earlier, a structural earnings equation for potentially discontinuous 
workers is far more complex and less tractable empirically.

7  Inequality: Comparing the Impact 
of Observables and Unobservables

Schooling and experience are the key to easily observable workhorse vari-
ables used in past human capital studies to explain individual variations 
in earnings. However, PDT show that a person’s previously unobservable 
abilities (b, β, and E 0) and a person’s time preference (r ) and skill depre-
ciation (δ ) are also important in explaining earnings differences. To get at 
the relative contributions of these new individual-specific b, β, E0, r, and 
δ parameters, we compare their importance to the importance of school 
and experience in determining earnings levels and earnings disparities (var-
iance). We do this in three ways. First, we compute elasticities, namely the 
percent impact on earnings of a given percent change in b, β, E0, r, and δ, 
and compare these elasticities to comparably computed school and experi-
ence earnings elasticities.28 Second, we compute the impact of b, β, E0, r, 
and δ on their overall explanatory power (R 2) in determining earnings and 
compare these to the explanatory power of school and experience. Finally 
third, we compute the impact of b, β, E0, r, and δ on a measure of earnings 
distribution (σ 2

y ) and compare these to comparable measures for school and 
experience.

7.1  Earnings Levels

One way to determine the relative importance of schooling and experience 
compared to previously unobserved ability b,β, andE0 is to compute the 
impact of a given percent increase in each set of variables on the percent 
change in earnings that results. Such “elasticities” can be obtained based 
on Appendix Eq. (9) by examining the degree to which earnings rise when 
increasing school and experience by a given percent compared to the per-
cent rise in earnings when one increases b,β, andE0 by the same percent. 
We report results for this exercise in Table 8.

28Another similar approach is to compute the percent impact on earnings of a standard deviation 
increase in each variable.
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More specifically, the table shows that, on average, a 10% rise in b and 
β leads to a 12.7 and 19.7% rise in earnings. A 10% increase in experience 
(t ) yields a 13.8% rise in earnings, but interestingly a 10% increase in years 
of school only augments earnings 2.4%. As expected, higher δ values reflect 
skill deterioration thereby leading to lower earnings. Thus, a 10% rise in δ 
leads to an 8.1% decline in earnings. Also, relatively of small importance 
are E0 and r. The elasticity of earnings with respect to E0 is 0.19 and with 
respect to r is −0.04. In summary, b, β, t, and δ are relatively important, 
whereas schooling, E0, and r are not.

The earnings elasticities with respect to b and schooling are slightly higher 
for whites, whereby the earnings elasticities with respect to β and E0 are 
slightly higher for blacks. Earnings elasticities for Hispanics are lower than 
blacks and whites.

Table 8 presents average elasticities indicating the impact observable and 
previously unobservable attributes have on earnings levels. However, the 
effects can be nonlinear. We use individual-specific parameters based on 
PDT to get at this nonlinearity. We plot these nonlinear elasticities over the 
range of parameter values. Figure 7 contains these relationships.

The elasticity with respect to b increases as the value of b rises. This means 
that an intervention that raises b will increase earnings by a greater percent 
for those already with a high b. In short, the more able will benefit more.

The pattern for β is the opposite. These elasticities decrease with β. This 
means that an intervention that increases β will increase earnings propor-
tionally more for those individuals with lower β.

The earnings elasticities with respect to E0 and schooling have similar pat-
terns to each other. They first rise as the level of E0 and schooling rise, and 
then decline. These similar patterns are expected as both schooling and E0 
represent stocks of human capital. With regard to schooling, the inverted 
U-shape indicates an increasing importance of school up until post-bacca-
laureate education.

Table 8 Earnings elasticities with respect to structural parameters, age, and school 
leaving age (t∗)

Note Computations are based on the earnings function and data given in Polachek 
et al. (2015)

b β E0 δ r t t*

Hispanics 1.00 1.60 0.16 −0.60 −0.03 1.17 0.19
Blacks 1.00 2.06 0.20 −0.86 −0.03 1.42 0.23
Whites 1.33 1.98 0.19 −0.82 −0.04 1.39 0.24
All 1.27 1.97 0.19 −0.81 −0.04 1.38 0.24
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The effect of the skill depreciation rate (δ) and time discount rate (r ) on 
elasticities is somewhat similar. As δ and r rise, the elasticities decline at an 
increasing rate. Only at a very high level of δ, there is a slight upward trend, 
but the magnitude of the elasticities still remains negative.

7.2  Explanatory Power

The relative importance of unobserved ability b,β,E0, and depreciation and 
discount rates δ and r compared to schooling and experience is to compute 
the contribution to R2 of each of these factors while holding the other fac-
tors constant. To do this, we successively run regressions of the form

in which we vary only one of the bi, βi, ri, δi, E0i,, schooling, and t variables 
while holding the others constant at their mean levels. This exercise leads to 
seven regressions (for each age group). The various R2 values are presented in 
Table 9.

First, the explanatory power of each of the attributes is fairly stable across 
each age group. Second, the parameter β has the highest explanatory power. 

ln y = α0 + α1b+ α2β + α3E0 + α4r + α5δ + α6S + α7t + ǫ

Fig. 7 Earnings elasticities with respect to personal attributes (Notes Graphs repre-
sent predicted elasticities obtained from cubic regressions. Source PDT [2015]; our 
computations)
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Third, the explanatory power of the b and β abilities to learn and the human 
capital depreciation rate are substantially higher than the explanatory power 
of E0 and schooling. Fourth, time preference plays almost a negligible role 
in explaining the earnings variance. And, fifth, in absolute terms, schooling 
and E0 have very little explanatory power.

Noteworthy is the observed weak explanatory power of schooling. In a 
sense, this is paradoxical, especially since most past studies argue that school 
is the most important determinant of earnings. Yet we find schooling to play 
a more minor role compared to b, β, and δ. These three parameters alone 
respectively reflect the highest relative strength in explaining earnings vari-
ation. Thus, the results imply that ability is more important in determining 
earnings than school level per se. Not only does one’s ability dictate one’s 
schooling level, but also a higher ability enables one to produce more human 
capital while in school. Further, skill depreciation (δ ) which indicates the 
degree one retains knowledge also contributes greatly. Thus, the ability to 

Table 9 Explaining earnings variance, ability, time preference, age, and school  
leaving age

Note R2 is computed as the ratio of variance of the predicted earnings based on each 
factor to the variance of the actual earnings. Predicted earnings for each factor are 
calculated by allowing that factor to vary, while holding all other factors constant
Source Computed based on the data and earnings function from Polachek et al. (2015)

Age group b β E0 δ r t t*

20–24
Obs 8408 8408 8408 8408 8408 8408 8408
R2 0.148 0.288 0.018 0.167 0.003 0.002 0.002
25–29
Obs 10,728 10,728 10,728 10,728 10,728 10,728 10,728
R2 0.155 0.282 0.018 0.160 0.003 0.001 0.003
30–34
Obs 8640 8640 8640 8640 8640 8640 8640
R2 0.157 0.281 0.019 0.162 0.003 0.001 0.004
35–39
Obs 5465 5465 5465 5465 5465 5465 5465
R2 0.155 0.282 0.018 0.158 0.003 0.001 0.004
40–44
Obs 4879 4879 4879 4879 4879 4879 4879
R2 0.161 0.280 0.019 0.160 0.003 0.001 0.004
45–49
Obs 3853 3853 3853 3853 3853 3853 3853
R2 0.155 0.288 0.019 0.152 0.003 0.001 0.004
50–54
Obs 897 897 897 897 897 897 897
R2 0.218 0.299 0.023 0.156 0.003 0.000 0.005
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learn and retain knowledge seems to be the important determinants of earn-
ings. In a sense, this finding is consistent with work to be discussed shortly 
on how past studies overestimate schooling rates of return by inappropriately 
accounting for ability.

Another way to look at this is to examine the contribution to R2 in a typ-
ical Mincer earnings function (our Eq. (2)). Table 10 reports adjusted R2 
measures for various specifications of the earnings function. AFQT increases 
the adjusted R2 by only 0.04 over schooling and experience in a linear fit, 
whereas b, β, and E0 increase adjusted R2 by 0.19. Incorporating AFQT 
adds virtually nothing (0.01) when including PDT’s other three ability 
measures b, β, and E0. Adding schooling (Column 2) raises the explanatory 
power only when ability is not included. AFQT essentially does nothing 
when b, β, r, δ, and E0 are already in the regression. Thus, the five human 
capital parameters jointly explain earnings more than schooling and tradi-
tionally measured ability (AFQT).

Bowles et al. (2001) examine the role of ability by estimating the rate 
of return to schooling before and after adjusting for cognitive test scores. 
Essentially, they compare the schooling coefficient for the “years-in-school” var-
iable in our Eq. (2) with the schooling coefficient in an equation when a cogni-
tive test score is introduced as an independent variable (neglecting endogeneity 
issues). They find cognitive ability reduces the schooling coefficient by 18% on 
average and thus conclude “a substantial portion of the returns to schooling 
are generated by effects or correlates of schooling substantially unrelated to the 
cognitive capacities measured on the available tests.” Our replication using the 

Table 10 Linear and log-linear earnings regressions

Note Data obtained from NLSY79 and PDT (2015)
Source NLSY79; Polachek et al. (2015)

Without school  
in regression

With school in regression

Adjusted R2 Adjusted R2 Coefficient 
(Sch)

Dependent variable: y
exp, exp2 0.100 0.268 65.95
exp, exp2, AFQT 0.219 0.287 51.37
exp, exp2, b,β, δ,E0, r 0.460 0.500 35.08
exp, exp2, b,β, δ,E0, r, AFQT 0.469 0.499 35.13
Dependent variable: log(y )
exp, exp2 0.14 0.292 0.134
exp, exp2, AFQT 0.274 0.324 0.093
exp, exp2, b,β, δ,E0, r 0.566 0.596 0.065
exp, exp2, b,β, δ,E0, r, AFQT 0.577 0.597 0.061
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AFQT test for individuals in the 1979 NLS-Y yields 31%.29 Replicating this 
using our five ability parameters yields a reduction of 51%.30 Further, adding 
AFQT has only minimal effect. Thus, we conclude ability matters, but usual 
ability measures obtained via typical psychometric tests, such as the AFQT, do 
not get at all facets of ability, particularly they do not get at the type of abilities 
that matter with respect to real-world accomplishments.

7.3  Variance Decomposition

Our third approach is to decompose the earnings variance into that part 
attributable to observable schooling and experience, and that part attribut-
able to b, β, r, δ, and E0. Chiswick and Mincer (1972) devise a framework 
to identify sources of earnings inequality. Their approach concentrates on 
schooling and work experience which they find explain a substantial portion 
of the earnings inequality. However, they cannot evaluate the role differences 
in individual abilities, time discount, and skill depreciation rates (bi, βi, ri, 
δi, and E0i) play because they do not estimate individual-specific parameters. 
However, based on PDT’s individual-specific estimates and the structure of 
the human capital framework, we can assess the relative importance of these 
parameters. We examine the sensitivity of earnings variance to changes in 
the variation in these factors.

To answer this question, we conduct a variance decomposition exercise. 
Unlike in Chiswick and Mincer (1972), the earnings function we use is the 
nonlinear function given in PDT. The complex nonlinearity makes vari-
ance decomposition difficult. To circumvent this difficulty, we first linearize 
it with a first-order Taylor series expansion and then conduct the variance 
decomposition on the linearized version:

where ba,βa,E0a, δa, ra, ta, t
∗
a are the average of b,β,E0, δ, r, t, t

∗, f a(.)s  
are the corresponding partial derivatives of the earnings function with 

f (b,β,E0, δ, r) ≈ f
(
ba,βa,E0a, δa, ra, t, t

∗
)
+ f

a

b
(.)(b− ba)

+ f
a

β (.)(β − βa)+ f
a

E0
(.)(E0 − E0a)+ f

a

δ (.)(δ − δa)

+ f
a

r
(.)(r − ra)+ f

a

t
(.)(t − ta)+ f

a

t∗
(.)
(
t
∗ − t

∗
a

)

30Computed as 1-(0.065/0.134) from row (3) of column (3) in the lower panel of  Table 10.

29Computed as 1-(0.093/0.134) from row (2) of column (3) in the lower panel of  Table 10.
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respect to each of the factors respectively and evaluated at the mean values of 
b,β,E0, δ, r, t, t

∗. Collecting terms and adding an error ǫ yield

Assuming b,β,E0, δ, r, t, t
∗ are uncorrelated with ǫ, the variance of Y (i.e., 

σ 2
Y) in terms of the right-hand-side variables is

where m, l = b,β,E0, δ, r, t, t
∗, σm are the standard deviations, and Rml are 

the pairwise correlation coefficients between m and l. Table 11 presents the 
values of each component of σ 2

Y.
Expression (7) enables one to assess the effect of a change in the standard 

deviation of a right-hand-side variable on the variance of earnings. Taking 
partial derivatives with respect to each of the factors yields the following:

Multiplying both sides of (8) by (σm/σ 2
Y ) gives the elasticity of σ 2

Y with 
respect to σm. These elasticities for each of the factors are in Table 12.

The results suggest that for every 10% decline in standard deviation of 
b, the variance of earnings declines by 2.1%. The effect of a change in the 
standard deviation of β on the variance of earnings is slightly larger. The 

Y ≈ A+ f ab (.)b+ f aβ (.)β+ f aE0(.)E0+ f aδ (.)δ+ f ar (.)r+ f at (.)t+ f at∗(.)
(
t∗
)
+ǫ.

(7)

σ 2
Y =

∑

m

f 2m(.)σ
2
m +

∑

m �=l

fm(.)fl(.)Cov(m, l)+ σ 2
ǫ

=
∑

m

f 2m(.)σ
2
m +

∑

m �=l

fm(.)fl(.)σmσlRml + σ 2
ǫ

(8)∂σ 2
Y

∂σm
= 2f 2m(.)σm + 2fm(.)

∑
m �=l fl(.)σlRml

Table 11 Components of σ 2
Y

Note Computations based on the data and earnings function given in Polachek et al. 
(2015)
Source Polachek et al. (2015); our computations

Correlation coefficients

f
a
(.) SD(σ ) b β E0 δ r t t*

b 948.8 0.103 1 0.011 −0.152 −0.024 −0.247 0.025 0.217
β 735.2 0.172 0.011 1 0.363 0.475 0.047 0.016 0.145
E0 14.7 3.040 −0.152 0.363 1 0.474 0.409 0.016 −0.041
δ −6824.5 0.015 −0.024 0.475 0.474 1 0.134 −0.034 −0.169
r −307.3 0.040 −0.247 0.047 0.409 0.134 1 0.005 −0.145
t 5.8 8.458 0.025 0.016 0.016 −0.034 0.005 1 0.131
t∗ 6.7 2.208 0.217 0.145 −0.041 −0.169 −0.145 0.131 1
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elasticities with respect to the standard deviation of other parameters, t, and 
t* are relatively small. This result again implies that one’s ability to create 
new human capital from old is the most important factor determining earn-
ings distribution. In short, ability matters.

8  Endogeneity Issues: Causal Effect 
Estimation

Over the past few decades, researchers have identified a number of fac-
tors and estimated their impact on earnings and the earnings distribution.  
A large number of identification strategies were proposed to establish causal 
effects. The basic idea underlying these methods is to generate exogenous 
variation in the explanatory variables so that the causal impacts are identified 
without other potential confounding factors. Earlier studies on this topic 
assume that independent variables are exogenous and apply OLS. However, 
as the potential biases originating from omission of relevant variables and 
non-representative sample selection were recognized, researchers adopted 
a variety of alternative identification strategies. These include instrumental 
variables, twin comparisons, and natural or quasi-natural experiments.

The most widely studied topic is the effect of years of schooling on earn-
ings. A large number of papers appeared since the early 1990s that apply the 
instrumental variable method to estimate the return to schooling (Angrist 
and Krueger 1991; Ashenfelter and Krueger 1994; Ashenfelter and Rouse 
1998; Kane and Rouse 1995; Card 1995, 1999; Harmon and Walker 1995; 
Staiger and Stock 1997; Conneely and Uusitalo 1997; Ichino and Winter-
Ebmer 2004; Lemieux and Card 1998; Meghir and Palme 1999; Maluccio 
1997; Duflo 2001). The estimates from these studies vary widely, ranging 
from 3.6 to 94.7% (Card 2001).

Despite the volume of the previous work, the validity of many of the IVs 
used so far remains unclear. Specifically, the exclusion restriction condition 
imposed on these IVs became the main point of concern. For instance, Card 
(1995) uses geographic proximity to college as an instrument in an earnings 

Table 12 Earnings variance elasticities (σ 2
Y
)

Note Coefficients are the percent impact on the variance of earnings of an increase in 
the variance of the indicated parameters
Source Polachek et al. (2015); our computations

b β E0 δ r t t*

0.21 0.26 0.02 0.07 0.01 0.06 0.02



56     T. Das and S. W. Polachek

regression. Presumably being near a college reduces the cost of attend-
ance, for example, by allowing students to live at home. Thus living nearby 
increases college attendance but by itself is not correlated with other unob-
served factors influencing earnings. However, this assertion received a mixed 
reaction. Carneiro and Heckman (2002) show that distance to college in the 
NLSY79 is correlated with ability thereby violating the exclusion restriction. 
Slichter (2015) also concludes that geographic propinquity to college is an 
invalid instrument and likely results in an overestimate of the returns to col-
lege education. On the other hand, Kitagawa (2015) finds no evidence of its 
invalidity as an instrument when also adjusting for race, region, job experi-
ence, parental education, and whether one lives in an urban area.

Another well-cited instrument is the quarter of birth used by Angrist and 
Krueger (1991). Students born at the beginning of the academic year are 
older. A good number of these leave school upon reaching the minimum 
compulsory dropout age, thus having one less year of school than their 
counterparts born slightly later. In essence, they use an estimate of the earn-
ings impact of this extra year of school as an unbiased estimate of the return 
under the assumption birth quarter is random. Despite its appeal, Bound 
and Jaeger (1996) criticize this approach. They present a number of stud-
ies that show that quarter of birth may be an invalid instrument because 
it is correlated with other determinants of earnings. These include studies 
showing quarter of birth to be correlated with mental illness, retardation, 
personality, and family income. Further, a placebo test using data predating 
the compulsory school laws yields the same result that birth quarter affects 
earnings.

Another substantive concern with IV-based estimation is the use of weak 
instruments (Staiger and Stock 1997; Kleibergen 2002; Moreira 2003). For 
instance, Angrist and Krueger (1991) use a number of weak instruments as 
many of their first-stage F-statistics are less than 5 (Staiger and Stock 1997). 
Bound et al. (1995) argue that the use of a large number of weak instru-
ments makes the IV estimates move closer to OLS. Using the same data as 
in Angrist and Krueger (1991), Bound et al. (1995) replace the quarter of 
birth IV by irrelevant random numbers and estimate 6% returns to school-
ing with an estimated standard error of ±1.5% (see Imbens and Rosenbaum 
2005).

Due to these limitations, an alternative literature emerged that uses a par-
tial identification strategy. The attractive feature of this approach is that it 
relies on weaker yet more credible assumptions than the ones necessary for 
standard IV-based regressions. However, the approach leads to a bounded 
estimate of the causal effect rather than a point estimate. Manski and Pepper 
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(2000, 2009) develop a framework used by many to bound estimates of the 
return to education (Manski and Pepper 2000; Okumura and Usui 2014; 
Mariotti and Meinecke 2015). For instance, when employing a monotone 
instrumental variable method, they find that the lowest upper bound of the 
return to schooling is 15.9% for 13–14 years of education and 16.5% for 
15–16 years of education.

The partial identification literature also addresses concerns with invalid 
instruments. For instance, Flores and Flores-Lagunes (2013) derive nonpara-
metric bounds for the local average treatment effect (LATE) without impos-
ing the exclusion restriction assumption. Slichter (2015) bounds estimates 
of the returns to college using Card’s (1995) data. His lower bound is based 
on the returns of those individuals whose college attendance is unaffected by 
living close four-year colleges (always takers). His upper bound is computed 
based on those individuals whose college attendance depends on distance 
(compliers). Slichter’s bounded estimates are between 6.9 and 18.9%.

A significant body of research also examined the impact of school qual-
ity on earnings. Card and Krueger (1992) find that higher school quality 
measured by a lower student–teacher ratio, a longer average term length, 
and higher teacher pay yield significantly larger returns to schooling for 
people born between 1920 and 1949. However, in a later paper, Heckman 
et al. (1996) find that the relationship between school quality and earnings 
is weak and sensitive to the specification used. Thus, results regarding the 
impact of school quality are not robust and also are prone to specification 
biases.

The partial identification bounds estimation approach is also imple-
mented for policy evaluation. For instance, Flores and Flores-Lagunes 
(2013) and Blanco et al. (2013) estimate bounds for the effect of GED, high 
school vocational degree, and Job Corps program on earnings. Lee (2009) 
examines the effect of the Job Corps program on earnings in the presence of 
sample selection. All these findings suggest that these programs raise earn-
ings for those who participated. Flores and Flores-Lagunes (2013) get a 
schooling rate of return upper bound of 28% for Job Corps participants.

Partial identification and bounded estimates are nevertheless fallible. They 
are primarily used to identify causal effects, but can get erroneous parameter 
estimates if the underlying model is nonlinear. In the human capital model, 
schooling is nonlinearly related to earnings. A linearized version necessarily 
omits higher-order schooling terms which are no doubt contained in the 
error. This linearization is a classic misspecification. As a result, even other-
wise valid IVs of schooling yield biased and inconsistent estimates.
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9  Early Childhood Development

Our work finds ability to be an important, if not the most important, deter-
minant of earnings. If ability is innate and cannot be changed, then altering 
the earnings distribution would be impossible. On the other hand, if one 
can find an intervention to alter ability, then the earnings distribution can 
be transformed perhaps making it more equal. As Heckman (2008) indi-
cates, one such intervention is investment in early childhood development, 
and as Tracey and Polachek (2018) show, this result holds even for extremely 
young children within their first year of life. Cognitive developmental skills, 
in turn, could boost future earnings. For example, Boissiere et al. (1985), 
Murnane et al. (1995), Cawley et al. (2001) have demonstrated a positive 
relationship between cognitive abilities and earnings. Research also shows 
that a substantial portion of earnings inequality is explained by cognitive 
abilities (Blau and Kahn 2005).

Studies that focus on non-cognitive abilities also arrive at the same con-
clusion. Goldsmith et al. (1997) show that self-esteem and locus of control 
positively influence wages. Kuhn and Weinberger (2004) show that leader-
ship skills positively influence earnings. Muller and Plug (2006) show that 
the big-five (agreeableness, conscientiousness, extraversion, openness, neu-
roticism) personality traits influence earnings, with agreeableness having the 
strongest effect. Finally, Muller and Plug’s (2006) paper also finds non-cog-
nitive abilities are as important as cognitive abilities in determining earnings.

Because cognitive and non-cognitive abilities influence the level and dis-
tribution of earnings, these type of abilities are important for policy con-
sideration. Some studies argue schooling enhances cognitive skills (Hansen 
et al. 2004), but a number of other studies emphasize the role of the family. 
For example, in an early and controversial study, Coleman and his colleagues 
(1966) highlighted the importance of social capital, namely attributes inher-
ent in the community and family that are useful to the social development 
of children. Improving resources in the home might be one such initiative. 
Of course, the other extreme is Herrnstein and Murray (1994) who imply 
few, if any, interventional benefits.

Recent research links early childhood interventions to boost cognitive- 
and non-cognitive-type skills. Bowles and Gintis (2002) argue skills can be 
transferred from previous generations to the next, making the new genera-
tion more valuable in the labor market. Based on a randomized experimental 
setting, Heckman et al. (2006) and Cunha and Heckman (2010) show that 
family-level intervention during childhood leads to significant improvement 
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in non-cognitive abilities. A number of other studies (Fletcher and Wolf 
2016; Anger and Schnitzlein 2017) also find that family plays an important 
role in shaping one’s cognitive and non-cognitive skills.

Two important issues should be considered to evaluate potential interven-
tions. First is to define the underlying mechanism how family and other fac-
tors influence abilities. Second is to assess their economic viability, namely 
whether the benefits outweigh the associated costs. A number of recent stud-
ies address both aspects. Regarding the first, Cunha and Heckman (2007) 
and Cunha et al. (2010) offer a dynamic structure of skill formation to 
demonstrate the mechanism through which family and other factors influ-
ence children’s cognitive and non-cognitive skills. Using Project STAR data 
on 11,571 kindergarten to third-grade students in Tennessee, Chetty et al. 
(2011) find small classes increase the likelihood of college attendance many 
years later. Also, high-scoring classmates lead to higher future earnings, as 
do more experienced teachers. Further, gains in non-cognitive compared to 
cognitive skills last longer. Chetty, Friedman, and Rockoff (2014) find that 
teacher inputs matter. Employing 1989–2009 data on students and teach-
ers in grades 3–8 from a large urban school district, they find the students 
assigned to a high “value-added” teacher are more likely to attend col-
lege, to achieve a higher salary, and less likely to have out of wedlock chil-
dren. Regarding the second issue, Heckman et al. (2006) and Cunha and 
Heckman (2010) show that every dollar spent on such childhood inter-
ventions yields a 5.7 dollar increase in observed earnings and a projected  
8.7 dollar increase in lifetime earnings. These findings reemphasize that 
appropriate family-level interventions not only enhance abilities and raise 
earnings, but do so in an economically viable way.

10  Conclusion

Earnings are not uniform across the population. They vary by age, gender, 
race, and other individual and market characteristics. Many theories evolved 
to explain earnings. However, in our opinion, the life-cycle human capital 
approach does best in accounting for the preponderance of these variations. 
This paper begins by exploring how human capital can explain demographic 
differences in earnings. In the human capital model, earnings are related to 
the net stock of human capital an individual accumulates over his or her life-
time. At young ages, when one just enters the labor market and accumulates 
little human capital, wages are relatively low. At that point, men and women 
earn comparable wages, but not blacks and whites, most likely because of 
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school quality differences. Over the life-cycle earnings rise at a diminishing 
rate, with men’s earnings growing more quickly than women’s, most likely 
because of expected differences in lifetime work patterns.

Theory yields a complex nonlinear specification of the earnings function. 
In the past, this function was too complicated for most researchers to esti-
mate, and still is for intermittent workers. However, the structural model’s 
beauty is its parameterization of previously unmeasured human attributes, 
specifically three ability measures (two constituting the ability to learn and 
one constituting the ability to earn), a skill depreciation rate, and a rate of 
time preference. Unlike IQ and achievement test scores, which have been 
criticized because they merely assess potential academic accomplishments, 
these parameters reflect the ability to achieve real-world economic suc-
cess. Because this structural model directly yields parameters defining rates 
of time preference, it thereby eliminates the need to perform experimental 
studies that rely on hypothetical rather than a real-world situation. However, 
given this model’s complex nature, the lack of long enough panel data, algo-
rithmic inefficiencies, and slow computers, virtually all earnings functions 
emanating from this model have only been estimated population-wide in 
the aggregate, thus precluding individual-specific values. Nowadays, with 
new computational technologies and long enough panel data, such func-
tions have finally been estimated person by person.

Our paper makes use of these estimates which vary significantly across the 
population. A few interesting results emerge when we compare these ability 
measures with standard IQ values. Whereas these ability measures correlate 
with IQ-type scores, the correlation between the two is not perfect. Also, 
the variance of these ability measures is much smaller than the variance in 
standardized tests. Most of all, racial differences are not as wide. Further, the 
ability to learn measures are positively related to years of schooling, but the 
ability to earn is not. Finally, we assess the importance of these new ability 
measures in explaining earnings variation.

Past analyses estimate a log-linear simplification. This specification, 
known as the Mincer earnings function, became the workhorse in empir-
ical analysis of earnings determination. Estimated population-wide, and 
not individual-by-individual, this line of research emphasized schooling 
as a main determinant of earnings. As a result, numerous studies con-
centrate on education as a causal impetus. Although these studies show a 
positive relationship between schooling and earnings, the magnitudes of 
the estimates differ significantly. Initial OLS analyses yield rates of return 
that typically range between 5 and 15%, but these estimates are often 
criticized because schooling is not exogenous, in part because of latent 
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factors such as unobserved ability. Newer studies rely on instrumental 
variable techniques to alleviate these biases. However, as Card (2001) 
reports, the estimates obtained from instrumental variable methods range 
from 3.6 to 94%.

Such a staggeringly wide range of estimates is not helpful for policymakers. 
Even if one recognizes that studies examining schooling and earnings use data-
sets from different countries, years and age cohorts, and rely on different instru-
mental variables, it is unlikely that the differences in data alone explain such 
a large variation in the estimates. Rather, it is plausible that the instrumental 
variables chosen for the estimation may not be fully valid. Many studies show 
that the IVs used to identify returns to schooling often violate the exclusion 
restriction, the relevance condition, or both. Of course, the various violations 
of the assorted IVs can lead to diverse estimates. To unravel these discrepancies, 
one must understand the underlying structural mechanisms by which the exog-
enous variations influence the human capital investment process.

Human capital theory postulates that earnings power is determined by 
accumulated human capital. Schooling emerges as an optimal outcome 
determined by the relative marginal cost and benefits. The IV-based studies 
typically identify exogenous variation that influences this decision. But it is 
perfectly possible that the IVs used, intended solely to measure variation in 
school, actually influence other aspects of the investment process, as well. 
The following example illustrates this point. Consider two interventions that 
cause exogenous variations in years of school: (a) tax credit financial sup-
port for education and (b) skill enhancements such as the Perry Preschool 
Project or Job Corps interventions leading to more education. Each of these 
interventions can independently serve as an instrument for years of school. 
Tax credits lower the cost of school attendance, whereas improvements in 
skill lower the cost of learning leading to more investment in human capi-
tal. From a statistical point of view, both would be valid instruments if the 
interventions are exogenous. As such, they should be able to identify and 
consistently estimate the causal impact (LATE) of schooling on earnings. 
However, these interventions can have other implications for investments in 
human capital. A tax credit helps lower the cost of enrollment and hence 
only increases the amount of school one obtains for some individuals, and 
nothing else. On the other hand, an improvement in skills lowers learning 
costs, thereby increasing years of school, but may also affect post-school 
investment via the job one gets. In short, the latter instrument may affect a 
different set of individuals and generate different effects.

Instrumental variables may also generate erroneous estimates for another 
reason. The human capital model yields a nonlinear earnings–schooling 
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relationship. Instrumenting the schooling variable in a linear earnings func-
tion framework necessarily omits higher-order schooling terms. This omission 
is a classic misspecification that results in biased and inconsistent estimates. 
In such a framework, it is impossible to generate a consistent estimate of the 
returns to schooling even with an instrument that is uncorrelated with other 
omitted determinants of earnings. It is therefore not possible to fully assess 
the impact of schooling on earnings without considering the formal structure.

There are efforts (partial identification) to address the potential invalidity 
of IVs. But most of these efforts make modifications and refinements either 
based on a given linear functional form or based on nonparametric meth-
ods. However, the underlying structural mechanisms still are missing from 
these analyses. Arguably, these new methodological developments can pro-
vide some sense of the estimates by bounding them. But in the absence of an 
explicit theoretical structure, one cannot be sure the assumptions for bounds 
(e.g., monotonicity) are necessarily valid.

Another structural aspect that is largely ignored in current empirical work 
is interpersonal heterogeneity. Heterogeneity essentially means that the func-
tional relationship between the schooling and earnings varies person by per-
son. Estimation without recognizing these structural differences can lead to 
incomplete and in some cases misleading results. As our preliminary findings 
show, the results based on the structure and heterogeneity adjusted frame-
work substantially differ from the existing method that does not rely on 
explicit structures. Contrary to many existing studies, our tentative findings 
suggest that formal years of schooling plays only a limited role in explaining 
earnings. In contrast, ability is far more influential in explaining earnings 
variations. Specifically, one’s ability to learn and ability to retain knowl-
edge play the most important roles. This, however, by no means  suggests 
that formal schooling is unimportant. It rather suggests that what is actu-
ally learned in school depends on these abilities, so that learning is heter-
ogeneous. Schools may implement ability-enhancing measures which play 
a role in improving learning outcomes, but merely going to school is not 
sufficient to learn marketable skills. Indeed, Henderson et al. (2011) find a 
significant number of individuals with a negative return to schooling. Thus, 
measures that improve these abilities would be a natural policy intervention 
to increase earnings and lower earnings disparity.
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Appendix 1

Optimally producing human capital to maximize lifetime earnings entails 
equating the marginal costs and marginal benefits of human capital creation 
in each year of one’s life. This process yields a nonlinear (in the parameters) 
earnings function (Polachek et al. 2015)

where W = βR1−b, E =
E0

β

(
1

1−b

) , t* is the age at which the individual gradu-

ates from school, N is the anticipated retirement age which PDT take to be 
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1  Introduction

A production unit, organization, firm, industry, or economy performs well 
if it produces much output per unit of input, in other words, when the 
output/input ratio is high. The main performance measure is productivity. 
There are subtle connections between performance, productivity, efficiency, 
and profitability. Analysis of their interrelations will take us through many 
issues and concepts of measurement and will connect different bodies of lit-
erature, namely in economics and operations research.

The measurement of performance using an output/input ratio presumes 
that output components and input components can each be aggregated. 
This is particularly true for inputs. Production requires multiple inputs, typ-
ically labor and capital services. On the output side, the aggregation issue 
is often circumvented. One way is to break down production in micro- 
activities, one for each type of output. This approach moves the  aggregation 
issue away from commodities toward the micro-performance measures 
(Blackorby and Russell 1999). An obvious alternative way to circumvent 
output aggregation is to assume that there is a single performance criterion, 
such as profit, but this approach raises the question if profit is a better meas-
ure of performance than, say, real profit (profit divided by a price index). A 
windfall profit due to a price shock, without any change in the input-output 
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structure of production, does not reflect an improvement in management 
performance. In other words, we better disentangle profit in a real perfor-
mance component and a nominal price effect. This issue is related to the 
design of bonus schedules for managers, where profit is shown to be a good 
proxy for effort only if the distribution of the windfall component fulfills a 
certain property (the likelihood ratio monotonicity of Milgrom 1981).

Throughout this chapter, I assume constant returns to scale, unless explic-
itly stated otherwise. With increasing complexity, I will discuss, first, single 
input-single output production; second, multiple input-single output pro-
duction; third, single input-multiple output production; and, fourth, mul-
tiple input-multiple output production. The simplest of these cases, single 
input-single output production, suffices to discuss the relationship between 
performance, productivity, efficiency, and profitability.

Consider a single input-single output industry with two firms, a duopoly. 
Denote the input quantities by x and the output quantities by y. Use super-
scripts to indicate to which firm a symbol pertains: firm 1 or firm 2. Let the 
first firm be the more productive than the second: y1/x1 > y2/x2. (This is an 
innocent assumption, because we are free to relabel the firms.) Then firm 1 
can produce no more than it produces, at least under the assumptions that the 
data represent all conceivable practices of production and that the firm’s input 
is fixed. Firm 2, however, could perform better by adopting the production 
technique of firm 1. That way it would produce y1/x1 units per unit of input 
and since it commands x2 inputs, its potential output is (y1/x 1) x2. By the pre-
sumed productivity inequality, this exceeds the actually produced quantity, y2.

In our discussion, we must distinguish observed market prices and com-
petitive shadow prices. Market prices are observed and may vary. Some firms 
negotiate tighter labor conditions than others, and some firms may have 
shrewder salesmen, extracting higher prices. Someone who “could sell sand 
to the Arabs” exercises market power but is not productive; the market price 
exceeds the production price. Production prices are shadow prices which in 
turn are associated with the constraints of a program that determines the 
optimum allocation of resources. Later on, optimality will be linked to the 
consumer’s preferences, but in the introductory Mickey Mouse duopoly, it 
reduces to the maximization of output subject to an input constraint. The 
maximization program can be applied to a firm (1 or 2) and to the industry 
(the duopoly), to determine firm and industry efficiencies. The simplest pro-
gram features constant returns to scale and is applied to a firm, say firm 1:

(1)max
θ1,θ2,c≥0

y1c : x1θ1 + x2θ2 ≤ x1, y1θ1 + y2θ2 ≥ y1c.
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In program (1), firm 1 runs activities 1 (input x1, output y 1) and 2 (input x2, 
output y 2) with intensities θ1 and θ2, respectively, and c is the expansion fac-
tor for output. The first constraint binds the required input by the available 
input. Denote the Lagrange multiplier or shadow price of this constraint by 
w (the labor wage). The second constraint binds the expanded output by the 
sum of the activity outputs. Denote the Lagrange multiplier or shadow price 
of this constraint by p (the product price). The shadow prices are relevant for 
performance measurement and are the variables of the dual program associ-
ated with the primal program, (1) in this case.

The dual program minimizes the value of the bounds subject to 
the dual constraint. The bounds are x1 and 0, so the objective of 
the dual program is wx1 or, equivalently, w. The dual constraint is 

(w p)

(
x1

−y1
x2

−y2
0

y1

)
≥ ( 0 0 y1 ), featuring the row vector of shadow 

prices, the matrix of coefficient rows, and the objective coefficients. The 
first two components of the dual constraint, wx1 ≥ py1 and wx2 ≥ py2, state 
that the prices render the two activities unprofitable. Rewriting, w/p ≥ y1/x1 
and w/p ≥ y2/x2. By assumption that the first firm is more productive and 
because w is minimized, the first dual constraint is binding, w/p = y1/x1. In 
other words, the real wage rate equals the highest productivity and, therefore, 
this activity would break even.

There is an interesting connection between shadow prices and competitive 
markets. Without loss of generality, program (1) has been set up (by inclu-
sion of coefficient y1 in the objective function) such that the third compo-
nent of the dual constraint, py1 = y1, normalizes the price system (w p ) such 
that p = 1. Hence w = y1/x1. The second, less productive, activity would be 
unprofitable under these prices. In other words, if shadow prices prevail and 
entrepreneurs are profit maximizers, they would select the optimal activity to 
produce output. The solutions to the profit maximization problems are not 
unique, but there exists a combination of solutions which is consistent with 
equilibrium; see ten Raa and Mohnen (2002).

In the primal program (1), the less productive activity is suppressed by 
setting θ2 = 0 and, therefore, θ1 ≤ 1 and the maximum value is c = 1. Firm 1 
cannot expand its output. Next consider firm 2. In program (1), in the right 
sides of the constraints, superscripts 1 are replaced by 2. The first two dual 
constraints, wx1 ≥ py1 and wx2 ≥ py2, remain the same, as does the conclu-
sion that the first activity would be adopted to produce output. The max-
imum expansion factor equals the ratio of the highest productivity to the 
actual productivity, c = (y1/x 1)/(y2/x 2). For example, if this number is 1.25, 
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potential output of firm 2 exceeds actual output by 25%. Conversely, actual 
output is only 80% of potential output. Firm 1, however, produces 100% 
of its potential output. The efficiency of firm 1 is 100% and the efficiency 
of firm 2 is 80%. Here efficiency is defined as the inverse expansion factor,  
(y2/x 2)/(y1/x 1) for firm 2 and (y1/x 1)/(y1/x 1) = 1 for firm 1. Efficiency is 
the performance measure. Efficiency is equal to the ratio of actual to optimal 
productivity. In the single input-single output case with constant returns 
to scale, introduced in this section, efficiency must be technical efficiency. 
However, in more general settings, the inverse expansion factor of efficiency 
will also encompass allocative efficiency, as we will see in Sects. 2 and 4.

2  Multiple Input-Single Output Production

In the bulk of the economic literature, including macro-economics, there are 
multiple inputs, such as labor and capital, but a single output. The inputs, x1 
for firm 1 and x2 for firm 2, turn vectors and the input price will be repre-
sented by row vector w. The previous set-up is maintained and the extension 
to more than two firms is straightforward. However, because of the multiplic-
ity of inputs, several activities may now be activated when a firm maximizes 
output given its input vector, x. The potential output given an input vector is 
a scalar, the value of a function, y = F(x ). This is the reduced form of program  
(1) with y equal to scalar y1c and x equal to vector x1. Mind that potential 
output y is the product of actual output and the expansion factor. F is called 
the production function. To define productivity as an output/input ratio, we 
must aggregate the input components, if only because division by a vector is 
impossible. The way to do this is intuitive, making use of a well-known prop-
erty of Lagrange multipliers, namely that they measure the gain in output per 
unit of input. The rate of potential output with respect to input k is given by 
wk, the shadow price of the kth component of the constraint 

∑
i x

iθi ≤ x.  
The productivity of input k is shadow price wk. This is output per unit of 
input. Now the problem is that a unit of input is arbitrary. For example, 
sugar can be measured in kilograms or in metric pounds. Using the latter, a 
unit has half the size of the former, the number of units is doubled, and the 
shadow price is halved. We must aggregate across inputs in a way that is not 
sensitive with respect to the units of measurement. The way to do this is to 
first aggregate productivity over the units of the same input, k. The contri-
bution to output of input k is wkxk and in this product, the two effects of 
taking metric pounds instead of kilograms cancel. Summing over inputs k, 
the value of the dual program is obtained. However, by the main theorem 
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of linear programming, the value of the dual program is equal to the value 
of the primal program, potential output y. The aggregate output/input ratio, 
y/

∑
i wx

i, is thus unity. The reason for this peculiar limitation is that output 
and input are different commodities; there is no common denominator. This 
is the economic problem of value and the classical solution is to express out-
put in terms of resource contents, like labor values. Then, indeed, the output/
input ratio is bound to be one.

Yet this framework is useful, because productivity levels are determined 
relative to a base economy, a base year. We do observe changes in the out-
put/input ratio over time. For example, if the productive firm in Sect. 1, 
firm 1, increases output in the next period, then w = y1/x1 remains valid, 
hence productivity w increases. This argument is extendable to the multi-in-
put case. Dropping firm indices, productivity growth of input k is ẇk, where 
the dot stands for the derivative with respect to time. This, again, is sensi-
tive with respect to the unit of measurement. However, aggregating across 
inputs, weighing by the units of inputs, 

∑
k ẇkxk, the sensitivity gets lost, 

because ẇkxk =
ẇk

wk
wkxk, in which the ratio is a growth rate while the sub-

sequent product was already seen to be insensitive with respect to the unit 
of measurement. It is also customary to express the change in the output/
input ratio as a growth rate, by dividing by the level, 

∑
k wkxk. In short, the  

output/input ratio grows at the rate

Expression (2) is called total factor productivity growth. TFP is the most 
prominent performance measure. The expression can be rewritten as a 
weighted average of the factor productivity growth rates, ẇk/wk, with 
weights wkxk/

∑
wkxk. These weights sum to one.

This direct approach from Lagrange multiplier-based input productivi-
ties to total factor productivity growth can be related to the Solow resid-
ual approach. Recall that the values of the primal and dual programs 
match, py = wx, where the right-hand side is the product of row vector w 
and column vector x, and that we normalized p = 1. Differentiating totally, 
·
w x =

·
y−w

·
x and, therefore, expression (2) equals

Expression (3) is called the Solow residual; see ten Raa (2008), Sect. 7, and 
the references given there. Solow (1957) modeled technical change by let-
ting the production function depend on time,

(2)TFP =
∑

k
ẇkxk/

∑
k
wkxk .

(3)TFP = (p
·
y−w

·
x)/py.
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Differentiating production function (4) with respect to time, indicating par-
tial derivatives by subscripts, 

·
y = F ′

x

·
x+F ′

t or

Now, if inputs are rewarded according to their marginal products,  
w = pF ′

x, then the left-hand sides of Eqs. (3) and (5) match, and, there-
fore, the Solow residual (3) reduces to F ′

t/F, i.e., technical change. This 
condition is fulfilled if the input prices are the shadow prices of the pro-
gram that maximizes output subject to technical feasibility. The produc-
tion possibility set, {(x, y ):y ≤ F(x, t )}, is the set which is either spanned by 
the observed input-output pairs or postulated by some functional form 
of function F. This distinction corresponds with nonparametric and para-
metric performance measurement. The first underpinning, by observed 
input-output pairs, is more fundamental, as the second underpinning, by 
a production function, can be shown to be generated by a distribution of 
input-output pairs, where the distribution represents the capacities of the 
activities. Houthakker (1955) demonstrated this for the Cobb–Douglas 
function, Y = AKαLβ, where K and L are inputs, Y is output, and A, α, and β 
are parameters with α + β < 1, meaning there are decreasing returns to scale. 
The returns to scale decrease because of constraining third input, as will be 
explained next. Output notation Y is customary in the Cobb–Douglas liter-
ature. Moreover, we may now reserve y for full capacity output.

An activity is a pair of proportionate inputs and an output. The assump-
tion of input proportionality facilitates normalization of the activity by 
the output to (k, l; 1), with k = K/Y and l = L/Y fulfilling Akαlβ = 1. The 
activities can be parameterized by one input, e.g., k. Then l = (Ak α)−1/β 
and, therefore, the technology set of activities is {(k, (Ak α)−1/β; 1):k > 0}. 
Each activity can be run with intensity sk. Total output will be 

∫
skdk, 

where the integral is taken over the positive numbers. The constraints are ∫
skkdk ≤ K and 

∫
skldl ≤ L, where K and L are the factor endowments. 

However, Houthakker (1955) assumes there is a capacity constraint for each 
activity. A fixed input causes the capacity constraint. The fixed input is dif-
ferent than the variable inputs, capital, and labor. Houthakker (1955) sug-
gests entrepreneurial resources. The distribution of entrepreneurial resources 
(i.e., of the capacity constraint) across activities (k, l; 1) is considered to be 
given and denoted by y(k, l ). This distribution need not be concentrated on 
a frontier-like {(k, l ):Akαlβ = 1}. Some activities may dominate others, with 

(4)y = F(x, t).

(5)(
·
y−F ′

x

·
x)/y = F ′

t/F,
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both components of (k, l ) smaller. Yet a dominated activity may be run, 
because the superior activity, like all activities, has a capacity constraint. 
Activities can be run with intensities 0 ≤ s(k, l ) ≤ y(k, l ). Subject to the fac-
tor constraints 

∫∫
s(k, l)kdkdl ≤ K and 

∫∫
s(k, l)ldkdl ≤ L, we maximize 

output 
∫∫

s(k, l)dkdl. This is an infinite-dimensional linear program, with 
a continuum of variables s(k, l ). Denote the shadow prices of the two fac-
tor constraints by r and w, respectively. By the phenomenon of comple-
mentary slackness, unprofitable activities, with unit cost rk + wl > 1, are not 
run, s(k, l ) = 0. By the same argument, profitable activities, with unit cost 
rk + wl < 1, are run at full capacity, s(k, l ) ≤ = y(k, l ). Activities which break 
even, rk + wl = 1, have activity 0 ≤ s(k, l ) ≤ y(k, l ), but since the set of such 
activities has measure zero, we may set s(k, l ) = y(k, l ). It follows that inputs 
and output are K =

∫∫

rk+wl≤1

y(k, l)kdkdl, L =
∫∫

rk+wl≤1

y(k, l)ldkdl, and 

Y =
∫∫

rk+wl≤1

y(k, l)kdkdl, respectively. The implicit assumption is that all fac-

tor input can be fully employed. There must be activities with factor inten-
sity k/l below endowment ratio K/L and activities with factor intensity above 
the endowment ratio.

The three expressions, for inputs K and L and output Y, are interrelated by  
the two shadow prices r and w. The idea of Houthakker (1955) is to use the 
first two expressions to solve for r and w in terms of K and L. Substitution 
of the results in the third expression yields output as function of the inputs. 
Houthakker (1955) carries out this calculation for the capacity distribution 
with Pareto density function, y(k, l ) = μkκ−1lλ−1, where μ, κ, and λ are pos-
itive constants. The result is Y = AKαLβ with α = κ(κ + λ + 1), β = λ(κ + λ + 1) 
and A a positive constant depending on μ, κ, and λ. In other words, a Pareto 
capacity distribution yields a Cobb–Douglas production function. This 
is Houthakker’s Theorem. At the micro-level, activities have fixed input- 
output ratios—it takes given amounts of labor to operate given  machinery 
and equipment—but a change in resources, such as the inclusion of the 
East German labor force in the year 1989, is accommodated by the acti-
vation of new activities and the deactivation of some incumbent activities. 
Reallocations of resources across activities manifest as substitutions.

The capacity distribution is not concentrated on a single isoquant in 
input space. Both k and l can be bigger, less efficient. In solving the out-
put maximization, smaller input combinations are activated, but only to full 
capacity. Residual inputs are employed by more input intensive activities. 
The capacity constraints thus yield decreasing returns to scale. Indeed, the 
Cobb–Douglas function has exponents summing to a number less than one. 



84     T. ten Raa

Houthakker’s activity foundation of neoclassical production functions works 
only if returns to scale are decreasing.

Clearly, different capacity distributions for the activity levels will gen-
erate different production functions. Houthakker (1955) has generated a 
stream of theoretical and applied research. The bulk of this literature fea-
tures a lower dimension, with only one variable input, namely labor, and 
again one fixed output, which is now capital. In this one fixed-one variable 
input framework, Levhari (1968) found the capital distribution for which 
total output is a CES function of the total fixed input (capital) and the 
total variable input (labor) and showed it encompasses the Cobb–Douglas 
function. Muysken (1983) has consolidated the Cobb–Douglas, CES, and 
VES functions by showing they are all generated by beta distributions, with 
alternative parametrizations. Two books on the distribution approach to 
production are Johansen (1972) and Sato (1975). In this literature, activ-
ities have fixed input-output proportions and capacity constraints explain 
the existence of inefficient activities. Increases in levels of inputs prompt the 
activation of less efficient activities, in Ricardian style. The law of one price 
yields rents to the more efficient activities. The activation of different activi-
ties prompts different proportions between the input totals and the output. 
Substitution is considered a symptom of the change in the range of active 
activities (run with positive intensity).

3  Single Input-Multiple Output Production

In classical economics, labor is the only factor input. All other inputs are 
produced commodities, also called intermediate inputs. Production output 
is used to fulfill intermediate demand and final demand, where the latter is 
defined residually, as the difference between output and intermediate input. 
Production output is also called gross output; similarly, final demand is also 
called net output. In standard input-output analysis, each output has a sin-
gle technique to produce it. Assuming constant returns to scale, the input 
of commodity j, j = 1, …, n, per unit of output, is denoted by the input 
vector (a1j, …, anj, l j), of which the components represent the n interme-
diate inputs and the factor input (labor), respectively. If these unit input  
requirements are constant and fixed, they cannot be reduced and, there-
fore, are necessarily efficient (actual and optimal production coincide). If, 
however, there is a set of input vectors for each product j, there is room to 
reallocate labor between alternative techniques, which may save labor or, 
alternatively, increase output. This would increase the output/input ratio from  
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actual productivity to optimal productivity. The ratio of the two would be 
efficiency. A deep result states that the optimal input vectors, one for each 
product, are independent of the composition of final demand. This is the 
substitution theorem, but for an obvious reason also called non-substitution 
theorem, which goes back to Samuelson (1951). The proof of the theorem 
has a long history, in which details have been worked out and minor flaws 
eliminated. This culminated in a proof based on the efficiency program of 
maximizing the expansion factor of a some net output vector, determin-
ing the optimal input vectors, one for each product, and showing that this 
combination of input vectors remains optimal when the net output vector is 
replaced by another one (ten Raa 1995).

The substitution theorem yields an all-purpose optimal technology, fea-
turing one technique for each product. Given any net output vector, one can 
compare the optimal labor input to the actual labor input. The ratio is the 
efficiency of the economy.

4  Multiple Input-Multiple Output Production

The determination of efficiency is simple in the single output case: One 
maximizes output given the inputs and in the single input case, one can 
minimize the input given the output. A mechanical extension to the mul-
tiple input-multiple output world would be to expand the output vec-
tor while preserving its component proportions. This procedure, however, 
presumes that the mix of outputs should not be changed and is optimal. 
Yet it is a useful procedure and I will detail it and discuss its merits. The 
fundamental paper of this approach is Debreu’s (1951) now classic “The 
Coefficient of Resource Utilization,” which will be discussed first.

The economy comprises m consumers with preference relationships ≿i 
and observed l-dimensional consumption vectors yi(i = 1, …, m ), where l 
is the number of commodities.1 Z is the set of possible l-dimensional input 
vectors (net quantities of commodities consumed by the whole production 
sector during the period considered), including the observed one, z. A com-
bination of consumption vectors and an input vector is feasible if the total 
sum—the economy-wide net consumption—does not exceed the vector of 

1I stick to the performance literature notation of (factor) inputs x, (consumed) outputs y, and interme-
diate inputs z. In the general equilibrium literature, including Debreu (1951), the notation is (factor) 
inputs z, (consumed) outputs x, and intermediate inputs y.
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utilizable physical resources, l-dimensional vector x.2 Vector x is assumed to 
be at least equal to the sum of the observed consumption and input vectors, 
ensuring the feasibility of the latter.

The set of net consumption vectors that are at least as good as the 
observed ones is

The symbol B stands for “better” set. The minimal resources required to 
attain the same levels of satisfaction that come with xi belong to Bmin, the 
south-western edge or subset of elements z′ that are minimal with respect 
to ≥ .3 Assume that preferences �i are convex and continuous, and that 
production possibilities form a convex and closed set, then the separat-
ing hyperplane theorem yields a supporting price row vector p

(
x′
)
> 0  

(all components positive) such that x′′ ∈ B implies p
(
x′
)
x′′ ≥ p

(
x′
)
x′. 

The Debreu coefficient of resource utilization is defined by

Coefficient ρ measures the distance from the set of minimally required phys-
ical resources, x′ ∈ Bmin , to the utilizable physical resources, x, in the met-
ric of the supporting prices (which indicate welfare indeed). Debreu (1951,  
p. 284) shows that the distance or the max in (7) is attained by

In other words, the Debreu coefficient of resource utilization is the smallest 
fraction of the actually available resources that would permit the achieve-
ment of the levels of satisfaction that come with xi. Coefficient ρ is a num-
ber between zero and one, the latter indicating full efficiency. In modern 
terminology, this result means that ρ is the input-distance function, deter-
mined by the program

(6)B =

{∑
yi

′

: yi
′

�i y
i, i = 1, . . . , m

}
+ Z .

(7)ρ = max
x′

{p
(
x′
)
x′/p

(
x′
)
x : x′ ∈ Bmin}.

(8)x′ = ρx ∈ Bmin.

(9)ρ = min
r

{
r :

∑
yi′ + z′ ≤ rx, yi′�i y

i, z′ ∈ Z
}
.

3By convention, this vector inequality holds if it holds for all components.

2For example, if the last commodity, l, represents labor, and this is the only nonproduced commodity, 
then x = Nel, where N is the labor force and el the l-th unit vector.
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5  The Farrell Efficiency Measure

Another classic paper is Farrell (1957), which decomposes efficiency in 
technical efficiency and price efficiency. Here, technical efficiency is meas-
ured by the reduced level of proportionate inputs (as a percentage between 
0 and 100) such that output is still producible. Price efficiency is the frac-
tion of the value of an input vector with possibly different proportions (but 
the same output) to the value of the efficient input vector with the given 
proportions. Farrell (1957) notes the similarity between his technical effi-
ciency and the Debreu coefficient of resource utilization: Both the Farrell 
technical efficiency measure and the Debreu coefficient of resource utiliza-
tion are defined through proportionate input contractions, but the analogy 
is sheer formality and even confusing at a conceptual level. The analogy sug-
gests that Farrell takes the Debreu coefficient to measure technical efficiency 
and augments it with a reallocative efficiency term, thus constructing a more 
encompassing overall measure. However, it is the other way round; the sway 
of the Debreu coefficient is far greater than that of Farrell’s efficiency meas-
ure. Farrell’s price efficiency measure is a partial (dis)equilibrium concept, 
conditioned on prices. It takes into account the cost reduction attainable by 
changing the mix of the inputs, given the prices of the latter.

The Debreu coefficient, however, is a general (dis)equilibrium concept. 
It measures the technical and allocative inefficiency in the economy given 
only its fundamentals: resources, technology, and preferences. Prices are 
derived and enter the definition of the Debreu coefficient, see (2). Debreu 
(1951) then proves that the coefficient can be freed from these prices, by 
Eq. (8) or non-linear program (9). The prices are implicit, supporting the 
better set in the point of minimally required physical resources. The Debreu 
coefficient measures technical and allocative inefficiency, both in production 
and in consumption, solving the formidable difficulty involved in assessing 
prices, referred to by Charnes et al. (1978, p. 438). Farrell refrains from this, 
restricting himself to technical efficiency and price-conditioned allocative 
efficiency, which he calls price efficiency.

The formal analogy between the Debreu coefficient and the Farrell meas-
ure of technical efficiency prompted Zieschang (1984) to coin the phrase 
“Debreu-Farrell measure of efficiency,” a term picked up by Chakravarty 
(1992) and Grifell-Tatjé et al. (1998), but this practice is confusing. 
Debreu’s coefficient of resource allocation encompasses both Farrell’s tech-
nical efficiency and his price efficiency measures and frees the latter from 
prices. On top of this, Debreu’s coefficient captures consumers’ inefficien-
cies. The confusion persists. Färe et al. (2002) speak of the “Debreu-Farrell 
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measure of technical efficiency.” A recent review of Farrell’s contribution 
states

(Debreu) worked only from the resource cost side, defining his coefficient as 
the ratio between minimised resource costs of obtaining a given consumption 
bundle and actual costs, for given prices and a proportional contraction of 
resources. Førsund and Sarafoglou (2002, footnote 4)

However, Debreu (1951) calculates the resource costs not of a given con-
sumption bundle, but of an (intelligently chosen) Pareto equivalent alloca-
tion. (And the prices are not given, but support the allocation.) It is true, 
however, that the Debreu measure would become applicable if the aggre-
gated consumption bundle can be considered given. Ten Raa (2008) demon-
strates that this approach is doable and that it is exact if the preferences are 
Leontief.

6  The Debreu–Diewert Coefficient 
of Resource Utilization

Diewert (1983) had the idea that Leontief preferences remove misallocations 
between consumers as a source of inefficiency. The consequent coefficient 
of resource utilization yields a more conservative estimate of inefficiency 
than Debreu’s coefficient resource of utilization. Ten Raa (2008) shows that 
Leontief preferences not only separate production efficiency from consump-
tion efficiency, but also solve an aggregation problem: The Leontief prefer-
ences may vary between consumers, with different preferred consumption 
bundle proportions, but information of this preference variation need not be 
given. This useful fact is explained now.

Leontief preferences ≿i with nonnegative bliss point yi are defined for 
nonnegative consumption vectors by y′′�iy

′ if min y′′k/yk ≥ min y′k/yk 
where the minimum is taken over commodities k = 1, . . . , l. If so, the 
consumption term in better set (6) fulfills (ten Raa, 2008)

Equation (10) shows that “more is better” at the micro-level if and only if 
“more is better” at the macro-level. Equation (10) is a perfect aggregation 
result. One might say that if preferences are Leontief with varying bliss 
points (according to the observed consumption baskets), there is a social 

(10)
{∑

yi′ : yi′�i y
i, i = 1, . . . , m

}
=

{
y′ : y′ ≥

∑
yi
}
.
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welfare function. The better set is freed from not only preferences, ≿i, but 
also individual consumption baskets, yi. Only aggregate consumption is 
required information.

This result creates the option to determine the degree of efficiency in 
terms of output. If the production set X features the impossibility to pro-
duce something from nothing and constant returns to scale, then γ = 1/ρ 
transforms the input-distance function program (9) into the output-distance 
function program

Output-distance program (11) determines the expansion factor and poten-
tial consumption, i.e., net output. The ratio of actual output to potential 
output is equal to efficiency, the Debreu–Diewert coefficient of resource uti-
lization, ρ. This has been applied and analyzed, including decompositions in 
different inefficiency components, for various economies.

Ten Raa and Mohnen (2001) evaluate the gains from free trade between 
the European and Canadian economies. The results show that bilateral trade 
liberalization would multiply the trade volume and let Canada, which is a 
small economy, to specialize in a few sectors. Perfect competition and free 
trade together will result in the expansion factors of 1.075 for Europe and 
1.4 for Canada, while without free trade the economies expand to 1.073 and 
1.18, respectively. The gains of free trade are evaluated at 0.2% for Europe 
and 22% for Canada. Sikdar et al. (2005) apply a similar model for meas-
uring the effects of freeing bilateral trade between India and Bangladesh. 
The study was conducted against the background that Bangladesh was about 
to join the South Asian Association for Regional Cooperation (SAARC, 
established in 1985), in which India participated from the very beginning. 
Using the linear program version of the model, the authors locate compar-
ative advantages in both economies and contrast them with the observed 
trade pattern. While the patterns are generally comparable, there are nota-
ble differences for some products. For example, it turns out that although 
India is an exporter of “Livestock, fishing, forestry” and “Other food prod-
ucts,” the free trade model suggests that these should be import products for 
India. While on its own, each economy’s expansion factor equals 1.37, the 
introduction of free trade would increase it to 1.43 for India and 1.97 for 
Bangladesh. This means that the potential gains of free trade for these two 
countries are 6% and 60%. Similarly to the previous paper, a small econ-
omy—Bangladesh—has much more to gain by joining the free trade agree-
ment with a large economy. Ten Raa (2005) evaluates the contribution of 

(11)1/ρ = max{c : c
∑

yi + z′ ≤ x, z′ ∈ Z}.
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international trade, disentangling trade efficiency from domestic efficiency 
and splits the domestic efficiency of the economy into X-efficiency and 
allocative efficiency.

Another interesting decomposition of efficiency is provided by Cella and 
Pica (2001), who use a convex piecewise linear envelopment of the observed 
data (DEA) to disentangle sectoral inefficiencies in five OECD countries, 
Canada, France, Denmark, Germany, and the UK, into internal sectoral 
inefficiencies and inefficiencies imported from other sectors through the 
price distortion of intermediate product prices. These imported inefficiencies 
are also called “spillovers” from other sectors. The study shows that ineffi-
ciency spillovers are empirically relevant in all sectors of the five considered 
countries.

Amores and ten Raa (2014) distinguish three levels of production effi-
ciency of the Andalusian economy: a firm level, an industry level, and the 
economy level. Firm level efficiency measures the potential productivity 
gains (i.e., output/input ratios) that arise if the firm could choose to use pro-
duction techniques of other firms from the same industry. (However, intel-
lectual property rights may prevent this.) Industry efficiency measures the 
gains that can be achieved by pooling all the vectors of inputs and outputs of 
the firms that belong to this industry and reallocating production within the 
industry to maximize the total output value of the industry. Finally, the total 
efficiency of the economy measures the gains that can be achieved by the econ-
omy if there were no barriers to reallocation of inputs and outputs across 
firms and industries. Based on the results from these three problems, one 
can distinguish industrial organization efficiency and industrial specialization 
efficiency. The former captures the efficiency gains achieved by reorganization 
within industries, if each industry starts to produce a more valuable (i.e., 
efficient) output mix. The latter captures the additional efficiency that can 
be achieved by re-specialization of the output mix of the economy.

7  Interrelation Between the Productivity 
and Efficiency Measures

Productivity growth, measured by the Solow residual (3), and efficiency, 
measured by the Debreu–Diewert coefficient of resource utilization (11), 
can be interrelated.

Productivity is output per input. For an economy, input are the resources 
and output is the final consumption. Input x and output y are multi-dimen-
sional. Denote the production possibility set at time t, the set of all pairs (x, y )  



Performance: The Output/Input Ratio     91

such that x can produce y at time t by Pt, the so-called production possibility 
set. Following Eq. (9) the input-distance function is

Input distance r is a number between zero and one. If r = 1, input cannot 
be contracted, is on the frontier of the production possibility set, and is effi-
cient. If r < 1, input can be contracted, is not on the frontier, and is inef-
ficient. An increase in the input distance signals an increase in efficiency. 
Efficiency change is the relative change in input-distance function (12) with a 
dot representing time derivative:

The distance to the frontier may grow without any change in input x or out-
put y, simply because the frontier shifts out. This shows a decrease in the 
input distance. Technical change is minus the relative partial derivative of the 
input-distance function with respect to time, i.e., keeping input x and out-
put y fixed:

To relate these efficiency change and technical change to the single output 
Solow residual analysis, we must replace Solow’s implicit assumption that 
output is related to input by the production function, (4), by the more gen-
eral relationship

where potential output is reduced to actual output. Differentiating Eq. (15) 
with respect to time, 

·
y =

·

DF + D(F ′
x

·
x+F ′

t) or, dividing by expression 
(15),

The left-hand side of formula (16) features total factor productivity, see 
Equation with y 1-dimensional and p canceling out, and the right-hand side 
features efficiency change (13) plus technical change. The last term is indeed 
consistent with Eq. (14), as output y = D(x, y, t )F(x, t ) and partial differenti-
ation with respect to time yield D′

tF + DF ′
t = 0. Summarizing,

(12)D(x, y, t) = min{r : (rx,y) ∈ Pt}.

(13)EC =
·

D /D.

(14)TC = −D′
t/D.

(15)y = D(x, y, t)F(x, t),

(16)(
·
y /y − F ′

x

·
x /F) =

·

D /D+ F ′
t/F,

(17)TFP = EC + TC =
·

D /D − D′
t/D,
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where the second equality holds term by term. Expression (17) holds for 
multi-output production with, however, constant returns to scale. Ten Raa 
(2008) proves that the efficiency change term is measured by the growth rate 
of the Debreu–Diewert coefficient of resource utilization and the technical 
change term by a generalized Solow residual of net frontier output growth 
evaluated at the supporting price vector.

In applied work, time is in discrete periods and the main performance 
measure that accommodates this is the Malmquist productivity index (Caves 
et al. 1982). Its derivation is as follows. The first term on the right-hand side 
of Eq. (17) is the total derivative of input distance D(x, y, t ) and the last 
term subtracts the third partial derivative. What remains are the first two 
partial derivatives,

In discrete time expression (18) is a local approximation to

Evaluating this expression at t and t + 1, taking the average of the two log-
arithms and exponentiating, one obtains the standard expression of the 
Malmquist productivity index:

The explicit price information in the Solow residual (3) has been replaced 
by implicit shadow price information, derived from the shape of the fron-
tier; see Coelli and Rao (2001). The Malmquist productivity index assumes 
constant returns to scale. The decomposition of the Malmquist index into 
technical change and efficiency change, see Eq. (17), is straightforward; see 
Färe et al. (1994).

The Malmquist productivity index is popular because of its simplicity. 
Moreover, it can be bridged with other important TFP growth indices. The 
Törnqvist productivity index is defined by the discrete-time approximation 
of (3) with value weights wkxk/wx and pkyk/py approximated by their arith-
metic averages between periods t and t + 1 and growth rates ẋk/xk and ẏk/yk 
approximated by the changes in the logs of x and y between periods t and 

(18)TFP =
∂ lnD(x, y, t)

∂x

dx

dt
+

∂ lnD(x, y, t)

∂y

dy

dt
.

(19)lnD(xt+1, yt+1, •) − lnD(xt , yt , •) = ln
D(xt+1, yt+1, •)

D(xt , yt , •)
.

(20)TFP =

[
D(xt+1, yt+1, t)

D(xt , yt , t)

D(xt+1, yt+1, t + 1)

D(xt , yt , t + 1)

]1/2
.
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t + 1. Caves et al. (1982) have shown that the Malmquist productivity index 
becomes a Törnqvist productivity index provided that the distance func-
tions are of translog form with identical second-order coefficients and that 
the prices support cost minimization and profit maximization. The Fisher 
productivity index is also defined by a discrete-time approximation of (3), 
with the changes in the logs of x and y now evaluated at the prices in periods 
t and t + 1 separately and then averaged arithmetically. Färe and Grosskopf 
(1996) have proved that the Malmquist productivity index approximates the 
Fisher productivity index under the assumption of profit maximizing behav-
ior. Balk (2008) reviews comprehensively, including non-constant returns to 
scale.

A defect of the Malmquist, Törnqvist, and Fisher indices is that they are 
not transitive. The changes from periods t to t + 1 and from periods t + 1 
to t + 2 do not add to the change from periods t to t + 2. A necessary and 
sufficient condition for transitivity is that the index between periods can 
be written as a ratio of values of a function evaluated in the two periods. 
This property is fulfilled for the efficiency change component of produc-
tivity growth, but not for the technical change component, unless techni-
cal change is Hicks neutral. However, Balk and Althin (1996) shows that a 
modification of the Malmquist index, averaging out between firm observa-
tions, is transitive.

8  Conclusion

The key concept in performance analysis is productivity, which is the out-
put/input ratio. Both output and input are aggregates. The appropriate 
weights are shadow prices of the program that determines potential out-
put. The latter is based on observed input-output pairs or a production 
function, corresponding with nonparametric and parametric performance 
analysis, respectively. Parametric performance analysis can be conceived as 
nonparametric performance analysis with an appropriate distribution of 
observations. Hence nonparametric analysis is more fundamental. Replacing 
output by potential output, productivity becomes optimal productivity. The 
ratio of actual productivity to optimal productivity is equal to efficiency. 
Performance may increase because of efficiency change, technical change, 
scale economies, or changes in the production environment. Technical 
change is a change in optimal productivity. All this can be grounded in 
economic theory, where optimality is defined in terms of consumer prefer-
ences. If consumers have Leontief preferences, with consumptions bundles 
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preferred to be in fixed proportions, which may vary between consumers, 
then performance analysis is freed from micro-consumer data requirements 
and shadow prices can be determined on the basis of production data and 
the proportions of final demand. Moreover, then the efficiency is measured 
by Debreu’s coefficient of resource utilization and technical change by the 
Solow residual of net frontier output growth.

Acknowledgements  I am grateful to a referee for detailed criticism that prompted 
numerous improvements.
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1  Introduction

In the short run, labor productivity (output per hour worked), capital pro-
ductivity (output per unit of capital stock) or total factor productivity (TFP) 
(a weighted sum of outputs divided by a weighted sum of inputs) varies over 
the business cycle because of inflexibilities of various sorts: hiring and firing 
costs, labor regulations, time to build or adjustment costs leading to varia-
tions in capacity utilization. In the long run, however, changes in technology 
alter technical coefficients—the amount of a certain input needed per unit 
of output—augmenting the marginal productivity of certain factors of pro-
duction or saving on some of them and thereby affect TFP.

For a long time, technological change was considered as exogenous or 
simply measured by a time trend. In the last 50 years, various theories have 
been developed to try and explain the phenomenon of technological change 
and its impact on economic growth. Various indicators have been collected 
in order to better understand how it occurs and what effect it has on the 
level and the growth rate of TFP.

This chapter goes over various technological indicators—R&D expend-
iture, patents, patent citations, innovation expenditure, the share of inno-
vative sales, count data of innovations and various measures of purchased 
technologies—pointing out their strengths and weaknesses and the 
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consequent measures of caution to be taken when using these data for eco-
nomic analysis. It briefly explains the theoretical link between innovation 
and productivity growth and then compares the estimated magnitudes of 
that relationship using the different innovation indicators.

The rest of the paper is organized as follows. First, it reviews the most 
frequently used indicators of technology and discusses their pros and cons. 
It then examines how they have been used to explain changes in produc-
tivity, what econometric challenges are posed by each indicator and what 
have been the major results obtained. It concludes with some reflections on 
the merits of indicators and on the state of knowledge regarding the link 
between innovation and TFP.

2  Technological Indicators

It is useful to start with a description of the data sources available to study 
the link between innovation and productivity. I shall cover in detail three 
types of data, which are available in most countries: R&D surveys, patent 
statistics and innovation surveys. I shall say a few words about other data 
sources, less frequently used or only available sporadically in a limited num-
ber of countries.1

2.1  Research and Development Surveys

According to the Frascati Manual (OECD 2015), “Research and experimental 
development (R&D) comprises creative work undertaken on a systematic basis 
in order to increase the stock of knowledge, including knowledge of man, cul-
ture and society, and the use of this stock of knowledge to devise new applica-
tions.” It excludes things like routine testing, the analysis of materials, feasibility 
studies, routine software development and general purpose data collection. 
R&D can be decomposed into basic research, applied research and experimen-
tal development. It can be performed and/or funded by the business enterprise 
sector, government, higher education and private non-profit organizations.

Starting with the pioneering work of Griliches and Mansfield in the late 
1950s and early 1960s (Griliches 1964; Mansfield 1965), a large literature 
has developed in which R&D expenditures are considered as investments in a  

1For a more extended discussion on innovation indicators, see Kleinknecht (2002), Hagedoorn and 
Cloodt (2003), Gault (2010, 2013), and Hall and Jaffe (2018).
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stock of knowledge, which depreciates because of physical disappearance  
(e.g., death of a scientist in case of tacit knowledge, fire in case of codified 
knowledge) or because of obsolescence (as new knowledge replaces old knowl-
edge). A large literature has considered this stock of knowledge as a determi-
nant of productivity (for surveys of this literature, see, e.g., Griliches [1995], 
Hall [1996], and Hall et al. [2010]).

Besides serving as a measure of innovation input, R&D can also be con-
sidered as a way to assimilate knowledge so as to be better able to absorb 
outside knowledge. In this regard, it is like an investment in education to 
increase the absorption capacity. This dual aspect of R&D investment has 
been articulated by Cohen and Levinthal (1989).

It is not always crystal clear what is, and what is not, considered as R&D. 
In the (2015) version of the Frascati Manual, five conditions are stated to 
characterize R&D: It has to be aimed at new findings, it has to be based 
on original concepts and hypotheses, it has to be uncertain about the final 
outcome, it has to be planned and budgeted, and it has to lead to results 
that can be reproduced. For a long time, the inclusion or not of software in 
R&D was a matter of discussion. In the new version of the Manual, soft-
ware is included if it satisfies the five criteria just mentioned. Another lim-
itation of R&D is that more inputs are needed to innovate than just doing 
R&D. The Oslo Manual (the latest version of which is OECD 2018) has 
made a serious attempt in this direction by enlarging the scope of innova-
tion expenditure.

The R&D surveys are, unlike the innovation surveys, supposed to cover 
all R&D performers in a country, past observed R&D performers as well 
as new suspected R&D performers because they have for instance applied 
for R&D tax credits, subsidies or other forms of government support for 
innovation. R&D statistics are regularly collected on a yearly basis. Small 
firms are underrepresented: First of all, R&D surveys are often limited to 
firms above a certain size in terms of number of employees; second, often a 
more concise questionnaire is sent to small firms; third, in some countries 
like Canada R&D from small firms are provided to the statistical offices by 
the tax department; and fourth, in other countries like The Netherlands the 
R&D statistics are collected in tandem with the innovation surveys in the 
years the innovation surveys take place—to avoid different numbers from 
two separate surveys—and they only cover so-called core R&D performers 
in the years between two innovation surveys. Moreover, the R&D statistics 
only cover formal R&D. Small firms without a formal R&D department 
might be doing some informal R&D and not bother reporting it to the sta-
tistical office.
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2.2  Patent Statistics

In parallel to the literature on the returns to R&D, another branch of stud-
ies has explored the estimation of a knowledge production function, linking 
knowledge inputs in the form of R&D with knowledge outputs in the form 
of patents. Patents are used as a measure of knowledge output, which can 
then be inserted in the explanation of other economic variables like produc-
tivity or market value. The output measured here is closer to the notion of 
invention than to the notion of innovation. Patenting is a measure of protec-
tion of intellectual property. It may help in bringing new products or pro-
cesses on the market, but it is not a requisite for it, nor is it sufficient to be 
successful in innovating. Moreover, patents may be applied for strategic rea-
sons to create entry barriers (e.g., patent thickets), to be able to cross-license, 
or as signals of capability in order to attract outside funding.

Although some earlier studies had already tried to investigate the link 
between patents and productivity, the literature of patents as indicators of 
inventive performance really took off with the NBER work under the direc-
tion of Zvi Griliches (see in particular the 1984 NBER conference volume 
and his 1990 paper in the JEL).

Patents contain a lot of extra information besides the recording of a patent 
grant, the date and the technology class: applicant, assignee, inventor, num-
ber of claims, citations to previous patents and publications, priority applica-
tion date, family information and many more (see Nagaoka et al. 2010). It is 
well known that the distribution of patent values is highly skewed. Therefore, 
it makes more sense to weigh the number of patents somehow, for instance, 
by giving more weight to patents that receive many forward citations.

When performing interindustry comparisons, one should be aware that 
in some fields, it is more difficult to patent and that some firms prefer not 
to patent. The 1987 Yale Survey on Industrial Research and Development 
(Levin et al. 1987) and the Carnegie-Mellon University R&D Survey of 
1994 (Cohen et al. 2000) have clearly shown that patents are widely used 
in fields such as chemicals, drugs and computer and not so much in other 
fields, where firms prefer alternative means to appropriate the returns from 
investing in knowledge, such as being the first on the market or developing 
complex technologies. Similar results of patent concentration in a few sectors 
are reported by Arundel and Kabla (1998) for Europe. Applying for patents 
and especially defending one’s patents against infringement can be costly and 
discourage many firms, especially small firms, from applying for patents.

Patent data have the advantage that they are easily available, for long peri-
ods of time, and that they contain lots of information on the content of the 
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patented invention, the timing of introduction, renewals and termination, 
the name and the location of the assignee and references to prior knowledge. 
All these pieces of information can be useful to infer the private and social 
value of a patent. The weakness of patent data is the selectivity of patenting, 
the difficulty of merging patent data with other firm-level data (technology 
classification versus industry classifications, disambiguation for matching on 
the basis of firm names).

2.3  Innovation Surveys2

The innovation surveys follow the guidelines of the Oslo Manual. They col-
lect three types of information on innovation: innovation inputs, outputs 
and modalities.

The latest version of the Oslo Manual (OECD 2018) defines innovation 
as “a new or improved product or process (or combination thereof ) that 
differs significantly from the unit’s previous products or processes and that 
has been made available to potential users (product innovation) or brought 
into use by the unit (process innovation).” Product innovations encompass 
goods or services that have undergone significant improvements in one or 
the other functional characteristic such as quality, affordability, durability 
to name just a few. Process innovations refer to improvements in the busi-
ness functions such as increased efficiency, meeting regulatory requirements 
or cost reductions. The Oslo Manual (OECD 2018) recognizes 6 types of 
business processes: production of goods and services, distribution and logis-
tics, marketing and sales, information and communication systems, admin-
istration and management and product and business process developments. 
Organizational and marketing innovations, which were identified separately 
in the third version of the Oslo Manual, are now considered as part of pro-
cess innovations. In contrast to patents, innovation measures the implemen-
tation and not just the invention of something new. Here also, there may be 
disagreements about what is included in this definition. Price changes due to 
external circumstances, seasonal and routine changes in the type of products 
sold, mere color changes or customization are not considered as innovations. 
Some scholars consider that any change in the way business is done is an 
innovation. There subsists thus a gray area in the definition of innovation.

2Since 2009 in the United States, the Business R&D and Innovation Survey, conducted jointly by 
the National Science Foundation/Science Resources Statistics (NSF/SRS) and the US Census Bureau, 
replaces the Survey of Industrial Research and Development by adding to the R&D survey some ques-
tions related to innovation. It is more an R&D survey than an innovation survey.
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Innovation surveys collect data on innovation expenditure, which com-
prises besides the intramural and extramural R&D expenditure already col-
lected in the R&D surveys, engineering, design and other creative activities, 
marketing and brand equity activities, IP-related activities, employee train-
ing activities, software developments and database activities, activities related 
to the acquisition of lease of tangible assets and innovation management 
activities (OECD 2018). Unfortunately, many of these items are not (yet) 
collected regularly by all firms and therefore difficult to quantify and very 
likely subject to substantial measurement errors. Think of employee training 
activities specifically for the production of new products or the use of new 
machines, not employee training activities in general.

The innovation surveys also collect information about the modalities of 
innovation, such as research collaborations, obstacles to innovation, sources 
of information, innovation objectives, presence of government support or 
environmental innovations.

Innovation surveys are supposed to be representative regarding size, indus-
try and in some countries even regional distribution, based on stratified ran-
dom sampling, above a certain minimal size threshold. They are conducted 
every two years now in EU countries (every four years previously) and on a 
more irregular basis in many other countries. A few countries have yearly data 
(Germany since 1993,3 Spain since 1990,4 United States since 2009).

The innovation survey data have certain characteristics that are impor-
tant to keep in mind when using them in empirical research. First, they are 
to a large extent subjective data: The definition itself of what is an innova-
tion leaves room for interpretation, whether a product is new to the firm or 
new to the market depends on the perception of what the relevant market is, 
and some data asked in the surveys are not systematically collected by firms 
(such as training for innovation or the share of sales due to new products) and 
therefore more guesstimates than hard data. The likely presence of errors in 
variables in the innovation survey data and the ensuing attenuation bias in the 
estimation of the relationship between innovation and productivity has been 
formally shown in Mairesse et al. (2005) and Mairesse and Robin (2017).

Second, contrary to the R&D and patent statistics, few of the data are 
quantitative to reveal something about the extent of the innovation success. 
Among the various types of innovation, there is a quantitative measure only 

3The German Mannheim Innovation Panel is managed by the ZEW-Leibniz Center for European 
Economic Research.
4The Spanish ESSE (Encuesta sobre Estrategias Empresariales) Survey on Business Strategies has been 
conducted since 1990 by the Ministry of Industry and the SEPI Foundation.
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for product innovation, the share of total sales due to new products. A few 
countries have quantitative measures for process innovation, namely the share 
of cost reduction due to new processes. For most countries, though, only 
dichotomous information exists for process innovation. While binary variables 
are less informative than continuous variables, it can, however, be argued that 
the errors in variables are less distorting with binary information.

Third, there is a timing problem, in the sense that innovation refers to a 
three-year period, whereas the few quantitative variables refer only to the last 
of the three years. It makes for instance little sense to explain the fact that 
a firm has innovated sometime over a three-year time span by the amount 
it spent on R&D in the last year of that period. Fourth, there is a poten-
tial selectivity issue as some variables are collected only for innovators. For 
example, no data on R&D are collected for firms that do not declare to have 
been innovative. Fifth, it is difficult to conduct panel data analysis with the 
innovation survey data because of the stratified random sampling. Only 
large firms (e.g., above 250 employees; the threshold depends on the coun-
try) will be approached in every wave. Smaller firms might randomly not be 
included in every wave. This systematic inclusion of larger firms may create 
a selection bias in the results obtained. Sixth, the structure of the question-
naire of the innovation surveys, the wording of the questions, the sampling 
and the mere mandatory nature of these surveys differ across countries more 
than the R&D surveys, rendering the innovation surveys less comparable 
internationally than the R&D surveys.

A general problem faced when relating innovation indicators to innova-
tion or economic performance is the endogeneity of innovation. Some vari-
ables that drive innovation efforts also drive directly economic performance, 
and there may be a two-way relationship between the two variables. Many 
other variables contained in the innovation surveys may also be subject to 
endogeneity. Hence, unless the innovation survey data can be merged with 
other statistics or be made into a longitudinal dataset, there will be a prob-
lem of instrumenting the endogenous variables.

Contrary to patent data, R&D and innovation survey microdata are not 
as easily accessible for reasons of confidentiality. It is therefore difficult to 
merge innovation survey data from different countries to conduct interna-
tional comparisons, unlike what can be done with business register data like 
ORBIS/AMADEUS from Bureau van Dijk, the Business Environment and 
Enterprise Performance Survey (BEEPS) database from the World Bank 
and the European Bank for Reconstruction and Development, or the EU 
Industrial R&D Investment Scoreboard database managed by the Joint 
Research Center of the European Commission.
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Despite this long list of challenges that the user of innovation survey data 
should be aware of, these data contain new statistics, which have enlarged 
our understanding of the determinants and the effects of innovation on eco-
nomic performance, as we shall see in Sect. 3.

2.4  Other Data

Literature-Based Innovation Counts

Another measure of innovation output is the literature-based innovation 
output (LIBO) indicator, which counts innovation announcements that are 
published in trade and technical journals (Coombs et al. 1996; Santarelli 
and Piergiovanni 1996). One of the first to introduce it were Kleinknecht 
et al. (1993). This indicator offers some advantage compared to the innova-
tions surveys: It is less subjective than the innovation outputs from the inno-
vation surveys since it is based on published material and verifiable, it gets 
recorded soon after the introduction on the market and not one or two years 
afterward, it can cover the small firms better than the innovation surveys (as 
shown by Kleinknecht 1987), and in principle, it could provide more details 
about the innovation itself. It has, however, the disadvantage that announce-
ments are to some extent subject to self-selection, confined to product inno-
vations, cover tangible goods more than intangible services, focus more on 
inputs and capital goods, are often biased toward major innovations and are 
not systematically collected and readily available for all countries.

Actually, a forerunner of the LIBO count data was the Science Policy 
Research Unit (SPRU) innovation database. This dataset was set up as fol-
lows. Experts from industry were asked to identify significant technical 
innovations that were commercialized in the UK between 1945 and 1983. 
Firms producing these innovations were then approached to provide infor-
mation about the innovation and characteristics of the firm (Robson et al. 
1988). This database ultimately led to the development of the innovation 
surveys, which are no longer based on specific innovations but on firms that 
innovate or not. In other words, the innovation surveys follow the subject 
approach, collecting information about a particular firm, instead of the 
object approach, where the basic statistical unit is an innovation.

Bibliometrics/Scientometrics

There is a branch of research called bibliometrics/scientometrics that uses 
publications and citations from databases such as Google Scholar, Scopus 
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or Web of Science to measure the quantity and the impact of scientific 
research. These indicators are used for monitoring scientific research output 
and for measuring productivity of scientific research in universities, research 
labs, individual researchers and scientific fields, or for measuring technology 
transfer or collaborations between research institutes and enterprises, more 
than for explaining the role of innovation in explaining productivity varia-
tions within and between firms. These indicators can, however, be helpful as 
indirect indicators of the connectivity between researchers or the quality of 
other indicators. To cite one example, Callaert et al. (2006) have looked at 
backward citations to non-patent references in patent applications to assess 
the science intensity of patents.

Inventor Surveys

The inventor surveys collect data on the inventors obtained from the pat-
ent databases, e.g., the PatVal Survey for six European countries (Giuri 
et al. 2007), the RIETI-Georgia Tech inventor survey (Walsh and Nagaoka 
2009) for the United States and Japan. The aim of those surveys is pri-
marily to gather information about inventors such as profiles, motivations, 
mobility, performance and perceived value of the inventions. Inventor sur-
vey data have been used as an alternative to patent citations for measuring 
the value of a patent, sources of knowledge and knowledge spillovers.

Market for Technology

Instead of conducting their own R&D, firms may decide to buy know-how 
instead on the market for technology. The innovation surveys contain some 
binary and continuous data on the purchase of patents and investments 
related to new technologies among the innovation expenditures. Licensing 
is another way to purchase outside technologies. No systematic data on 
licensing deals exist. The European and Japanese Patent Offices (EPO and 
JPO) organized a survey of licensing among patent holders in 2007 (Zuniga 
and Guellec 2009). Arqué-Castells and Spulber (2018) use data on pat-
ent trades from USPTO, licensing deals from the Securities and Exchange 
Commission (SEC) filings (ktMINE’s licensing database) and cross-licensing 
data from the SEC forms, as well as Google searches, to construct connec-
tions in the market for technology. They find that when the returns on the 
markets for technology, which diffuse technological change, are internalized, 
the private and social rates of return on R&D increase substantially, by as 
much as 50% and 100%, respectively.
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Technology Adoption and Diffusion

One way to foster technological change is to develop new products, ser-
vices or technologies, and another one is to adopt existing technologies and 
ensure their diffusion throughout the economy. Surveys on the adoption of 
advanced technologies in manufacturing have been conducted in a number 
of countries. They do not identify transactions and amounts paid, but they 
identify whether a firm has used a range of advanced technologies. Empirical 
studies examining the link between the adoption of advanced technologies 
and productivity growth in manufacturing conclude that there is a posi-
tive link between the two variables (e.g., Baldwin and Sabourin (2002) for 
Canada, Bartelsman et al. (1998) for The Netherlands).

User Innovation

Firms are user innovators if they develop a process innovation for their own 
use or if they adopt a process and adapt it for their own use. A sizeable pro-
portion of firms are user innovators, as high as 54% in high-tech Dutch 
small and medium enterprises (de Jong and von Hippel 2013). User innova-
tors are more prone than commercial innovators to share their findings, and 
the adoption rate of user innovations is also higher than adoption rates in 
general.

3  Innovation and Productivity5

In this section, we shall examine what we have learned from R&D, patents, 
innovation surveys and innovation count data regarding the link between 
innovation and productivity.

3.1  Studies Based on R&D Data

The various indicators of innovation that have been listed above have been 
used in various ways to measure their impact on economic performance at 
the firm, sector or country level. In endogenous growth models, productivity 

5Part of this section is based on Mohnen (2018), “The role of research and development in fostering 
economic performance. A survey of the macro-level literature and policy implications for Finland,” 
Report submitted to OECD, February 2018.
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growth is in part due to R&D efforts that are only undertaken if the costs 
of engaging in R&D (those can be variable, fixed or even sunk costs) do 
not exceed the returns from doing R&D. R&D generates innovation in 
the form of new intermediate inputs or new consumer goods, the variety of 
which increases productivity or consumer utility. In parallel to this love for 
variety approach, a Schumpeterian creative destruction approach has been 
developed in which new products replace old products because of superior 
quality instead of just increasing the range of products in the market and 
diminishing the margins made on old products (see Aghion and Howitt 
1998; Barro and Sala-i-Martin 2004). There is also a debate in this literature 
between the contenders of the semi-endogenous and the fully endogenous 
R&D-based growth models, the former arguing that the returns to R&D 
are decreasing, the latter defending the assumption of constant returns to 
R&D. Ha and Howitt (2007) show evidence in favor of the Schumpeterian 
fully endogenous growth models, whereas Bloom et al. (2018) illustrate the 
declining productivity of R&D in a number of research fields. Nonetheless, 
so they argue, endogenous growth can survive because of the non-rival 
nature of knowledge.

Spillovers play an important role in R&D-based growth models. They can 
be positive as knowledge gets transmitted between agents or over generations 
or when rents occur because of imperfect price discrimination or network 
externalities. They can also be negative because of decreasing returns, dupli-
cation, obsolescence or market stealing. A number of macrostudies based on 
assumptions regarding these various forces have simulated the societal effects 
of R&D on economic growth. Depending on whether the positive or the 
negative externalities dominate, there is private underinvestment or overin-
vestment in R&D (see Montmartin and Massard 2015).

Even before these theoretical developments in the modeling of endoge-
nous economic growth took place, empirical studies were devoted to esti-
mate the returns to R&D starting with Griliches (1964) and Mansfield 
(1965). The underlying model is an extended production function with 
as additional input the stock of knowledge obtained from R&D expendi-
ture. The stock of knowledge depreciates when tacit knowledge gets lost  
for instance with the death of a scientist6 or when through obsolescence 
new knowledge supersedes old knowledge. The idea is to estimate the  

6Recent work on team capital confirms this loss of tacit knowledge. Azoulay et al. (2010) find that the 
premature death of a superstar scientist reduces by 5–8% the quality-adjusted publication record of his 
(her) collaborators. In the same vein, Jaravel et al. (2018) find that the unexpected death of an inventor 
decreases the co-inventors’ earnings by 4% and their citation-weighted patents by 15% after 8 years.
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increment in production or value added due to a marginal increase in the 
stock of knowledge. If this marginal productivity remains constant over 
time, it can also be interpreted as the internal rate of return that equates 
costs and revenues gross of the depreciation rate of the stock of knowledge. 
When multiplying this marginal productivity by the R&D over output 
ratio, one gets the elasticity of output with respect to R&D, which multi-
plied by the growth rate of the R&D stock measures the contribution of 
R&D to output or TFP growth in growth accounting.

Spillovers are captured by including as an additional argument in the pro-
duction function the R&D stock accumulated outside of the firm. This is 
usually done by constructing a weighted average of the R&D stocks of other 
R&D performers (plants, firms, sectors, regions or countries depending 
on the level of aggregation), unless one wants to estimate separate spillover 
sources, which can quickly become difficult to identify as the allowed num-
ber of sources increases. Various weighting schemes have been experimented 
with depending on the assumed channel of transmission of the spillovers: 
geographical proximities, R&D collaborations, co-patenting, correlations of 
positions in the patent classes or in the lines of business, patent citations, 
interindustry transactions, international trade, foreign direct investment, to 
name the most popular ones. If the outgoing R&D externalities are added 
to the private rate of return to R&D, one obtains a social rate of return to 
R&D, that is, the return to society at large.

The rate of return to R&D has been estimated in a variety of ways. We 
briefly list below several of the major differences in specification and the pos-
sible effects they could have on the estimated returns to R&D. For a more 
thorough and detailed discussion of these issues, the reader is referred to the 
initial presentation of the whole framework in Griliches (1979) and to the 
survey by Hall et al. (2010).

Regarding the specification, most studies have used a Cobb-Douglas 
production function. Some have used a translog or other second-order 
approximations of a general production function, which allow for comple-
mentarities or substitutions between R&D and other inputs. Some studies 
have preferred assuming a constant elasticity of output with respect to pro-
ductivity rather than a constant marginal productivity of R&D. Estimates 
seem to be more stable with a constant elasticity specification, implicitly 
assuming a declining marginal productivity of R&D. Some studies have 
favored a dual representation of technology, conditional on variable factor 
prices and, maybe more contentiously, on the exogenous level of produc-
tion in lieu of the input levels. A system of demand equations can then be 
estimated, which increases the number of degrees of freedom. Sometimes a 
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mixture of variable and quasi-fixed inputs is allowed for. A few studies have 
opted for an intertemporal model of decision-making to derive the opti-
mal path of knowledge accumulation, which yields the specification of the 
demand for R&D equation.

Regarding the data, the earlier studies used sector or aggregate coun-
try data. Nowadays, the majority of studies are based on firm data or even 
on establishment data. At a higher level of aggregation, one would expect 
higher rates of return because of internalized spillovers, but this is not sys-
tematically the case. Ideally, the traditional inputs should be cleared of their 
R&D component to avoid R&D double-counting (Schankerman 1981). 
This is rather rarely done at the cost of yielding underestimates of the 
returns to R&D. A crucial element in the estimation of the rate of return to 
R&D is the assumed depreciation rate. At the beginning of this literature, 
when time series on R&D were still relatively short, a zero rate of depreci-
ation was often assumed to obviate the need to construct a stock of knowl-
edge. Later, studies constructed R&D stocks assuming constant—over time 
and space—R&D depreciation rates. The latest studies obtain time- and 
industry-specific R&D depreciation rates (Li and Hall 2017).

The production function or the dual representation of technology has 
been estimated in levels or in growth rates. Estimates are generally higher, 
more stable and more likely to be significant when based on levels rather 
than growth rates. Most studies are based on time series data, exploiting 
only the temporal variation, some use only cross-sectional data, the more 
recent studies exploit panel data, where both temporal and cross-sectional 
variations can be exploited and individual effects can be controlled for. 
Typically, lower returns are obtained in the within than in the between vari-
ation. Some studies have controlled for other factors that may affect produc-
tivity, such as human capital, organizational capital, ICT equipment, R&D 
spillovers or sector specificities. The returns to R&D tend to drop when 
these other variables are introduced.

Over the last 50 years, many empirical papers have been devoted to 
the estimation of the private and the social rates of return to R&D (see 
the survey by Hall et al. [2010] and the meta-analyses by Wieser [2005], 
Koopmans and Donselaar [2015], and Ugur et al. [2016]). Despite the large 
heterogeneity in the results obtained, the following seem to be reasonable 
orders of magnitude. The private rate of return on R&D exceeds the nor-
mal rate of return and is in the 10–30% range. Estimates of the elasticity 
of output with respect to R&D are largely consistent with those of the rates 
of return and hover around 0.10. Given these estimates and the growth in 
R&D stock, the contribution of R&D to TFP growth is expected to be 
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in the range of 10–15%. The social rate of return exceeds the private rate 
of return by a factor of 50–100%. Rates of return are found to be heter-
ogeneous. They are generally found to be higher for private than for pub-
lic R&D and for basic R&D than for applied R&D or development. The 
estimated elasticities are generally higher in high-tech, i.e., R&D-intensive, 
than in low-tech sectors (e.g., Ortega-Argilés et al. 2015), but according to 
the results reported by Wieser (2005) and Ugur et al. (2016), the associated 
rates of return are not necessarily different between the two sectors. Rates of 
return may differ across countries because of differences in distance to the 
frontier (Griffith et al. 2004), industrial structure or national innovation sys-
tems (Kokko et al. 2015). Countries may benefit from international R&D 
spillovers. As shown in Mancusi (2008), laggard countries are mainly the 
beneficiaries, depending on their absorptive capacity, whereas technological 
leaders are mainly the source of international R&D spillovers.

The 2008 revision of the National Income and Product Accounts 
treats R&D as an investment and no longer as an expenditure. Fraumeni 
and Okubo (2005) have focused on the contribution of R&D in the new 
national income accounting. For the United States over the period 1961–
2000, they arrive, on the expenditure side, at a contribution of R&D 
investment to corrected GDP between 2% and 7% depending on the sce-
narios and, on the income side, at a contribution of the returns on R&D 
to corrected GDP between 4% and 15%. Corrado et al. (2013) follow the 
approach of Corrado et al. (2009) and consider three types of intangible 
assets: (i) computerized information (software, databases), (ii) innovative 
property (research and development, mineral exploitation, copyright and 
license costs and other product development, design and research expenses) 
and (iii) economic competences (brand equity, firm-specific human capital 
and organizational structure). They have capitalized the investments in these 
intangibles under some assumptions regarding deflators and depreciation 
rates. They find that innovative property (including R&D) accounts for a 
proportion of labor productivity growth that ranges from 4.5% in the UK 
to 12.5% in the United States.

Besides the extended production function approach, there are at least 
three other approaches that are worth signaling: the stochastic efficiency 
frontier, the market value and the stochastic productivity residual. The 
stochastic efficiency frontier estimates both the outward shift of the fron-
tier and changes of positions with respect to the frontier. Kumbhakar et al. 
(2012) estimate a parametric stochastic efficiency frontier instead of a pro-
duction function. For a sample of top European R&D investors between 
2000 and 2005, they show that in high-tech sectors, R&D mainly shifts 
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out the frontier, whereas in low-tech sectors its role is mainly to bring firms 
closer to the frontier. Many studies have also looked into whether valuations 
of firms in the stock market are related to the volume of their R&D capi-
tal stocks in publicly traded firms. The underlying model is a market value 
equation that depends on the replacement value times Tobin’s q, which 
depends on knowledge capital (see Griliches 1990; Hall 2000). Although 
this method can only be applied for publicly traded firms, it has the advan-
tage of including expected future returns. Positive effects of R&D have been 
estimated for many countries, although these estimated coefficients are lower 
than one, suggesting overinvestment, insufficient shareholder protection or 
too low R&D depreciation rates used in the construction of the R&D cap-
ital stocks (see Hall and Oriani 2006). The last approach that we want to 
mention models R&D no longer as a capital stock, which affects produc-
tivity in a linear and deterministic fashion, but as an investment that affects 
the distribution of TFP. Using this kind of framework, Doraszelski and 
Jaumandreu (2013) find that in most Spanish industries the return to R&D 
is higher, the higher is past productivity and that the mean expected produc-
tivity is higher for R&D-performing than for non-R&D-performing firms. 
The net rate of return to R&D varies across industries but averages around 
40%, being higher in industries where the uncertainty is higher.

3.2  Studies Based on Patent Data7

In principle, the methods used in the previous section could be applied to 
the stock of patents as a measure of the stock of knowledge in lieu of the 
R&D stock. In this way, the patent stock could be related to productivity, 
market value, movements to the efficiency frontier or the Markov process 
governing the stochastic productivity residual. The fact that the distribution 
of patent values is highly skewed, with very few patents being worth a lot, 
militates in favor of using R&D instead of patents to explain TFP or mar-
ket value, because the errors in variable problem are higher for patents than 
for R&D. Hall et al. (2005) have compared the effect of R&D, patents and 
citations on the market value of firms and found that a percentage point 

7Patent data have been used for other topics than their link to R&D and productivity, like the strate-
gic use of patents (pre-emptive patenting, patent trolls, patent litigations, patent thickets), or policies 
for protecting intellectual property (patent length, patent breath, patentability); see Hall and Harhoff 
(2012). We shall limit ourselves to the use of patents as indicators of innovation and their link to varia-
tions in productivity.
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increase in the R&D/assets ratio leads to a 0.8% increase in market value, 
that an extra patent per million $ of R&D boosts market value by about 
2%, and an extra citation per patent boosts it by over 3%. They also find 
that the market values are particularly correlated with citations that cannot 
be predicted from past citations. Although patent counts are not as good 
predictors of market value as R&D, they nevertheless add to the under-
standing of market values.

What has also been examined is the link between patents and R&D, one 
version of the so-called knowledge production function (Griliches 1990). 
It has been found that patents are correlated with R&D and that there is 
hardly any lag between the two. Here again, the relationship is less visible in 
the within temporal dimension. In the cross-sectional dimension, the rela-
tionship between patents and R&D is higher for small than for large firms, 
because of selectivity (observing the best small firms) and more frequent use 
of informal IP protection in large firms and informal R&D in small firms.

Patents can be very useful for estimating R&D spillovers. There are two 
ways in which this can be done. The first is to measure a spatial correla-
tion of firms in the patent space, i.e., the vector positions of firms in patent 
classes. This idea goes back to Jaffe (1986). The idea is that the more firms 
patent in the same or in close patent classes, the more they perform simi-
lar research and benefit from each other’s research. The second way patents 
can be used in connection to R&D spillovers is by way of patent citations. 
Citations to previous patents can be considered as proxies for knowledge 
flows between firms. This approach had been used to estimate spillovers 
across industries (Scherer 1982), countries (Jaffe et al. 1993; Verspagen 
1997) or regions (Peri 2005). Patent citations tend to be localized, and 
therefore, if they are supposed to reflect knowledge flows, they point to geo-
graphical spillovers that decrease with distance to the origin. Peri (2005) 
finds that only 20% of the knowledge generated in a region flows out of it 
even though knowledge flows are much less localized than trade flows.

Using the Google Patent database, Kogan et al. (2017) infer the value of 
patents from the stock market reactions three days after patents are issued. 
A firm’s innovation is measured as the sum of the values of all the patents 
granted to a firm normalized by its size. The authors find that a one standard 
deviation increase in a firm’s innovation is associated with a 2.4% increase 
in a firm’s revenue-based productivity, whereas a one standard deviation 
increase in innovation by a firm’s competitors is followed by a 1.7% drop in 
productivity over five years. At the macrolevel, they find that a one stand-
ard deviation increase in macroinnovation leads to a 3.4% increase in TFP 
growth in the next 5 years.
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3.3  Studies Based on Innovation Survey Data

With the advent of the innovation surveys, which started to be collected in 
many countries in the early 1990s, it became possible to relate productivity 
with measures of implemented innovation output instead of just innovation 
inputs. Actually, the production function relating productivity to innovation 
output could be combined with a knowledge production function relating 
innovation input (R&D or innovation expenditure) with innovation out-
put. This structural model was first proposed by Pakes and Griliches (1984) 
using patents as innovation outputs and later implemented by Crépon et al. 
(1998), using patents and the share of innovative sales as alternative meas-
ures of innovation output, in what has come to be known as the CDM 
model. It treats the endogeneity of R&D and innovation output by having 
an equation explaining the amount of R&D, one that explains the intensity 
of innovation and one that explains productivity in growth rates or in levels. 
Moreover, some firms happen to do no R&D and many are not innovative. 
This selectivity issue is also handled in the CDM model using tobit models 
or Heckman’s two-step approach. The CDM framework allows for the use 
of binary and continuous data for innovation inputs and or outputs and in 
principle for multiple sources of innovation.

The original CDM model is a recursive model without feedback from 
productivity to R&D or innovation. It may well be that productive firms 
are more innovative because they can afford to finance innovation projects. 
Several attempts have been made to let this happen by introducing past pro-
ductivity in the innovation input or output equations (Baum et al. 2017; 
Raymond et al. 2015; Cainelli et al. 2006). Another generalization of the 
CDM model consists in allowing for lags in the relationships among R&D, 
innovation and productivity, as well as for persistence in innovation and 
productivity. It is important in that case to allow for unobserved heteroge-
neity so as to avoid spurious persistence. Persistence seems to be correlated 
with the intensity of innovation as it is found to be more pronounced for 
R&D-performing innovative firms (Peters 2009), in high-tech industries 
(Raymond et al. 2010) and for radical innovators (Zhen 2018).

When continuous measures of innovation output are used, the typical 
orders of magnitude of the elasticities of output with respect to innovation 
are between 0.10 and 0.25, indicating that a 10% increase in innovation 
output (sales of new products per employee) increases labor productivity by 
1–2.5% (Mohnen and Hall 2013). The elasticity of productivity with respect 
to innovation output declines when other factors like capital stock or human 
capital are controlled for. As was also mentioned for R&D, lower elasticities 



114     P. Mohnen

are found when the regression is in growth rates rather than levels of produc-
tivity. The innovation survey allows for various levels of novelty of product 
innovations by distinguishing products new to the firm and products new to 
the market. With continuous data, no major differences are found regarding 
the level of novelty. When only binary data on innovation output are availa-
ble, innovation generally increases productivity significantly, whatever kind of 
innovation is considered. Peters et al. (2017) report that in German high-tech 
industries, it is product innovation that increases productivity, and in low-
tech industries, it is process innovation. As Jaumandreu and Mairesse (2017) 
actually argue and show, it is difficult to identify separately the effect of differ-
ent types of innovation, partly because we know too little to instrument each 
type of innovation output by different exogenous variables and partly because 
different types of innovation are often introduced simultaneously.

On French data, Mairesse et al. (2005) have shown that the rates of return to  
R&D calculated from the CDM model are consistent with those obtained from 
the reduced form model where R&D enters the production function directly. 
What these innovation surveys have also revealed is that especially for low and 
medium technology firms, small- and medium-sized firms and firms in develop-
ing countries, non-R&D is an important input in the innovation process besides 
formal R&D. Instead of relying on their own R&D, these firms buy outside 
technologies and invest in advanced manufacturing technologies, licensing and 
training to advance their state of knowledge (Santamaría et al. 2009; Huang 
et al. 2010). The CDM model has recently been generalized by Peters et al. 
(2017) in the direction of making the effect of R&D on innovation and of inno-
vation on productivity stochastic. Their model allows for firms to be innovative 
without doing R&D; as a matter of fact, on German data they find that this is 
the case for 22% of the firms. Firms that do R&D are more likely to be innova-
tive, but R&D is not a sufficient condition for being innovative. The probability  
of turning out not to be innovative is 10% in low-tech industries and 20% in 
high-tech industries. The long-run rate of return to R&D is calculated as the 
relative difference in the expected firm value between firms that do and those 
that do not do any R&D. In the high-tech industries, the median rate of return 
to R&D is 6.7%. In low-tech industries, the corresponding figure is 2.8%. They 
also find a lot of heterogeneity between firms and thereby rejoin Baum et al. 
(2017), who report that the relationship between innovation and productivity 
differs across industries. The international comparison study performed on 18 
OECD countries also found heterogeneity across countries, types of sectors and 
sizes of firms with generally larger effects of innovation on productivity in manu-
facturing than in services (OECD 2009). The positive links between innovation 
input, innovation output and productivity are also obtained on Latin American 
data, but the semi-elasticity of productivity with respect to dichotomous 
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measures of innovation tends to be higher in Latin American than in European 
countries, reflecting a greater productivity gap that could be overcome by inno-
vation in the former countries (Crespi and Zuniga 2012).

There is mixed evidence regarding the existence of any complementarity 
between different types of innovation, meaning that the return from one 
type would increase in the presence of the other type. Ballot et al. (2015) 
find some complementarity between product and process innovation in 
France and in the UK, but only complementarity between product (not 
process) and organizational innovation in France (not the UK). Peters et al. 
(2017) find no sign that the simultaneous introduction of product and pro-
cess innovation has any additional effect in German firms, whereas Schmidt 
and Rammer (2007) conclude that product and process innovations lead to 
higher cost reductions or more novel (new-to-market) product innovations 
when combined with both organizational and marketing innovations.

3.4  Innovation Count Data

One of the first studies using counts of new products is by Comanor and 
Scherer (1969). They used two measures of new product counts correspond-
ing to the notions of new to the market and new to the firm: the number of 
new chemical entities introduced by each pharmaceutical firm from 1955 
to 1960, with each new product weighted by its sales during the first two 
calendar years following introduction, and a similar broader measure that 
includes combinations of active ingredients, new dosage forms and products 
that merely duplicate those already introduced by competing firms as well as 
new chemical entities. They found significant positive correlations between 
the three measures even after controlling for firm size.

Acs and Audretsch (1988) exploit count data on announced innovations 
compiled by the US Small Business Administration from listings in hundreds 
of trade journal. They report a higher correlation between innovation counts 
and patents than between innovation counts and R&D. When controlling for 
other determinants, they obtain an elasticity of innovation counts with respect 
to corporate R&D close to 0.5. Using the SPRU innovation count database, 
Geroski (1991) and Sterlachinni (1989) find a positive correlation between 
the number of innovations used in an industry and its productivity growth.8

8Sjöö (2016) examines whether there was an industrial renewal in Sweden between 1970 and 2007 in 
terms of degree of novelty, volume, firm size, concentration and industrial origin on the basis of some 
4000 innovations introduced in Sweden during this time period. She does not relate innovations to pro-
ductivity growth.
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4  Conclusion and Discussion

Whatever the innovation indicator, there will always be the problem that 
part of the variation of productivity reflects mismeasured prices. Few micro-
datasets contain product prices. To the extent that industry deflators incor-
rectly measure firm-specific price changes on the input or on the output side 
productivity gets over- or underestimated. This problem is magnified when 
it comes to innovation. First, prices of new products are hard to measure, 
second, quality changes are difficult to dissociate from pure price changes, 
and third, part of revenue productivity growth can be due to market power 
instead of efficiency in the production of goods or services.

Over the last 50 years, efforts have been made to collect indicators of 
innovation inputs and outputs in a systematic and standardized way. R&D 
surveys are conducted in almost all countries, and innovation surveys are 
conducted on a regular basis in more and more countries. Patent applica-
tions have soared, thereby collecting useful data on inventions in technol-
ogy classes, citations and patent renewal fees to infer the value of patents 
and to measure knowledge spillovers. With progress in digital technology, 
information on patents and other IP tools like trademarks, licenses and util-
ity models can be easily stored and made available worldwide. In the future, 
big data will allow the examination of innovation from other angles, such as 
consumption patterns and networks.

The choice between indicators depends on the purpose of their use. In 
this paper, we confined ourselves to explaining TFP growth. They could also 
be used to assess domestic and international competitiveness, employment, 
standard of living, development or inequality in the distribution of income. 
Policy makers tend to concentrate on a particular indicator for monitoring 
and benchmarking innovative capabilities, for instance, the R&D over GDP 
ratio. This rather narrow view of technological capabilities neglects at least 
three facts: First, some industries are more R&D-intensive than others, and 
a country might be specialized in low R&D-intensive industries; second, 
what matters is not just R&D generation but rather R&D use and a country 
may decide to buy knowledge in the technology market rather than doing 
R&D itself; and third, many digitally based innovations are services, which 
do not require much R&D but developments of connectivity, multi-sided 
markets and integration of technologies.

Even when it comes to explaining TFP growth, there is not one best indi-
cator. As we have seen, every indicator has its specificities, strengths and 
weaknesses. Some measure the inputs, and others measure the outputs of 
technological of innovation; some are easily available, and others require 
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special permissions; some are collected regularly and others only occasion-
ally; some present themselves as panel data and others only as cross-sections. 
They may be biased toward large firms or publicly listed firms. They may 
pertain to a particular date or to a longer period. They may reflect a verifia-
ble transaction or they may represent guestimates. And the list goes on. One 
solution is to construct an index based on these various indicators. While it 
may do a good job in terms of monitoring and benchmarking, it does not 
exploit the full information contained in multiple indicators, which would 
lead to a better understanding of the links between them and the ultimate 
performance measure one seeks to explain.

Improvements will be made in the future thanks to the ease of sharing 
and storing information. New indicators will be developed such as the trac-
ing of the value chains for many goods, data on functionalities rather than 
services and integration of worldwide operations of multinational firms. As 
much as possible, we should try to strive for longitudinal data that can be 
merged with other data.

The present state of knowledge confirms Schumpeter’s and long before 
him John Rae’s vision of innovation as driver of economic growth. Whatever 
innovation indicator we select, the evidence overwhelmingly shows that in 
the long run, innovation is correlated with TFP growth whether at the firm 
or at the aggregate level.
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1  Introduction

With economic production theory as a basis, Farrell (1957) showed how 
overall efficiency can be estimated relative to and decomposed into technical 
efficiency and allocative efficiency. Technical inefficiency is observed when 
a given production possibility is not on the isoquant. As a result, the unit 
is using too many inputs to produce the observed output, leading to excess 
costs and lower profits. Allocative inefficiency results when the firm uses the 
wrong mix of inputs given exogenous input prices. Farrell and Fieldhouse 
(1962) extended Farrell’s earlier work by relaxing the assumption of con-
stant returns to scale by allowing decreasing returns. In addition, linear pro-
gramming was suggested as a methodology that could solve for inefficiency. 
Boles (1971) extended the models to variable returns to scale and provided 
computer programs to estimate the efficiency. Afriat (1972) provided the 
formulation for technical efficiency measurement that was consistent with 
data envelopment analysis (DEA) with variable returns to scale and the Free 
Disposal Hull model. Färe et al. (1994) provide a useful theoretical frame-
work for the production economic approach to efficiency measurement.

DEA was introduced to the operations research literature by Charnes 
et al. (1978) to measure the technical efficiency of a given observed decision 

The Choice of Comparable DMUs 
and Environmental Variables

John Ruggiero

J. Ruggiero (*) 
University of Dayton, Dayton, OH, USA
e-mail: jruggiero1@udayton.edu

https://doi.org/10.1007/978-3-030-23727-1_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23727-1_5&domain=pdf


124     J. Ruggiero

making unit (DMU) assuming constant returns to scale for a multiple 
input, multiple output production correspondence. The model was extended 
by Banker et al. (1984) to allow variable returns to scale; solutions to the 
constant returns to scale and variable returns to scale models allowed a fur-
ther decomposition into technical and scale efficiency components. The jus-
tification for focusing on technical efficiency instead of cost efficiency was 
the lack of input prices in public sector applications. In addition to esti-
mates of technical efficiency, the DEA model provides apparent benchmark-
ing capabilities. Given that frontier estimates are convex combinations of 
observed technically efficient DMUs, the resulting referent set provides com-
parisons for inefficient units. Secondary analysis could provide best practices 
that could possibly inform inefficient DMUs and provide a path to tech-
nical efficiency. Alternatively, one could interpret DEA as a nonparametric 
estimator of frontier production; in this case, any frontier point could serve 
as a relevant benchmark where the path to efficiency allowed increasing or 
decreasing discretionary inputs.

While the supposed lack of input and output prices in public sector 
applications provided a rationale to use DEA, applications to the public 
sector revealed another weakness. Unlike regression analysis, DEA did not 
have a way to include nondiscretionary variables. With respect to public 
sector applications, there is a vast literature showing that the production 
is a function not only of discretionary inputs, but also of nondiscretionary 
inputs. Here, we consider nondiscretionary inputs as factors that influence 
the amount of output but that are taken as given by DMU. Early contri-
butions to the DEA literature included applications analyzing public sec-
tor education. Charnes et al. (1981) applied the constant returns to scale 
model to analyze program and managerial efficiency of Program Follow 
Through. In this paper, nondiscretionary factors (education of the mother, 
highest occupation of a family member, etc.) were included as discretionary 
inputs.

Bessent et al. (1982) analyzed the 167 elementary schools in the Houston 
Independent School District and used several nondiscretionary factors (e.g., 
percent of students paying full lunch price and percent of nonminority stu-
dents) as discretionary inputs. Smith and Mayston (1987) illustrated DEA 
with English school authorities using a constant returns to scale model. While 
they correctly distinguished between discretionary and nondiscretionary 
inputs, both types of inputs were treated similarly in the DEA model. Färe 
et al. (1989) measured efficiency of Missouri schools and used discretionary 
inputs and standardized tests. An attempt was made to control for nondiscre-
tionary factors by restricting the sample to a homogenous group of DMUs. 
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Thanassoulis and Dunstan (1994) analyze cohorts of students using DEA with 
targets for improvement. The DEA models used a pretest to control for prior 
attainment and a socioeconomic variable (percent of students not receiving free 
school lunches) as the discretionary inputs.

Beginning with the Coleman Report (1966), there has been strong evi-
dence that socioeconomic variables are the most important factors deter-
mining educational outcomes. While quality teacher and other discretionary 
inputs can positively impact outcomes, the empirical evidence suggests that 
parental background and student characteristics have a bigger effect. Failure 
to control for the socioeconomic variables leads to biased estimates of fron-
tier production and therefore, of technical efficiency.

Hanushek (1989) summarized approximately twenty years of educational 
production studies and concluded that differences in school spending do 
not explain variations in student performance. Family background, however, 
does explain the differences in outcomes. Hanushek further finds that stu-
dents with wealthier and more educated parents perform better. Hanushek 
(1979, 1986) provides a useful foundation to analyze education as a produc-
tion process whereby outcomes are function of school inputs and socioeco-
nomic variables. In addition to Hanushek’s work, Bridge et al. (1979) and 
Cohn and Geske (1990) provide useful discussions of the education produc-
tion process.

Bradford et al. (1969) provided a two-stage model to analyze public sector 
production where intermediate outputs (e.g., instruction in mathematics, 
reading, etc.) are determined by school resources. In a second stage, the final 
outcomes of interest are functionally related to the intermediate outputs and 
the socioeconomic environment. Importantly for our work, these socioeco-
nomic factors of production are nondiscretionary even in the long-run. For 
purposes of measuring efficiency, it is important therefore to properly con-
trol for the socioeconomic environment.

Theoretical extensions useful for analyzing educational production were 
made by Banker and Morey (1986) which allowed nondiscretionary inputs. 
Alternative models to control for the socioeconomic environment include 
Ray (1988, 1991) which used a second-stage ordinary least squares regres-
sion. McCarty and Yaisawarng (1993) extended this by using a Tobit regres-
sion in the second stage.1 Ruggiero (1996, 1998) provided a conditional 

1Simar and Wilson (2007) criticize the two-stage models and argue in favor of a bootstrapping approach. 
Banker and Natarajan (2008) and McDonald (2009) prove the consistency of the OLS estimator in the 
second stage. McDonald (2009) further shows that Tobit is not appropriate.
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technology that does not assume convexity with respect to the nondiscre-
tionary variables. Ruggiero (1996) extended the DEA model to allow bench-
marking of a given DMU only to those who had an environment (defined 
by the level of the nondiscretionary input) no better than that DMU. With 
multiple nondiscretionary variables, however, the model does not allow com-
parison of DMUs that are better in some but not all factors. Ruggiero (1998) 
provided a three-stage model that develops an overall index of environmental 
harshness with a second-stage regression that weights the importance of each 
nondiscretionary input. In the third stage, the technology is conditional on 
the estimated second-stage environmental index.2

2  Data Envelopment Analysis

Assume that each of n DMUs uses a vector X = (x1, . . . , xm) of m dis-
cretionary inputs to produce a vector Y = (y1, . . . , ys) of s outputs. Input 
and output data for individual DMU j (j = 1, . . . , n) are represented by 
Xj = (x1j, . . . , xmj) and Yj = (y1j, . . . , ysj), respectively. Assuming variable 
returns to scale, the empirical production possibility set is defined as:

The technology τv is characterized by variable returns to scale given the con-
vexity constraint. It is assumed that any convex combination of observed 
production (and hence all observed production) is feasible.

(1)

τv = {(Y ,X) :

n∑

j=1

�jykj ≥ yk , k = 1, . . . , s;

n∑

j=1

�jxlj ≤ xl, l = 1, . . . ,m;

n∑

j=1

�j = 1;

�j ≥ 0, j = 1, . . . , n}.

2Ruggiero (2000) extended the conditional model to estimate returns to scale. Brennan et al. (2013) and 
Johnson and Ruggiero (2014) extended the model to measure productivity. Extensions to measuring 
school costs and allocative efficiency were provided by Ruggiero (2001) and Haelermans and Ruggiero 
(2013), respectively.
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Measurement of technical efficiency in DEA uses observed production 
possibilities to construct the observed production possibility set; estimates 
of efficiency are (usually) obtained using the Farrell measure with either an 
input or output orientation. We first define the output-oriented DEA meas-
ure of technical efficiency as the reciprocal of the distance function:

Definition: TEO(Yi,Xi) = (max {θ : (θYi,Xi) ∈ τv)})
−1 ≤ 1 is the out-

put-oriented measure of technical efficiency for DMU i (i = 1, . . . , n).

The nonparametric estimate of the technical efficiency for DMU i 
(i = 1, . . . , n) is obtained in the solution of the following linear program-
ming model:

For a given DMU, the output-oriented model identifies the maximum 
equiproportional expansion of observed output possible holding input levels 
no greater than the observed levels. The solution to (2) for DMU i provides 
not only the measure of technical efficiency but also a convex combination 
with weights (�∗i1, . . . , �

∗
iN) = (�∗1, . . . , �

∗
N) that can serve as a benchmark.

Alternatively, one could use an input-oriented model that seeks the maximum 
equiproportional reduction in observed inputs consistent with the observed out-
put levels. We define the DEA input-oriented measure of efficiency as:

Definition: TEI(Yi,Xi) = (min {θ : (Yi, θXi) ∈ τv)}) ≤ 1 is the input- 
oriented measure of technical efficiency for DMU i (i = 1, . . . , n).

The DEA estimate of technical efficiency for DMU i (i = 1, . . . , n) can be 
obtained in the solution of the following linear programming model:

(2)

[
TEO(Yi,Xi)

]−1

= Max θ

s.t.

n∑

j=1

�jykj ≥ θyki, k = 1, . . . , s;

n∑

j=1

�jxlj ≤ xli, l = 1, . . . ,m;

n∑

j=1

�j = 1;

�j ≥ 0, j = 1, . . . , n.
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Similar to the output-oriented model, (3) assumes that all observed pro-
duction and any convex combination of observed production are feasible. 
And, the solution of the model provides not only an estimate of technical 
efficiency but also a relevant benchmark with (�∗i1, . . . , �

∗
iN) = (�∗1, . . . , �

∗
N) 

for each DMU i (i = 1, . . . , n).
For illustrative purposes, we provide a simple example where four DMUs 

are observed producing one output (y ) using one input (x ) We further 
assume that frontier production is given by y = x0.5. Data for the four 
observations are shown below:

DMU Input (x ) Output (y )

A 1 1
B 4 2
C 9 3
D 6 1.5

The data are shown in Fig. 1.
Based on the known production frontier, we observe that A, B and C are 

technically efficient in both the input- and output-oriented models. DMUs 
A, B and C are each observed producing the maximum output given the 
observed input and simultaneously employing the least input given observed 
output. DMU D, however, is technically inefficient. D is observed produc-
ing 1.5 units of output; according to the known production frontier, the 
minimum level of input necessary to produce this output is 2.25. In the 
solution of (3), we estimate TEI(YD,XD) = 0.417 with a benchmark con-
sisting of an equally weighted combination of A and B. We note that the 
referent frontier convex combination (2.5, 1.5) is not truly efficient because 
a piecewise linear is used to approximate the true frontier.

(3)

TEI(Yi,Xi) = Min θ

s.t.

n∑

j=1

�jykj ≥ yki, k = 1, . . . , s;

n∑

j=1

�jxlj ≤ θxli, l = 1, . . . ,m;

n∑

j=1

�j = 1;

�j ≥ 0, j = 1, . . . , n.
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For the output-oriented model, we know that D should be able to pro-
duce an output of 

√
6 ≈ 2.45. D is observed producing an output of only 

1.5, leading to a true output-oriented efficiency of approximately 0.61. The 
solution of (2) for DMU D leads to an estimate of technical efficiency of 
TEO(YD,XD) = 0.625 using a referent convex combination with weights on 
B and C of 0.6 and 0.4, respectively.

DEA purportedly provides benchmarking for inefficient firms. In the case 
where there are efficient frontier observations using the same input levels (in 
the case of the output-oriented model), we do obtain benchmarks that are 
relatively efficient. In the case illustrated in Fig. 1, however, the benchmark 
is a convex combination of relatively efficient DMUs. Presumably, DMUs B 
and C, for example, are doing something different and better than DMU D. 
If, for example, B, C and D all employ different managerial styles, we really 
only know that the managerial styles of B and C are better than the mana-
gerial style of D. But it is not clear what a convex combination of the mana-
gerial styles of B and C even means. Alternatively, one could argue that A, B 
and C are all useful benchmarks for D conditional on which input and out-
put combination D would prefer assuming it became technically efficient.

The DEA models envelop the observed data with piecewise linear facets 
to provide an estimate of frontier production in deterministic models where 
all deviations are due to inefficiency. In these DEA models, it is assumed 
that all inputs and outputs are discretionary. If production is characterized 
by nondiscretionary inputs, then the equiproportional reduction in these 
factors of production is inconsistent with the assumed model. In other 
words, the benchmark for DMUs with nondiscretionary inputs should be to 

Fig. 1 DEA and benchmarking
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feasible production possibilities holding the nondiscretionary inputs at the 
observed level. In the next section, we extend the analysis to the nondiscre-
tionary inputs.

3  DEA in the Short-Run

In standard economics, the short-run is defined as the period of time where at 
least one factor of production is considered fixed. In the long-run, all inputs are 
variable. Hence, in the short-run, it may not be possible to reduce the amount 
of some input, say, capital. Based on the definitions above, this will not have 
any effect on the output-oriented estimates of technical efficiency because 
technical efficiency is defined holding all of the inputs fixed. Furthermore, the 
input-oriented model might still be appropriate if the wasted amount of the 
fixed input can be freely disposed. Assuming the technology is characterized 
by convexity in the long-run, then the input-oriented models will provide a 
feasible frontier possibility. Some capital like machines and equipment could 
be held idle. However, in some cases, the amount of capital cannot be varied 
(number of plants, for example) in the short-run and hence, can be considered 
nondiscretionary in the short-run and discretionary in the long-run.

We now consider production of the technology in the short-run with 
fixed inputs. Using the notation above, we now assume that each of n 
DMUs uses a vector X = (x1, . . . , xm) of m discretionary inputs given a vec-
tor Z = (z1, . . . , zp) of p fixed inputs to produce a vector Y = (y1, . . . , ys) 
of s outputs. The fixed input data for DMU j (j = 1, . . . , n) are given by 
Zj = (z1j, . . . , zpj). Given the assumption of convexity, the empirical pro-
duction possibility set is now defined as:

(4)

τ 1v = {(Y ,X ,Z) :

n∑

j=1

�jykj ≥ yk , k = 1, . . . , s;

n∑

j=1

�jxlj ≤ xl, l = 1, . . . ,m;

n∑

j=1

�jzqj ≤ zq, q = 1, . . . , p;

n∑

j=1

�j = 1;

�j ≥ 0, j = 1, . . . , n}.
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Here, the technology is equivalent to (1) where we make a distinction 
between the fixed and variable inputs. Using this technology, we now rede-
fine the definition of the output-oriented measure of efficiency relative to 
the technology in (4):

Definition: TEO(Yi,Xi,Zi) = (max {θ : (θYi,Xi,Zi) ∈ τ 1v )})
−1 ≤ 1 is the 

output-oriented measure of technical efficiency for DMU i (i = 1, . . . , n).

Given the symmetric treatment of the variable and fixed inputs in the  
output-oriented model, namely that all inputs are held fixed in the esti-
mation of efficiency, the estimate of technical efficiency for DMU i  
(i = 1, . . . , n) is obtained in the solution of the following linear  
program:

Essentially, to estimate output-oriented efficiency, all inputs are treated fixed 
and the solution of (5) for each DMU provides a measure of efficiency as 
the reciprocal of the maximum equiproportional expansion of all outputs. 
Further, the model provides benchmarking information with (�∗i1, . . . , �

∗
iN) = 

(�∗1, . . . , �
∗
N) for each DMU i (i = 1, . . . , n).

We now define the DEA input-oriented measure of technical efficiency 
relative to the technology (4):

(5)

[
TEO(Yi,Xi,Zi)

]−1

= Max θ

s.t.

n∑

j=1

�jykj ≥ θyki, k = 1, . . . , s;

n∑

j=1

�jxlj ≤ xli, l = 1, . . . ,m;

n∑

j=1

�jzqj ≤ zqi, q = 1, . . . , p;

n∑

j=1

�j = 1;

�j ≥ 0, j = 1, . . . , n.
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Definition: TEI(Yi,Xi,Zi) = (min {θ : (Yi, θXi,Zi) ∈ τ 1v )}) ≤ 1 is the 
input-oriented measure of technical efficiency for DMU i (i = 1, . . . , n).

This definition of technical efficiency in the case of fixed inputs modifies the 
original definition by considering the equiproportional reduction in varia-
ble inputs holding outputs and fixed inputs at the observed level. Banker 
and Morey (1986) provided the estimator of technical efficiency for DMU 
i (i = 1, . . . , n) as the solution of the following linear programming model:

The estimator for linear programming model (6) allows convex combina-
tions of production possibilities defined on the outputs, variable inputs and 
fixed inputs. Essentially, the Banker and Morey (1986) model projects ineffi-
cient points to the production frontier using an equiproportional reduction 
in observed variable inputs, holding outputs and fixed inputs at the observed 
values of the DMU under analysis.

The Banker and Morey (1986) model is illustrated in Fig. 2, where it is 
assumed that four DMUs A–D are observed producing the same level of 
output y1 = 10 using one discretionary input x1 and one fixed input z1. 
Efficient production for this example is given by y1 = x0.31 z0.51 . Observed 
production data are shown in the following table:

DMU x1 z1

A 4.61 40
B 11.53 20.06
C 20 16.57
D 20 40

(6)

TEI(Yi,Xi,Zi) = Min θ

s.t.

n∑

j=1

�jykj ≥ yki, k = 1, . . . , s;

n∑

j=1

�jxlj ≤ θxli, l = 1, . . . ,m;

n∑

j=1

�jzqj ≤ zqi, q = 1, . . . , p;

n∑

j=1

�j = 1;

�j ≥ 0, j = 1, . . . , n.
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The data are illustrated in Fig. 2 with the discretionary input x1 on the 
horizontal axis and the nondiscretionary input z1 on the vertical axis. Based 
on the production function we observe A–C are all technically efficient pro-
ducing the observed output with the fewest inputs. In the traditional sense 
where z1 represents capital that is fixed in the short-run, the technical effi-
ciency measure TEI(YD,XD) = 0.577. Viewing technical efficiency in the 
long-run sense, DMU D would be able to reduce both x1 and z1 to approxi-
mately 57.7% of its current input use and still produce y1 = 10. The bench-
mark in this case would be DMU B.

As pointed out by Banker and Morey (1986), this expansion path 
is not possible in the short-run. Instead, one could estimate (6) and seek 
the maximum reduction in input x1 while holding z1 fixed at z1D = 40. 
The relevant benchmark in this case would be DMU A which is observed 
having the same amount of the fixed input z1A = 40 and using less of 
the discretionary input x1 to produce the same output level. As a result, 
TEI(YD,XD,ZD) = 4.06/20 = 0.23, which implies DMU D could reduce 
its discretionary input to 23% of its current level and still produce y1 = 10 
holding z1D = 40.

4  DEA with Nondiscretionary Variables

Many production processes involve factors of production that are nondiscre-
tionary even in the long-run. For example, in public service provision, soci-
oeconomic variables beyond the control of the DMU influence the amount 
of resources necessary to produce a given amount of output. It is well known 
in the education literature that socioeconomic status plays a large role in the 

Fig. 2 DEA with a nondiscretionary input
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success of the students. As a result, it is necessary to control for the soci-
oeconomic environment to measure a given DMUs efficiency and relevant 
benchmarks. The environmental variables are nondiscretionary variables and 
will be treated as such in the development of the model.

We now consider the production technology in the presence of a non-
discretionary variable. We now assume that each of n DMUs uses a vector 
X = (x1, . . . , xm) of m discretionary inputs given an environmental varia-
ble z1 to produce a vector Y = (y1, . . . , ys) of s outputs. The environmental 
variable for DMU j (j = 1, . . . , n) is given by z1j. We assume that a more 
favorable environment is represented by a higher value of the environmental 
variable z1. The empirical production possibility set conditional on the envi-
ronmental variable z defined by Ruggiero (1996)3 is:

In this representation, a constraint �j(z − zj) ≥ 0 is added for each DMU 
j (j = 1, . . . , n) to insure that any DMU with a more favorable environment 
(i.e., zj > z) is disallowed from serving as a referent benchmark. Hence, 
the production possibility set is conditional on the environmental variable. 
Using this technology, we now redefine the definition of the output-oriented 
measure of efficiency relative to the technology in (7):

Definition: TEO(Yi,Xi, zi) = (max {θ : (θYi,Xi, zi) ∈ τ 1v (zi)})
−1 ≤ 1 is the 

output-oriented measure of technical efficiency for DMU i (i = 1, . . . , n).

(7)

τ 1v (z) = {(Y ,X , z) :

n∑

j=1

�jykj ≥ yk , k = 1, . . . , s;

n∑

j=1

�jxlj ≤ xl, l = 1, . . . ,m;

n∑

j=1

�j = 1;

�j(z − zj) ≥ 0, j = 1, . . . , n;

�j ≥ 0, j = 1, . . . , n}.

3We use the notation of Podinovski (2005) to define the production possibility set.
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Unlike the Banker and Morey (1986) model, discretionary inputs and dis-
cretionary outputs are treated similarly to the standard DEA model with 
the exception that projection to the output isoquant is conditional on the 
environmental variable. DMUs that have a more favorable environment 
are excluded as benchmarks in the evaluation of the DMU under analysis. 
An estimate of technical efficiency in the output-oriented model for DMU 
i (i = 1, . . . , n) is obtained in the solution of the following linear program 
developed by Ruggiero (1996):

Efficiency is estimated as the inverse of the equiproportional expansion of 
all discretionary outputs holding discretionary inputs fixed conditional on 
the environmental variable. In the evaluation of a given DMU i, the optimal 
weight �∗ij = 0 for any DMU j that has a more favorable environment (i.e., 
zj ≥ zi).

We can also define an input-oriented measure of technical efficiency rela-
tive to the variable returns to scale technology defined in (7):

Definition: TEI(Yi,Xi, zi) = min {θ : (Yi, θXi, zi) ∈ τ 1v (zi)} ≤ 1 is the 
input-oriented measure of technical efficiency for DMU i (i = 1, . . . , n).

Here, benchmarks are identified from the equiproportional reduction in dis-
cretionary inputs for a given level of outputs conditional on the environ-
ment. Estimation of technical efficiency conditional on the environment was 
provided in Ruggiero (1996) for DMU i (i = 1, . . . , n) as the solution to 
the following linear programming model:

(8)

[
TEO(Yi,Xi, zi)

]−1

= Max θ

s.t.

n∑

j=1

�jykj ≥ θyki, k = 1, . . . , s;

n∑

j=1

�jxlj ≤ xli, l = 1, . . . ,m;

n∑

j=1

�j = 1;

�j(zi − zj) ≥ 0, j = 1, . . . , n;

�j ≥ 0, j = 1, . . . , n.
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The models (8) and (9) were shown to work well using simulated data in 
Ruggiero (1998) when one variable captured the effect of the environment. 
In cases where there are multiple environmental variables, the model is una-
ble to individually weight the importance of each environmental variable 
without a relatively large number of observations. Ruggiero (1998) proposed 
a three-stage model where only discretionary variables are used in the first 
stage. The second-stage model used regression analysis to derive an overall 
environmental index that was incorporated into a third-stage model using 
either (8) or (9). See Estelle et al. (2010) for a further discussion.

We illustrate the conditional technology with a simulation where we 
assume one output y1 is produced using one discretionary input x1 and one 
environmental variable z1 where efficient production is given by y1 = z1x

0.4
1 . 

We assume three different values for z1: 1, 1.5 and 2. For each level of z1 we 
vary x1 from 0.5 to 11.5 in increments of 0.5. For these 69 observations, we 
calculate observed production at the efficient level according to the produc-
tion function. Additionally, we generate three additional points presented in 
the following table:

DMU x1 z1 y1

A 6 1.5 2.5
B 3.5861 1.5 2.5
C 6 1.5 3.0715

The data are illustrated in Fig. 3.
DMU A is the only inefficient DMU. DMUs B and C are the appropriate 

benchmarks for DMU A; we note that both DMUs B and C are observed 

(9)

TEI(Yi,Xi, zi) = Min θ

s.t.

n∑

j=1

�jykj ≥ yki, k = 1, . . . , s;

n∑

j=1

�jxlj ≤ θxli, l = 1, . . . ,m;

n∑

j=1

�j = 1;

�j(zi − zj) ≥ 0, j = 1, . . . , n;

�j ≥ 0, j = 1, . . . , n.
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producing on the production frontier associated with the moderate envi-
ronment level with z1 = 1.5, i.e., the level of the environmental variable of 
DMU A. DMU B is the input-oriented benchmark for DMU A; this reveals 
that the technical efficiency of A is only 59.77% efficient: DMU A could 
reduce its discretionary input x1 to 59.77% of its observed input level and 
still produce the observed output y1 = 2.5. Likewise, DMU C is the out-
put-oriented benchmark for DMU A; given x1 = 6, DMU A could increase 
observed output from 2.5 to 3.0715 leading to an output-oriented level of 
technical efficiency of 81.39%.

We now consider the solution to the Banker and Morey (1986) input-ori-
ented model (6). In the solution of (6) for DMU A, the referent set con-
sists of three observed efficient points (x1, z1, y1) = (1.5, 1, 1.1760), (5, 2, 
3.8073) and (5.5, 2, 3.9553) with weights of 0.5, 0.444 and 0.056, respec-
tively. The resulting convex combination is (x1, z1, y1) = (3.278, 1.5, 2.5). 
But this convex combination is not feasible given that DMU B is the effi-
cient referent point with x1 = 3.5861. As a result, the estimated efficiency of 
DMU A (0.54635) is biased downward from the true efficiency measured 
to be 0.5977. This results because estimator (6) wrongly imposes convexity 
with respect to the nondiscretionary input z1. Estimating the model with (9) 
produces the correct results; DMU A is only 0.5977 efficient with a bench-
mark consisting of DMU B with a weight of 1.

We also consider the output-oriented solution using the simulated data. 
Using estimator (5), benchmark for DMU A consists of an equally weighted 
convex combination of (x1, z1, y1) = (3, 1, 1.5519) and (9, 2, 4.8165) which 
implies that DMU A should be able to produce y1 = 3.1842 given x1 = 6 and 
z1 = 1.5. However, this is not feasible. Given the production function used 

Fig. 3 Frontiers conditional on z1
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in the data-generating process, we know that the maximum possible out-
put that can be obtained from x1 = 6 and z1 = 1.5 is y1 = 3.0715 (i.e., DMU 
C ). The convexity assumption leads to an infeasible projection and hence, 
an incorrect benchmark. Estimating the efficiency using (9) produces a feasi-
ble projection, the correct measure of technical efficiency and the appropri-
ate benchmark of DMU C. Of course, the precise benchmark was generated 
because the true benchmarks B and C were included in the data set.

5  Analysis of Educational Production

To illustrate the effect of using the alternative models, we consider an appli-
cation of DEA to analyze performance of Ohio school districts. Data for this 
application were used in Johnson and Ruggiero (2014). In this application, 
we consider only data for the 2007–2008 school year. In Ohio, thirty meas-
ures of performance (primarily results on standardized tests) are collected 
and aggregated into one measure of overall outcome measure. We note that 
the measure is highly correlated with each of the 30 individual performance 
measures. We use this measure for the output in the DEA models.

Four expenditure per pupil measures were chosen as the discretionary 
inputs: administrative, instructional, building operation and pupil support. 
Given that expenditures are dependent on prices, all expenditures were 
deflated by an index of first-year teacher salaries (using data from school year 
2004–2005.) We also consider the percent of students not in poverty as a 
nondiscretionary input. Descriptive statistics for the 204 school districts are 
reported in Table 1.

By far, instructional expenditures per pupil represent the largest share 
of total expenditures per pupil. On average, nearly 56.9% of all expendi-
tures per pupil are spent on instruction (primarily on teachers). On average, 
school districts spend approximately 12.7% of total operational expenditures 
on administration.

For comparative purposes, we estimate the fixed input model of Banker and 
Morey (6) and the conditional convexity model of Ruggiero (9) to the Ohio 
school district data. The results of the estimation are reported in Table 2.

Both of the models provided similar estimates. We know that the Banker 
and Morey model will always produce technical efficiency estimates no 
greater than the Ruggiero model. On average, the Banker and Morey esti-
mated technical efficiency to be 0.81 with a standard deviation of 0.105. 
The Ruggiero model estimated average efficiency to be 0.848, a difference 
of 0.039. The correlation (rank correlation) between the two estimators 
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was 0.895 (0.887), implying that the assumption of convexity with respect 
to the nondiscretionary input in the Banker and Morey model is not that 
problematic. The largest difference between the two estimators was 0.298, 
suggesting the possibility that the Banker and Morey model overestimate 
technical inefficiency in some cases.

We turn now to benchmarking in the two models. We’ll focus on a spe-
cific case where the two models produced widely different results. In particu-
lar, we choose DMU 382 which was estimated to be 66.8% efficient using 
the Banker and Morey estimator and 87.8% efficient using the Ruggiero 
estimator, leading to a difference of 0.210 in the estimated efficiency. In 
Table 3, we report the benchmark obtained from the solution of (6) which 
assumes convexity with respect to all inputs. In Table 4, we report the 
benchmark from the solution of the conditional convexity model (9).

Included in both tables are the variables used in the DEA models. 
Consider first the Banker and Morey results presented in Table 3. Five 
DMUs comprise the reference set used as a benchmark for DMU 382. 

Table 2 Summary of results

All estimates by Authors. Correlations reported are the Pearson and Spearman corre-
lation coefficients between the input-oriented Banker and Morey estimator (6) and 
the input-oriented Ruggiero estimator (9)

Estimator Mean Std. dev. Min. Max.

Banker and Morey 0.809 0.105 0.365 1.000
Ruggiero 0.848 0.110 0.414 1.000
Difference 0.039 0.049 0.000 0.298
Correlation between estimators

Correlation 0.895
Rank correlation 0.887

Table 1 Descriptive statistics Ohio school districts (N = 604)

Expenditures are all measured per pupil. Calculations by Author

Variable Mean Std. dev. Min. Max.

Output
State Performance Index 95.824 6.313 70.000 109.700
Discretionary inputs
Instructional expenditures $5018 $723 $3396 $9721
Administrative expenditures $1123 $316 $576 $4295
Building operations expenditures $1786 $442 $943 $6164
Pupil support expenditures $897 $257 $358 $3192
Nondiscretionary input
Percent of students not in poverty 96.96 3.35 76.97 100.00
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DMU 264 has the highest weight (0.622) used to evaluate DMU 382. We 
note that DMU 264 has 97.24% of their students not in poverty. This is 
much larger than DMU 382, which has more poverty with only 92.56% of 
students not in poverty. Compared to DMU 382, this referent DMU had a 
much higher State Performance Index (100.7 vs. 94.6) and much lower per 
pupil expenditures on instruction ($3553 vs. $6351), administration ($720 
vs. $1248), building operations ($1347 vs. $3046) and pupil support ($430 
vs. $831). Given that DMU 264 has a much more favorable environment, it 
is not clear if the much lower input levels and higher outcome level should 
be attributed to the more favorable environment or to more efficient use of 
resources. Another DMU in the reference set, DMU 500 with a weight of 
only 0.087, also has much lower input levels and a more favorable environ-
ment with a lower percent of students in poverty. The convex combination 
also includes three DMUs (32, 44 and 136) with a total weight of 0.290 
that have a much worse environment. Of these, DMU 136 was able to 
achieve much better, a better outcome (97.1 vs. 94.6) than DMU 382 with 
lower expenditures per pupil in instruction, administration and building 
operations but higher expenditures in pupil support. Overall, it is not clear 
whether the estimated inefficiency is caused by better-performing school dis-
tricts in the referent set or is biased downward by inclusion of districts with 
a much more favorable environment.

Table 4 reports the benchmark using estimator (9) introduced by 
Ruggiero (1996). The referent benchmark for DMU 382 consists of a con-
vex combination of three different DMUs (250, 498 and 505) than the 
ones selected by the Banker and Morey model. Here, all three DMUs have a 
higher percentage of students in poverty than DMU 382. As a result, unlike 

Table 4 Benchmark for DMU 382 using Ruggiero model

All calculations by Author. Expenditures are measured per pupil

Benchmark DMUs
Variable DMU 382 DMU 250 DMU 498 DMU 505

Output
State Performance Index 94.6 93.5 89.6 97.7
Discretionary inputs
Instructional expenditures $6351 $4639 $5782 $5259
Administrative expenditures $1248 $1353 $936 $1071
Building operations expenditures $3046 $1900 $1807 $2584
Pupil support expenditures $831 $472 $473 $973
Nondiscretionary input
Students not in poverty (%) 92.56 92.54 92.33 90.361
Weight 0.216 0.271 0.513
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in the Banker and Morey model, the results cannot be attributed to includ-
ing districts with a more favorable environment in the referent set. In terms 
of the output measure, DMU 505 (with a weight of 0.513) had a higher 
performance index than DMU 382 (97.7 vs. 94.6) while the other DMUs 
had a lower performance index value. However, with two exceptions (DMU 
250’s administrative expenditures per pupil and DMU 505’s pupil support 
expenditures per pupil), all per pupil expenditures were lower than DMU 
382’s. In terms of benchmarking, it is clear that differences between DMU 
382 and the referent convex combination arise from better performance and 
not a better environment.

6  Conclusions

In this chapter, we presented alternative DEA models that have been used 
in applications where environmental variables are inputs into the produc-
tion process. Many applications have used the standard DEA model and 
have treated the uncontrollable inputs as discretionary in an input-ori-
ented framework. If in fact these factors cannot be reduced, then the result-
ing measures of efficiency are biased and the resulting benchmarks are not 
appropriate. Banker and Morey (1986) provided the first model to incorpo-
rate fixed factors of production. Their model is appropriate as an application 
to short-run production where the DEA technology axioms are appropriate 
for long-run production. In this case, the Banker and Morey (1986) model 
properly estimates efficiency relative to the possible reduction in discretion-
ary inputs and produces useful benchmarking information by holding dis-
cretionary inputs fixed.

In public sector production, however, the socioeconomic variables are 
fixed even in the long-run. There is no theoretical reason why convex-
ity should hold for these factors of production, and hence, the Banker and 
Morey (1986) model can produce infeasible projections with the maintained 
assumptions. Alternatively, Ruggiero (1996) introduced a DEA model that 
controls for nondiscretionary variables by restricting possible benchmarks to 
include only those that have an environment no better than the unit under 
analysis. The model assumes that there is no correlation between efficiency 
and the nondiscretionary socioeconomic environment which would lead to 
an endogeneity problem. In this case, one could incorporate a multiple stage 
model incorporating two-stage least squares for example but this would 
require obtaining valid instruments.
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1  Introduction

Performance evaluation in any decision-making situation involves comparing 
the outcome from the decision actually made with what is deemed to be the 
most preferred outcome within the constraints of the decision-making prob-
lem. To evaluate the performance of a firm producing a single output from 
a specific bundle of inputs, one compares its actual output with the maxi-
mum producible quantity from the bundle of inputs it is using. In textbook 
economics, the production function defines the maximum output producible 
from any given bundle of inputs. The actual output may fall below this max-
imum due to inefficiency. In practice, there is no readily available scientific 
formula showing the maximum output from a given input and the produc-
tion function has to be constructed from observed input-output data.

The common practice in empirical research is to start with an explicit 
functional specification of the production function and to use regression 
to estimate the parameters of the model. However, the two-sided residuals 
imply that that for some observations, the observed output actually exceeds 
the fitted value. This violates the assumption that the regression provides an 
upper limit on the producible output. In the Stochastic Frontier Analysis 
(SFA) literature, this problem has been addressed in various ways. These 
include adjusting the intercept upwards to cover all data points from above 

Data Envelopment Analysis  
with Alternative Returns to Scale

Subhash C. Ray

S. C. Ray (*) 
Department of Economics, University of Connecticut, Storrs, CT, USA
e-mail: subhash.ray@uconn.edu

https://doi.org/10.1007/978-3-030-23727-1_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23727-1_6&domain=pdf


146     S. C. Ray

(Greene 1980), specifying a one-sided distribution (like the Gamma dis-
tribution) for the error term (Richmond 1974), and a full-blown stochas-
tic frontier incorporating a one-sided error term representing inefficiency 
alongside a two-sided disturbance capturing random variation in the frontier 
(Aigner et al. 1977).

An alternative to the parametric econometric analysis is the nonparamet-
ric approach of Data Envelopment Analysis (DEA) introduced by Charnes 
et al. (1978). In neoclassical production theory, the intellectual roots of  
DEA go all the way back to Debreu (1951), Koopmans (1951), Shephard 
(1953, 1970), Farrell (1957), Farrell and Fieldhouse (1962), Afriat (1972), 
and Hanoch and Rothschild (1972) among many others. In this strand of 
the efficiency literature, one makes only a number of general assumptions 
about the properties of the underlying production technology but leaves the 
production function unspecified. The observed input-output data are used  
to solve various mathematical programming problems to measure the techni-
cal efficiency of a firm (as in Farrell (1957) or Farrell and Fieldhouse (1962)) 
or to ascertain whether there exists any production technology satisfying the 
assumption relative to which the data would be consistent with optimizing 
behavior by the firms (Afriat 1972; Hanoch and Rothschild 1972; Diewert 
and Parkan 1983; Varian 1984; Banker and Maindiratta 1988).

The parametric approach of SFA has several advantages over DEA. Being 
an econometric approach, it readily yields standard errors of the parameter 
estimates and allows application of standard statistical tests. Moreover, one 
can derive marginal productivities and various elasticities from the estimated 
model. However, validity of the entire empirical analysis rests critically on 
the validity of the functional form specified. If, for example, the true tech-
nology is log quadratic (translog) but one estimates a Cobb Douglas pro-
duction function, specification error may be interpreted as inefficiency. 
Moreover, the estimated model may violate regularity conditions like non-
negative marginal productivities or negative own-price elasticities of condi-
tional input demand either globally or at individual data points. When the 
estimated model itself is invalid, little insight can be gained from standard 
errors of the coefficients.

In DEA, the regularity conditions are imposed on the technology but no 
functional form is specified. Hence, (weak) monotonicity of the production 
function or convexity of isoquants is guaranteed to hold. A major weakness 
of DEA is that it treats all deviations from the frontier as inefficiency and 
does not readily accommodate random noise. It is possible, however, to gen-
erate an empirical distribution function of technical efficiency through boot-
strapping and construct a confidence interval.
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This chapter presents an overview of the DEA approach to measurement 
of technical efficiency. Special attention is paid to alternative returns to scale 
assumptions about the technology. The rest of the chapter is organized as 
follows. Section 2 introduces the production possibility set (PPS) as the 
foundation of neoclassical production economics and the Shephard Distance 
Function as a way to measure the proximity of an observed input-out-
put bundle to the frontier of the PPS. Section 3 details the nonparamet-
ric methodology of production analysis and measurement of output- and 
input-oriented radial technical efficiency under alternative returns to scale 
assumptions. Section 4 presents the so-called multiplier model form of the 
DEA linear programming problem and derives the CCR ratio measure of 
technical efficiency directly from the transformation function for a multi-
ple-output-multiple-input technology. Section 5 looks at the mathematical 
programming model of Aigner and Chu (1968) for estimating a determin-
istic parametric frontier production frontier and links it to DEA. Section 6 
deals with measurement of scale efficiency and uses the most productive 
scale size (MPSS) to identify the nature of local returns to scale at different 
input-output bundles both those which are on the frontier and those which 
are below the frontier. We also show how to measure scale elasticity in DEA. 
Section 7 explains non-radial measures of technical efficiency. Section 8 cov-
ers Graph efficiency measurement including Graph Hyperbolic efficiency, 
Directional Distance Function, and Pareto-Koopmans efficiency. Section 9 
is the conclusion.

2  Conceptual Foundations

The logical starting point of any discussion of production efficiency is the 
concept of the PPS. An input vector x0 ∈ Rn

+ and an output vector y0 ∈ Rm
+ 

together constitute a feasible production plan if y0 can be produced from 
x0. The PPS consists of all feasible production plans and is defined as 
T = {(x, y) : y ∈ Rm

+ can be produced from x ∈ Rn
+}.

It is assumed that T is a closed set. In any given context, the size and shape of 
the set T depend not only on the state of technical knowledge but also on a host 
of physical, legal, and cultural factors. In the single-output case, it is a common 
practice to define a production function: y∗ = f (x);

∂f
∂xi

≥ 0, (i = 1, 2, . . . , n) 
where y∗ is the maximum quantity of output producible from a given input 
bundle x. The PPS can then be defined as

(1)T = {(x, y) : y ≤ f (x), y ∈ R+, x ∈ Rn
+}.
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Note that while y∗ is the maximum output producible from the input bun-
dle x, the actual output (y ) can be less than y∗ due to inefficiency. For multi-
ple-output-multiple-input production, one uses the transformation function: 
F(x, y) = 0; ∂F

∂xi
≤ 0, (i = 1, 2, . . . , n); ∂F

∂yj
≥ 0, (j = 1, 2, . . . ,m). In that 

case

The definition in (1) is a special case of the more general definition in (2), 
with F(x, y) = y− f (x). If F(x0, y0) = 0, (x0, y0) is a boundary point 
of T. Any reduction in all inputs or increase in all outputs will result 
in a strictly positive value of the transformation function and the new 
input-output bundle will be infeasible. The graph of the technology1 is the  
set G = {(x, y) : F(x, y) = 0; x ∈ Rm

+, x ∈ Rn
+}.

If F(x0, y0) < 0, (x0, y0) is an interior point. Similarly, if 
F(x0, y0) > 0, (x0, y0) is infeasible.

2.1  Distance Functions and Technical Efficiency

Technical efficiency in production lies in producing the maximum out-
put quantity (or a maximal output bundle) from a given bundle of inputs 
or in using a minimal input bundle to producing a given output quantity 
(or bundle). The question of efficiency in production was first formally 
addressed by Debreu (1951) who introduced the concept of the ‘Coefficient 
of Resource Utilization.’ It was essentially a macroeconomic concept meas-
uring production efficiency at the economy level. Technical efficiency of 
any individual producer depends on the location of its actual input-output 
bundle relative to the boundary of the PPS or the graph of the technology. 
Shephard (1953) introduced the distance function for the one output pro-
duction technology (subsequently generalized to the multiple-output-multi-
ple-input case by Shephard [1970] and McFadden [1978])2 which provides 
a measure of technical efficiency of an individual production decision- 
making unit.

The Output Distance Function evaluated at a specific input-output bun-
dle (x0, y0) relative to the PPS (T ) is Dy(x0, y0) = min � : (x0, 1

�
y0) ∈ T . 

If one represents the PPS by the transformation function as in (2), the 

(2)T =
{
(x, y) : F(x, y) ≤ 0; x ∈ Rm

+, x ∈ Rn
+

}
.

1Some writers prefer to call it the Graph of the transformation function.
2Although the volume was published in 1978, McFadden’s paper has been available since 1968.
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Output Distance Function becomes Dy(x0, y0) = min � : F(x0, 1
�
y0) ≤ 0. 

If Dy(x0, y0) > 1, the output bundle y0 is not producible from x0 so that 
(x0, y0) /∈ T . On the other hand, if Dy(x0, y0) ≤ 1, F(x0, y0) ≤ 0 and 
(x0, y0) ∈ T . Of course, if Dy(x0, y0) = 1, (x0, y0) ∈ G.

Thus, an alternative way to define the PPS is T = {(x, y) : Dy(x, y) ≤ 
1; x ∈ Rm

+, x ∈ Rn
+

}
.

Comparable to the Output Distance Function is the Input Distance 
Function Dx(x0, y0) = max δ : F(1

δ
x0, y0) ≤ 0. Thus, yet another alterna-

tive definition of the PPS is T = {(x, y) : Dx(x, y) ≥ 1; x ∈ Rm
+, x ∈ Rn

+}.

As noted earlier, technical efficiency precludes the possibility of increas-
ing outputs without increasing inputs or reducing inputs without reduc-
ing outputs. At this point, it is important to distinguish between weak and 
strong efficiency. An input-output bundle (x, y) ∈ T  is weakly efficient in its 
output orientation if α > 1 ⇒ (x,αy) /∈ T . Similarly, (x, y) ∈ T  is weakly 
efficient in its input-orientation if β < 1 ⇒ (βx, y) /∈ T . As is quite appar-
ent, weak efficiency rules out simultaneous increase in all outputs leaving the 
inputs unchanged or simultaneous reduction in all inputs without changing 
outputs. However, it does not rule out potential increase in one or several 
outputs or reduction in one or several inputs.3 By contrast, (x, y) ∈ T  is 
strongly output efficient if y′ ≥ y ⇒ (x, y′) /∈ T . Here the vector inequality 
y′ ≥ y means that y′ is at least as large as y in every coordinate and is strictly 
larger in some coordinate(s). Thus, strong technical efficiency in output ori-
entation rules out increasing any individual output without reducing any 
output or increasing any input. Similarly, (x, y) ∈ T  is strongly input effi-
cient if x′ ≤ x ⇒ (x′, y) /∈ T . Weak efficiency allows the presence of slacks 
in some (but not all) outputs (or inputs). Strong efficiency, on the other 
hand, does not allow slacks in any output (or input). An input-output bun-
dle is Pareto efficient if there is no slack in any output and any input.

The output-oriented radial technical efficiency of a firm producing output  
y0 from the input x0 is τy(x0, y0) = 1/ϕ∗, where ϕ∗ = maxϕ : (x0,ϕy0) ∈ T . 
Clearly, τy(x0, y0) = Dy(x0, y0). The input-oriented radial technical efficiency is

(3)τx(x
0, y0) = min θ : (θx0, y0) ∈ T .

τx(x
0, y0) = 1/Dy(x0, y0).

3This can happen if ∂F
∂yj

= 0 for some outputs or ∂F
∂xi

= 0 for some inputs.
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Farrell (1957) was the first to formally define and measure technical efficiency 
in production using input-output data.4 However, the first mathematical for-
mulation of technical efficiency measurement as a Linear Programming (LP) 
optimization problem can be found in the appendix of Farrell and Fieldhouse 
(1962) where is it set up as an output-oriented model.5

Measurement of output- and input-oriented technical efficiencies 
is shown graphically in Figs. 1 and 2. In both figures, the curve OP is 
the graph of the production function y = f (x) and the points A and 
B are the input-output quantities (XA,YA) and (XB,YB). In Fig. 1, the 
points A∗ andB∗ are their output-oriented efficient projections. Hence, 

Fig. 1 Output-oriented technical efficiency

5Of course, under the CRS assumption (as shown below) the output- and input-oriented measures of 
technical efficiency are identical.

4The computation method in Farrell’s paper was extremely burdensome. It involved comparing the input 
vector per unit of the output used by any unit with convex combinations of all other pairs of such (per 
unit) input bundles. The technical efficiency of the unit under evaluation was the minimum contraction 
factor feasible in its unit input bundle compared to any such convex combination. As is apparent from 
Diagram 2 on page 256 of Farrell (1957), it was an input-oriented measure.
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τy(XA,YA) = AXA/A
∗XA and τy(XB,YB) = BXB/B

∗XB. Similarly, the 
points C and D in Fig. 2 are the input-oriented efficient projections of A 
and B. Thus, τx(XA,YA) = CYA/AYA and τx(XB,YB) = DYB/BYB.

3  The Nonparametric Methodology

In order to measure technical efficiency in any empirical application, one has 
to define the PPS by specifying the production function (in the single-out-
put case) or the transformation function (in the multiple-output case). In 
parametric models, this requires an explicit functional specification like the 
Cobb Douglas, Constant Elasticity of Substitution (CES), or the Translog 
production function. Measures of technical efficiency as well as elasticities of 
substitution between inputs derived from the calibrated model are all con-
tingent upon the validity of the specified functional form. By contrast, in 
the nonparametric approach of DEA one relies on a number of quite general 

Fig. 2 Input-oriented technical efficiency
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assumptions about the underlying technology and employs mathematical 
programming techniques to construct the frontier of the PPS.

Consider an industry producing m outputs from n inputs. Let (xj, yj) 
be the observed input-output bundle of firm j. Designate the sample of N 
observations as the set

Assumptions

(A1) Every observed input-output bundle is feasible. Thus,

(A2) The PPS is convex.

(A3) Inputs are freely disposable.

(A4) Outputs are freely disposable.

One can use the dataset D and the assumptions (A1–A4) to construct the 
PPS empirically as

The intuition behind (4) is quite simple. By virtue of (A1) and (A2), every 

convex combination (x̄, ȳ) =
(∑N

j=1 �jx
j,
∑N

j=1 �jy
j|
∑N

j=1 �j = 1
)
 is feasi-

ble. Further, by (A3), x ≥ x̄ implies (x, ȳ) is feasible. Finally by (A4) y ≤ ȳ 
implies (x, y) is feasible. The set T̂ is often described as the free disposal con-
vex hull of the observed input-output bundles and is the smallest set satisfy-
ing assumptions (A1–A4). The frontier of this empirically constructed PPS 
envelops the observed data points most tightly from above. Hence, measuring 
efficiency using this frontier as the benchmark for evaluation is called DEA.

D = {(xj, yj), j = 1, 2, . . . ,N}.

(xj, yj) ∈ Ω ⇒ (xj, yj) ∈ T .

(x0, y0), (x1, y1) ∈ T ⇒

(
�x

0 + (1− �)x1, �y0 + (1− �)y1
)
∈ T for all � ∈ (0, 1).

(x0, y0) ∈ T ∧ x1 ≥ x0 ⇒ (x1, y0) ∈ T .

(x0, y0) ∈ T ∧ y1 ≤ y0 ⇒ (x0, y1) ∈ T .

(4)T̂ =




(x, y) : x ≥

N�

j=1

�jx
j; y ≤

N�

j=1

�jy
j;

N�

j=1

�j = 1; �j ≥ 0; (j = 1, 2, . . . ,N)




.
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3.1  Output- and Input-Oriented Radial Technical 
Efficiency

Banker, Charnes, and Cooper (BCC) (1984) formulated the following LP 
model to measure the output-oriented technical efficiency of a firm using 
input x0 ∈ Rn

+ and producing output y0 ∈ Rm
+:

The solution of (5) yields τy(x0, y0) = 1/ϕ∗. Even though ϕ is unre-
stricted, when (x0, y0) is one of the bundles in D (say the bundle of firm 
k ), 

(
�k = 1, �j = 0 (j �= k), ϕ = 1

)
 is a feasible solution and, in that case, 

1 would be a lower bound for ϕ. But even when (x0, y0) is not one of the 
observed bundles nonnegativity of the λs and the outputs will ensure that ϕ 
will never be negative.6

The benchmark input-output bundle for (x0, y0) is (
x∗ =

∑N
j=1 �

∗
j x

j, y∗ =
∑N

j=1 �
∗
j y

j
)
 constructed from the optimal solu-

tion of the problem. For any output r, the difference between the left-
hand side and the right-hand side of the relevant output constraint, 
s+r =

∑N
j=1 �

∗
j y

j
r − ϕ∗y0r, is the output slack, representing the additional 

expansion of the output feasible beyond the common expansion by the scalar 
ϕ∗. Similarly, the input slack, s−i = x0i −

∑N
j=1 �

∗
j x

j
i , is the potential reduc-

tion in input i. The scalar ϕ∗ shows the factor by which all outputs can be 
expanded without requiring any additional input. In fact, some outputs can 
be expanded further when there are positive output slacks. Similarly, some 
inputs can even be reduced if there are positive input slacks. The BCC out-
put-oriented model yields a radial measure of technical efficiency because it is 

(5)

maxϕ s.t.

N∑

j=1

�jy
j
r ≥ ϕy0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ x0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0, (j = 1, 2, . . . ,N);

ϕ unrestricted.

6However, if any individual input in the bundle x0 is smaller than the smallest value of the correspond-
ing input across all observations in the dataset D, (3) will not have a feasible solution.
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the inverse of the radial output expansion factor ϕ∗ and does not incorporate 
the output slacks.

In the single-output case, the optimal value of the objective function in 
the output-oriented DEA problem (ϕ∗) yields an estimate of the maximum 
output producible from the input bundle x0 as f̂ (x0) = ϕ∗y0. The true 
maximum output that can be produced from x0 may actually be consider-
ably higher than ϕ∗y0. But we cannot infer that on the basis of the observed 
input-output bundles without making additional assumptions about the 
technology. However, it cannot be any smaller than ϕ∗y0 if the assumptions 
(A1–A4) hold. In that sense, it is the most conservative estimate of the fron-
tier output and, hence, τy(x0, y0) = 1/ϕ∗ is an upper bound on the output 
orient technical efficiency of the firm.7

The corresponding input-oriented technical efficiency of the firm using 
input x0 and producing output y0 may be evaluated as τx(x0, y0) = θ∗, where

Again, it is obvious that 0 < θ∗ ≤ 1. It should be noted that the benchmark 
input-output bundle (x∗ =

∑N
j=1 �

∗
j x

j, y∗ =
∑N

j=1 �
∗
j y

j) on the frontier 
for the input-oriented DEA problem will, in general, be different from what 
was obtained for the output-oriented problem.

3.2  Constant Returns to Scale

If one assumes constant returns to scale (CRS), we get the additional assumption
(A5) (x, y) ∈ T hence (kx, ky) ∈ T for all k ≥ 0.

An implication of the CRS assumption is that in the single-output case 
the production function y∗ = f (x) is homogenous of degree 1. That is, 

θ∗ = min θ s.t.

N∑

j=1

�jy
j
r ≥ y0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ θx0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N);

θ unrestricted.

7We use superscripts for vectors and subscripts for scalars.
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f (kx) = kf (x). In the multiple-output case, CRS implies that the transfor-
mation function is homogeneous of degree 0. That is F(kx, ky) = F(x, y). 
This ensures that if F(x0, y0) ≤ 0, then F(kx0, ky0) ≤ 0. Hence, if (x0, y0) is 
feasible, so is (kx0, ky0).

Under the additional assumption of CRS, the empirically constructed PPS is

To understand why the constraint 
∑N

j=1 �j = 1 is no longer included 
consider the following. We have seen above that under (A1–A2),  
(x̄, ȳ) =

(∑N
j=1 �jx

j,
∑N

j=1 �jy
j|
∑N

j=1 �j = 1
)
 is feasible. But now, with the  

added assumption of CRS, (kx̄, kȳ) =
(∑N

j=1 �jx
j,
∑N

j=1 �jy
j| ∑N

j=1 �j = k; k ≥ 0.
)
   is feasible for any k ≥ 0. But nonnegativity of k is 

automatically satisfied by the nonnegativity constraints on the �js and no addi-
tional constraint on the sum of the λs is needed.

The CCR output-oriented CRS DEA LP model is

The CRS output-oriented radial technical efficiency is τCy (x0, y0) = 1/ϕ∗
C .

The corresponding CRS input-oriented model is

The CRS input-oriented technical efficiency is τCx (x0, y0) = θ∗C .

(6)T̂C =




(x, y) : x ≥

N�

j=1

�jx
j; y ≤

N�

j=1

�jy
j; �j ≥ 0; (j = 1, 2, . . . ,N)




.

(7)

ϕ∗
C = maxϕC s.t.

N∑

j=1

�jy
j
r ≥ ϕCy

0
r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ x0i (i = 1, 2, . . . , n);

�j ≥ 0, (j = 1, 2, . . . ,N);

ϕ unrestricted.

(8)

θ∗C = min θ s.t.

N∑

j=1

�jy
j
r ≥ y0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ θx0i (i = 1, 2, . . . , n);

�j ≥ 0 (j = 1, 2, . . . ,N);

θ unrestricted.
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To prove that under CRS the input- and output-oriented radial meas-
ures of technical efficiency are identical, we first rewrite the objective func-
tion in (7) as ψ∗

C = min 1/ϕC and then divide the constraints by ϕC to 
rewrite the problem as min 1/ϕC s.t.

∑N
j=1

�j

ϕC
y
j
r ≥ y0r (r = 1, 2, . . . ,m);  

∑
N

j=1

�j

ϕC
x
j

i
≤ 1

ϕC
x
0
i
(i = 1, 2, . . . , n); �j≥0 (j = 1, 2, . . . ,N); ϕC unrestricted.  

Now define ψ = 1/ϕC andµj = �j/ϕC . As explained before, even though 
in principle ϕC is unrestricted in sign, nonnegativity of outputs ensures that 
it will never be negative. Hence µj will also be nonnegative for each observa-
tion j. Hence, the CRS output-oriented problem can be reduced to

The problem in (9) is exactly the same as the input-oriented problem in 
(8). Hence, ψ∗ in (9) equals θ∗C in (8) and 1/ϕ∗

C from (7). This proves that 
τCy (x

0, y0) = τCx (x
0, y0).

4  The CCR Ratio and the Multiplier Model

In their seminal paper introducing DEA, Charnes et al. (1978) defined tech-
nical efficiency as

In the OR/MS literature, the numerator 
∑m

r=1 ury
0
r  is described as the 

virtual output and the denominator 
∑n

i=1 vix
0
i  as the virtual input of the 

unit under evaluation. In that sense, h(x0, y0) is a measure of total factor 

(9)

minψ s.t.

N∑

j=1

µjy
j
r ≥ y0r (r = 1, 2, . . . ,m);

N∑

j=1

µjx
j
i ≤ ψx0i (i = 1, 2, . . . , n);

µj ≥ 0, (j = 1, 2, . . . ,N);

ψ unrestricted.

(10)

h(x0, y0) =max

m∑

r=1

ury
0
r /

n∑

i=1

vix
0
i

s.t.

m∑

r=1

ury
j
r/

n∑

i=1

vix
j
i ≤ 1 (j = 1, 2, . . . ,N);

ur , vi ≥ 0 (r = 1, 2, . . . ,m; i = 1, 2, . . . , n).
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productivity rather than of technical efficiency. Because (x0, y0) ∈ D the 
constraint in (10) ensures that h(x0, y0) cannot exceed unity. Further, 
because the objective function and the constraints are all homogene-
ous of degree 0 in u and v, we can normalize the aggregation weights as ∑n

i=1 vix
0
i = 1. The linear fractional functional programming problem in 

(10) can then be equivalently written as the following LP problem:

The problem in (11) is the linear programming dual of the optimization 
problem for the CRS input-oriented technical efficiency in (8). Hence, by 
standard duality results, the CCR ratio h(x0, y0) in (11) equals τCx (x0, y0) 
from (8) and under CRS also equals τCy (x0, y0).

Ray (2019) provides a derivation of the CCR ratio directly from 
the transformation function. Consider the input-output bun-
dle (x0, y 0) and assume that F(x0, y0) < 0 so that (x0, y0) is an inef-
ficient bundle. Next, consider the Shephard Distance Function 
Dy(x0, y0) = minβ : (x0, y0/β) ∈ T ⇔ F(x0, y0/β) = 0. It is the inverse 
of the largest scalar δ such that F(x0, δy0) = 0 and is the same as the out-
put-oriented Farrell efficiency. Clearly, for (x0, y0), δ > 1 and β < 1.

Focus now on the efficient input-output bundle (x0, y∗0) = (x0, δy0) lying 
on the graph of the technology. Thus F(x0, y∗0) = 0. Now, due to homoge-
neity of degree 0,

Define F0
i
≡

(
∂F
∂xi

)

x0,y∗
0

(i = 1, 2, . . . , n) and F0
r
≡

(
∂F
∂yr

)

x0,y∗
0

(r = 1, 2, . . . ,m). Then 

(12) becomes

(11)

h(x0, y0) = max

m∑

r=1

ury
0
r

s.t.

m∑

r=1

ury
j
r −

n∑

i=1

vix
j
i ≤ 0 (j = 1, 2, . . . ,N);

n∑

i=1

vix
0
i = 1; ur , vi ≥ 0 (r = 1, 2, . . . ,m; i = 1, 2, . . . , n).

(12)F(x0, y∗0) =
∑

i

(
∂F
∂xi

)

x0,y∗0

xi0 +
∑

r

(
∂F
∂yr

)

x0,y∗0

y∗r0 = 0.

(13)
∑

i

F0
i xi0 +

∑

r

F0
r y

∗
r0 = 0.
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Because y∗r0 = δyr0, (13) leads to δ
∑

r F
0
r yr0 = −

∑
i F

0
i xi0. Thus, 

β = 1/δ = −
∑

r F
0
r yr0/

∑
i F

0
i xi0. Define ur ≡ F0

r and vi ≡ −F0
i  to 

derive β = 1/δ =
∑

r uryr0/
∑

i vixi0. This shows that the CCR ratio in 
(10) is the same as the Shephard Distance Function or the Farrell meas-
ure of technical efficiency. Finally, 

∑m
r=1 uryr −

∑n
i=1 vixi = 0 is a 

supporting hyperplane to the PPS at (x0, δ∗y0) and due to convexity ∑m
r=1 ury

j
r −

∑n
i=1 vix

j
i ≤ 0 for all (xj, yj) ∈ D. The multipliers (u and v ) 

are the vectors of shadow prices of outputs and inputs. In that sense, the CCR 
ratio is the ‘shadow return on outlay’ and the inequality constraints are compa-
rable to the ‘no positive profit’ condition in a competitive market under CRS.

The dual LP problem for the output-oriented VRS DEA (also known as 
the BCC) model is

In the next section, we show how the BCC-DEA problem relates to the 
deterministic parametric frontier model of Aigner and Chu (1968).

5  A Deterministic Parametric Frontier as a 
Special DEA Problem

As noted earlier, in the single-output case the observed input-output data 
must satisfy the inequality y ≤ f (x). It is convenient, therefore, to write the 
deterministic production frontier8 as

Aigner and Chu (1968) specified the Cobb-Douglas form of the fron-
tier production function f (x) = Ax

β1
1 x

β2
2 . . . x

βk
k . Then (15) can 

(14)

min v0 +

n∑

i=1

vix
0
i

s.t. v0 +

n∑

i=1

vix
j

i
−

m∑

r=1

ury
j

r
≥ 0 (j = 1, 2, . . . ,N);

n∑

i=1

ury
0
r
= 1;ur , vi ≥ 0 (r = 1, 2, . . . ,m; i = 1, 2, . . . , n).

(15)y = f (x)e−u, u ≥ 0.

8In the parametric frontier production function literature, (39) is described as a deterministic frontier. 
It needs to be made clear that what is deterministic above is the frontier output y∗ = f (x) but the 
actual output y is stochastic because e−u, the inefficiency component, is still random.
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be written in logarithmic form for each individual observation j as 
uj = β0 + β1 ln x

j
1 + β2 ln x

j
2 + · · · + βk ln x

j
k − ln yj ≥ 0; β0 = ln(A). 

Given the one-sided distribution of u, the usual OLS estimation procedure 
does not work in this case. Aigner and Chu proposed minimizing either ∑N

j=1 u
2
j  or 

∑N
j=1 uj subject to the constraints that each estimated residual uj 

is nonnegative. Note that minimizing 
∑N

j=1 uj is equivalent to minimizing 
1
N

∑N
j=1 uj = ū = β0 + β1ln x1 + β2ln x2 + · · · + βkln xk − ln y. Further, 

ln y is a constant and plays no role in the minimization problem. Hence, the 
Aigner-Chu problem can be formulated as

The LP dual to (16) is

Next, define ϕ ≡
∑N

j=1 �j ln yj/ln y. Because �j = 1/N for all j is a feasible 
solution for (17), 

∑N
j=1 �j ln yj ≥ ϕln y. Hence, (17) is equivalent to

(16)

min β0 + β1ln x1 + β2ln x2 + · · · + βkln xk

s.t.β0 + β1 ln x
j
1 + β2 ln x

j
2 + · · · + βk ln x

j
k ≥ ln yj;

βi ≥ 0 (i = 1, 2, . . . , k); β0 unrestricted.

(17)

max

N∑

j=1

�j ln yj

s.t.

N∑

j=1

�j ln x
j

i
≤ ln xi (i = 1, 2, . . . ,m),

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N).

maxϕ s.t.

N∑

j=1

�j ln yj ≥ ϕln y;

N∑

j=1

�j ln x
j
i ≤ ln xi (i = 1, 2, . . . ,m);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N).
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Thus, the Aigner-Chu model actually solves the BCC-DEA output-oriented 
problem evaluating the efficiency of the geometric mean of the input-output 
bundle in the (log) input-output space.9

6  Scale Efficiency

The concept of scale efficiency is best explained for a 1-output 1-input 
technology. Consider a firm with the input-output pair (x0, y0). At the 
observed point, the average productivity of the firm is AP0 = y0/x0. If 
the firm is inefficient, y0 < f (x0) and its output can be increased to f (x0).  
As a result, its average productivity would increase to AP(x0) = f (x0)/x0. 
Thus, eliminating technical inefficiency would automatically raise aver-
age productivity. However, once the firm has been projected on to the 
frontier, no further increase in average productivity is possible without 
changing the input level. All points on the frontier are technically effi-
cient. However, unless CRS holds globally across the frontier, average pro-
ductivity will vary across different points on the frontier. We may define 
average productivity along the frontier as AP(x) = f (x)

x
. Frisch (1965) 

defined the input level, x∗, where AP(x) reaches a maximum as the tech-
nically optimal production scale (TOPS). A measure of scale efficiency of 
the firm would then be SE(x0) = AP(x0)/AP(x

∗). It is well known from 
standard microeconomics that the first-order condition for a maximum 
of AP(x) is f (x)/x = f ′(x) or f (x) = xf ′(x). Hence, at the input level 
x∗, AP(x∗) = f ′(x∗). Define the constant κ = f ′(x∗) and a counterfactual 
CRS production function r(x) = κx. Two things may be emphasized. First, 
by the definition of the TOPS, for every input level x

Second, SE(x0) = AP(x0)/AP(x
∗) = f (x0)/(κx0) = f (x0)/r(x0) ≤ 1, 

which can also be written as SE(x0) = y0/r(x0)
y0/f (x0)

. Now, y∗ = f (x) is the true 
VRS frontier and y0/f (x0) = τy(x0, y0) is a measure of the output-oriented 
VRS technical efficiency. On the other hand, y∗∗ = r(x) is an artificial 
CRS frontier and y0/r(x0) = τCy (x0, y0) is a measure of the output-ori-
ented CRS technical efficiency. Hence, a simple measure of scale efficiency is 
SE(x0) = τCy (x0, y0)/τy(x0, y0).

AP(x) = f (x)/x ≤ AP(x∗) = f (x∗)/x∗ = f
′(x∗) = κ hence f (x) ≤ κx = r(x).

9For an MLE interpretation of the Aigner-Chu model, see Schmidt (1976). Banker (1993) shows that 
DEA provides an MLE of a deterministic frontier. For details of econometric estimation of a parametric 
stochastic frontier see Kumbhakar and Lovell (2000).
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In Fig. 3, the point A shows the input-output bundle (x0, y0) and the 
point B on the production function y∗ = f (x) is the output-oriented 
technically efficient projection. The most productive input scale is x∗ and 
AP(x∗) = f (x∗)/x∗ = Cx∗/Ox∗ = Dx0/Ox0. Also, the tangent to the pro-
duction function at the point C can be treated as a counterfactual CRS pro-
duction function y∗∗ = r(x) = κx; κ ≡ f ′(x∗). Thus,

6.1  Ray Average Productivity and Returns to Scale

The concept of average productivity is unequivocal only in a single-out-
put single-input case. When multiple inputs are used for production (as 
is almost universally the case in real life), one can measure partial average 
productivities but to obtain a single measure of total factor productivity one 

SE(x0) =
f (x0)/x0

f (x∗)/x∗
= Bx0/Dx0

=
Ax0/Dx0

Ax0/Bx0
= f (x0)/r(x0)

=
y0/r(x0)

y0/f (x0)
= D

y
C(x0, y0)/D

y(x0, y0).

Fig. 3 Scale efficiency
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must aggregate the individual inputs into a scalar. In the multiple-output 
case, the individual outputs also need to be aggregated. One way to avoid 
such aggregation is to consider only proportional variations in all inputs and 
the consequent proportional variation in all outputs. Consider a technically 
efficient pair of input-output bundles (x0, y0) satisfying F(x0, y0) = 0. Now 
consider another input bundle x1 = βx0. Thus, the two input bundles have 
the same input-proportions and differ only in scale. Next consider an output 
bundle y satisfying F(x1, y) = 0. There will be many output bundles y sat-
isfying F(x1, y) = 0. Out of them we select the one which is proportional 
to y0. Denote this as y1 = αy0. Now compare the bundles (x0, y0) and 
(x1, y1) = (βx0,αy0). Note that because outputs increase (decrease) with 
inputs, β > 1 implies α > 1 . If we treat x0 as a single unit of a composite 
input and y0 as a single unit of a composite output then (x1, y1) corresponds 
to β units of the composite input and α units of the composite output. In 
terms of the composite input and output, the ray average productivity at 
(x0, y0) is 1 and at (x1, y1) it is y0 ∈ Rm

+ Now, if α > β, we conclude that 
ray average productivity has increased and increasing returns to scale holds 
locally at (x0, y0). Similarly, locally DRS holds when α

β
< 1. Of particular 

interest is a bundle for which α
β
= 1 showing locally CRS.

Note that between any two points (x, y) and (x + dx, y + dy) both on 
the frontier

But when the input bundles are proportional, dxi/xi equals some constant 
q1 for every input i. Similarly, proportionality of the output bundles implies 
dyj/yj equals a constant q2 for every output j. Hence, from (18)

Now, x + dx = (1+ q1)x and y+ dy = (1+ q2)y. Define β = 1+ q1 and 
α = 1+ q2. Then q2 > q1 implies α > β and locally IRS holds at (x, y) . 

(18)

dF =

n∑

i=1

Fidxi +

m∑

j=1

Fjdyj = 0

hence

n∑

i=1

Fixidxi/xi +

m∑

j=1

Fjyjdyj/yj = 0.

(19)

q1

n∑

i=1

Fixi + q2

m∑

j=1

Fjyj = 0

hence q2/q1 = −

n∑

i=1

Fixi/

m∑

j=1

Fjyj.
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Similarly, q2 < q1 implies locally DRS. Finally, q2 = q1 implies locally CRS. 
Starrett (1977) defined the degree of increasing returns as DIR =

q2
q1

− 1.

6.2  Most Productive Scale Size and Local Returns 
to Scale

Banker (1984) defined the most productive scale size (MPSS) in the context 
of multiple-output-multiple-input production as a generalization of Frisch’s 
concept of the TOPS. According to his definition, an input-output bun-
dle (x0, y0) is an MPSS if for all nonnegative real numbers (α,β) such that 
(βx0,αy0) is feasible, α/β ≤ 1. In other words,(x0, y0) is an MPSS if and 
only if there is no other input-output bundle proportional to it with a higher 
ray average productivity. Obviously, an inefficient bundle cannot be an MPSS 
because both its output-oriented projection (x0,ϕ∗y0) and its input-oriented 
projection (θ∗x0, y0) will have a higher ray average productivity.

6.3  Identifying Local Returns to Scale at an Efficient 
Bundle

In the DEA literature, there are three alternative ways to identify the local 
returns to scale properties of an input-output bundle that lies on the frontier 
of the PPS (a) Banker’s Primal approach, (b) a dual approach to due to BCC, 
and (c) a nesting approach due to Färe et al. (1985). Of course, all of them 
lead to the same conclusion.

Banker’s Primal Approach
Assume that the bundle (x0, y0) is efficient under VRS. The following theo-
rem in Banker (1984) identifies whether or not it is an MPSS.

Theorem: An input-output bundle (x0, y0) is an MPSS if and only if the opti-
mal value of the objective function of a CCR-DEA model equals unity for this 
input-output combination.

Proof See Banker (1984, p. 40).

This theorem only determines if the bundle (x0, y0) is an MPSS. If it is not, 
all we know is that locally CRS does not hold at this point on the frontier. 
That does not, by itself, pick between IRS and DRS. However, the following 
corollaries from the theorem can be used to identify local RTS properties by 
looking at the optimal solution of the CCR-DEA problem:
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1. If k =
∑N

j=1 �
∗
j = 1, (x0, y0) is an MPSS and CRS holds locally.

2. If k =
∑N

j=1 �
∗
j < 1, IRS holds locally at (x0, y0).

3. If k =
∑N

j=1 �
∗
j > 1, DRS holds locally at (x0, y0).

Note that the corollaries (1–3) hold both for the output-oriented prob-
lem in (7) and (8) the input-oriented problem in (8). One potential prob-
lem with this approach is that there may be alternative optimal solutions to 
the CCR-DEA LP problem with the optimal values of the λs adding up to 
greater than 1 in one and less than 1 in another. To resolve this ambiguity, 
one should modify the corollaries above and require that the respective con-
ditions for IRS and DRS should hold at all optimal solutions of the CCR-
DEA problem.

To implement this, one would first solve either the output- or the 
input-oriented CRS DEA problem (7) or (8) and obtain the optimal value. 
Suppose that one selected the output-oriented model and obtained ϕ∗ from 
(7). Next one would use ϕ∗ as a parameter to solve the following problem

One would conclude that the condition in corollary 2 holds in all optimal 
solutions of (7) if the optimal k∗ in (20) is less than 1. To check for the con-
dition in corollary 3, one would set up (20) as a minimization problem and 
conclude that DRS holds at (x0, y0) if the minimum of k is greater than 1.

The BCC Dual Approach
Banker, Charnes, and Cooper (BCC) (1984) offer an alternative method of 
identifying local returns to scale from the following dual of the output-ori-
ented VRS DEA problem shown in (14) above.

BCC have shown that

(20)

max k =

N∑

j=1

�j

s.t.

N∑

j=1

�jy
j
r ≥ ϕ∗y0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ x0i (i = 1, 2, . . . , n);

�j ≥ 0 (j = 1, 2, . . . ,N).
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i. CRS holds at (x0, y0) if at the optimal solution of (14) v0 is zero;
ii. IRS holds at (x0, y0) if at the optimal solution of (14) v0 is < 0;

iii. DRS holds at (x0, y0) if at the optimal solution of (14) v0 is > 0.

If there are alternative optimal solutions for (14), conditions (i)–(iii) must 
hold at all optimal solutions.

A simple proof of (i)–(iii) follows from Ray (2019). Because (x0, y0) is 
efficient by assumption, at the optimal solution of (14) v∗0 +

∑
n

i=1 v
∗
i
x
0
i
= 1 

=
∑

n

i=1 u
∗
r
y
0
r
. hence v∗0 +

∑
n

i=1 v
∗
i
x
0
i
−
∑

n

i=1 u
∗
r
y
0
r
= 0. But, as defined above, 

ur ≡ F0
r and vi ≡ −F0

i  and in the present context (19) can also be written as 
q2/q1 = −

∑n
i=1 Fixi/

∑m
j=1 Fjyj =

∑n
i=1 v

∗
i x

0
i /

∑m
j=1 u

∗
r y

0
r  or

Because the denominator in (21) is always positive, the sign of the ratio 
is determined by the sign of the numerator. Specifically, when IRS holds, 
q2/q1 − 1 > 0 ⇒

∑n
i=1 v

∗
i x

0
i −

∑m
j=1 u

∗
r y

0
r = −v∗0 > 0 ⇒ v∗0 < 0. By the  

same logic, DRS implies q2/q1 − 1 > 0 and v∗0 > 0. Finally, for CRS 
q1 = q2 and v∗0 = 0. Of course, as in the case of Banker’s approach, multiple 
optimal solutions pose a problem and the conditions (ii) and (iii) have to be 
appropriately modified.

A Nesting Approach
Färe et al. (1985) consider a technology that lies in between CRS and the VRS 
technologies. They call it a non-increasing returns to scale (NIRS) technology. 
Under the assumption of NIRS (x0, y0) ∈ T ⇒ (kx0, ky0) ∈ T; 0 ≤ k ≤ 1. 
Thus, any feasible input-output bundle remains feasible if it is scaled down-
wards but not necessarily feasible if scaled upwards.

The DEA estimate of an NIRS PPS is

(21)q2/q1 − 1 =




n�

i=1

v∗i x
0
i −

m�

j=1

u∗r y
0
r



/

m�

j=1

u∗r y
0
r .

(22)

T̂N =




(x, y) : x ≥

N�

j=1

�jx
j; y ≤

N�

j=1

�jy
j;

N�

j=1

�j ≤ 1; �j ≥ 0 (j = 1, 2, . . . , N)
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The three different sets in (4), (6), and (22) are nested so that 
T̂ ⊂ T̂N ⊂ T̂C . Because the VRS PPS is the most and the CRS PPS is the 
least restrictive, the measured technical efficiency will be the highest under 
VRS and lowest under CRS. The frontiers of the CRS and NIRS production 
possibility sets coincide in the region of IRS. Similarly, the VRS and NIRS 
frontiers are identical in the DRS region. Therefore, when IRS holds at 
(x0, y0), in an input-oriented model θC∗ = θN∗ < θV∗ , where the superscripts 
C, N, and V refer to CRS, NIRS, and VRS. Similarly, θC∗ < θN∗ = θV∗  
implies DRS. Of course, in the case of CRS, all three estimates of technical 
efficiency equal unity. Note that in this nesting approach the possibility of 
multiple optimal solutions does not pose any problem because the objective 
function value does not differ across alternative optimal solutions.

6.4  Returns to Scale Properties of an Inefficient 
Input-Output Bundle

As has been noted earlier, returns to scale is a meaningful concept only when 
the input-output bundle is efficient and is a point on the frontier of the PPS. 
In the foregoing discussion, it was assumed that (x0, y0) is technically effi-
cient. When that is not the case, one must first project it on to the frontier 
and only then can examine the local RTS properties at the efficient projec-
tion. This, however, creates an ambiguity because there would be two alter-
native projections—the input-oriented (θ∗x0, y0) and the output- oriented 
(x0,ϕ∗y0). The nature of local RTS can be different at the two different 
points.

At this point, it would be helpful to define for any given input-output 
pair the 2-dimensional conditional PPS:

In  terms  of  the  transformation  function T(x0, y0) = {(α,β) : F(βx0,αy0) ≤ 0; 
α,β ≥ 0}. Similarly, the conditional graph of the technology is

One can think of the graph in (24) as the ray production function

(23)T(x0, y0) = {(α,β) : (βx0,αy0) ∈ T; α,β ≥ 0}.

(24)G(x0, y0) = {(α,β) : F(βx0,αy0) = 0; α,β ≥ 0}.

(25)α = g(β).
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The MPSS for (x0, y0) corresponds to the highest ray average productivity 
along (25). The following lemma from Ray (2010) shows that when the PPS 
is convex, IRS holds at all scales smaller than the smallest MPSS. Similarly, 
DRS holds at all scales larger than the largest MPSS.10

Lemma: For any convex productivity possibility set T, if there exist nonnegative 
scalars α and β such that α > β > 1, and both (x̃, ỹ) and (β x̃,αỹ) ∈ G, then 
γ > δ for every γ and δ such that 1 < δ < β and (δx̃, γ ỹ) ∈ G.

Proof: Because (x̃, ỹ) and (β x̃,αỹ) are both feasible, by convexity of T, for 
every � ∈ (0, 1), ((�+ (1− �)β)x̃, (�+ (1− �)α)ỹ) is also feasible. Now 
select � such that �+ (1− �)β = δ. Further, define µ = �+ (1− �)α. 
Using these notations, (δx̃, µỹ) ∈ T . But, because (δx̃, γ ỹ) ∈ G, γ ≥ µ. 
However, because α > β, µ > δ. Hence, γ > δ.

An implication of this lemma is that, when the PPS is convex, if the tech-
nology exhibits locally diminishing returns to scale at any smaller input 
scale, it cannot exhibit increasing returns at a bigger input scale. This is eas-
ily understood in the single-input single-output case. When both x and y 
are scalars, average productivity at (x̃, ỹ) is ỹ/x̃ and at (β x̃, αỹ) is (α/β)ỹ/x̃. 
Thus, when α > β, average productivity has increased. The above lemma 
implies that for every input level x in between x̃ and β x̃, average productiv-
ity is greater than ỹ/x̃. Thus, average productivity could not first decline and 
then increase as the input level increased from x̃ and β x̃.

Two results follow immediately. First, locally increasing returns to scale 
holds at every input-output bundle (x, y) ∈ G that is smaller than the 
smallest MPSS. Second, locally diminishing returns to scale holds at every 
 input-output bundle (x, y) ∈ G that is greater than the largest MPSS. To see 
this, let x = bx∗ and y = ay∗, where (x∗, y∗) is the smallest MPSS for the 
given input and output mix. Because (x, y ) is not an MPSS, a/b < 1. Further,  
assume that b < 1. Define β = 1/b and α = 1/a. Then (x∗, y∗)=(βx, αy ) and 
α/β > 1. Because ray average productivity is higher at a larger input scale, 
by virtue of the lemma, locally increasing returns to scale holds at (x, y ).  
Next assume that b >1. Again, because (x, y ) is not an MPSS, a/b < 1. That is 
ray average productivity has fallen as the input scale is increased from x∗ to 
x = bx∗. Then, by virtue of the lemma, ray average product could not be any 
higher than a/b at a slightly greater input scale, ¯̄x = (1+ ε)x. But, because 
(x, y ) is not an MPSS, ray average product cannot remain constant as the 

10For a different proof see Banker and Thrall (1992).
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input scale is slightly increased. Hence, ray average product must fall as the 
input scale is slightly increased from x. Thus, locally diminishing returns to 
scale holds at every (x, y ) ∈ G, when x is larger than the largest MPSS.

6.5  Finding the MPSS

One can solve the following optimization problem proposed by Cooper 
et al. (1996) to find the MPSS for the input-output bundle (x0, y0):

Even though the objective function is nonlinear, it can be easily transformed 
into a linear programming problem by defining t = 1/β and μj = tλj (j = 1, 2, 
…, N ). Nonnegativity of β and λjs ensures that t and μjs are also nonnegative. 
Problem (26) can, therefore, be reformulated as the following linear program-
ming problem:

From the optimal solution of this problem, we can derive β∗ = 1/t∗ and 
α∗ = ρ∗/t∗. One can then infer the nature of returns to scale from these 
values of α* and β*. It may be pointed out here that because the only 

(26)

maxα/β s.t.

N∑

j=1

�jy
j ≥ αy0;

N∑

j=1

�jx
j ≤ βx0;

N∑

j=1

�j = 1;

α,β, �j ≥ 0, (j = 1, 2, . . . ,N).

(27)

max ρ s.t.

N∑

j=1

µjy
j ≥ ρy0;

N∑

j=1

µjx
j ≤ βx0;

N∑

j=1

µj = t;

t, µj ≥ 0 (j = 1, 2, . . . ,N).
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restriction on t is nonnegativity, (27) is simply the output-oriented CCR-
DEA problem and 1/ρ∗ is the same as the output-oriented CRS technical 
efficiency τCy (x0, y0). Thus, (27) is in reality a minor modification of Banker 
(1984).

Because (x0, y0) is a feasible input-output bundle, (α = β = ρ = 1) is 
a feasible solution for this problem. Hence, the optimal value ρ∗ is always 
greater than or equal to 1.When ρ∗ = α∗/β∗ exceeds unity, we know that 
(x0, y0) is not an MPSS. But, we can also conclude that (β∗x0,α∗y0) is an 
MPSS. When the bundle (x0, y0) is not itself an MPSS, ρ∗ > 1 so that 
α∗ > β∗.

We may invoke the lemma above to determine the local RTS properties 
at (x0, y0) by comparing it with its MPSS. Note that in the conditional PPS 
(23), (x0, y0) corresponds to (α,β) = (1, 1). Let the MPSS be designated 
as (β∗x0,α∗y0) = (x∗, y∗). If the MPSS is unique, there are five different 
possibilities:

 i. 1 < β∗ < α∗;
 ii. β∗ < α∗ < 1;
 iii. β∗ < 1 < α∗;
 iv. β∗ = 1 < α∗;
 v. β∗ < 1 = α∗.

In case (i), x0 < β∗x0 = x∗ and y0 < α∗y0 = y∗. Thus, (x0, y0) lies toward 
the southwest of the MPSS. Both input- and output-oriented projections of 
the bundle (x0, y 0) fall in the region of IRS. In this case, the unit is conclu-
sively too small relative to its MPSS. Similarly, in case (ii) x0 > β∗x0 = x∗ 
and y0 > α∗y0 = y∗ and both input- and output-oriented projections fall 
in the region of DRS. The implication is that the unit is too large. In case 
(iii), the RTS characterization depends on the direction of projection. Because 
β∗ < 1, x∗ < x0, and the input scale is bigger than the MPSS. The out-
put-oriented projection falls in the region of DRS. At the same time, because 
1 < α∗, y0 < y∗ the output scale is smaller than the MPSS and the input-ori-
ented projection falls in the region of IRS. In case (iv) x0 = x∗ but y0 < y∗. 
This time the input scale corresponds to the MPSS but the output scale is 
too small. Eliminating output-oriented technical inefficiency will auto-
matically project the observed bundle on to its MPSS. Similarly in case (v) 
y0 = y∗ but x0 > x∗. The input-oriented efficient projection is the MPSS.

Figure 4 shows how the local RTS properties of an input-output bun-
dle can be determined by comparing it to its MPSS. In this diagram, the 
scale of the input bundle x0 is measured as β along the horizontal axis 
and the scale of the output bundle y0 is measured as α up the vertical axis.  
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The piecewise connected line ABCDE shows the pairs (α,β) for which the 
corresponding input-output bundle (βx0,αy0) is on the frontier of the 
PPS. Two points of special interest are (α,β) = (1, 1) and the point C, 
(α,β) = (α∗,β∗). The former is the location of the observed bundle (x0, y0) 
and the latter is its MPSS. The local RTS properties of (x0, y0) depends on 
where (α,β) = (1, 1) is located relative to C in this diagram. This is true 
even when (1, 1) lies on the ABCDE line and is technically efficient. If (1, 
1) lies in area (1) to the southwest of C, both input- and output-oriented 
projections will be smaller than the MPSS and IRS holds unequivocally at 
(x0, y0). If it lies in area (2) toward the northeast of C both projections will 
be larger than the MPSS and DRS holds at (x0, y0). By contrast, area (3) is 
an inclusive region. Here the output-oriented projection is larger than the 
MPSS implying DRS but the input-oriented projection is smaller than the 
MPSS implying IRS. The unit is too small judged by its output scale but is 
too large when judged by the input scale. Case (iv) corresponds to points on 
the vertical line Cβ∗ while points on the horizontal line through C below 
the frontier correspond to case (v).

The Case of Multiple MPSS
Next we consider the possibility of multiple MPSS. This is depicted graphi-
cally in Fig. 5. Here both C1 and C2 are MPSS and so are their convex com-
binations lying on the line segment connecting them. At C1, (α

∗
1 ,β

∗
1 ) is the 

smallest MPSS. Similarly, (α∗
2 ,β

∗
2 ) at C2 is the largest MPSS. It is obvious 

that when the problem in (27) has a unique optimal solution (in particu-
lar, t∗ is unique), there cannot be multiple MPSS. For multiple optimal 

Fig. 4 MPSS and RTS regions
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solutions, the largest t∗ =
∑

j µ
∗
j  across all optimal solutions of (27) corre-

sponds to the smallest MPSS, β∗
1. Similarly, β∗

2 corresponds to the smallest 
t∗ =

∑
j µ

∗
j  at an optimal solution.

Since across all optimal solutions the value of the objective function is the 
same (ρ *), β∗

1 = 1/t∗1 , where

Similarly, β∗
2 = 1/t∗2 , where

(28)

t∗1 =max
∑

j

µj

s.t.
∑

j

µjx
j ≤ x0;

∑

j

µjy
j ≥ ρ∗y0;

µj ≥ 0 (j = 1, 2, . . . ,N).

Fig. 5 Multiple MPSS and the regions of the increasing, decreasing and the ambigu-
ous returns to scale
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Once β∗
1 and β∗

2 have been determined from (28) and (29), the correspond-
ing values of α are readily obtained as α∗

1 = ρ∗β∗
1 and α∗

2 = ρ∗β∗
2 .

As shown in Fig. 5, the set of output-input scales (α, β ) for which the 
input-output bundles (βx0,αy0) are feasible can be partitioned into six dif-
ferent regions defined below:

 i. In region (1), toward the southwest of the smallest MPSS (C 1), 
(β < β∗

1 ;α < α∗
1). When (x0, y0) falls in this region, 1 < β∗

1 < α∗
1. 

Hence, increasing returns to scale holds unambiguously.
 ii. In region (2), to the northeast of the largest MPSS (C 2), 

(β∗
2 < β;α∗

2 < α). If (x0, y0) falls in this region, β∗
1 < α∗

1 < 1. 
Diminishing returns to scale holds unambiguously in this region.

 iii. In region (3), β∗
1 < β < β∗

2 while α∗
1 < α < α∗

2. Points in this region lie 
between the smallest and the largest MPSS. It is interesting to note, that 
even if the point (α =1, β =1) is not technically efficient and lies below 
the C1 C2 line, both the input- and the output-oriented projection of the 
inefficient bundle will fall in the region of CRS. Thus, there is no scale 
inefficiency in this region even though there may be technical inefficiency.

 iv. In region (4), β∗
2 < β; α < α∗

1. When the actual input-output bun-
dle lies here, β∗

2 < 1 < α∗
1. The input bundle x0 is larger than the largest 

MPSS hence the output-oriented projection falls in the area of diminish-
ing returns. At the same time, the actual output bundle is smaller than the 
smallest MPSS. Hence, increasing returns to scale holds at the input-ori-
ented projection. Thus, returns to scale cannot be unambiguously defined 
at the actual input-output bundle.

 v. In region (5a), β∗
1 < β < β∗

2 but α < α∗
1 . When the actual input-output 

bundle lies here, y0 is smaller than the smallest MPSS and the input-ori-
ented projection falls in the area of increasing returns. At the same time, 
the actual input bundle lies between the smallest and the largest MPSS. 
Hence, CRS holds at the output-oriented projection. Here also the 
returns to scale characterization depends on the orientation.

(29)

t∗2 =min
∑

j

µj

s.t.
∑

j

µjx
j ≤ x0;

∑

j

µjy
j ≥ ρ∗y0;

µj ≥ 0 (j = 1, 2, . . . ,N).
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vi. In region (5b), β∗
2 < β while α∗

1 < α < α∗
2 . When the actual input-out-

put bundle lies here, x0 is larger than the largest MPSS. Hence the out-
put-oriented projection falls in the area of diminishing returns. At the 
same time, the actual output bundle lies between the smallest and the 
largest MPSS. Hence, CRS holds at the input-oriented projection. Here 
the input bundle is too large. But the actual output bundle, if produced 
from the technically efficient input bundle would correspond to an MPSS.

6.6  Scale Elasticity

The foregoing analysis provides only qualitative information about the 
returns to scale characteristics of an efficient point located on the frontier or 
the output (or input) oriented projection of an inefficient onto the frontier. 
By contrast, the scale elasticity measured at a point on the frontier provides a 
quantitative measure of the proportionate change in the output in the sin-
gle-output case (and equi-proportionate change in all outputs, in the mul-
ti-output case) relative to an equi-proportionate change in all inputs.

The textbook definition of scale elasticity in the 1-output multi-input case 
with the production function y = f (x) is ε0 = ∂ ln f (tx)

∂ ln t
|t=1 =

∑
i
∂ ln fi
∂ ln xi

. 
Frisch (1965) define this as the passus coefficient. In the Anglo-Saxon literature 
is also defines the function coefficient (e.g., Ferguson 1969, p. 79). Returns to 
scale for multi-output technologies has been considered by Hanoch (1970), 
Starrett (1977), and Panzar and Willig (1977) among others. Among the vari-
ous papers on nonparametric measures of scale elasticity with multiple outputs 
using DEA, the most significant ones are by Banker et al. (1984), Banker and 
Thrall (1992), Førsund (1996), and Førsund and Hjalmarsson (2004).11

Consider the input-output bundle (x0, y0) where x0 ∈ Rn
+ and 

y0 ∈ Rm
+. Further suppose that (x0, y0) is on the frontier of the PPS so that 

F(x0, y0) = 0. Now consider the bundle (βx0,αy0) which also is on the 
frontier so that

Førsund (1996)12 defined the scale elasticity at (x0, y0) as 
ε = d ln α

d ln β
|α=1,β=1 =

dα
dβ

.
β
α
|α=1,β=1 =

dα
dβ

. Differentiating (30) with respect  

(30)F(βx0,αy0) = 0.

11For a discussion of scale efficiency in the context of Global Returns to Scale (GRS) see Podinovski (2017).
12Unlike here, Førsund (1996) used µ for the output scaling factor and β for the input scaling factor.
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to the input scaling factor β, 
∑

i
∂F(βx0,αy0)

∂xi
x0i +

∑
i
∂F(βx0,αy0)

∂yj
y0j

dα
dβ

= 0, 
and evaluating at α = β = 1, we obtain ε = d ln α

d ln β
= dα

dβ
= 

−
∑

i
∂F(x0,y0)

∂xi
x0i /

∑
i
∂F(x0,y0)

∂yj
y0j .  Using the previous definitions, 

vi ≡ −
∂F(x0,y0)

∂xi
and uj ≡

∂F(x0,y0)
∂yj

, we can write ε = d ln α
d ln β

= dα
dβ

 

=
∑

i vix
0
i /

∑
i ujy

0
j . Comparing this with the radial VRS output-ori-

ented DEA model shown in (14) at its optimal solution, we can see that ∑
j ujy

0
j = 1. Further, because (x0, y0) is efficient by assumption, the opti-

mal value of the output-oriented primal problem in (5) equals 1 and 
hence by standard duality results, the optimal value in (14) also equals 1: 
v0 +

∑n
i=1 vix

0
i = 1. This implies that 

∑n
i=1 vix

0
i = 1− v0 and, therefore,

Equation (21) of Førsund and Hjalmarsson (2004, p. 1030) obtains the 
scale elasticity measure as ε(x0, y0) = 1− E2v0 where E2 is their notation 
for output-oriented efficiency. Because (x0, y0) is efficient by assumption, E2 
equals unity and their formula reduces to (31) above.

But what if (x0, y0) is not on the frontier? We must then first 
radially project it to the frontier. Taking the output-oriented pro-
jection, the point under consideration will be (x0, y0∗) where 
y0∗ = ϕ∗y0 and ϕ∗ is the maximum output scaling factor. Now we 
start from F(βx0,αy0∗) = 0. Proceeding as before we end up with 
ε = −

∑
i

∂F(x0,y0∗)

∂xi
x
0
i
/
∑

i

∂F(x0,y0∗)

∂yj
y
0
∗j =

∑
i
vix

0
i
/
∑

i
ujy

0
∗j =

∑
i
vix

0
i
/(ϕ∗

∑
i
ujy

0
j
). 

As in (14) and (5), the optimal solution is 
∑

j ujy
0
j = 1 and the optimal 

value of the objective function is v0 +
∑

i vix
0
i = ϕ∗. Hence,

In empirical applications, a potential problem is that the even though the opti-
mal value of the objective function in the VRS output-oriented dual problem 
will be unique, as recognized before, there may be multiple optimal solutions. 
Differing values of v0 across the alternative solutions yield different measures of 
scale elasticity both in (32) and in (31). Let vmin

0  be the minimum and vmax
0  

the maximum value of v0 across all optimal solutions of (14).13 Then the corre-
sponding maximum and minimum values of scale elasticity in (32) are

(31)ε =
∑

i
vix

0
i /

∑
i
ujy

0
j = 1− v0.

(32)ε(x0,ϕ∗y0) = (ϕ∗ − v0)/ϕ
∗ = 1− v0/ϕ

∗.

13See Banker and Thrall (1992) section 4 for the relevant procedure for finding the minimum and the 
maximum values of v0.
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One obtains the corresponding maximum and the minimum values for (31) 
by setting ϕ∗ equal to 1 in (33).

6.7  Global Returns to Scale

All of the foregoing discussion on local returns to scale characterization of 
a bundle on the frontier (or its efficient projection) if it is an interior point 
rests critically on the assumption that the PPS T is convex. As already 
noted, an implication of the lemma in Sect. 4 is that when locally increasing 
returns to scale is detected, an input-output bundle must increase in scale in 
order to attain its MPSS. The opposite is true for locally diminishing returns 
to scale. Such information can become valuable for deciding on proposal 
to merge several firms or to break up a large firm. As shown by Podinovski 
(2004a, b), once the convexity assumption is relaxed, one needs to distin-
guish between local returns to scale and GRS. A simple example of non-con-
vexity can be found in the free disposal hull (FDH) technology which is 
obtained by relaxing convexity but retaining the assumption of free dispos-
ability of inputs and outputs.14 The frontier of the FDH production pos-
sibility set looks like a step function with flat segments followed by jumps. 
Average productivity declines long the flat segment, followed by a sudden 
increase at the jump point. For non-convex technologies, the maximum ray 
average productivity for a given input-output bundle may be attained at 
multiple scales but not at any intermediate scale between them. Podinovski 
(2004a) defines each of these scales as a scale reference unity (SRU) and pro-
vides the following classification of GRS property of any input-output bun-
dle on the frontier:

The input-output bundle (x0, y0) exhibits

(33)

εmax(x0,ϕ∗y0) = 1− vmin
0

/ϕ∗;

εmin(x0,ϕ∗y0) = 1− vmax
0

/ϕ∗.

14The Free Disposal Hull was introduced by Deprins et al. (1984). For a detailed discussion of FDH 
analysis, see Ray (2004, chapter 6). See also Kerstens and Vanden Eeckaut (1999).
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a. Global constant returns to scale (G-CRS) if and only if it is an MPSS;
b. Global diminishing returns to scale (G-DRS) if it is bigger than all of its 

SRUs;
c. Global increasing returns to scale (G-IRS) if and only if it is smaller than 

all of its SRUs;
d. Globally sub-constant returns to scale if it is smaller than some its SRUs 

but bigger than some of its SRUs.

7  Non-radial Measures of Efficiency

A problem with the radial models both input- and output-oriented is 
that when slacks are present in the input or output constraints at the 
optimal solution of the relevant DEA problem, the extent of inefficiency 
is underestimated. In an output-oriented model, for example, a positive 
slack in any output constraint represents the amount by which the con-
cerned output can be further expanded beyond the common expansion 
factor (ϕ∗). In an extreme example, if there is no room to increase one 
specific output without increasing inputs even if the other outputs can be 
doubled, the radial efficiency measure of the firm under evaluation will 
still be 100%.15

One way out of this paradoxical situation is to consider a non-radial 
measure of technical efficiency that reflects the full potential for increas-
ing in every output even though not equi-proportionately. Fӓre and Lovell 
(1978) introduced what they called a Russell measure of technical efficiency 
that rules out the presence of output slacks in an output-oriented model and 
input slacks in an input-oriented model.16

7.1  Output-Oriented Russell Measure

The output-oriented Russell measure of technical efficiency is the inverse of 
the maximum average expansion factor across the individual outputs and is 
measured as RMy(x

0, y0) = 1/ρy(x
0, y0), where

15In fact, CCR (1979) included a small penalty (ε) for slacks in their DEA models. However, because 
ε is assumed to be an arbitrarily small (non-Archimedean) number, it cannot be incorporated in any 
practical application.
16Input slacks may still be present at the optimal solution in a non-radial output-oriented model and 
output slacks in a non-radial input-oriented model.
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It can be seen that the radial output-oriented model can be recov-
ered from this non-radial model by imposing the additional restriction 
ϕr = ϕ for each input r (r = 1, 2, . . . ,m). This, the BCC output-oriented 
measure under VRS (or the CCR measure under CRS) is a special case of 
the Russell measure and τy(x0, y0) ≥ RMy(x

0, y0).

7.2  Non-radial Russell Input Efficiency

Analogous to (34) is the input-oriented Russell efficiency measure is the 
arithmetic mean of the input specific contraction factors (θi) across all inputs, 

RMx(x
0, y0) = ρx(x

0, y0) =min1
n

n∑

i=1

θi

s.t.

N∑

j=1

�jy
j
r ≥ y0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ θix

0
i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; θi ≤ 1 (i = 1, 2, . . . , n);

�j ≥ 0 (j = 1, 2, . . . ,N).

(34)

ρy(x
0, y0) = max 1

m

m∑

r=1

ϕr

s.t.

N∑

j=1

�jy
j
r ≥ ϕry

0
r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ x0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; ϕr ≥ 1 (r = 1, 2, . . . ,m);

�j ≥ 0 (j = 1, 2, . . . ,N).
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Again, the radial input-oriented technical efficiency is a restricted ver-
sion of the Russell input-oriented measure with θi = θ for all i and 
τx(x

0, y0) ≥ RMx(x
0, y0).

8  Graph Efficiency Measures

The alternative measures of efficiency considered so far are either output-oriented 
or input-oriented. In an output-oriented model, an inefficient unit is projected 
on to the frontier by the maximum proportional expansion of all of its outputs, 
but reducing inputs is not an objective. Similarly, in an input-oriented model, 
the objective is only to scale down all inputs proportionately as much as possible. 
In measuring graph efficiency, one seeks to achieve some reduction in inputs side 
by side with expansion of outputs. The problem in this case would be that unlike 
in an output-oriented or an input-oriented model, the direction of projection on 
to the frontier is arbitrary. Two popular measures of graph efficiency are the ones 
based on the Graph Hyperbolic Distance Function due to Färe et al. (1985) and 
the Directional Distance Function introduced by Chambers et al. (1996).

8.1  Graph Hyperbolic Efficiency

For the Graph Hyperbolic efficiency measure, one selects the point on the 
frontier that lies on a rectangular hyperbola through the observed input-out-
put bundle. In a single-output single-input case, both the actual point 
(x0, y0) and the efficient point (x∗, y∗) satisfy the equation xy = k. This is 
shown in Fig. 6 where the point A represents the observed input-output 
bundle (x0, y0) and the point B on the production frontier is the efficient 
projection (x∗, y∗). The level of efficiency is 1

δ∗
= Ox∗

Ox0
=

Oy0
Oy∗

.

To obtain the efficient projection in the multiple-output case, one needs 
to solve the problem:

(35)

max δ s.t.

N∑

j=1

�jy
j
r ≥ δy0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤

1
δ
x0i /δ (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N);

δ unrestricted.
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The Graph Hyperbolic measure of efficiency is τGH(x0, y0) = 1/δ∗. The 
input constraints in (35) are nonlinear. However, if one assumes CRS, one 
can define µj = δ�j and ϕ = δ2 to rewrite the model as

In this case, τCGH(x
0, y0) = 1/

√
ϕ∗. In the case of VRS, the problem in (35) 

remains nonlinear. Färe et al. (1985) linearize the input constraints using the 
Taylor’s series approximation

Using δ0 = 1 as the point of approximation, the linearized version of (35) is

maxϕ s.t.

N∑

j=1

µjy
j
r ≥ ϕy0r (r = 1, 2, . . . ,m);

N∑

j=1

µjx
j
i ≤ x0i (i = 1, 2, . . . , n);

µj ≥ 0 (j = 1, 2, . . . ,N);

ϕ unrestricted.

(36)f (δ) = 1
δ
≈ f (δ0)+ f ′(δ0)(δ − δ0) = (2− δ)/δ0.

Fig. 6 Graph hyperbolic distance function
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Note that assuming δ0 = 1 amounts to assuming that the observed point is 
on the frontier. When this is not the case, the approximation will be rather 
poor. Ideally, one should use δ0 = 1 only as the starting point and iterate 
(36)–(37) until convergence.

8.2  Directional Distance Function

Building upon Luenberger’s (1992) benefit function, Chambers 
et al. (1996, 1998) introduced the Directional Distance Function 
to measure the distance of an observed input-output bundle from 
the frontier of the PPS in a direction chosen by the analyst. Let 
gx = (gx1, g

x
2, . . . , g

x
n) ∈ Rn

+ and gy = (g
y
1, g

y
2, . . . , g

y
m) ∈ Rm

+ be two 
direction subvectors. Then the Directional Distance Function can be 
defined as �D(x0, y0; gx, gy) = maxβ : (x0 − βgx, y0 + βgy) ∈ T . It 
is clear that one can recover the radial output-oriented model by set-
ting gx = 0 and gy = y0. In that case,β would equal (ϕ − 1) in (5) or 
(7), depending on the returns to scale assumption. Another interesting 
choice of the direction for projection would be (gx, gy) = (x0, y0). Then 
�D(x0, y0; gx, gy) = maxβ : ((1− β)x0, (1+ β)y0) ∈ T  and β is the max-
imum percentage by which all outputs can be expanded and all inputs can 
be contracted simultaneously. In Fig. 7, A is the observed bundle (x0, y0). 
The point B (gx = −x0, gy = y0) defines the direction of movement. The 
point C on the production frontier shows the maximum feasible movement 
within the PPS in the direction parallel to OB. In this case, the Directional 
Distance Function is β = AC/OB = OD/OB.

For an arbitrary choice of (gx, gy), the relevant VRS DEA problem is

(37)

max δ s.t.

N∑

j=1

�jy
j
r ≥ δy0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i + δx0i ≤ 2x0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N);

δ unrestricted.
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The flexibility of the Directional Distance Function is apparent from the fact 
that it can be radial (setting gx = 0 or gy = 0), biradial (setting gx = x0 and 
gy = y0), or completely non-radial for arbitrary choice of (gx, gy).

Ray (2007) introduced a measure of overall inefficiency as

In a radial output-oriented model, a measure of technical inefficiency is 
ϕ − 1 where ϕ is the maximum scaling factor for all outputs. Similarly, the 
input-oriented technical inefficiency is 1− θ where θ is the minimum scal-
ing factor for all inputs. In that sense, the overall inefficiency is the sum of 
output and input inefficiencies.

The DEA LP problem for (39) is

(38)

maxβ s.t.

N∑

j=1

�jy
j
r − βgyr ≥ y0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i + βgxi ≤ x0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N);

β unrestricted.

(39)ϑ(x0, y0) = max (ϕ − θ) : (θx0,ϕy0) ∈ T .

Fig. 7 Directional distance function
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The dual LP for (40) is

Ray (2007) has shown that if the optimal π∗ in (41) is positive, then there 
does not exist any pair of nonnegative shadow price vector (u, v) correspond-
ing to which the bundle (x0, y0) would be the profit-maximizing input-out-
put pair.

Further, (40) can be seen to encompass (38). Define βy = ϕ − 1 and 
βx = 1− θ . Then, (40) becomes

(40)

maxϕ − θ s.t.

N∑

j=1

�jy
j
r ≥ ϕy0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ θx0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N);

β unrestricted.

(41)

minπ s.t.π ≥

m∑

r=1

ury
j
r −

n∑

v=1

vix
j (j = 1, 2, . . . ,N);

m∑

r=1

ury
r
0 = 1;

n∑

i=1

vix
i
0 = 1;

ur ≥ 0 (r = 1, 2, . . . ,m);

vi ≥ 0 (i = 1, 2, . . . , n);

π unrestricted.

maxβy + βx s.t.

N∑

j=1

�jy
j
r ≥ (1+ βy)y0r (r = 1, 2, . . . ,m);

N∑

j=1

�jx
j
i ≤ (1− βx)x0i (i = 1, 2, . . . , n);

N∑

j=1

�j = 1; �j ≥ 0 (j = 1, 2, . . . ,N);

βx, βy unrestricted.
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By imposing the restriction βx = βy one gets the problem in (38) except for 
a scaling factor of the objective function.17

8.3  Pareto-Koopmans Measures

A Russell efficient output bundle contains no output slack. Similarly, no 
input slack can be present in a Russell efficient input bundle. However, to 
be Pareto-Koopmans efficient an input-output bundle must be simultane-
ously Russell efficient in both output and input orientations Thus, Pareto-
Koopmans (PK) efficiency combines both input- and output-oriented 
Russell efficiency. There are different variants of this PK efficiency but the 
most popular of them is the product of the Russell output and input effi-
ciencies.18 It is called Enhanced Russell Measure by Pastor, Louis, and 
Sirvent (PLS) (1999), Slack Based Measure by Tone (2001),19 and simply 
Pareto-Koopmans efficiency by Ray (2004) and can be measured as

Every input and output constraint in (42) will be strictly binding. Therefore 
at the optimal projection x∗i =

∑
j �

∗
j xij = θ∗i xi0 (i = 1, 2, . . . , n). 

Define the total reduction in input i as for each input s−i = x0i − x∗i ≥ 0.  

(42)

τPK(x0, y0) = min1
n

∑

i

θi/
1
m

∑

r

ϕr

s.t.
∑

j

�jyrj ≥ ϕryr0 (r = 1, 2, . . . ,m);

∑

j

�jxij ≤ θixi0 (i = 1, 2, . . . , n);

ϕr ≥ 1 (r = 1, 2, . . . ,m);

θi ≤ 1 (i = 1, 2, . . . , n);
∑

j

�j = 1;

�j ≥ 0 (j = 1, 2, . . . ,N)

17The model in (38) is further developed in Aparicio et al. (2013).
18Portela and Thanassoulis (2005) used the measure �(θ

1/n
i )/�(ϕ

1/m
r ) and called it the Geometric 

Distance Function.
19Tone’s SBM appeared in 2001 in EJOR but makes no reference to the PLS Enhanced Russell measure 
introduced in the same journal in 1999 and the two are virtually identical.



184     S. C. Ray

This leads to θ∗i = x∗i /xi0 = 1− s−i /xi0. Similarly by defining 
s+r = y∗r − yro, we can derive ϕ∗

r = x∗i /xi0 = 1+ s+r /yr0 (r = 1, 2, . . . ,m). 
Hence the objective function in (42) becomes 1

n

∑
i
θi/

1
m

∑
r
ϕr = 

(1− 1
n

∑
i
s
−
i
/x

i0
)/(1+ 1

m

∑
r
s
+
ir
/yr0), which is the Slack Based 

Measure.20

Both PLS and Tone use the expression in (42) for the objective func-
tion and resort to a normalization to convert the linear fractional func-
tional programming problem into an LP following Charnes and 
Cooper (1968). Ray (2004), Ray and Jeon (2009), and Ray and Ghose 
(2014) on the other hand, use a linear approximation of the objec-
tive function at (θi = 1, ϕr = 1) (i = 1, 2, . . . , n; r = 1, 2, . . . ,m) 
to get 1

n

∑
i θi/

1
m

∑
r ϕr ≈ 2+ 1

n

∑
i θi −

1
m

∑
r ϕr and used 

min1
n

∑
i θi −

1
n

∑
r ϕr as the objective function. At the opti-

mal solution of (42), one can multiplicatively decompose the over-
all Pareto-Koopmans efficiency as τPK(x

0, y0) = PKx(x
0, y0). 

PKy(x
0, y0), where PKx(x

0, y0) = 1
n

∑
i θ

∗
i  is the input efficiency and 

PKy(x
0, y0) = 1/ 1

m

∑
r ϕ

∗
r  is the output efficiency of the firm.

9  Conclusion

Over the decades since it was introduced in the Operations Research liter-
ature, new DEA models have been formulated to measure cost and profit 
efficiency as well as to test various characteristics of the technology like 
productivity change over time, capacity utilization, benefits of merger or 
break up of firms among many other areas of application in economics. In 
fact, DEA can now legitimately be described as a full-blown nonparamet-
ric approach to production analysis and goes way beyond merely evaluating 
technical efficiency.21 Given its scope, this chapter deals only with meas-
urement of different kinds of technical efficiency. Finally, as noted at the 

21For more detailed exposition of DEA as a nonparametric approach to neoclassical production eco-
nomics see Fӓre et al. (1994) and Ray (2004). Cooper et al. (2007) deals with most of the topics from 
an OR perspective.

20A somewhat different measure of Pareto-Koopmans efficiency is the Range Adjusted measure (RAM) 
introduced by Cooper et al. (1999).
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beginning one can generate empirical distributions of the frontier output at 
each input bundle through bootstrapping to create upper and lower bounds 
on the measured technical efficiency of each firm in the sample.22
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1  Introduction

Decision-making units (DMUs) within the data envelopment analysis 
(DEA) context are assessed based on multiple inputs and outputs, under 
non-parametric assumptions, which means that the production function 
remains unknown. A linear program is solved per DMU and the weights 
assigned to each linear aggregation are individual to the DMU. The weights 
are chosen so as to show the specific DMU in as positive a light as possible, 
under the restriction that no other DMU, given the same weights, is more 
than 100% efficient. Consequently, a Pareto frontier is delineated by specific 
DMUs on the boundary envelope of input-output variable space. The fron-
tier is considered a sign of relative efficiency, which has been achieved by at 
least one DMU by definition. The choice of weights is highly flexible which, 
in general, is considered an advantage of the approach.

Many theoretical papers in the field have adapted the original set 
of DEA models (Charnes et al. 1978, 1985b; Banker et al. 1984) in  
order to handle questions that have arisen in practice. One adaptation has 
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been in the field of ranking DMUs. The basic DEA results categorize the 
DMUs into two sets; those that are efficient and define the Pareto fron-
tier and those that are inefficient. In order to rank all the DMUs, another 
approach or modification is required. Often decision-makers are interested 
in a complete ranking, beyond the dichotomized classification, in order 
to refine the evaluation of the units. Moreover, one problem that has been 
discussed frequently in the literature has been the lack of discrimination in 
DEA applications, in particular when there are insufficient DMUs or the 
number of inputs and outputs is relatively high in comparison to the num-
ber of units. This is an additional reason for the growing interest in com-
plete ranking techniques. Furthermore, fully ranking units is an established 
approach in the social sciences, in general (see Young and Hamer 1987) and 
in multiple-criteria decision-making in particular. It should be noted that 
the methods discussed here could be considered post-analyses since they do 
not replace the standard DEA models rather provide added value. However, 
we also note that complete ranking is only relevant for specific contexts and 
not in all cases.

This chapter describes the ranking methods developed in the literature 
and since many articles have been published in this field, we have grouped 
them into seven basic areas. The methods are classified by several criteria 
and are not mutually exclusive. After specifying the DEA method mathe-
matically in Sect. 2, we discuss the super-efficiency technique in Sect. 3, 
first published in Andersen and Petersen’s paper of 1993, in which DMUs 
are ranked through the exclusion of the unit being scored from the linear 
program. In Sect. 4, we discuss the evaluation of DMUs through bench-
marking, an approach originating in Torgersen et al. (1996), in which an 
efficient unit is highly ranked if it appears frequently in the reference sets 
of inefficient DMUs. In Sect. 5, we present the cross-efficiency technique, 
which was first suggested by Sexton et al. (1986), whereby the DMUs are 
both self and peer evaluated. In Sect. 6, we present the potential for rank-
ing DMUs using a common weights approach, first discussed in Roll et al. 
(1991). In Sect. 7, we analyze the application of multivariate statistical tools 
in combination with DEA, including discriminant analysis and principal 
component analysis. In Sect. 8, we discuss papers that cross multi-criteria 
decision-making methods with the underlying concepts of DEA. Section 9 
presents the ranking of inefficient DMUs, which in general is not considered 
in the previous sections. Finally, Sect. 10 presents the results of the various 
methodologies on a dataset of Higher Education Institutions (HEI) located 
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in the UK, and Sect. 11 draws conclusions and a summary of the various 
approaches to ranking. We note that this review draws from Adler et al. 
(2002) with extensions and additions where deemed relevant.

2  The Data Envelopment Analysis Model

DEA is a mathematical model that estimates the relative efficiency of DMU 
with multiple inputs and outputs but with no obvious production function 
in order to aggregate the data in its entirety. Relative efficiency is defined as 
the ratio of total weighted output to total weighted input. By comparing  
n units with s outputs denoted by yrk , r = 1, . . . , s and m inputs denoted by 
xik , i = 1, . . . ,m, the efficiency measure for DMU k is:

where the weights, ur and vi, are non-negative. A second constraint requires 
that the same weights, when applied to all DMUs, do not provide any unit 
with an efficiency estimate greater than one. This condition appears in the 
following set of constraints:

The efficiency ratio ranges from zero to one, with DMU k being considered 
relatively efficient if receiving a score of one. Thus, each unit will choose 
weights so as to maximize self-efficiency, given the constraints.

The result of the DEA is the determination of the hyperplanes that define 
an envelope surface or Pareto frontier. DMUs that lie on the surface deter-
mine the envelope and are deemed efficient, while those that do not are 
deemed inefficient. The formulation described above can be translated into 
a linear program, which can be solved relatively easily and a complete DEA 
solves n linear programs, one per DMU.

hk = Max
ur ,vi

s∑
r=1

uryrk

m∑
i=1

vixik

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1 for j = 1, . . . , n
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Model (1), often referred to as the CCR model (Charnes et al. 1978), 
assumes that the production function exhibits constant returns to scale. The 
BCC (Banker et al. 1984) model adds an additional constant variable, ck, in 
order to permit variable returns to scale, as shown in Model (2).

It should be noted that units defined as efficient in the CCR  
input-minimization are the same as those defining the Pareto frontier of the 
output-maximized formulations, which is not necessarily the case for the 
results of the BCC model.

2.1  The Dual Program of the CCR Model

If a DMU proves to be inefficient, a combination of other, efficient units 
can produce either greater output for the same composite of inputs, use 
fewer inputs to produce the same composite of outputs or some combina-
tion of the two. A hypothetical decision-making unit, k′, can be composed 
as an aggregate of the efficient units, referred to as the efficient reference set 
for inefficient unit k. The solution to the dual problem of the linear program 
directly computes the multipliers required to compile k′.

(1)

hk = Max
s∑

r=1

uryrk

s.t.
m∑
i=1

vixij −
s∑

r=1

uryrj ≥ 0 for j = 1, . . . , n

m∑
i=1

vixik = 1

ur ≥ 0 for r = 1, . . . , s

vi ≥ 0 for i = 1, . . . ,m

(2)

hk = Max
s∑

r=1

uryrk + ck

s.t.
m∑
i=1

vixij −
s∑

r=1

uryrj − ck ≥ 0 for j = 1, . . . , n

m∑
i=1

vixik = 1

ur ≥ 0 for r = 1, . . . , s

vi ≥ 0 for i = 1, . . . ,m
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In the case of an efficient DMU, all dual variables will equal zero except 
for Lkk and fk, which reflect the unit k’s efficiency, both of which will equal 
one. If DMU k is inefficient, fk will equal the ratio solution of the primal 
problem. The remaining variables, Lkj, if positive, represent the multiples by 
which unit k’s inputs and outputs should be multiplied in order to compute 
the composite, efficient DMU k′. Lkj thus defines the section of the frontier 
to which unit k is compared.

2.2  The Slack-Adjusted CCR Model

In the slack-adjusted DEA models, see for example model (4), a weakly 
efficient DMU will now be evaluated as inefficient, due to the presence of 
input- and output-oriented slacks si and σr, respectively.

where ε is a positive non-Archimedean infinitesimal. In general, this 
formulation creates multiple solutions as a function of the computer-
ized value of ε hence is normally solved in two stages, first to estimate 
the value of fk and subsequently to estimate the slack values given f ∗k , the 
optimal value.

(3)

Min fk

s.t.
n∑

j=1

Lkjxij + fkxik ≥ 0 for i = 1, . . . ,m

n∑
j=1

Lkjyrj ≥ yrk for r = 1, . . . , s

Lkj ≥ 0 for j = 1, . . . , n

(4)

Min fk − ε

(
m∑
i=1

si +
s∑

r=1

σr

)

s.t.
n∑

j=1

Lkjxij + fkxik − si = 0 for i = 1, . . . ,m

n∑
j=1

Lkjyrj − σr = yrk for r = 1, . . . , s

Lkj, si, σr ≥ 0 for j = 1, . . . , n
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2.3  The Additive Model

An alternative formulation proposed by Charnes et al. (1985b), utilizes 
slacks alone in the objective function. This model is used in both the bench-
marking approach and the measure of inefficiency dominance developed in 
Sects. 4 and 9, respectively.

In order to avoid large variability in the weights for all DEA models, 
bounds have been added through assurance regions (Thompson et al. 1986, 
1990, 1992), cone ratios (Charnes et al. 1990), range adjusted measures 
(Cooper et al. 1999) and bounded adjusted measures (Cooper et al. 2011). 
This, in turn, increases the differentiability among the unit scores by reduc-
ing the number of efficient DMUs. In the extreme case, the weights will 
be reduced to a single set of common weights and the units will be fully 
ranked. However, the weight constrained literature is not discussed in this 
chapter since the concept does not strive, nor does it generally succeed, in 
reaching a complete ranking of DMUs.

3  Super-Efficiency Ranking Techniques

Andersen and Petersen (1993) developed a specific model for ranking 
efficient units. The methodology enables an efficient unit k to achieve 
an efficiency score greater than one by removing the kth constraint in 
the primal formulation, as shown in model (6). This is a second stage 
analysis that is performed after the standard first stage categorizing 
variables into the two sets and is applied only to those DMUs deemed 
efficient.

(5)

Min−
m∑
i=1

si −
s∑

r=1

σr

s.t.
n∑

j=1

Lkjxij − si = −xik for i = 1, . . . ,m

n∑
j=1

Lkjyrj − σr = yrk for r = 1, . . . , s

Lkj, si, σr ≥ 0 for j = 1, . . . , n
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The dual formulation of the super-efficient model, as seen in model (7), 
computes the distance between the Pareto frontier, evaluated without unit k, 
and the unit itself, i.e., for J = {j = 1, . . . , n, j �= k}.

However, there are three problematic issues with this methodology. First, 
Andersen and Petersen refer to the DEA objective function value as a rank 
score for all units, despite the fact that each unit is evaluated according to 
different weights. This value in fact explains the proportion of the maximum 
efficiency score that each unit k attained with its chosen weights in relation 
to a virtual unit closest to it on the frontier. Furthermore, if we assume that 
the weights reflect prices, then each unit has different prices for the same 
set of inputs and outputs which may not be relevant if we are analyzing 
branches of the same organization for example.

Second, the super-efficient methodology may give “specialized” DMUs 
an excessively high score. To avoid this problem, Sueyoshi (1999) intro-
duced specific bounds on the weights in a super-efficient ranking model as 
described in Eq. (8).

Furthermore, in order to limit the super-efficient scores to a scale with 
a maximum of 2, Sueyoshi developed an Adjusted Index Number formula-
tion, as shown in Eq. (9).

(6)

hk = Max
s∑

r=1

uryrk

s.t.
m∑
i=1

vixij −
s∑

r=1

uryrj ≥ 0 for j = 1, . . . , n, j �= k

m∑
i=1

vixik = 1

ur ≥ ε for r = 1, . . . , s

vi ≥ ε for i = 1, . . . ,m

(7)

Min fk
s.t.

∑
j∈J

Lkjxij ≤ fkxij for i = 1, . . . ,m

∑
j∈J

Lkjyrj ≥ yrk for r = 1, . . . , s

Lkj ≥ 0 j∈J

(8)vi ≥ 1/(m+ s)max
j
(xij) and ur ≥ 1/(m + s)max

j
(yrj)

(9)AINk = 1+ (δ∗k −min
j∈E

δ∗j )/(max
j∈E

δ∗j −min
j∈E

δ∗j )
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where E is the set of text of efficient units and δ∗k is the value of the  
objective function of a slack-based DEA model, first introduced by Tone 
(2001), and the min/max formulations refer to the super-efficient slack-
based model.

The third problem lies with an infeasibility issue, which if it occurs, 
means that the super-efficient technique cannot provide a complete rank-
ing of all DMUs. Thrall (1996) used the model to identify extreme efficient 
DMUs and noted that the super-efficiency model may be infeasible. Zhu 
(1996a), Dula and Hickman (1997), and Seiford and Zhu (1999) prove 
under which conditions various super-efficient DEA models are infeasible. 
Xue and Harker (2002) argue that the identification of strongly super-effi-
cient units provides information and permits a form of ranking into groups. 
Du et al. (2010) point out that unlike the radial super-efficiency models, 
additive super-efficiency models are always feasible. Additional modifica-
tions to the variable returns-to-scale DEA models have been suggested by 
Lovell and Rouse (2003), Chen (2004), Chen (2005), Ray (2008), Cook 
et al. (2009), Johnson and McGinnis (2009), Chen and Liang (2011), Lee 
et al (2011), Chen et al. (2013), and Guo et al. (2017).

Despite these drawbacks, possibly because of the simplicity of the con-
cept, many published papers have used this approach. For example, 
Hashimoto (1997) developed a DEA super-efficient model with assur-
ance regions in order to rank the DMUs completely. Using model (10), 
Hashimoto avoided the need for compiling additional preference informa-
tion in order to provide a complete ranking of the n candidates.

where ur is the sequence of weights given to the rth place vote (whereby each 
voter selects and ranks the top t candidates). The use of assurance regions 
avoids the specialization pitfall of the standard super-efficiency model. 
Indeed, Banker and Chang (2006) argue that super-efficiency is useful for 
outlier identification rather than ranking and Banker et al. (2017) argue 
that issues with reliable ranking are due for the most-part to the relatively 
small number of DMUs.

(10)

hk = Max
s∑

r=1

uryrk

s.t.
s∑

r=1

uryrj ≤ 1 for j = 1, . . . , n, j �= k

ur − ur+1 ≥ ε for r = 1, . . . , s− 1

us ≥ ε

ur − 2ur+1 + ur+2 ≥ 0 for r = 1, . . . , s− 2
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4  Benchmark Ranking Method

Torgersen et al. (1996) achieve a complete ranking of efficient DMUs by 
measuring their importance as a benchmark for inefficient DMUs. The 
benchmarking measure is evaluated in a two-stage procedure, whereby the 
additive model developed in Charnes et al. (1985b) are first used to eval-
uate the value of the slacks. The set of efficient units, V, is identified as 
those units whose slack values equal zero. In the second stage, model (11) is 
applied to all DMUs.

In order to rank the efficient DMUs and evaluate which are of particular 
importance to the industry, the benchmarking measure aggregates the indi-
vidual reference weights as shown in Eq. 12.

For each efficient DMU k, the benchmark ρr
k measures the fraction of total 

aggregated potential increase in output r, over which k acts as a reference. The 
efficient units together define the entire potential within each output variable. 
An average value of ρk is calculated in order to rank all efficient DMUs com-
pletely. Torgersen et al. (1996) apply their technique to a set of unemploy-
ment offices in Norway and show that, in certain cases, different conclusions 
were reached compared to that of Andersen and Petersen’s super-efficiency 
method (see Sect. 3), due to the outlier problem of the latter technique. 
Additional papers extending the benchmarking approach include Zhu (2000) 
and Rezaeiani and Foroughi (2018).

This is somewhat similar to the results reported in Sinuany-Stern et al. 
(1994), in which an efficient DMU is highly ranked if it is chosen as a 

(11)

1
Ek

= Max fk

s.t.
∑
j∈V

Lkjxij − sik = −xik for i = 1, . . . ,m

∑
j∈V

Lkjyrj − fkyrk − σrk = 0 for r = 1, . . . , s

∑
j∈V

Lkj=1

(12)
ρr
k ≡

n∑
j=1

Ljk

(
yPrj − yrj

)

yPr − yr
for k = 1, . . . ,V , r = 1, . . . , s

where yPrj =
yrj

Ej

+ σrj



198     N. Adler and N. Volta

useful target by many other inefficient units. The technique developed  
in this paper is applied to all DMUs in two stages. In the first stage, the  
efficient units are ranked by simply counting the number of times they 
appear in the reference sets of inefficient units, an idea first developed in 
Charnes et al. (1985a). The inefficient units are then ranked, in the second 
stage, by counting the number of DMUs that need to be removed from the 
analysis before they are considered efficient. However, a complete ranking 
cannot be ensured since many DMUs may receive the same ranked score.

5  Cross-Efficiency Ranking Methods

The cross-evaluation matrix was first developed by Sexton et al. (1986), 
inaugurating the subject of ranking in DEA. Indeed, as Doyle and Green 
(1994) argue, decision-makers do not always possess a reasonable mech-
anism from which to choose assurance regions, thus they recommend the 
cross-evaluation matrix for ranking units. The cross-efficiency method esti-
mates the efficiency score of each DMU n times, using the set of optimal 
weights evaluated by the n LPs. The results of all the DEA cross-efficiency 
scores are summarized in a cross-efficiency matrix as shown in Eq. (13).

Thus, hkj represents the score given to unit j in the DEA run of unit k, i.e.,  
unit j is evaluated by the weights of unit k. Note that all the elements in the 
matrix lie between zero and one, 0 ≤ hkj ≤ 1, and the elements in the diag-
onal, hkk, represent the standard DEA efficiency score, whereby hkk = 1 for 
efficient units and hkk < 1 for inefficient units. Furthermore, if the weights 
of the LP are not unique, a goal-programming technique may be applied to 
choose between the optimal solutions. According to Sexton et al. (1986), the 
secondary goals could be, for example, either aggressive or benevolent. In 
the aggressive context, DMU k chooses among the optimal solutions such 
that it maximizes self-efficiency and at a secondary level minimizes the other 
DMUs cross-efficiency levels. The benevolent secondary objective would be 
to maximize all DMUs cross-efficiency rankings. See also Oral et al. (1991) 
for methods of evaluating the goal programs.

(13)hkj =

s∑
r=1

urkyrj

m∑
i=1

vikxij

for k = 1, . . . , n, j = 1, . . . , n
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The cross-efficiency ranking method in the DEA context utilizes the 
results of the cross-efficiency matrix hkj in order to rank-scale the units. 
Let us define, h̄k =

∑n
j=1 hkj/n, as the average cross-efficiency score given 

to unit k. Averaging, however, is not the only possibility, as the median, 
minimum or variance of scores could also be applied. Green et al. (1996) 
provide further detailed suggestions to help avoid such problems as the  
lack of independence of irrelevant alternatives. It could be argued that h̄k , 
or an equivalent, is more representative than hkk, the standard DEA effi-
ciency score, since all the elements of the cross-efficiency matrix are consid-
ered, including the diagonal. Furthermore, all the units are evaluated with 
the same sets of weight vectors. Consequently, the h̄k score better repre-
sents the unit evaluation since it measures the overall ratios over all the runs 
of all the units. The maximum value of h̄k is 1, which occurs if unit k is  
efficient in all the runs, i.e., all the units evaluate unit k as efficient. In order 
to rank the units, we simply assign the unit with the highest score a rank of  
1 and the unit with the lowest score a rank of n. While the DEA scores, hkk, 
are non-comparable, since each uses different weights, the h̄k score is compa-
rable because it utilizes the weights of all the units equally. However, this is 
also the drawback of the technique, since the evaluation subsequently loses 
its connection to the multiplier weights.

Furthermore, Doyle and Green (1994) developed the idea of a  “maverick 
index” within the confines of cross-efficiency. The index measures the devi-
ation between hkk, the self-appraised score, and the unit’s peer scores, as 
shown in Eq. (14).

The higher the value of Mk, the more the DMU could be considered a mav-
erick. Doyle and Green (1994) argue that this score can go hand-in-hand 
with the benchmarking process (Sect. 4), whereby DMUs considered effi-
cient under self-appraisal but fail to appear in the reference sets of  inefficient 
DMUs will generally achieve a high Mk score. Those achieving a low score 
are generally considered all-round performers and the DMUs are frequently 
both self and peer efficient. Liang et al. (2008) extend Doyle and Green 
(1994) by proposing alternative secondary goals including minimizing 
the total deviation from the ideal point, the maximum deviation from the 
 efficiency score or the mean absolute deviation.

(14)Mk =
hkk − ek

ek
where ek =

1

(n− 1)

∑

j �=k

hkj
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6  Common Weights for Ranking  
Decision-Making Units

One method for ensuring an almost complete ranking of DMUs is the esti-
mation of a common set of weights. This of course changes the meaning of 
data envelopment analysis in which each DMU is permitted to determine 
an individual set of weights, provided no other DMU receives a score greater 
than one for the chosen set of weights. However, a common set of weights 
is the standard approach in most engineering and economic analyses such 
as stochastic frontier models. The approach also enables a comparison and 
ranking of all DMUs, irrespective of whether they are DEA efficient or not. 
As suggested in Roll et al. (1991), assuming a uniformity of operational pro-
cedures may be relevant when analyzing a set of branches of a firm, and a 
comparison between a standard set of DEA weights and common weights 
could indicate special circumstances for a specific DMU.

Clearly, there are many potential methods for assessing a common set of 
weights. Roll et al. (1991) suggest three potential approaches, including (i) 
a standard DEA analysis and then the choice of average weights per factor 
or an alternative central measure; (ii) applying bounds on weights; and (iii) 
employing additional, external information on the importance of factors and 
setting higher or lower bounds accordingly. Using an example of highway 
maintenance stations in the USA, their common weight set was based on 
averages between bound values, which led to a complete ranking of units.

Since then, many papers have been published offering a myriad of possi-
bilities for estimating a common set of weights. For example, Kao and Hung 
(2005) propose a compromise solution method based on an ideal point.

where E∗
j  represents the target or ideal solution and p represents the dis-

tance parameter whereby 1 ≤ p < ∞. Formulation (15) requires solving 
a non-linear objective function and linear constraints. Multiple potential 
ranks are possible as a function of the value of parameter p although Kao 
and Hung argue that p = 2 is probably the most appropriate because (i) the 

(15)

minDP =

[
n∑

j=1

(
E
∗
j
− Ej(u, v)

)p
]1/p

s.t. Ej(u, v) =

s∑
r=1

uryrj

m∑
i=1

vixij

for j = 1, . . . , n

ur , vi ≥ ε > 0, for r = 1, . . . , s, i = 1, . . . ,m
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objective function then minimizes the path to the target solution based on 
Euclidean space and (ii) is unique.

A more recent paper by Kritikos (2017) develops a common set of 
weights model based on five dummy DMUs that span the production 
possibility set by creating ideal and anti-ideal virtual observations. The 
model draws from the technique for order preference by similarity to the 
ideal solution generally known as TOPSIS (Hwang and Yoon 1981).  
Kritikos develops an objective function which simultaneously minimizes the 
geometric distance from the positive ideal solution and maximizes the dis-
tance to the negative ideal solution in order to estimate a common set of 
weights. The common weights then create a fully ranked set of DMUs.

7  Combining Statistical Approaches 
with Data Envelopment Analysis

Alternative approaches to setting common weights involve the use of statis-
tical techniques in conjunction with DEA to achieve a complete ranking. It 
should be noted that DEA is a methodology directed toward frontiers rather 
than central tendencies. Instead of trying to fit regression planes through 
the center of the data, DEA floats a piecewise linear surface (the efficient 
frontier) that rests on top of the observations. DEA optimizes and thereby 
focuses on each unit separately, while regression is a parametric approach 
that fits a single function to the data collected on the basis of average behav-
ior that requires the functional form to be pre-specified. On the other hand, 
in DEA the values of the weights differ from unit to unit and while this 
flexibility in the choice of weights characterizes the DEA model, differ-
ent weights cannot generally be used for ranking because these scores are 
obtained from different comparison (peer) groups for each inefficient DMU.

7.1  Discriminant Analysis of Ratios for Ranking

Sinuany-Stern and Friedman (1998) developed a technique in which discri-
minant analysis of ratios was applied to DEA (DR/DEA). Instead of con-
sidering a linear combination of the inputs and outputs in one equation, 
as in traditional discriminant analysis of two groups, a ratio function is 
constructed as a linear combination of the inputs and a linear combination  
of the outputs. In some ways, this ratio function is similar to the DEA 
efficiency ratio; however, while DEA provides weights for the inputs and 
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outputs, which vary from unit to unit, DR/DEA provides common weights 
for all units. In principle, DR/DEA determines the weights such that the 
ratio score function discriminates optimally between two groups of DMUs 
on a one-dimensional scale (in this case, efficient and inefficient units 
pre-determined by DEA). The ratio, Tj, and the arithmetic means of the 
ratio scores of the efficient and inefficient groups are:

and n1 and n2 are the number of efficient and inefficient units in the DEA 
model, respectively. The weighted mean of the entire n units (n = n1+ n 2) is 

denoted by: T =
n1T1+n2T2

n
.

The problem is to find the common weights vi and ur such that the ratio 
of the between-group variance of T, (SSB(T )) and the within group variance 
of T, (SSW(T )) will be maximized, as shown in model (16).

DR/DEA constructs the efficiency score for each unit j as Tj, the ratio 
between the composite output and the composite input. Hence the proce-
dure rank scales the DMUs so that the unit with the highest score receives 
rank 1 and the unit with the lowest score ranks n. If any weight is negative, 
then non-negativity constraints ought to be added to the optimization prob-
lem. To solve this problem, it is necessary to apply a non-linear optimization 
algorithm; however, there is no guarantee that the solution found is globally 
optimal.

Tj =

s∑
r=1

uryrj

m∑
i=1

vixij

, j = 1, . . . , n

where T1 =

n1∑

j=1

Tj

n1
and T2 =

n∑

j=n1+1

Tj

n2

(16)

max
ur ,vi

� = max
ur ,vi

SSB(T)
SSW (T)

SSB(T) = n1(T1 − T)2 + n2(T2 − T)2 = n1n2
n1+n2

(T1 − T2)
2

SSW (T) =
n1∑
j=1

(Tj − T1)
2 +

n∑
j=n1+1

(Tj − T2)
2
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7.2  Principal Component Analysis for Improved 
Discrimination

Another attempt to improve the discriminating power of DEA is developed 
in Adler and Golany (2001, 2002), where principal component analysis is 
utilized to reduce the number of inputs/outputs, thus reducing the prob-
lem of dimensionality. Lack of discrimination, often defined as the curse of 
dimensionality, means that a large number of DMUs are incorrectly clas-
sified as efficient due to the overestimation bias. Principal components, a 
methodology that produces uncorrelated linear combinations of the origi-
nal variables, ought to improve discrimination in DEA with minimal loss of 
information. This approach assumes that separation of variables representing 
similar themes, such as quality or environmental measures, and the removal 
of principal components with little or no explanatory power, improves the 
categorization of efficient and inefficient DMUs.

Let the random vector X = [X1,X2, . . . ,Xp] possess the covariance 
matrix V with eigenvalues η1 ≥ η2 ≥ · · · ≥ ηp ≥ 0 and normalized  
eigenvectors l1, l2, . . . , lp. Consider the linear combinations, where the 
superscript t represents the transpose operator, as specified in Eq. (17). The 
new variables, commonly known as principal components, are weighted 
sums of the original data.

The principal components, XPC1
,XPC2

, . . . ,XPCp, are the uncorrelated 
linear combinations ranked by their variances in descending order. In order 
to counter bias that might occur due to differences in the magnitude of the 
values of the original variables, the PC transformation should be applied 
to the correlation matrix of the normalized variables. Principal compo-
nents are computed based solely on the correlation matrix, and their devel-
opment does not require a multivariate normal assumption. The complete 
set of principal components is as large as the original set of variables. Lx is 
the matrix of all li whose dimensions drop from m × m to h × m, as PCs are 
dropped (Xpc becomes an h × n matrix). PCA-DEA is defined as a linear pro-
gram in models (18).

(17)
XPCi

= ltiX = l1iX1 + l2iX2 + · · · + lpiXp

Var
(
XPCi

)
= ltiVli = ηi for i = 1, 2, . . . , p

Cov
(
XPCi

,XPCk

)
= ltiVlk = 0 for i = 1, 2, . . . , p, k = 1, 2, . . . , p, i �= k
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where subscript “pc ” is the index of principal component variables; Xpc rep-
resents an m by n input matrix; Ypc an r by n output matrix; λ a column 
n-vector of DMU weights; σ a column m-vector of input excess; s a column 
r-vector of output slack variables; wt is a vector consisting of reciprocals of 
the sample standard deviations of the relevant variables. An additional con-
straint et� = 1 can be added to (18a) corresponding to the BCC case. (18b) 
is the dual version of (18a). The PCA-DEA formulation is exactly equiva-
lent to the original linear program if and only if the PCs explain 100% of 
the variance in the original input and output matrices. Based on Adler and 
Yazhemsky (2010), it would appear to be inadvisable to reduce information 
below 80% and this may not be sufficient to achieve a complete ranking of 
DMUs.

8  Multi-criteria Decision-Making

The multi-criteria decision-making (MCDM) literature was entirely sep-
arate from DEA research until 1988, when Golany combined interactive, 
multiple-objective linear programming and DEA. While the MCDM liter-
ature does not consider a complete ranking as their ultimate aim, they do 
discuss the use of preference information to further refine the discrimina-
tory power of the models. In this manner, the decision-makers could specify 
which inputs and outputs should lend greater importance to the model solu-
tion. However, this could also be considered the weakness of these methods, 
since additional knowledge on the part of the decision-makers is required. 
Golany (1988), Kornbluth (1991), Thanassoulis and Dyson (1992), Golany 

(18a)

Max
spc,σpc,�

wt
Ypcspc + wt

Xpcσpc

s.t. Ypc�− Lyspc = Ya
pc

−Xpc�− Lxσpc = −Xa
pc

σpc, spc,� ≥ 0

(18b)

Min
Vpc,Upc

V t
pcX

a
pc − Ut

pcY
a
pc

s.t. Vt
pcXpc − Ut

pcYpc ≥ 0

Vt
pcLx ≥ wt

Xpc

Ut
pcLy ≥ wt

Ypc

Vpc and Upc are free
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and Roll (1994), Zhu (1996b), and Halme et al. (1999) each incorporated 
preferential information into the DEA models through, for example, a selec-
tion of preferred input/output targets or hypothetical DMUs. Joro et al. 
(1998) and Gandibleux (2006) provide reviews of the literature on DEA 
and multiple-objective linear program (MOLP). A separate set of papers 
reflected preferential information through limitations on the values of the 
weights (assurance regions or cone-ratio models), which can almost guaran-
tee a complete DMU ranking. Such papers include Thompson et al. (1986), 
Dyson and Thanassoulis (1988), Charnes et al. (1989, 1990), Cook and 
Kress (1990a, b), Thompson et al. (1990), Wong and Beasley (1990), Cook 
and Johnston (1992) and Green and Doyle (1995).

Cook and Kress (1990a, b, 1991, 1994) and Cook et al. (1993, 1996) 
argued that by imposing ratio constraints on the multipliers and replacing 
the infinitesimal with a lower bound thus acting as a discrimination factor, 
the modified DEA model can almost ensure a unique efficient DMU. For 
example, when considering aggregation of votes whereby yrj is the number 
of rth placed votes received by candidate j, one can define a discrimination 
intensity function d(r,ε) and solve model (19).

where d(r, ε) ensures that first-place votes are valued at least as highly as 
second-place votes and so on. The ease with which this formulation can be 
solved depends on the form of d(r, ε). Model (19) is linear if the difference 
between the ranks is linear, but this need not always be the case. However, 
as pointed out in Green et al. (1996), the form of d(r, ε) affects the rank-
ing results and no longer allows DMUs to choose their weights freely. 
Furthermore, which mathematical function is appropriate is unclear yet 
important to the analysis.

Some have gone as far as to argue that DEA should be considered another 
methodology within MCDM, for example Troutt (1995), Li and Reeves 
(1999), and Sinuany-Stern et al. (2000). Troutt (1995) developed a maxi-
min efficiency ratio model in which a set of common weights is evaluated to 
distinguish between efficient DMUs as shown in model (20).

(19)

Max ε

s.t.
s∑

r=1

uryrj ≤ 1 for j = 1, . . . , n

ur − ur+1 − d(r, ε) ≥ 0

ur − d(r, ε) ≥ 0

ur , ε ≥ 0
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Li and Reeves (1999) suggest utilizing multiple objectives, such as minimax 
and minisum efficiency in addition to the standard DEA objective function 
in order to increase discrimination between DMUs, as shown in the MOLP 
of model (21).

The first objective is equivalent to the standard CCR model. The second 
objective function requires the MOLP to minimize the maximum devia-
tion (slack variable) and the third objective is to minimize the sum of devi-
ations. The aim is to increase discrimination, which the second and third 
objectives provide without promising complete ranking, similar to the assur-
ance regions and cone-ratio approaches. On the other hand, this approach 
does not require additional preferential information as do other approaches. 
Extensions to this approach can be found in Ghasemi et al. (2014) and de 
Carvalho Chaves et al. (2016). Rubem et al. (2017) argue that the Li and 
Reeves model only finds non-dominated solutions rather than a full ranking 
and propose a weighted goal program combined with DEA to achieve this 
purpose. Model (22) translates the three goals (g1, g2, g3) defined in model 
(21) into deviational variables and creates a complete rank although the 

(20)

Maximize
ur ,vi



Minimize
k

s�
r=1

uryrk

m�
i=1

vixik





s.t.

s�
r=1

uryrk

m�
i=1

vixik

≤ 1 for all k

s�
r=1

ur = 1

ur , vi ≥ 0 for all r, i

(21)

Min dk
MinM

Min
n∑

j=1

dj

s.t.
m∑
i=1

vixij +
s∑

r=1

uryrj + dj = 0 for j = 1, . . . , n

m∑
i=1

vixik = 1

M − dj ≥ 0

ur , vi, dj ≥ 0 for all r, i, j
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weights (w1,w2,w3) in the objective function would still require additional 
information beyond that of the standard DEA modeling approach.

where d−
1
, d+

1
, d−

2
, d+

2
, d−

3
, d+

3
. represent deviational variables and M a large 

number.
However, it should be noted that certain researchers have argued that 

MCDM and DEA are two entirely separate approaches, which do not over-
lap. MCDM is generally applied to ex-ante problem areas where data is not 
readily available, especially if referring to a discussion of future technolo-
gies, which have yet to be developed. DEA, on the other hand, provides an 
ex-post analysis of the past from which to learn. A discussion of this topic 
can be found in Belton and Stewart (1999).

9  Ranking Inefficient Decision-Making Units

The majority of techniques so far discussed have not attempted to rank the 
inefficient DMU beyond the efficiency scores attained from the standard 
DEA models. However, it could be argued that comparing the scores of two 
inefficient units is only possible if their benchmarks draw from the same 
sub-set of efficient units. The super-efficiency method ranks inefficient units 
in the same manner as the standard DEA model. The benchmarking con-
cept only attempts to rank DMUs identified in the standard DEA models 
as efficient. It should be noted that both the cross-efficiency method and the 
various statistical techniques do attempt to address this problem.

One concept, derived in Bardhan et al. (1996), ranks inefficient units 
using a measure of inefficiency dominance (MID). The measure is based on 

(22)

Min a =
{
w1d

+
1
+ w3d

+
3
+ w3d

+
3

}

s.t.
∑m

i=1
vixij = 1

∑s

r=1
uryrj +

∑m

i=1
vixij + dj = 0, for j = 1, . . . , n

M − dj ≥ 0, for all j

d0 + d−
1
− d+

1
≤ g1

M + d−
2
− d+

2
≤ g2, for all k

∑n

k=1
dk + d−

3
− d+

3
≤ g3

ur , vi, dj, d
−
1
, d+

1
, d−

2
, d+

2
, d−

3
, d+

3
≥ 0, for all r, i, j
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slack-adjusted DEA models from which an overall measure of inefficiency 
can be computed as shown in Eq. (23).

The MID index ranks the inefficient DMUs according to their average 
proportional inefficiency in all inputs and outputs. However, just as the 
benchmarking approach (see Sect. 4) only ranks the efficient units, the MID 
index only ranks the inefficient units.

10  Illustration of Ranking

For the benefit of the reader, we analyze a simple illustration comparing 
Higher Education Institutes (HEI) in the UK using the techniques pre-
sented in this chapter. Rankings and league tables in higher education have 
experienced increasing popularity over the last decade. The ranks have 
become commercialized and affect managerial decisions at HEI globally 
(Hazelkorn 2015; Ruiz and Sirvent 2016). However, despite their popular-
ity, it has been widely acknowledged in the related literature that university 
rankings are controversial (De Witte and Hudrlikova 2013).

The data for our illustration has been collected from the UK’s Higher 
Education Statistics Agency (HESA) and refers to the academic year 2015–
2016. Given the scope of this section, our observations are restricted to the 
English universities belonging to the Russell Group. The Russell Group, 
founded in 1994, represents 24 of the leading universities in the UK. The 
Russell Group includes heterogeneous providers in terms of the number of 
students and courses provided. For example, it includes highly specialized 
providers such as the London School of Economics and Political Science 
(social sciences), as well as comprehensive universities such as University 
College London. Consequently, the rankings are only intended as a numeri-
cal exercise to highlight differences in the modeling approaches.

For the purposes of the illustration, we assume a production process in 
which academic and non-academic staff represent inputs while teaching and 
research income represent outputs. The set of HEI providers and the inputs 
and outputs are presented in Table 1.1

(23)
0 ≤ 1−

m∑
i=1

s∗r
xik

+
s∑

r=1

σ ∗
i

yrk

m + s
≤ 1 for k = 1, . . . , n

1We included in our sample 20 of the 24 members of the Russell Group. Data for Cardiff University, 
University of Edinburgh, University of Glasgow and Queen’s University Belfast was not available.
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The results of the output-oriented radial (RAD) and additive (ADD) 
models assuming constant (CCR) and variable (BCC) returns to scale 
are presented in Table 2. We note that a score of one in the radial mod-
els implies efficiency and a score greater than one indicates the potential 
increase in income achievable were the HEI to lie on the Pareto frontier. In 
the additive model, a score of zero identifies efficient units and a positive 
value in the objective function suggests by how much the sum of incomes 
ought to increase in order for the HEI to be deemed efficient. The CCR 
models identify six efficient units whereas the BCC models identify the same 
six units and six additional efficient universities. Four of the six CCR radial 
efficient DMUs are located in London. Perhaps interestingly, the additive 
model results are the same except for Cambridge University, which is only 
weakly CCR-efficient hence should be able to increase output in the range 
of £72 million in order to lie on the strongly efficient frontier.

Table 3 presents the results for the aggressive and benevolent cross- 
efficiency specifications, the CCR and BCC super-efficiency models and 
the Common Set of Weights (CSW) radial, variable returns-to-scale model.  
In the two cross-efficiency specifications, none of the HEI providers obtain 

Table 2 Radial and additive, constant and variable returns-to-scale estimates

HEI provider RAD CCR RAD BCC ADD CCR ADD BCC

Imperial College of Science, 
Technology and Medicine

1 1 0 0

King’s College London 1 1 0 0
London School of Economics and 

Political Science
1.03 1 41,602 0

Newcastle University 1.14 1.13 61,579 61,167
Queen Mary University of London 1 1 0 0
The University of Birmingham 1.16 1.05 10,2554 90,387
The University of Bristol 1.12 1.11 62,851 62,609
The University of Cambridge 1 1 72,139 0
The University of Exeter 1 1 0 0
The University of Leeds 1.11 1.04 60,573 55,873
The University of Liverpool 1.09 1.02 68,129 61,559
The University of Manchester 1.03 1 30,754 0
The University of Oxford 1.04 1 163,351 0
The University of Sheffield 1.01 1 4762 0
The University of Southampton 1.16 1.14 7,5459 74,529
The University of Warwick 1.02 1 9572 0
The University of York 1.10 1 27,799 0
University College London 1 1 0 0
University of Durham 1.09 1 23,997 0
University of Nottingham 1.11 1.03 58,747 52,223
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a final score of one. Moreover, comparing the two sets of results, the dif-
ferences are somewhat stark with Imperial College obtaining the  highest 
rank in the benevolent specification and University College London in 
the aggressive model. Super-efficiency scores for inefficient units match 
the results presented in Table 2 (radial CCR and BCC) for the inefficient 
units since the model only ranks the efficient DMUs. University College 
London is ranked as the most efficient in the CCR case and Queen Mary 
University of London in the BCC case. However, we note that the BCC  
super-efficiency case results in one infeasible solution, namely the London 
School of Economics. The London School of Economics could be deemed 
a specialist as it consists of 27 departments and institutes alone. It could be 
argued that the School is an outlier, which matches the argument of Banker 
et al. (2017) or equally, a strongly efficient unit as argued in Xue and Harker 
(2002). Using the average of weights in order to estimate a common set 
of weights (Roll et al. 1991) leads to weights of two thirds with respect to 
academic staff and one third with respect to support staff. Teaching reve-
nues receive a weight of 0.6 and research funds equal to 0.4. The results of 
CSW give a high score to Imperial College and University College London 
and low scores to the University of Durham and the London School of 
Economics. In other words, the application of a single fixed set of weights, 
for example to generate the Human Development Index (Anand and Sen 
1994), creates a starkly different ranking as a result of the assumption of a 
single production function.

Results for the benchmarking approach (based on the radial BCC model), 
the measure of inefficiency dominance (MID), and principal component 
analysis (PCA-DEA) are presented in Table 4. The benchmarking model, 
which only ranks the efficient units, indicates that the universities of Exeter 
and Manchester are ranked first and second, respectively. This result is some-
what different to the super-efficient model because super-efficiency tends to 
rank the specialized DMUs highly whereas the benchmarking approach is 
more likely to highlight DMUs that are reasonably good with respect to all 
variables. Clearly, the choice of method impacts the results hence the reason 
for benchmarking should guide the user in choosing the most appropriate 
approach.

The MID model, which ranks only inefficient units, indicates that the 
University of Birmingham is the lowest ranked unit. Since MID accounts 
for the average proportional inefficiency, the results do not necessarily match 
the ranking of the additive BCC model precisely. The principal component 
analysis approach reduces both inputs and outputs to single weighted var-
iables representing 93 and 84%, respectively, of the underlying correlation 
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between the two variable sets. The PCA-DEA results suggest that Queen 
Mary University is the highest ranked, closely followed by University 
College London based on the CCR approach and joined by the London 
School of Economics under the BCC approach. The lowest ranked univer-
sities include Oxford, Birmingham and Southampton joined by Durham in 
the BCC PCA-DEA model, all located outside of the London conurbation. 
Perhaps surprisingly, the two mostly highly considered universities in the 
UK, namely Oxford and Cambridge, are ranked efficient but lowest in the  
benchmarking approach and inefficient according to PCA-DEA due to  
the use of excessive staff levels in comparison with research and teaching 
income.

Based on the scores presented in Tables 2–4, we created ranks which 
are summarized in Table 5. Queen Mary, University College London 

Table 4 Benchmarking ranks, MID ranks and PCA-DEA scores

HEI provider Benchmarking MID PCA-DEA CCR PCA-DEA BCC

Imperial College of 
Science, Technology and 
Medicine

5 1.08 1.07

King’s College London 7 1.11 1.10
London School of 

Economics and Political 
Science

7 1.16 1.00

Newcastle University 3 1.24 1.23
Queen Mary University of 

London
3 1.00 1.00

The University of 
Birmingham

6 1.19 1.18

The University of Bristol 2 1.20 1.19
The University of 

Cambridge
7 1.22 1.20

The University of Exeter 1 1.07 1.07
The University of Leeds 3 1.25 1.24
The University of 

Liverpool
5 1.16 1.15

The University of 
Manchester

2 1.11 1.10

The University of Oxford 7 1.33 1.20
The University of Sheffield 6 1.15 1.14
The University of 

Southampton
4 1.24 1.23

The University of Warwick 4 1.17 1.16
The University of York 7 1.25 1.19
University College London 7 1.01 1.00
University of Durham 7 1.44 1.43
University of Nottingham 1 1.21 1.20
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and Imperial receive the highest ranks across most models in general. 
At the opposite end of the spectrum, the universities of Southampton, 
Birmingham, Leeds, Durham and Newcastle consistently appear the 
weakest in terms of maximizing their teaching and research income given 
their academic and support staff resources. It would appear that most  
methodologies arrive at similar conclusions with respect to the highest and 
lowest performing HEIs but the remaining ranks are very much dependent 
on the underlying rationale of the individual models. Furthermore, three 
universities (London School of Economics, Oxford and Cambridge) show 
the largest changes in ranks across the models, suggesting that additional 
variables may be missing from the current dataset.

The last two columns of Table 5 report the relative rankings accord-
ing to the 2017 QS world university ranking and the 2017 Times Higher 
Education ranking (THE). We note that the two indices follow additional 
criteria over and above the inputs and outputs used in the analysis presented 
here.2 While the rankings appear similar for Imperial College and University 
College London, Queen Mary receives a much lower score in the QS and 
THE ranks compared to the results of the DEA ranking. It would appear 
that the commercial rankings place greater emphasis on reputation, and per-
haps quality, than the efficient use of resources.

In order to visualize the universities in the dataset, Fig. 1 is created from 
a Co-plot model (Raveh 2000; Adler and Raveh 2008). Co-plot locates each 
DMU in a two-dimensional space in which the location of each DMU is 
determined by all variables simultaneously. In a subsequent stage, all ratios 
of output to input are plotted in the form of arrows and superimposed 
sequentially. The DMUs are exhibited as n points and the ratios are exhib-
ited as k arrows relative to the same axis and origin. A measure of good-
ness-of-fit is computed and associated to each criterion separately. Co-plot 
is based on the integration of mapping concepts using a variant of regression 
analysis. Starting with a data matrix Xnk of n rows and k columns, Co-plot is 
composed of four stages. In stage 1, Xnk is normalized and the elements are 
deviations from column means divided by standard deviations. In stage 2, a 
measure of dissimilarity Dij ≥ 0 is computed based on the sum of absolute 
deviations between each pair of observations. In stage 3, the n DMUs are 

2The Times Higher Education ranking aggregates 13 weighted performance indicators in the categories 
of teaching (the learning environment), research (volume, income and reputation), citations (research 
influence), international outlook (staff, students and research) and industry income (knowledge  
transfer). Similarly, the QS world university ranking is based on six weighted metrics: academic repu-
tation, employer reputation, faculty/student ratio, citations per faculty, international faculty ratio and 
international student ratio.
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mapped by means of multidimensional scaling based on Guttman’s smallest 
space analysis (1968). Finally, k arrows are drawn on the Euclidean space 
obtained in Stage 4. Each ratio j is represented by an arrow emerging from 
the center of gravity of the points from stage 3. The arrows associated with 
highly correlated information point in about the same direction. As a result, 
the cosines of angles between these arrows are approximately proportional 
to the correlations between their associated criteria. In our case, universities 
located high up on an arrow are likely to produce high output and utilize 
low input with respect to the specific ratio.

In Fig. 1, the four arrows represent each of the outputs divided by each 
of the inputs (income type divided by staff type). Each circle represents a 
university and the color has been chosen exogenously to the Co-plot model. 
Blue represents the universities that receive relatively consistent high ranks, 

Fig. 1 Co-plot representation of the Higher Education Institutions
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red represents those lowest in the rankings and gray are all the remaining 
universities. We see that Imperial and UCL are among the largest in the 
dataset and both receive high rankings due to their research income in com-
parison to their staff numbers. Queen Mary is far smaller in size and cre-
ates an umbrella for the more teaching-oriented universities in the dataset. 
Perhaps interestingly, Oxford and Cambridge are co-located in the bottom 
left of the plot but are not deemed as efficient or high up in the rankings 
as the combination of UCL, which earns higher income with fewer staff 
than Oxford, and Imperial, which earns lower income but with substantially 
lower staff levels than both Oxford and Cambridge.

11  Conclusions

The field of data envelopment analysis has grown at an exponential rate 
since the seminal papers of Farrell (1957) and Charnes et al. (1978). The 
original idea of evaluating after-school programs with multiple inputs and 
outputs has led to an enormous body of academic literature. Within this 
field is a sub-group of papers in which many researchers have sought to 
improve the differential capabilities of DEA and to fully rank both efficient, 
as well as inefficient, DMUs.

The DEA ranking concepts have been divided into seven general areas. 
The first group of papers is based on the super-efficiency approach, in which 
the efficient units may receive a score greater than one, as a function of how 
important the DMU is in pushing out the frontier. This idea has proved 
popular and many papers have applied the idea to multiple DEA variations, 
broadening its use from mere ranking to outlier detection, sensitivity anal-
yses and scale classification. The issue of infeasibility appears to have been 
solved.

The second grouping is based on benchmarking, in which a DMU is 
highly ranked if it is chosen as a useful target for many other DMUs. This is 
of substantial use when looking to benchmark industries.

The third group of papers is based on a cross-efficiency matrix. By 
evaluating DMUs through both self and peer pressure, one can attain 
a potentially more balanced view of the DMU but at the cost of a loss of 
information.

The fourth group of papers creates an almost complete ranking based on 
comparing all DMUs through a production function approach with a com-
mon set of weights. The advantage of such a viewpoint is that it becomes 
possible to rank both efficient and inefficient units with respect to a single 
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hyper-frontier. The disadvantage is that it is less clear how to estimate the 
common set of weights and different approaches lead to completely different 
sets of rankings.

The fifth group of papers developed a connection between multivariate 
statistical techniques and DEA. Discriminant analysis is applied in order to 
compute a common set of weights, from which the DMUs can be ranked. 
In practice, non-parametric statistical tests showed a strong correlation 
between the final ranking and the original DEA dichotomous classification. 
In addition, combining principal component analysis and DEA reduces the 
bias caused by an excessive number of variables in comparison with observa-
tions, frequently leading to a ranking of DMUs without the need for addi-
tional preferential information from decision-makers.

In the sixth section, which crosses multi-criteria decision-making mod-
els with DEA, some concepts require additional, preferential information 
in order to aid the ranking process. The additional information can be 
incorporated into or alongside the standard DEA results through the use 
of assurance regions or discrimination intensity functions. Other concepts 
combined the two approaches without the need for additional information, 
such as the maximin efficiency ratio model and a multi-objective linear pro-
gram. The most recent work on combining goal programming and DEA 
looks very promising.

The seventh and last group of papers discuss the ranking of inefficient 
units. One approach, entitled a measure of inefficiency dominance, ranks 
the inefficient units according to their average proportional inefficiency in 
all factors.

It should be noted that many papers have been written in an empirical 
context, utilizing the concepts discussed here. Our aim was to discuss the 
base methodologies rather than the subsequent applications, though it can 
be noted that certain techniques have been heavily used in specific areas. 
Super-efficiency has been applied in a wide range of papers from finan-
cial institutions and industry to public sector regulation, education and 
health care. Benchmarking has been used extensively in the field of utilities, 
industry and agricultural productivity. Cross-efficiency has been applied in 
many areas of manufacturing, including engineering design, flexible man-
ufacturing systems, industrial robotics and business process re-engineering. 
It has also been used for project and R&D portfolio selection. The statisti-
cal techniques have been applied to universities and industry and MCDA/
DEA to agriculture and the oil industry. Clearly, these methodologies have 
wide-ranging applicability in many areas of both the public and the private 
sectors.
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Finally, many mathematical and statistical techniques have been pre-
sented here, all with the basic aim of increasing the discriminatory power 
of data envelopment analysis and ranking the DMU. However, while each 
technique may be useful in a specific area, no single methodology can be 
prescribed here as the panacea of all ills. It remains to be seen whether the 
ultimate DEA model can be developed to solve all problems and which 
will consequently be easy to solve by practitioners in the field and academ-
ics alike. It would seem more likely that specific models or combinations of 
models will be tailored to questions that arise over time.
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1  Introduction

This chapter provides an overview of a particular aspect of stochastic 
frontier analysis (SFA). The SF model is typically used to estimate best- 
practice ‘frontier’ functions that explain production or cost and predict 
firm efficiency relative to these. Extensive reviews of the broad stochas-
tic frontier (SF) methodology are undertaken by Kumbhakar and Lovell 
(2000), Murillo-Zamorano (2004), Coelli et al. (2005), Greene (2008), and 
Parmeter and Kumbhakar (2014). This review will focus on the many differ-
ent uses of various distributional forms.

Section 2 begins with a brief account of the motivation and development 
of efficiency analysis and prediction based on the standard SF model. A key 
feature of SF models is the focus on unobserved disturbance in the economet-
ric model. This entails a deconvolution of the disturbance into a firm ineffi-
ciency component— quantification of which is the goal of the analysis—and a 
statistical noise term. Following this general outline, we discuss approaches to 
dealing with some key specification issues. Section 3 considers alternative dis-
tributional assumptions for inefficiency. Section 4 examines panel data issues. 
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Section 5 considers modelling heteroskedasticity in error terms and its use-
fulness for policy analysis. Section 6 considers alternative noise distributions 
within SF models. Section 7 considers amendments to the standard SF model 
when the data contains efficient firms. Section 8 considers other received pro-
posals relevant to appropriate distributional assumptions in SFA. Section 9 
concludes.

2  Departure Points

The standard theory of the firm holds that firms seek to maximise profit. 
Under certain assumptions, a profit function exists that reflects the maximum 
profit attainable by the firm. The profit function is derived from the firm’s 
cost function, which represents the minimum cost given outputs and input 
prices, and its production function, which describes the firm’s technology. 
These are ‘frontier’ functions in the sense that they represent optimal out-
comes that firms cannot improve upon given their existing technology. The 
duality of the production and cost functions was demonstrated by Shephard 
(1953). Debreu (1951) introduced the notion of a distance function to 
describe a multiple output technology and proposed that the radial distance 
of a producer’s outputs from the distance function be used as a measure of 
technical inefficiency. Koopmans (1951) provided a definition of technical 
efficiency.

The idea that firms might depart from profit maximisation was first 
suggested in passing by Hicks (1935), who speculated that firms with 
market power in particular may choose to enjoy some of their rents not 
as profit, but as reduced effort to maximise profits, or ‘a quiet life’. Later, 
Leibenstein (1966, 1975) discussed various empirical indications of firm-
level ‘X-inefficiency’ and how it might arise. The debate between Leibenstein 
(1978) and Stigler (1976) highlighted two alternative characterisations of 
inefficiency: as a result of selective rationality and non-maximising behav-
iour, resulting in non-allocative welfare loss, or as the redistribution of rents 
within the firm, and therefore consistent with the idea of maximising out-
ward behaviour. The latter characterisation essentially posits that firms are 
maximising an objective function including factors other than profit, and 
encompasses a wide range of specific hypotheses about firm behaviour. The 
revenue maximisation hypothesis of Baumol (1967), the balanced growth 
maximisation hypothesis of Marris (1964) and the expense preference 
hypothesis of Williamson (1963) are examples of hypotheses within which 
the firm (or its managers, given informational asymmetry between principal 
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and agent) pursues other objectives jointly with profit or subject to a profit 
constraint. We should therefore bear in mind that when we discuss effi-
ciency, it is relative to an objective that we define, and not necessarily that of 
the firm (or its agents).

The early literature on econometric estimation of cost functions has focal 
points at Johnston (1960) for the UK coal industry and Nerlove (1963) for 
US electricity generation. These authors focused primarily on estimation of 
the shape of the empirical cost or production functions. Typically, ordinary 
least squares (OLS) was used to estimate a linear model:

where yi is cost or output, β is a vector of parameters to be estimated, εi  
is a random error term, i = 1, 2, . . . , I denotes an observed sample of data 
and xi is the vector of independent variables. In the case of a production 
function, independent variables include input quantities and other fac-
tors affecting production, while in the case of a cost frontier, independent 
 variables include output quantities and input prices, along with other factors 
affecting cost (Shephard 1953). Commonly, the dependent and independ-
ent variables are logged, in order to linearise what is assumed to be a multi-
plicative functional form. Note that the estimation of (1) via least squares, 
where a symmetric error term is assumed, is only consistent with the idea 
of a frontier function if we assume that firms are all fully efficient, and that 
departures from the estimated frontier are explained purely by measurement 
error and other random factors, such as luck. This fact has motivated many 
alternative proposals that are consistent with the notion of a frontier. Farrell 
(1957) proposed the use of linear programming to construct, assuming con-
stant returns to scale, a piecewise linear isoquant and to define technical 
inefficiency as the radial distance of the firm from this isoquant.

An approach that amends (1) so the error is one-sided, yields a deter-
ministic or ‘full’ frontier specification, in which the residuals are attributed 
entirely to inefficiency. Since a firm must be operating on or below its pro-
duction frontier, and on or above its cost frontier, this means that sεi ≤ 0, 
where s = 1 for a production frontier and s = −1 for a cost frontier. Aigner 
and Chu (1968) suggested linear or quadratic programming approaches 
to deterministic frontier estimation. Respectively, these minimise 

∑I
i=1 εi 

or 
∑I

i=1 ε
2
i , subject to the constraint that sεi ≤ 0. Schmidt (1976) noted 

that these are maximum likelihood (ML) estimators under the assumptions 
that the error term is exponentially or half normally distributed. Omitting 
the restriction that the residuals be one-sided leads to OLS and least abso-
lute deviations (LAD) estimation, which would be ML estimation under the 

(1)yi = xiβ + εi,
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assumptions that εi follows the normal or Laplace distributions, two-sided 
counterparts of the half-normal and exponential distributions, respectively. 
Afriat (1972) proposed a deterministic frontier model in which exp (εi) fol-
lows a two-parameter beta distribution, to be estimated via ML, which as 
Richmond (1974) noted is equivalent to assuming a gamma distribution for 
εi. The usual regularity conditions for ML estimation do not hold for deter-
ministic frontier functions, since the range of variation of the dependent 
variable depends upon the parameters. Greene (1980) points out that under 
certain specific assumptions, this irregularity is actually not the relevant con-
straint. Specifically, if both the density and first derivative of the density of ε 
converge to zero at the origin, then the log-likelihood function is regular for 
ML estimation purposes. Deterministic frontier models with gamma and log-
normal error term are examples.

Deterministic frontier models suffer from a serious conceptual weakness. 
They do not account for noise caused by random factors such as measure-
ment error or luck. A firm whose production is impacted by a natural dis-
aster might by construction appear to be inefficient. In order to account 
for measurement error, Timmer (1971) suggested amending the method 
so that the constraint sεi ≤ 0 holds only with a given probability, thereby 
allowing a proportion of firms to lie above (below) the production (cost) 
frontier. However, this probability must be specified in advance in an arbi-
trary fashion. An alternative proposal made by Aigner et al. (1976) has the 
error drawn from a normal distribution with variance σ 2θ when sεi ≤ 0 
and σ 2(1− θ) when sεi > 0, where 0 < θ < 1. Essentially, though this 
is not made explicit, this allows for normally distributed noise with var-
iance σ 2(1− θ) and inefficiency implicitly following a half-normal distri-
bution with variance (1− 2/π)σ 2(1− θ), under the assumption that 
where sεi ≤ 0 firms are fully efficient. The resulting likelihood function is 
that of a 50:50 mixture of two differently scaled normal distributions trun-
cated at zero from the left and right, respectively. The discontinuity of this 
specification once again violates the standard regularity conditions for ML 
estimation.

The issues with the models suggested by Timmer (1971) and Aigner et al. 
(1976) stem in both cases from their peculiar assumption that firms must be 
fully efficient when sεi ≤ 0, which remains rooted in an essentially deter-
ministic view of frontier estimation. The current literature on SFA, which 
overcomes these issues, begins with Aigner et al. (1977) and Meeusen and 
van Den Broeck (1977). They proposed a composed error:

(2)εi = vi − sui
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where vi is a normally distributed noise term with zero mean, capturing ran-
dom factors such as measurement error and luck, and ui is a non-negative 
random variable capturing inefficiency and is drawn from a one-sided distri-
bution. Battese and Corra (1977) proposed an alternative parameterisation 
of the model. Given particular distributional assumptions about the two 
error components, the marginal distribution of the composed error εi may 
be derived by marginalising ui out of the joint probability;

where fε, fv, and fu are the density functions for εi, vi, and ui, respectively. The 
half-normal and exponential distributions were originally proposed for ui.  
Assuming a normal distribution for vi, the resulting distributions for εi are 
the skew-normal distribution, studied by Weinstein (1964) and Azzalini 
(1985), and the exponentially modified Gaussian distribution originally 
derived by Grushka (1972).

The ultimate objective of SFA is deconvolution of estimated residuals into 
separate predictions for the noise and inefficiency components. The latter is 
the focus of efficiency analysis. Since the parameters of fu are outputs of the 
estimation process, we obtain an estimated distribution of efficiency, and as 
proposed by Lee and Tyler (1978), the first moment of this estimated distri-
bution may be used to predict overall average efficiency. However, decom-
posing estimated residuals into observation-specific noise and efficiency 
estimates was elusive until Jondrow et al. (1982) suggested predicting based 
on the conditional distribution of ui|εi, which is given by

They derived (4) for the normal-half normal and normal-exponential cases. 
The mean, E(ui|εi), and mode, M(ui|εi), of this distribution were pro-
posed as predictors. Waldman (1984) examined the performance of these 
and other computable predictors. Battese and Coelli (1988) suggest the 
use of E

[
exp (−ui)|εi

]
 when the frontier is log-linear. Kumbhakar and 

Lovell (2000) suggest that this is more accurate than exp [−E(ui|εi)], espe-
cially when ui is large. In practice, the difference often tends to be very 
small. It should be noted that the distribution of the efficiency predic-
tions, E(ui|εi) will not match the unconditional, marginal distribution of 

(3)fε(εi) =

∞∫

0

fv(εi + sui)fu(ui)dui

(4)f u|ε(ui|εi) =
fv(εi + sui)fu(ui)

fε(εi)
.
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the true, unobserved ui. Wang and Schmidt (2009) derived the distribu-
tion of E(ui|εi) and show that it is a shrinkage of ui towards E(ui), with 
E(ui|εi)− ui approaching zero as σ 2

v → 0.

3  Alternative Inefficiency Distributions

The efficiency predictions of the stochastic frontier model are sensitive to 
the assumed distribution of ui. A number of alternatives have been pro-
posed. Several two-parameter generalisations of the half-normal and expo-
nential distributions, respectively, allow for greater flexibility in the shape of 
the inefficiency distribution, with non-zero modes in particular. The flexi-
ble forms generally enable testing against their simpler nested distributions. 
Stevenson (1980) proposed the truncated normal model1; Greene (1990) 
and Stevenson (1980) proposed gamma distributions. The truncated nor-
mal distribution, denoted N+

(
µ, σ 2

u

)
, nests the half normal when its loca-

tion parameter µ (the pre-truncation mean) is zero, and its mode is µ when 
µ ≥ 0. The similar ‘folded normal distribution’ denoted 

∣∣N
(
µ, σ 2

u

)∣∣, i.e. that 
of the absolute value of an N

(
µ, σ 2

u

)
 normal random variable, also nests the 

half normal when µ is zero, but has a non-zero mode only when µ ≥ σu 
(Tsagris et al. 2014; Hajargasht 2014).

The gamma distribution with shape parameter k and scale parameter σu 
nests the exponential distribution when k = 1. A two-parameter lognormal 
distribution, which resembles the gamma distribution, for ui is adopted by 
Migon and Medici (2001). It is possible to adopt even more flexible dis-
tributional assumptions; Lee (1983) proposed using a very general four- 
parameter Pearson distribution for ui as a means of nesting several  simpler 
distributions. On the other hand, Hajargasht (2015) proposed a one- 
parameter Rayleigh distribution for ui which has the attraction of being a 
parsimonious way of allowing for a non-zero mode. Griffin and Steel (2008) 
proposed a three-parameter extension of Greene’s two-parameter gamma 
model that nests the gamma, exponential, half-normal and (heretofore never 
considered) Weibull models. Some of these represent minor extensions of 
the base case models. In all cases, however, the motivation is a more flexible, 
perhaps less restrictive characterisation of the variation of efficiency across 

1In the SF literature, ‘truncated normal’ refers specifically to the left truncation at zero of a normal dis-
tribution with mean µ and variance σ 2

u .
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firms. In many cases, the more general formulations nest more restrictive, 
but common distributional forms.

The inefficiency distributions discussed above were proposed to ena-
ble more flexible distributional assumptions about ui. Other propos-
als have addressed specific practical and theoretical issues. One is the 
‘wrong skew’ problem, which is discussed in more detail below. Broadly, 
the skewness of sui should be negative, both in the theory and as esti-
mated using data. In estimation, it often happens that the information 
extracted from the data suggests skewness in the wrong direction. This 
would seem to conflict with the central assumption of the stochastic fron-
tier model. The problem for the theoretical specification is that, since 
Skew(εi) = Skew(vi)− sSkew(ui) = −sSkew(ui) when vi is symmet-
rically distributed, the skewness of the composed error εi is determined by 
that of ui. Therefore, imposing Skew(ui) > 0 implies that −sSkew(εi) > 0. 
Since all of the aforementioned distributions for ui allow only for positive 
skewness, this means that the resulting SF models cannot handle skewness 
in the ‘wrong’ direction. An estimated model based on sample data will typ-
ically give an estimate of zero for Var(ui) if the estimated skewness (however 
obtained) goes in the wrong direction.

‘Wrong skew’ could be viewed as a finite sample issue, as demonstrated 
by Simar and Wilson (2010). Even when the assumed distribution of εi 
is correct, samples drawn from this distribution can have skewness in the 
‘wrong’ direction with some probability that decreases with the sample size. 
Alternatively, it may indeed be the case that, though non-negative, the dis-
tribution of ui has a zero or negative skew, and therefore, our distributional 
assumptions need to be changed accordingly. To this end, Li (1996) and Lee 
and Lee (2014)2 consider a uniform distribution, ui ∼ U(a, b), so that ui 
and εi are both symmetric, and Carree (2002) and Tsionas (2007) consider 
the binomial distribution and Weibull distributions, respectively, which 
both allow for skewness in either direction. Arguably, these ‘solutions’ are 
ad hoc remedies to what might be a fundamental conflict between the data 
and the theory. Notwithstanding the availability of these remedies, negative 
skewness, defined appropriately is a central feature of the model.

Also relevant here are SF models with ‘bounded inefficiency’. These are 
motivated by the idea that there is an upper bound on inefficiency beyond 

2Lee and Lee (2014) focus on the upper bound on inefficiency in the normal-uniform model and 
appear to have been unaware of the model’s earlier introduction by Li (1996), who was motivated by 
the skewness issue.
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which firms cannot survive. Such a boundary could be due to competitive 
pressure, as suggested by Qian and Sickles (2008). However, we also con-
sider that it could arise in monopolistic infrastructure industries which are 
subject to economic regulation, since depending on the strength of the regu-
latory regime, some inefficiency is likely to be tolerated.3

Implementation of bounded inefficiency involves the right-truncation of 
one of the canonical inefficiency distributions found in the SF literature. 
The upper tail truncation point is a parameter that would be freely esti-
mated and is interpreted as the inefficiency bound. Lee (1996) proposed a 
tail-truncated half-normal distribution for inefficiency, and Qian and Sickles 
(2008) and Almanidis and Sickles (2012) propose a more general ‘doubly 
truncated normal’ distribution (i.e. the tail truncation of a truncated normal 
distribution). Almanidis et al. (2014) discuss the tail-truncated half-normal, 
tail-truncated exponential and doubly truncated normal inefficiency distri-
butions. The latter of these may have positive or negative skewness depend-
ing on its parameter values. In fact, it is clear that this may be true of the 
right-truncation of many other non-negative distributions with non-zero 
mode.

A difficulty with certain distributional assumptions is that the inte-
gral in (3) may not have a closed-form solution, so that there may not 
be an analytical expression for the log-likelihood function. This issue 
first arose in the SF literature in the case of the normal-gamma model, 
in which case the problem was addressed in several different ways. 
Stevenson (1980) noted that relatively straightforward closed-form expres-
sions exist for integer values of the shape parameter k, of the normal- 
gamma model and derived the marginal density of εi for k = 0, k = 1,  
and k = 2. Restricting k to integer values gives the Erlang distribu-
tion, so this proposal amounts to a restrictive normal-Erlang model. 
The need to derive distinct formulae for every possible integer value of k 
makes this approach unattractive. Beckers and Hammond (1987) derived 
a complete log-likelihood for the normal-gamma model, but due to its  
complexity their approach has not been implemented. Greene (1990) 
approximated the integral using quadrature, but this approximation 
proved rather crude (Ritter and Simar 1997). An alternative approach, 
proposed by Greene (2003), is to approximate the integral via simulation  

3Such ‘tolerance’ does not necessarily reflect the technical competence or experience of regulators per 
se. It could reflect the perceived limitations on the robustness of the analysis (e.g. data quality), which 
necessitates a risk averse efficiency finding from a regulatory review.
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in order to arrive at a maximum simulated likelihood (MSL) solution.  
For more detail on MSL estimation, see Train (2009). In the context of 
SFA, Greene and Misra (2003) note that the simulation approach could be 
used to approximate the integral in (3) for many distributional assumptions 
as long as the marginal variable ui can be simulated. Since the integral is the 
expectation of fv(εi + sui) given the assumed distribution for ui, it can be 
approximated by averaging over Q draws from the distribution of ui:

where dq is draw number q from the standard uniform distribution, trans-
formed by the quantile function F−1

u  into a draw from the distribution of 
ui. In cases in which there is no analytical F−1

u , such as the normal-gamma 
model, the integral may nevertheless be expressed in terms of an expectation 
that may be approximated via simulation. Greene (2003) recommends using 
Halton sequences, which aim for good coverage of the unit interval, rather 
than random draws from the uniform distribution, in order to reduce the 
number of draws needed for a reasonable approximation of the integral.

As an alternative to simulation, various numerical quadrature approaches 
may be used. Numerical quadrature involves approximating an integral by 
a weighted sum of values of the integrand at various points. In many cases, 
this involves partitioning the integration interval and approximating the 
area under the curve within each of the resulting subintervals using some 
interpolating function. The advantage of quadrature over simulation lies 
in speed of computation, given that the latter’s time-consuming need to 
obtain potentially large numbers of independent draws for each observa-
tion. However, it may be challenging to find appropriate quadrature rules in 
many cases. Another alternative, proposed by Tsionas (2012), is to approxi-
mate fε using the (inverse) fast Fourier transform of the characteristic func-
tion of fε. The characteristic function, ϕε, is the Fourier transform of fε, and 
as shown by Lévy’s inversion theorem (see Theorem 1.5.4 in Lukacs and 
Laha 1964), the inverse Fourier transform of the characteristic function can 
be used to obtain fε. Since the Fourier transform of a convolution of two 
functions is simply the product of their Fourier transforms, i.e. ϕε = ϕvϕu 
(see Bracewell 1978, p. 110), ϕε may be relatively simple even when fε has 
no closed form, and fε may be approximated by the inverse fast Fourier 
transform of ϕε. On the basis of Monte Carlo experiments, Tsionas (2012) 
finds that this is a faster method for approximating fε in the normal-gamma 

(5)fε(εi) =

∞∫

0

fv(εi + sui)fu(ui)dui ≈
1

Q

Q∑

q=1

fv

[
εi + sF−1

u

(
dq
)]
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and normal-beta cases than either Gaussian quadrature or Monte Carlo 
simulation, with the former requiring a large number of quadrature points 
and the latter an even larger number of draws for comparable accuracy. This 
approach has not yet been adopted as widely as simulation, perhaps due to 
its relative complexity.

A natural question would be which, of the many alternatives discussed 
above, is the most appropriate distribution for inefficiency? Unfortunately, 
theory provides little guidance on this question. Oikawa (2016) argues that 
a simple Bayesian learning-by-doing model such as that of Jovanovic and 
Nyarko (1996), in which a firm (or manager) maximises technical efficiency 
given prior beliefs about and previous realisations of an unknown technol-
ogy parameter, supports a gamma distribution for inefficiency. However, 
Tsionas (2017) shows that this conclusion is sensitive to the sampling of, 
and assumed prior for, the firm-specific parameter, and that under alter-
native formulations there is no basis for favouring the gamma distribution 
(or any known distribution). Furthermore, both authors assume that firms 
maximise expected profits, whereas alternative behavioural assumptions may 
yield very different results. Of course, the choice of inefficiency distribu-
tion may be driven by practical considerations, such as a need to allow for 
wrong skewness or to estimate an upper bound on inefficiency. The ques-
tion of which inefficiency distribution to use is an empirical one and leads 
us to consider testing in the context of SFA. As noted previously, some of 
the more flexible inefficiency distributions nest simpler distributions. In 
these cases, we may test against to simpler nested models. For example, we 
may test down from the normal-gamma to the normal-exponential model 
by testing the null hypothesis that k = 1. We may test down from the nor-
mal-truncated normal (or the normal-folded normal) to the normal-half 
normal model by testing the null hypothesis that µ = 0. These are standard 
problems.

There are some remaining complications in the specification search for 
the SF model. We may wish to test for the presence of the one-sided error, 
often interpreted as a test for the presence of inefficiency. In this case, the 
errors are normally distributed under the null hypothesis H0 : σu = 0. This 
is a non-standard problem because the scale parameter σu is at a boundary of 
the parameter space under H0. Case 5 in Self and Liang (1987) shows that 
where a single parameter of interest lies on the boundary of the parameter 
space under the null hypothesis, the likelihood ratio (LR) statistic follows 
a 50:50 mixture of χ2

0 , and χ2
1  distributions, denoted χ2

1:0, for which the 
95% value is 2.706 (Critical values are presented in Kodde and Palm 1986). 
Lee (1993) finds that this is the case under H0 : σu = 0 in the normal-half 
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normal model. A Lagrange multiplier test for this case in the SF model is 
developed in Lee and Chesher (1986).

This result does not apply when fu has two or more parameters. Coelli 
(1995) states that, in the normal-truncated normal model, the LR statistic 
under H0 : σu = µ = 0 follows a 25:50:25 mixture of χ2

0 , χ2
1  and χ2

2  dis-
tributions, and that this is a special case of the result for two restrictions 
in Gouriéroux et al. (1982), which deals with inequality restrictions.4 This 
result matches Case 7 in Self and Liang (1987), in which two parameters of 
interest lie on the boundary of the parameter space under the null. The test 
seems to have been incorrectly applied; under H0 : σu = µ = 0, only one 
parameter lies on the boundary. Equivalently, viewing the test as a one-tailed 
test of H0 : σu ≤ 0,µ = 0, we only have one inequality restriction. Case 6 
in Self and Liang (1987), in which there are two parameters of interest, one 
on a boundary, and one not on a boundary, seems to be more applicable, 
suggesting a 50:50 mixture of χ2

1  and χ2
2  distributions, denoted χ2

2:1. More 
fundamentally, H0 : σu = µ = 0 may not be the appropriate null hypothe-
sis: when the scale parameter of the inefficiency distribution is set to zero, all 
other parameters of the distribution are in fact unidentified. Equivalently, a 
normal distribution for εi can be recovered in the normal-truncated normal 
case as µ → −∞, for any value of σu. The general problem of testing when 
there are unidentified nuisance parameters under the null hypothesis is dis-
cussed by Andrews (1993a, b) and Hansen (1996). To our knowledge has 
not been addressed in the SF literature.

We may wish to choose between two non-nested distributions. In this 
case, Wang et al. (2011) suggest testing goodness of fit by comparing the 
distribution of the estimated residuals to the theoretical distribution of  
the compound error term. This is a simpler method than, for example, 
comparing the distribution of the efficiency predictions to the theoretical 
distribution of E(u|ε) as derived by Wang and Schmidt (2009), since the 
distribution of the compound error is much simpler. For example, as dis-
cussed previously, εi follows a skew-normal distribution in the normal-half 
normal model, and an exponentially modified Gaussian distribution in the 
normal-exponential model. Under alternative specifications, the distribution 
of the estimated residuals may become rather complex, however.

4If we view the normal-half normal model as a skew-normal regression model in which we expect (but 
do not restrict) the skewness parameter σu/σv to be positive, then we view the test for the presence of 
inefficiency as a one-tailed test of the H0 that σu ≤ 0, or equivalently that σu/σv = 0, rather than as a 
test involving a boundary issue. Comparing the case of one inequality constraint in Gouriéroux et al. 
(1982) to Case 5 in Self and Liang (1987), we see the same result.
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4  Panel Data

The basic panel data SF model in the contemporary literature is as in (1) 
with the addition of a t subscript to denote the added time dimension of the 
data:

where t = 1, 2, . . . , T . The composite error term is now

Along with the usual advantages of panel data, Schmidt and Sickles (1984) 
identify three benefits specific to the context of SFA. First, under the 
assumption that inefficiency is either time invariant or that it varies in a 
deterministic way, efficiency prediction is consistent as T → ∞. In contrast, 
this is not the case as N → ∞. Second, distributional assumptions can be 
rendered less important, or avoided altogether, in certain panel data specifi-
cations. In particular skewness in the residual distribution does not have to 
be the only defining factor of inefficiency. Instead, time persistence in ineffi-
ciency can be exploited to identify it from random noise. Third, it becomes 
possible, using a fixed-effects approach, to allow for correlation between 
inefficiency and the variables in the frontier.5 In addition, the use of panel 
data allows for the modelling of dynamic effects.

In the context of panel data SF modelling, one of the main issues is 
the assumption made about the variation (or lack thereof ) of inefficiency 
over time. Another is the way in which we control (or do not control) for 
firm-specific unobserved heterogeneity and distinguishes this from ineffi-
ciency. For the purposes of this discussion, we divide the received panel 
data SF models into three classes: models in which inefficiency is assumed 
to be time-invariant, models in which inefficiency is time-varying, and 
models which control for unobserved heterogeneity with either time-in-
variant or time-varying inefficiency. To finish this section, we consider 
briefly multi-level panel datasets and the opportunities that they provide 
for analysis.

(6)yit = xitβ + εit ,

(7)εit = αi + vit − suit .

5However, since Schmidt and Sickles (1984), cross-sectional models have been proposed, such as those 
of Kumbhakar et al. (1991), Huang and Liu (1994), and Battese and Coelli (1995), that allow for 
dependence between inefficiency and frontier variables. These are discussed in Sect. 4.
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4.1  Time-invariant Efficiency

One approach to panel data SFA is to assume that efficiency varies 
between firms but does not change over time, as first proposed by Pitt and 
Lee (1981). Referring to (6) and (7), the basic panel data SF model with 
time-invariant efficiency assumes that αi = 0, uit = ui, so that we have:

This specification has the advantage that prediction (or estimation) of ui is 
consistent as T → ∞. The appeal of this result is diminished given that the 
assumption of time-invariance is increasingly hard to justify as the length of 
the panel increases. In contrast to the cross-sectional case, there is no need 
to assume that ui is a random variable with a particular distribution, and 
therefore, there are several different methods may be used to estimate (8), 
depending on our assumptions about ui.

Schmidt and Sickles (1984) proposed four alternative approaches. 
First, we may assume that ui is a firm-specific fixed effect, and to estimate 
the model using either a least squares dummy variable (LSDV) approach, 
in which ui is obtained as the estimated parameter on the dummy variable 
for firm i, or equivalently by applying the within transformation, in which 
case ui is obtained as firm i ’s mean residual. Second, we may assume that ui  
is a firm-specific random effect and estimate the model using feasible gen-
eralised least squares (FGLS). The difference between the fixed-effects and 
random-effects approaches is that the latter assumes that the firm-specific 
effects are uncorrelated with the regressors, while the former does not. Third, 
Schmidt and Sickles (1984) suggested instrumental variable (IV) estimation 
of the error components model proposed by Hausman and Taylor (1981) 
and Amemiya and MaCurdy (1986), which allows for the firm-specific effect 
to be correlated with some of the regressors and uncorrelated with oth-
ers, and is thus intermediate between the fixed-effects and random-effects 
models. Fourth, as in Pitt and Lee (1981), ui could be regarded as an inde-
pendent random variable with a given distribution, as in the cross-sectional 
setting, with the model being estimated via ML.

The first three approaches share the advantage that no specific distribu-
tional assumption about ui is required. As a consequence, the estimated 
firm-specific effects could be positive. As a result, firm-specific efficiency 
can only be measured relative to the best in the sample, not to an absolute 
benchmark. The estimated ui is given by

(8)yit = xitβ + vit − sui.

(9)ui = max
j

saj − sai,
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where ai is the estimated firm-specific effect for firm i. The fixed-effects 
specification has the advantage of allowing for correlation between ui and 
xit. But the drawback is that time-invariant regressors cannot be included, 
meaning that efficiency estimates will be contaminated by any differences 
due to time-invariant variables. The assumption that the factors are uncorre-
lated with errors (noise or inefficiency) can be examined using the Hausman 
test (Hausman 1978; Hausman and Taylor 1981). If this assumption 
appears to hold, a random effects approach such as Pitt and Lee (1981) may 
be preferred. Another approach is to estimate a correlated random-effects 
model using Chamberlain-Mundlak variables—see Mundlak (1978) and 
Chamberlain (1984)—to allow for correlation between the random effects 
and the regressors. Griffiths and Hajargasht (2016) propose correlated ran-
dom effects SF models using Chamberlain-Mundlak variables to allow for 
correlation between regressors and error components, including inefficiency 
terms.

The ML approach to estimation of (8) was first suggested by Pitt and 
Lee (1981), who derived an SF model for balanced panel data with a half- 
normal distribution for ui and a normal distribution for vit. This model 
therefore nests the basic cross-sectional model of Aigner et al. (1977) when 
T = 1. As in the cross-sectional setting, alternative distributional assump-
tions may be made. Battese and Coelli (1988) generalise the Pitt and Lee 
(1981) model in two ways: first, by allowing for an unbalanced panel 
and second, by assuming a truncated normal distribution for ui. Normal-
exponential, normal-gamma and normal-Rayleigh variants of the Pitt and 
Lee (1981) model are implemented in LIMDEP Version 11 (Greene 2016). 
As in the cross-sectional setting, parameter estimates and efficiency predic-
tions obtained under the ML approach are more efficient than those from 
semi-parametric models if the distributional assumptions made are valid. If 
those assumptions are not valid, they may be inconsistent and biased. To be 
sure, the ability to test distributional assumptions is very limited.

4.2  Time-Varying Efficiency

Allowing for variation in efficiency over time is attractive for a number of 
reasons. As already noted, the assumption that efficiency is time-invariant 
is increasingly hard to justify as T increases. We would expect average effi-
ciency to change over time. There may also be changes in the relative posi-
tions of firms, in terms of convergence or divergence in efficiency between 
firms, and potentially also changes in rankings through firms overtaking 
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each other. A wide variety of time-varying efficiency SF specifications have 
been proposed, each differing with respect to their flexibility in model-
ling the time path of efficiency and each having their own advantages and 
disadvantages.

As Amsler et al. (2014) note, panel data SF specifications can be grouped 
into four categories with respect to how uit changes over time. One of these, 
covered in the preceding section, is models with time-invariant efficiency, so 
that uit = ui. Second, we could assume independence of uit over t. In this 
case, we may simply estimate a pooled cross-sectional SF model, the possi-
bility of unobserved heterogeneity notwithstanding. The advantages of this 
approach are the flexibility of uit—and by extension, that of E(uit|εit)—over 
time, its simplicity and its sparsity, given that it adds no additional param-
eters to the model. However, the assumption of independence over time is 
clearly inappropriate.

Third, we may treat uit as varying deterministically over time. One 
approach is to include time-varying fixed or random effects, ait, with uit 
being given by

Of course, given that N ≤ IT firm- and time-specific parameters6 cannot be 
identified, some structure must be imposed. Kumbhakar (1991, 1993) pro-
posed combining firm-specific (but time-invariant) and time-specific (but 
firm-invariant) effects, such that ait = �i +

∑T
t=2 �t. This imposes a com-

mon trend in uit among firms, albeit one that may be quite erratic. Lee and 
Schmidt (1993) proposed a specification, ait = �tαi, which again imposes 
a trend over time. This is common for all firms, but complicates estimation 
due to its non-linearity. An alternative approach is to specify that ait = g(t) 
as proposed by Cornwell et al. (1990), who specifically suggested a quadratic 
time trend with firm-specific parameters, such that ait = �i + �i1t + �i2t

2.  
This specification is flexible, in that it allows for firms to converge, diverge 
or change rankings in terms of efficiency. Ahn et al. (2007) propose a spec-
ification which nests both the Lee and Schmidt (1993) and Cornwell et al. 
(1990) models, in which ait =

∑p
j=1 �jtαji, thus allowing for arbitrary, 

firm-specific time trends. This specification nests the Lee and Schmidt 
(1993) model when p = 1, and the Cornwell et al. (1990) model when 
p = 3, �1t = 1, �2t = t, �3t = t2. The value of p is estimated along with 

(10)uit = max
j

sajt − sait .

6N being the total number of observations, so that N = IT in the case of a balanced panel.
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the model parameters. The authors discuss estimation and identification of 
model parameters. Ahn et al. (2013) discuss estimation of this model when 
there are observable variables correlated with the firm-specific effects, but 
not with vit. An alternative approach based on factor modelling and allowing 
for arbitrary, smooth, firm-specific efficiency trends is proposed by Kneip 
et al. (2012).

Because semi-parametric models yield only relative estimates of efficiency, 
it is not possible to disentangle the effects of technical change (movement of 
the frontier) and efficiency change. An analogous approach in the context of 
parametric specifications is to use a ‘scaling function’, so that

Here, ui is a time-invariant random variable following a one-sided distri-
bution—as in the time-invariant specification of Pitt and Lee (1981)—
and g(t ) is a non-negative function of t. Kumbhakar (1990) proposed 
g(t) = 1/

[
1+ exp

(
�1t + �2t

2
)]

; Battese and Coelli (1992) proposed 
g(t) = exp

[
�1(t − T)

]
 and g(t) = exp

[
�1(t − T)+ �2(t − T)2

]
. In 

each case, ui is assumed to follow half-normal distribution. In these mod-
els, efficiency moves in the same direction for all firms, but there may be 
convergence of firms over time. In addition, with the exception of the 
one-parameter Battese and Coelli (1992) scaling function, these allow for 
non-monotonic trends in uit over time. However, they do not allow for 
changes in rank over time, which requires firm-specific time trends.

Cuesta (2000) generalised the one-parameter Battese and Coelli 
(1992) scaling function to allow for firm-specific time trends, so that 
g(t) = exp

[
�1i(t − T)

]
. An extension to the two-parameter case would 

be straightforward. This allows for firm-specific time trends, as in the 
Cornwell et al. (1990) model, but again at the cost of increasing the num-
ber of parameters in the model by a factor of I. However, Wheat and Smith 
(2012) show that the Cuesta (2000) specification, unlike that of Battese and 
Coelli (1992), can lead to a counterintuitive ‘falling off’ of firms with high 
E(uit|εit) in the final year of the sample They propose a model in which 
g(t) = exp

[
�1i(t − �2i)

]
, that does not have the same feature.7 More gener-

ally, as Wheat and Smith (2012) note, the many different models using that 
use functions are sensitive to the precise form of g(t ) in terms of parameter 
estimates, fit and efficiency predictions.

(11)uit = g(t)ui.

7Clearly, this model is far from parsimonious, since g(t ) includes 2I parameters. In fact, the authors 
apply a simpler model, g(t) = exp

[
�1i(t − �2)

]
 after failing to reject H0 : �2i = �2.
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A fourth approach to time-variation of uit in panel data SF models is to 
allow for correlation between uit over time by assuming that (ui1, . . . , uiT ) 
are drawn from an appropriate multivariate distribution. Among their var-
ious proposals, Pitt and Lee (1981) suggested that (ui1, . . . , uiT ) could be 
drawn from a multivariate truncated normal distribution. They abandoned 
this approach, after noting that the likelihood function for this model 
involves intractable T-dimensional integrals.8 In addition, Horrace (2005) 
showed that the marginal distribution of uit in this case is not truncated nor-
mal. However, as suggested by Amsler et al. (2014), it is possible to specify 
a multivariate distribution with the desired marginal distributions, and also 
obviate T-dimensional integration when evaluating ln L, by using a copula 
function. Sklar’s theorem—see Nelsen (2006, pp. 17–14)—states that any 
multivariate cumulative density function can be expressed in terms of a set 
of marginal cumulative density functions and a copula. For example, we 
have

where Hu is a multivariate cumulative density function for (ui1, . . . , uiT ), 
C[.] is the copula function, and Fu1(ui1), . . . ,FuT (uiT ) are the marginal 
cumulative density functions for uit for each time period. We would nor-
mally assume that Fut = Fu for all t, so that we have

From this, it can be seen that the probability density function is given by

where c is the derivative of the copula. It follows from this that a multivar-
iate density h(ui1, . . . , uiT ) with the desired marginal densities given by fu 
can be obtained by combining fu and Fu with an appropriate copula den-
sity c. Many different copula functions exist—it is beyond the scope of 
this chapter to review the various candidates—each embodying differ-
ent dependence structures. Note that c = 1 relates to the special case of 
independence. This allows marginal distributions to be specified, but the 

(12)Hu(ui1, . . . , uiT ) = C[Fu1(ui1), . . . ,FuT (uiT )]

(13)Hu(ui1, . . . , uiT ) = C[Fu(ui1), . . . ,Fu(uiT )].

(14)hu(ui1, . . . , uiT ) =

T∏

t=1

[
fu(uit)

]
c[Fu(ui1), . . . ,Fu(uiT )]

8The authors instead estimate a system of T equations via the seemingly unrelated regressions (SUR) 
model proposed by Zellner (1962). However, this approach offers no way of predicting observa-
tion-specific efficiencies.
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problem of T-dimensional integration to evaluate the log-likelihood persists. 
For this reason, Amsler et al. (2014) propose and implement an alternative 
approach whereby instead of specifying a copula for (ui1, . . . , uiT ), a copula 
is specified for the composite errors (εi1, . . . , εiT ). In this case, we have

where hε is the multivariate distribution for (εi1, . . . , εiT ) and Fε is the mar-
ginal cumulative density function for εit. In this case, an appropriate mar-
ginal distribution for εit is chosen, such as the skew-normal distribution. 
In this case, the correlation is between the composite errors, introducing 
dependency between both error components. Amsler et al. (2014) take 
both approaches, estimating a model in which (εi1, . . . , εiT ) is drawn from 
a joint distribution as in (15) via ML, and a model in which (ui1, . . . , uiT ) 
is drawn from a joint distribution as in (14), while vit is assumed independ-
ent, via MSL. A Gaussian copula function is used in both cases. The authors 
discuss prediction of efficiency. In this case, it is based on uit|εi1, . . . , εiT. 
This results in improved predictions relative to those based on uit|εit, since 
the composite errors from all years are informative about uit when there is 
dependency between them.

The copula approach proposed by Amsler et al. (2014) is attractive, 
since it can be seen as intermediate between the pooled SF approach and 
the approach of specifying SF models with deterministically time-varying 
uit. As such, it retains the advantage of the latter approach in allowing for 
dependency over time, without specifying a particular functional form for 
the time trend. It also obviates the large number of additional parameters 
otherwise needed to allow flexibility with respect to time trends. Rather than 
some factor of I, the number of new parameters is limited to the correlation 
coefficients ρts∀t �= s. A number of simplifying assumptions can be made to 
reduce the number of these while retaining flexibility. Firms may converge 
or diverge, or change rankings, using a relatively parsimonious specification 
under this approach.

4.3  Unobserved Heterogeneity

Aside from considerations of the appropriate way to model trends in uit over 
time, which is peculiar to the panel data SF context, more general panel 
data issues are also relevant. Primary among these is the need to account 

(15)hε(εi1, . . . , εiT ) =

T∏

t=1

[
fε(εit)

]
c[Fε(εi1), . . . ,Fε(εiT )]
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for possible unobserved heterogeneity between firms. In general, this means 
incorporating firm-specific effects which are time-invariant but not captured 
by the regressors included in the frontier. These may be either correlated or 
uncorrelated with the regressors, i.e. they may be fixed or random effects, 
respectively. In general, failure to account for fixed effects may bias parame-
ter estimates, while failure to account for random effects generally will not.9 
In the SF context, failure to account for fixed or random effects means such 
effects may be attributed to uit.

A number of models have been proposed which incorporate fixed or ran-
dom effects. These are interpreted as capturing unobserved heterogeneity 
rather than as inefficiency effects. Kumbhakar (1991) proposed extending 
the pooled cross-section model to incorporate firm and time effects uncorre-
lated with the regressors, so that

where ai and at are firm- and time-specific fixed or random effects. In the 
fixed-effects case, Kumbhakar (1991) suggests estimation via ML with 
firm dummy variables, under the assumptions that ai, at, and vit are drawn 
from normal distributions with zero means and constant variances, and uit 
is drawn from a truncated normal distribution. A simplified version of this 
model, omitting at and treating ai as a fixed effect, was used by Heshmati 
and Kumbhakar (1994). This model was also considered by Greene (2004, 
2005a, b), who proposed the specification

where ai is a time-invariant fixed or random effect, and the specification is 
referred to as the ‘true fixed effects’ (TFE) or ‘true random effects’ (TRE) 
model, accordingly. In the TFE case, estimation proceeds by simply replac-
ing the constant term in the standard pooled with a full set of firm dummies 
and estimating the model via ML. However, evidence presented by Greene 
(2005b) from Monte Carlo experiments suggests that this approach suffers 
from the incidental parameters problem. As a result, Chen et al. (2014) pro-
pose an alternative ML approach based on the within transformation, which 
is not subject to this problem, and Belotti and Ilardi (2018) extend this 
approach to allow for heteroscedastic uit.

(16)εit = vit + ai + at − suit

(17)εit = vit + ai − suit

9However, in the context of a log-linear model, the estimate of the intercept will be biased in either 
case.
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In the TRE case, Greene (2004, 2005a, b) proposed estimation of the 
model via MSL, assuming that ai ∼ N

(
0, σ 2

a

)
. Greene (2005b) notes that 

the TRE approach—and indeed the standard SF model—can be seen as spe-
cial cases of a random parameters model and proposes a random parameters 
specification incorporating heterogeneity in β, so that

where βi is assumed to follow a multivariate normal distribution with mean 
vector β and covariance matrix 

∑
. The random intercept is β0i = β0 + ai 

in terms of the TRE notation. The model is estimated via MSL. The resem-
blance of this approach to the Bayesian SF specifications considered by 
Tsionas (2002) is noted. However, the Bayesian approach has the draw-
back of requiring some prior distribution to be chosen for all parameters, 
including those of fu. Greene (2008) notes that in the classical framework, 
‘randomness’ of the parameters reflects technological heterogeneity between 
firms, whereas in the Bayesian framework, ‘randomness’ of the parameters is 
supposed to reflect the uncertainty of the analyst.10

A discrete approximation to the random parameters SF model is possible 
using a latent class approach to capture heterogeneity in some or all of the 
β parameters, as proposed by Orea and Kumbhakar (2004). In this speci-
fication, each firm belongs to one of J classes, each class having a distinct 
technology, so that for class j, we have technology parameters βj. Class mem-
bership is unknown. Each firm is treated as belonging to class j with uncon-
ditional probability pj, where the unconditional probabilities are estimated 
as parameters after normalising such that 

∑J
j=1 pj = 1 (leaving J − 1 addi-

tional parameters to be estimated). The model may be estimated via ML. 
Conditional probabilities of class membership for each observation obtained 
by

The primary issue with the TFE and TRE and similar models is that any 
time-invariant effects are attributed to ai, when it is entirely possible that 
they should, partly or wholly, be attributed to uit. Several recent proposals 
therefore extend this modelling approach to allow for uit to be broken down 

(18)yit − xiβi = εit = vit − suit

(19)pij =
pjfε

(
yit − xiβj

)
∑J

j=1

[
pjfε

(
yit − xiβj

)]

10Despite this, Tsionas (2002) does interpret the models as incorporating technological heterogeneity.
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into separate time-invariant and time-varying components capturing ‘persis-
tent’ and ‘transient’ inefficiency effects, respectively. Thus,

where typically both wi and wit are random variables drawn from some one-
sided distribution. A similar decomposition of uit was first suggested by 
Kumbhakar and Heshmati (1995), who proposed that uit = ai + wit and 
Kumbhakar and Hjalmarsson (1995), who proposed uit = ai + αt + wit, 
where ai and αt are firm- and time-specific fixed or random effects, respec-
tively.11 Colombi et al. (2014) and Tsionas and Kumbhakar (2014) propose 
an extension of the TRE model, accordingly referred to as the generalised 
true random effects (GTRE) model, in which

This model therefore includes four error components, allowing for noise, 
unobserved heterogeneity, and persistent and transient inefficiency. 
Identification requires specific distributional assumptions to be made about 
either ai or wi, or both. The following distributional assumptions are typ-
ically made: vit ∼ N

(
0, σ 2

v

)
, ai ∼ N

(
0, σ 2

a

)
 and wi and wit are follow 

half-normal distributions with constant variances. Each of the error com-
ponents is assumed to be independent. Various approaches to estimation of 
the GTRE model have been proposed. Kumbhakar et al. (2014) suggest a 
multi-step approach. In the first step, a standard random effects panel data 
model including a noise component v∗it = vit + wit and a time-invariant 
random effects component a∗i = ai + wi. This can be estimated via FGLS, 
avoiding any explicit distributional assumptions. Subsequently, the estimates 
of these error components are used as the dependent variables in separate 
constant-only SF models, which decompose them into their two-sided and 
one-sided components. This is straightforward to implement using standard 
software packages.

Alternatively, Colombi et al. (2014) use the result that εit in the GTRE 
model is the sum of two random variables, each drawn from an independ-
ent closed skew-normal distribution.12 As its name suggests, the closed 

(20)uit = wi + wit

(21)εit = vit + ai − s(wi + wit)

11Note that these proposals are very similar to those of Kumbhakar (1991) and Heshmati and 
Kumbhakar (1994), the difference being the interpretation of ai and αt as picking up inefficiency 
effects, rather than unobserved heterogeneity.
12The univariate skew normal distribution is a special case of the closed skew-normal distribu-
tion. To see that εit is the sum of two closed skew-normal random variables, therefore, consider that 
v∗it = vit + wit. and a∗i = ai + wi both follow skew-normal distributions. For details on the closed 
skew-normal distribution, see González-Farías et al. (2004).
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skew-normal distribution is closed under summation—see Proposition 2.5.1 
of González-Farı́as et al. (2004b) or Theorem 1 in González-Farı́as et al. 
(2004a). Therefore, εit follows a skew-normal distribution. This enables esti-
mation of the model via ML. However, Filippini and Greene (2016) note 
that this is extremely challenging, since the log-likelihood involves the prob-
ability density function for a T-variate normal distribution and the cumula-
tive density function for a T + 1-variate normal distribution. They proposed 
a simpler approach based on MSL, which exploits the fact that the GTRE 
model is simply the TRE model in which the time-invariant error compo-
nent follows a skew-normal distribution. Colombi et al. (2014) show how to 
obtain predictions for wi and wit.

The attraction of the GTRE model is that it is quite general, in that it 
allows for the decomposition of the composite error into noise, random 
effects, persistent inefficiency, and transient inefficiency components. It also 
nests various simpler models, such as the TRE model, the standard pooled 
SF model, the Pitt and Lee (1981) model, and a standard random-effects 
model. However, Badunenko and Kumbhakar (2016) recently concluded on 
the basis of Monte Carlo experiments that the model is very limited in its 
ability to precisely predict the individual error components in practice, and 
suggest that the model may not outperform simpler models in many cases.

4.4  Multi-level Panel Datasets

This section has outlined how panel data allows for a richer characterisation 
of efficiency and thus panel data is desirable for undertaking efficiency anal-
ysis. Both Smith and Wheat (2012) and Brorsen and Kim (2013) have con-
sidered using data on a number of organisations over time, but disaggregated 
on sub-firm divisions (henceforth: plants) for each organisation. Thus, there 
are two levels of data

which is (6) but with the addition of a plant subscript j. There are two key 
advantages to considering data of this form. Firstly, such an approach allows 
for the measurement of internal efficiency variation within an organisation, 
as well as simultaneously measuring efficiency against comparator organ-
isations (external efficiency). Smith and Wheat (2012) propose a model 
(ignoring the time dimension for simplicity) in which uij = ui + u∗ij, where 
ui is a one-sided component common to all of firm i ’s plants, and u∗ij is a 
plant-specific component assumed to follow a half-normal distribution. The 

(22)yits = xijtβ + τits + vits
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authors suggest estimating the model using a two-step approach, in which 
ui is obtained from a fixed or random effect in the first step. Note that, in 
the one-period or pooled cross-section cases, this is simply the panel data 
specification of Kumbhakar and Hjalmarsson (1995) and Kumbhakar and 
Heshmati (1995).

Lai and Huang (2013) argue that there is likely to be intra-firm corre-
lation between both plant-level efficiency and noise effects. Rather than 
allow for separate correlations between the vij and the uij, the authors pro-
pose a model in which the εij are correlated such that ρ

(
εij, εil

)
= ρ. The 

components and vij and uij are assumed to be drawn from marginal normal 
and half-normal distributions, respectively, the authors allow for correlation 
between the composed errors using a Gaussian copula.

Secondly, both Brorsen and Kim (2013) and Smith and Wheat (2012) 
demonstrate that there is a need to model costs at the level that management 
autonomy resides. Failure to do so can result in misleading predictions of 
efficiency as it mismatches returns to scale properties of the cost function 
with efficiency. Brorsen and Kim (2013) used data on schools and school 
districts to show that if the model were estimated using data at district level 
then returns to scale are found to be decreasing rather than finding that 
these schools are inefficient. Ultimately, the aggregation bias is resulting in 
correlation between errors and regressors, since true measures of scale/den-
sity (at the disaggregate level) are not included in the model.

5  Heteroscedasticity and Modelling 
Inefficiency

In many applications of SFA, the analyst is interested in not only in the 
estimation or prediction of efficiency, but also in its variation in terms of 
a set of observable variables. However, the standard SF model assumes that 
ui is independent of observed variables. Many applications, including Pitt 
and Lee (1981) as an early example, take a two-step approach to modelling 
efficiency: first, a standard SF model is estimated and used to generate effi-
ciency predictions, and second, these predictions are regressed on a vector 
of explanatory variables. However, the second-step regression violates the 
assumption of independence in the first step, and Wang and Schmidt (2002) 
show that the two-step approach is severely biased. Given that ui is a ran-
dom variable, appropriate approaches involve specifying one or more param-
eters of the error distributions as a function of a set of covariates.
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Deprins and Simar (1989a, b), Reifschneider and Stevenson (1991), 
Kumbhakar et al. (1991), Huang and Liu (1994), and Battese and Coelli 
(1995) all propose extensions of the basic SF model whereby

where zi is a vector of ‘environmental’ variables influencing inefficiency, 
δ is a vector of coefficients, and wi is a random error. In the Deprins and 
Simar (1989a, b) specification, g(zi, δ) = exp (ziδ) and wi = 0, and the 
model may estimated via non-linear least squares or via ML assuming 
vi ∼ N

(
0, σ 2

v

)
.13 Reifschneider and Stevenson (1991) propose restricting 

both components of ui to be non-negative, i.e. g(zi, δ),wi ≥ 0, though as 
Kumbhakar and Lovell (2000) and Greene (2008) note, this is not required 
for ui ≥ 0. An alternative approach was proposed by Kumbhakar et al. 
(1991), in which g(zi, δ) = 0 and wi is the truncation at zero of a normally 
distributed variable with mean ziδ and variance σ 2

u . Huang and Liu (1994) 
proposed a model in which g(zi, δ) = ziδ and wi is the truncation at −ziδ 
of an N

(
0, σ 2

u

)
 random variable. The latter two models are in fact equiva-

lent, as noted by and Battese and Coelli (1995). In simple terms, the model 
assumes that vi ∼ N

(
0, σ 2

v

)
 and u ∼ N+

(
µi, σ

2
u

)
, where µi = ziδ. Note that 

a constant term is included in zi, so that the model nests the normal-trun-
cated normal model of Stevenson (1980) and the normal-half normal 
model.

Another set of models, motivated by the desire to allow for heteroskedas-
ticity in ui, specify the scale parameter, rather than the location parameter, of 
the distribution of ui as a function of a set of covariates.14 Reifschneider and 
Stevenson (1991) first proposed amending the normal-half normal model 
so that σui = h(zi), h(zi) ∈ (0,∞), but did not make any particular sugges-
tions about h(zi) other than noting that the function must be constrained 
to be non-negative. Caudill and Ford (1993) suggested the functional form 
σui = σu(ziγ )

α, which nests the standard homoskedastic normal-half nor-
mal model when α = 0. Caudill et al. (1995) suggested a slightly sparser 
specification in which σui = σu exp (ziγ ), and Hadri (1999) proposed a 
similar ‘doubly heteroskedastic’ SF model, σvi = exp (ziθ), σui = exp (ziγ ).

(23)ui = g(zi, δ)+ wi

13Note that the authors in fact proposed a deterministic frontier model in which E(ui|zi) = exp (ziδ), 
but if we interpret the random error as vi rather than a component of ui, we have an SF model with a 
deterministic ui.
14Note, however, that since the (post-truncation) variance of the truncated normal distribution is a 
function of the pre-truncation mean, the Kumbhakar et al. (1991), Huang and Liu (1994), and Battese 
and Coelli (1995) model also implies heteroskedasticity in ui.
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The approaches discussed above can be combined for an encompassing 
model in which both the location and scale parameters are functions of zi. 
Wang (2002) proposed a model in which ui ∼ N+

(
µi, σ

2
ui

)
, where µi = ziδ 

and σ 2
ui = exp (ziγ ), while Kumbhakar and Sun (2013) took this a step 

further, estimating a model in which ui ∼ N+
(
µi, σ

2
ui

)
 and vi ∼ N

(
0, σ 2

vi

)
, 

where µi = ziδ, σvi = exp (ziθ), and σui = exp (ziγ ), effectively combining 
the Hadri (1999) ‘doubly heteroskedastic’ model with that of Kumbhakar 
et al. (1991), Huang and Liu (1994), and Battese and Coelli (1995).15

Given the motivation of explaining efficiency in terms of zi, and since zi 
enters the model in a non-linear way. It is desirable to calculate the marginal 
effect of these zli, the lth environmental variable, on efficiency. Of course, 
given that ui is a random variable, we can only predict the marginal effect 
of zl on predicted efficiency, and this means that the marginal effects formula 
used depends fundamentally on the efficiency predictor adopted. Where 
ui ∼ N+

(
µi, σ

2
ui

)
,µi = ziδ, the parameter δl is the marginal effect of zli on 

the mode of the distribution of ui, except when ziδ ≤ 0. The derivative of 
the unconditional mode predictor,

Therefore, the unconditional mode yields a relatively simple marginal effect. 
Alternatively, Wang (2002) derived a marginal effects formula based on the 
derivative of the unconditional mean, ∂E(ui)/∂zli. As the author shows, 
since E(ui) depends on the scale parameter, as well as the location param-
eter, of the distribution, marginal effects calculated using this formula can 
be non-monotonic even if zli enters both functions in a linear fashion. This 
lends itself to potentially useful discussion of the ‘optimal’ (i.e. efficiency 
maximising) level of zli. As noted by Hadri (1999), the variables entering µi, 
σvi, and σui need not be the same in practice.

The efficiency prediction is usually based on the distribution of ui|εi (spe-
cifically its mean) rather than ui. Kumbhakar and Sun (2013) argue that 
marginal effects should be based on ∂E(ui|εi)/∂zli rather than ∂E(ui)/∂zl.  
and show that in this case, marginal effects depend upon the param-
eters not only of fu but also of fv and upon εi, i.e. all of the mod-
el’s variables and parameters. Stead (2017) derives a marginal effects 
formula based on the conditional mode, ∂M(ui|εi)/∂zli, which is somewhat 

(24)∂M(ui)/∂zli =

{
δl, ziδ > 0

0, ziδ ≤ 0
.

15Note the two similar but subtly different parameterisations, σui = exp (ziγ ) and σ 2
ui = exp (ziγ ).
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simpler, particularly when both σvi = σv and σui = σu in which case 
∂M(ui|εi)/∂zli = δl

[
σ 2
v /

(
σ 2
v + σ 2

u

)]
 when M(ui|εi) > 0. Note that the 

marginal effects formulae discussed so far relate to changes in predicted 
ui rather than predicted efficiency: Stead (2017) derives a marginal effect 
based on the Battese and Coelli (1988) predictor, ∂E

[
exp (−ui)|εi

]
/∂zli,,  

and notes that other formulae should be transformed into inefficiency 
space by multiplying by − exp

(
−ûi

)
 where ûi is the predictor for ui since 

∂ exp
(
−ûi

)
/∂zli = −(∂ ûi/∂zli)exp

(
−ûi

)
. The choice between condi-

tional and unconditional marginal effects formulae is between prediction of 
marginal effects for specific observations, and quantifying the relationship 
between environmental variables and inefficiency in general.

The idea that marginal effects should be based on a predictor of ui|εi 
rather than ui has the appeal that the marginal effects discussed are consist-
ent with the preferred efficiency predictor, in the sense that they indicate the 
change in predicted efficiency resulting from a change in zli. On the other 
hand, such marginal effects are sensitive to changes in the frontier variables 
and parameters and the parameters of fv, despite the fact that efficiency is 
not specified in this way. Another drawback is that while ∂E(ui)/∂zli and 
∂M(ui)/∂zli are parameters for which standard errors and confidence inter-
vals may be estimated, ∂E(ui|εi)/∂zli and ∂M(ui|εi)/∂zli are random var-
iables for which prediction intervals are the only appropriate estimate of 
uncertainty, making hypothesis testing impossible. Kumbhakar and Sun 
(2013) suggest a bootstrapping approach to derive confidence intervals for 
∂E(ui|εi)/∂zli, but this is inappropriate since it treats εi as known.16

Given the rather complex marginal effects implied by the models dis-
cussed above, alternative specifications with simpler marginal effects have 
been proposed. Simar et al. (1994) propose that zi should enter as a scal-
ing function, such that ui = f (ziη)u

∗
i , where u∗i  is assumed to follow 

some non-negative distribution that does not depend on zi, and f (ziη) is 
a non-negative scaling function similar to those used in Battese and Coelli 
(1992) type panel data models. Wang and Schmidt (2002) note several 
features of this formulation: first, the shape of the distribution of ui is the 
same for all observations, with f (ziη) simply scaling the distribution; 
models with this property are described as having the ‘scaling property’. 
Second, it may yield relatively simple marginal effects expressions, e.g. when 

16Note the similarity of the issues here to those around ‘confidence intervals’ and prediction intervals 
for E(ui|εi), discussed by Wheat et al. (2014).
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f (ziη) = exp (ziη) or similar.17 Third, as suggested by Simar et al. (1994), 
the β and η may be estimated via non-linear least squares without specifying 
a particular distribution for u∗i . The scaling property is discussed further by 
Alvarez et al. (2006), who suggested testing for the scaling property.

More recently, Amsler et al. (2015) suggested an alternative param-
eterisation such that zi enters the model through the post-trunca-
tion, rather than the pre-truncation, parameters of fu. For example, 
the left truncation at zero of an N

(
µi, σ

2
ui

)
 random variable, which we 

have denoted N+
(
µi, σ

2
ui

)
, may be reparameterised in terms of E(ui) 

and VAR(ui); that is, fu may be expressed in terms of these parame-
ters, and as a result, so may fε. The authors show that marginal effects 
are simpler and easier to interpret when environmental variables enter 
the model such that E(ui) = g(zi, δ), VAR(ui) = h(zi, γ ) than when 
µi, σ

2
ui = g(zi, δ), σ

2
ui = h(zi, γ ). This is intuitive, given that we predict 

based on post-truncation parameters of fu or f u|ε. This approach is compli-
cated somewhat by the requirement that E(ui) > VAR(ui), as shown by 
Eq. (3) in Barrow and Cohen (1954), Eq. (16) in Bera and Sharma (1999), 
and Lemma 1 of Horrace (2015). For this reason, the authors suggest a spec-
ification in which VAR(ui) = exp (ziγ ) and E(ui) = VAR(ui)+ exp (zi, δ).

An additional motivation for the models discussed in this section is the 
analysis of production risk. Bera and Sharma (1999) proposed, in the con-
text of a production frontier model, that VAR(ui|εi) be used as a measure of 
‘production uncertainty or risk. Note however that this is a far more restric-
tive measure than that used in the wider literature on production risk, which 
is variability of output, measured, for example, by VAR(yi). Nevertheless, 
these models offer considerable flexibility in modelling production risk 
according to this definition. Just and Pope (1978) showed that a drawback 
of log-linear (non-frontier) production function specifications, in which 
qi = exp (yi), is that the marginal production risk (i.e. the partial deriva-
tive of production risk) with respect to a given variable must always be the 
same as that variable’s marginal product. The authors proposed an alterna-
tive specification with an additive error term multiplied by a scaling func-
tion. The form allows for variables that affect production and production 
risk in potentially opposite directions for variables that affect one but not 
the other. Kumbhakar (1993) and Battese et al. (1997) proposed SF variants 

17However, the authors’ discussion overstates the simplicity of marginal effects in this case, since it 
focuses on ∂ ln ûi/∂zli, which is ηl regardless of the distribution of u∗i  (or indeed the choice of predic-
tor). However, ∂ ûi/∂zli is more complex, and as previously noted, the translation into efficiency space 
via ∂ exp

(
−ûi

)
/∂zli adds additional complexity.
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of this model by including an inefficiency term ui. Note, however, that any 
SF model in which one or both error terms are heteroskedastic allows for 
observation-specific production risk.

6  Alternative Noise Distributions

In the standard SF model, the noise term is assumed to follow a normal dis-
tribution. In contrast to the many different proposals concerning the distri-
bution of ui, discussed in Sect. 3, the distribution of vi has received relatively 
little attention. This is perhaps natural, given that the main focus of SFA is 
on estimation or prediction of the former component. Nevertheless, consid-
eration of alternative distributions for vi is important for at least two main 
reasons. First, the standard model is not robust to outliers caused by noise, 
i.e. when the true noise distribution has thick tails. Second, and perhaps 
more importantly, the distribution of vi has implications for the deconvolu-
tion of εi into noise and inefficiency components. Specifically, the distribu-
tion of ui|εi, on which efficiency prediction is typically based, is influenced 
by fv as well as fu, as shown in (4).

The latter point in particular is not trivial. A change in distributional 
assumptions regarding vi affects the degree of shrinkage of ui towards 
E(ui) using E(ui).18 A change in the assumed noise distribution can even 
be sufficient to change the rankings of firms19 by altering the monotonic-
ity properties of E(ui|εi) with respect to εi, which are in turn linked to 
the log-concavity properties of fv. Ondrich and Ruggiero (2001) prove 
that E(ui|εi) is a weakly (strictly) monotonic function of εi for any weakly 
(strictly) log-concave fv. Since the normal density is strictly log-concave 
everywhere, E(ui|εi) is a monotonic function of εi in the standard model. 
Under alternative noise distributions for which fv is not strictly log-concave 
everywhere, there may be a weakly monotonic or even non-monotonic rela-
tionship between E(ui|εi) and εi. Such relationships have been noted in sev-
eral studies proposing alternative, heavy tailed, noise distributions, which are 
discussed below.

Nguyen (2010) proposed SF models with Cauchy and Laplace distri-
butions for vi, pairing the former with half Cauchy and truncated Cauchy, 

18For an explanation of shrinkage in the context of the predictor E(ui|εi), see Wang and Schmidt 
(2009).
19Holding β constant.
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and the latter with exponential and truncated Laplace distributed for has 
received vi terms.20 Gupta and Nguyen (2010) derive a Cauchy-half Cauchy 
panel data model with time-invariant inefficiency. Horrace and Parmeter 
(2018) consider the Laplace-truncated Laplace and Laplace-exponential SF 
models further, showing that f u|ε (and therefore also E(ui|εi), or for that 
matter any predictor based on f u|ε) is constant for sεi ≥ 0. The authors 
conjecture that the assumption of a Laplace distributed vi may be advan-
tageous in terms of estimation of fu, and therefore for the deconvolution of 
the composed error. Fan (1991) showed that optimal rates of convergence 
in deconvolution problems decrease with the smoothness of the noise dis-
tribution and are considerably faster for ordinary smooth distributions, such 
as the Laplace, than for super smooth distributions, such as the normal dis-
tribution. Optimal convergence rates for nonparametric Gaussian deconvo-
lution are discussed by Fan (1992). Horrace and Parmeter (2011) find that 
consistent estimation of the distribution of ui in a semparametric SF model, 
in which vi ∼ N

(
0, σ 2

v

)
 and fu is unknown, has a ln n convergence rate. This 

implies that convergence rates when vi ∼ N
(
0, σ 2

v

)
 are rather slow.

In the aforementioned proposals, the distribution of ui is the left trun-
cation at zero of the distribution of vi. In many cases, this ensures that fε 
can be expressed analytically. Proposition 9 of Azzalini and Capitanio (2003) 
shows the density of the sum of a random variable and the absolute value 
of another random variable following the same elliptical distribution. Stead 
et al. (2018) propose the use of MSL to pair a thick-tailed distribution for 
vi with any given distribution for ui, and estimate a logistic-half normal SF 
model. The authors show that the model yields a narrower range of effi-
ciency scores compared to the normal-half normal model.

There are two drawbacks of the above proposals for vi. First, they have 
fixed shapes, so there is no flexibility in the heaviness of their tails. Second, 
they do not nest the normal distribution, which makes testing against the 
standard SF model difficult. One potential noise distribution with neither 
of these shortcomings is the Student’s t distribution, which has a ‘degrees of 
freedom’ parameter α that determines the heaviness of the tails, and which 
approaches the normal distribution as α → ∞. Tancredi (2002) proposed 
an SF model in which vi and ui follow non-standard Student’s t distribu-
tion and half t distributions, with scale parameters σv and σu, respectively, 

20In keeping with previous terminology, ‘truncated’ (without further qualification) refers specifically to 
the left truncation at zero of a distribution with mean µ, and ‘half ’ refers to the special case where 
µ = 0. Note that truncating the Laplace distribution thus yields the exponential distribution whenever 
µ ≤ 0 due to the memorylessness property of the exponential distribution.
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and a common degrees of freedom parameter α. The author shows that 
f u|ε → 0 as sεi → ∞ and that E

[
exp (−ui|εi)

]
 and VAR

[
exp (−ui|εi)

]
 are 

non-monotonic functions of εi. Wheat et al. (2019) estimate a t-half normal 
model via MSL, similarly finding that E(ui|εi) is non-monotonic, decreas-
ing with sεi at either tail, and discuss testing against the normal-half normal 
SF model. Bayesian estimation of the t-half t model, and of t-half normal, 
t-exponential, and t-gamma SF models are discussed by Tchumtchoua and 
Dey (2007) and Griffin and Steel (2007), respectively.

Another proposal which nests the standard SF model and allows for flex-
ibility in the kurtosis of vi, is that of Wheat et al. (2017), in which vi fol-
lows a mixture of two normal distributions with zero means, variances σ 2

v1 
and σ 2

v2, respectively, and mixing parameter p. This is often referred to as 
the contaminated normal distribution.21 Alternatively, the model can be 
interpreted as a latent class model with two regimes having differing noise 
variances. Efficiency prediction in latent class and mixture SF models is dis-
cussed, and E(ui|εi) is shown to be non-monotonic in the contaminated 
normal-half normal case, as in the t-half normal. Testing down to the stand-
ard SF model is less straightforward in this case, since there is an unidenti-
fied parameter under the null hypothesis.

The proposals discussed in this section have all been motivated to one 
degree or another by the need to accommodate outliers in a satisfactory way. 
An exception to this general rule is Bonanno et al. (2017), who propose an 
SF model with correlated error components—for a discussion of such mod-
els, see Sect. 8.1—in which the marginal distributions of vi and ui are skew 
logistic and exponential, respectively. The motivation in this case is to allow 
for non-zero efficiency predictions in the presence of ‘wrong skew’, which 
the model ascribes to the skewness of vi.

7  Presence of Efficient Firms

A number of papers have considered SFA in the case where some signifi-
cant proportion of firms lie on the frontier—i.e. are fully efficient—and dis-
cussed SF specifications and efficiency prediction appropriate for this case, 
along with methods used to identify subset of efficient firms.

Horrace and Schmidt (2000) discuss multiple comparisons with the best 
(MCB)—see Hsu (1981, 1984) for background on MCB—in which there 

21Or more specifically, the scale contaminated normal distribution.
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are I populations each with their own distinct parameter values, ai, one of 
which—e.g. the maximum or the minimum—is the ‘best’ in some sense, 
against which we want to compare the remaining I − 1 populations. Rather 
than make individual comparisons, e.g. by testing H0 : ai = ab where 
ab = maxj �=i saj), MCB constructs joint confidence intervals for a vector 
of differences 

(
ab − a1 ab − a2 . . . ab − aI−1

)
. This is motivated by the 

need to consider the ‘multiplicity effect’ (Hochberg and Tamhane 1987), i.e. 
the fact that if a large enough number of comparisons are made, some dif-
ferences are bound to appear significant. MCB is also concerned with con-
structing a set of populations which could be the best. Horrace and Schmidt 
(2000) discuss application of MCB to derive such multivariate intervals in 
the context of the fixed effects, time-invariant efficiency panel SF model of 
Schmidt and Sickles (1984), and the selection of a set of efficient (or proba-
bly efficient) firms based on these.

An alternative approach proposed by Jung (2017) is to use a least abso-
lute shrinkage and selection operator (LASSO) variant of the Schmidt and 
Sickles (1984) model. LASSO is a method used for variable selection and to 
penalise overfitting by shrinking the parameter estimates towards zero and 
was introduced by Tibshirani (1996) in the context of OLS, such that

where K is the number of regressors, and � is a tuning parameter that deter-
mines the strength of the penalty (or the degree of shrinkage). The constant 
term β0 is excluded from the penalty term. The penalty is such that it forces 
some of the coefficients to be zero, hence, its usefulness in variable selec-
tion. It is straightforward to extend the approach to a fixed-effects panel 
data model. Jung (2017) proposes extending the approach to the Schmidt 
and Sickles (1984) fixed effects SF model, in which β0 = maxj saj and 
ui = maxj saj − sai, and introduces an additional penalty term such that 
the inefficiency parameters are shrunk towards zero, and ui = 0 for a sub-
set of firms. The author discusses the properties of the model, and in apply-
ing the model to a dataset used by Horrace and Schmidt (2000), notes that 
the resulting set of efficient firms is similar to that obtained using the MCB 
approach.

Kumbhakar et al. (2013) proposed a zero inefficiency stochastic frontier 
(ZISF) model. The ZISF model adapts the standard parametric SF model 
to account for the possibility that a proportion, p, of the firms in the sample 

(25)β̂LASSO = argmin
β

[
1

I

I∑

i=1

ε2i + �

K∑

k=1

|βk|

]
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are fully efficient using a latent class approach in which ui = 0 with proba-
bility p. That is, the ZISF model is a latent class model in which

where fv is the density of vi and assumed noise distribution, and fu is the 
density of ui in the second regime. In the first regime, ui can be thought 
of as belonging to a degenerate distribution at zero. The ZISF model nests 
the standard SF model when p = 0, and testing down to the SF model is a 
standard problem. On the other hand, testing H0 : p = 1, i.e. that all firms 
are fully efficient, is more complicated, that the splitting proportion p lies on 
the boundary of the parameter space in this case. The authors suggest that 
the LR statistic follows a χ2

1:0 distribution.22 That is, a 50:50 mixture of χ2
0  

and χ2
1  distributions. However, Rho and Schmidt (2015) question the appli-

cability of this result, noting an additional complication: under Ho : p = 1, 
σu is not identified. Equivalently, p is not identified under Ho : σu = 0. 
Simulation evidence provided by the authors suggests that estimates of these 
two parameters are likely to be imprecise when either is small.

Kumbhakar et al. (2013) suggest several approaches to efficiency pre-
diction from the ZISF model. First, the authors suggest weighting 
regime-specific efficiency predictions by unconditional probabilities of 
regime membership. Since ûi = 0 in the first regime regardless of the pre-
dictor used, this amounts to using (1− p)E(ui|εi). This is clearly unsatis-
factory, as each firm is assigned the same (unconditional) probabilities for 
regime membership. A preferable alternative, suggested by both Kumbhakar 
et al. (2013) and Rho and Schmidt (2015), suggest using (1− pi)E(ui|εi), 
where pi = pfv(εi)/fε(εi), which is a firm-specific probability conditional 
on εi. Note that (1− p)E(ui|εi) and (1− pi)E(ui|εi) for all i and any 
value of εi will yield non-zero predictions of ui under the assumption that 
vi ∼ N

(
0, σ 2

v

)
 (see the discussion of the monotonicity properties of E(ui|εi)  

in Sect. 6), despite the fact we expect pI efficient firms in the sample. 
Kumbhakar et al. (2013) suggest identifying firms as efficient when pi is 
greater than some cut-off point; however, the choice of such a cut-off point 
is arbitrary.

(26)fε(εi) = pfv(εi)+ (1− p)

∞∫

0

fv(εi + sui)fu(ui)dui

22As discussed in Sect. 3, see Case 5 in Self and Liang (1987).
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Despite the ZISF model’s motivation, efficient firms cannot be identified 
on the basis of the resulting point predictions of efficiency or conditional 
probabilities of regime membership. Firms may be predicted as fully efficient 
if the conditional mode predictor is used, or possibly if an alternative distri-
bution for vi is assumed (again, refer to Sect. 6), but this is equally true in 
the standard SF context. An appropriate approach to classifying firms would 
be to identify those with minimum width prediction intervals, analogous 
to those derived by Wheat et al. (2014) for ui|εi in the standard SF model, 
including zero.

There are trade-offs between each of the three proposed methods. 
Compared to the ZISF model, the MCB and LASSO approaches have the 
advantage that no particular distribution for ui is imposed, and efficient 
firms can be identified on the basis of hypothesis tests. In contrast, the 
ZISF model limits us to examining prediction intervals. On the other hand, 
Horrace and Schmidt (2000) and Jung (2017) assume time-invariant effi-
ciency. While Horrace and Schmidt (2000) state that the MCB approach 
could be adapted to allow for time-varying efficiency (and the same may be 
true of the LASSO approach), the ZISF approach is the only one that can 
be applied to cross-sectional data. In addition, it would be straightforward 
to extend the ZISF approach to incorporate many features found in the SF 
literature.

8  Miscellaneous Proposals

In this section, we discuss several of the lesser and relatively tangential 
strands of the SF literature which have adopted novel distributional forms.

8.1  Correlated Errors

A common assumption across all of the aforementioned SF specifications 
is that the error components, including all noise, inefficiency and random 
effects components are distributed independently of one another.23 Relaxing 
this assumption seems particularly justified in cases in which there are two 
or more inefficiency components. Independence between noise and ineffi-
ciency terms is usually assumed on the basis that noise represents random 

23Again, as an exception to this, dependency between error components may be introduced via ‘envi-
ronmental’ variables influencing the parameters of their distributions as discussed in Sect. 5.



258     A. D. Stead et al.

factors unrelated to efficiency. On the other hand, it has been argued that 
such factors may affect firm decision making and therefore efficiency.

Similar to the panel data case discussed in Sect. 4.1, one approach to 
modelling dependence between errors has been to specify some multivari-
ate analogue to common distributional assumptions under independence. 
Schmidt and Lovell (1980), Pal and Sengupta (1999), and Bandyopadhyay 
and Das (2006) consider a left truncated a bivariate normal distribution at 
zero with respect to a one-sided inefficiency component.24 The two-sided 
component represents noise in the latter two cases and allocative ineffi-
ciency in the former. Pal and Sengupta (1999) likewise included allocative 
inefficiency components, which are assumed to follow a multivariate normal 
distribution. However, the marginal distributions of the error components 
are not those commonly used under independence and, more importantly, 
that they may be inappropriate. Bandyopadhyay and Das (2006) show that 
while the marginal distribution of ui in their model is half normal, that of 
vi is skew normal, with skewness determined by the correlation between the 
two error components. An unusual approach was proposed by Pal (2004), 
in which conditional distributions for the error components are specified 
directly along with their marginal distributions. Prediction of efficiency is 
based on f u|ε as in the case of independence.

The use of a copula function to allow for dependence between vi and ui 
was proposed by Smith (2008) and El Mehdi and Hafner (2014). Various 
alternatives are considered, including the Ali-Mikhail-Haq, Clayton, Fairlie-
Gumbel-Morgenstern, Frank and Gaussian copula. From Sklar’s theorem, 
the joint density fv,u is the product of the marginal densities and the density 
of the copula. It follows that (3) and (4) must be modified such that

and

(27)fε(εi) =

∞∫

0

fv(εi + sui)fu(ui)cv,u[Fv(εi + sui),Fu(ui)]dui

(28)fui|εi(ui|εi) =
fv(εi + sui)fu(ui)cv,u[Fv(εi + sui),Fu(ui)]

fε(εi)

24Schmidt and Lovell (1980) fold, rather than truncate.
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where cv,u is the copula density. Gómez-Déniz and Pérez-Rodríguez (2015) 
specify a bivariate Sarmanov distribution for vi and ui with normal and 
half-normal marginal distributions, respectively. Again, the advantage of the 
copula approach is that the desired marginal distributions are obtained, with 
the dependence between the error components captured by cv,u.

8.2  Sample Selection and Endogenous Switching

In the context of linear regression, the sample selection model of Heckman 
(1976, 1979) is such that

where symmetric error terms εi and wi are assumed to follow a bivariate 
normal distribution with zero means, variances σ 2

ε  and 1, and correlation 
coefficient ρ. Unless ρ = 0, least squares will yield biased estimates. Since 
E(yi|xi, di = 1) = xiβ + ρσεfw(ziα)/Fw(ziα), Heckman (1979) proposed 
a two-step, limited information method in which yi is regressed on xi and 
the inverse Mills’ ratio fw

(
ziα̂

)
/Fw

(
ziα̂

)
, where α̂ is obtained from a sin-

gle equation probit model estimated by ML. Alternatively, a full information 
ML approach may be used to estimate the parameters of the model simulta-
neously, as in Heckman (1976) and Maddala (1983).

A similar problem is that of endogenous switching. The endogenous 
switching model of Heckman (1978) has two regimes, membership of 
which is dependent upon a binary switching dummy:

where ε1i, ε2i and wi are assumed to follow a trivariate normal distribution 
with zero means, and variances σ 2

1ε, σ
2
2ε, and σ 2

w. The correlations of ε1i 
and ε2i with wi are given by ρ1 and ρ2, respectively, while ρ12 is the correla-
tion between ε1i and ε2i. Again, both two-step partial information and full 
information ML approaches may be used to estimate the parameters of the 
model.

In recent years, SF models incorporating sample selection and endog-
enous switching have been proposed. Bradford et al. (2001) and 
Sipiläinen and Oude Lansink (2005) use the Heckman (1979) two-step 

(29)yi =

{
xiβ + εi, di = 1

unobserved, di = 0
, di = I

(
d∗i = ziα + wi > 0

)
,

(30)yi =

{
xiβ1 + ε1i, di = 1

xiβ2 + ε2i, di = 0
, di = I

(
d∗i = ziα + wi > 0

)
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approach, including the estimated inverse Mills’ ratios from single equa-
tion probit selection and switching models, respectively, as independ-
ent variables in their SF models. However, this is inappropriate in 
non-linear settings such as SFA, since it is generally not the case that 
E
[
g(xiβ + εi)|di = 1

]
= g

[
xiβ + ρσεfw(ziα)/Fw(ziα)

]
 where g is some 

non-linear function. Terza (2009) discusses ML estimation of non-linear 
models with endogenous switching or sample selection in general.

In the SF context, there are many alternative assumptions that may be 
made about the relationship between noise, inefficiency, and the stochas-
tic component of the selection (or switching) equation. Perhaps the natu-
ral approach, implicit in Bradford et al. (2001) and Sipiläinen and Oude 
Lansink (2005), is to assume that the symmetric noise terms follow a mul-
tivariate normal distribution as in the linear model, while the inefficiency 
terms are drawn from independent one-sided univariate distributions. 
This is proposed by Greene (2010), who estimates an SF model with sam-
ple selection via MSL, and also by Lai (2015), who uses the result that, in 
both the sample selection and endogenous switching cases, f ε|d follows a 
closed skew-normal distribution when the inefficiency terms are truncated 
normal. This results in analytical log-likelihoods, and the author proposes 
to predict efficiency based on the distribution of ui|(εi|di), specifically using 
E
[
exp (−ui)|(εi|di)

]
.

Note that the distributional assumptions in Greene (2010) and Lai 
(2015) ensure appropriate marginal distributions for each error compo-
nent, but do not allow for correlation between the inefficiency terms and the 
symmetric errors. Lai et al. (2009) introduce correlation between εi (rather 
than its components) and wi through a copula function. Departing from 
the usual approach, Kumbhakar et al. (2009) propose an SF model with an 
endogenous switching equation in which d∗i = ziα + δui + wi. That is, they 
include the inefficiency term as a determinant of regime membership.25 The 
various error components are assumed to be independent of one another, 
and both the log-likelihood of the model and E[ui|(εi|di)] are obtained by 
quadrature.

25Kumbhakar et al. (2009), using panel data, also include a lagged regime membership (i.e. technology 
choice) dummy in their selection equation.
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8.3  Two-Tiered Models

SF methods have been widely applied outside of the context of produc-
tion and cost frontier estimation. Most applications have utilised stand-
ard cross-section or panel data SF specifications, or some of the variants 
discussed above. However, one area of application which has seen its own 
distinct methodological developments is modelling of earnings determina-
tion. Polachek and Yoon (1987) proposed a ‘two-tiered’ SF (2TSF) model in 
which

where vi is again a normally distributed noise component, and ui and wi 
follow exponential distributions with means σu and σw, respectively.26 The 
dependent variable is a worker’s actual wage. The ui component captures 
deviations from the firm’s reservation wage—i.e. the maximum wage offers 
the firm would make—as a result of incomplete information on the part of 
the employee. Similarly, wi captures deviations from the worker’s reservation 
wage—i.e. the minimum wage offer the worker would accept—as a result of 
incomplete information on the part of the employer. The inclusion of these 
two terms therefore allows estimation of the extent of average employee and 
employer incomplete information, and even observation-specific predictions 
of these. The assumption of exponentially distributed ui and wi makes der-
ivation of fε, and therefore the log-likelihood, straightforward. However, as 
in the standard SF model, alternative distributional assumptions have been 
proposed: Papadopoulos (2015) derive a closed form for fε when ui and wi 
follow half-normal distributions, and Tsionas (2012) estimates the model 
assuming that they follow gamma distributions via inverse fast Fourier trans-
form of the characteristic function as discussed in Sect. 3.

In general, developments of the 2TSF model have tended to parallel 
those of the standard SF model. A panel data 2TSF model was proposed by 
Polachek and Yoon (1996), in which

where the subscript f denotes the firm. The employee incomplete informa-
tion component uit and the employer incomplete information component 

(31)εi = vi − ui + wi,

(32)εift = vift − uit + wft

26The authors actually use ui to denote the noise term and vi and wi for the one-sided errors. In the 
interest of consistency and to avoid confusion, we use vi to refer to the noise term and ui and wi for the 
one-sided errors.
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wft, which is assumed to be constant across all employees, are further decom-
posed such that uit = ui + u∗it and wft = wf + w∗

ft, where ui and wf are 
time-invariant fixed effects and u∗it and w∗

ft follow independent exponential 
distributions. It is clear that many alternative panel data specifications could 
be proposed, particularly considering the numerous possible extensions of 
the models discussed in Sect. 4.

In addition, and analogous to the models discussed in Sect. 5, modelling 
of ui and wi in terms of vectors of explanatory variables has been proposed. 
Assuming exponential ui and wi, Groot and Oosterbeek (1994) propose 
modelling the inverse signal-to-noise ratios σv/σu and σv/σw as linear func-
tions of vectors zui and zwi. This specification introduces heteroskedasticity 
of each of the error components, but in rather an odd way, and is problem-
atic in that it does not restrict σu or σw to be positive. This issue is resolved 
by Kumbhakar and Parmeter (2010), who propose a specification in which 
σui = exp (zuidu) and σwi = exp (zwidw). Note that this model has the scal-
ing property. Parmeter (2018) proposes estimating a 2TSF model with the 
scaling property, avoiding explicit distributional assumptions, by non-linear 
least squares.

Finally, tying back to the previous section, Blanco (2017) proposes an 
extension of the basic Polachek and Yoon (1987) model to account for 
sample selection, assuming that the symmetric error components follow a 
bivariate normal distribution, while the one-sided errors follow independent 
univariate exponential distributions.

9  Conclusion

The methodological literature on SFA has developed considerably since the 
first SF models were developed by Aigner et al. (1977) and Meeusen and 
van Den Broeck (1977). The defining feature of SFA models is the focus 
on determining observation-specific predictions for inefficiency. This in turn 
requires a prediction of an inefficiency error terms which is present in tan-
dem with a noise error. Hence, there is a deconvolution problem associated 
with the error in the model. As such, distributional assumptions are not just 
required to get ‘best’ estimates of the underlying frontier relationship (cost 
frontier, production frontier, etc.), but also essential for enabling appropriate 
predictions of the quantity of interest: firm inefficiency.

This review has considered numerous ways in which SFA has been inno-
vated, which in turn has involved the use of differing distributional forms. 
One strand of literature concerns alternative distributional assumptions for 
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the inefficiency error term, and more recently, the noise error term. This 
raises the obvious question as to which to choose. Given economic theory 
only requires the inefficiency error to be one-sided, it is generally an empir-
ical matter as to which is to be preferred. Formulations which nest other 
forms as special cases have obvious appeal; however, there are also non-
nested tests, such as those developed by Wang et al. (2011) to aid selection.

Another strand of literature considers alternative distributions in the 
presence of specific empirical issues. The ‘wrong-skew’ problem is a good 
example, where it is entirely plausible that inefficiency could be found to 
have skewness counter to the direction imposed by the use of the common, 
half-normal, truncated-normal or exponential inefficiency distributions. 
Without a change to the distributional assumptions, the model estimation 
would indicate no evidence of inefficiency which is often difficult to justify 
in the context of knowledge and other available evidence of the performance 
of the industries that these techniques are applied to.

Other innovations include models for sample selection, the presence of 
efficient firms and two-tier SF models. Panel data is a data structure which 
greatly increases the scope of modelling possibilities. It potentially allows 
for construction of predictors of inefficiency without appeal to ‘full’ dis-
tributional assumptions on the noise and inefficiency (instead only requir-
ing moment assumptions), by exploiting time persistency in inefficiency. 
Alternatively, full parametric approaches can be adopted, with the benefit of 
being able to obtain separate predictions for inefficiency—which may have 
both time-invariant and time-varying components—and time-invariant 
unobserved heterogeneity.

Finally, a strand of literature has developed characterising heteroskedas-
ticity in the error components. This is of particular interest as it allows for 
quantification of the determinants of inefficiency, which is important in 
beginning to explain why there is a performance gap for a firm in addition 
to providing a prediction of the size of such a gap. This, in turn can be used 
by stakeholders to guide implementation of better performance.

Overall it is misleading to think of SFA as representing a single approach 
to efficiency analysis. Instead, SFA characterises a broad set of models, where 
different approaches will be relevant given the empirical context. The limited 
scope of this review has excluded several topics such as nonparametric SF 
models, Bayesian SF models, metafrontiers, and estimation of distance func-
tions. Inefficiency is an unobserved error component, and so by definition, 
the predictor of such an error will be sensitive to distributional assumptions 
regarding inefficiency and the other unobserved error components, such as 
noise and unobserved heterogeneity. Thus, the conclusion is that for any 
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given empirical application of efficiency analysis, several SFA models will 
need to be considered in order to establish the sensitivity of the efficiency 
predictions to the distributional assumptions adopted. This review should 
provide a useful starting point for such an exercise.
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1  Introduction

Stochastic frontier models (SFM) (Aigner et al. 1977; Meeusen and van den 
Broeck 1977) are central to the identification of inefficiencies in the pro-
duction of continuously distributed outputs. There are, however, numerous 
situations where the outcome variable of interest is discretely distributed. 
This is particularly true in the realm of labour, industrial and health eco-
nomics where the concept of production frontier has been adopted to 
explain non-tangible and non-pecuniary outcomes which are often meas-
ured through indicators of achievement (employment status, academic certi-
fication, success in a labour market scheme), ordered categories (Likert scales 
describing job satisfaction, health status, personality traits) and counts (the 
number of patents obtained by a firm or the number of infant deaths in a 
region). Although these latter fields of inquiry have not emphasised the idea 
of inefficiency in the production of non-tangible and non-pecuniary out-
comes, recent contributions (e.g. Fe 2013; Fe and Hofler 2013) suggest that 
inefficiencies are also present in these domains. The question is then whether 
traditional continuous data methods are still suitable in this setting.

There are two main reasons why new models of stochastic frontiers might 
be required. First, it is well known that imposing parametric restrictions 
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which take into account the specific features of distributions results in more 
efficient estimates and better inference (e.g. Greene 2004b). Second, and 
more importantly, inefficiency is typically not nonparametrically identified 
from data alone. Therefore, researchers have to make specific assumptions 
regarding the distribution of inefficiency in the sample or the population. 
These assumptions define the class of admissible distribution underlying 
outputs. Standard continuous data models attribute any negative (posi-
tive) skewness in the sample to inefficiencies in the production of economic 
goods (bads). The distributions of discrete outcomes are, however, typically 
skewed even in the absence of inefficiencies and the sign of skewness is 
generally independent of whether one is studying an economic good or an 
economic bad. The consequences of this are exemplified in Fé and Hofler 
(2013). These authors describe how standard SFM can fail to detect any 
inefficiency in production when the outcome of interest is a count—even 
when the underlying inefficiency might be substantial.

In this chapter, we provide a survey of recent contributions to the area of 
SFM for the analysis of discrete outcomes and we discuss models for count 
data, binary outcomes and ordered categorical outcomes—as well as a few 
extensions of these models. Existing contributions to this area are described 
in Sect. 2 of this chapter. In Sect. 3, we provide a general framework encom-
passing existing continuous and discrete outcome frontier models. We note 
that existing models are mixtures of a standard distribution (such as the nor-
mal or the Poisson distributions) with an asymmetric distribution (such as 
the half-normal or gamma distributions), and we take advantage of this fea-
ture to provide a general encompassing framework for these models. Specific 
choices of distributions result in different models, only a few of which have 
a closed form. Therefore, drawing from Greene (2003), we suggest the 
use of maximum simulated likelihoods to estimate the parameters of each 
model. Section 3 further describes the estimation of cross-sectional ineffi-
ciency scores using the methodology in Jondrow et al. (1982) and specific 
implementations of the framework. We consider the Count Data Stochastic 
Frontier (CDSF) model of Fé and Hofler (2013), a generalisation of 
Ghadge’s logit SFM (Ghadge 2017) and a frequentist version of the ordered 
logit SFM in Griffiths et al. (2014). For the latter two models, we provide 
a due account of the conditions necessary for identification. Section 4 of 
the chapter considers extensions of the general framework. We first discuss 
the conditions under which unobserved heterogeneity can be introduced 
in the model. This is an important extension which has been considered  
(for the count data stochastic model) in Drivas et al. (2014). We show 



Stochastic Frontier Models for Discrete Output Variables     277

through simulation which are the consequences of ignoring unobserved  
heterogeneity in discrete outcome SFM. The extension is also important 
insofar as it constitutes a prior step in the introduction of endogenous var-
iables in the models—a extension which is, nonetheless, beyond the scope 
of this chapter. As in Fé (2013) and Fé and Hofler (2013), Sect. 4 further 
considers semi-nonparametric estimation via local likelihood methods 
(Tibshirani and Hastie 1987). This extension allows researches to relax the 
various distributional assumptions imposed in their models, thus reducing 
the risk of misspecification. Finally, Sect. 5 concludes with some remarks.

2  Stochastic Frontier Models When 
Outcomes Are Discrete-Valued

The production function (or production frontier) defines the average upper 
bound for the amount of output achievable with a given set of inputs. More 
broadly, it summarises the constraints that nature imposes on firms’ ability to 
produce (Wicksteed 1894). Understanding the nature and magnitude of these 
constraints can result in better planning and targeted interventions to improve 
production. Therefore, the estimation of production functions is a topic of 
considerable importance for firms, researchers and policy-makers alike.

Early empirical studies (e.g. Cobb and Douglas 1928) assumed that 
firms operated on the frontier so that observed variation in output at any 
level of input was due to a zero-mean random process. This interpretation 
facilitated the estimation of the production function through conventional 
methods such as least squares. However, economists soon pointed out that 
much of the variation in output across firms was likely to be the result of 
structural factors which lead to production levels below the frontier, such 
as environmental incentives (derived, for example, from monopolistic 
advantages—Hicks 1935; Chamberlin 1933) and technical factors (Debreu 
1959; Koopmans 1951). To accommodate these inefficiencies, Debreu 
(1959) and Shephard (1970) introduced the concept of distance function, 
which extends the scope of production frontiers by decomposing variation 
in output into the continuously distributed zero-mean error implicit in 
Wicksteed’s original definition (Wicksteed 1894) and a one-sided, contin-
uously distributed error term shifting production away from the frontier.1 

1In what follows, we will take the liberty of abusing terminology and use the terms production func-
tion, production frontier and distance function interchangeably.
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This development constituted the key stepping stone for the development of 
the SFM in Aigner et al. (1977) and Meeusen and van den Broeck (1977), 
which are based on the allocation of probability distributions to each of the 
error components of a distance function (and are described in a different 
chapter in this volume).

In parallel to the development of the stochastic frontier literature, labour 
and industrial economists begun to adopt the idea of a production frontier 
to explain observed levels of non-tangible, but economically relevant out-
puts such as human capital (Ben-Porath 1967; Heckman 1976; Mincer 
1981), intellectual property (Hall et al. 1986; Wang et al. 1998) and health 
(Grossman 1972). Empirical research in these areas has not emphasised 
the idea of technical or environmental inefficiencies,2 although data often 
reveal substantial variability in outcomes conditional on the levels of a set 
of explanatory variables (with much of that variation being attributable to 
inefficiencies). For example, Fé (2013) estimates that of all the infant deaths 
reported by any English local authority in 2006, on average 2.5 were due to 
inefficiencies not accounted for by education, air pollution, smoking behav-
iour, education or broader socio-economic status.

Applying insights from the production and stochastic frontier  literatures 
to the study of inefficiencies in this type of unconventional setting is, in 
principle, straightforward. However, an important feature in the literature 
about the production of intangible outputs is the prevalence of discretely 
distributed outcomes. For example, intellectual property is often measured  
through the number of patents awarded to a firm (e.g. Hottenrott et al. 
2016) and health is often measured through self-reported scores in 
ordered Likert scales (e.g. Wildman and Jones 2008; Greene and Hensher  
2010). This feature raises a question regarding the extent to which existing 
stochastic frontier methods can be used to study inefficiencies in the produc-
tion of discrete outcomes.

2.1  Skewness in the Distribution of Output

Conditional on the level of inefficiency, estimation of mean produc-
tion frontiers is subject to a trade-off between robustness and statisti-
cal efficiency. Estimation of the conditional frontier can be done without  
employing distributional assumptions using, for example, the ordinary 

2For a recent example see, e.g., Attanasio et al. (2015).
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least squares estimator, which is consistent regardless of the distribution 
of output. This would justify, for instance, estimation of a mean regres-
sion function by least squares with a binary or discrete dependent variable. 
Assumptions about the actual distribution of output can, however, lead to 
more efficient estimates and more powerful inferential procedures, but at 
the expense of increased risk of model misspecification (e.g. White 1982; 
Greene 2004b; Angrist and Pischke 2008). The question is whether a sim-
ilar trade-off is available, unconditionally, when fitting continuous data 
SFM to a discrete outcome.

Inefficiency is not nonparametrically identified from data alone and, as 
a result, it is essential to draw assumptions about the distribution of ineffi-
ciency in the population under study. These assumptions are binding insofar 
as they define the class of feasible models that can explain variation in out-
put. In the methodology developed by Aigner et al. (1977), there is a clear 
association between the nature of the output under consideration (an eco-
nomic good or an economic bad) and the skewness of its distribution (meas-
ured by the third central moment, κ3 = E(Y − E(Y))3). In the presence 
of inefficiency, the distribution of economic goods should exhibit negative 
skewness, whereas the distribution of economic bads should exhibit positive 
skewness. Discrete data, however, tend to violate these distributional assump-
tions. Consider, for example, a discrete output known to have a Poisson 
distribution. The third moment of this distribution is κ3 = E(y|x)1/2 > 0

. Because the distribution of y is always positively skewed, the assumptions 
underlying ALS methodology will be violated when y is an economic good. 
The implication of this violation is that the maximum likelihood estima-
tor of the ALS model will converge to the ordinary least squares estimator, 
thus suggesting zero inefficiency—even though inefficiency in the sample 
might be substantial (e.g. Fé and Hoer 2013). As another example, con-
sider the Bernoulli distribution (which serves as the building block for the 
probit and logit models). Skewness in this case is given by the expression 
κ3 = (1− 2p)/

√
p(1− p) where p = Prob(y = 1). In this case, skewness 

does not depend on the nature of the underlying outcome, but rather on the 
probability that y = 1 so it is possible to observe economic goods (or bads) 
whose distribution is positively or negatively skewed.

The implication of this discussion is that, unlike in non-linear regression, 
the robustness-efficiency trade-off does not seem to be available. Therefore, 
specific models are required in order to extend the stochastic frontier meth-
odology to discrete outcomes.
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2.2  Existing Contributions

To the best of our knowledge, the literature on SFM for discrete outcomes 
started with the CDSF model in Fé (2007, 2013). These studies focused on 
the measurement of regional inequality in the distribution of infant deaths 
in 350 English local areas. More specifically, the count of infant deaths 
in a region, y, was treated as the output in an additive distance function, 
y = y∗ + u, where y∗ is a discrete-valued stochastic frontier and u is a  
discrete inefficiency term independently distributed from y∗. The distribu-
tion of y in this model is given by the convolution of the distributions of y∗ 
and u,

where x1, x2 may or not have common elements.
The above model has a number of desirable attributes. It is theoretically 

grounded on a distance function and it admits separate explanatory variables 
for both the mean frontier and the inefficiency term. It also admits a wide 
variety of distributional assumptions (subject to model-specific identifica-
tion issues which must be addressed on a case-by-case basis). Importantly, 
the convolution model measures inefficiency in physical units, unlike other 
existing models for discrete output which, as will be seen below, measure 
inefficiency in percentage points (as a marginal effect).

Fé (2007, 2013) explores the use of the Delaporte family of models at 
length. The Delaporte distribution (Ruohonen 1988) is the convolution 
of a negative binomial and Poisson distributions. In addition to allowing  
variations in y due to inefficiency and inputs, the Delaporte family of mod-
els also allows variation in y due to unobserved heterogeneity through the 
over-dispersion parameter in the negative binomial part of the model (see 
Cameron and Trivedi 1998). By assigning a negative binomial distribution 
to either y∗ or u, researchers can control which term is responsible for heter-
ogeneity in the sample. Inference in this setting is straightforward. The usual 
maximum likelihood trinity (the score, Wald and likelihood ratio tests) can 
be used to evaluate the presence of inefficiency or heterogeneity. Different 
specifications can be tested against each other using Vuong’s non-nested 
hypothesis test (Vuong 1989), whereas the overall adequacy of any model 
can be tested using the consistent nonparametric extension of Pearson’s test 
for discrete distributions discussed in Fé (2013).

Py|x(yi|xi; θ) =

yi∑

y∗=0

Py∗|xi

(
y∗i |x1,i; θ1

)
Pui|xi

(
ui|x2,i; θ2

)
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Average inefficiency in the convolution model can be estimated from θ . 
In the particular case of the Delapote model, the conditional mean of the 
distribution of u provides a direct estimate of inefficiency in physical units. 
Following Jondrow et al. (1982), researchers can also obtain point estimates 
(in physical units) of inefficiency by estimating E(ui|yi, xi, θ)—which in the 
case of the Delaporte distribution has a closed-form expression.

The convolution model is only suitable for the analysis of economic bads. 
Hofler and Scrogin (2008) have suggested the use of the Beta-Binomial 
model for under-reported counts as a candidate CDSF for economic goods. 
As in the Delaporte family of models, the building block of the model in 
Hofler and Scrogin (2008) is a stochastic frontier with a negative binomial 
distribution. Unlike in the Delaporte models, however, the number of units 
effectively produced, y, given the frontier level y∗ is seen as the result of y∗ 
Bernoulli production trials. With probability p, a firm or individual success-
fully produces the next unit of output, where p is a random variable with a 
beta distribution. The ensuing unconditional distribution for y is known as a 
beta-binomial distribution (Fader and Hardie 2000).

The main drawback of this earliest literature is that the convolution and 
Beta-Binomial models are only applicable to either economic bads or eco-
nomic goods. However, there is the expectation implicit in the stochastic 
frontier literature that a SFM will adapt to economic goods and bads alike 
with a simple transformation in the sign of the inefficiency term. From that 
perspective, the models in Hofler and Scrogin (2008) and Fé (2007, 2013) 
are incomplete SFM.

The first complete discrete outcome SFM was proposed by Fé and Hofler 
(2013). These authors suggested to embed a multiplicative distance function 
similar to those used in continuous output models into the conditional mean 
of a Poisson process. Fé and Hofler (2013) define a conditional latent produc-
tion function ln y∗ = h(x;β)± ε, where ε is a non-negative constant intro-
ducing inefficiency in the process. Then, the number of units produced, y, is 
assumed to have a conditional density given by f (y|x, ε) = Poisson(�) where 
� = E(y|x, ε) = exp(h(x;β)± ε). As in Aigner et al. (1977), Fé and Hofler 
assume that the inefficiency term ε is a random variable with a half-normal 
distribution. It then follows that the unconditional distribution of y is a Mixed 
Poisson model with log-half-normal mixing parameter (PHN hereafter),

f (y|x) =

∫
f (y|x; ε)f (ε)dε =

∫
Poisson(�)f (ε)dε = Eε[Poisson(�)].
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This distribution does not have a closed-form expression; however, it can be 
approximated by simulation. Fé and Hofler construct the simulated like-
lihood of the model using low discrepancy Halton sequences and provide 
expressions for the gradient and first moments of the distribution. Testing 
the significance of inefficiency in this model amounts to applying a score/
likelihood ratio/Wald test of zero variance in the half-normal distribu-
tion associated with inefficiency. As in Fé (2013), Fé and Hofler propose a 
consistent conditional moment test for the overall adequacy of the PHN. 
Unlike the convolution and BB models, the PHN does not accommodate 
unobserved heterogeneity, however, as shown in Drivas et al. (2014), this 
is a straightforward extension by defining a three error component model 
where ln y∗ = h(x;β)± ε + v and v is a zero-mean normally distributed 
error term accounting for any unobserved heterogeneity. Count data are per-
vasive in economics and social sciences; however, researchers are very often 
interested in binary outcomes indicating the presence of a characteristic or 
the attainment of a specific policy goal (such as employment status or the 
reduction of deficit). To account for inefficiencies in this kind of setting, 
Ghadge (2017) has proposed an extension of the logit model which has a 
binary choice stochastic frontier interpretation. The motivation behind his 
study is understanding the production of intellectual property among firms. 
Using the popular patent data set in Wang et al. (1998), Ghadge separates 
firms into those with at least one patent and those with no patents. As in 
the preceding PHN model, Ghadge suggests a latent production frontier 
y∗ = h(x′β)± ε + v where ε is a half-normal inefficiency term and v is the 
usual zero-mean, unit-variance error component. It is easy to show (using 
the latent utility-function specification underlying the classic logit model) 
that y has a Bernoulli distribution conditional on x and ε. The uncondi-
tional distribution for the logit stochastic frontier can then be obtained by 
integration,

where � = �(x′β ± ε) is the cumulative distribution function of a stand-
ard logistic random variable. As in Fé and Hofler (2013), the above density 
function can be approximated using simulation and inferences about the sig-
nificance of inefficiency can be drawn by testing the magnitude of the vari-
ance of the distribution of ε. However, Monte Carlo simulations in Ghadge 
(2017) suggest that the parameters of the model are estimated imprecisely, 

f (y|x) =

∫
�(x′β ± ε)yi(1−�(x′β ± ε))1−yi f (ε)dε

= Eε[Bernoulli(�)]
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even for moderately large samples—a point that we revisit in the following 
section.

One final contribution to the literature on discrete frontier models is the 
article by Griffiths et al. (2014). These authors explored the Bayesian estima-
tion of an ordered logit SFM. As in the preceding contributions, the build-
ing block of their model is a latent distance function y∗ = h(x′β)± ε + v 
with v ∼ N(0, 1) and ε ∼ HN(σε). Unlike in the count data and binary 
choice models, in their model y can take on one among j = 1, . . . , J 
ordered categories and so,

The authors then derive the Bayesian posterior distribution of the model and 
suggest a Gibb’s sampler to estimate the parameters of the model. They use 
their model to estimate inefficiency in self-reported health, as measured by 
people’s responses to a five-point liker scale.

Although the distribution of outcomes can vary across applications, all 
the preceding models of stochastic frontier (as well as the continuous data 
models originated from Aigner et al. [1977]) share the characteristic of being 
mixed probability distributions with a non-negative error component. In 
certain situations, the ensuing mixed distribution has a closed-form expres-
sion, as is the case in Aigner et al. (1977). More often, however, simulation 
methods need to be used to facilitate estimation of the parameters of the 
model. This common structural form allows us to propose an encompassing 
framework for stochastic frontiers from which all the models just described 
can be derived and where simulation methods can be routinely used to esti-
mate the parameter of the models. We develop this framework in the follow-
ing section.

3  A General Framework

Consider an scenario where a researcher has a sample of n observations, 
(yi, xi)

n
i=1 containing information about a set of inputs xi ∈ X ⊆ R

K and 
an outcome of interest yi ∈ Y ⊆ R. The outcome could be an economic 
good, such as the number of patents awarded to a firm, or a bad, such as 
the number of infant deaths in a county. The set Y is left unspecified, but in 
the kind of situation that will interest us Y will be a finite or countable sub-
set of R. The maintained assumption is that, underlying y, there is a latent 

f (y = j|x, ε) = �(µj − x′β ∓ ε)−�(µj−1 − x′β ∓ ε).
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production function3 y∗i = x′β ± ε which determines the optimal amount 
of output. Here β ∈ R

k is a vector of constants which measures the relative 
contribution of each input. The term x′β represents the optimum level of 
production given the levels of x. The term ε represents inefficiency in pro-
duction. The relationship between y∗ and y will be specific for each different 
application but in the cases that are discussed below, y∗ will characterise the 
conditional mean in the distribution of y. For the time being, it is assumed 
that the relationship between y∗ and y is fully specified.

We can progress towards an estimable model by further defining  
a probability density function for y conditional on the levels of ε.  
For example, the original SFM in Aigner et al. (1977) assumes that 
f (y|x, ε) ∼ N(x′β ± ε, σ 2) for some σ 2 > 0. In this case, the latent out-
put y∗ corresponds to E(y|x, ε) and the coefficients βk, k = 1, . . . ,K are the 
partial derivatives of y with respect to4 xk. One can write the full model as 
y = x′β + v± ε where the distribution of v± ε is the convolution of a nor-
mal and a half-normal distributions.5

Assume for now that a suitable model has been found for the conditional 
distribution of y, namely f (y|x, ε; θ) = f

(
x′β ± ε

)
 where θ is a vector of 

parameters including β. We next allow the inefficiency term ε to vary across 
observations. Because ε is not nonparametrically identified from the data 
alone, the SFM literature has put forward numerous probabilistic models to 
characterise the behaviour of ε (as a half-normal, truncated normal, gamma 
or exponential density). We borrow from Aigner et al. (1977) and assume 
that ε follows a half-normal distribution, so that ε = |u| with u ∼ N(0, σ 2

u ) 
and therefore f (ε) = f (ε; σu). As in the early stochastic frontier litera-
ture, we further assume that the density function of inefficiency satisfies 
f (ε|x) = f (ε).

Having defined a distribution for ε, obtaining an unconditional distribu-
tion for y is conceptually straightforward,

4In the ALS model, y and xk are natural logarithms of output and inputs, in which case the βk can be 
interpreted as elasticities. This detail is ignored here for clarity.
5This notation makes the stochastic nature of the frontier explicit, since it is readily seen that 
h(x′)+ v ∼ N(x′β; σv). In general, the stochastic nature of the frontier will be implicitly given by the 
conditional distribution of y given ε.

3This function is normally derived from a distance function, with y∗ typically being the logarithm of a 
certain latent output. This is only implicit in the ensuing discussion. Similarly, one would have to dis-
tinguish between production functions and cost functions. Once again, we ignore this distinction here 
for simplicity.
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where the second equality follows from the change of variable s = u/σu 
implying that s is a random variable with a standard normal distribution 
φ(s). This model is fully specified up to the unknown parameters θ ∈ R

p 
and σu, which are the object of estimation. The log-likelihood function of 
the model is given by

and the estimators of θ and σu can be obtained by maximising lnL.
The density f (y|x; θ , σu) has a closed-form expression in only a few nota-

ble cases (such as the normal-half normal model in Aigner et al. (1977). 
In general, obtaining a closed-form expression is complicated or infeasible. 
This is, however, a minor limitation, given advances in simulation-based 
estimation methods proposed over the last thirty years, a case that in the 
Stochastic Frontier literature, was first made by Greene (2003). Because the 
distribution of ε has been pre-specified, the integral in f (y|x; θ , σu) can be 
approximated by simulation, by sampling randomly from φ(s). Then under 
a suitable law of large numbers, for fixed θ , σu

where ξi,r is a random, independent draw from φ(s). More precisely, 
Gourieroux et al. (1984a, b) note that the log-likelihood function can be 
approximated by any of the following criteria:

f (y|x; θ , σu) =

∫
f (y|x, ε; θ)f (ε; σu)dε =

∫
f (y|x,±σu|s|; θ)φ(s)

= Eu

[
f (y|x,±σu|s|; θ)

]

lnL(θ , σu) =

n∑

i=1

ln

[∫
f (yi|xi,±σu|s|; θ)φ(si)dsi

]

=

n∑

i=1

ln Eu

[
f (yi|xi,±σu|s|; θ)

]
.

f̂ (yi|xi) =
1

R

n∑

r=1

f
(
yi|xi,±σu|ξi,r|; θ

)
→ f (y|x; θ , σu)

(1)LIR,n(θ) =

n∑

i=1

ln

[
1

R

n∑

r=1

f
(
yi|xi,±σu|ξi,r|; θ

)
]

(2)LDR,n(θ) =

n∑

i=1

ln

[
1

R

n∑

r=1

f
(
yi|xi,±σu|ξi,r|; θ

)
]
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where the subscripts I(dentical) and D(ifferent) refer to whether the simu-
lated values, ξ, are or not the same across i. The distinction is not trivial for 
the asymptotic properties of the method. Letting η =

(
θ ′, σu

)′, Gourieroux 
et al. (1984b) show that

1. If nR−1 → 0, then 
√
n
(
η̂I − η0

)
→ N

(
0,I−1(η0)

)
,

2. If 
√
nR−1 → 0, then 

√
n
(
η̂D − η0

)
→ N

(
0,I−1(η0)

)

where I(.) is the information matrix and η0 is the true parameter value. Since 
the number of Monte Carlo draws, R, is decided a priori by the researcher, 
arbitrary accuracy can be attained with each method by choosing R large 
enough. Although random sampling with replacement is straightforward with 
modern computers, that standard Monte Carlo draws tend to form clusters 
and leave unexplored areas in the unit cube, thus reducing the accuracy of 
the maximum simulated likelihood method. Low discrepancy sequences (e.g. 
Halton 1964) give a better coverage and, as with antithetic draws, they gen-
erate negatively correlated nodes which result in a reduction of the error due 
to simulation.6 For the type of model under consideration, we follow Greene 
(2003) and Fe and Hofler (2013) and recommend the combination of maxi-
mum simulated likelihood with Halton sequences (Halton 1964).7

The analytical derivatives of the simulated likelihood function are  
given by

and similarly for ∂LIR,n(η)/∂η. The value θ̂MSL making the above system 
of equations equal to zero is the maximum simulated likelihood estimator 
of θ. When the model for f (y|x; θ , σu) is correctly specified, the η̂MSL is a 

∂LDR,n(η)

∂η
=

n∑

i=1

ĝi(η) =

n∑

i=1

1

f̂ (yi|xi)

1

R

R∑

r=1

∂f
(
yi|xi,±σu|ξi,r|; θ

)

∂η
.

7Halton sequences are now well established in applied econometrics and therefore we refer the reader to 
excellent surveys by, among others, Niederreiter (1992), Gentle (2003) and Train (2003).

6This occurs because the variance of the sum of any two draws is less than the variance of the sum of  
two independent draws (Gentle 2003). A clear drawback of Quasi-Monte Carlo methods is the deter-
ministic nature of the sequence which results in negatively correlated random draws (even though the 
strength of the correlation might be small). This contradicts the assumptions of independent random 
draws on which the above asymptotic results hold. It is possible, however, to generate randomised 
Halton draws without compromising the properties of the original sequence. In particular, Bhat (2003) 
advocates shifting the original terms of the Halton sequence, say sh, by a quantity µ that has been 
drawn randomly from a uniform distribution on [0, 1]. In the resulting sequence, those terms exceeding 
1 are transformed so that s∗h = sh + µ− 1.
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consistent, efficient estimator of θ and its variance can be calculated using 
the outer product of gradients,

Furthermore, under no misspecification, η̂MSL has an asymptotic normal 
distribution, which readily enables the construction of conditional moment 
tests. In particular, evaluating the existence or magnitude of inefficiency 
involves a Wald, Score or Likelihood Ratio tests of H0 : σu = 0. These tests 
will follow a chi-square with degrees of freedom equal to the number of 
restrictions.

The parameters in θ will often be of interest in their own right. However, 
the ultimate goal of the analysis is to provide average and point estimates of 
the level of inefficiency. This can be done by following Jondrow et al. (1982) 
and applying Bayes’ theorem to obtain cross-sectional inefficiency scores for 
ε through E(ε|y, x) =

∫
εf (ε|x, y)dε, where

When E(ε|y, x) =
∫
εf (ε|x, y)dε fails to have a closed-form expression, it 

can be approximated via simulation8

The general framework in the preceding discussion can be applied to a num-
ber of models. Next, we illustrate this by introducing count, binary and 
ordered outcome SFM.9

V̂(ηMSL) =

(
n∑

i=1

ĝi
(
η̂MSL

)
ĝi
(
η̂MSL

)′
)−1

.

f (ε|x, y) =
f (y|x, ε; θ)f (ε)

f (y|x)
=

f (y|x,±σu|s|; θ)φ(s)

f (y|x)
.

(3)ε̂i = E(εi|xi, yi) ≈
1

R

R∑

r=1

±σ |ξi,r|f
(
yi|xi,±σu|ξi,r|; θ

)

f̂ (yi|xi)
.

8Wang and Schmidt (2009) observe that the distributions of ε and ε̂ are not the same. In particular, ε̂ 
has smaller variance and the lower and upper tails of the distribution of ε will be misreported, so that ε̂ 
penalises outstanding firms and rewards the least efficient individuals—although the average efficiency in 
the sample is correctly approximated. Quoting Wang and Schmidt (2009), this does not mean that there 
is anything wrong with the estimator since it is unbiased in the unconditional sense E(ε̂ − ε) = 0.
9The codes to implement these models (written in Ox 7.10, Doornik [2011]) are available from the 
author upon requests.
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3.1  Count Data Stochastic Frontier

The CDSF was first discussed by Fé and Hofler (2013), and therefore we 
provide here a brief outline of the model. The starting point is the condi-
tional frontier lny∗ = x′β ± ε which determines the mean of y insofar 
E(y|x; ε) = � = exp(x′β ± ε) > 0. Since y is discrete-valued over the set 
of non-negative integers, Fé and Hofler (2013) follow the convention and 
assume that the stochastic frontier is distributed f (y|x, ε) = Poisson(�). 
and therefore, y has a Poisson Log-Half-Normal (PHN) distribution,

where s ∼ N(0, 1). This distribution can be approximated by simulation as 
described above, by drawing from the standard normal distribution.

3.2  Binary Choice Stochastic Frontier Model

Researchers are often interested in explaining binary outcomes indicating 
the achievement of goals or the presence of attributes. For example, econo-
mists have investigated the effectiveness of firms’ expenditure in research and 
development and whether or not this results in the award of patents. Labour 
economists often report the results of randomised interventions where the 
outcome of interest is a person’s employment status or the achievement of 
a certification. Investments in these activities are costly, and there is a case 
to try to understand the efficiency of these investments. This can be done 
by extending popular binary choice models, such as the Probit and Logit 
models, to a Stochastic Frontier setting. This has been proposed by Ghadge 
(2017), who used a mixed Bernoulli distribution, with a non-negative mix-
ing variable, to obtain an estimable Logit SFM. In this section, we propose 
an alternative approach which is simpler to implement in practice and is 
transparent about the identification conditions that the model must satisfy.

The point of departure is the latent stochastic frontier y∗ = x′β ± ε + v.  
The outcome of interest, y takes on values 0 or 1, depending on whether a 
specific outcome has occurred. In particular,

f (y|x;β, σu) =

∫
Poisson(�)f (ε)dε = Eu

[
Poisson

(
exp

(
x′β ± σu|s|

))]

(4)y =

{
1 if y∗ > 0 ≡ −x′β ∓ ε < v

0 if y∗ ≤ 0 ≡ −xβ ∓ ε ≥ v
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As in the standard binary choice literature, we assume that  
(i) E(u|x) = E(v|x) = 0, (ii) cov(u, v) = 0, (iii) var(v) = 1 and  
(iv) var(u) = σ 2

u , where ε = |u|. Assumption (i) rules out endogenous 
regressors, assumption; (ii) imposes that the error and inefficiency terms be 
uncorrelated and assumption; (iii) is a standard normalisation required for 
identification.

Unlike in the standard binary choice literature, the inclusion of inef-
ficiency introduces a problem of identification if x contains an intercept. 
Conditional of the value of ε, Eq. (4) can be written as

where inefficiency is shifting the decision threshold. Let x = (1, z)′ and 
β = (α,φ) where α denotes the coefficient of an intercept. Then,

where (α ± ε) remains unknown. Data do not contain information to sepa-
rate α and ε. In practice, then, we must introduce the normalisation α = 0 
and treat the inefficiency term as a (unconditional) random intercept. With 
this normalisation, and letting v ∼ N(0, 1), we have

where q = 2y − 1. Note that, so far, the discussion falls within the general 
framework presented at the beginning of the section, insofar we are only 
specifying the mapping between y and y∗ and the stochastic frontier, given 
by the conditional distribution of y given x and ε.

The above is a random coefficients probit model, where the unconditional 
distribution of y is

and φ(u) is a standard normal density. This integral does not have a closed-
form expression, but it can be approximated by simulation,

y =

{
1 if x′β + v > ∓ε

0 if xβ + v < ∓ε

P
(
y∗ > ∓ε

)
= P(α + z′φ + v > ∓ε) = P((α ± ε)+ z′φ + v > 0)

P(y = 1|x, ε) = �(x′b± ε) andP(y = 0|x, ε) = �(−x′b± ε)

⇒ P(y|x, ε) = Φ(q(x′β ± ε))

P(y = 1|x) =

∫
�
(
q(x′β ± ε)

)
f (ε)dε =

∫
�(q(x′β ± σu|u|))φ(u)du
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where ξi,r i = 1, . . . , n, r = 1, . . . ,R are draws from the standard  
normal distribution. The principal hypothesis of interest in this model is 
H0 : σ = 0, in which case the model collapses to a standard probit model 
without an intercept. To obtain point estimates of inefficiency, it suffices to 
apply definition (3) combined with (5).

3.3  Ordered Logit Stochastic Frontiers

The preceding model can be extended to situation where y is an ordered 
categorical variable. This extension has been considered by Griffiths et al. 
(2014) from a Bayesian perspective. The motivation behind the original 
paper by Griffiths et al. (2014) was the estimation of a production function 
for health (measured in a 5-point Likert scale). Here we present the frequen-
tist version of the model. As before, the starting point is the latent produc-
tion frontier y∗ = x′β ± ε + v where v has a standard normal distribution. 
For similar reasons to those seen in the probit model, now x cannot include 
an intercept term. The ordinal variable y is such that

The µj, j = 1, . . . , J − 1 are threshold parameters which need to be esti-
mated alongside β. As in the probit model, the inefficiency term ε shifts the 
thresholds to left or right, thus determining the degree of skewness in the 
distribution of y. Under the distributional assumptions above, it follows that

(5)LDR,n(θ) =

n∑

i=1

ln

[
1

R

R∑

r=1

�
(
q
(
x′β ± σ |ξi,r|

))
]

y =






0 if y∗ ≤ 0

1 if 0 < y∗ ≤ µ1

2 ifµ1 < y∗ ≤ µ2
...

J ifµJ−1 ≤ y∗

f (y = 0|x, ε) = �(−x′β ∓ ε)

f (y = 1|x, ε) = �(µ1 − x′β ∓ ε)−�(−x′β ∓ ε)

f (y = 2|x, ε) = �(µ2 − x′β ∓ ε)−�(µ1 − x′β ∓ ε)
...

f (y = J|x, ε) = 1−�(µJ−1 − x′β ∓ ε)
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where 0 < µ1 < µ2 < . . . < µJ−1. Integrating ε out results in the uncon-
ditional probabilities

Letting zj = I(y = j) we have

As before, this distribution can be approximated by simulation,

in which case estimation of the parameters of the model follows by maximis-
ing the simulated likelihood,

f (y = j|x) =

∫
�
(
µj − x′β ∓ σ |u|

)
φ(u)du

−

∫
�
(
µj−1 − x′β ∓ σ |u|

)
φ(u)du

f (y|x) =

J∏

j=1

f (y = j|x)zj

=

J∏

j=1

[∫
�
(
µj − x′β ∓ σ |u|

)
φ(u)du

−

∫
�
(
µj−1 − x′β ∓ σ |u|

)
φ(u)du

]zj

f̂ (y|x) =

J∏

j=1

[
1

R

R∑

r=1

�
(
µj − x′β ∓ ξi,r|u|

)

−
1

R

R∑

r=1

�
(
µj−1 − x′β ∓ ξi,r|u|

)
]zj

LDR,n(θ) =

n∑

i=1

J∑

j=1

zj ln

[
1

R

R∑

r=1

�
(
µj − x′β ∓ ξi,r|u|

)

−
1

R

R∑

r=1

�
(
µj−1 − x′β ∓ ξi,r|u|

)
]
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4  Extensions

4.1  Unobserved Heterogeneity

In a series of influential articles, Greene (2004a, 2005) notes the importance 
of separating inefficiency from unobserved heterogeneity. The latter could be 
due to variation in socio-economic, personality or cultural characteristics. 
Ignoring its presence would result in biased estimates of inefficiency and, 
more generally, the parameters of the model.

In a cross-sectional setting, the preceding models can be adapted to take 
into account unmeasured heterogeneity. Drivas et al. (2014) proposed such 
an extension for the CDSF model in Fé and Hofler (2013). Their extension 
consists in adding a second error component in the conditional mean of the 
count variable y, so that E(y|x, ε) = exp(x′β ± ε + v), where v ∼ N(0, σ 2

v ).
A similar extension for the probit stochastic frontier models can be 

obtained by defining

where w is a zero-mean, normal random variable such that f (w|ε) = f (w). 
Unlike in the CDSF model, we need to set σw = 1 for identification. The 
unconditional distribution of y is given by

which can be approximated by simulation,

where ξ, ζ are draws from a standard normal distribution. This approxima-
tion can then be used as the kernel in the simulated likelihood (5).

To study the effect of heterogeneity in the estimation of the probit sto-
chastic frontier, we run a limited Monte Carlo simulation. We produced 
500 data sets from a probit model with y∗ = x1 + x2 + v − σu|u| + w, 
where u, v and w are N(0, 1),σu = 0.5 and x1 ∼ U[−1, 1], x2 ∼ U[−1, 1] 
have a correlation coefficient of 0.5. Here w corresponds to the unobserved 
heterogeneity in the sample. We estimated correctly specified probit SFM 

P(y|x, ε,w) = �
(
q(x′β ± ε + w)

)

P(y|x) =

∫ ∞

0

∫ ∞

−∞

�(q(x′β ± ε + w))f (ε)φ(w)dεdw

P̂(y|x) =
1

R

1

R′

R∑

r=1

R′∑

r′=1

�
(
q
(
x′β ± σu|ξr| + ζr′

))
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without unobserved heterogeneity (Model 1) and with unobserved hetero-
geneity (Model 2). The number of Halton terms used to simulate the like-
lihood function were determined by setting R = R′ = 50. The sample size 
was set at 500 observations.

Table 1 collects the results. The main feature of the table is the large, 
downward bias observed in the estimates reported when using Model 1. 
This is particularly troubling for the inefficiency parameter, σu. When using 
Model 2, as expected, we obtain accurate estimates of the true parameters. 
Given the small biases associated with this model, we can explain the larger 
mean square errors by an increase in the variance resulting from both the 
additional heterogeneity parameter and the additional simulation error due 
to the second error component.

4.2  Local Likelihood Estimation

The discrete outcome stochastic frontiers discussed in the preceding section 
rely on parametric assumptions regarding the distribution of inefficiency and 
the conditional distribution of the outcome. The magnitude of the set of 
assumptions is significant and, therefore, researchers might question their 
suitability, primarily because maximum likelihood estimates based on a 
misspecified model are consistent for a pseudo-true parameter value which 
might differ from the parameter of interest for the researcher.

Smoothing techniques, such as the Local Linear Regression (REF) can 
be used to mitigate the effects of model misspecification, but in the cur-
rent context it is customary to accommodate the under-/over-production 
induced by inefficiency in the data. This can be done vial Local Maximum 
Likelihood (Tibshirani and Hastie 1987), a method that allows the param-
eters of the model (but not necessarily the type of distribution itself ) to 
vary along the domain of x, so that θ = θ(x). For example, in the normal 

Table 1 Monte Carlo simulation. Data were generated from a probit model with 
conditional mean y∗ = x1 + x2 + v− σu|u| +w, where σ = 0.5, v ∼ w ∼ N(0, 1), 
u ∼ N(0, σ 2). We estimated the Probit SFM without and with a heterogeneity error 
component (Models 1 and 2, respectively). The sample size was 500 and the number 
of terms in the Halton sequences was obtained by setting R = R′ = 50. We report the 
mean estimate, bias and mean squared error obtained from 1000 replications

Model 1 Model 2
σ = 0.5 β1 = 1 β2 = 1 σ = 0.5 β1 = 1 β2 = 1

Mean 0.389 0.740 0.704 0.552 1.019 0.965
Bias −0.111 −0.260 −0.296 0.052 0.019 −0.035
MSE 0.052 0.266 0.142 0.079 0.375 0.104
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regression case this would imply that the conditional distribution of y at the 
value x follows a N

(
µ(x), σ 2(x)

)
 distribution.

For simplicity, consider here the case where θ(x) = 
(θ1(x), θ2(x), . . . , θP(x))

′ but X ∈ R.10 Let ˜θ(x) = ( ˜θ1(x), . . . , ˜θP(x)) 
with θ̃p(x) = θ(0)

p
(x)+ θ(1)

p
(x)(xi − x)+ · · · + θ(M)

p
(x)(xi − x) and let 

� =

(
θ
(0)
1 (x), . . . , θ

(M)
P (x)

)
 be the (P × (M + 1))× 1 vector containing all 

the θ(m)p . The LML estimator for each parameter θp(x) is the value θ̂ (0)p (x) for 

p = 1, . . . ,P that solves,

where, Kh(Xi − x) = h−1k(xi − x/h), k(.) is a univariate kernel func-
tion and hj = hj(n) is a smoothing parameter such that h → 0 as n → ∞. 
Tibshirani and Hastie (1987) and Kumbhakar et al. (2007) show that θ̂0(x) 
is a consistent, asymptotic normal estimator of θ0(x) as 

√
nh → ∞.

For the general SFM model in Eq. (6), we can replace L(.) with its 
simulated version, which would result in the parameters of interest are 
θ(x) = (µ(x), σ(x))′ in the conditional distribution

The log-link in the conditional mean is present to guarantee the non- 
negativity of the mean parameter but, as we will show in the simulations, 
it turns out to be a rather innocuous assumption. The infeasible local linear 
(m = 1) conditional maximum likelihood function is

(6)max
�

n∑

i=1

logL(θ(x))Kh(Xi − x)

(7)P(y|x; θ(x)) =

∫

ε

Poisson(exp(µ(x)± σ(x)|u|)f (ε)dε

(8)P(yi|xi; θ(x)) =

n∑

i=1

[
log

∫

u

Poisson{�i(x; ui)}f (ui)dui

]
KH(Xi − x)

10The case of multivariate X is a straightforward extension and is discussed in Tibshirani and Hastie 
(1987).
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where

Local likelihood functions of higher order than one can be obtained simi-
larly. As in the parametric case, the integral in (8) can be approximated by 
simulation, yielding the simulated local likelihood function, which can then 
be implemented with standard econometric software.

For the nonparametric model, the appropriate local estimator of ineffi-
ciency is

Feasible estimators would follow by using the (local) maximum simulated 
likelihood estimates of β, σ, µ(0)(x) and σ (0)(x). Nonparametric models 
may fit the data better, but it must be noted that they may provide limited 
information as to the shape of frontier. Thus, it may be difficult to gauge 
whether the nonparametric model fits with economic expectations. As  
such there is still a role for the parametric model, and the tests for its  
adequacy presented in the previous sections are bound to be useful in this 
respect.

To assess the performance of this estimator, we run a limited Monte 
Carlo simulation. Data were drawn 1000 times from a Poisson Half-
Normal distribution with conditional mean � = exp(1+ x − σu|s|) where 
σu = 1, s ∼ N(0, 1) and x ∼ U[−1, 1]. In each replication, we estimated 
the mean and σu of the model at x = ±0.77 and x = ±0.33 using the  
local likelihood estimator with m = 0 and bandwidth h = 2 ∗ σxN

1/5. We 
considered three sample sizes, N = 100, 500, 1000. The mean estimate, 
bias and the standard deviation of the simulation are reported in Tables 2 
and 3. The LML estimator works well for both the mean and the ineffi-
ciency parameters. The average bias is small, even when N =100 and it 
tends to decrease with the sample size (as does the standard deviation). The 
parameters tend to be estimated slightly less precisely at the right tail of the 
distribution of x.

(9)
�i(x; ui) = exp

(
µ(0)(x)+ µ(1)(x)(Xi − x)′

±

(
σ (0)(x)+ σ (1)(x)(Xi − x)′

)
|ui|

)
.

(10)v̂i(Xi) =≈

∑H
h=1 e

±|sh|σ
(0)
Poisson

(
exp

(
µ(0)(Xi)+ σ (0)(Xi)|sh|

))
∑H

h=1 Poisson
(
exp

(
µ(0)(Xi)+ σ (0)(Xi)|sh|

))
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5  Conclusion

This chapter reviews recent contributions to the area of SFM for the analysis 
of discrete outcomes. More specifically, we discuss models for binary indica-
tors (probit SFM), ordered categorical data (ordered logit SFM) and discrete 
outcomes (Poisson SFM).

Table 2 Local likelihood estimation of the mean in the CDSF, based on 1000 Monte 
Carlo Replications. Bandwidth = 2σxN−1/5

x Mean True Bias S.D.

N = 100

−0.77 1.25 1.25 0.00 0.80
−0.33 1.89 1.95 −0.06 0.97
0.33 3.73 3.79 −0.06 1.33
0.77 5.81 5.92 −0.11 1.69
N = 500
−0.77 1.21 1.25 −0.04 0.59
−0.33 1.88 1.95 −0.06 0.74
0.33 3.75 3.79 −0.07 0.94
0.77 5.91 5.92 −0.02 1.12
N = 1000
−0.77 1.19 1.25 −0.05 0.52
−0.33 1.88 1.95 −0.07 0.65
0.33 3.75 3.79 −0.04 0.78
0.77 5.90 5.92 −0.01 0.91

Table 3 Local likelihood estimation of the inefficiency parameter σu in the CDSF, 
based on 1000 Monte Carlo Replications. Bandwidth, h = 2σxN

−1/5

x Mean True Bias S.D.

N = 100

−0.77 1.06 1 0.06 1.52
−0.33 0.92 1 −0.08 0.92
0.33 0.97 1 −0.03 0.63
−0.77 0.98 1 −0.02 0.51
N = 500
−0.77 0.92 1 −0.07 0.92
−0.33 0.94 1 −0.06 0.71
0.33 0.98 1 −0.02 0.45
−0.77 1.02 1 0.02 0.32
N = 1000
−0.77 0.92 1 −0.08 0.81
−0.33 0.93 1 −0.07 0.63
0.33 1.01 1 0.01 0.36
−0.77 1.03 1 0.03 0.27
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All these models are mixtures of a standard distribution with an asym-
metric distribution. This allows us to frame the discussion within a general 
framework from which most SFM can be derived. Because many of these 
models might lack a closed-form likelihood function, we suggest the use of 
maximum simulated likelihoods to estimate the parameters of each model. 
The latter method is easy to implement in a modern computer and the 
unknown likelihood can be approximated with arbitrary accuracy using low 
discrepancy sequences such as Halton sequences.

The construction and estimation of SFM for discrete data are a relatively 
new area of research. It is, however, one with great potential for applications, 
especially in areas such as health, labour and industrial economics, where 
the outcomes of interest are often discretely distributed. These models are 
also applicable to the related problem of under-reporting in survey data. In 
criminology, for example, police data are routinely used to study violent or 
anti-social behaviour. However, it is well documented that certain types of 
crimes (domestic violence in particular), are too often not reported to the 
police. The models in this survey can be applied to those situations, with the 
inefficiency term estimating the magnitude of under-reporting in the data.

This survey has not covered models for longitudinal data and, throughout 
the discussion, it has been assumed that inefficiency is exogenous to inputs and 
outputs. Random effects discrete SFM for longitudinal data are a straightfor-
ward modification of the models surveyed in this chapter. Fixed effects versions 
of these models, however, will need to address the pervasive incidental parame-
ter problem (Neyman and Scott 1948; Lancaster 2000). Relaxing the implicit 
assumption of exogenous inefficiency implies an even greater challenge, requir-
ing the identification of instrumental variables, as well as a theoretically justified 
estimation methods. Neither of these challenges seem, however, insurmounta-
ble given recent advances seen in the areas of bias correction in non-linear fixed 
effects models and the instrumental variable estimation of non-linear models. 
Addressing these challenges is, however, left for future research.

Acknowledgements  The author thanks Richard Hofler and William Greene for 
helpful comments.
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1  Introduction

Benchmarking performance is a common endeavor. In sports,  individual 
athletes as well as teams of athletes strive to win by performing better than 
their opponents and to set new records for performance. In medicine, phy-
sicians and researchers strive to find treatments that enhance or extend 
patients’ lives better than existing treatments. In education, schools attempt 
to enhance students’ prospects for success at the next level or in the work-
place. In manufacturing, firms attempt to convert inputs (e.g., land, labor, 
capital, materials, or energy) into outputs (e.g., goods or services) as “effi-
ciently” (i.e., with as little waste) as possible.
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This chapter provides an up-to-date survey of statistical tools and results 
that are available to applied researchers using nonparametric, determin-
istic estimators to evaluate producers’ performances.1 Previous surveys 
(e.g., Simar and Wilson 2008, 2013) give summaries of results that allow 
researchers to estimate and make inference about the efficiency of individual 
producers. In the review that follows, we describe new results that permit (i) 
inferences about mean efficiency (both conditional and unconditional), (ii) 
tests of convexity versus non-convexity of production sets, (iii) tests of con-
stant versus variable returns to scale, (iv) tests of the “separability condition” 
described by Simar and Wilson (2007) required for second-stage regressions 
of efficiency estimates on some explanatory variables, and (v) dimension 
reduction to circumvent the slow convergence rates of nonparametric effi-
ciency estimators. We also show how conditional efficiency estimators can 
be used when panel data are available to model and detect changes over 
time.

A rich economic theory of efficiency in production has developed from 
the pioneering work of Debreu (1951) and Koopmans (1951). Farrell 
(1957) made the first attempt to estimate a measure of efficiency from 
observed data on production, but the statistical properties of his estimator 
were developed much later. Researchers working in economics, economet-
rics, management science, operations research, mathematical statistics, and 
other fields have contributed to what has by now become a large literature 
on efficiency of production.2

Measurement of performance (i.e., efficiency) requires a benchmark. A 
commonly used benchmark is the efficient production frontier, defined in 
the relevant input-output space as the locus of the maximal attainable level 
of outputs corresponding to given levels of inputs.3 As discussed below, it 
is also possible to measure efficiency against other benchmarks provided by 

1By using “deterministic” to describe these estimators, we follow the language of the literature. The 
deterministic estimators do not admit a two-sided noise term, in contrast to the literature on efficiency 
estimation in the context of parametric, stochastic frontier models. Nonetheless, efficiency must be 
estimated since, as discussed below, it cannot be observed directly. Even if the researcher has available 
observations on all existing firms in an industry, he should consider that a clever entrepreneur might 
establish a new firm that out-performs all of the existing firms. Truth cannot be learned from data.
2On January 24, 2018, a search on Google Scholar using the keywords “efficiency,” “production,” 
“inputs,” and “outputs” returned approximately 2,590,000 results.
3Alternatively, if prices of inputs are available, one can consider a cost frontier defined by the minimal 
cost of producing various levels of outputs. Or if prices of outputs are available, one can consider a reve-
nue frontier defined by the maximal revenue obtained from using various levels of inputs. If both prices 
of inputs and outputs are available, one can consider a profit frontier. All of these possibilities relate to 
allocative efficiency.
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features that lie “close” to the efficient production frontier. In either case, 
these benchmarks are unobservable and must be estimated. As such, statis-
tical inference is needed before anything can be learned from data. In turn, 
a statistical model is needed, as without one inference is not possible as the 
theoretical results of Bahadur and Savage (1956) make clear.

In the survey that unfolds below, Sect. 2 presents economic and statistical 
assumptions that comprise a statistical model in which inference about tech-
nical efficiency is possible. Section 3 discusses nonparametric estimators of 
efficiency. Both cases mentioned above are considered, i.e., where either the 
efficiency frontier or a feature near the efficient frontier is used as a bench-
mark. Section 4 introduces “environmental” variables that are neither inputs 
nor outputs, but which may nonetheless affect production. This requires a 
new statistical model, which is introduced in Sect. 4.1 as well as new esti-
mators which are discussed in Sect. 4.2. Section 5 reviews recent develop-
ments providing central limit theorems for mean efficiency when sample 
means of nonparametric efficiency estimators are used to estimate mean effi-
ciency. Section 6 shows how one can test hypotheses about the structure of 
the efficient production frontier. Section 7 discusses strategies for increasing 
accuracy in estimation of efficiency by reducing dimensionality. Section 9 
discusses recent developments in dynamic settings, and Sect. 10 provides 
conclusions.

2  Theory of Production

2.1  Economic Model

Standard economic theory of the firm (e.g., Koopmans 1951; Debreu 1951; 
or Varian 1978) describes production in terms of a production set

where x ∈ R
p
+ denote a vector of p input quantities and let y ∈ R

q
+, denote 

a vector of q output quantities. The production set consists of the set of 
physically (or technically) attainable combinations (x, y  ). For purposes of 
comparing the performances of producers, the technology (i.e., the efficient 
boundary of �) given by

(1)� =

{
(x, y) ∈ R

p+q
+ |x can produce y

}

(2)�∂ = {(x, y) ∈ �|(θx, γ y) /∈ � for all θ ∈ (0, 1) and (x, �y) /∈ � for all � ∈ (1,∞)}
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is a relevant benchmark.4 Firms that are technically efficient operate in the 
set �∂, while those that are technically inefficient operate in the set �\�∂ .5

The following economic assumptions are standard in microeconomic the-
ory of the firm (e.g., Shephard 1970; Färe 1988).

Assumption 2.1 � is closed.

Assumption 2.2 Both inputs and outputs are freely disposable: if (x, y) ∈ �, 
then for any 

(
x′, y′

)
 such that x′ ≥ x and y′ ≤ y, 

(
x′, y′

)
∈ �.

Assumption 2.3 All production requires use of some inputs: (x, y) /∈ � if 
x = 0 and y ≥ 0, y �= 0.

Closedness of the attainable set � is a mild technical condition, avoid-
ing mathematical problems for infinite production plans. Assumption 2.2 
is sometimes called strong disposability and amounts to an assumption of 
monotonicity of the technology. This property also implies the technical 
possibility of wasting resources, i.e., the possibility of increasing input levels 
without producing more output, or the possibility of producing less output 
without reducing levels. Assumption 2.3 means that some amount of input 
is required to produce any output, i.e., there are no “free lunches.”

The Debreu–Farrell (Debreu 1951; Farrell 1957) input measure of techni-
cal efficiency for a given point (x, y) ∈ R

p+q
+  is given by

Note that this measure is defined for some points in Rp+q
+  not necessarily 

in � (i.e., points for which a solution exists in (3)). Given an output level y, 
and an input mix (a direction) given by the vector x, the corresponding effi-
cient level of input is given by

which is the projection of (x, y) onto the efficient boundary �∂, along the 
ray x orthogonal to the vector y.

(3)θ(x, y|�) = inf{θ |(θx, y) ∈ �}.

(4)x∂(y) = θ(x, y|�)x,

4In the literature, producers are often referred to as “decision-making units” reflecting the fact that 
depending on the setting, producers might be firms, government agencies, branches of firms, countries, 
individuals, or other agents or entities. From this point onward, we will use “firms,” which are shorter 
than “decision-making units,” to refer to producers without loss of generality or understanding.
5Standard microeconomic theory of the firm (e.g., Varian 1978) suggests that inefficient firms are 
driven out of competitive markets. However, the same theory makes no statement about how long this 
might take. Even in perfectly competitive markets, it is reasonable to believe that inefficient firms exist.
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In general, for (x, y) ∈ �, θ(x, y|�) gives the feasible propor-
tionate reduction of inputs that a unit located at (x, y  ) could under-
take to become technically efficient. By construction, for all 
(x, y) ∈ �, θ(x, y|�) ∈ (0, 1]; (x, y) is technically efficient if and only if 
θ(x, y|�) = 1. This measure is the reciprocal of the Shephard (1970) input 
distance function.

Similarly, in the output direction, the Debreu–Farrell output measure of 
technical efficiency is given by

for (x, y) ∈ R
p+q
+ . Analogous to the input-oriented case described above, 

�(x, y|�) gives the feasible proportionate increase in outputs for a unit oper-
ating at (x, y) ∈ � that would achieve technical efficiency. By construction, 
for all (x, y) ∈ �, �(x, y|�) ∈ [1,∞) and (x, y  ) is technically efficient if and 
only if �(x, y|�) = 1.

The output efficiency measure �(x, y|�) is the reciprocal of the Shephard 
(1970) output distance function. The efficient level of output, for the input 
level x and for the direction of the output vector determined by y, is given by

Other distance measures have been proposed in the economic literature, 
including hyperbolic distance

due to Färe et al. (1985) (see also Färe and Grosskopf 2004), where input 
and output quantities are adjusted simultaneously to reach the boundary 
along a hyperbolic path. Note γ (x, y|�) = 1 if and only if (x, y  ) belongs 
to the efficient boundary �∂. Under constant returns to scale (CRS), it is 
straightforward to show that

However, no general relationship between the hyperbolic measure and either 
the input- or the output-oriented measures hold if the technology does not 
exhibit CRS everywhere.

Chambers et al. (1998) proposed the directional measure

(5)�(x, y|�) = sup{�|(x, �y) ∈ �}

(6)y∂(x) = �(x, y|�)y.

(7)γ (x, y|�) = sup
{
γ > 0|(γ−1x, γ y) ∈ �

}

(8)γ (x, y|�) = θ(x, y|�)−1/2 = �(x, y|�)1/2.

(9)δ
(
x, y|dx, dy,�

)
= sup

{
δ|(x − δdx, y + δdy) ∈ �

}
,
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which measures the distance from a point (x, y  ) to the frontier in the given 
direction d = (−dx, dy) where dx ∈ R

p
+ and dy ∈ R

q
+. This measure is flexi-

ble in the sense that some values of the direction vector can be set to zero. A 
value δ(x, y|dx, dy,�) = 0 indicates an efficient point lying on the bound-
ary of �. Note that as a special case, the Debreu–Farrell radial distances can 
be recovered; e.g., if d = (−x, 0) then δ(x, y|dx, dy,�) = 1− θ(x, y|�)−1 
or if d = (0, y) then δ(x, y|dx, dy,�) = �(x, y|�)− 1. Another interesting 
feature is that directional distances are additive measures; hence, they permit 
negative values of x and y (e.g., in finance, an output y may be the return of 
a fund, which can be, and often is, negative).6 Many choices of the direction 
vector are possible (e.g., a common one for all firms, or a specific direction 
for each firm; see Färe et al. 2008 for discussion), although care should be 
taken to ensure that the chosen direction vector maintains invariance with 
respect to units of measurement for input and output quantities.

All of the efficiency measures introduced above characterize the effi-
cient boundary by measuring distance from a known, fixed point (x, y  ) to 
the unobserved boundary �∂. The only difference among the measures in 
(3)–(9) is in the direction in which distance is measured. Consequently, the 
remainder of this chapter will focus on the output direction, with references 
given as appropriate for details on the other directions.

2.2  Statistical Model

The economic model described above introduces a number of concepts, 
in particular the production set � and the various measures of efficiency, 
that are unobservable and must be estimated from data, i.e., from a sample 
Sn = {(Xi,Yi)}

n
i=1 of n-observed input–output pairs. Nonparametric estima-

tors of the efficiency estimators introduced in Sect. 2.1 are based either on 
the free-disposal hull (FDH), the convex hull, or the conical hull of the sam-
ple observations. These estimators are referred to below as FDH, VRS-DEA 
(where “VRS” denotes variable returns to scale and “DEA” denotes data 
envelopment analysis) and CRS-DEA estimators, and are discussed explic-
itly later in Sect. 3.

6The measure in (9) differs from the “additive” measure ζ(x, y|�) = sup
{
(ip′dx + iq′dy| 

(x − dx , y + dy) ∈ �
}
  estimated by Charnes et al. (1985), where ip, iq denote (p× 1) and (q × 1) 

vectors of ones. Charnes et al. (1985) present only an estimator and do not define the object that is 
estimated. Moreover, the additive measure is not in general invariant to units of measurement.
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Before describing the estimators, it is important to note that the theoreti-
cal results of Bahadur and Savage (1956) make clear the need for a statistical 
model. Such a model is defined here through the assumptions that follow, 
in conjunction with the assumptions discussed above. The assumptions 
given here correspond to those in Kneip et al. (2015b).7 The assumptions 
are stronger than those used by Kneip et al. (1998, 2008), Park et al. (2000, 
2010) to establish consistency, rates of convergence, and limiting distribu-
tions for FDH and DEA estimators, but are needed to establish results on 
moments of the estimators.

Assumption 2.4 (i) The sample observations Sn = {(Xi,Yi)}
n
i=1 are realiza-

tions of independent, identically distributed (iid) random variables (X, Y  ) 
with joint density f and compact support D ⊂ �; and (ii) f is continuously 
differentiable on D.

The compact set D is introduced in Assumption 2.4 for technical reasons 
and is used in proofs of consistency of DEA and FDH estimators; essen-
tially, the assumption rules out use of infinite quantities of one or more 
inputs.

Assumption 2.5 (i) D∗ := {(x, �(x, y|�)y)|(x, y) ∈ D} ⊂ D; (ii) D∗ is 
compact; and (iii) f (x, �(x, y|�)y) > 0 for all (x, y) ∈ D.

Assumption 2.5(i) ensures that the projection of any firm in D onto the 
frontier in the output direction also is contained in D, and part (ii) means 
that the set of such projections is both closed and bounded. Part (iii) of the 
assumption ensures that the density f (x, y) is positive along the frontier 
where firms in D are projected, and together with Assumption 2.4, this pre-
cludes a probability mass along the frontier. Consequently, observation of a 
firm with no inefficiency is an event with zero measure, i.e., any given firm 
almost surely operates in the interior of �.

Assumption 2.6 �(x, y|�) is three times continuously differentiable on D.
Assumption 2.6 amounts to an assumption of smoothness of the fron-

tier. Kneip et al. (2015b) require only two-times differentiability to establish 
the limiting distribution of the VRS-DEA estimator, but more smoothness 
is required to establish moments of the estimator. In the case of the FDH 
estimator, Assumption 2.6 can be replaced by the following.

7Kneip et al. (2015b) work in the input orientation. Here, assumptions are stated for the output orien-
tation where appropriate or relevant.
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Assumption 2.7 (i) �(x, y|�) is twice continuously differentiable on D; and 
(ii) all the first-order partial derivatives of �(x, y|�) with respect to x and y 
are nonzero at any point (x, y) ∈ D.

Note that the free disposability assumed in Assumption 2.2 implies that 
�(x, y|�) is monotone, increasing in x and monotone, decreasing in y. 
Assumption 2.7 additionally requires that the frontier is strictly monotone 
and does not possess constant segments (which would be the case, e.g., if 
outputs are discrete as opposed to continuous, as in the case of ships pro-
duced by shipyards). Finally, part (i) of Assumption 2.7 is weaker than 
Assumption 2.6; here, the frontier is required to be smooth, but not as 
smooth as required by Assumption 2.6.8

For the VRS-DEA estimator, the following assumption is needed.

Assumption 2.8 D is almost strictly convex; i.e., for 
any (x, y), (x̃, ỹ) ∈ D with 

(
x
�x�

, y
)
�=

(
x̃
�x̃�

, ỹ
)
, the set 

{(x∗, y∗)|(x∗, y∗) = (x, y)+ α((x̃, ỹ)− (x, y)) for some 0 < α < 1} is a 
subset of the interior of D.

Assumption 2.8 replaces the assumption of strict convexity of � used in 
Kneip et al. (2008) to establish the limiting distribution of the VRS-DEA 
estimator. Together with Assumption 2.5, Assumption 2.8 ensures that the 
frontier �∂ is convex in the region where observations are projected onto �∂ 
by �(x, y|�). Note, however, that convexity may be a dubious assumption 
in some situations, for example, see Bogetoft (1996), Bogetoft et al. (2000), 
Briec et al. (2004), and Apon et al. (2015). Convexity is not needed when 
FDH estimators are used, and in Sect. 6.1, a statistical test of the assump-
tion is discussed.

For the case of the CRS-DEA estimator, Assumption 2.8 must be 
replaced by the following condition.

Assumption 2.9 (i) For any (x, y) ∈ � and any a ∈ [0,∞),  
(ax, ay) ∈ �; (ii) the support D ⊂ � of f is such that for 
any (x, y), (x̃, ỹ) ∈ D with 

(
x
�x�

,
y
�y�

)
�=

(
x̃
�x̃�

,
ỹ
�ỹ�

)
, the set 

{(x∗, y∗)|(x∗, y∗) = (x, y)+ α((x̃, ỹ)− (x, y)) forsome 0 < α < 1} is a 
subset of the interior of D; and (iii) (x, y) /∈ D for any (x, y) ∈ R

p
+ × R

q with 
y1 = 0, where y1 denotes the first element of the vector y.

8Assumption 2.7 is slightly stronger, but much simpler than Assumptions AII–AIII in Park et al. 
(2000).
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The conditions on the structure of � (and D) given in Assumptions 2.8 
and 2.9 are incompatible. It is not possible that both assumptions hold 
simultaneously. Assumption 2.9(i) implies that the technology �∂ is char-
acterized by globally CRS. Under Assumption 2.9(i  ), � is equivalent to 
its convex cone, denoted by (V�). Otherwise, � ⊂ (V�) and (provided 
Assumptions 2.5 and 2.8 hold) �∂ is said to be characterized by VRS.

Assumptions 2.4–2.6 are similar to assumptions needed by Kneip et al. 
(2008) to establish the limiting distribution of the VRS-DEA estimator, 
except that there and as noted above, the efficiency measure is only required 
to be twice continuously differentiable. Here, the addition of Assumption 
2.8 (or Assumption 2.9 in the CRS case) and the additional smoothness of 
�(x, y|�) in Assumption 2.6 are needed to establish results beyond those 
obtained in Kneip et al. (2008).

2.3  An Alternative Probabilistic Framework

The description of the DGP in Sect. 2.2 is traditional. However, the DGP 
can also be described in terms that allow a probabilistic interpretation of the 
Debreu–Farrell efficiency scores, providing a new way of describing the non-
parametric FDH and DEA estimators. This new formulation is useful for 
introducing extensions of the FDH and DEA estimators described above, 
and for linking frontier estimation to extreme value theory as explained by 
Daouia et al. (2010). The presentation here draws on that of Daraio and 
Simar (2005), who extend the ideas of Cazals et al. (2002).

The stochastic part of the DGP introduced in Sect. 2.2 through the prob-
ability density function f (x, y) is completely described by the distribution 
function

This is not a standard distribution function since the cumulative form 
is used for the inputs x while the survival form is used for the outputs y.  
However, HXY (x, y) is well-defined and gives the probability that a unit 
operating at input, output levels (x, y) is dominated, i.e., that another unit 
produces at least as much output while using no more of any input than the 
unit operating at (x, y). The distribution function is monotone, non-decreas-
ing in x and monotone non-increasing in y. In addition, the support of the 
distribution function HXY (·, ·) is the attainable set �, i.e.,

(10)HXY (x, y) = Pr(X ≤ x,Y ≥ y).
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The joint probability HXY (x, y) can be decomposed using Bayes’ rule to 
obtain

where SY (y) = Pr(Y ≥ y) denotes the survivor function of Y, 
SY |X(y|x) = Pr(Y ≥ y|X ≤ x) denotes the conditional survivor function 
of Y, and the conditional distribution and survivor functions are assumed 
to exist whenever used (i.e., when needed, SY (y) > 0 and FX(x) > 0). The 
frontier �∂ can be defined in terms of the conditional distributions defined 
by (12) and (13) since the support of H(x, y  ) is the attainable set. This per-
mits definition of some alternative concepts of efficiency.

For the output-oriented case, assuming FX(x) > 0, define

The output efficiency score �̃(x, y|HXY ) gives the proportionate increase in 
outputs required for the same unit to have zero probability of being domi-
nated by a randomly chosen unit, holding input levels fixed. Note that in 
a multivariate framework, the radial nature of the Debreu–Farrell meas-
ures is preserved. Similar definitions are possible in the input, hyperbolic 
and directional orientations (see Simar and Wilson (2013) for details and 
references).

From the properties of the distribution function HXY (x, y), it is clear 
that the new efficiency score defined in (14) has some sensible proper-
ties. First, �̃(x, y|HXY ) is monotone, non-decreasing in x and monotone, 
non-increasing in y. Second, and most importantly, under Assumption 
2.2 it is trivial to show that �̃(x, y|HXY ) = �(x, y|�). Therefore, whenever 
Assumption 2.2 holds, the probabilistic formulation presented here pro-
vides an alternative characterization of the traditional Debreu–Farrell effi-
ciency scores.

(11)HXY (x, y) = 0 ∀ (x, y) �∈ �.

(12)
HXY (x, y) = Pr(X ≤ x|Y ≥ y)︸ ︷︷ ︸

=FX|Y (x|y)

Pr(Y ≥ y)︸ ︷︷ ︸
=SY (y)

(13)
= Pr(Y ≥ y|X ≤ x)︸ ︷︷ ︸

=SY |X (y|x)

Pr(X ≤ x)︸ ︷︷ ︸
=FX (x)

,

(14)
�̃(x, y|HXY ) = sup{�|SY |X(�y|x) > 0}

= sup{�|HXY (x, �y) > 0}.
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2.4  Partial Frontiers

As will be seen in Sect. 3, estimators of the various efficiency measures intro-
duced above are sensitive to outliers and are plagued by slow convergence 
rates that depend on (p + q  ), i.e., the number of inputs and outputs. One 
approach to avoid these problems is to measure efficiency relative to some 
benchmark other than the full frontier �∂. The notion of partial frontiers 
described below provides useful, alternative benchmarks against which pro-
ducers’ performances can be measured. The main idea is to replace the full 
frontier with a model feature that lies “close” to the full frontier. Using esti-
mates of distance to a partial frontier, one can rank firms in terms of their 
efficiency just as one can do when measuring distance to the full frontier.

The density of inputs and outputs introduced in Assumption 2.4 and 
the corresponding distribution function in (10) permit definition of other 
benchmarks (in addition to �∂) for evaluating producers’ performances. 
Two classes of partial frontiers have been proposed: (i) order-m frontiers, 
where m can be viewed as a trimming parameter, and (ii) order-α quantile 
frontiers, analogous to traditional quantile functions but adapted to the 
frontier problem. As will be seen in Sects. 3.3 and 3.4, estimation based on 
the concept of partial frontiers offers some advantages overestimation based 
on the full frontier �∂. In particular, partial frontiers are less sensitive to out-
liers in the data, avoided and root-n convergence rates are achieved by esti-
mators based on partial frontier concepts.

Suppose input levels x in the interior of the support of X are 
given, and consider m iid random variables Yi, i = 1, . . . , m 
drawn from the conditional q-variate distribution function 
FY |X(y|x) = 1− SY |X(y|x) = Pr(Y ≤ y|X ≤ x). Define the random set

Then, the random set �m(y) is the free-disposal hull of m randomly-chosen 
firms that use no more than x levels of the p inputs. For any y and the given x, 
the Debreu–Farrell output efficiency score relative to the set �m(x) is simply

after substitution of �m(x) for � in (5). Of course, the efficiency score 
�(x, y|�m(x)) is random, since the set �m(x) is random. For a given realiza-
tion of the m values Yi, a realization of �(x, y|�m(x)) is determined by

(15)�m(x) =

m⋃

i=1

{
(x̃, ỹ) ∈ R

p+q
+

∣∣∣x̃ ≤ x,Yi ≤ ỹ
}
.

(16)�(x, y|�m(x)) = sup{�|(x, �y) ∈ �m(x)}
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where superscript j indexes elements of the q-vectors y and Yi. Then for any 
y ∈ R

q
+, the (expected) order-m output efficiency measure is defined for all x 

in the interior of the support of X by

provided the expectation exists. Clearly,

The order-m output efficiency score provides a benchmark for the unit oper-
ating at (x, y  ) relative to the expected maximum output among m peers drawn 
randomly from the population of units that use no more than x levels of inputs. 
This efficiency measure in turn defines an order-m output-efficient frontier. For 
any (x, y) ∈ �, the expected maximum level of outputs of order-m for a unit 
using input level x and for an output mix determined by the vector y is given by

The expected output-efficient frontier of order m (i.e., the output order-m 
efficient frontier) is defined by

By contrast, recall that the full frontier �∂ is defined (at input level x) by (6).
Extension to the input-oriented case is straightforward (see Cazals et al. 

(2002) for details). Extension to hyperbolic and directional distances is 
somewhat more complicated due to the nature of the order-m concept in 
the multivariate framework and requires some additional work. Results are 
given by Wilson (2011) for the hyperbolic case, and by Simar and Vanhems 
(2012) for directional cases.

The central idea behind order-m estimation is to substitute a fea-
ture “close” to the frontier �∂ for the frontier itself. Introduction of the 

(17)�(x, y|�m(x)) = max
i=1,...,m

{
min

j=1,...,p

(
Y
j
i

yj

)}

(18)

�m(x, y|HXY ) = E(�m (x, y|�m(x))|X ≤ x)

=

∫ ∞

0

[
1−

(
1− SY |X(uy|x)

)m]
du

= �(x, y|�)−

∫
�(x,y|�)

0

(
1− SY |X(uy|x)

)m;
du

(19)lim
m→∞

�m(x, y|HXY (x, y)) = �(x, y|�).

(20)y∂m(x) = �(x, y|�m(x))y.

(21)�∂out
m = {(x̃, ỹ)|x̃ = x, ỹ = y�m(x, y), (x, y) ∈ �}.
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distribution function HXY (x, y) invites a similar, alternative approach based 
on quantiles. As noted above, the quantity m in order-m frontier estimation 
serves as a trimming parameter which determines the percentage of points 
that will lie above the order-m frontier. The idea underlying order-α quantile 
frontiers is to reverse this causation and choose the proportion of the data 
lying above the partial frontier directly.

Quantile estimation in regression contexts is an old idea. In the frame-
work of production frontiers, using the probabilistic formulation of the 
DGP developed in Sect. 2.3, it is straightforward to adapt the order-m ideas 
to order-α quantile estimation. These ideas are developed for the univari-
ate case in the input and output orientations by Aragon et al. (2005) and 
extended to the multivariate setting by Daouia and Simar (2007). Wheelock 
and Wilson (2008) extended the ideas to the hyperbolic orientation, and 
Simar and Vanhems (2012) extended the ideas to directional measures.

Consider again the output-oriented case. For all x such that FX(x) > 0 
and for α ∈ (0, 1], the output α-quantile efficiency score for the unit operat-
ing at (x, y) ∈ � is defined by

To illustrate this measure, suppose that �α(x, y) = 1. Then, the unit operat-
ing at (x, y) ∈ � is said to be output-efficient at the level (α × 100)-percent, 
meaning that the unit is dominated with probability (1− α) by firms using 
no more than x level of inputs. More generally, if �α(x, y)(<,>)1, the firm at 
(x, y  ) can (decrease, increase) its output to �α(x, y)y to become output-effi-
cient at level (α × 100)-percent, i.e., to be dominated by firms using weakly 
less input (than the level x  ) with probability (1− α).

The concept of order-α output efficiency allows definition of the corre-
sponding efficient frontier at the level (α × 100)-percent. For a given (x, y), 
the order-α output efficiency level of outputs is given by

By construction, a unit operating at the point (x, y∂α(x)) ∈ � has a prob-
ability HXY

(
x, y∂α(x)

)
= (1− α)FX(x) ≤ 1− α of being dominated. 

Analogous to �∂out
m , y∂α(x) can be evaluated for all possible x to trace out an 

order-α output frontier, denoted by �∂out
α .

It is straightforward to show that �α(x, y|HXY ) converges monotonically 
to the Debreu–Farrell output efficiency measure, i.e.,

(22)�α(x, y|HXY ) = sup
{
�|SY |X(�y|x) > 1− α

}
.

(23)y∂α(x) = �α(x, y|HXY )y.

(24)
lim
α↑1

�α(x, y|HXY ) = �(x, y|�)
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where “↑” denotes monotonic convergence from below. Moreover, 
for all (x, y) ∈ �, (x, y)  ∈ �∂, there exists an α ∈ (0, 1] such that 
�α(x, y|HXY ) = 1, where α = 1− SY |X(y|x).

From the preceding discussion, it is clear that both the output order-m 
and output order-α partial frontiers must lie weakly below the full fron-
tier. Consequently, both �m(x, y|HXY (x, y)) and �α(x, y|HXY (x, y)) 
must be weakly less than �(x, y|�). Conceivably, �m(x, y|HXY (x, y)) or 
�α(x, y|HXY (x, y)) could be less than one, indicating that (x, y  ) lies above 
the corresponding partial frontier. This is natural since by construction, the 
partial frontiers (provided α < 1 or m is finite) lie in the interior of �. As 
noted above, partial frontiers provide alternative benchmarks against which 
efficiency can be measured, with the advantage that the partial frontiers can 
be estimated with root-n convergence rate and with less sensitivity to outli-
ers than estimates based on full frontiers.

Similar ideas have been developed for other directions. For the input 
orientation, see Daouia and Simar (2007). Wheelock and Wilson (2008) 
extend the ideas of Daouia and Simar (2007) to the hyperbolic direction, 
while Simar and Vanhems (2012) extend these ideas to the directional case.

It is important to note that all of the concepts discussed so far describe 
unobservable features of the statistical model. Consequently, efficiency 
must be estimated, and then inference must be made before anything can 
be learned about efficiency. The preceding discussion makes clear that more 
than one benchmark is available by which efficiency can be measured, e.g., 
the full frontier �∂, or the order-m or order-α partial frontiers. In any case, 
these are not observed and must be estimated. The next section discusses 
various nonparametric estimators of efficiency.

3  Nonparametric Estimation of Efficiency

3.1  Free-Disposal Hull Estimators

The FDH estimator

of � proposed by Deprins et al. (1984) relies on free disposability assumed 
in Assumption 2.2 and does not require convexity of �. The FDH estima-
tor defined in (25) is simply the free-disposal hull of the observed sample 

(25)�̂FDH =
⋃

(Xi,Yi)∈Sn

{
(x, y) ∈ R

p+q
+

∣∣∣x ≥ Xi, y ≤ Yi

}
,
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Sn and amounts to the union of n southeast-orthants with vertices (Xi,Yi) 
where n is the number of input–output pairs in Sn.

A nonparametric estimator of output efficiency for a given point 
(x, y) ∈ R

p+q
+  is obtained by replacing the true production set � in (5) with 

the estimator �̂FDH, yielding

This can be computed quickly and easily by first identifying the set

of indices of observations (Xi,Yi) that dominate (x, y) and then computing

Determining the set D(x, y) requires only some partial sorting and some 
simple logical comparisons. Consequently, the estimator �̂FDH(x, y|Sn) can 
be computed quickly and easily. Efficient output levels for given input lev-
els x and a given output mix (direction) described by the vector y are esti-
mated by

By construction, �̂FDH ⊆ �, and so �̂FDH is a downward, inward-biased 
estimator of �, and ŷ∂(x) is a downward-biased estimator of y∂(x) defined 
in (6). Consequently, the level of technical efficiency is under-stated by 
�̂FDH(x, y|Sn).

The plug-in principle used above can be used to define an FDH estimator 
of the input-oriented efficiency measure in (3). Wilson (2011) extends this 
to the hyperbolic case, and Simar and Vanhems (2012) extend the idea to 
the directional case.

Results from Park et al. (2000) and Daouia et al. (2017) for the input-ori-
ented case extend to the output-oriented case described here. In particular,

where µxy is a constant that depends on the DGP (see Park et al. (2000) for 
details). Wilson (2011) and Simar and Vanhems (2012) establish similar 

(26)�̂FDH(x, y|Sn) = sup
{
�|(x, �y) ∈ �̂FDH

}
.

(27)D(x, y) = {i|(Xi,Yi) ∈n, Xi ≤ x, Yi ≥ y}

(28)�̂FDH(x, y|Sn) = max
i∈D(x,y)

min
j=1,...,q

(
Y
j
i

yj

)
.

(29)ŷ∂(x) = �̂FDH(x, y|Sn)y.

(30)n1/(p+q)
(
�̂FDH(x, y|Sn)− �(x, y|�)

)
L

−→Weibull(µxy, p+ q)
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results for the hyperbolic and directional cases. Regardless of the direction, the 
various FDH efficiency estimators converge at rate n1/(p+q). For (p+ q) > 2, 
the FDH estimators converge slower than the parametric root-n rate.

3.2  Data Envelopment Analysis Estimators

Although DEA estimators were first used by Farrell (1957) to measure tech-
nical efficiency for a set of observed firms, the idea did not gain widespread 
notice until Charnes et al. (1978) appeared. Charnes et al. used the convex 
cone (rather than the convex hull) of �̂FDH to estimate Ψ, which would be 
appropriate only if returns to scale are everywhere constant. Later, Banker 
et al. (1984) used the convex hull of �̂FDH to estimate �, thus allowing var-
iable returns to scale.9 Here, “DEA” refers to both of these approaches, as 
well as other approaches that involve definition of a convex set enveloping 
the FDH estimator �̂FDH to estimate �.

The most general DEA estimator of the attainable set � is simply the con-
vex hull of �̂FDH, i.e.,

where X = [X1 . . . ,Xn] and Y = [Y1 . . . , Yn] are (p× n) and (q × n) matri-
ces, respectively, whose columns are the input–output combinations in 
Sn, ω is an (n× 1) vector of weights, and in is an (n× 1) vector of ones. 
Alternatively, the conical hull of the FDH estimator, �̂CRS, used by Charnes 
et al. (1978), is obtained by dropping the constraint inω = 1 in (31), i.e.,

As with the FDH estimators, DEA estimators of the efficiency scores 
θ(x, y|�), �(x, y|�) γ (x, y|�), and δ(x, y|u, v,�) defined in (3), (5), (7), 
and (9) can be obtained using the plug-in method by replacing the true, but 
unknown, production set � with one of the estimators �̂VRS or �̂CRS. In 
the output orientation, replacing � with �̂VRS in (5) yields

(31)�̂VRS =
{
(x, y) ∈ R

p+q
∣∣y ≤ ω, x ≥ ω, in′ω = 1, ω ∈ R

n
+

}

(32)�̂CRS =
{
(x, y) ∈ R

p+q
∣∣y ≤ Yω, x ≥ Xω,ω ∈ R

n
+

}
.

(33)�̂VRS(x, y|Sn) = sup
{
�|(x, �y) ∈ �̂VRS

}
,

9Confusingly, both Charnes et al. (1978) and Banker et al. (1984) refer to their estimators as “models” 
instead of “estimators.” The approach of both is a-statistical, but the careful reader will remember that 
truth cannot be learned from data.
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which can be computed by solving the linear program

The CRS estimator �̂CRS(x, y|Sn) is obtained by dropping the constraint 
i′nω = 1 on the right-hand side (RHS) of (34). Technically efficient levels of 
outputs can be estimated by plugging either the VRS or CRS version of the 
DEA efficiency estimator into (6). For example, under VRS, in the output 
orientation the technically efficient level of inputs for a given level of inputs 
x is estimated by �̂VRS(x, y|Sn)y.

These ideas extend naturally to the input orientation as well as to the 
directional case. In both cases, the resulting estimators based on either 
�̂VRS or �̂CRS can be written as linear programs. In the hyperbolic case, 
γ̂CRS(x, y|Sn) can be computed as the square root of �̂CRS(x, y|Sn) due to 
(8) in situations where Assumption 2.9(i) is maintained. Otherwise, Wilson 
(2011) provides a numerical method for computing the hyperbolic estima-
tor γ̂VRS(x, y|Sn) based on �̂VRS.

Both the FDH and DEA estimators are biased by construction since 
�̂FDH ⊆ �̂VRS ⊆ �. Moreover, �̂VRS ⊆ �̂CRS. Under Assumption 2.9(i), 
�̂CRS ⊆ �; otherwise, �̂CRS will not be a statistically consistent estimator of 
�. Of course, if � is not convex, then �̂VRS will also be inconsistent. These 
relations further imply that �̂FDH(x, y|Sn) ≤ �̂VRS(x, y|Sn) ≤ �(x, y|�) 
and �̂VRS(x, y|Sn) ≤ �̂CRS(x, y|Sn). Similar relations hold for estimators of 
the input, hyperbolic and directional efficiency measures.

Kneip et al. (1998) derive the rate of convergence of the input-oriented 
DEA estimator, while Kneip et al. (2008) derive its limiting distribution. 
These results extend to the output orientation after straightforward (though 
perhaps tedious) changes in notation to establish that for (x, y) ∈ �, and 
conditions satisfied by the assumptions listed in Sect. 2,

as n → ∞ where Qxy,VRS(·) is a regular, non-degenerate distribution with 
parameters depending on the characteristics of the DGP and on (x, y  ). 
Wilson (2011) establishes similar results for the hyperbolic orientation, and 
Simar et al. (2012) extend these results to the directional case. The conver-
gence rate remains the same in both cases. Under similar assumptions but 
with the addition of CRS in Assumption 2.9, Park et al. (2010) establish

(34)�̂VRS(x, y|Sn) =
{
�|�y ≤ Yω, x ≥ Xω, i′nω = 1,ω ∈ R

n
+

}
.

(35)n2/(p+q+1)
(
�̂VRS(x, y|Sn)− (x, y|�)

)
L

−→Qxy,VRS(·)

(36)
n2/(p+q)

(
�̂CRS(x, y|Sn)− �(x, y|�)

)
L

−→Qxy,CRS(·)
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for (x, y) ∈ � as n → ∞, where Qxy,CRS(·) is another regular, non-degen-
erate distribution with parameters depending on the characteristics of the 
DGP and on (x, y) but different from Qxy,1(·). Interestingly, results from 
Kneip et al. (2016) for the input-oriented case can be extended to the out-
put orientation (again, after straightforward but tedious changes in nota-
tion) to establish that under Assumption 2.9 and appropriate regularity 
conditions (see Kneip et al. 2016 for details),

Thus, under CRS, the VRS-DEA estimator attains the faster rate of the 
CRS-DEA estimator. The FDH estimator, however, keeps the same conver-
gence rate n1/(p+q) regardless of returns to scale or whether � is convex.

Kneip et al. (2015b) provide results on the moments of both FDH and 
DEA estimators as discussed in Sect. 5. Limiting distributions of the FDH 
efficiency estimators have a Weibull form, but with parameters that are dif-
ficult to estimate. The limiting distributions of the DEA estimators do not 
have a closed form. Hence, in either case, inference on individual efficiency 
scores requires bootstrap techniques. In the DEA case, Kneip et al. (2008) 
provide theoretical results for both a smoothed bootstrap and for subsam-
pling, while Kneip et al. (2011) and Simar and Wilson (2011b) provide 
details and methods for practical implementation. Subsampling can also be 
used for inference in the FDH case (see Jeong and Simar (2006) and Simar 
and Wilson (2011b).

3.3  Order-m Estimators

In Sects. 3.1 and 3.2, the plug-in approach was used to define estimators 
of the output efficiency measure defined in (5) based on the full frontier. 
A similar approach is used here to define an estimator of �m(x, y|HXY )  
defined in (18). The empirical analog of the distribution function HXY (x, y) 
defined in (11) is

where I(·) is the indicator function (i.e., I(A) = 1 if A; otherwise, I(A) = 0).  
Note that at any point (x, y) ∈ R

p+q, ĤXY ,n(x, y) gives the proportion of 
sample observations in Sn with values Xi ≤ x and Yi ≥ y; in other words, 

(37)�̂VRS(x, y|Sn)− �(x, y|�) = OP

(
n−2/(p+q)

)
.

(38)ĤXY ,n(x, y) =
1

n

n∑

i=1

I(Xi ≤ x,Yi ≥ y),
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ĤXY ,n(x, y) gives the proportion of points in the sample Sn that (weakly) 
dominate (x, y). In addition,

is the empirical analog of the conditional survivor function SY |X(y|x) 
defined in (13).

Substitution of (39) into the second line of (18) yields a nonparametric 
estimator of �m(x, y|HXY ), namely

The integral in (40) is univariate and can be evaluated using numerical inte-
gration methods such as Gaussian quadrature. Alternatively, the estimator 
can be computed using Monte Carlo methods as described by Cazals et al. 
(2002). For a firm operating at (x, y) ∈ P, an estimate of its expected maxi-
mum output level of order-m is given by

analogous to (20).
Cazals et al. (2002) show that for finite m, �m

(
x, y|ĤXY ,n

)
 is asymptoti-

cally normal with root-n convergence rate, i.e.,

as n → ∞. An expression for the variance term σ 2
m is given by Cazals et al. 

(2002). Although the convergence rate does not depend on the dimension-
ality (i.e., on p + q ), the variance increases with p + q when the sample size n 
is held fixed. It is not hard to find examples where most if not all the obser-
vations in a sample lie above the order-m frontier unless m is very large.

Cazals et al. (2002) discuss the input-oriented analog of the estima-
tor in (40). Wilson (2011) extends these ideas to the hyperbolic case, and 
Simar and Vanhems (2012) extend the ideas to directional distances. In 
each case, the estimators achieve strong consistency with root-n rate of 
convergence and asymptotic normality when m is finite. In addition, as 

(39)Ŝ y|x,n(y|x) =
ĤXY ,n(x, y)

ĤXY ,n(x, 0)

(40)�m,n

(
x, y|ĤXY ,n

)
=

∞∫

0

[
1−

(
1− ŜY ,n(uy|x)

)m]
du.

(41)ŷ∂m(x) = �

(
x, y|ĤXY ,n

)
y,

(42)
√
n
(
�m(x, y|ĤXY ,n)− �m(x, y)

)
L

−→N
(
0, σ 2

m(x, y)
)
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m → ∞, �m(x, y) → �(x, y|�) and �m,n
(
x, y|ĤXY ,n

)
→ �̂FDH(x, yn). If 

m = m(n) → ∞ at rate nlognFX(x) as n → ∞,

As m = m(n) → ∞, the estimator �m,n
(
x, y|ĤXY ,n

)
 shares the same prop-

erties as the FDH estimator. But, in finite samples, it will be more robust to 
outliers and extreme values since it will not envelop all the observations in 
the sample.

3.4  Order-α Estimators

Here also, the plug-in principle can be used to obtain nonparametric 
order-α efficiency estimators. A nonparametric estimator of the output 
α-quantile efficiency score defined in (22) is obtained by replacing the con-
ditional survival function in (22) with its empirical analog introduced in 
Sect. 3.3, yielding

The order-α efficiency estimator in (44) is easy to compute using the 
algorithm given by Daouia and Simar (2007). Define

i = 1, . . . , n, and let nx = nF̂X(x) > 0 where F̂X(x) is the p-variate 
empirical distribution function of the input quantities, i.e., the empiri-
cal analog of FX(x  ) defined by (13). For j = 1, . . . , nx, let Yx

(j) denote 
the jth order statistic of the observations Yi such that Xi ≤ x, so that 
Yx
(1) ≤ Yx

(2) ≤ . . . ≤ Yx
(nx)

. Then,

where ⌊αnx⌋ denotes the integer part of αnx and N++ is the set of strictly 
positive integers.

(43)
n

1
p+q

[
�m,n

(
x, y|ĤXY ,n

)
− �(x, y|�)

]
L

−→Weibull(µx,y, p+ q) as n → ∞.

(44)�α

(
x, y|ĤXY ,n

)
= sup

{
�|Ŝ Y |X,n(�y|x)(�y|x) > 1− α

}
.

(45)Yi = min
k=1, ..., q

Yk
i

yk
,

(46)�̂α,n =

(
Yx
(αnx)

if αnx ∈ N++;

Yx
(⌊αnx⌋+1) otherwise,
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The input-oriented estimator is obtained similarly (see Daouia and 
Simar (2007) for details). The ideas are extended to the hyperbolic case by 
Wheelock and Wilson (2008), who also present a numerical procedure for 
computing the estimator that is faster than the method based on sorting by 
a factor of about 70. The directional case is treated by Simar and Vanhems 
(2012).

Regardless of the direction that is chosen, provided α < 1, the order-α 
estimators converge completely; e.g., in the output orientation,

where 
⌋

−→ denotes complete convergence. Complete convergence, intro-
duced by Hsu and Robbins (1947), implies and is a stronger form of con-
vergence than almost-sure convergence. A sequence of random variables 
{ζn}

∞
n=1 converges completely to a random variable ζ, denoted by ζn

⌋
−→ ζ,  

if limn→∞

∑n
j=1 Pr

(
|ζj − ζ | ≥ ε

)
< ∞ ∀ ε > 0. The complete conver-

gence in (47) implies

for all ε > 0. In addition, for α < 1 , the order-α estimator is asymptotically 
normally distributed, with root-n convergence rate:

An expression is for the variance term σ 2
α (x, y) is given by Daouia and Simar 

(2007). Note, however, that similar to the order-m estimator, as α → 1 
the order-α estimator �α,n

(
x, y|ĤXY ,n

)
 shares the properties of the FDH 

estimator.

3.5  Making Inference About Efficiency of a Firm

The root-n rate of convergence of the order-m and order-α estimators is 
unusual among nonparametric estimators. Asymptotic normality of the par-
tial efficiency estimators facilitates inference and allows estimation of con-
fidence intervals using an asymptotic normal approximation. In the case of 
the order-m estimator, Cazals et al. (2002) describe a simple plug-in method 
for estimating the variance parameter σ 2

m(x, y) that appears in (42). A similar 

(47)�α,n

(
x, y|HXY ,n

) ⌋
−→ �α(x, y),

(48)lim
n→∞

n∑

j=1

Pr
(∣∣�α,j

(
x, y|ĤXY ,n

)
− �α(x, y)| ≥ ε

)
< ∞

(49)
√
n
(
�α,n

(
x, y|ĤXY ,n

)
− �α(x, y)

)
L

−→N
(
0, σ 2

α (x, y)
)
, as n → ∞.
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approach can be used to estimate the variance term σ 2
α (x, y) that appears 

in (49). In either case, due to the asymptotic normality of the order-m and 
order-α estimators, the variance terms can also be estimated using a stand-
ard, naive bootstrap where observations are resampled uniformly, with 
replacement to create bootstrap samples of size n.

When either FDH or DEA estimators are used, making inference is 
more problematic. Although the limiting distributions of the FDH and 
DEA estimators have been derived, they are complicated. The limiting dis-
tribution of the FDH estimator is a Weibull, but its parameter depends on 
unknown model features (e.g., curvature of the true, unobserved frontier) 
that are difficult to estimate. In the DEA case, the limiting distributions do 
not have closed-form expressions. The only practical approach is to make 
inference using bootstrap methods. However, it is well known (e.g., see 
Bickel and Freedman 1981) that an ordinary, naive bootstrap does not pro-
vide valid inference when estimating a support boundary (or distance to 
the support boundary). Simar and Wilson (2011a) provide a pedagogical 
explanation of the problem. Unfortunately, this fact is not recognized in 
some of the frontier literature as indicated by the discussion in Simar and 
Wilson (1999a, b).

Simar and Wilson (1998) propose a smooth bootstrap to replace the 
inconsistent naive bootstrap when FDH or DEA estimators are used. Simar 
and Wilson implement the smoothed bootstrap in a simple model under the 
assumption that the distribution of the inefficiencies along the chosen direc-
tion (input rays or output rays) is homogeneous in the input–output space. 
Hence, the smoothing operates only on the estimation of the univariate den-
sity of the efficiencies, making the problem much easier to handle. Simar 
and Wilson (2000) extend this idea to a more general heterogeneous case 
where the distribution of efficiency is allowed to vary over Ψ. This requires 
more complication than the original procedure and involves the estimation 
of a smoothed density of (X, Y  ) with unknown support in a (p + q  ) -dimen-
sional space. No theoretical justification was given for either approach, but 
results from intensive Monte Carlo experiments described in both papers 
suggest that these bootstrap procedures give reasonable approximations for 
correcting the bias of the efficiency estimates and for building individual 
confidence intervals for the efficiency of any fixed point (x, y  ).

Kneip et al. (2008) describe two bootstrap techniques and prove that 
both provide consistent, valid inference. The first is a double-smooth boot-
strap where in addition to smoothing the empirical distribution of the data, 
the support of Ψ is estimated by a smoothed version of the VRS-DEA esti-
mator. The second is a subsampling bootstrap.
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The double-smooth bootstrap developed by Kneip et al. (2008) involves 
numerical difficulties making it difficult to implement and computationally 
demanding. Kneip et al. (2011) provide a simplified, consistent, and com-
putationally efficient version of the double-smooth bootstrap. The idea is 
rather simple. It is well known that the naive bootstrap does not work, but 
it does not work only because of points in a neighborhood of the boundary. 
The idea behind the simplified Kneip et al. (2011) method is to draw naively 
among observations which are “far” from the frontier and draw the remain-
ing points from a uniform distribution with support “near” the frontier. This 
neighborhood of the frontier is tuned by a smoothing parameter that can be 
selected by a simple “rule of thumb.” For obtaining consistency, the VRS-
DEA frontier estimate must be smoothed, and here, a second bandwidth 
parameter is selected by cross-validation methods.

The subsampling approach is much easier to implement, since a boot-
strap sample S∗

ñ, where ñ = nγ for some γ ∈ (0, 1), is obtained by drawing 
(either with or without replacement) ñ pairs (Xi, Y  i) from the original sam-
ple Sn. Kneip et al. (2008) prove consistency of this subsampling bootstrap, 
but do not provide suggestions for how a value for ñ might be selected in 
practice. Their simulation results indicate that performance of the subsam-
pling bootstrap in terms of achieved coverages of estimated confidence inter-
vals is quite sensitive to the choice of ñ. Jeong and Simar (2006) prove that 
subsampling provides a consistent approximation of the sampling distribu-
tion of the FDH efficiency estimator, but here again, no practical advice is 
offered on how to select an appropriate subsample size.

Using results from Politis et al. (2001) and Bickel and Sakov (2008), 
Simar and Wilson (2011a) provide a data-driven algorithm for selecting 
an appropriate value of the subsample size ñ, for both the FDH and DEA 
cases. The idea is to compute the object of interest (e.g., bounds of a con-
fidence interval, or bias estimate) for various values of ñ on some selected 
grid. Then, the value of ñ where the results show the smallest volatility is 
selected. This volatility can be computed for each value of ñ in the grid by 
computing, for example, the standard deviation between the 3 or 5 values 
found for the adjacent values of ñ. Simar and Wilson (2011a) investigate 
the performance of their method (in terms of achieved coverages of indi-
vidual confidence intervals for efficiency scores) by intensive Monte Carlo 
experiments, for both FDH and DEA estimators. The results indicate that 
the method works well for moderate sample sizes similar to those faced in 
practice, providing reasonable approximations of the sampling distribution 
of the estimators. The method has been implemented in the FEAR software 
package described by Wilson (2008).
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4  Environmental Factors

4.1  A Statistical Model with Environmental Variables

The statistical model presented in Sect. 2 includes only input quantities and 
output quantities represented by random variables X ∈ R

p
+ and Y ∈ R

q
+, 

respectively. But in some situations, the production process may be affected 
by influences beyond inputs and outputs. For example, firms may face dif-
ferent regulatory environments. In the US hospital industry, hospital type, 
or ownership (i.e., for-profit, nonprofit, state and local government, or fed-
eral government) may influence incentives, objectives, or other features that 
might affect production. Similarly, in banking and insurance, private, pub-
lic, or mutual ownership might influence production. In agricultural studies, 
rainfall might be regarded as something other than an input, exogenous to 
farmers’ choices. Below, we refer to such factors—that are neither inputs nor 
outputs—as environmental factors, and formalize a statistical model of the 
production process along the lines of the probability framework of Cazals 
et al. (2002) and Daraio et al. (2018).

Let Z ∈ R
r denote a vector of variables describing environmental factors 

faced by producers, with random variables (X, Y, Z  ) defined on an appropri-
ate probability space. Let fXYZ(x, y, z) denote the joint density of (X, Y, Z  ) 
which has support P ⊂ R

p
+ × R

q
+ × R

r. This joint density can always be 
decomposed as

Let

be the set of feasible combinations of inputs and outputs for a firm facing 
environmental conditions Z = z. Then, �z is the conditional support of 
fXY |Z(x, y|z), i.e., the support of (x, y) given Z = z . Let Z denote the sup-
port of fZ(z).

There are several ways in which the environmental variables in Z might 
affect the production process. First, the environmental variables might affect 
only the inefficiency process through the density fXY |Z(x, y|z), thereby affect-
ing the probability for a firm to be within some neighborhood of the frontier. 
Second, the environmental variables might operate only through �z, thereby 
determining the support of (X, Y  ) but not the level of inefficiency. In other 
words, the environmental variables might affect production possibilities, but 

(50)fXYZ(x, y, z) = fXY |Z(x, y|z)fZ(z).

(51)�z = {(X,Y)|X can produceY when Z = z}
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not the level of inefficiency. A third possibility is that the variables in Z affect 
both the level of inefficiency as well as the support of (X, Y  ).

Let

By construction, �z ⊆ �+ ⊂ R
p+q
+ for all z ∈ R. Then, one and only one of 

the following conditions must be satisfied.

Assumption 4.1 (Separability Condition  ): �z = �+ for all z ∈ Z.

Assumption 4.2 (Non-Separability Assumption  ): �z  = �+ for some z ∈ Z.

Assumptions 4.1 and 4.2 are mutually exclusive and collectively exhaus-
tive. Assumption 4.1 is referred to as the “separability” condition by Simar 
and Wilson (2007).

Under Assumption 4.1, it is clear that the joint support P of (X, Y, Z  ) 
can be factorized as

and Ψ+ is equivalent to Ψ defined by (1).10 However, �+ = � if and only 
if Assumption 4.1 holds. Alternatively, under Assumption 4.2, Ψ is not 
well defined since in this case whether X can produce Y depends necessar-
ily depends upon Z. Under Assumption 4.2, �+ remains well defined but 
contains pairs (X, Y  ) that are not feasible. Moreover, under Assumption 4.2, 
�+ does not describe any useful feature of the model and has no useful eco-
nomic interpretation.

Under Assumption 4.1, one can perform a two-stage analysis where 
the environmental variables in Z are ignored in the first stage and effi-
ciency is estimated by one of the unconditional estimators �̂FDH(x, y|Sn),  
�̂VRS(x, y|Sn), or �̂CRS(x, y|Sn). Then, the set of resulting efficiency esti-
mates can be regressed in a second stage on the environmental variables 
Z using a truncated regression model as explained by Simar and Wilson 
(2007). Note, however, that conventional inference (e.g., using estimates of 

(52)�+ =
⋃

z∈Z

�z.

(53)P = �+ ×Z ,

10Assumption 4.1 is referred to as the “separability condition” by Simar and Wilson (2007) because of 
(53), i.e., since the support of (X, Y, Z  ) can be written as the Cartesian product of the production set 
�+ = � and the support of Z when Assumption 4.1 holds.
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variance obtained by inverting the negative Hessian of the log-likelihood for 
the truncated regression) is invalid in the second-stage regression. Simar and 
Wilson (2007) propose a bootstrap method for making inference in the sec-
ond stage (see Simar and Wilson (2011b) and Kneip et al. (2015b) for addi-
tional discussion regarding inference-making in the second-stage regression).

Alternatively, if efficiency is estimated in a first stage using one of the 
unconditional efficiency estimators and then the resulting efficiency estimates 
are regressed on elements of Z, then neither the first-stage estimates nor the 
second-stage estimates estimate any useful or meaningful model feature if 
Assumption 4.2 holds instead of Assumption 4.1. Since Assumption 4.1 
is a rather restrictive assumption, care should be taken. Simar and Wilson 
(2007) note that Assumption 4.1 should be tested against the alternative 
hypothesis given by Assumption 4.2, but such a test has only recently been 
provided by Daraio et al. (2018). The test is discussed in Sect. 6.4.

Since Ψ is not well defined under Assumption 4.2, the efficiency meas-
ures defined in (3), (5), (7), and (9) are also not well defined. Whenever 
Assumption 4.2 holds, notions of conditional efficiency are needed. In the 
output orientation, the conditional measure

introduced by Cazals et al. (2002) and Daraio and Simar (2005) gives 
a measure of distance to the appropriate, relevant boundary (i.e., the 
boundary of �z that is attainable by firms operating under conditions 
described by z  ).

As in Sect. 2.3, the conditional efficiency measure in (54) can be 
described in probabilistic terms. The conditional density fXY |Z(x, y|z) in 
(50) implies a corresponding distribution function

giving the probability of finding a firm dominating the production unit 
operating at the level (x, y  ) and facing environmental conditions z. Then, 
analogous to the reasoning in Sect. 2.3, the conditional efficiency score can 
be written as

Let h denote a vector of bandwidths of length r corresponding to ele-
ments of Z and z. In order to define a statistical model that incorporates 

(54)�(x, y|z) = sup
{
� > 0|(x, �y) ∈ �z

}

(55)HXY |Z(x, y|z) = Pr(X ≤ x, Y ≥ y|Z = z),

(56)�(x, y|z) = sup
{
� > 0|HXY |Z(x, �y|z) > 0

}
.
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environmental variables, consider an h-neighborhood of z ∈ Z such that 
|Z − z| ≤ h and define the conditional attainable set given by

where

gives the probability of finding a firm dominating the production unit 
operating at the level (x, y  ) and facing environmental conditions Z in an 
h-neighborhood of z. The corresponding conditional density of (X, Y  ) given 
|Z − z| ≤ h, denoted by f hXY |Z(·, ·|z), is implicitly defined by

Clearly, �z,h =
⋃

|z̃−z|≤h�
z̃. Following Jeong et al. (2010), define for a 

given h

The idea behind estimating efficiency conditionally on Z = z is to let 
the bandwidth h tend to 0 as n → ∞. The idea is motivated by smooth-
ing methods similar to those used in nonparametric regression problems, 
but adapted to frontier estimation. Some additional, new assumptions are 
needed to complete the statistical model.

The next three assumptions are conditional analogs of Assumptions 2.1–
2.3 appearing in Sect. 2.1.

Assumption 4.3 For all z ∈ Z, �z and �z,h are closed.

Assumption 4.4 For all z ∈ Z, both inputs and outputs are strongly dis-
posable; i.e., for any z ∈ Z, x̃ ≥ x and 0 ≤ ỹ ≤ y, if (x, y) ∈ �z then 

(57)

�z,h = {(X,Y)|X can produceY , when|Z − z| ≤ h}

=

{
(x, y) ∈ R

p+q
+

∣∣∣Hh
XY |Z(x, y|z) > 0

}

=

{
(x, y) ∈ R

p+q
+

∣∣∣f hXY |Z( ·, ·|z) > 0
}

(58)Hh
XY |Z(x, y|z) = Pr(X ≤ x,Y ≥ y|z − h ≤ Z ≤ z + h)

(59)Hh
XY |Z(x, y|z) =

x∫

−∞

∞∫

y

f hXY |Z(u, v|Z ∈ [z − h, z + h])dvdu.

(60)
�
h(x, y|z) = sup

{
� > 0|(x, �y) ∈ Ψ z,h

}

= sup
{
� > 0|Hh

XY |Z(x, �y|z) > 0
}
.
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(x̃, y) ∈ �z and (x, ỹ) ∈ �z. Similarly, if (x, y) ∈ �z,h then (x, ỹ) ∈ �z,h and 
(x, ỹ) ∈ �z,h.

Assumption 4.5 For all z ∈ Z, if x = 0 and y ≥ 0, y �= 0 then  
(i) (x, y)  ∈ �z and (ii) (x, y)  ∈ �z,h.

Assumption 4.4 corresponds to Assumption 1F in Jeong et al. (2010) 
and amounts to a regularity condition on the conditional attainable sets jus-
tifying the use of the localized versions of the FDH and DEA estimators. 
The assumption imposes weak monotonicity on the frontier in the space of 
inputs and outputs for a given z ∈ Z and is standard in microeconomic the-
ory of the firm. Assumption 4.5 is the conditional analog of Assumption 2.3 
and rules out free lunches.

The next assumption concerns the regularity of the density of Z and of the 
conditional density of (X, Y  ) given Z = z, as a function of z in particular near 
the efficient boundary of �z (see Assumptions 3 and 5 in Jeong et al. 2010).

Assumption 4.6 Z has a continuous density fZ(·) such that for all z ∈ fZ(z) 
is bounded away from zero. Moreover, the conditional density fXY |Z(·, ·|z) is 
continuous in z and is strictly positive in a neighborhood of the frontier of �z.

Assumption 4.7 For all (x, y  ) in the support of (X, Y  ), �h(x, y|z)−
�(x, y|z) = O(h) as h → 0.

Assumption 4.7 amounts to an assumption of continuity of �(·, ·|z) as a 
function of z and is analogous to Assumption 2 of Jeong et al. (2010).

The remaining assumptions impose regularity conditions on the data-generat-
ing process. The first assumption appears as Assumption 4 in Jeong et al. (2010).

Assumption 4.8 (i) The sample observations Xn = {(Xi,Yi,Zi)}
n
i=1 are reali-

zations of iid random variables (X, Y, Z  ) with joint density fXYZ(·, ·, ·); and (ii) 
the joint density fXYZ(·, ·, ·) of (X, Y, Z  ) is continuous on its support.

The next assumptions are needed to establish results for the moments 
of the conditional FDH and DEA estimators described in Sect. 4.2. The 
assumptions here are conditional analogs of Assumptions 3.1–3.4 and 
3.6, respectively, in Kneip et al. (2015b). Assumption 4.9, part (iii), and 
Assumption 4.10, part (iii), appear as Assumption 5 in Jeong et al. (2010).

Assumption 4.9 For all z ∈ Z, (i) the conditional density fXY |Z(·, ·|z) of 
(X ,Y)|Z = z exists and has support Dz ⊂ �z; (ii) fXY |Z(·, ·|z) is continu-
ously differentiable on Dz; and (iii) f hXY |Z(·, ·|z) converges to fXY |Z(·, ·|z) as 
h → 0.
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Assumption 4.10 (i) Dz∗ := {(x, �(x, y|z)y)|(x, y) ∈ Dz} ⊂ Dz; (ii) Dz∗ is 
compact; and (iii) fXY |Z(x, �(x, y|z)y|z) > 0 for all (x, y) ∈ Dz.

Assumption 4.11 For any z ∈ Z, �(x, y|z) is three times continuously dif-
ferentiable with respect to x and y on Dz.

Assumption 4.12 For all z ∈ Z, (i) �(x, y|z) is twice continuously differen-
tiable on Dz; and (ii) all the first-order partial derivatives of �(x, y|z) with 
respect to x and y are nonzero at any point (x, y) ∈ Dz.

Assumption 4.13 For any z ∈ Z, Dz is almost strictly convex; 
i.e., for any (x, y), (x̃, ỹ) ∈ Dz with 

(
x
�x�

, y
)
�=

(
x̃
�x̃�

, ỹ
)
, the set 

{(x∗, y∗)|(x∗, y∗) = (x, y)+ α(x̃, ỹ) for someα ∈ (0, 1)} is a subset of the 
interior of Dz.

Assumption 4.14 For any z ∈ Z, (i) for any (x, y) ∈ �z and any 
a ∈ [0,∞), (ax, ay) ∈ �z; (ii) the support Dz ⊂ �z of fXY |Z is such 

that for any (x, y), (x̃, ỹ) ∈ Dz with 
(

x
�x�

,
y
�y�

)
�=

(
x̃
�x̃�

,
ỹ
�ỹ�

)
, the set 

{(x∗, y∗)|(x∗, y∗) = (x, y)+ α((x̃, ỹ)− (x, y)) for some 0 < α < 1} is a 
subset of the interior of Dz; and (iii) (x, y) /∈ Dz for any (x, y) ∈ R

p
+ × R

q with 
y1 = 0, where y1 denotes the first element of the vector y.

When the conditional FDH estimator is used, Assumption 4.12 is needed; 
when the conditional DEA estimator is used, this is replaced by the stronger 
Assumption 4.11.

Note that Assumptions 4.3–4.5 and 4.8–4.14 for the model with envi-
ronmental variables are analogs of Assumptions 2.1–2.3 and 2.4–2.9 for 
the model without environmental variables. The set of Assumptions 4.8–
4.14 are stronger than set of assumptions required by Jeong et al. (2010) 
to prove consistency and to derive the limiting distribution for conditional 
efficiency estimators. The stronger assumptions given here are needed by 
Daraio et al. (2018) to obtain results on moments of the conditional effi-
ciency estimators as well as the central limit theorem (CLT) results discussed 
in Sect. 5.2. Daraio et al. (2018) do not consider the conditional version 
of the CRS-DEA estimator and hence do not use Assumption 4.14 that 
appears above. However, the results obtained by Daraio et al. (2018) for the 
conditional version of the VRS-DEA estimator that are outlined in Sect. 4.2 
can be extended to the CRS case while replacing Assumption 4.13 with 
Assumption 4.14. In addition, note that under the separability condition in 
Assumption 4.1, the assumptions here reduce to the corresponding assump-
tions in Kneip et al. (2015b) due to the discussion in Sect. 2.
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4.2  Nonparametric Conditional Efficiency Estimators

As in previous cases, the plug-in approach is useful for defining estimators of 
the conditional efficiency score given in (54) and (56).

For the conditional efficiency score �(x, y|z), a smoothed estimator of 
HXY |Z(x, y|z) is needed to plug into (56), which requires the vector h of 
bandwidths for Z. The conditional distribution function HXY |Z(x, y|z) can 
be replaced by the estimator

where Kh(·) = (h1 . . . hr)
−1K((Zi − z)/h) and the division between vec-

tors is understood to be component-wise. As explained in the literature (e.g., 
see Daraio and Simar 2007b), the kernel function K(·) must have bounded 
support (e.g., the Epanechnikov kernel). This provides the output-oriented, 
conditional FDH estimator

where

is the set of indices for observations with Z in an h-neighborhood of z and 
for which output levels Xi are weakly less than x.

Alternatively, where one is willing to assume that the conditional attaina-
ble sets are convex, Daraio and Simar (2007b) suggest the conditional VRS-
DEA estimator of �(x, y|z) given by

where

is the set of indices for observations with Z in an h-neighborhood of z. Note 
that the conditional estimators in (62) and (64) are just localized version of 
the unconditional FDH and VRS-DEA efficiency estimators given in (28) 

(61)ĤXY |Z(x, y|z) =

∑n
i=1 (Xi ≤ x,Yi ≥ y)Kh(Zi − z)∑n

i=1 Kh(Zi − z)
,

(62)�̂FDH(x, y|z,X⊖n) = max
i∈I1(z,h)

(
min

j=1, ..., p

(
Y
j
i

yj

))
,

(63)I1(z, h) = {i|z − h ≤ Zi ≤ z + h ∩ Xi ≤ x}

(64)�̂VRS(x, y|z,χn) = max
�,ω1,...,ωn






� > 0|�y ≤
�

i∈χ2(z,h)

ωiYi, x ≥
�

i∈χ2(z,h)

ωiXi,

for someωi ≥ 0 such that
�

i∈χ2(z,h)

ωi = 1






(65)I2(z, h) = {i|z − h ≤ Zi ≤ z + h}
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and (34), where the degree of localization is controlled by the bandwidths in 
h. The conditional version of CRS-DEA estimator �̂CRS(x, y|Sn) is obtained 
by dropping the constraint 

∑
i∈I2(z,h)

ωi = 1 in (64) and is denoted by 
�̂CRS(x, y|z,Xn). Bandwidths can be optimized by least-squares cross-valida-
tion (see Daraio et al. (2018) for discussion of practical aspects).

Jeong et al. (2010) show that the conditional version of the FDH and 
VRS-DEA efficiency estimators share properties similar to their uncondi-
tional counterparts whenever the elements of Z are continuous. The sample 
size n is replaced by the effective sample size used to build the estimates, 
which is of order nh1 . . . hr, which we denote as nh. To simplify the nota-
tion, and without loss of generality, we hereafter assume that all of the band-
widths hj = h are the same, so that nh = nhr. For a fixed point (x, y) in the 
interior of �z, as n → ∞,

where again Qxy|z(·) is a regular, non-degenerate limiting distribution anal-
ogous to the corresponding one for the unconditional case. The main argu-
ment in Jeong et al. (2010) relies on the property that there are enough 
points in a neighborhood of z, which is obtained with the additional 
assumption that fZ(z) is bounded away from zero at z and that if the band-
width is going to zero, it should not go too fast (see Jeong et al. 2010, 
Proposition 1; if h → 0, h should be of order n−η with η < r−1).

The conditional efficiency scores have also their robust versions (see 
Cazals et al. (2002) and Daraio and Simar (2007b) for the order-m version, 
and Daouia and Simar (2007) for the order-α analog). Also, conditional 
measures have been extended to hyperbolic distances in Wheelock and 
Wilson (2008) and to hyperbolic distances by Simar and Vanhems (2012).

Bădin et al. (2012, 2014) suggest useful tools for analyzing the impact of Z 
on the production process, by exploiting the comparison between the condi-
tional and unconditional measures. These tools (graphical and nonparametric 
regressions) allow one to disentangle the impact of Z on any potential shift of 
the frontier or potential shift of the inefficiency distributions. Daraio and Simar 
(2014) provide also a bootstrap test for testing the significance of environmen-
tal factors on the conditional efficiency scores. These tools have been used in 
macroeconomics to gauge the effect of foreign direct investment and time on 
“catching-up” by developing countries (see Mastromarco and Simar [2015]).

Florens et al. (2014) propose an alternative approach for estimating con-
ditional efficiency scores that avoids explicit estimation of a nonstandard 
conditional distribution (e.g., FX|Y ,Z(x|y, z)). The approach is less sensitive 

(66)nκh

(
�̂(x, y|z,Xn)− �(x, y|z)

)
L

−→Qxy|z(·)



332     C. Mastromarco et al.

to the curse of the dimensionality described above. It is based on very flex-
ible nonparametric location-scale regression models for pre-whitening the 
inputs and the outputs to eliminate their dependence on Z. This allows 
one to define “pure” inputs and outputs and hence a “pure” measure of effi-
ciency. The method permits returning in a second stage to the original units 
and evaluating the conditional efficiency scores, but without explicitly esti-
mating a conditional distribution function. The paper proposes also a boot-
strap procedure for testing the validity of the location-scale hypothesis. The 
usefulness of the approach is illustrated using data on commercial banks to 
analyze the effects of banks’ size and diversity of the services offered on the 
production process, and on the resulting efficiency distribution.

As a final remark, note that if Assumption 4.1 holds, so that the varia-
bles in Z have no effect on the frontier, then Assumptions 4.3–4.11 can be 
shown to be equivalent to the corresponding conditions in Assumptions 
2.1–2.9. As a practical matter, whenever Assumption 4.1 holds, least-squares 
cross-validation will result in bandwidths large enough so that the sets of 
indices I1(z, h) and I2(z, h) includes all integers 1, 2, . . . , n. In this case, 
the variables in Z do not affect the frontier and the conditional efficiency 
estimators are equivalent to the corresponding unconditional estimators.

5  Central Limit Theorems for Mean 
Efficiency

5.1  Mean Unconditional Efficiency

CLT results are among the most fundamental, important results in statis-
tics and econometrics (see Spanos (1999) for detailed discussion of their his-
torical development and their importance in inference-making). CLTs are 
needed for making inference about population means. In the frontier con-
text, one might want to make inference about

If �(Xi,Yi|�) were observed for each (Xi,Yi) ∈ Sn, then µ could be esti-
mated by the sample mean

(67)

µ� = E(�(X,Y |�))

=

∫

D

�(x, y|�)f (x, y)dxdy.
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Then under mild conditions, the Lindeberg–Feller CLT establishes the lim-
iting distribution of �̄n, i.e.,

provided

is finite. If the �(Xi,Yi|�) were observed for i = 1, . . . , n, one could use 
(69) to estimate confidence intervals for µ� in the usual way, relying on 
asymptotic approximation for finite samples. But of course the �(Xi,Yi|�) 
are not observed and must be estimated. Kneip et al. (2015b) show 
that the bias of the FDH and DEA estimators makes inference about µ� 
problematic.11

Kneip et al. (2015b) establish results for the moments of FDH and DEA 
estimators under appropriate assumptions given in Sect. 2.12 These results 
are summarized by writing

where Rn,k = o
(
n−κ

)
,

(68)�̄n =

n∑

i=1

�(Xi,Yi|�).

(69)
√
n
(
�̄n − µ�

)
L

−→N
(
0, σ 2

�

)

σ 2
�
= VAR(�(X,Y |�))

(70)
=

∫

D

(�(x, y|�)− µ�)
2f (x, y)dx dy

(71)E

(
�̂(Xi,Yi|Sn)− �(Xi,Yi)

)
= Cn

−κ + Rn,κ ,

(72)
E

((
�̂(Xi,Yi|Sn)− �(Xi,Yi)

)2)
= o

(
n−κ

)
,

11Kneip et al. (2015b) focus on the input orientation, but all of their results extend to the output ori-
entation after straightforward (but perhaps tedious) changes in notation. The discussion here is in terms 
of the output orientation.
12Throughout this section, assumptions common to VRS-DEA, CRS-DEA, and FDH estima-
tors include Assumptions 2.1–2.3 and Assumptions 2.4 and 2.5. For the VRS-DEA estimator under 
VRS, “appropriate assumptions” include the common assumptions as well as Assumptions 2.6 and 
2.8. For the CRS-DEA estimator, “appropriate assumptions” consist of the common assumptions and 
Assumption 2.9. For the FDH estimator, “appropriate assumptions” consist of the common assump-
tions and Assumption 2.7.



334     C. Mastromarco et al.

and

for all i, j ∈ {1, . . . , n}, i  = j. Here, we suppress the labels “VRS,” “CRS,” 
or “FDH” on �̂. The values of the constant C, the rate κ, and the remainder 
term Rn,κ depend on which estimator is used. In particular,

• under VRS with the VRS-DEA estimator, κ = 2
(p+q+1)

 and 
Rn,κ = O(n−3κ/2(logn)α1), where α1 = (p+ q + 4)/(p+ q + 1);

• under CRS with either the VRS-DEA or CRS-DEA estimator, κ = 2
(p+q)

 
and Rn,κ = O(n−3κ/2(logn)α2) where α2 = (p+ q + 3)/(p+ q); and

• under only the free disposability assumption (but not necessar-
ily CRS or convexity) with the FDH estimator, κ = 1

(p+q)
 and 

Rn,κ = O(n−2κ(logn)α3), where α3 = (p+ q + 2)/(p+ q).

Note that in each case, Rn,κ = o
(
n−κ

)
.

The result in (73) is somewhat surprising. It is well known that FDH and 
DEA estimates are correlated, due to the fact that typically the estimated effi-
ciency of several, perhaps many observations depends on a small number of 
observations lying on the estimated frontier; i.e., perturbing an observation 
lying on the estimated frontier is likely to affect estimated efficiency for other 
observations. The result in (73), however, indicates that this effect is negligible.

The Cn−κ term in (71) reflects the bias of the nonparametric efficiency 
estimators, and its interplay with the o

(
n−κ

)
 expression in (72) creates prob-

lems for inference. Let

Theorem 4.1 of Kneip et al. (2015b) establishes that µ̂n is a consistent esti-
mator of μ under the appropriate set of assumptions, but has bias of order 
Cn−κ. The theorem also establishes that

If κ > 1/2, the bias term in (75) is dominated by the factor 
√
n and thus 

can be ignored; in this case, standard, conventional methods based on the 
Lindeberg-Feller CLT can be used to estimate confidence intervals for µ�.  
Otherwise, the bias is constant if κ = 1/2 or explodes if κ < 1/2. Note 

(73)
∣∣∣COV

(
�̂(Xi, Yi|Sn)− �(Xi, Yi), �̂

(
Xj, Yj

∣∣Sn
)
− �(Xj, Yj)

)∣∣∣ = o

(
n
−1

)

(74)µ̂n = n−1
n∑

i=1

�̂(Xi,Y |Sn).

(75)
√
n
(
µ̂n − µ� − Cn−κ − Rn,κ

) L
−→N(0, σ 2

�
).
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that κ > 1/2 if and only if p+ q ≤ 2 in the VRS case, or if and only if 
p+ q ≤ 3 in the CRS case. In the FDH case, this occurs only in the univar-
iate case with p = 1, q = 0 or p = 0, q = 1. Replacing the scale factor 

√
n in 

(75) with nγ, with γ < κ ≤ 1/2, is not a viable option. Although doing so 
would make the bias disappear as n → ∞, it would also cause the variance 
to converge to zero whenever κ ≤ 1/2, making inference using the result in 
(75) impossible.

It is well known that the nonparametric DEA and FDH estimators suffer 
from the curse of dimensionality, meaning that convergence rates become 
slower as (p + q  ) increases. For purposes of estimating mean efficiency, the 
results of Kneip et al. (2015b) indicate the curse is even worse than before, 
with the “explosion” of bias coming at much smaller numbers of dimensions 
than found in many applied studies.

In general, whenever κ ≤ 1/2, the results of Kneip et al. (2015b) make 
clear that conventional CLTs cannot be used to make inference about the 
mean µ�. The problem of controlling both bias and variance, for general 
number of dimensions (p+ q), can be addressed by using a different estima-
tor of the population mean µ� and in addition rescaling the estimator of µ� 
by an appropriate factor different from 

√
n when κ ≤ 1/2. Consider the fac-

tor nκ =
⌊
n2κ

⌋
≤ n, where ⌊α⌋ denotes the integer part of a (note that this 

covers the limiting case of κ = 1/2). Then, assume that the observations in 
the sample Sn are randomly ordered and consider the latent estimator

Of course, �̄nκ is unobserved, but it can be estimated by

where the notation �̂(Xi,Yi|Sn) serves to remind the reader that the individ-
ual efficiency estimates are computed from the full sample of n observations, 
while the sample mean is over nκ ≤ n such estimates. Here again, one can 
use either the VRS, CRS, or FDH version of the estimator.

Theorem 4.2 of Kneip et al. (2015b) establishes that when κ ≤ 1/2,

as n → ∞. Since 
√
nκ
(
µ̂nκ − µ�

)
 has a limiting distribution with unknown 

mean due to the bias term Cn−κ, bootstrap approaches could be used to 

(76)�̄nκ = n−1
κ

nκ∑

i=1

�(Xi,Yi).

(77)µ̂nκ = n−1
κ

nκ∑

i=1

�̂(Xi,Yi|Sn),

(78)nκ
(
µ̂nκ − µ� − Cn−κ − Rn,κ

) L
−→N(0, σ 2

�
)
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estimate the bias and hence to estimate confidence intervals for µ�. The var-
iance could also be estimated by the same bootstrap, or by the consistent 
estimator

Subsampling along the lines of Simar and Wilson (2011a) could also be 
used to make consistent inference about µ�. However, the estimator in (77) 
uses only a subset of the original n observations; unless n is extraordinarily 
large, taking subsamples among a subset of nκ observations will likely leave 
too little information to provide useful inference.

Alternatively, Kneip et al. (2015b) demonstrate that the bias term Cn−κ 
can be estimated using a generalized jackknife estimator (e.g., see Gray and 
Schucany 1972, Definition 2.1). Assume again that the observations (Xi,Y  i) 
are randomly ordered. Let S(1)

n/2 denote the set of the first n/2 observations 
in Sn, and let S(2)

n/2 denote the set of remaining observations from Sn. Let

Kneip et al. (2015b) show that

provides an estimator of the bias term Cn−κ.

Of course, for n even there are 
(

n

n/2

)
 possible splits of the sample Sn. As 

noted by Kneip et al. (2016), the variation in B̃κ ,n can be reduced by repeat-

ing the above steps κ ≪

(
n

n/2

)
 times, shuffling the observations before 

each split of Sn, and then averaging the bias estimates. This yields a general-
ized jackknife estimate

where B̃κ ,n,k represents the value computed from (81) using the k th sample 
split.

(79)σ̂ 2
�,n = n−1

n∑

i=1

(
�̂(Xi,Yi|Sn)− µ̂n

)2
.

(80)µ̂∗
n/2 =

(
µ̂
(1)
n/2 + µ̂

(2)
n/2

)
/2.

(81)
B̃κ ,n = (2κ − 1)−1

(
µ̂∗
n/2 − µ̂n

)

= Cn−κ + Rn,κ + op

(
n−1/2

)

(82)B̂κ ,n = K−1
K∑

k=1

B̃κ ,n,k ,
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Theorem 4.3 of Kneip et al. (2015b) establishes that under appropriate 
assumptions, for κ ≥ 2/5 for the VRS and CRS cases or κ ≥ 1/3 for the 
FDH case,

as n → ∞.
It is important to note that (83) is not valid for κ smaller than the bounds 

given in the theorem. This is due to the fact that for a particular definition 
of Rn,κ (i.e., in either the VRS/CRS or FDH cases), values of κ smaller than 
the boundary value cause the remainder term, multiplied by 

√
n, to diverge 

toward infinity. Interestingly, the normal approximation in (83) can be used 
with either the VRS-DEA or CRS-DEA estimators under the assumption 
of CRS if and only if p+ q ≤ 5; with the DEA-VRS estimator under con-
vexity (but not CRS) if and only if p+ q ≤ 4; and with the FDH estima-
tor assuming only free disposability (but not necessarily convexity nor CRS) 
if and only if p+ q ≤ 3. For these cases, an asymptotically correct (1− α) 
confidence interval for µ� is given by

where z1−α/2 is the corresponding quantile of the standard normal distribu-
tion and σ̂�,n is given by (79).

In cases where κ is smaller than the bounds required by (83), the idea of 
estimating µ� by a sample mean of nκ efficiency estimates as discussed above 
can be used with the bias estimate in 15, leading to Theorem 4.4 of Kneip 
et al. (2015b), i.e., under appropriate assumptions,

as n → ∞.
Equation 85 permits construction of consistent confidence intervals for 

µ� by replacing the unknown σ 2
�
 by its consistent estimator σ̂ 2

�,n. An asymp-
totically correct 1− α confidence interval for µ� is given by

where z1−α/2 is the corresponding quantile of the standard normal distribu-
tion. Here, the normal approximation can be used directly; bootstrap meth-
ods are not necessary.

(83)
√
n
(
µ̂n − B̂κ ,n − µ� + Rn,κ

)
N(0, σ 2

�
).

(84)
[
µ̂n − B̂κ ,n ± z1−α/2σ̂�,n/

√
n
]
,

(85)nκ
(
µ̂nκ − B̂κ ,n − µ� + Rn,κ

)
L

−→N
(
0, σ 2

�

)
.

(86)
[
µ̂nκ − B̂κ ,n ± z1−α/2σ̂�,n/n

κ
]
,
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Note that when κ < 1/2, the center of the confidence interval in (86) 
is determined by a random choice of nκ = n2κ < n elements �̂(Xi,Yi|Sn).  
This may be seen as arbitrary, but any confidence interval for µ� may be 
seen arbitrary in practice since asymmetric confidence intervals can be con-
structed by using different quantiles to establish the endpoints. The main 
point, however, is always to achieve a high level of coverage without making 
the confidence interval too wide to be informative.

Again for κ < 1/2, the arbitrariness of choosing a particular subsample 
of size nκ in (86) can be eliminated by averaging the center of the interval in 
(86) over all possible draws (without replacement) of subsamples of size nκ. 
Of course, this yields an interval centered on µ̂n, i.e.,

The only difference between the intervals (86) and (87) is the center-
ing value. Both intervals are equally informative, because they possess 
exactly the same length (2z1−α/2σ̂�,n/n

κ). The interval (87) should be 
more accurate (i.e., should have higher coverage) because µ̂n is a better 
estimator of µ� (i.e., has less mean-square error) than µ̂nκ. If κ < 1/2,  
then nκ < n, and hence, the interval in (87) contains the true value µ� 
with probability greater than 1− α, since by the results above, it is clear 
that the coverage of the interval in (87) converges to 1 as n → ∞. This 
is confirmed by the Monte Carlo evidence presented by Kneip et al. 
(2015b).

In cases with sufficiently small dimensions, either (83) or (85) can be used 
to provide different asymptotically valid confidence intervals for µ�. For the 
VRS-DEA and CRS-DEA estimators, this is possible whenever κ = 2/5 
and so nκ < n. The interval (84) uses the scaling 

√
n and neglects, in (83), 

a term 
√
nRn,κ = O(n−1/10), whereas the interval (86) uses the scaling nκ,  

neglecting in (85) a term nκRn,κ = O(n−1/5). We thus may expect a bet-
ter approximation by using the interval (86). The same is true for the FDH 
case when κ = 1/3, where the interval (84) neglects terms of order O(n−1/6) 
whereas the error when using (86) is only of order O(n−1/3). These remarks 
are also confirmed by the Monte Carlo evidence reported by Kneip et al. 
(2015b).

(87)
[
µ̂n − B̂κ ,n ± z1−α/2σ̂�,n/n

κ
]
.
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5.2  Mean Conditional Efficiency

Daraio et al. (2018) extend the results of Kneip et al. (2015b) presented in 
Sect. 5 to means of conditional efficiencies. Extension to the conditional 
case is complicated by the presence of the bandwidth h, which impacts 
convergence rates. Comparing (30) and (35) with the result in (66), it is 
apparent that the bandwidths in the conditional estimators reduce conver-
gence rates from nκ for the unconditional estimators to nκh = nκ/(κr+1) for 
the conditional estimators. Moreover, Theorem 4.1 of Daraio et al. (2018) 
establishes that under Assumptions 4.3–4.6, and in addition Assumption 
4.12 for the FDH case or Assumptions 4.11 and 4.13 (referred to as “appro-
priate conditions” throughout the remainder of this subsection), as n → ∞,

where Rc,nh,κ = o
(
n−κ
h

)
,

and

for all i, j ∈ {1, . . . , n}, i  = j. In addition, for the conditional VRS-DEA 
estimator, Rc,nh,κ = O(n

−3κ/2
h (lognh)

α1) while for the conditional FDH 
estimator Rc,nh,κ = O(n−2κ

h (lognh)
α2). Note that incorporation of band-

widths in the conditional estimators reduces the order of the bias from Cnκ 
to Ccn

κ
h.

Let

and

(88)E
(
�̂(Xi,Yi|Zi,Xn)− �

h(Xi,Yi|Zi)
)
= Ccn

−κ
h + Rc,nh,κ

(89)E

((
�̂(Xi,Yi|Zi,Xn)− �

h(Xi,Yi|Zi)
)2)

= o(n−κ
h ),

(90)
∣∣∣COV

(
�̂(Xi, Yi|Zi,Xn)− �

h(Xi, Yi|Zi), �̂
(
Xj , Yj

∣∣Zj ,Xn

)
− �

h
(
Xj , Yj

∣∣Zj
))∣∣∣ = o(n−1

h
)

(91)µ̂n = n−1
n∑

i=1

�̂(Xi,Yi|Xn)

(92)µ̂c,n = n−1
n∑

i=1

�̂(Xi,Yi|Zi,Xn)
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denote sample means of unconditional and conditional efficiency estimators. 
The efficiency estimators in (91) and (92) could be either FDH or VRS-
DEA estimators; differences between the two are noted below when relevant. 
Next, define

and

where P is defined just before (50). These are the localized analogs of µ and 
σ 2. Next, let µ̄c,n = n−1

∑n
i=1 �

h(Xi,Y |Zi). Although µ̄c,n is not observed, 
by the Lindeberg–Feller CLT

under mild conditions.
Daraio et al. (2018) show that there can be no CLT for means of condi-

tional efficiency estimators analogous to the result in (75) or Theorem 4.1 
of Kneip et al. (2015b). There are no cases where standard CLTs with rate 
n1/2 can be used with means of conditional efficiency estimators, unless Z 
is irrelevant with respect to the support of (X, Y  ) , i.e., unless Assumption 
4.1 holds. Given a sample of size n, there can be no CLT for means of con-
ditional efficiency estimators based on a sample mean of all of the n condi-
tional efficiency estimates.

Daraio et al. (2018) consider a random subsample X ∗
nh

 from Xn of size 
nh where for simplicity we use the optimal rates for the bandwidths so that 
nh = O(n1/(κr+1)). Define

(93)µh
c = E

(
�
h(X,Y |Z)

)
=

∫
�
h(x, y|z)fXYZ(x, y, z)dxdydz

(94)

σ 2,h
c = VAR

(
�
h(X,Y |Z)

)
=

∫

P

(
�
h(x, y|z)− µh

c

)2
fXYZ(x, y, z)dxdydz,

(95)

√
n
(
µ̄c,n − µh

c

)
√
σ
2,h
c

L
−→N(0, 1)

(96)µ̄c,nh =
1

nh

∑

(Xi,Yi,Zi)∈X ∗
nh

�
h(Xi,Y |Zi),

(97)
µ̂c,nh =

1

nh

∑

(Xi,Yi,Zi)∈X ∗
nh

�̂(Xi,Y |Zi,Xn)
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and let µ̂c,nh = E
(
µ̂c,nh

)
. Note that the estimators on the RHS of (97) are 

computed relative to the full sample Xn, but the summation is over elements 
of the subsample X ∗

nh
.

Theorem 4.2 of Daraio et al. (2018) establishes that

and in addition establishes that 
√
σ
2,h
c  is consistently estimated by

The result in (98) provides a CLT for means of conditional efficiency esti-
mators, but the convergence rate is 

√
nh as opposed to 

√
n, and the result is 

of practical use only if κ > 1/2. If κ = 1/2, the bias term Ccn
−κ
h  does not 

vanish. If κ < 1/2, the bias term explodes as n → ∞.
Similar to Kneip et al. (2015b), Daraio et al. (2018) propose a generalized 

jackknife estimator of the bias term Ccn
−κ
n . Assume the observations in Xn 

are randomly ordered. Let X (1)
n/2 denote the set of the first n/2 observations 

from Xn, and let X (2)
n/2 denote the set of remaining n/2 observations from 

Xn. Note that if n is odd, X (1)
n/2 can contain the first ⌊n/2⌋ observations and 

X
(2)
n/2 can contain remaining n− ⌊n/2⌋ observations from Xn. The fact that 

X
(2)
n/2 contains one more observation than X (1)

n/2 makes no difference asymp-
totically. Next, for j ∈ {1, 2} define

Now define

Then,

is an estimator of the leading bias term Ccn
−κ
h  in (98). Averaging over 

K ≪

(
n

n/2

)
 splits of the sample Xn as before yields the generalized jack-

knife estimator

(98)
√
nh

(
µ̂c,nh − µh

c − Ccn
−κ
h − Rc,nh,κ

)
/

√
σ
2,h
c

L
−→N(0, 1),

(99)σ̂ 2,h
c,n = n−1

n∑

i=1

[
�̂(Xi,Yi||Zi,Xn)− µ̂c,n

]2
.

(100)
µ̂
j
c,n/2 = (n/2)−1

∑

(Xi,Yi,Zi)∈X
(j)
n/2

�̂

(
Xi,Yi|Zi,X

(j)
n/2

)
.

(101)µ̂∗
c,n/2 =

(
µ̂1
c,n/2 + µ̂2

c,n/2

)
/2.

(102)B̃c
κ ,nh

= (2κ − 1)−1
(
µ̂∗
c,n/2 − µ̂c,n

)
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where B̃c
κ ,nh,k

 represents the value computed from (102) using the kth sam-
ple split.

Theorem 4.3 of Daraio et al. (2018) establishes that under appro-
priate conditions, with κ = 1/(p+ q) ≥ 1/3 in the FDH case or 
κ = 2/(p+ q + 1) ≥ 2/5 in the VRS-DEA case,

as n → ∞. Alternatively, Theorem 4.4 of Daraio et al. (2018) establishes 
that under appropriate conditions, whenever κ < 1/2,

as n → ∞. The results in (104) and (105) provide CLTs for means of con-
ditional efficiencies covering all values of κ and can be used to estimate con-
fidence intervals or for testing Assumption 4.1 versus Assumption 4.2 as 
described in Sect. 6.4.

6  Hypothesis Testing

6.1  Testing Convexity Versus Non-Convexity

In situations where one might want to test convexity of � versus non-con-
vexity, typically a single iid sample Sn = {(Xi,Yi}

n
i=1 of n input–output 

pairs is available. Under the null hypothesis of convexity, both the FDH 
and VRS-DEA estimators are consistent, but under the alternative, only the 
FDH estimator is consistent. It might be tempting to compute the sample 
means

(103)B̂c
κ ,nh

= K−1
K∑

k=1

B̃c
κ ,nh,k

,

(104)

√
nh

(
µ̂c,nh − µh

c − B̂c
κ ,nh

− R∗
c,nh,κ

)

√
σ
2,h
c

L
−→N(0, 1)

(105)

√
nh,κ

(
µ̂c,nh,κ − µh

c − B̂c
κ ,nh

− R∗
c,nh,κ

)

√
σ
2,h
c

L
−→N(0, 1),

(106)µ̂full
VRS,n = n−1

n∑

i=1

�̂VRS(Xi,Y |Sn)
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and

using the full set of observations in Sn and use this with (106)  
to construct a test statistic based on the difference µ̂full

FDH,n − µ̂full
VRS,n. By 

construction, �̂VRS(Xi,Yi|Sn) ≥ �̂FDH(Xi,Yi|Sn) ≥ 1 and therefore 
µ̂full
VRS,n − µ̂full

FDH,n ≥ 0. Under the null, µ̂full
FDH,n − µ̂full

VRS,n is expected to be 
“small,” while under the alternative the difference is expected to be “large.”

Unfortunately, such an approach is doomed to failure. Using the out-
put-oriented analog of Theorem 4.1 of Kneip et al. (2015b) and reason-
ing similar to that of Kneip et al. (2016, Section 3.2), it can be shown that 
na
(
�̂VRS(Xi,Yi|Sn)− �̂FDH(Xi,Yi|Sn)

)
 converges under the null to a 

degenerate distribution for any power a ≤ 1/2 of n; that is, the asymptotic 
variance of the statistic is zero, and the density of the statistic converges to a 
Dirac delta function at zero under the null, rendering inference impossible.

Kneip et al. (2016) solve this problem by randomly splitting the sample Sn 
into two mutually exclusive, collectively exhaustive parts S1,n1 and S2,n2 such 
that S1,n1 ∩ S2,n2 = ∅ and S1,n1 ∪ S2,n2 = Sn. Recall that the FDH esti-
mator converges at rate n1/(p+q), while the VRS-DEA estimator converges at 
rate n2/(p+q+1) under VRS or at rate n2/(p+q) under CRS. Kneip et al. (2016) 
suggest exploiting this difference by setting n2/(p+q+1)

1 = βn
1/(p+q)
2  and 

n1 + n2 = n for a given sample size n, where β is a constant, and then solving 
for n1 and n2. There is no closed-form solution, but it is easy to find a numer-
ical solution by writing n− n1 − β−1n

2(p+q)/(p+q+1)
1 = 0; the root of this 

equation is bounded between 0 and n/2 and can be found by simple bisec-
tion. Letting n1 equal the integer part of the solution and setting n2 = n− n1 
gives the desired subsample sizes with n2 > n1. Using the larger subsample 
S2,n2 to compute the FDH estimates and the smaller subsample S1,n1 to com-
pute the VRS-DEA estimates allocates observations from the original sam-
ple Sn efficiently in the sense that more observations are used to mitigate the 
slower convergence rate of the FDH estimator. Simulation results provided 
by Kneip et al. (2016) suggest that the choice of value for β matters less as 
sample size n increases, and that setting β = 1 gives reasonable results across 
various values of n and (p + q  ).

Once the original sample has been split, the sample means

(107)µ̂full
FDH,n = n−1

∑

(Xi,Yi)∈n

�̂FDH(Xi,Yi|Sn)

(108)
µ̂VRS,n1 = n−1

1

∑

(Xi,Yi)∈S1,n1

�̂VRS

(
Xi,Yi|S1,n1

)
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and

can be computed. In addition, the sample variances

and

can also be computed. Now let κ1 = 2/(p+ q + 1) and κ2 = 1/(p+ q).  
Then, the corresponding bias estimates B̂VRS,κ1,n1 and B̂FDH,κ2,n2 can also 
be computed from the two parts of the full sample, which requires further 
splitting both of the two parts S1,n1 and S2,n2 along the lines discussed in 
Sect. 5.1.

The rate of the FDH estimator is slower than the rate of the VRS-DEA 
estimator, and hence, the rate of the FDH estimator dominates. Kneip et al. 
(2016) show that for (p+ q) ≤ 3, the test statistic

can be used to test the null hypothesis of convexity for Ψ versus the alterna-
tive hypothesis that Ψ is not convex.

Alternatively, if (p + q  ) > 3 , the sample means must be computed using 
subsets of S1,n1 and S2,n2. For ℓ ∈ {1, 2}, let κ = κ2 = 1/(p+ q) and for 
ℓ ∈ {1, 2} let nℓ,κ =

⌊
n2κℓ

⌋
 so that nℓ,κ < nℓ for κ < 1/2. Let ℓ,nℓ,κ be a ran-

dom subset of nℓ,κ input–output pairs from Sℓ,nℓ. Then, let

and

(109)
µ̂FDH,n2 = n−1

2

∑

(Xi,Yi)∈S2,n2

�̂FDH

(
Xi,Yi|S2,n2

)

(110)σ̂ 2
VRS,n2

= n−1
2

∑

(Xi,Yi)∈S2,n2

[
�̂VRS

(
Xi,Yi|S2,n2

)
− µ̂VRS,n2

]2
.

(111)σ̂ 2
FDH,n2

= n−1
2

∑

(Xi,Yi)∈S2,n2

[
�̂FDH

(
Xi,Yi|S2,n2

)
(i|2,n2)− µ̂FDH,n2

]2
.

(112)τ̂1,n =

(
µ̂VRS,n1 − µ̂FDH,n2

)
−

(
B̂VRS,κ1,n1 − B̂FDH,κ2,n2

)

√
σ̂ 2
VRS,n1

n1
+

σ̂ 2
FDH,n2

n2

L
−→N(0, 1)

(113)
µ̂VRS,n1,κ = n−1

1,κ

∑

(Xi,Yi)∈S
∗
1,n1,κ

�̂VRS

(
Xi,Yi|S1,n1

)
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noting that the summations in (113) and (114) are over subsets of the obser-
vations used to compute the efficiency estimates under the summation signs.

Then by Theorem 4.4 of Kneip et al. (2015b), for (p + q  ) > 3,

under the null hypothesis of convexity for �. Note that τ̂2,n differs from 
τ̂1,n both in terms of the number of efficiency estimates used in the sam-
ple means as well as the divisors of the variance terms under the square-root 
sign.

Depending on whether (p+ q) ≤ 3 or (p + q  ) > 3 , either τ̂1,n or τ̂2,n can 
be used to test the null hypothesis of CRS, with critical values obtained 
from the standard normal distribution. In particular, for j ∈ {1, 2}, the null 
hypothesis of convexity of � is rejected if p̂ = 1−�

(
τ̂j,n

)
 is less than a suit-

ably small value, e.g., 0.1, 0.05, or 0.01.

6.2  Testing Constant Versus Variable Returns to Scale

Kneip et al. (2016) use the CLT results of Kneip et al. (2015b) discussed in 
Sect. 5.1 to develop a test of CRS versus VRS for the technology �∂. A key 
result is that under CRS, the VRS-DEA estimator attains same convergence 
rate n2/(p+q) as the CRS estimator as established by Theorem 3.1 of Kneip 
et al. (2016).

Under the null hypothesis of CRS, both the VRS-DEA and CRS-DEA 
estimators of �(X,Y) are consistent, but under the alternative, only the 
VRS-DEA estimator is consistent. Consider the sample means given by 
(106) and

computed using all of the n observations in Sn. Under the null, one 
would expect µ̂full

CRS,n − µ̂full
VRS,n to be “small,” while under the alternative 

(114)
µ̂FDH,n2,κ = n−1

2,κ

∑

(Xi,Yi)∈S
∗
2,n2,κ

�̂FDH

(
Xi,Yi|S2,n2

)
,

(115)τ̂2,n =

(
µ̂VRS,n1,κ − µ̂FDH,n2,κ

)
−

(
B̂VRS,κ1,n1 − B̂FDH,κ2,n2

)

√
σ̂ 2
VRS,n1

n1,κ
+

σ̂ 2
FDH,n2

n2,κ

L
−→N(0, 1)

(116)µ̂full
CRS,n = n−1

n∑

i=1

�̂CRS(Xi,Yi|Sn)
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µ̂full
CRS,n − µ̂full

VRS,n is expected to be “large.” However, as shown by Kneip 
et al. (2016), a test statistic using the difference in the sample means given 
by (106)–(116) will have a degenerate distribution under the null since the 
asymptotic variance of µ̂full

CRS,n − µ̂full
VRS,n is zero, similar to the case of testing 

convexity versus non-convexity discussed in Sect. 6.1. Consequently, sub-
sampling methods are needed here just as they were in Sect. 6.1.

In order to obtain non-degenerate test statistics, randomly split the 
sample into two samples S1,n1, S2,n2 such that S1,n1 ∪ S2,n2 = Sn and 
S1,n1 ∩ S2,n2 = ∅, where n1 = ⌊n/2⌋ and n2 = n− n1. Next, let

and

and recall (108) and (110) from the discussion in Sect. 6.1.
The (partial) sample S2,n2 can be used to compute an estimate B̂CRS,κ ,n2 

of bias for the CRS estimator by splitting S2,n2 into two parts along the lines 
discussed above. Then under the null hypothesis of CRS, Kneip et al. (2016) 
demonstrate that

provided p+ q ≤ 5.
Alternatively, if p + q  > 5, the sample means must be computed using 

subsets of the available observations. For ℓ ∈ {1, 2} and S∗
ℓ,nℓ,κ

 defined as in 
Sect. 6.1, let

and recall the definition of µ̂VRS,n1,κ in (113). Here again, the summation in 
(120) is over a random subset of the observations used to compute the effi-
ciency estimates under the summation sign. Again under the null hypothesis 

(117)
µ̂CRS,n2 = n−1

2

∑

(Xi,Yi)∈S2,n2

�̂CRS

(
Xi,Yi|S2,n2

)
.

(118)σ̂ 2
CRS,n2

= n−1
2

∑

(Xi,Yi)∈S2,n2

[
�̂CRS

(
Xi,Yi|S2,n2

)
− µ̂CRS,n2

]2
,

(119)

τ̂3,n =

(
µ̂CRS,n2 − µ̂VRS,n1

)
−

(
B̂CRS,κ ,n2 − B̂VRS,κ ,n1

)

√
σ̂ 2
VRS,n1
n1

+
σ̂ 2
CRS,n2
n2

L
−→N(0, 1)

(120)
µ̂CRS,n2,κ = n−1

2,κ

∑

(Xi,Yi)∈S
∗
2,n2,κ

�̂CRS

(
Xi,Yi|2,n2

)
.
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of CRS, by Theorem 4.4 of Kneip et al. (2015b), and Theorem 3.1 of Kneip 
et al. (2016),

for (p + q  ) > 5. Similar to the comparison between τ̂2,n and τ̂1,n in Sect. 6.1, 
τ̂4,n differs from τ̂3,n both in terms of the number of efficiency estimates used 
to compute the sample means in the numerator as well as the divisors of the 
variance terms under the square-root sign in the denominator.

Depending on the value of (p + q  ), either τ̂3,n or τ̂4,n can be used to test 
the null hypothesis of CRS, with critical values obtained from the stand-
ard normal distribution. In particular, for j ∈ {3, 4}, the null hypothesis of 
CRS is rejected if p̂ = 1−�(τ̂j,n) is less than, say, 0.1, 0.05, or 0.01.

6.3  Testing for Differences in Mean Efficiency Across 
Groups of Producers

Testing for differences in mean efficiency across two groups was suggested—
but not implemented—in the application of Charnes et al. (1981), who 
considered two groups of schools, one receiving a treatment effect and the 
other not receiving the treatment. There are many situations where such a 
test might be useful. For example, one might test whether mean efficiency 
among for-profit producers is greater than mean efficiency of nonprofit pro-
ducers in studies of hospitals, banks and credit unions, or perhaps other 
industries. One might similarly be interested in comparing average perfor-
mance of publicly traded versus privately held firms, or in regional differ-
ences that might reflect variation in state-level regulation or other industry 
features. However, the discussion in Sect. 5 makes clear that standard CLT 
results are not useful in general when considering means of nonparametric 
efficiency estimates.

Consider two groups of firms G1 and G2 of sizes n1 and n2. Suppose 
the researcher wishes to test whether µ1,� = E(�(X ,Y)|(X ,Y) ∈ G1) 
and µ2,� = E(�(X,Y)|(X,Y) ∈ G2) are equal against the alterna-
tive that group 1 has greater mean efficiency. More formally, one might 
test the null hypothesis H0 : µ1,� = µ2,� versus the alternative hypoth-
esis H1 : µ1,� > µ2,�. One could also conduct a test with a two-sided 

(121)τ̂4,n =

(
µ̂CRS,n2,κ − µ̂VRS,n1,κ

)
−

(
B̂CRS,κ ,n2 − B̂VRS,κ ,n1

)

√
σ̂ 2
VRS,n1

n1,κ
+

σ̂ 2
CRS,n2

n2,κ

L
−→N(0, 1)
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alternative; such a test would of course follow a procedure similar to the one 
outlined here for a one-sided test.

The test discussed here makes no restriction on whether firms in the two 
groups face the same frontier, i.e., whether they operate in the same produc-
tion set. Kneip et al. (2016, Section 3.1.2) discuss a version of the test where 
under the null firms in the two groups face the same frontier. Readers can 
consult Kneip et al. (2016) for details on the alternative form of the test.

Suppose iid samples S1,n1 = {(Xi,Yi)}
n1
i=1 and S2,n2 = {(Xi,Yi)}

n2
i=1 of 

input–output pairs from groups 1 and 2, respectively are available. In addi-
tion, assume these samples are independent of each other. The test here is 
simpler than the tests of convexity versus non-convexity and constant versus 
variable returns to scale since two independent samples are available initially. 
The two samples yield independent estimators

and

of µ1,� and µ2,�, respectively; the conditioning indicates the sample used to 
compute the efficiency estimates under the summation signs. As in Sects. 6.1 
and 6.2, the subscripts on �̂(·) have been dropped; either the FDH, VRS-
DEA, or CRS-DEA estimators with corresponding convergence rates nκ 
could be used, although the same estimator would be used for both groups. 
Theorem 4.1 of Kneip et al. (2015b) establishes (under appropriate regularity 
conditions; see Sect. 5.1 for details) consistency and other properties of these 
estimators. The same theorem, however, makes clear that standard, conven-
tional central limit theorems can be used to make inference about the pop-
ulation means µ1,� and µ2,� only when the dimensionality (p+ q) is small 
enough so that κ > 1/2 due to the bias of the estimators µ̂1,n1 and µ̂2,n2.

As discussed earlier in Sect. 5, the Lindeberg-Feller and other central limit 
theorems fail when FDH, VRS-DEA, or CRS-DEA estimators are averaged 
as in (122)–(123) due to the fact that while averaging drives the variance to 
zero, it does not diminish the bias. From Kneip et al. (2015b) and the dis-
cussion in Sect. 5.1, it can be seen that unless (p + q  ) is very small, scaling 
sample means such as (122)–(123) by a power of the sample size to stabi-
lize the bias results in a degenerate statistic with the variance converging to 
zero. On the other hand, scaling if the power of the sample size is chosen to 

(122)
µ̂1,n1 = n−1

1

∑

(Xi,Yi)∈S1,n1

�̂
(
Xi,Yi|S1,n1

)

(123)
µ̂2,n2 = n−1

2

∑

(Xi,Yi)∈S2,n2

�̂
(
Xi,Yi|S2,n2

)
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stabilize the variance, the bias explodes. Hence, the bias must be estimated 
and dealt with.

For each of the two groups ℓ ∈ {1, 2}, a bias estimate B̂ℓ,κ ,nℓ can be 
obtained as described earlier in Sect. 5.1. Then, using VRS-DEA estimators 
with p+ q ≤ 4 (or CRS-DEA estimators with p+ q ≤ 5, or FDH estima-
tors with p+ q ≤ 3), the test statistic

can be used to test the null hypothesis of equivalent mean efficiency for 
groups 1 and 2 provided n1/n2 → c > 0 as n1, n2 → ∞, where c is a con-
stant. The variance estimates appearing in the denominator of τ̂5,n1,n2 are 
given by

for ℓ ∈ {1, 2}; and all values of (p+ q).
In situations where p+ q > 4 with VRS-DEA estimators (or p+ q > 5 

with CRS-DEA estimators, or p+ q > 3 with FDH estimators), means 
based on the subsamples must be used. For ℓ ∈ {1, 2}, let nℓ,κ =

⌊
n2κℓ

⌋
; then 

nℓ,κ < nℓ for κ < 1/2. Let S∗
ℓ,nℓ,κ

 be a random subset of nℓ,κ input–output 
pairs from Sℓ,nℓ. Then, let

noting that while the summation is over only the input–output pairs in 
S∗
ℓ,nℓ,κ

, the efficiency estimates under the summation sign are computed 
using all of the input–output pairs in Sℓ,nℓ.

Kneip et al. (2016) obtain a similar test statistic for use in situations 
where p + q > 4 with VRS-DEA estimators, p + q > 5 with CRS-DEA esti-
mators, or p + q > 3 with FDH estimators. In particular,

(124)τ̂5,n1,n2 =

(
µ̂1,n1 − µ̂2,n2

)
−

(
B̂1,κ ,n1 − B̂2,κ ,n2

)
−

(
µ1,� − µ2,�

)

√
σ̂ 2
1,n1

n1
+

σ̂ 2
2,n2

n2

L
−→N(0, 1),

(125)σ̂ 2
ℓ,nℓ

= n−1
ℓ

nℓ∑

i=1

[
�̂
(
Xℓ,i,Yℓ,i

∣∣Sℓ,nℓ

)
− µ̂ℓ,nℓ

]2 p
−→σ 2

ℓ

(126)
µ̂ℓ,nℓ,κ = n−1

ℓ,κ

∑

(Xℓ,i,Yℓ,i)∈
∗
ℓ,nℓ,κ

�̂
(
Xℓ,i,Yℓ,i

∣∣Sℓ,nℓ

)
,

(127)τ̂6,n1,κ ,n2,κ =

(
µ̂1,n1,κ

− µ̂2,n2,κ

)
−

(
B̂1,κ ,n1 − B̂2,κ ,n2

)
−

(
µ1,� − µ2,�

)

√
σ̂ 2
1,n1
n1,κ

+
σ̂ 2
2,n2
n2,κ

L
−→N(0, 1),
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again provided n1/n2 → c > 0 as n1, n2 → ∞. Note that the same esti-
mates for the variances and biases are used in (127) as in (124). The only 
difference between (124) and (127) is in the number of observations used 
to compute the sample means and in the quantities that divide the variance 
terms under the square-root sign in the denominator.

Kneip et al. (2016) note that the results in (124) and (127) hold for any 
values of µ1,� and µ2,�. Hence, if one tests H0 : µ1,� = µ2,� versus an alter-
native hypothesis such as H1 : µ1,� > µ2,� or perhaps H1 : µ1,� �= µ2,�, 
the (asymptotic) distribution of the test statistic will be known under the 
null and up to µ1,�, µ2,� under the alternative hypothesis. Consequently, 
given two independent samples, one can either (i) compute under the null 
(so that (µ1� − µ2,�) = 0) τ̂5,n1,n2 or τ̂6,n1,κ ,n2,κ as appropriate and compare 
the resulting value against a critical value from the N(0, 1) distribution, or 
(ii) use (124) and (127) to estimate a confidence interval for (µ1� − µ2,�). If 
the estimated interval does not include 0, one would reject the null; other-
wise, one would fail to reject the null. Furthermore, the outcome will be the 
same under either approach; that is, for a given test size, both approaches 
will either reject or fail to reject the null. It clearly follows that for a given 
departure from the null, the tests will reject the null with probability tend-
ing to one as n1, n2 → ∞, and hence, the tests are consistent.

6.4  Testing Separability

Daraio et al. (2018) develop a test of separability (Assumption 4.1) ver-
sus the alternative of non-separability (Assumption 4.2) using the CLT 
results for both unconditional and conditional efficiencies discussed 
in Sect. 5. The idea for building a test statistic is to compare the condi-
tional and unconditional efficiency scores using relevant statistics that 
are functions of �̂(Xi,Yi|Sn) and �̂(Xi,Yi|Zi,Sn) for i = 1, . . . , n. Note 
that under Assumption 4.1, �(X,Y) = �(X,Y |Z) with probability one, 
even if Z may influence the distribution of the inefficiencies inside the 
attainable set, and the two estimators converge to the same object. But 
under Assumption 4.2, the conditional attainable sets �z are different 
and the two estimators converge to different objects. Moreover, under 
Assumption 4.2, �(X,Y) ≥ �(X,Y |Z) with strict inequality holding for 
some (X,Y ,Z) ∈ P.

In order to implement the test of separability, randomly split the sam-
ple Sn into two independent, parts S1,n1, S2,n2 such that n1 = ⌊n/2⌋,  
n2 = n− n1, S1,n1

⋃
S2,n2 = Sn, and S1,n1

⋂
S2,n2 = ∅. The n1 
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observations in S1,n1 are used for the unconditional estimates, while the n2 
observations in S2,n2 are used for the conditional estimates.13

After splitting the sample, compute the estimators

and

where as above in Sect. 5, S∗
2,n2,h

 in (129) is a random subsample from S2,n2 
of size n2,h = min(n2, n2h

r). Consistent estimators of the variances are given 
in the two independent samples by

and

respectively, where the full (sub)samples are used to estimate the variances.
The estimators of bias for a single split of each subsample for the uncon-

ditional and conditional cases are given by B̂κ ,n1 for the unconditional 
case and B̂c

κ ,n2,h
 for the conditional case as described in Sects. 5.1 and 5.2, 

respectively.

(128)
µ̂n1 = n−1

1

∑

(Xi,Yi)∈S1,n1

�̂
(
Xi,Yi|S1,n1

)

(129)
µ̂c,n2,h = n−1

2,h

∑

(Xi,Yi,Zi)∈S
∗
2,n2,h

�̂
(
Xi,Yi|Zi,S2,n2

)
,

(130)σ̂ 2
n1

= n−1
1

∑

(Xi,Yi)∈S1,n1

(
�̂
(
Xi,Yi|S1,n1

)2
− µ̂n1

)

(131)σ̂ 2,h
c,n2

= n−1
2

∑

(Xi,Yi,Zi)∈S2,n2

(
�̂(Xi,Yi|Zi,S2,n2)− µ̂c,n2

)2

13Kneip et al. (2016) proposed splitting the sample unevenly to account for the difference in the con-
vergence rates between the (unconditional) DEA and FDH estimators used in their convexity test, 
giving more observations to the subsample used to compute FDH estimates than to the subsample 
used to compute DEA estimates. Recall that the unconditional efficiency estimators converge at rate 
nκ, while the conditional efficiency estimators converge at rate nκh. The optimal bandwidths are of 
order n−κ/(rκ+1), giving a rate of nκ/(rκ+1) for the conditional efficiency estimators. Using the logic of 
Kneip et al. (2016), the full sample Sn can be split so that the estimators in the two subsamples achieve 
the same rate of convergence by setting nκ1 = n

κ/(rκ+1)
2 . This gives n1 = n

1/(rκ+1)
2 . Values of n1, n2  

are obtained by finding the root η0 in n− η − η1/(rκ+1) = 0 and setting n2 = ⌊η0⌋ and n1 = n− n2.  
However, this will often result in too few observations in the first subsample to obtain meaning-
ful results. For example, if p = q = r = 1 and n = 200, following the reasoning above would lead to 
n1 = 22 and n2 = 178.
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For values of (p+ q) such that κ ≥ 1/3 in the FDH case or κ ≥ 2/5 
when DEA estimators are used, the CLT results in (83) and (104) can be 
used to construct an asymptotically normal test statistic for testing the null 
hypothesis of separability. Since the bias-corrected sample means are inde-
pendent due to splitting the original sample into independent parts, and 
since two sequences of independent variables each with normal limiting dis-
tributions have a joint bivariate normal limiting distribution with independ-
ent marginals, if follows that for the values of (p+ q) given above

under the null. Alternatively, for κ < 1/2, similar reasoning and using the 
CLT results in (85) and (105) leads to

under the null, where n1,κ =
⌊
n2κ1

⌋
 with µ̂n1,κ = n−1

1,κ

∑
(Xi,Yi)∈S∗

n1,κ

�̂
(
Xi,Yi|Sn1

)
, and S∗

n1,κ
 is a random subsample of size n1,κ taken from 

Sn1 (see Kneip et al. 2015b for details). For the conditional part, we have 
similarly and as described in the preceding section, n2,h,κ =

⌊
n2κ2,h

⌋
, with 

µ̂c,n2,h,κ = n−1
2,h,κ

∑
(Xi,Yi,Zi)∈S∗

n2,h,κ

�̂
(
Xi,Yi|Zi,Sn2

)
 where S∗

n2,h,κ
 is a random 

subsample of size n2,h,κ from Sn2.
Given a random sample Sn, one can compute values τ̂7,n or τ̂8,n 

depending on the value of (p + q  ). The null should be rejected whenever 
1−�

(
τ̂7,n

)
 or 1−�

(
τ̂8,n

)
 is less than the desired test size, e.g., 0.1, 0.05, 

or 0.01, where �(·) denotes the standard normal distribution function.

6.5  Computational Considerations

Each of the tests described in Sects. 6.1, 6.2, and 6.4 requires randomly 
splitting the original sample of size n into two parts in order to compute 
sample means that are independent of each other. In addition, these tests 

(132)τ7,n =

(
µ̂n1 − µ̂c,n2,h

)
−

(
B̂κ ,n1 − B̂c

κ ,n2,h

)

√
σ̂ 2
n1
n1

+
σ̂
2,h
c,n2
n2,h

L
−→N(0, 1)

(133)τ8,n =

(
µ̂n1,κ − µ̂c,n2,h,κ

)
−

(
B̂κ ,n1 − B̂c

κ ,n2,h

)

√
σ̂ 2
n1

n1,κ
+

σ̂
2,h
c,n2

n2,h,κ

L
−→N(0, 1)
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as well as the test in Sect. 6.3 require splitting the two parts randomly in 
order to obtain bias estimates. At several points in the preceding discussion, 
observations are assumed to be randomly ordered. In practice, however, data 
are often not randomly ordered when they are first obtained. Data may be 
sorted by firms’ size or by some other criteria, perhaps one not represented 
by a variable or variables included in the researcher’s data.

Observations can be randomly ordered by applying the modified Fisher-
Yates shuffle (Fisher and Yates 1948) described by Durstenfeld (1964). The 
generalized jackknife estimates of bias involve randomly splitting groups of 
observations many times and then averaging, and the random splitting can 
be accomplished by shuffling the observations before each split. One should 
expect little difference in the final bias estimates between two researchers who 
initialize their random number generators with different seeds. However, 
the tests of convexity, CRS, and separability require an initial split of a sin-
gle sample into two parts. Conceivably, the tests may provide different results 
depending on how the sample is split, making it difficult to replicate results. 
To avoid this problem, Daraio et al. (2018) provide an algorithm for split-
ting the initial sample in a random but repeatable way. The algorithm ensures 
that two researchers working independently with the same data will obtain 
the same results, even if the two researchers receive the data with different 
orderings of the observations (see Daraio et al. (2018) for additional details).

7  Dimension Reduction

The discussion in Sects. 3.1 and 3.2 makes clear that under appropri-
ate regularity conditions, the FDH, VRS-DEA, and CRS-DEA estima-
tors converge at rate nκ where κ = 1/(p+ q), 2/(p + q + 1), and 2/(p + q  ), 
respectively. In all three cases, the convergence rates become slower—and 
hence estimation error increases for a fixed sample size n—as the dimension-
ality (p + q) increases. This inverse relationship between dimensionality and 
convergence rates of estimators is well known in nonparametric statistics and 
econometrics, and is often called the “curse of dimensionality” after Bellman 
(1957). In the case of FDH and DEA estimators, increasing dimensionality 
(p + q  ) also affects bias, as seen in Sect. 5. It is perhaps less well appreciated, 
but nonetheless true that dimensionality also affects the variance of partial 
frontier estimators such as the order-m estimators and the order-α estimators 
discussed in Sects. 3.3 and 3.4.

Holding sample size n constant, increasing the number of inputs or the 
number of outputs necessarily results in a greater proportion of the sample 
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observations lying on FDH or DEA estimates of the frontier, i.e., more 
observations with efficiency estimates equal to one. Applied researchers 
using FDH or DEA estimators have long been aware of this phenomenon. 
A number of ad hoc “rules of thumb” for lower bounds on the sample size 
n in problems with p inputs and q outputs are proposed in the literature to 
address the problem. For example, Bowlin (1987), Golany and Roll (1989), 
Vassiloglou and Giokas (1990), and Homburg (2001) propose n ≥ 2(p+ q).  
Banker et al. (1989), Bowlin (1998), Friedman and Sinuany (1998), and 
Raab and Lichty (2002) suggest n ≥ 3(p+ q). Boussofiane et al. (1991) offer 
n ≥ pq, and Dyson et al. (2001) recommend n ≥ 2pq. Cooper et al. (2000, 
2004), and Zervopoulos et al. (2012) advise n ≥ max(pq, 3(p+ q)). No 
theoretical justification is given for any of these rules. Wilson (2018) provides 
evidence that the sample sizes suggested by these rules are too small to pro-
vide meaningful estimates of technical efficiency.

Wilson (2018) provides three diagnostics that can be used to warn research-
ers of situations where the number of inputs and outputs is excessive for a given 
sample size. The first diagnostic, the effective parametric sample size, is based 
on evaluating the number of observations m required in a parametric estima-
tion problem (with the usual parametric convergence rate, m1/2) to obtain esti-
mation error of the same order that one would obtain with n observations in a 
nonparametric problem with convergence rate nκ. Recall that for FDH, VRS-
DEA, or CRS-DEA estimators, κ = 1/(p+ q), 2/(p + q + 1) or 2/(p + q  ). To 
illustrate, note that Charnes et al. (1981) use the CRS-DEA estimator to exam-
ine n = 70 schools that use p = 5 inputs to produce q = 3 outputs. Simple cal-
culations indicate that Charnes et al. achieve estimation error of the same order 
that one would attain with only 8 observations in a parametric problem. Using 
the VRS-DEA or FDH estimator with the Charnes et al. (1981) would result 
in estimation error of the same order that one would obtain in a parametric 
problem with 7 or 3 observations, respectively. One would likely be suspicious 
of estimates from a parametric problem with 8 or fewer observations, and one 
should be suspicious here, too. The ad hoc rules listed above suggest from 15 to 
30 observations for the Charnes et al. (1981) application, which is less than half 
the number of observations used in their study.

With the CRS-DEA estimator, Charnes et al. (1981) obtain 19 efficiency 
estimates equal to 1. The VRS-DEA and FDH estimators yield 27 and 64 
estimates equal to 1, respectively.14

14Here, efficiency estimates are obtained using the full sample of 70 observations. Charnes et al. split 
their sample into two groups according to whether schools participated in a social experiment known as 
“Program Follow Through.” These data are analyzed further in Sect. 8.
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Recalling that the FDH, VRS-DEA, and CRS-DEA estimators are pro-
gressively more restrictive, it is apparent that much of the inefficiency 
reported by Charnes et al. is due to their assumption of CRS. Under the 
assumptions of the statistical model (e.g., under Assumptions 2.4 and 2.5), 
there is not probability mass along the frontier, and hence, there is zero 
probability of obtaining a firm with no inefficiency. The second diagnostic 
suggested by Wilson (2018c) involves considering the number of observa-
tions that yield FDH efficiency estimates equal to 1. If this number is more 
than 25–50% of the sample size, then dimensionality may be excessive.

The third diagnostic proposed by Wilson (2018c) is related to the method 
for reducing the dimensionality proposed by Mouchart and Simar (2002) 
and Daraio and Simar (2007a, pp. 148–150). As in Sect. 3.2, let X and Y 
denote the (p × n  ) and (q × n  ) matrices of observed, input and output vec-
tors in the sample Sn and suppose the rows of X and Y have been stand-
ardized by dividing each element in each row by the standard deviation of 
the values in each row. This affects neither the efficiency measure defined in 
(3) nor its DEA and FDH estimators, which are invariant to units of meas-
urement. Now consider the (p × p  ) and (q × q  ) moment matrices XX′ and 
YY

′. The moment matrices are by construction square, symmetric, and pos-
itive definite. Let �x1, . . . , �xp denote the eigenvalues of XX′ arranged in 
decreasing order, and let �x denote the (p × p  ) matrix whose jth column 
contains the eigenvector corresponding to �xj. Define

and use the eigenvalues of YY ′ to similarly define Ry. Let �y denote the 
(q × q  ) matrix whose jth column contains the eigenvector corresponding to 
�yj, the jth largest eigenvalue of YY ′.

It is well known that Rx and Ry provide measures of how close the cor-
responding moment matrices are to rank one, regardless of the joint dis-
tributions of inputs and outputs. For example, if Rx = 0.9, then the first 
principal component X�x1 (where �x1 is the first column of �x) contains 
90% of the independent linear information contained in the p columns of 
X. One might reasonably replace the p inputs with this principal compo-
nent, thereby reducing dimensionality from (p + q  ) to (1 + q  ). If, in addi-
tion, Ry = 0.9, then the first principal component Y�y1 (where �y1 is 
the first column of �y) contains 90% of the independent linear informa-
tion contained in the q columns of Y. As with inputs, one might reasona-
bly replace the q outputs with this principle component, further reducing 

(134)Rx :=
�x1∑p
j=1 �xj

,
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dimensionality of the problem to 2. Simulation results provided by Wilson 
(2018) suggest that in many cases, expected estimation error will be reduced 
when dimensionality is reduced from (p + q  ) to 2. Färe and Lovell (1988) 
show that any aggregation of inputs our outputs will distort the true radial 
efficiency if the technology is not homothetic, but in experiments #1 and #2 
of Wilson (2018), the technology is not homothetic, but any distortion is 
outweighed by the reduction in estimation error resulting from dimension 
reduction in many cases (see Wilson (2018) for specific guidelines).

Adler and Golany (2001, 2007) propose an alternative method for reduc-
ing dimensionality. In their approach, correlation matrices of either inputs 
or outputs (but not both) are decomposed using eigensystem techniques. 
When estimating efficiency in the output orientation, the dimensional-
ity of the inputs can be reduced, or when estimating efficiency in the input 
direction, the dimensionality of the outputs can be reduced. The Adler and 
Golany method cannot be used when the hyperbolic efficiency measure is 
estimated, and can only be used with directional efficiency in special cases. 
The approach of Wilson (2018) can be used in all cases. Moreover, it is 
well known and is confirmed by the simulation results provided by Wilson 
(2018) that correlation is not a particularly meaningful measure of associ-
ation when data are not multivariate normally distributed, as is often the 
case with production data. For purposes of estimating radial efficiency meas-
ures such as those defined in (3), (5), and (7), the issues are not whether the 
data are linearly related or how they are dispersed around a central point (as 
measured by central moments and correlation coefficients based on central 
moments), but rather how similar are the rays from the origin to each datum 
in Rp+q

+  (as measured by the raw moments used by Wilson [2018]).

8  An Empirical Illustration

In this section, we illustrate some of the methods described in previous sec-
tions using the “Program Follow Through” data examined by Charnes et al. 
(1981). All of the computations described in this section are made using 
the R programming language and the FEAR software library described by 
Wilson (2008).

Charnes et al. (1981) give (in Tables 1, 2, 3 and 4) observations on 
p = 5 inputs and q = 3 outputs for n = 70 schools. The first n1 = 49 
of these schools participated in the social experiment known as Program 
Follow Through, while the remaining n2 = 21 schools did not. In Table 5, 
Charnes et al. report input-oriented CRS-DEA estimates (rounded to two 
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Table 1 Efficiency estimates for Charnes et al. (1981) data

Obs. CRS-DEA VRS-DEA FDH Order-α Order-m

1 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.9017 0.9121 1.0000 1.0000 1.0000
3 0.9883 1.0000 1.0000 1.0000 1.0000
4 0.9024 0.9035 0.9511 1.0000 0.9523
5 1.0000 1.0000 1.0000 1.7488 1.0283
6 0.9069 0.9456 1.0000 1.2500 1.0125
7 0.8924 0.8929 1.0000 1.1399 1.0018
8 0.9148 0.9192 1.0000 1.0000 1.0000
9 0.8711 0.8877 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000
11 0.9819 1.0000 1.0000 1.0000 1.0000
12 0.9744 1.0000 1.0000 1.0000 1.0000
13 0.8600 0.8630 0.9866 0.9866 0.9866
14 0.9840 1.0000 1.0000 1.9429 1.0449
15 1.0000 1.0000 1.0000 3.8089 1.0343
16 0.9503 0.9507 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 1.7107 1.0126
18 1.0000 1.0000 1.0000 1.0000 1.0000
19 0.9501 0.9577 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000
21 1.0000 1.0000 1.0000 1.0000 1.0000
22 1.0000 1.0000 1.0000 1.2081 1.0009
23 0.9630 0.9771 1.0000 1.0000 1.0000
24 1.0000 1.0000 1.0000 1.4075 1.0000
25 0.9764 0.9864 1.0000 1.1242 1.0006
26 0.9371 0.9425 1.0000 1.0000 1.0000
27 1.0000 1.0000 1.0000 1.0000 1.0000
28 0.9443 0.9903 1.0000 1.3333 1.0025
29 0.8417 0.9325 1.0000 1.3748 1.0155
30 0.9025 0.9119 1.0000 1.3093 1.0059
31 0.8392 0.8520 0.9915 1.0000 0.9918
32 0.9070 1.0000 1.0000 1.7778 1.0363
33 0.9402 0.9578 1.0000 1.0000 1.0000
34 0.8521 0.8645 1.0000 1.0000 1.0000
35 1.0000 1.0000 1.0000 1.0000 1.0000
36 0.8032 0.8033 1.0000 1.0064 1.0007
37 0.8614 0.8692 1.0000 1.0000 1.0000
38 0.9485 1.0000 1.0000 2.0205 1.0363
39 0.9352 0.9438 1.0000 1.0000 1.0000
40 1.0000 1.0000 1.0000 1.4633 1.0016
41 0.9468 0.9526 1.0000 1.1545 1.0000
42 0.9474 0.9531 1.0000 1.3333 1.0025
43 0.8708 0.8752 1.0000 1.0000 1.0000
44 1.0000 1.0000 1.0000 1.0000 1.0000
45 0.8916 1.0000 1.0000 2.0000 1.0471
46 0.9087 0.9283 1.0000 1.0000 1.0000
47 1.0000 1.0000 1.0000 1.0000 1.0000
48 1.0000 1.0000 1.0000 2.2037 1.0305

(continued)
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decimal places) for the two groups of schools obtained by separating the 
schools into two groups depending on their participation in Program Follow 
Through and estimating efficiency for each group independent of the other 
group.

The implicit assumption of CRS by Charnes et al. (1981) is a strong 
assumption. Table 1 shows CRS-DEA, VRS-DEA, and FDH estimates of 
input-oriented efficiency for the Charnes et al. (1981) data. The observation 

Table 1 (continued)

Obs. CRS-DEA VRS-DEA FDH Order-α Order-m

49 1.0000 1.0000 1.0000 2.2885 1.0172
50 0.9575 0.9587 1.0000 1.0000 1.0000
51 0.9205 0.9277 1.0000 1.0000 1.0000
52 1.0000 1.0000 1.0000 1.0000 1.0000
53 0.8768 0.8970 0.9872 0.9872 0.9872
54 1.0000 1.0000 1.0000 1.0000 1.0000
55 1.0000 1.0000 1.0000 1.0000 1.0000
56 1.0000 1.0000 1.0000 1.0000 1.0000
57 0.9260 0.9269 1.0000 1.0000 1.0000
58 1.0000 1.0000 1.0000 1.0000 1.0000
59 0.9223 1.0000 1.0000 1.0000 1.0000
60 0.9815 0.9981 1.0000 1.0000 1.0000
61 0.8818 0.9012 1.0000 1.0000 1.0000
62 1.0000 1.0000 1.0000 1.0000 1.0030
63 0.9611 0.9634 1.0000 1.0000 1.0000
64 0.9168 0.9373 1.0000 1.0000 1.0000
65 0.9775 0.9775 1.0000 1.0000 1.0000
66 0.9259 0.9412 0.9761 0.9761 0.9761
67 0.9271 0.9492 1.0000 1.0000 1.0000
68 1.0000 1.0000 1.0000 1.0000 1.0000
69 1.0000 1.0000 1.0000 1.0000 1.0000
70 0.9475 0.9640 1.0000 1.0000 1.0000

Table 2 Eigenvectors of input and output moment matrices

(1) (2) (3)

�x1 0.3829 0.3855 0.3799
0.4662 0.4538 0.4493
0.4700 0.4479 0.4541
0.4661 0.4635 0.4394
0.4450 0.4796 0.5046

Rx 94.9235 96.6599 93.4648
�y1 0.5602 0.5702 0.5647

0.5593 0.5771 0.5548
0.6110 0.5846 0.6110

Ry 99.0422 99.1462 99.3443
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Table 3 Efficiency estimates from transformed data, split sample

Obs. CRS-DEA VRS-DEA FDH Order-α Order-m

1 0.7830 0.8332 1.0000 1.0000 1.0000
2 0.6975 0.7037 0.7804 0.7821 0.7804
3 0.8212 0.8351 0.9466 0.9466 0.9466
4 0.5882 0.6285 0.6642 0.7934 0.6705
5 0.6991 0.9865 1.0000 1.2670 1.0106
6 0.7664 0.8357 0.9485 1.0000 0.9502
7 0.5560 0.5892 0.7035 0.8026 0.7075
8 0.5876 0.5927 0.6564 0.6578 0.6564
9 0.6478 0.6550 0.7449 0.7466 0.7450
10 0.8031 0.8425 1.0000 1.0000 1.0000
11 0.7765 0.7923 0.8753 0.8753 0.8753
12 0.9082 0.9300 0.9988 0.9988 0.9988
13 0.6426 0.6483 0.7203 0.7219 0.7203
14 0.7434 0.8748 0.8869 1.0000 0.8939
15 0.8987 0.9652 1.0000 1.0540 1.0013
16 0.6882 0.7022 0.7753 0.7753 0.7753
17 0.9038 0.9631 1.0000 1.1945 1.0066
18 0.9048 0.9119 1.0000 1.0000 1.0000
19 0.7281 0.7556 0.9912 0.9912 0.9912
20 1.0000 1.0000 1.0000 1.0000 1.0000
21 0.9499 0.9788 1.0000 1.0000 1.0000
22 0.9248 0.9622 1.0000 1.1408 1.0037
23 0.7470 0.7792 0.9752 0.9752 0.9752
24 0.9657 0.9872 1.0000 1.2599 1.0041
25 0.7320 0.7483 0.9544 0.9565 0.9544
26 0.7275 0.7379 0.8523 0.8523 0.8523
27 0.9016 0.9020 0.9070 0.9070 0.9070
28 0.7217 0.7513 0.7846 0.8950 0.7860
29 0.5767 0.8218 0.8395 1.0000 0.8469
30 0.6342 0.6902 0.7749 0.8167 0.7775
31 0.5660 0.6156 0.6884 0.7255 0.6899
32 0.6149 1.0000 1.0000 1.3282 1.0120
33 0.6992 0.7314 0.8925 0.8925 0.8925
34 0.6849 0.6931 0.8146 0.8146 0.8146
35 0.6809 0.7052 0.9412 0.9412 0.9412
36 0.5122 0.5617 0.6583 0.6940 0.6606
37 0.7000 0.7447 0.9137 1.0000 0.9153
38 0.8601 1.0000 1.0000 1.5371 1.0115
39 0.7344 0.7350 0.7422 0.7422 0.7422
40 0.7668 0.7927 0.8894 1.0000 0.8913
41 0.6860 0.6975 0.8429 0.8449 0.8430
42 0.7554 0.7829 0.8983 1.0000 0.8992
43 0.6502 0.6582 0.7593 0.7610 0.7593
44 0.9147 1.0000 1.0000 1.0000 1.0000
45 0.7882 0.9108 1.0000 1.4389 1.0223
46 0.6171 0.6299 0.6937 0.6937 0.6937
47 0.7679 0.7691 0.7839 0.7839 0.7843
48 0.7646 0.9111 0.9365 1.0544 0.9389

(continued)
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numbers in the first column correspond to those listed by Charnes et al. in 
their tables; schools represented by Observation Nos. 1–49 participated in 
Program Follow Through, while the schools corresponding to Observation 
Nos. 50–70 did not. The estimates shown in Table 1 reveal that the results 
are sensitive to what is assumed. In particular, the CRS-DEA estimates are 
quite different from the VRS-DEA estimates, which in turn are quite differ-
ent from the FDH estimates. From the earlier discussion in Sects. 3.1 and 
3.2, it is clear that both the VRS-DEA and FDH estimators remain con-
sistent under CRS. It is equally clear that among the three estimators, the 
CRS-DEA estimator is the most restrictive. The results shown in Table 1 cast 
some doubt on the assumption of CRS and perhaps also the assumption of a 
convex production set.

In addition to the sensitivity of the results in Table 1 with respect to 
whether the CRS-DEA, VRS-DEA, or FDH estimator is used, the results 
reveal a more immediate problem. Among the CRS-DEA estimates shown 
in Table 1, 25—more than one-third of the sample—are equal to one, 
while 33 of the VRS-DEA estimates equal to one and 65 of the FDH esti-
mates are equal to one. As discussed in Sect. 7 and by Wilson (2018), this 

Table 3 (continued)

Obs. CRS-DEA VRS-DEA FDH Order-α Order-m

49 0.7276 0.7880 0.8605 0.9070 0.8629
50 0.6235 0.7428 0.8968 0.8968 0.8968
51 0.6003 0.6483 0.9650 0.9650 0.9650
52 0.8149 1.0000 1.0000 1.0000 1.0000
53 0.6071 0.6104 0.6413 0.6413 0.6413
54 0.7412 0.9461 1.0000 1.0000 1.0000
55 0.8248 0.8744 1.0000 1.0000 1.0000
56 0.6846 0.7058 0.9021 0.9021 0.9021
57 0.6398 0.6962 1.0000 1.0000 1.0000
58 1.0000 1.0000 1.0000 1.0000 1.0000
59 0.7205 1.0000 1.0000 1.0000 1.0000
60 0.6700 0.6901 0.8763 0.8763 0.8763
61 0.5146 0.6481 0.6481 0.8531 0.6489
62 0.7948 0.8934 1.0000 1.0000 1.0019
63 0.6240 0.6645 1.0000 1.0000 1.0000
64 0.5508 0.5703 0.7119 0.7119 0.7119
65 0.6509 0.6979 1.0000 1.0000 1.0000
66 0.4744 0.4791 0.5232 0.5232 0.5232
67 0.5809 0.6384 1.0000 1.0000 1.0000
68 0.6137 0.6706 1.0000 1.0000 1.0000
69 0.8511 1.0000 1.0000 1.0000 1.0000
70 0.6157 0.6453 0.9193 0.9193 0.9193
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Table 4 Efficiency estimates from transformed data, full sample

Obs. CRS-DEA VRS-DEA FDH Order-α Order-m

1 0.6733 0.8277 0.9555 0.9555 0.9555
2 0.5997 0.6640 0.7804 0.7821 0.7808
3 0.7061 0.8202 0.9466 0.9466 0.9466
4 0.5057 0.5181 0.6328 0.7934 0.6368
5 0.6011 0.7695 0.7695 1.1865 0.8049
6 0.6590 0.6876 0.9485 0.9997 0.9496
7 0.4780 0.4861 0.5611 0.7893 0.5697
8 0.5053 0.5596 0.6564 0.6578 0.6564
9 0.5570 0.6124 0.7449 0.7466 0.7449
10 0.6905 0.8341 1.0000 1.0000 1.0000
11 0.6677 0.7788 0.8753 0.8753 0.8753
12 0.7809 0.9151 0.9988 0.9988 0.9988
13 0.5525 0.6114 0.7203 0.7219 0.7203
14 0.6392 0.7102 0.8869 1.2083 0.9043
15 0.7728 0.7953 1.0000 1.0540 1.0016
16 0.5917 0.6903 0.7753 0.7753 0.7753
17 0.7771 0.7942 0.9527 1.1945 0.9561
18 0.7780 0.8639 1.0000 1.0023 1.0000
19 0.6261 0.7459 0.8079 0.8079 0.8079
20 0.8598 0.9778 1.0000 1.0000 1.0000
21 0.8168 0.9646 1.0000 1.0000 1.0000
22 0.7951 0.7954 0.7975 1.1219 0.8057
23 0.6423 0.7704 0.7949 0.7949 0.7949
24 0.8303 0.8808 1.0000 1.2599 1.0106
25 0.6294 0.6679 0.9544 0.9565 0.9547
26 0.6255 0.7243 0.8523 0.8523 0.8523
27 0.7753 0.8805 0.9070 1.0000 0.9079
28 0.6205 0.6210 0.6257 0.8802 0.6311
29 0.4958 0.6460 0.6460 0.9961 0.6734
30 0.5453 0.5680 0.7749 0.8167 0.7755
31 0.4867 0.5066 0.6884 0.7255 0.6894
32 0.5287 0.8614 0.8614 1.1338 0.8823
33 0.6012 0.7235 0.8925 0.8925 0.8925
34 0.5889 0.6799 0.8146 0.8146 0.8146
35 0.5855 0.6958 0.7672 0.7672 0.7672
36 0.4404 0.4619 0.6583 0.6938 0.6589
37 0.6019 0.6142 0.7287 1.0000 0.7362
38 0.7395 0.8178 1.0000 1.4118 1.0334
39 0.6314 0.7164 0.7422 0.8183 0.7422
40 0.6593 0.6738 0.8746 0.8894 0.8761
41 0.5898 0.6368 0.8429 0.8449 0.8430
42 0.6495 0.6578 0.8834 0.8983 0.8851
43 0.5591 0.6121 0.7593 0.7610 0.7593
44 0.7865 1.0000 1.0000 1.0000 1.0000
45 0.6778 0.7452 1.0000 1.3175 1.0344
46 0.5306 0.6193 0.6937 0.6937 0.6937
47 0.6603 0.7475 0.7839 0.8642 0.7850

(continued)
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is indicative of too many dimensions for the given number of observations. 
Moreover, even with the assumption of CRS, the convergence rate of the 
CRS-DEA estimator used by Charnes et al. (1981) is n1/4. As discussed in 
Sect. 7 and Wilson (2018), this results in an effective parametric sample size 
of 8. Moreover, an eigensystem analysis on the full data yields Rx = 94.923 
and Ry = 99.042. The discussion in Sect. 7 and in Wilson (2018) makes 
clear the need for dimension reduction. The simulation results obtained by 
Wilson (2018) suggest that mean-square error is likely reduced when the 8 
outputs are combined into a single principal component and the 3 outputs 
are combined into a single principal component using eigenvectors of the 
moment matrices of the inputs and outputs as described by Wilson (2018).

Table 1 also shows (input-oriented) order-α efficiency estimates (with 
α = 0.95) and order-m efficiency estimates (with m = 115, chosen to give 
the number of observations above the order-m partial frontier similar to the 
number of observations lying above the order-α frontier). Note that only 3 
observations lie below the estimated order-α frontier, and only 4 observa-
tions lie below the estimated order-m frontier (indicated by estimates less 
than 1). This provides further evidence that the number of dimensions is too 
large for the available amount of data.

Table 4 (continued)

Obs. CRS-DEA VRS-DEA FDH Order-α Order-m

48 0.6574 0.7341 0.9365 1.0559 0.9469
49 0.6256 0.6488 0.8605 0.9070 0.8615
50 0.6235 0.7291 0.8073 0.8073 0.8073
51 0.6003 0.6483 0.9650 1.0507 0.9709
52 0.8149 0.9787 1.0000 1.0000 1.0000
53 0.6071 0.6104 0.6413 0.9021 0.6485
54 0.7412 0.9169 1.0000 1.0000 1.0000
55 0.8248 0.8687 1.0000 1.0168 1.0008
56 0.6846 0.7058 0.8984 0.9469 0.8993
57 0.6398 0.6897 0.9197 0.9217 0.9205
58 1.0000 1.0000 1.0000 1.4067 1.0133
59 0.7205 1.0000 1.0000 1.0000 1.0000
60 0.6700 0.6901 0.8728 0.9199 0.8736
61 0.5146 0.6481 0.6481 1.0000 0.6789
62 0.7948 0.8934 1.0000 1.3189 1.0327
63 0.6240 0.6645 1.0000 1.0404 1.0050
64 0.5508 0.5681 0.7119 0.7239 0.7125
65 0.6509 0.6979 1.0000 1.1282 1.0113
66 0.4744 0.4791 0.5232 0.7359 0.5296
67 0.5809 0.6318 0.8088 0.8107 0.8089
68 0.6137 0.6640 0.8706 0.8726 0.8706
69 0.8511 1.0000 1.0000 1.6466 1.0481
70 0.6157 0.6453 0.9155 0.9650 0.9164
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Table 2 shows the eigenvectors corresponding to the largest eigenvalues 
for the moment matrices of inputs and outputs as discussed in Sect. 7. The 
first column of Table 2 gives the eigenvectors as well as values of Rx and Ry 
computed from the full sample with 70 observations. The second column 
gives similar information computed from Observation Nos. 1–49 corre-
sponding to the Program Follow Through participants, while the third col-
umn gives similar information computed from Observation Nos. 50–70 for 
schools that did not participate in Program Follow Through. The results are 
similar across the three columns of Table 2, and so it appears reasonable to 
use the eigenvectors computed from the full sample to compute principal 
components. Doing so for both inputs and outputs reduces dimensionality 
from 8 to 2.

The first principal components of inputs and outputs based on moment 
matrices as described above are plotted in Fig. 1. The plot in Fig. 1 reveals 
two dissimilar observations. The observation lying in the upper right cor-
ner of the plot is Observation No. 59, and the observation lying at (105.93, 
118.93) is Observation No. 44. Both of these observations are flagged by 
Wilson (1993, 1995) and Simar (2003) as outliers. Note that the transfor-
mation from the original (p + q  )-dimensional space of inputs and outputs to 
the 2-dimensional space of first principal components amounts to an affine 
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Fig. 1 Charnes et al. (1981) data after principal component transformation
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function. It is well known that the image of a convex set under an affine 
function is also convex, and that the affine transformation preserves extreme 
points (e.g., see Boyd and Vandenberghe 2004). Therefore, the method for 
dimension reduction discussed in Sect. 7 and Wilson (2018) has an addi-
tional benefit. Reducing dimensionality to only 2 dimensions permits simple 
scatter plots of the transformed data, which can reveal outliers in the data 
that are more difficult to detect in higher dimensions.

Applying the CRS-DEA, VRS-DEA, FDH, order-α, and order-m estima-
tors to the transformed data yields the results shown in Tables 3 and 4. The 
estimates in Table 3 are obtained by applying the estimators separately on 
the two groups of observations (i.e., those participating in Program Follow 
Through, corresponding to Observation Nos. 1–49, and those not partici-
pating, corresponding to Observation Nos. 50–70). The estimates in Table 4 
are obtained from the full sample, ignoring program participation. In both 
Tables 3 and 4, the partial efficiency estimates are computed with α = 0.95 
and m = 115 as in Table 1.

As an illustration, consider the results for Observation No. 5 in Table 3. 
The CRS-DEA and VRS-DEA estimates suggest that this school could pro-
duce the same level of outputs using only 69.91% or 98.65% of its observed 
levels of inputs, respectively. The FDH estimate indicates that School No. 
5 is on the estimated frontier, and by itself does not suggest that input lev-
els could be reduced without reducing output levels. At the same time, 
however, the FDH estimates, as well as the CRS-DEA and VRS-DEA esti-
mates, are biased upward toward 1. The order-m estimate, by contrast, sug-
gests that School No. 5 would have to increase its input usage by 1.06% 
in order to meet the estimated expected input usage among 115 randomly 
chosen schools producing at least as much output as School No. 5. Similarly, 
the order-α estimate suggests that School No. 5 would have to increase its 
input usage by 26.70% while holding output levels fixed in order to have a 
probability of 0.05 of being dominated by a school producing more output 
while using less input that School No. 5. In the input orientation, the partial 
efficiency estimators are necessarily weakly greater than the FDH estimates. 
After reducing dimensionality to only two dimensions, the partial efficiency 
estimators have the same convergence rate (i.e., n1/2) as the FDH estima-
tors, but the partial efficiency estimates remain less sensitive to outliers than 
the FDH estimates.

Comparing results across the five columns in either Table 3 or Table 4 
reveals substantial differences between estimates obtained with different 
estimators. This raises the question of whether CRS (assumed by Charnes 
et al.) is an appropriate assumption supported by the data, or whether even 
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convexity of the production set is an appropriate assumption. In addition, 
comparing estimates in Table 3 with corresponding estimates in Table 4 
reveals some large differences, but not in all cases. This raises the question of 
whether the two groups of schools have the same mean efficiency or whether 
they face the same frontier. Charnes et al. allow for different frontiers, but if 
the schools face the same frontier, using the full sample for estimation would 
reduce estimation error. Rather than making arbitrary assumptions, the sta-
tistical results described in earlier sections can be used to let the data speak 
to what is appropriate.

In order to address the question of whether the two groups of schools 
face the same frontier, we apply the test of separability developed by Daraio 
et al. (2018) using the reduced-dimensional, transformed data. Note that 
here, the “environmental” variable is binary, i.e., schools either participate 
in Program Follow Through or they do not. Hence, no bandwidths are 
needed; instead, we follow the method outlined in Daraio et al. (2018, sepa-
rate Appendix C) and using the difference-in-means test described by Kneip 
et al. (2016). To employ the test, we first randomly sort the observations 
using the randomization algorithm appearing in Daraio t al. (2018, sepa-
rate Appendix D). We then divide the observations into two subsamples, 
taking the first 35 randomly sorted observations as group 1, and the remain-
ing observations as group 2. Using the observations in group 1, we estimate 
efficiency using the input-oriented FDH estimator and compute the sample 
mean (0.8948) and sample variance (0.01424) of these estimates. We then 
estimate the bias (0.2540) of this sample mean using the generalized jack-
knife method described by Daraio et al. (2018).

For the 35 observations in group 2, we have 23 observations on schools 
participating in Program Follow Through (group 2a), and 12 observations 
not participating (group 2b). We again use the FDH estimator to estimate 
input-oriented efficiency, but we apply the estimator as well as the gener-
alized jackknife independently on the two subgroups (2a and 2b). We then 
compute the sample mean (across 35 observations in group 2) of the effi-
ciency estimates (0.9170), the sample variance (0.01408) and the bias cor-
rection (0.2011) as described by Daraio et al. (2018, separate Appendix C). 
This yields a value of 2.6278 for the test statistic given by the input-ori-
ented analog of (124), and hence, the p-value is 0.004298.15 Hence, the null 

15The test is a one-sided test, since by construction the mean of the input-oriented efficiency estimates 
for group 1 is less than the similar mean for group 2 under departures from the null hypothesis of 
separability.
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hypothesis of separability is soundly rejected by the data. The data provide 
evidence suggesting that Program Follow Through schools face a different 
frontier than the non-Program Follow Through schools.

We use the FDH estimator to test separability since the FDH estimator 
does not require an assumption of convexity, which has not yet been tested. 
Given that separability is rejected, we next apply the convexity test of Kneip 
et al. (2016) separately and independently on the 49 participating schools 
and the 21 non-participating schools, again using the two-dimensional, 
transformed data. For the participating and non-participating schools, we 
obtain values 3.4667 and −0.6576, respectively of the test statistic given in 
(112). The corresponding p-values are 0.0003 and 0.7446, and hence, we 
firmly reject convexity of the production set for participating schools, but we 
fail to reject convexity for the non-participating schools.

Next, for the non-participating schools, we test CRS against the alterna-
tive hypothesis of variable returns to scale using the method of Kneip et al. 
(2016). Since convexity is rejected for the Program Follow Through schools, 
there is no reason to test CRS. As with the other tests, we also work here 
again with the two-dimensional, transformed data. We obtain the value 
−1.7399 for the input-oriented analog of the test statistic in (119), with 
a corresponding p value of 0.9591. Hence, we do not reject CRS for the 
non-participating schools.

Taken together, the results of the tests here suggest that efficiency should 
be estimated separately and independently for the group of participating and 
the group of non-participating schools. In addition, the results indicate that 
the FDH estimator should be used to estimate efficiency for the participat-
ing schools. On the other hand, we do not find evidence to suggest that the 
CRS-DEA estimator is inappropriate for the non-participating schools.

9  Nonparametric Panel Data Frontier

9.1  Basic Ideas: Conditioning on Time

One possible approach, developed in Mastromarco and Simar (2015) in a 
macroeconomic setup, is to extend the basic ideas of Cazals et al. (2002) and 
Daraio and Simar (2005), described in Sect. 4, to a dynamic framework to 
allow introduction of a time dimension.

Consider a generic input vector X ∈ R
p
+, a generic output vector 

Y ∈ R
q
+ and denote by Z ∈ R

d the generic vector of environmental varia-
bles. Mastromarco and Simar (2015) consider the time T as a conditioning 
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variable and define for each time period t, �t, the attainable set at time t as 
the set of combinations of inputs and outputs feasible at time t. �t ⊂ R

p+q
+  

is the support of (X, Y  ) at time t, whose distribution is completely deter-
mined by

which is the probability of being dominated for a production plan (x, y  ) at 
time t. Finally, when considering the presence of additional external factors 
Z, the attainable set is defined as �z

t ⊆ �t ⊂ R
p+q
+  defined as the support of 

the conditional probability

In this framework, assuming free disposability of inputs and outputs, the 
conditional output-oriented Debreu–Farrell technical efficiency of a produc-
tion plan (x, y) ∈ �z

t , at time t facing conditions z, is defined in (54)–(56) as

where StY |X,Z(y|x, z) = Prob(Y ≥ y|X ≤ x,Z = z,T = t).16

Suppose we have a sample Xn,s = {(Xit ,Yit ,Zit)}
n,s
i=1, t=1 comprised of 

panel data for n firms observed over s periods. Then, the unconditional and 
conditional attainable sets can be estimated. Assuming that the true attaina-
ble sets are convex and under free disposability of inputs and outputs (simi-
lar to Daraio and Simar 2007b), the DEA estimators at time t and facing the 
condition Z = z is given by

where J (z, t) =
{
j = (i, v)|z − hz < Zi,v < z + hz; t − ht < v < t + ht

}
 

and hz and ht are bandwidths of appropriate size selected by data-driven 

(135)Ht
X,Y (x, y) = Prob(X ≤ x,Y ≥ y|T = t),

(136)Ht
X,Y |Z(x, y|z) = Prob(X ≤ x,Y ≥ y|Z = z,T = t).

(137)
�t(x, y|z) = sup

{
�|(x, �y) ∈ �z

t

}
= sup

{
�|Ht

Y ,X|Z(x, �y|z) > 0
}

= sup
{
�|StY |X ,Z(�y|x, z) > 0

}
.

(138)�̂z
DEA,t =




 (x, y) ∈ R
p
+ × R

q
+

���y ≤
�

j∈J (z,t)

γjYj , x ≥
�

j∈J (z,t)

γjXj , γ ≥ 0,
�

j∈J (z,t)

γj = 1






16For efficiency measures, we only focus the presentation on the output orientation; the same could be 
done for any other orientation (input, hyperbolic, directional distance) (see Daraio and Simar 2007a; 
Bădin et al. (2010, 2012); Wilson 2011; Simar and Vanhems 2012; and Simar et al. 2012).
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methods. The set J (z, t) describes the localizing procedure to estimate the 
conditional DEA estimates and determines the observations in a neighbor-
hood of (z,t  ) that will be used to compute the local DEA estimate. Here, 
only the variables (t,z  ) require smoothing and appropriate bandwidths 
(see Sect. 4.2 for details and Daraio et al. (2018) for discussion of practical 
aspects of bandwidth selection).

The estimator of the output conditional efficiency measure at time t is 
then obtained by substituting �̂z

DEA,t for �z
t  in (137). In practice, an esti-

mate is computed by solving the linear program

If the convexity of the sets �z
t  is questionable, it is better to use the FDH 

approach described in Sect. 4.2 relying only on the free disposability of the 
inputs and outputs. It particularizes here as follows:

where I(z, t) =
{
j = (i, v)|z − hz < Zi,v < z + hz; t − ht < v < t + ht ∩ Xi,v ≤ x

}
.  

The conditional output FDH estimator turns out to be simply defined as 
(see (62)),

The statistical properties of these nonparametric estimators are well 
known as discussed in Sect. 4.2. To summarize, these estimators are con-
sistent and converge to some non-degenerate limiting distributions to be 
approximated by bootstrap techniques. As discussed earlier, the rates of con-
vergence become slower with increasing numbers of inputs and outputs, 
illustrating the curse of dimensionally. The situation is even jeopardized if 
the dimension of Z increases.

Having these estimators and to bring some insights on the effect of 
Z and T on the efficiency scores, Mastromarco and Simar (2015) ana-
lyze, in a second stage, the average behavior of �t(X,Y |Z) at period t and 
conditionally on Z = z. The regression aims to analyze the behavior of 
E
(
�̂t(X,Y |Z = z)

)
, where �̂t is either the DEA or the FDH estimators 

(139)�̂DEA,t(x, y|z) = sup




�|�y ≤
�

j∈J (z,t)

γjYj , x ≥
�

j∈J (z,t)

γjxj , γ ≥ 0,
�

j∈J (z,t)

γj = 1






(140)�̂z
FDH,t =

{
(x, y) ∈ R

p
+ × R

q
+

∣∣y ≤ Yj, x ≥ Xj, j ∈ I(z, t)
}

(141)�̂FDH,t(x, y|z) = max
i∈I(z,t)

(
min

j=1, ..., p

(
Y
j
i

yj

))
,
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defined above, as a function of z and t. For this purpose, they suggest to 
estimate the flexible nonparametric location-scale regression model

where E(εit|Zit , t) = 0 and VAR(εit|Zit , t) = 1. This model captures 
both the location µ(z, t) = E

(
�̂t(Xit ,Yit|Zit = z)

)
 and the scale effect 

σ 2(z, t) = VAR
(
�̂t(Xit ,Yit|Zit = z)

)
. The nonparametric function µ(z, t) 

are usually estimated by local linear techniques, and σ 2(z, t) by local con-
stant techniques on the squares of the residuals obtained when estimating 
µ(z, t) (see Mastromarco and Simar [2015] for details).

As a by-product of the analysis, the scaled residual error term for a given 
particular production plan (Xit ,Yit ,Zit) at time t is computed as

This unexplained part of the conditional efficiency measure (called “pure 
efficiency” in Bădin et al. 2012) cleanses efficiency scores from external 
effects (here, time T and Z  ). The pure efficiency measure provides then a 
better indicator by which to assess the economic performance of production 
units over time and allows the ranking of production units facing different 
environmental factors at different time periods.

Mastromarco and Simar (2015) apply these panel techniques in a macro-
economic setup, where they use a dataset of 44 countries (26 OECD coun-
tries and 18 developing countries) over 1970–2007. In their macroeconomic 
cross-country framework, where countries are producers of output (i.e., 
GDP) given inputs (capital, labor; see Mastromarco and Simar [2015] for 
a detailed description of the data) and technology, inefficiency can be iden-
tified as the distance of the individual countries from the frontier estimated 
by the maximum output of the reference country regarded as the empiri-
cal counterpart of an optimal boundary of the production set. Inefficiencies 
generally reflect a sluggish adoption of new technologies, and thus efficiency 
improvement will represent productivity catch-up via technology diffusion.

Mastromarco Simar (2015) explore the channels under which FDI fosters 
productivity by disentangling the impact of this factor on the production 
process and its components: impact on the attainable production set (input–
output space) and the impact on the distribution of efficiencies. In par-
ticular, they want to clarify the effect of time and foreign direct investment 
(FDI) on the catching-up process which is related to productivity gains and 

(142)�̂t(Xit ,Yit|Zit) = µ(Zit , t)+ σ(Zit , t)εit

(143)ε̂it =
�t(Xit ,Yit|Zit)− µ(Zit , t)

σ (Zit , t)
.
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so to productive efficiency of the countries. They review the literature in the 
field (both parametric and nonparametric).

The second-stage regression described above cleanses efficiency scores 
from external effects (time and FDI), and this enables Mastromarco and 
Simar (2015) to eliminate the common time factor effect, as economic 
cycles, in a very flexible and robust way (the location-scale model). Their 
pure efficiency measure provides a better indicator to assess the economic 
performance of production units over time, and in their macroeconomic 
framework, the “pure efficiency” represents a new measure of the Solow 
residual. They conclude that both time and FDI plays a role in the catch-
ing-up process, clarifying from an empirical point of view some theoretical 
debate on these issues.

Note that the approach developed in this section could also have been 
applied with robust versions of the DEA or FDH estimators by using 
rather the partial frontiers, the order-m and the order-α frontiers derived 
in Sect. 2.4. This is particularly useful if the cloud of data points con-
tains extreme data points or outliers which may hide the true relationship 
between the variables (see, e.g., the discussion in Section 5.4 in Daraio and 
Simar [2007a]).

9.2  Cross-Sectional Dependence in Panel Data 
Frontier Analysis

When analyzing a panel of data, we might also expect some cross-sectional 
dependence between the units, this is particularly true for macroeconomic 
data but also for a panel of data on firms in a country, etc. In a macroeco-
nomic setup, Mastromarco and Simar (2018) propose a flexible, nonpara-
metric, two-step approach to take into account cross-sectional dependence 
due to common factors attributable to global shocks to the economy. It is 
easy to extend the approach for microeconomic data. They use again condi-
tional measures where now they condition not only to external environmen-
tal factors (Z  ) but also to some estimates of a “common time factor” that is 
supposed to capture the correlation among the units. By conditioning on 
the latter, they eliminate the effect of these factors on the production pro-
cess and so mitigate the problem of cross-sectional dependence. To define 
this common time factor, they follow the approach Pesaran (2006) and Bai 
(2009), where it is shown that an unobserved common time factor, ξt, can 
be consistently proxied by cross-sectional averages of inputs and the out-
puts at least asymptotically, as n, s → ∞, and s/n → K where K is a finite 
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positive (≥ 0) constant. So the idea is to consider Ft = (t,X·t ,Y·t) as a proxy 
for the unobserved nonlinear and complex common trending patterns.17

So, at this stage we have now a sample of observations 
{(Xit ,Yit ,Zit ,Ft)}

n,s
i=1,t=1. For estimating the conditional measures, 

Mastromarco and Simar (2018) follow the approach suggested by Florens 
et al. (2014) which so far has been developed for univariate Y, but the mul-
tivariate case should not create any theoretical issues. This approach avoids 
direct estimation of the conditional survival function SY |X,Z ,Ft (y|x, z, ft).  
As observed by Florens et al., the procedure reduces the impact of the 
curse of dimensionality (through the conditioning variables Z, F  t) and 
requires smoothing in these variables in the center of the data cloud instead 
of smoothing at the frontier where data are typically sparse and estima-
tors are more sensitive to outliers. Moreover, the inclusion of time factor 
Ft = (t,X·t ,Y·t) enables elimination of the common time factor effect in a 
flexible, nonparametric location-scale model. The statistical properties of the 
resulting frontier estimators are established by Florens et al. (2014).

Assume the data are generated by the nonparametric location-scale regres-
sion model

where µx, σx and εx each have p components and, for ease of nota-
tion, the product of vectors is component-wise. So the first equa-
tion in (144) represents p relations, one for each component of X. 
We assume that each element of εx and εy has mean zero and stand-
ard deviation equal to 1. The model also assumes that (εx, εy) is inde-
pendent of (Z, F  t). This model allows the capture for any (z, f  t) 
and for each input j = 1, . . . , p and for the output, the locations 
µ
(j)
x (z, ft) = E

(
X(j)|Z = z,Ft = ft

)
, µy(z, ft) = E(Y |Z = z,Ft = ft) 

and the scale effects σ
(j),2
x (z, ft) = VAR

(
X(j)|Z = z,Ft = ft

)
, 

σ 2
y (z, t) = VAR(Y |Z = z,Ft = ft) of the environmental and common fac-

tors on the production plans. Here again, for a vector a, a(j  ) denotes its jth 
component.

The production frontier can be estimated in two stages as proposed by 
Florens et al. (2014). In the first stage, the location functions µℓ(zit , ft) in 
(144) are estimated by local linear methods. Then, the variance functions 

(144)

{
Xit = µx(Zit ,Ft)+ σx(Zit ,Ft)εx,it
Yit = µy(Zit ,Ft)+ σy(Zit ,Ft)εy,it

,

17Here, we use the standard notation where a dot in a subscript signifies an average over the corre-
sponding index.
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σ 2
ℓ (zit , ft) are estimated by regressing the squares of the residuals obtained 

from the first local linear regression on (z, f  t). For the variance functions, 
a local constant estimator is used to avoid negative values of the estimated 
variances.

The first-stage estimation yields the residuals

and

where for ease of notation, a ratio of two vectors is understood to be compo-
nent-wise. These residuals amount to whitened inputs and output obtained 
by eliminating the influence of the external and other environmental varia-
bles as common factors. To validate the location-scale model, Florens et al. 
(2014) propose a bootstrap-based testing procedure to test the independence 
between 

(
ε̂x,it , ε̂y,it

)
 and (Zit, F  t), i.e., the independence of whitened inputs 

and output from the external and global effects.
Note that here, for finite sample the independence between 

(εx, εy) and of (Z, F  t) is not verified in finite samples, as, e.g., 
COV(Y·t , εy,it) = σyCOV(ε·t , εy,it) = σy

VAR(εy,it)

n
, but since the latter con-

verge to zero as n → ∞, this does not contradict the asymptotic independ-
ence assumed by the model.

In the second stage, a production frontier is estimated for the whitened 
output and inputs given by (145) and (146). Hence, for each observation 
(i, t) a measure of “pure” efficiency is obtained. This approach accommodates 
both time and cross-sectional dependence and yields more reliable estimates 
of efficiency.18 Moreover, as observed by Florens et al. (2014), by cleaning 
the dependence of external factors in the first stage, the curse of dimension-
ality due to the dimension of the external variables is avoided when estimat-
ing the production frontier. Smoothing over time accounts for the panel 
structure of the data as well as the correlation over time of observed units.

The attainable set of pure inputs and output (εx, εy) is defined by

(145)ε̂x,it =
Xit − µ̂x(Zit ,Ft)

σ̂x(Zit ,Ft)

(146)ε̂y,it =
Yit − �̂y(Zit ,Ft)

σ̂y(Zit ,Ft)
,

(147)�ε =

{
(ex, ey) ∈ R

p+1
∣∣∣Hεx ,εy

(
ex, ey

)
≥ 0

}

18To some extent, the first step permits controlling for endogeneity due to reverse causation between 
production process of inputs and output and the external variables (Z, F  t).
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where Hεx ,εy

(
ex, ey

)
= Pr

(
εx ≤ ex, εy ≥ ey

)
. The nonparametric FDH 

estimator is obtained by using the empirical analog Ĥεx ,εy(ex, ey) of 
Hεx ,εy(ex, ey) and the observed residuals defined in (145) and (146). As 
shown in Florens et al. (2014), replacing the unobserved 

(
εx, εy

)
 by their 

empirical counterparts 
(
ε̂x, ε̂y

)
 does not change the usual statistical proper-

ties of frontier estimators. Consequently, both consistency for the full-fron-
tier FDH estimator and 

√
n-consistency and asymptotic normality for the 

robust order-m frontiers follow. Florens et al. (2014) conjecture that if the 
functions µℓ and σℓ for ℓ = x, y are smooth enough, the conditional FDH 
estimator keeps its usual nonparametric rate of convergence, i.e., here, 
n1/(p+1).

A “pure” measure of efficiency can be obtained by measuring the dis-
tance of a particular point 

(
εx,it , εy,it

)
 to the efficient frontier. Since the 

pure inputs and output are centered on zero, they may have negative values, 
requiring use of directional distance defined for a particular unit 

(
ex, ey

)
 by

where dx ∈ R
p
+ and dy ∈ R+ are the chosen directions. In Mastromarco 

and Simar (2018), an output orientation is chosen by specifying dx = 0 and  
dy = 1. When only some elements of dx are zero (see Daraio and Simar 
(2014) for details on practical computation).

In the output orientation and in the case of univariate output, the opti-
mal production frontier can be described at any value of the pure input 
ex ∈ R

p by the function

so that the distance to the frontier of a point 
(
ex, ey

)
 in the output direction 

is given directly by δ(ex, ey; 0, 1) = ϕ(ex)− ey. Then, for each unit in the 
sample Xn,s, the “pure” efficiency estimator is obtained through

where ϕ̂(·) is the FDH estimator of the pure efficient frontier in the output 
direction. The latter is obtained as

(148)δ(ex, ey; dx, dy) = sup
{
γ |Hεx ,εy

(
ex − γ dx, ey + γ dy

)
> 0

}
,

(149)ϕ(ex) = sup
{
ey|Hεx ,εy(ex, ey) > 0

}
,

(150)δ̂
(
ε̂x,it , ε̂y,it; 0, 1

)
= ϕ̂

(
ε̂x,it

)
− ε̂y,it ,

(151)
ϕ̂(ex) = sup

{
ey
∣∣Ĥεx ,εy

(
ex, ey

)
> 0

}

= max
{(i,t)|ε̂x,it≤ex}

ε̂y,it .
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Similar expressions can be derived for the order-m efficiency estimator. The 
order-m frontier at an input value ex is the expected value of the maximum of 
the outputs of m units drawn at random in the population of units such that 
εx,it ≤ ex. The nonparametric estimator is obtained by the empirical analog

where the εy,it are drawn from the empirical conditional survival function 
Ŝεy|εx

(
ey|ε̂x,it ≤ ex

)
. This can be computed by Monte Carlo approximation 

or by solving a univariate integral using numerical methods (for practical 
details, see Simar and Vanhems 2012).

Note that it is possible to recover the conditional frontier in the original 
units, both for the full frontier and for the order-m one. As shown in Florens 
et al. (2014), it is directly obtained at any values of (x, z, ft) as

which can be estimated by

As shown in Mastromarco and Simar (2018), this is equivalent to

which has the nice interpretation that gap, in original units, between an 
observation (Xit ,Yit) facing the conditions (Zit , ft) and the efficient frontier 
is given by the corresponding “pure” efficiency measure rescaled by the local 
standard deviation σ̂y(Zit , ft). In the same spirit, the conditional output-ori-
ented Farrell efficiency estimate in original units is given by

Note that there were no need to estimate the conditional survival function 
SY |X,Z ,Ft (y|x, z, ft) to obtain this result. Similar results are described in 
Mastromarco and Simar (2018) or order-m robust frontiers.

Mastromarco and Simar (2018) have applied the approach in the analysis of 
the productivity performance of 26 OECD countries and 18 developing coun-
tries considering the spillover effects of global shocks and business cycles due to 

(152)ϕ̂m(ex) = Ê
[
max

(
εy,1t , . . . , εy,mt

)]
,

(153)
τ(x, z, ft) = sup

{
y|SY |X ,Z ,Ft (y|x, z, ft) > 0

}

= µy(z, ft)+ ϕ(ex)σy(z, ft).

(154)τ̂ (Xit ,Zit , ft) = µ̂y(Zit , ft)+ ϕ̂
(
ε̂x,it

)
σ̂y(Zit , ft).

(155)τ̂ (Xit ,Zit , ft) = Yit + δ̂
(
ε̂x,it , ε̂y,it; 0, 1

)
σ̂y(Zit , ft),

(156)�̂(Xit ,Yit|Zit , ft) =
τ̂ (Xit ,Zit , ft)

Yit
.
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increasing globalization and interconnection among countries. So far all stud-
ies analyzing effect of common external factors on productivity of countries 
have been on the stream of parametric modeling which suffers of misspecifica-
tion problem due to unknown data generation process in applied studies. The 
frontier model used by Mastromarco and Simar (2018) enables investigation of 
whether the effect of environmental/global variables on productivity occurs via 
technology change or efficiency. Mastromarco and Simar (2018) quantify the 
impact of environmental/global factors on efficiency levels and make inferences 
about the contributions of these variables in affecting efficiency. Specifically, 
Mastromarco and Simar (2018) assess the impact of FDI on the production pro-
cess for small, medium, and large countries. They intend to redress an important 
policy issue of whether the protection-oriented policy will hamper the produc-
tion efficiency through limiting FDI by explicitly analyzing the relationship 
between efficiency and openness factor FDI dependent on size of country.

Mastromarco and Simar (2018) show that, especially for medium and 
big countries, FDI appears to play an important role in accelerating the 
technological change (shifts in the frontier) but with a decreasing effect at 
large values of FDI. This result confirms the theoretical hypothesis that FDI 
leads to increase in productivity by spurring competition (Glass and Saggi 
1998). Moreover, their findings reveal that knowledge embodied in FDI is 
transferred for technology externalities (shift of the frontier) (Cohen and 
Levinthal 1989), supporting the evidence highlighting that lowering trade 
barriers have exerted a significantly positive effects on productivity (e.g., 
Borensztein et al. 1998 and Cameron et al. 2005).

In a further development in the panel data context, Mastromarco and 
Simar (2017) address the problem of endogeneity due to latent heterogene-
ity. They analyze the influence of human capital (measured as average years 
of education in the population) on the production process of a country by 
extending the instrumental nonparametric approach proposed by Simar 
et al. (2016). The latent factor which is identified is the part of human cap-
ital independent of the life expectancy in the countries. It appears that this 
latent factor can be empirically interpreted as innovation, quality of the 
institutions and the difference in property rights systems among countries 
(see Mastromarco and Simar 2017 for details).

10  Summary and Conclusions

Benchmarking production performance is a fascinating, but difficult field 
because of the nonstandard and challenging statistical and econometric prob-
lems that are involved. Nonparametric methods for efficiency estimation 
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bring together a wide variety of mathematical tools from mathematical sta-
tistics, econometrics, computer science, and operations research. As this sur-
vey indicates, a lot of progress has been made in recent years in establishing 
statistical theory for efficiency estimators. The development of new CLTs for 
both unconditional and conditional efficiency estimators opens the door to 
testing hypotheses about the structure of production models and their evolu-
tion over time. The extension of existing results to panel data similarly opens 
new doors to handle dynamic situations. These and other issues continue to 
be addressed by the authors of this survey as well as others.

Although we have focused on the nonparametric, deterministic framework, 
other possibilities fall somewhere between this framework and the framework 
of fully parametric, stochastic frontiers, for example, Fan et al. (1996) propose 
semi-parametric estimation of a stochastic frontier. Kumbhakar et al. (2007) 
propose a local likelihood approach that requires distributional assumptions 
for the noise and efficiency processes, but does not require functional-form 
assumptions for the frontier. Parameters of the noise and efficiency distribu-
tions are estimated locally, and hence, the method is almost fully nonpara-
metric. In a similar vein, Simar et al. (2017) use moment-based methods to 
avoid specification of the efficiency process and also avoid specifying the dis-
tribution of (the symmetric) noise process. Their method has the additional 
advantage that from a computational viewpoint, it is much easier to imple-
ment than the method of Kumbhakar et al. (2007). Simar and Zelenyuk 
(2011) discuss stochastic version of the FDH and DEA estimators. Kneip 
et al. (2015a) allow for measurement error, while Florens et al. (2018) allow 
for symmetric noise with unknown variance in a nonparametric framework. 
In yet another direction, Kuosmanen and Kortelainen (2012) introduce shape 
constraints in a semi-parametric framework for frontier estimation, but so far 
all the stochastic parts of the model are fully parametric. All of these create 
new issues and new directions for future research.
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1  Introduction

Performance evaluation is a task of considerable importance in both Data 
Envelopment Analysis (DEA) and stochastic frontier models (SFM), see 
chapters “Ranking Methods Within Data Envelopment Analysis” and 
“Distributional Forms in Stochastic Frontier Analysis”. In this chapter, 
we review techniques for performance evaluation with a focus on SFM. 
The standard argument in favor of DEA is that it does not assume a func-
tional form or a distribution of error terms. While this is true, there are two 
problems. First, DEA cannot be applied to huge data sets as a linear pro-
gramming problem must be solved for each decision-making unit (DMU). 
Second, the rate of convergence is slow and depends on the sum of the num-
ber of inputs and outputs which, often, is quite large. This is true despite the 
recent progress that has been made in DEA using the bootstrap (Simar and 
Wilson 1998, 2000, 2004). It is, of course, quite possible that with parallel 
computing in hundreds of processors, this will change in the not too distant 
future.

The distinguishing feature of the Bayesian approach in performance eval-
uation is that parameter uncertainty of the various models is formally taken 
into account along with model uncertainty as well. The usual sampling- 
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theory approach proceeds conditionally on the parameter estimates that have 
been obtained. Of course, the bootstrap can be used but the justification of 
the bootstrap itself is only asymptotic. We do not intend here to compare 
and contrast, in detail, the Bayesian versus the sampling-theory approach. 
We should mention, however, that the Bayesian approach is equipped with 
numerical techniques that can handle complicated models of performance, 
where the sampling-theory approach is quite difficult to implement.

2  Bayesian Performance Analysis 
in Stochastic Frontier Models

Consider the basic SFM in chapter “Distributional Forms in Stochastic 
Frontier Analysis”:

where xi is a k × 1 vector of inputs, β is a k × 1 vector of coefficients, vi is 
the two-sided error term, and ui ≥ 0 is the one-sided error term. Usually, xi 
contains a column of ones, and the inputs and output are in logs so that ui 
measures technical inefficiency in percentage terms. Suppose, for simplicity, 
that

and independently of vi and xi, the ui s are iid and follow a distribution 
with density p(u|α) which depends on certain unknown parameters α. It 
is known that we can write the joint distribution for the ith observation as 
follows:

where θ =
(
β ′, σv,α

′
)′

∈ � ⊆ R
d is the parameter vector. For  certain 

densities, like the half-normal or exponential we know from chapter 
“Distributional Forms in Stochastic Frontier Analysis” that the integral is 
available in closed form, so the likelihood function

(1)yi = x′iβ + vi − ui, i = 1, . . . , n,

(2)vi ∼ iidN
(
0, σ 2

v

)
,

(3)p(yi|xi, θ) =

∫ ∞

0

(
2πσ 2

v

)−1/2

exp
{
− 1

σ 2
v

(
yi + ui − x

′
i
β
)2}

p(ui|α)dui,

(4)L(θ;Y) =
∏n

i=1
f (yi; θ),
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is available in closed form and maximum likelihood (ML) can be applied 
easily to obtain parameter estimates θ̂  for θ.

One of the first Bayesian approaches to the problem has been provided 
by van den Broeck et al. (1994) who have used importance sampling to per-
form the computations. A more recent discussion is provided in Assaf et al. 
(2017).

First of all, to introduce the Bayesian approach we need a prior p(θ) for 
the elements of θ. By Bayes’ theorem, we know that, after observing the 
data, the posterior distribution is:

More precisely,

The denominator, M(Y) ≡
∫
Θ
L(θ;Y)p(θ)dθ is known as the marginal 

likelihood and provides the integrating constant of the posterior. Typically, 
however, we do not need the integrating constant to implement schemes for 
posterior inference.

In the Bayesian approach, it is typical to consider what is known as 
data augmentation in the statistical literature (Tanner and Wong 1987). 
Data augmentation works as follows. Suppose the posterior p(θ |Y) is dif-
ficult to analyze. For example, computing posterior moments or marginal 
densities boils down to computing certain intractable integrals of the form ∫
Θ
ω(θ)p(θ |Y)dθ for some function ω(θ). Usually, there is a set of latent 

variables u ∈ U ⊆ R
n so that the augmented posterior p(θ , u|Y) is easier to 

analyze, yet 
∫
U
p(θ , u|Y)du = p(θ |Y).

In SFM, the natural candidate for such latent variables (already implicit 
in the notation) is the vector u = (u1, . . . , un) ∈ R

n
+. Indeed, the aug-

mented posterior in this case is simply:

By Y , we denote all available data like {yi, xi; i = 1, . . . , n}. In alternative 
notation, we use y as the n× 1 vector of observations on the dependent vari-
able and X the n× k matrix containing the data on all explanatory variables. 
We agree that θ also contains all elements of α.

(5)p(θ |Y ) ∝ L(θ; Y)p(θ).

(6)p(θ |Y ) =
L(θ; Y)p(θ)∫

Θ
L(θ;Y)p(θ)dθ

.

(7)p(θ , u|Y) ∝ σ−n
v

∏n

i=1

{
exp

{
− 1

σ 2
v

(
yi + ui − x′iβ

)2}
p(ui|α)

}
p(θ).
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After some algebra, we can express the kernel posterior distribution as 
follows:

Given the augmented posterior p(θ , u|Y), we can apply Monte Carlo tech-
niques1 to explore the posterior. A standard Bayesian Monte Carlo proce-
dure is the Gibbs sampler which proposes to alternate between obtaining 
random draws from p(θ |u,Y) and p(u|θ ,Y). Suppose, for example, that the 
prior is such that

and

where n, q ≥ 0 are parameters. These parameters can be elicited if we notice 
that from an artificial sample of size n̄ the prior average value of σ 2

v  is q̄
n̄
.

The prior for β is flat and the prior for σv is in the inverted gamma family. 
Then we can write the posterior as:

The advantage of the data augmentation approach is that we can immedi-
ately extract the following conditional posterior distributions:

where b =
(
X ′X

)
−1X ′(y + u), V = σ 2

v

(
X ′X

)
−1,

which follows from standard least-squares theory or the elementary 
Bayesian analysis of the normal linear model. Moreover, we have

(8)
p(θ , u|Y) ∝ σ−n

v exp
{
− 1

2σ 2
v
(y + u− Xβ)′(y+ u− Xβ)

}

∏n

i=1
p(ui|α)p(θ).

(9)p(β, σv|α) ∝ p(β|α)p(σv|α),

(10)p(β|α) ∝ const., p(σv|α) ∝ σ−(n+1)
v exp

(
−

q

2σ 2
v

)
,

(11)

p(θ , u|Y ) ∝ σ−(n+n̄)
v exp

{
− 1

2σ 2
v

[
q̄ + (y + u− Xβ)′(y+ u− Xβ)

]}

∏n

i=1
p(ui|α)p(θ).

(12)β|σv,α, u,Y ∼ N(b,V),

1See Geweke (1999). For details in stochastic frontiers, see Assaf et al. (2017).
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where Q = q + (y+ u− Xβ)′(y+ u− Xβ).

Therefore, conditionally on u we can easily generate random draws for β 
and σv. It remains to generate random draws for u and α. To generate ran-
dom draws for u, we proceed element-wise and we recognize that in the pos-
terior we have:

where ri = yi − x′iβ. Also the conditional posterior of α is:

In principle, both conditional posteriors are amenable to random  
number generation as there is a variety of techniques for drawing from 
arbitrary distributions. For expositional purposes, let us assume that each 
ui ∼ iidN+

(
0, σ 2

u

)
 and α ≡ σ 2

u . The density of the half-normal distribution 
is

Our prior for σu is:

where n ≥ 0 and q > 0 are parameters of the prior. When both parameters 
are positive, this is a proper prior and finite integrability of the posterior, fol-
lows from Proposition 2 of Fernandez et al. (1997). If we set q = 0, then we 
need an informative prior for the other parameters (especially β). A practical 
solution is to restrict each element in vector β to be uniform in an interval 
[−M, M ], where M is “very large.”

Under the assumption of half-normality, the conditional posterior 
 distribution of ui becomes:

(13)
Q

σ 2
v

|β,α, u,Y ∼ χ2(n+ n),

(14)p(ui|β, σv,α,Y ) ∝ exp
{
− 1

2σ 2
v
(ri + ui)

2
}
p(ui|α ),

(15)p(α|β, σv, u,Y) ∝
∏n

i=1
p(ui|α)p(α).

(16)p(ui|σu) =
(
π
2
σ 2
u

)−1/2

exp
{
− 1

2σ 2
u
u2i

}
.

(17)p(σu) ∝ σ−(n+1)
u exp

{
−

q

2σ 2
u

}
,

(18)p(ui|β, σv, σu,Y ) ∝ exp
{
− 1

2σ 2
v
(ri + ui)

2 − 1
2σ 2

u
u2i

}
,



388     M. G. Tsionas

and the conditional posterior distribution of σu is:

from which it follows that:

Regarding the conditional posterior distribution of ui, we can “complete the 
square” to conclude:

where ûi = −
riσ

2
u

σ 2
v +σ 2

u
, ϕ2 =

σ 2
v σ

2
u

σ 2
v +σ 2

u
 and all notation has been previously 

introduced. Random draws from the conditional posterior of σ 2
u  can be 

obtained easily as

Drawing from the conditional posterior distribution of ui is somewhat more 
involved as it involves random draws from a normal distribution truncated 
below at zero. In principle, one can simply draw from a normal distribution 
until a positive draw is obtained but this procedure is highly inefficient. A 
far more efficient rejection procedure has been described in Tsionas (2000).

Regarding the Gibbs sampler we should mention that given  
random draws from the conditional posterior distributions, say {
θ(s), u(s), s = 1, . . . , S

}
=

{
β(s), σ (s)

v , σ (s)
u , u(s), s = 1, . . . , S

}
 obtained 

S times, eventually 
{
θ(s), s = 1, . . . , S

} D
→ p(θ |Y) (Geweke 1989) so 

direct draws from the posterior of interest are available. From these draws, 
we can compute the corresponding draws for any function of interest, say {
ω
(
θ(s)

)
, s = 1, . . . , S

}
 which may involve returns to scale, certain elastic-

ities, etc. From these draws, one can compute easily (posterior) means and 
standard deviations, report histograms, or kernel density approximations 
to p(ω|Y), etc. For Gibbs sampling applied to stochastic frontiers, see also 
Koop et al. (1995).

(19)p(σu|β, σv, u,Y ) ∝ σ−(n+n+1)
u exp

{
−
q + u′u

2σ 2
u

}
,

(20)
q + u′u

σ 2
u

|β, σv, u,Y ∼ χ2(n+ n).

(21)ui|β, σv, σu,Y ∼ N+

(
ûi,ϕ

2
)
,

(22)σ 2
u =

q + u′u

z
, where z ∼ χ2(n+ n).
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Of course, the main function of interest is performance evaluation which 
is summarized by the draws 

{
u
(s)
i , s = 1, . . . , S

}n

i=1
. For a specific DMU, 

we can collect the draws 
{
u
(s)
i , s = 1, . . . , S

}
 A kernel density approx-

imation to p(ui|Y), which is the central object in Bayesian Performance 
Evaluation, can be easily generated using the available draws. Moreover, 
average inefficiency is given by:

and its posterior variance is:

A 95% Bayes probability interval can be constructed easily if we sort the 
draws for DMU i and select the lower 2.5% and upper 97.5% values. Thus, 
the Bayesian approach provides a formal and straightforward way to facili-
tate statistical inference (which is always a problem in DEA despite recent 
advances). Moreover, and perhaps more importantly, all inferences about ui 
are conditionally only on the data Y  and, therefore, parameter uncertainty is 
formally taken into account.

For inferences on technical efficiency, we can define efficiency as 
ϑi = exp (−ui). Given draws ϑ(s)

i = exp
{
−u

(s)
i

}
, s = 1, . . . , S. From 

these draws, we can compute posterior moments and densities of ϑi easily.
The number of MCMC simulations, S, can be determined using 

Geweke’s (1991) convergence diagnostic whose computation relies on test-
ing equality of means at the start and the end of posterior simulations.

3  Model Selection

Following the Bayesian approach, model selection is straightforward. For 
example, conditional on normality for vi alternative models for ui can be esti-
mated, for example, half-normal, exponential, Weibull, gamma, etc. Suppose 
we have a range of such models indexed by µ ∈ {0, 1, . . . , µ∗} and denote 
the parameter vector by θµ. The marginal likelihoods by definition are:

(23)E(ui|Y) ≡ ui = S−1
∑S

s=1
u
(s)
i ,

(24)var(ui|Y) = S−1
∑S

s=1

(
u
(s)
i − ui

)2
.

(25)Mµ(Y) =

∫
L(θµ;Y)p

(
θµ

)
dθµ, µ ∈

{
0, 1, . . . , µ∗

}
.
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Suppose take model µ as a benchmark. Then we can compute the so-called 
Bayes factors:

in favor of model µ and against model 0. It is immaterial which model is 
taken as the benchmark. For example, if we wish to consider the Bayes fac-
tor in favor of model µ and against model µ′ we can use the identity:

Clearly, from the model selection viewpoint, we ought to select the model 
with the highest value of the marginal likelihood. There is, however, the 
better alternative of model combination or model averaging. We can define 
model posterior probabilities (given that we have equal prior model proba-
bilities) as follows:

From the viewpoint of performance evaluation suppose, we have a set 
of draws 

{
u
(s)
i,(µ), s = 1, . . . , S

}
 for a DMU i and model µ. Our “score” 

for performance evaluation of unit i and model µ would be technical effi-
ciency, ϑ(s)

i,(µ) = exp
{
−u

(s)
i,(µ)

}
. Suppose the posterior of ϑi from model µ is 

denotes by p(µ)(ϑi|Y). The final posterior is:

Any quantity of interest can be obtained from expressions similar to (29) 
which is the standard Bayesian model averaging procedure.

4  Computation of Marginal Likelihood

Computation of marginal likelihood M(Y) has proved an extremely difficult 
issue in Bayesian analysis because the integral that defines it is intractable. 
One approach is to notice that we already have the identity:

(26)BFµ:0 =
Mµ(Y)

M0(Y)
, µ ∈

{
1, . . . , µ∗

}
,

(27)

BFµ:µ′ =
Mµ(Y)

M0(Y)
·
M0(Y)

Mµ′(Y)
=

Mµ(Y)/M0(Y)

Mµ′(Y)/M0(Y)
, µ ∈

{
1, . . . , µ∗

}
.

(28)πµ(Y) =
Mµ(Y)

∑µ∗

µ′=0Mµ′(Y)
, µ ∈

{
0, 1, . . . ,µ∗

}
.

(29)p(ϑi|Y) =
∑µ∗

µ=0
πµ(Y)p

(
ϑi,(µ)|Y

)
.
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known as “candidate’s formula” (Chib 1995). It follows easily that

As this holds for any parameter vector, we can choose, say, the posterior 
mean:

assuming 
{
θ(s), s = 1, . . . , S

} D
→ p(θ |Y). Therefore, we have:

The numerator is easy to compute provided we have the likelihood in closed 
form. The denominator can be approximated using a multivariate normal 
distribution whose mean is θ  and its covariance matrix is:

See DiCiccio et al. (1997). Therefore, we can approximate the denominator 
by:

The approximation is quite easy and leads to the following approximation 
for the log marginal likelihood:

Although the approximation is quite simple, it can be applied routinely and 
can be incorporated in most software, it does not account for properties of 
the augmented posterior p(θ , u|Y), so in a sense it ignores properties of per-
formance. Therefore, it is not used widely.

(30)p(θ |Y) =
L(θ; Y)p(Y)

M(Y)
,

(31)M(Y) =
L(θ; Y)p(Y)

p(θ |Y)
, ∀ θ ∈ Θ .

(32)θ = E(θ |Y) =

∫

Θ

θp(θ |Y)dθ ≃ S−1
∑S

s=1
θ(s),

(33)M(Y) =
L
(
θ; Y

)
p
(
θ
)

p
(
θ |Y

) .

(34)
∑

= cov(θ |Y) ≃ S−1
∑S

s=1

(
θ(s) − θ

)(
θ(s) − θ

)′
.

(35)p
(
θ |Y

)
≃ (2π)−d/2|

∑
|−1/2.

(36)logM(Y) ≃ log L
(
θ;Y

)
+ log p

(
θ
)
+ d

2
log (2π)+ 1

2
log |

∑
|.
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5  Other Complications

If we wish to use the gamma distribution (Greene 1990; Tsionas 2000) with 
a known shape parameter P (say 2 or 3 in which case it is known also as 
the Erlang distribution), we do not have to bother with drawing from the 
conditional posterior of P. The fact of the matter is that several gamma dis-
tributions can be estimated with a known value of P and the results can be 
compared using the marginal likelihood. If, however, we insist on treating 
the shape parameter as unknown, with an exponential prior, say, of the form 
p(P) ∝ exp (−γP), γ ≥ 0, its conditional posterior distribution does not 
belong to a standard family:

where S =
(
n logα − γ +

∑n
i=1 log ui

)
.

We can try an exponential distribution as a candidate-generating density. 
Suppose the exponential has parameter �, viz. g(P; �) = � exp (−�P). The 
log ratio of the target to the candidate is

Using the optimal rejection procedure, the first-order conditions tell us that 
the optimal value of � = �

∗ satisfies the nonlinear equation:

where

is the digamma or psi function and S = n−1S. To proceed, we draw a can-
didate P∗ from an exponential distribution with parameter � and we accept 
the candidate if

The nonlinear equation is very easy to solve by bisection. Moreover, if a  
posterior involves an intractable normalizing constant, say

(37)f (P) ≡ log p(P|β, σv, u,Y)
·
= SP − n logŴ(P),

(38)F(P, �) = f (P)− log �+ �P = (S + �)P − n logŴ(P)− log �.

(39)S + n−1
�− ψ

(
�
−1

)
= 0,

(40)ψ(x) ≡
d logŴ(x)

dx
,

(41)F
(
P, �∗

)
− F

(
P∗, �∗

)
≥ logU, U ∼ unif(0, 1), P∗ = 1

�∗
.

(42)p(θ |Y) ∝ m(θ)−Nf (θ |Y),
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where f (θ |Y) is a convenient density but the term m(θ) is complicated we 
can write an augmented posterior as follows:

Using properties of the gamma distribution, we have:

The conditional posterior distribution of U is gamma with parameters N and 
m(θ). The conditional posterior of θ is p(θ |U,Y) = e−m(θ)Uf (θ |Y), for 
which there is a number of techniques that can be used to realize random 
drawings.

6  Criticisms and Replies

Bayesian performance analysis using SFMs is subject to many criticisms, 
most of which are, however, common to Bayesian inference in general. Some 
of the most common are the following:

1. The results may be sensitive to the prior.
2. It is not easy to examine alternative models and/or priors.

The first criticism is correct as long as the prior is not carefully crafted to 
incorporate whatever we know about the problem in hand. Since we rarely if 
ever we know much about efficiency in a given sector, we can, for example, 
adopt relatively flat priors—flat, relative to the likelihood, a fact that we can 
establish only after posterior analysis with a given prior has been conducted.

The second criticism is not true as alternative, flexible models can be  
constructed and estimated. The second criticism is not unique to Bayesian 
models but to SFMs as a whole.

Regarding the first criticism, we do not deny that alternative priors must 
be considered so that the analysis is convincing to Bayesians and non-Bayes-
ians alike. So the issue is to examine results obtained from alternative priors, 
that is, to perform posterior sensitivity analysis.

To examine how efficiency scores change when the priors change is a 
more important problem. However, with modern advances in parallel  
computation this should not pose great problems.

(43)p(θ ,U|Y) ∝ UN−1e−m(θ)Uf (θ |Y).

(44)p(θ |Y) =

∫
p(θ ,U|Y)dU =∝ m(θ)Nf (θ |Y).
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7  Flexible Models

The second criticism that SFM is rigid when it comes to flexible functional 
forms or distributions is also unjustified. When it comes to flexible func-
tional forms, besides of course the translog or the generalized Leontief, 
advances have been made in applied econometrics that allow us to con-
sider easily such extensions. The same is true when it comes to flexible 
distributions for the two error components, vi and ui. In the sampling-the-
ory context, for example, nonparametric models have been developed in 
Kumbhakar et al. (2007). Griffin and Steel (2004) and Griffin (2011) pro-
posed Bayesian nonparametric models for stochastic frontiers, using priors 
that are widely used in the statistics literature.

The problem is not so much that flexible distributions can be consid-
ered at will but rather that the data may not be informative about distin-
guishing between the two error components when the flexible distributions 
demand too much information from the data, i.e., when they contain a large 
number of shape parameters, the two flexible distributions are in the same 
family, etc. Problems may also arise in relatively simple problems, for exam-
ple, a normal-gamma frontier with an unknown shape parameter P. When 
P exceeds three or four, the gamma distribution becomes nearly symmet-
ric and, therefore, distinguishing performance from the two-sided error 
term may be quite difficult. As a result, some care must be exercised when 
the model is formulated. For nonparametric, Bayesian models the reader is 
referred to Griffin (2011) and the references therein.

1. Given the data that we often use in empirical studies, it seems that fully 
nonparametric approaches do not always yield useful information and 
flexible semi-parametric models may be more appropriate, see, for exam-
ple, Tsionas (2017) and Griffin and Steel (2004).

8  Heterogeneity

Distinguishing heterogeneity from differences in performance is important 
as rarely DMUs can be assumed to use the same technology.

Assuming the availability of panel data we have the model:

(45)yit = αi + x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,
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where αis represent firm effects, xit is a k × 1 vector of regressors (that does 
not include a column of ones), β is a k × 1 vector of parameters, and vit , uit 
have the same interpretation as before. The usual assumption in Bayesian 
treatments of SFM is that the αis are independent of the regressors and the 
other two error components and

Under this assumption, we can express the model in the form:

where

Define x̃it =
[
1, x′it

]′
, β̃ =

[
α,β ′

]′, so that we can express the model as:

Collecting all observations for a given DMU we have 
yi =

[
yi1, . . . , yiT

]′
, X̃i =

[
x̃′i1, . . . , x̃

′
iT

]′, and we obtain:

where 1T is the T × 1 vector of ones and vi, ui are T × 1 vectors containing 
the two-sided and one-sided error terms, respectively. For simplicity we pro-
ceed under the assumptions:

independently of the regressors in xit, mutually independent, and inde-
pendent of εi. Although it is possible to have the distribution p

(
yi|X̃i, θ

)
 

in closed form and perform ML estimation, it is essential to show how the 
Gibbs sampler would operate in this model. First, it is useful to derive the 
distribution of ξi = vi + εi1T ∼ N(0,�), � = σ 2

v IT + σ 2
ε JT, where JT is a 

T × T  matrix whose elements are all equal to one.
For example, it is clear that we can extract the following posterior condi-

tional distribution of β̃ :

(46)αi ∼ iidN
(
α, σ 2

ε

)
, i = 1, . . . , n.

(47)yit = α + εi + x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,

(48)εi ∼ iidN
(
0, σ 2

ε

)
, i = 1, . . . , n.

(49)yit = x̃′itβ̃ + vit + εi − uit .

(50)yi = X̃iβ̃ + vi + εi1T − ui, i = 1, . . . , n,

(51)vit ∼ iidN
(
0, σ 2

v

)
, uit ∼ N+

(
0, σ 2

u

)
,
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where Y  denotes all data (y and X̃), and 

b̃ =

(
X̃ ′�−1X̃

)−1

X̃ ′�−1(y+ u), V =

(
X̃ ′�−1X̃

)−1

. The posterior conditional 
 distribution of ui is:

where N+
T  denotes the T− variate truncated normal distribution and, after 

some algebra in completing the square, we obtain:

and H = σ 2
u

(
σ 2
u�

−1 + IT
)−1. It is of some interest to point out that 

inefficiencies are no longer independent when we use the conditioning in 
(53). A different result corresponding to different conditioning appears in 
(71) below. In fact, one can design different algorithms based on different 
conditioning.

The other posterior conditional distributions are in standard families. For 
example, the posterior conditional distribution of σε is:

where Q =
∑n

i=1

(
yi − X̃iβ̃ + ui

)′(
yi − X̃iβ̃ + ui

)
=

∑n
i=1 r

′
i ri, provided 

the prior is p(σε) ∝ σ−1
ε . Of course, other informative priors in the inverted 

gamma family can be used.
Further, heterogeneity can be introduced if the slope coefficients are 

allowed to be random as in Tsionas (2006). For example, we can consider 
the model:

under the convention that xit includes an intercept. Here, βi is the k × 1 
vector of random coefficients which we can equip with the assumption:

(52)β̃|σv, σu, σε, u,Y ∼ N
(
b̃,V

)
,

(53)ui|β̃, σv, σu, σε,Y ∼ N+
T

(
ûi,H

)
,

(54)ûi = −

(
σ 2
u�

−1 + IT

)
σ 2
u�

−1ri, ri = yi − X̃iβ̃ + ui,

(55)
Q

σ 2
ε

|β̃, σv, σu, σε, u,Y ∼ χ2(T),

(56)yit = x′itβi + vit − uit ,

(57)βi ∼ iidNk

(
β̄,�

)
, i = 1, . . . , n.
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Since we can write βi = β + ei, ei ∼ iidNk(0,�), i = 1, . . . , n, we 
obtain:

Clearly, ξit|xit , σv,� ∼ N(0,�it), where �it = σ 2
v + x′it�xit. Collecting all 

observations for unit i we have:

from which we have:

where ξi = [ξi1, . . . , ξiT ]
′. From the assumptions of the model, we have:

If we collect all observations, we have:

where y =
�
y′1, . . . , y

′
n

�
, X =





X1 0 . . . 0

0 X2 . . . 0

. . . . . . . . . . . .

0 0 . . . Xn



, ξ =
(
ξ ′1, . . . , ξ

′
n

)
 and 

u =
(
u′1, . . . , u

′
n

)
. For ξ, we have:

In this form, we can derive easily the following conditional posterior 
distributions:

If we are nor interested in estimating the different slope coefficients but only 
their average, then (63) provides all we need. When, however the different 
slope coefficients are of interest as well, then it is best to proceed as follows.

To draw the random coefficients, we focus on the original representation 
of the model:

(58)yit = x′itβ + ξit − uit , ξit = vit + x′iteit .

(59)yi = Xiβi + vi − ui, i = 1, . . . , n,

(60)yi = Xiβ + ξi − ui, i = 1, . . . , n,

�i = E
(
ξiξ

′
i

)
= diag(�i1, . . . ,�iT )

= diag
(
σ 2
v + x′i1Σxi1, . . . , σ

2
v + x′iTΣxiT

)
.

(61)y = Xβ + ξ − u,

(62)ξ ∼ NnT (0,�), � = diag(�1, . . . , �n).

(63)β|· ∼ N(b,V), b =

(
X ′�−1X

)−1

X ′�−1(y + u), V =

(
X ′�−1X

)−1

.

(64)yi = Xiβi + vi − ui, i = 1, . . . , n.
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Along with the “prior”: βi ∼ iidNk

(
β,�

)
, i = 1, . . . , n, completing the 

square yields the following expression for the conditional posterior distribu-
tion of the random coefficients:

If the prior of σv is p(σv) ∝ σ−(n+1)
v exp

{
−

q

2σ 2
v

}
, n, q ≥ 0, then its con-

ditional posterior distribution is:

The conditional posterior for β has a particularly convenient form:

although an alternative form has been provided above. The conditional pos-
terior for Σ is:

where A =
∑n

i=1

(
βi − β

)(
βi − β

)′ and p(�) is the prior of the different 
elements of �. The form of the conditional likelihood suggests that a prior 
for � can be defined as:

where n ≥ 0 and A is a k × k positive semi-definite matrix. Then the condi-
tional posterior for � is:

(65)

βi|· ∼ Nk(bi,Vi),

bi =
(
X ′
iXi + σ 2

v�
−1

)−1

X ′
i(yi + ui),

Vi = σ 2
v

(
X ′
iXi + σ 2

v�
−1

)−1

.

(66)
∑

i,t

(
yit + uit − X ′

itβi
)2

σ 2
v

|· ∼ χ2(nT).

(67)
β|· ∼ Nk(b,V),

b = n−1
∑n

i=1
βi, V = n−1�,

(68)
p(�|·) ∝ |�|−n/2 exp

{
−1

2

∑n

i=1

(
βi − β

)′
�−1

(
βi − β

)}
p(�)

= |�|−n/2 exp
{
−1

2
trA�−1

}
p(�),

(69)p(�) ∝ |�|−(n+k+1)/2 exp
(
−1

2
trA�−1

)
,

(70)p(�|·) ∝ |�|−(n+n+k)/2 exp
{
−1

2
tr
(
A+ A

)
�−1

}
,
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which is in the Wishart family.
Regarding the conditional posterior for uit we have a standard result:

An alternative expression can be derived from y = Xβ + ξ − u, where we 
draw jointly all inefficiency measures:

It is beyond our scope in this chapter to propose efficient rejection proce-
dures for this multivariate density.

9  Bayesian Fixed-Effect Models

Suppose we consider the model:

under the assumption that the individual effects (αi) contain only technical 
inefficiency. The standard corrected least squares estimator (COLS) provides 
a relative inefficiency measure as:

where the α̂j are obtained through the LSDV estimator. By construction, we 
have u∗i ≥ 0. Of course, a certain DMU will always be fully efficient. Let  
us call, this DMU the “benchmark.” The classical estimator in this context 
is the CSS estimator (Cornwell et al. 1990). The model relies on a flexible 
parametrization of inefficiency in the context of the model:

(71)

uit ∼ N+

(
ûit , h

2
)
,

ûit = −
σ 2
u

(
yit − x′itβi

)

σ 2
v + σ 2

u

, h2 =
σ 2
v σ

2
u

σ 2
v + σ 2

u

.

(72)
u ∼ N

nT

+

(
û,V

)
,

û = −σ 2
u

(
σ 2
u
�−1 + InT

)−1

�−1
(
y − Xβ

)
,V = σ 2

u

(
σ 2
u
�−1 + InT

)−1

.

(73)yit = αi + x′itβ + vit , i = 1, . . . , n, t = 1, . . . , T ,

(74)u∗i = −

(
α̂i − max

j=1, ..., n
α̂j

)
,

(75)yit = x′itβ + a0,it + a1,it t + a2,it t
2 + vit ,
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where vit is a usual stochastic error, and a0,it , a1,it , a2,it are firm-specific coef-
ficients. The flexible trend function captures technical inefficiency after a 
transformation similar to COLS.

A Bayesian equivalent has been proposed that relies on the following. For 
simplicity, we can assume: vit ∼ iidN

(
0, σ 2

v

)
.

where 
{
α
(s)
i , s = 1, . . . , S

}n

i=1
 denotes the set of Gibbs sampling draws for 

αis. Finally, as in Koop et al. (1997), the inefficiency measure is

viz. an average across MCMC draws. The advantage of the estimator is that, 
in general, all inefficiency estimates will be non-zero, and the “benchmark” 
is not, in general, a given DMU. In fact, one can compute the probability 
that a certain DMU is fully efficient—by counting the number of times it 
has ũ(s)i = 0 and dividing by S. Whether or not this estimator performs any 
better compared to CSS is an open question.

This Bayesian “fixed effects estimator” can be extended to allow for het-
erogeneity in β. As a matter of fact, however, the distinction between fixed 
and random coefficients in Bayesian analysis is elusive as, eventually, all coef-
ficients are random variables. The generic disadvantage of both the Bayesian 
and the sampling-theory paradigm, in this context, is that inefficiency is 
assumed to be time-invariant and it is identified with individual effects. 
Therefore, we have to consider this problem as in the following section.

10  Heterogeneity and the Treatment 
of Individual Effects

In the true fixed-effect model, we assume that:

where vit ∼ N
(
0, σ 2

v

)
, uit ∼ N+

(
0, σ 2

u

)
, which are mutually independent 

and independent of the regressors. The αis are fixed effects. The model can 
be estimated using ML and Greene (2005) has provided an ingenious way 

(76)ũ
(s)
i = −

(
α
(s)
i − max

j=1, ..., n
α
(s)
j

)
, s = 1, . . . , S,

(77)ũi = S−1
∑S

s=1
ũ
(s)
i , i = 1, . . . , n,

(78)yit = αi + x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,
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to construct a Gauss-Newton iteration even when n is large. This construction 
applies to more general nonlinear model with fixed effects.

From the Bayesian point of view, we have already provided the computa-
tional details to perform statistical analysis in this model and, in fact, a more 
general model with DMU-specific coefficients, βi.

Individual effects can be distinguished from persistent technical ineffi-
ciency, by using the following model (Tsionas and Kumbhakar 2012):

where �+i ≥ 0 denotes persistent technical inefficiency. One standard 
assumption would be that2:

Bayesian analysis using the Gibbs sampler is a simple extension of what we 
described in previous sections of this chapter. A more general model is to 
allow for time effects as well:

where µt is a general time effect, and τ+t ≥ 0 is a DMU-specific inefficiency 
component, for which a standard distribution assumption would be:

Then, uit ≥ 0 can be interpreted as the transitory component of inefficiency. 
Estimating permanent and transitory components is of great interest in per-
formance analysis. From the point of view of policy analysis, the objective is 
to see how the sectoral component τ+t  has evolved over time and, naturally, 
to examine how it can be reduced.

As both permanent and transitory inefficiency components do not 
depend on contextual or environmental variables, as they are commonly 
called, an important issue remains unaddressed. This is what we take up in 
the next section.

(79)yit = αi + �
+
i + x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,

(80)�
+
i ∼ iidN+

(
0, σ 2

�

)
, i = 1, . . . , n.

(81)yit = αi + µt + �
+
i + τ+t + x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,

(82)τ+t ∼ iidN+

(
0, σ 2

τ

)
, t = 1, . . . , T .

2All random effects are mutually independent and independent of the regressors for all DMUs and at 
all time periods.
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11  Inefficiency Determinants

In the standard model:

one way to provide inefficiency determinants is to assume:

where zit is an m× 1 vector of contextual variables and γ is a vector of coef-
ficients. The model has been introduced by Battese and Coelli and others. 
It is interesting to see how the likelihood/posterior change as a result of this 
assumption. The density of uit is:

where �(·) is the standard normal distribution function. This form suggests 
the reparametrization δ = γ /σu from which we obtain:

The reparametrization has been suggested by Greene (chapter “Micro 
Foundations of Earnings Differences” in Fried et al. 1993) in order to sta-
bilize ML procedures. Assuming vit ∼ iidN

(
0, σ 2

v

)
 independently of 

{uiτ , xiτ , ziτ ; τ = 1, . . . , T} it can be shown, after some algebra that the 
conditional posterior distribution of the one-sided component is:

From the form of the conditional posterior distribution which can also be 
used in sampling-theory analysis, provided estimates are available, we see 
clearly the effect of contextual variables on inefficiency, see also Assaf et al. 
(2017).

(83)yit = x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,

(84)uit|zit , γ , σu ∼ N+

(
z′itγ , σ

2
u

)
,

(85)p(uit|zit , γ , σu) =
1

√
2πσ 2

u�
(
z′itγ /σu

) exp
{
− 1

2σ 2
u

(
uit − z′itγ

)2}
,

(86)p(uit|zit , γ , σu) =
1

√
2πσ 2

u�
(
z′itδ

) exp

{
−1

2

(
σ−1
u uit − z′itδ

)2}
.

(87)

uit|· ∼ N+

(
ûit , h

2
)
,

ûit =
−σ 2

u (yit − x′it)β + σ 2
v z

′
itγ

σ 2
v + σ 2

u

, h2 =
σ 2
v σ

2
u

σ 2
v + σ 2

u

.
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Although the posterior conditional distributions of β, σv, u are in stand-
ard families this is not so for δ and σu but efficient computational procedures 
can be devised to draw random numbers from the respective conditional 
posterior distributions.

There are alternative ways to incorporate environmental variables. Given 
the standard model, a more reasonable formulation would be

which allows for a lognormal distribution of inefficiency. 
Alternatively, if inefficiency follows an exponential distribution, say 
p(uit) = θ−1

it exp
(
−θ−1

it uit

)
, uit ≥ 0, since the expected value is 

E(uit) = θit we can adopt a model of the form:

Using Bayesian techniques, it is also possible to analyze models with unob-
served heterogeneity:

Empirically, it seems appropriate to modify such models to allow for dynam-
ics, for example:

where ui0 is given or log ui0 follows a certain distribution depending on 
unknown parameters. For example, if a steady state exists, we can assume

More generally, we can assume:

where ui0,ω2 are unknown parameters. In a hierarchical fashion, it is possi-
ble to assume:

(88)log uit = z′itγ + εit , εit ∼ iidN(0, σ 2
ε ),

(89)log θit = z′itγ or θit = exp
(
z′itγ

)
.

(90)log θit = z′itγ + εit , εit ∼ iidN(0, σ 2
ε ).

(91)log uit = z′itγ + ρ log ui,t−1 + εit , εit ∼ iidN(0, σ 2
ε ),

(92)log ui0 = z′i0
γ

1−ρ
+ eit , eit ∼ iidN

(
0,

σ 2
ε

1−ρ2

)
.

(93)log ui0 ∼ N
(
ai0,ω

2
)
, i = 1, . . . , n,

(94)ai0 ∼ iidN
(
a, b2

)
, i = 1, . . . , n,
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where the hyperparameters a, b2 are, usually, fixed. Other attempts have 
been made where in the standard model it is assumed that:

and u+i ∼ iidN+

(
0, σ 2

u

)
. Such models usually produce formulations that are 

less computationally demanding.

12  Endogeneity

Endogeneity has been neglected for a long time but attempts have been 
made to take it into account. In the standard model:

it is usual that the regressors are endogenous, that is correlated with vit or 
even uit or both. There may be economic reasons why this is so but we will 
come to this matter in the next section. In such cases, we need instruments 
zit ∈ R

m which can be used to obtain a reduced form:

where � is a k × m matrix of coefficients, and

We assume first that uit is independent of all other error components, the 
regressors and the instruments. Joint estimation by ML or Bayesian methods 
is not difficult in this formulation. If the regressors and inefficiency are not 
independent, one way to deal with the issue is to incorporate the regressors 
in uit as “environmental variables” as in the previous section. It is possible, 
for example, to change the reduced form as follows:

with the apparent modifications in the dimensions of � and Vit,∗. More gen-
erally, the reduced form may not be linear in which case we can consider 
formulations like:

(95)uit = exp
(
z′itγ

)
u+i , i = 1, . . . , n,

(96)yit = x′itβ + vit − uit , i = 1, . . . , n, t = 1, . . . , T ,

(97)xit = �zit + Vit,∗,

(98)Vit =
[
vit ,V

′
it,∗

]′
∼ Nk+1(0,�).

(99)

[
xit

loguit

]
= �zit + Vit,∗ ,
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where �() is a matrix function. It is obvious that lagged values of xit can 
be used as instruments, although in this case the issue of weak instruments 
arises and proper tests can be developed. In the Bayesian literature, such 
tests are lacking and in the sampling-theory literature this is an active area 
of research. General investigations show that weak instruments are likely 
to produce irregularly shaped posteriors in linear models. For this lim-
ited information approach to endogeneity, see Kutlu (2010) and Tran and 
Tsionas (2013, 2015, 2016).

13  Economic Reasons for Endogeneity

Let us recall the cost minimization problem:

and

where T(x, y) ≤ 1 describes the technology x, y represent inputs and out-
puts, and w, p denote input and output prices, respectively. There are many 
theoretically equivalent ways to describe the technology, like input-oriented 
distance functions (IDF) and output-oriented distance functions (ODF). 
Cost minimization suggests that inputs are endogenous to the firm, while 
output plus input prices are predetermined. Profit maximization suggests 
that given input and output prices both inputs and outputs are endogenous. 
Output endogeneity and input exogeneity would result from a problem of 
revenue maximization. Of course, different assumptions may be reasonable 
or more appropriate in different contexts.

Output distance functions are homogeneous of degree one in outputs 
while input distance functions are homogeneous of degree one in inputs. 
Therefore, for an ODF we can write (in log terms):

(100)

[
xit

log uit

]
= �(zit)+ Vit,∗ ,

(101)min
x∈Rk

+

: w′x, T(x, y) ≤ 1,

(102)max
x∈RK

+,y∈R
M
+

: p′y − w′x, T(x, y) ≤ 1,

(103)y1 = F
(
ỹ2, . . . , ỹM , x

)
+ v − u = F( ỹ, x)+ v− u,
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where ỹm = log Ym
Y1
, m = 2, . . . , M, outputs in levels are Y1, . . . , YM, 

inputs are X1, . . . , XK and u ≥ 0 represents technical inefficiency. The liter-
ature has ignored for a while the fact that the ỹms are endogenous under rev-
enue or profit maximization. In the second case, the xs will be endogenous 
as well. Similarly, for the IDF we have:

where x̃k = log
Xk
X1
, k = 2, . . . , K. The ỹms or x̃ms that are endogenous 

need to be handled using the reduced form approach above, or perhaps bet-
ter, incorporate the first-order conditions resulting from cost minimization 
or profit maximization.

The problem was long-standing for some time as the IDF or ODF pro-
vides one equation, and therefore, we need an additional M − 1 or K − 1.  
Fernandez et al. (2002) have proposed a certain solution of the problem 
by providing additional equations that are not, in essence, different from a 
reduced form approach.

In principle, an ODF and an IDF are both representations of the same 
technology so the choice between them does not appear to be an issue of 
substance. However, it seems that an IDF is convenient under cost minimi-
zation where inputs and endogenous and outputs are predetermined for the 
firm. The ODF is more convenient under revenue maximization. In prac-
tice, however, it may turn out that when we use the IDF, outputs may be 
statistically endogenous. Therefore, the economic and econometric assump-
tions may be in conflict. The choice between estimating an IDF or and 
ODF is difficult and has not been taken up in the literature in a satisfactory 
way, to the best of the author’s knowledge.

14  Greene’s Problem: Estimation of Technical 
and Allocative Inefficiency

Known as Greene’s problem the joint estimation of technical and allocative 
inefficiency has received great interest in the literature. Kumbhakar (1997) 
has proposed a model where technical and allocative inefficiency can be 
jointly considered and Kumbhakar and Tsionas (2005a, b) have taken up 
Bayesian inference in the model in the panel data and cross-sectional data 
setting. The model starts from cost minimization assuming that firms have 
misperceived input prices as w∗

j = wje
−ξj where ξk can be interpreted as 

(104)x1 = F
(
y, x̃2, . . . , x̃K

)
+ v− u = F(y, x̃)+ v+ u,
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allocative distortion. The model in Kumbhakar (1997) finally produces the 
following equations3:

where Ca
it and Saj,it represent actual (observed) cost and shares, Soj,it is the 

usual expression from a translog cost function, and Git and ηit are compli-
cated expressions depending on the ξjs. More specifically, we have the fol-
lowing system of equations:

where

Moreover, we have:

(105)logCa
it = logC∗

it + logGit + vit + ui,

(106)Saj,it = S0j,it + ηj,it , j = 1, . . . , K ,

(107)

logC0
it = α0 +

∑K

j=1
αj logwj,it + γy log yit +

1
2
γyy(log yit)

2

+
1
2

∑K

j=1

∑K

k=1
βjk logwj,it logwk,it +

∑K

j=1
γjy logwj,it log yit

+ αt t +
1
2
αtt t

2
+ βyt log yit t +

∑K

j=1
βjt logwj,it t,

(108)S0j,it = αj +
∑K

k=1
βjk logwk,it + γjy log yit + βjt t,

(109)
logCAL

it = logGit +

∑K

j=1
αjξj,i +

∑K

j=1

∑K

k=1
βjkξj,i logwk,it

+
1
2

∑K

j=1

∑K

k=1
βjkξj,iξj,k +

∑K

j=1
γjyξj,i+

∑K

j=1
βjtξj,it,

(110)Git =
∑K

j=1
S∗j,ite

−ξj,i ,

(111)S∗j,it = αj +
∑K

k=1
βjk logw

∗
k,it + γjy log yit + βjt t = S0j,it +

∑K

k=1
βjkξk .

(112)ηj,it =
S0j,it

{
1− Gite

ξj,i
}
+

∑K
k=1 βjkξk

Gite
ξj,i

.

3We assume for simplicity that we have only one output and that technical inefficiency and allocative 
distortion parameters ξ are time-invariant.
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The notation ξj,i provides the jth allocative distortion parameter for firm i.  
Therefore, the ηj,it are the deviations of the actual cost shares from their opti-
mum values, and they are nonlinear functions of allocative inefficiencies 
ξ2, . . . , ξK, and, of course, the data. In obvious notation, we can write the 
system as follows:

where y1 denotes the vector of all observations on log costs, yj denotes 
the jth ( j = 2, . . . , K) share. X1 and X2 denote the matrices of obser-
vations of the cost function and the share equations, respectively. We 
assume that v =

[
v′1, . . . , v

′
K

]′
∼ NKnT (0,�) supposing we have n firms 

and T  time observations. Kumbhakar and Tsionas (2005a) assume that 
ξ ∼ Nn(K−1)(0,� ⊗ In) so that allocative distortions are random variables.

Statistical inference in the system is complicated by the fact that it is 
highly nonlinear in ξ, and therefore, specialized MCMC methods are 
devised. One particular feature of the system is that it is linear in parameters 
β conditional on ξs. Estimation of technical inefficiency can be performed 
using the posterior expectation of u while estimation of allocative ineffi-
ciency can be performed using the posterior expectation of logCAL

it . The  
same problem can be treated when only cross-sectional data is available, an 
issue that is taken up in Kumbhakar and Tsionas (2005b).

It would be interesting to drop the assumption that allocative distortions 
are random variables and assume, instead, that they are fixed parameters. 
Greene’s (2005) technique could have been employed to reduce consider-
ably the burden of computation as the required derivatives are provided in 
Kumbhakar and Tsionas (2005a). In this way, it would not be necessary to 
assume that technical inefficiency and allocative distortions are statistically 
independent. However, we should remark that a posteriori they are not sta-
tistically independent.

15  Fitting General Stochastic Frontier Models

For a general stochastic cost frontier model of the form 
yit = x′itβ + vit + uit under independence of the two error components, a 
certain problem arises when the distribution of vit is not normal and the dis-
tribution of uit is anything other than half-normal or exponential. Tsionas 
(2012) notices that if we have the characteristic functions ϕv(τ ) and ϕu(τ ) 

(113)
y1 = X1(ξ)β1 + logG(ξ ,β)+ v1 + u ⊗1T ,

yj = X2βj + ηj−1(ξ ,β)+ vj, j = 2, . . . ,K ,
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(τ ∈ R) of the two error components then the characteristic function of the 
composed error εit = vit + uit is simply: ϕε(τ ) = ϕv(τ )ϕu(τ ).

The characteristic function can, in turn, be inverted, using the Fourier 
transform and yield directly the density of the composed error. The required 
formula is fε(ε) = 1

2π

∫
R
e−ιτεϕε(τ )dτ where ι =

√
−1. The inversion can 

be implemented using the Fast Fourier Transform (FFT) which is widely 
available in software.

The density is evaluated at specific points and to obtain the density at the 
observed points, we must use interpolation which is, usually, quite accurate.

Tsionas (2012) considered models “with output-oriented stochastic 
frontier models whose one-sided errors have a distribution other than the 
standard ones (exponential or half-normal). The gamma and beta distribu-
tions are leading examples. Second, with input-oriented stochastic frontier 
models which are common in theoretical discussions but not in economet-
ric applications. Third, with two-tiered stochastic frontier models when the 
one-sided error components follow gamma distributions. Fourth, with latent 
class models with gamma distributed one-sided error terms. Fifth, with mod-
els whose two-sided error component is distributed as stable Paretian and 
the one-sided error is gamma. The principal aim is to propose approxima-
tions to the density of the composed error based on the inversion of the 
characteristic function (which turns out to be manageable) using the Fourier 
transform. Procedures that are based on the asymptotic normal form of the 
log-likelihood function and have arbitrary degrees of asymptotic efficiency 
are also proposed, implemented and evaluated in connection with out-
put-oriented stochastic frontiers. The new methods are illustrated using data 
for US commercial banks, electric utilities, and a sample from the National 
Youth Longitudinal Survey.”

16  More on Endogeneity Issues

SFM of the form yit = x′itβ + vit + uit usually ignore the fact that xits may 
be endogenous, that is correlated with the error term vit and/or uit. In Sect. 
17, we have summarized some recent limited information approaches to 
deal with this issue. An additional concern is, however, that such approaches 
are not always compatible with the economics of the problem. Suppose for 
simplicity, we have a deterministic production function: Y = eβ0

∏K
k=1 X

βk
k .  

If we use lower-case letters to denote logs and estimate the Cobb-Douglas 
functional form:
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it is well known since Marschak and Andrews (1944) that there are endog-
eneity problems under certain behavioral assumptions. For example, under 
the widely used cost-minimization assumption, we obtain the first-order 
conditions:

where the endogenous variables are xk , k = 1, . . . , K, output is considered 
exogenous,v1, . . . , vk are error terms, and w1, . . . , wk denote logs of input 
prices. The above is a simple simultaneous equations model, nonlinear in the 
parameters which can be estimated by FIML provided we have input relative 
prices.

Very often we lack this luxury. However, the system motivates us to use it 
in this form and make assumptions about input relative prices. For example, 
with panel data, the system above is:

where δk,it = wk,it − w1,it. One assumption that can be used is that

where �k,i,µk,t are input-specific firm and time effects.4 If one believes that 
prices are approximately the same for all firms in a given time period, then 
one can simply set �k,i = �k, a constant to be estimated.

Of course many other assumptions are possible and the restriction to a 
Cobb-Douglas functional form is inessential. If we denote

it is possible to assume a vector autoregressive scheme (VAR) of the form:

(114)y = β0 +
∑K

k=1
βkxk + v,

(115)

y = β0 +
∑K

k=1
βkxk + v1,

log
βk

β1
= wk − w1 + xk − x1 + vk , k = 2, . . . ,K ,

(116)
yit = β0 +

∑K

k=1
βkxk,it + v1,it ,

log
βk

β1
= δk,it + xk,it − x1,it + vk,it , k = 2, . . . ,K , i = 1, . . . , n,

(117)δk,it = �k,i + µk,t , k = 2, . . . , K ,

(118)δit =
[
δit,2, . . . , δit,K

]
,

4These can be identified even if there are firm and time effects in the production function.
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where zit is a vector of certain predetermined variables like other price 
indices and related variables. With the VAR scheme, of course, the model 
becomes cumbersome and special Bayesian filtering techniques are required 
to explore the posterior distribution.

These technical points aside, the fact of the matter is that the first-order 
conditions from certain behavioral assumptions do provide additional equations 
to allow for endogenization of the regressors even when prices are not available. 
This point has been largely overlooked in the literature. The approach has 
been followed by Atkinson and Tsionas (2016). As their data contain input 
and output price data, they append price equations (where prices are related 
to marginal products) for inputs to the directional distance function to 
obtain a cost-minimization directional distance system and the price equa-
tions for all good inputs and outputs to obtain a profit-maximization direc-
tional distance system. They identify the directions for bad inputs and bad 
outputs, which lack prices, using methods explained below.

Using MCMC methods they estimate these systems, obtaining estimates 
of all structural parameters, optimal directions, measures of technical effi-
ciency, productivity growth, technical change, and efficiency change, and 
estimates of the implied optimal percent changes in inputs and outputs. 
These directions are those that would prevail in the industry if firms were 
cost minimizers or profit maximizers. That is, they are estimating direc-
tional distance functions, not with directions chosen a priori, but with opti-
mal directions chosen that are consistent with cost minimization or profit 
maximization.

It seems that using information from first-order conditions is a plausible 
way of dealing with endogeneity issues. Even when information on relative 
prices is unavailable, the researcher may assume that the missing prices are 
latent and follow a particular model. An alternative is to use individual- 
specific and time-specific effects for the missing prices.

Endogeneity arises also as a major problem in estimating productivity 
(Olley and Pakes 1996; Levinsohn and Petrin 2003) so these principles can 
be applied in this context as well. One such approach is taken up in Gandhi 
et al. (2013).

(119)δit = α + Bδi,t−1 + Ŵzit + eit , eit ∼ iidN(0,�),
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17  A Lognormal Inefficiency Effects Models

Models with inefficiency or environmental effects have been quite popular 
in the efficiency literature. The workhorse of inefficiency effects model is the 
so-called Battese and Coelli model:

where xit is an k × 1 vector of regressors, zit is an m× 1 vector of environ-
mental variables and β, γ are k × 1 and m× 1 vector of parameters. In this 
section, we propose an alternative inefficiency effects model:

Bayesian analysis of the model is quite standard given the tools that we have 
described in this chapter. Specifically, applying a Gibbs sampler is straight-
forward as drawing random numbers from the posterior conditional distri-
butions of β, γ , σ 2

v  and σ 2
u  is not difficult. The cumbersome part is to draw 

from the posterior conditional distributions of inefficiencies. These posterior 
conditional distributions have the following form:

where Rit = yit − x′itβ. If we reparametrize to hit = log uit we have:

To draw from this posterior conditional distribution, we can draw 

hit ∼ N(z′itγ , σ
2
u ) and accept the draw if exp

{
− 1

2σ 2
v
(Rit − ehit )2

}
≥ U, 

where U is a standard uniform random number. This procedure is not, in 
general, efficient as we draw from the “prior” and we accept based on the 
likelihood. A more efficient alternative is not immediately obvious, unless 
Rit − 2ehit < 0 in which case (123) is log-concave, and specialized algo-
rithms can be used.

We apply the new model to artificial data and Greene’s electricity data. 
For the artificial data, we use k = m = 3. Matrices X and Z contain a 

(120)
yit = x′itβ + vit + uit , i = 1, . . . , n, t = 1, . . . ,T ,

vit ∼ iidN(0, σ 2
v ), uit ∼ N+(z

′
itγ , σ

2
u ),

(121)log uit ∼ N
(
z′itγ , σ

2
u

)
.

(122)
p(uit|β, γ , σv, σu, y,X) ∝

exp
{
− 1

2σ 2
v
(Rit − uit)

2 − 1
2σ 2

u

(
log uit − z′itγ

)2
− log uit

}
, uit > 0,

(123)
p(hit|β, γ , σv, σu, y,X) ∝

exp
{
− 1

2σ 2
v
(Rit − ehit )2 − 1

2σ 2
u

(
hit − z′itγ

)2
+ hit

}
, uit > 0.
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column of ones and the remaining columns are random numbers gen-
erated from a standard normal distribution. We set the element of β to 1. 
All elements of γ are set to 0.1 except the intercept which is −3. Moreover, 
σv = 0.1 and σu = 0.2. We use 15,000 iterations of MCMC the first 5000 
of which are discarded to mitigate start-up effects. Priors for β and γ are 
flat. The prior for σv and σu is p(σ ) ∝ σ−(ν+1)e−b/(2σ 2) where ν = 1 and 
b = 0.001. The results are reported in Table 1.

Next, we turn attention to Greene’s electricity data5 which contains cost 
data for a cross section of 145 electric US utilities. We estimate a cost func-
tion of the form

where pL, pK , pF are prices of labor, capital, and fuel, y is output and C is 
cost. Here, F is the translog functional form. As determinants of inefficiency, 
we have the following model:

Our prior on β and γ is flat and the priors on σv and σu are the same as 
before. Marginal posteriors of the inefficiency effect parameters 

(
γj
)
 are 

reported in Fig. 1. From the marginal posteriors, it turns out that these 
parameters are reasonably from zero. The sample distribution of efficiency 
is presented in Fig. 2. Electric utilities operate at relatively high levels of 

(124)log(C/pL) = F

(
log

pK

pL
, log

pF

pL
, log y;β

)
+ v+ u, u ≥ 0,

(125)log u = γ1 + γ2 log y +
1
2
γ3(log y)2 + ε, ε ∼ N(0, σ 2

u ).

Table 1 Empirical results for artificial data

Posterior mean Posterior s.d.

β1 1.0014 0.0078
β2 1.0027 0.0047
β3 1.0039 0.0048
γ1 −3.0002 0.0086
γ2 −0.1001 0.0083
γ3 −0.0993 0.0088
σv 0.1032 0.0060
σu 0.1925 0.0231
Inefficiency 0.051 0.007
Efficiency 0.9503 0.0066

5See Table F4.4 in http://pages.stern.nyu.edu/~wgreene/Text/Edition7/tablelist8new.htm which con-
tains data sets for W. Greene, Econometric Analysis, 8th edition, Pearson, 2018.

http://pages.stern.nyu.edu/%7ewgreene/Text/Edition7/tablelist8new.htm
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Fig. 1 Marginal posterior densities of inefficiency effect parameters
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Fig. 2 Sample distribution of efficiency estimates

efficiency; average efficiency is close to 0.9 and ranges from about 0.65 to 1.  
The interesting feature is that there is considerable probability mass in the 
neighborhood of one.
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Once you choose, it is path-dependent

1  Introduction

This chapter is concerned with the choice of methods related to the theory 
and practice of productive and economic efficiency analysis. A methodo-
logical text such as this handbook, intended as a guide to frontier analysis, 
always benefits from a discussion on the common methodological, theoret-
ical and empirical choices that scholars face when undertaking research in 
the field. We focus on the different forks that practitioners encounter. These 
range from the selection of the appropriate economic model to the use of 
the empirical techniques best suited to achieve results with confidence.

As departing point, and since this handbook is mainly concerned with 
the economic side of management practice, exceeding the engineering 
issues related to production processes, we hereafter consider the firm as the 
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relevant decision unit, operating within markets. When market decisions 
are involved, prices are key in the analysis, and we are in the realm of busi-
ness and economics. This justifies the theoretical focus of the chapter on the 
concept of overall economic efficiency (e.g. profit or profitability efficiency), 
which starts in the following Sect. 2 by summarizing the main results of 
duality theory. Subsequently, once the theoretical framework has been 
decided, the next question relates to the choice of the most suitable methods 
to characterize the production technology, economic behaviour and, finally, 
measure firms’ performance. Section 3 outlines the most popular empirical 
methods available to undertake efficiency analyses, namely nonparametric 
data envelopment analysis (DEA) and parametric stochastic frontier analy-
sis (SFA). We discuss key issues related to imposing alternative technologi-
cal assumptions and properties that, depending on the economic objective 
of the firm, require alternative specifications, e.g. returns to scale as well as 
quantity and price conditions of homogeneity.

Section 4 deals with the management of dimensionality difficulties in 
empirical research. The increased availability of large data sets including 
many variables compromises the reliability of results and reduces the dis-
criminatory power of the efficiency analysis when the number of obser-
vations is limited. We discuss several strategies aimed at reducing the 
dimensionality of the analysis, either by relying on dimension reduction 
techniques that aggregate the original variables into a smaller set of compos-
ites, or by selecting those that better characterize production and economic 
processes. Another critical issue in the literature, discussed in Sect. 5, is the 
need to control for environmental or contextual z-variables that do not fall 
within managerial discretion. Nondiscretionary variables have both been 
included as frontier regressors or as determinants of firms’ inefficiency and 
we discuss the implications that choosing each option has for researchers, 
managers and policy makers.

The fact that some variables may be endogenous or exhibit a large correla-
tion with firms’ inefficiency is gaining increasing attention in the literature. 
Section 6 presents a series of recent models addressing this issue in the DEA 
and SFA approaches. We summarize the main features of these methods and 
identify their relative advantages and disadvantages. In this section, we also 
discuss the endogenous nature of distance function when assessing firms’ 
efficiency. The specific choice of orientation is also considered, as well as its 
ultimate relation to the concept of Pareto efficiency, i.e. utility maximiza-
tion, which for the competitive firm results in the initial profit or profita-
bility maximization objectives. For both DEA and SFA approaches, we also 
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present data-driven models that allow identifying individual directions based 
on local proximity (comparability) criteria. Finally, Sect. 7 summarizes the 
guiding principles of the chapter and draws the main conclusions.1

2  Theoretical Background: Firms’ Objective 
and Decision Variables

2.1  Distance Functions, Economic Behaviour, Duality 
and Efficiency

We first introduce several technical (primal) representations of firms’ tech-
nology. Next, we outline duality theory that relates these primal representa-
tions with a supporting (dual) economic function, capable of providing a 
consistent framework for the decomposition of economic efficiency into 
technical and allocative criteria. In economic efficiency analysis, the techni-
cal dimension of the problem is approached via the optimizing behaviour 
of the firm, either as cost minimizer, or as revenue, profit or profitability 
maximizer. More details can be found in Färe and Primont (1995), who 
summarize duality theory from an input (cost) and output (revenue) per-
spective, Chambers et al. (1996, 1998) for the profit function and the direc-
tional distance function (DDF), and Zofío and Prieto (2006), focusing on 
the relationship between the profitability (return-to-dollar) function and the 
generalized distance function (GDF).2 A generalization of these relationships 
based on the loss function is introduced by Aparicio et al. (2016). Depending 
on the features of the study (e.g. market structure, firms’ economic goal, 
data availability, etc.), researchers may choose any of these dimensions for 
their economic efficiency analysis.

1For an extended and augmented version of this chapter, the reader is referred to Orea and Zofío 
(2017).
2The DDF by Chambers et al. (1996) corresponds to the concept of shortage function introduced by 
Luenberger (1992, p. 242, Definition 4.1), which measures the distance of a production plan to the 
boundary of the production possibility set in the direction of a vector g. In other words, the shortage 
function measures the amount by which a specific plan falls short of reaching the frontier of the tech-
nology. Chambers et al. (1996) redefine the shortage function as efficiency measure, introducing the 
concept of DDF.
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2.2  The Multi-output, Multi-input Production 
Technology: Distance Functions

Duality theory departs from the characterization of the technology set: 
T =

{
(x, y) : x ∈ R

N
+, y ∈ R

M
+ , x can produce y

}
 where x is a vec-

tor of input quantities, y is a vector of output quantities, and N and M 
are the number of inputs and outputs. The technology satisfies the axi-
oms presented in Färe and Primont (1995): closedness, free disposability,  
no free-lunch and convexity. If the technology exhibits constant returns 
to scale (CRS), then the corresponding set is a cone, denoted by 
TCRS = {(ψx,ψy) : (x, y) ∈ T , ψ > 0}.3 This formula may also be applied 
to a technology T with variable returns to scale, extending it to the smallest 
cone containing T. This technique is useful to measure scale efficiency. For 
the single-output case: M = 1, the technology can be represented in what is 
termed as the primal approach by the production function f : RN

+ → R+,  
defined by f (x) = max{y : (x, y) ∈ T}, i.e. the maximum amount of out-
put that can be obtained from any combination of inputs. The advantage 
of this interpretation is that it leaves room for technical inefficiency, since 
we can define a technology set parting from the production function by 
T =

{
(x, y) : f (x) ≥ y, y ∈ R+

}
. Nevertheless, in the general (and real) 

multiple-output-multiple-input case, a suitable representation of the technol-
ogy is given by the distance function introduced by Shephard (1970).

This representation can be made from alternative orientations. Here, we 
consider recently introduced and rather flexible characterizations of the tech-
nology corresponding to the additive directional and multiplicative general-
ized distance functions (DFs):

• The directional DF:

• The generalized DF:

(1)DT

(
x, y;−gx, gy

)
= max

{
β :

(
x − βgx, y + βgy

)
∈ T

}
,

(2)DG(x, y;α) = min
{
δ : (δ1−αx, y/δα) ∈ T

}
.

3In empirical studies approximating the technology through DEA, the global CRS characterization is 
assumed for analytical convenience because relevant definitions such as profitability efficiency and the 
Malmquist productivity index require this scale property, and therefore, their associated distance func-
tions are defined with respect to that benchmark technology.
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The DDF, DT

(
x, y;−gx, gy

)
≥ 0, is a measure of the maximal transla-

tion of (x, y) in the direction defined by 
(
gx, gy

)
∈ R

N
+ × R

M
+\{0N+M} 

that keeps the translated input–output combination inside the production 
possibility set. The GDF, 0 < DG(x, y; α) ≤ 1, rescales (x, y) according to 
the parameter 0 ≤ α ≤ 1, also keeping the projected input–output combi-
nation inside the production possibility set. The properties of these func-
tions are presented in Chambers et al. (1996, 1998) and Chavas and Cox 
(1999). More importantly, one of their most relevant features is that they 
nest Shephard’s input and output distance functions depending on the spe-
cific values of the directional vector g  = 0 or directional parameter α. The 
input distance function is obtained by setting g =

(
−gx, gy

)
= (−x, 0) 

and α = 0, while the output distance function corresponds to 
g =

(
−gx, gy

)
= (0, y) and α = 1.4 Additionally, the GDF is the only 

one which nests the hyperbolic distance function introduced by Färe et al. 
(1985) for α = 0.5.5 This implies that both approaches can generalize 
Shephard’s input and output distance functions, and therefore, their inverse 
corresponds to Farrell’s (1957) radial efficiency measures. However, we note 
in what follows that such a generalization for the case of the DDF does not 
extend to the notions of cost and revenue efficiency and its decomposition 
into technical and allocative efficiency, since the latter does not verify a dual 
relationship when characterizing the technology through the DDF as shown 
by Aparicio et al. (2017).

The choice of direction by the researcher, addressed in Sect. 6.3, repre-
sents an initial challenge. Settling for an input or output orientation restricts 
the production or economic analysis to one dimension (cost or revenue), 
while allowing for alternative directions requires justification, including 
those that assign different directions for each observation. Although the 
aforementioned distance functions rely on the same set of variables, and 

4The input and output distance functions define respectively as DI (x, y) = max{� : (x/�, y) ∈ T} and 
DO(x, y) = min{θ : (x, y/θ) ∈ T}. If the technology satisfies the customary axioms, the input dis-
tance function has the range DI (x, y) ≥ 1. It is homogeneous of degree one in inputs, non- decreasing 
in inputs and nonincreasing in outputs. In contrast, the output distance function has the range 
0<DO(x, y) ≤ 1. It is homogeneous of degree one in outputs, nondecreasing in outputs and nonin-
creasing in inputs. Färe and Primont (1995, pp. 15, 22) show that weak disposability of inputs and out-
puts is necessary and sufficient for the input and output distance functions to completely characterize 
technology.
5The hyperbolic distance function inherits its name from the hyperbolic path that it follows towards 
the production frontier. The range of the hyperbolic distance function is 0 < DH (x, y) ≤ 1.  
It satisfies the following properties: it is almost homogeneous of degrees k1, k2 and k3: 
DH (�

k1x, �k2y;α) = �
k3DH (x, y;α), for all � > 0, k = (−1, 1, 1) (Aczél 1966, Chs. 5 and 7; Cuesta 

and Zofío 2005), nondecreasing in outputs and nonincreasing in inputs.
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sometimes share the same parametric representation, the question that 
naturally arises is which formulation should be used in empirical applica-
tions. An economic criterion is needed to choose among these alternatives. 
Debreu’s (1951) “coefficient of resource utilization” suggests Pareto effi-
ciency, based on utility maximization by economic agents.6 At the firm level, 
this implies profit maximization at competitive market prices, which in turn 
entails cost minimization. Additionally, under CRS, this is equivalent to 
profitability maximization.

2.3  Optimizing Economic Behaviour

The following economic objectives allow us to discuss the duality framework 
for an overall economic efficiency analysis. Based on the previous primal 
representations of the technology (1) and (2), and considering the vectors 
of input and output shadow prices, w ∈ R

N
+ and p ∈ R

M
+, the following eco-

nomic functions can be defined:

• The profit function:

• The profitability function:

The profit function determines the maximal feasible profit defined as rev-
enue minus cost, and assuming the necessary derivative properties—includ-
ing continuity and differentiability, Hotelling’s lemma yields the input 
demand and output supply functions. Alternatively, the profitability or 
return-to-dollar (RD) function represents the maximum attainable revenue 
to cost ratio.7

(3)π(w, p) = max
x,y

{py− wx : (x, y) ∈ T},

(4)ρ(w, p) = max
x,y

{
py/wx : (x, y) ∈ TCRS

}
.

7The counterpart to the input distance function corresponds to the cost function, defined as 
C(y,w) = min

x
{wx : x ∈ L(y)}, where L(y) = {x : (x, y) ∈ T} is the input requirement set. It repre-

sents the minimum cost of producing a given amount of outputs, yielding the input demand functions 
by applying Shephard’s lemma. Correspondingly, the revenue function R(x, p) = max

y
{py : y ∈ P(x)}, 

6Debreu’s (1951) “coefficient of resource utilization” is the corner stone upon which Aparicio et al. 
(2016) introduce the concept of loss distance function, identifying the minimum conditions necessary to 
derive a dual relationship with a supporting economic function. They obtain specific normalizing sets 
of the loss function that correspond to the most usual distance functions.
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For the optima (min or max) to exist, conditions must be fulfilled. In 
the case of the profit function, nonincreasing returns to scale are required 
(with profit equalling 0 or +∞ under CRS). For the profitability function, 
Zofío and Prieto (2006) prove that maximum profitability is attained in loci 
where the production technology exhibits local CRS—i.e. processes exhibit-
ing a technically optimal scale, Balk (1998, p. 19), and constituting a most 
productive scale size (MPSS) in Banker and Thrall’s (1992) terminology. A 
suitable GDF intended to measure overall economic efficiency, including 
scale efficiency, is relative to a production possibility set with CRS, using as a 
benchmark the virtual cone technology, TCRS.8

2.4  Duality and Overall Economic Efficiency: Technical 
and Allocative Efficiency

Several authors, including Chambers et al. (1998) for (3) and Zofío and 
Prieto (2006) for (4), prove the duality between the aforementioned distance 
functions and their associated economic functions. In particular, interpret-
ing the distance functions as measures of technical efficiency, it is possible to 
define the following inequalities9:

• Profit:

(5)
T = {(x, y) : py− wx + DT

(
x, y;−gx, gy

)(
pgy + wgx

)

≤ π(w, p) for all p,w > 0}

8The technology may be characterized by variable returns to scale as in (2), allowing for scale (in)effi-
ciency DCRS

G (x, y;α) = DG(x, y;α)SEG, with SEG = DCRS
G (x, y;α)/DG(x, y;α), but the final sup-

porting technological benchmark is characterized by CRS.
9Here, we take into account that T = {(x, y) : DG(x, y;α) ≤ 1} and 
T =

{
(x, y) : DT

(
x, y,−gx , gy

)
≥ 0

}
. For the case of the profit and DDFs, the additive overall effi-

ciency measure is normalized by pgy + wgx = 1, ensuring that it is independent of the measurement 
units as its multiplicative counterparts—see Nerlove (1965). These dual relations are economic particu-
larizations of Minkowski’s (1911) theorem: every closed convex set can be characterized as the intersec-
tion of its supporting halfspaces. In fact, the cost, revenue, profit and profitability functions are known 
as the support functions characterizing the technology for alternative shadow prices—e.g. for the par-
ticular case of the cost function, see Chambers (1988, p. 83).

where P(x) = {y : (x, y) ∈ T} is the output production possibility set, represents the maximum possi-
ble revenue of using a given amount of inputs, yielding the output supply functions.
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• Profitability:

Closing the inequalities by adding a residual variable capturing allocative 
inefficiency, allows establishing the following decompositions of overall eco-
nomic efficiency:

• Overall profit (Nerlovian) inefficiency:

• Overall profitability (RD) efficiency:

The above relationships constitute the core of the empirical research on 
productive and economic efficiency when market prices are brought into 
the analysis.10 We can now define overall economic efficiency as the abil-
ity of firms to achieve their economic goal, either maximum profit or 
profitability, which in turn requires that they are technically efficient by 
using the available technology at its best, as well as allocative efficient by 
demanding and supplying the right mix of inputs and outputs. Recalling 
the notion of optimality that opens this section, the underlying concept 
is again that of Pareto efficiency. Accordingly, and following Koopmans 
(1951), it is possible to state the following definition of technical efficiency: 
a firm is technically efficient if an increase in any output requires a reduc-
tion in at least one other output or an increase in at least one input and if 
a reduction in any input requires an increase in at least one other input or 
a reduction in at least one output. In formal terms, this definition implies 
that the firm belongs to the strongly efficient subset of the technology: 

(6)
TCRS = {(x, y) : p

(
y DCRS

G (x, y;α)−α
)
/w

(
x DCRS

G (x, y;α)1−α
)

≤ ρ(w, p) for all p,w > 0}.

(7)
π(w, p)− (py − wx)

pgy + wgx
= DT

(
x, y;−gx, gy

)
+ AIT ,

(8)
py/wx

ρ(w, p)
= DCRS

G (x, y;α)AECRS
G .

10The overall cost and revenue efficiencies correspond to C(y,w)/wx = (1/DI (x, y)) · AEI and 
py/R(x, p) = DO(x, y) · AEO, respectively.
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Eff (T) = {(x, y) ∈ T : (u,−v) ≤ (x,−y), (u, v) �= (x, y) ⇒ (u, v) /∈ T}.11 
The distance functions (7) and (8) represent suitable measures of technical 
efficiency, albeit referred to weaker notions of efficiency characterized by their 
corresponding subsets—e.g. for the particular case of the DDF, see Aparicio 
et al. (2016, p. 76). Values of DT

(
x, y;−gx, gy

)
= 0 and DCRS

G (x, y;α) = 1 
signal that, given the technology, simultaneous changes in inputs and outputs 
so as to improve productive efficiency are infeasible. A definition of allocative 
efficiency can also be provided in terms of market prices: A firm is alloca-
tive efficient if it demands the optimal amounts of inputs and supplies the 
optimal amounts of outputs that maximize either profit or profitability at the 
existing prices. In the former case, the value of allocative efficiency is a resid-
ual defined as the difference between profit efficiency and the DDF, while in 
the latter case its value corresponds to the ratio of profitability efficiency to 
the GDF. For AIT = 0 and AECRS

G = 1, the firm is allocative efficient.
Several remarks are relevant for applied research. First note that for the 

overall profitability decomposition, the CRS benchmark characterizes the 
GDF. Second, a less restrictive property, homotheticity, is also required for 
a meaningful decomposition of overall economic efficiency, where the dis-
tance functions can be rightly interpreted as measures of technical efficiency. 
Within a nonparametric setting, Aparicio et al. (2015) and within a para-
metric setting Aparicio and Zofío (2017) show that, for nonhomothetic 
technologies, the radial contractions (expansions) of the input (output) 
vectors resulting in efficiency gains do not maintain allocative (in)efficiency 
constant along the firm’s projection to the production frontier (isoquants). 
This implies that they cannot be solely interpreted as technical efficiency 
reductions. From the perspective of, for example, the cost and revenue effi-
ciency decompositions, this result invalidates the residual nature of allocative 
efficiency and requires the use of a distance function with a directional vec-
tor capable of keeping allocative efficiency constant along the projections.12 
Third, while the additive DDF nests the input and output radial distance 
functions, such generalization does not extend to the notion of cost or rev-
enue efficiency and its decomposition into technical and allocative terms. 
For these particular directions, allocative efficiency cannot be obtained as an 

12This in turn implies that the radial framework or choosing as a directional vector the observed 
amounts of inputs and outputs in the case of the DDF is no longer valid.

11The (strongly) efficient set consists of all firms that are not dominated, requiring monotonic prefer-
ences to characterize efficiency (ten Raa 2008, p. 194, Lemma).
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independent residual from the above inequalities as shown by Aparicio et al. 
(2017).13

The alternative distance function representations of production tech-
nology (technical efficiency measures), dual economic functions and the 
residual nature of allocative efficiency are presented in Fig. 1. We comment 
overall economic efficiency for the directional and GDFs and their dual 
profit and profitability functions. In the left panel, (a) the directional func-
tion (1) measuring the distance from the single-input-single-output unit 
(xi, yi) to the frontier is represented by DT

(
xi, yi; gx, gy

)
, measuring tech-

nical inefficiency and, equivalently—thanks to the duality relationship (5)—
its associated profit loss in monetary units if the normalizing constraint is 
set to 

(
pgy + wgx

)
= 1. This projects the unit to 

(
x̂Ti , ŷ

T
i

)
, whose profit is 

pŷTi − wx̂Ti . Therefore, and thanks to (7), the difference between maximum 
profit—attained at 

(
xπi , y

π
i

)
—and observed profit at the efficient projec-

tion corresponds to allocative inefficiency: π(p,w) −
(
pŷTi − wx̂Ti

)
. In the 

same panel, (a) the input and output distance functions are also presented 
as particular cases of the directional formulation for 

(
−gx, gy

)
= (−x, 0) 

and 
(
−gx, gy

)
= (0, y), but whose interpretation in terms of overall cost or 

(a) (b)

Fig. 1 Distance functions and their economic duals: Profit (a) and profitability (b)

13Regarding denominations, we note that a firm is overall profit efficient when its technical and alloc-
ative terms are zero rather than one. This implies that the larger the numerical value of the DDF the 
more inefficient is the firm, thus the technical and allocative (in )efficiency notation: TI and AI, with 
TI = DT

(
x, y;−gx , gy

)
. Other authors, e.g. Balk (1998), favour a consistent characterization of effi-

ciency throughout, so the larger the value the greater the firm’s efficiency. This is achieved by defining 
TE = −DT

(
x, y;−gx , gy

)
.
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revenue efficiency is inconsistent. The right panel (b) presents an equivalent 
analysis in terms of the GDF (2) projecting the evaluated unit to 

(
x̂Gi , ŷ

G
i

)
 

through DCRS
G (x, y; α). In the single-input-single-output case, its technical 

inefficiency interpretation is the amount by which observed average produc-
tivity yi/xi can be increased to attain, ŷGi /x̂

G
i  at the reference frontier. Now, 

thanks to the duality relationship (6), the difference can be interpreted in 
terms of profitability differentials given the input and output market prices. 
Finally, following (8), it is possible to determine allocative efficiency as the 
ratio between projected profitability pŷGi /wx̂

G
i  to maximum profitability—

attained at 
(
x
ρ
i , y

ρ
i

)
: i.e. 

(
pŷGi /wx̂

G
i

)
/
(
py

ρ

i /wx
ρ

i

)
. Again, in the same panel 

(b) the input and output distance functions are presented for α = 0 and 
α = 1, respectively.

3  Standard Approaches to Measure Firms’ 
Economic Efficiency

Once the theoretical framework has been introduced, the next step is the 
consideration of the empirical methods that allow the measurement and 
decomposition of firms’ economic efficiency relying on duality theory. 
This requires approximating the technology by using either nonparametric 
mathematical programming, parametric econometric techniques (regres-
sion analysis) or engineering (bottom-up) models. In this section, we only  
describe the main features of the two most popular approaches, DEA and 
SFA. Throughout the section, we limit our discussion to simple specifica-
tions of both parametric and nonparametric models.14

3.1  Data Envelopment Analysis

DEA approximates the production technology from observed data by rely-
ing on the principle of minimum extrapolation, which yields the smallest 
subset of the input–output space RN

+ × R
M
+ containing all observations, and 

satisfying certain technological assumptions. Technology consists of piece-
wise linear combinations of the observed i = 1,…, I firms constituting a 

14A comprehensive exposition is presented in earlier chapters devoted to the deterministic and stochas-
tic benchmarking methodologies by Subash Ray, and William H. Greene and Phill Wheat, respectively.
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multidimensional production frontier.15 The most common DEA piecewise 
linear approximation of the technology T is given by

where � is an intensity vector whose values determine the linear combina-
tions of facets which define the production frontier, and whose associated 
restrictions allow considering alternative returns to scale; e.g., 

∑
i � = 1 

implies variable returns to scale. Among the technological properties incor-
porated into the above DEA model, we highlight convexity, strong dispos-
ability and variable returns to scale.

Regarding convexity, while there are alternative DEA models dropping 
this assumption like the Free Disposal Hull (FDH) or Free Replicability 
Hull (FRH), these are inconsistent with duality theory (i.e. Minkowski’s 
theorem), since convexity is key when recovering the technology from the 
supporting economic functions. As for free (or strong) disposability, imply-
ing that it is feasible to discard unnecessary inputs and unwanted out-
puts without incurring in technological opportunity costs is a rather weak 
assumption that, nevertheless, has its drawbacks. Most importantly, when 
measuring technical efficiency through radial distance functions, their val-
ues reflect whether the firm belongs to the so-called isoquant subsets—again 
a notion of efficiency weaker than the previously considered by Koopmans 
(1951) and that leaves room for nonradial efficiency improvements asso-
ciated with strong disposability (i.e. slacks). Finally, alternative returns to 
scale can be postulated in (9) through the intensity variables �. The variable 
returns to scale assumption can be dropped in favour of CRS by removing ∑I

i=1 �i = 1, while nonincreasing and nondecreasing returns to scale corre-
spond to 

∑I
i=1 �i ≤ 1 and 

∑I
i=1 �i ≥ 1, respectively.

After characterizing the technology, the distance functions (1) and (2) 
can be calculated by solving their corresponding mathematical programmes. 
Again, we present only the directional and GDFs, as their input, output and 
hyperbolic distance functions are particular cases. Taking as guiding frame-
work the decomposition of economic efficiency and the scale properties of 

(9)

T =

{
(x, y) ∈ R

N

+ × R
M

+ :

I∑

i=1

�ixin ≤ xn, n = 1, . . . ,N;

I∑

i=1

�iyim ≥ ym,m = 1, . . . ,M;

I∑

i=1

�i = 1, � ∈ R
I

+, i = 1, . . . , I

}

15See Cooper et al. (2007) and Färe et al. (1994) for an introduction to the Activity Analysis DEA 
within a production theory context.
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the technology associated with either profit or profitability maximization, 
respectively, corresponding to nonincreasing and CRS, the following pro-
grammes allow evaluating the technical efficiency of firm (xi′ , yi′):

Directional distance function, DDF

Generalized distance function, GDF

Note that these programmes incorporate the DEA production possibility 
set (9) as technological restrictions.

Besides the values of the distance functions representing the  technical 
efficiency measures, relevant information can be obtained from both the 
above “envelopment” formulations of the technology and their “multiplier” 
duals—see (12) and (13) below. As identified in (10) and (11), a firm can 
indeed compare its technical and economic performance to that of its peers, 
so as to improve its own efficiency and productivity; those firms with opti-
mal �∗i > 0 conform the reference frontier, and the value corresponds to  

(10)

DT

(
xi′ , yi′ ; −gx, gy

)
=

= maxβ,�i
{
β :

(
xi′ − βgx, yi′ + βgy

)
∈ T

}

s.t.

I∑

i=1

�ixin ≤ xi′n − βgxn , n = 1, . . . ,N ,

I∑

i=1

�iyim ≥ yi′m + βgym , m = 1, . . . ,M,

I∑

i=1

�i ≤ 1, � ∈ R
I
+.

(11)

DCRS
G (xi′ , yi′ ; α) =

= minδ,�i

{
δ :

(
xi′δ

1−α, yi′/δ
α
)
∈ TCRS

}

s.t.

I∑

i=1

�ixin ≤ δ1−α xi′n, n = 1, . . . ,N ,

I∑

i=1

�iyim ≥ yi′m/δ
α, m = 1, . . . ,M,

� ∈ R
I
+.
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the relevance (weight) of the benchmark firm in the linear combination. 
Regarding technical efficiency, the number of possible peer firms is equal 
to the number of inputs plus the number of outputs except in the CRS 
case, where there can generally be one less reference peer. This follows from 
Carathéodory’s theorem stating that if a problem with n restrictions has an 
optimal solution, then there exists a solution in which at most n variables are 
positive—i.e. known as the basic feasible solution.

The duals corresponding to the above envelopment formulations of the 
directional and GDFs are the following16:

Directional distance function, DDF

Generalized distance function, GDF

From these programmes, technological relationships between inputs and 
outputs can be discerned, in the form of the optimal weights or multipliers 
(ν,µ), defining the supporting (reference) hyperplanes against which tech-
nical efficiency is measured. In this case, the firm is efficient if it belongs to 
one of the supporting hyperplanes (forming the facets of the envelopment 
surface) for which all firms lie on or beneath it.

The choice of the primal “envelopment” formulations (10) and (11) or 
their “multiplier” duals (12) and (13) depends on the analytical objective 
of researchers and the specific characteristics of the study. Nevertheless, the 
simplex method for solving the envelopment form also produces the optimal 
values of the dual variables, and all existing optimization software provides 

(12)

DT

(
xi′ , yi′ ,−gx, gy

)
=

minµ,ν,ω νxi′ − µyi′ + ω

s.t. νxi − µyi + ω ≥ 0, i = 1, . . . , I

νgx + µgy = 1,

ν ≥ 0, µ ≥ 0, ω ≥ 0.

(13)

DCRS
G (xi′ , yi′ ;α) = maxµ,νµyi′

s.t. − ν xi + µyi ≤ 0, i = 1, . . . , I

µxi′ = 1,

ν ≥ 0, µ ≥ 0.

16The dual for the GDF envelopment formulation (11) can be determined because it corresponds to a 
CRS characterization of the production technology, rendering it equivalent, for instance, to the radially 
oriented output distance function for α = 1—since the value of DCRS

G (x, y;α) is independent of α.
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both sets of results readily, so there is not any computational burden on a 
particular choice of model.17 For peer evaluation and determination of 
the nature of returns to scale, the envelopment formulations are adequate, 
while the duals are required if one wants to set weight restrictions rather 
than to adhere to the “most favourable weights” that DEA yields by default 
(Thompson et al. 1986; Podinovsky 2015). Also, as optimal weights are not 
unique, one can define secondary goals in comparative analyses that, using 
cross-efficiency methods, also help to rank observations that are efficient in 
the standard (first stage) DEA (Sexton et al. 1986; Cook and Zhu 2015).

Once the distance functions measuring technical efficiency have been cal-
culated, it is possible to determine overall profit and profitability efficiency 
by resorting to DEA, subject to the same technology. These programmes 
incorporate the restrictions characterizing returns to scale and jointly deter-
mine the maximum profit or profitability, depending on the choice of eco-
nomic behaviour:

Profit efficiency

(14)

π(w, p)− (pyi′ − wxi′)

pgy + wgx
= maxβ,�i,x,y ϕ

s.t.

I∑

i=1

�ixin = xn, n = 1, . . . ,N ,

I∑

i=1

�iyim = ym, m = 1, . . . ,M,

I∑

i=i

�i
pyi − wxi

pgy + wgx
=

pyi′ − wxi′

pgy + wgx
+ ϕ,

I∑

i=1

�i ≤ 1, � ∈ R
I
+.

17Nevertheless, the computational effort of solving the envelopment problems grows in proportion to 
powers of the number of DMUs, I. As the number of DMUs is considerably larger than the number of 
inputs and outputs (N + M ), it takes longer and requires more memory to solve the envelopment prob-
lems. We contend that except for simulation analyses and the use of recursive statistical methods such as 
bootstrapping, nowadays processing power allows calculation of either method without computational 
burdens.
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Profitability efficiency

The decomposition of overall economic efficiency can then be completed 
by calculating allocative efficiency as a residual, i.e. solving for AIT and 
AECRS

G  in Eqs. (7) and (8). That is, using the optimal solutions obtained for 
the directional and GDFs, as well as the calculated profit and profitability 
efficiencies:

• Allocative (in)efficiency:

• Allocative efficiency:

3.2  Stochastic Frontier Approach

In this section, we outline the main features of the standard econometric 
approach to measuring firms’ inefficiency. For a comprehensive survey of 
this literature, see Kumbhakar and Lovell (2000), Fried et al. (2008), and 
Parmeter and Kumbhakar (2014). For notational ease, we have developed 
this section for cross-sectional data, except when a panel data framework is 
discussed.

(15)

pyi′/wxi′

ρ(w, p)
= minφ,�i,x,y φ

s.t.

I∑

i=1

�ixin = xn, n = 1, . . . ,N ,

I∑

i=1

�iyim = ym,m = 1, . . . ,M,

I∑

i=i

�i
wxi

pyi
= φ

wxi′

pyi′
,

� ∈ R
I
+.

(16)AIT ≡
π(w, p)− (py − wx)

pgy + wgx
− DT (x, y;−gx, gy) = ϕ∗ − β∗,

(17)AECRS
G ≡

py/wx

ρ(w, p)
/DCRS

G (x, y;α) = δ∗/φ∗,
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In analogy to the DEA analysis, we confine our discussion to the estima-
tion of technical efficiency using distance functions.18 Thus, firm perfor-
mance is evaluated by means of the following (general) distance function:

where the scalar yi is the output of firm i = 1, . . . I , xi is a vector of inputs, 
ln Di captures firm’s technical efficiency, ln D(xi, yi,β) is a deterministic 
function measuring firm’s technology, β is now a vector of technological 
parameters, and vi is a two-sided noise term. In Eq. (18), we specify the dis-
tance function as being stochastic in order to capture random shocks that 
are not under the control of the firm. It can also be interpreted as a specifi-
cation error term that appears when the researcher tries to model the firm’s 
technology.

A relevant issue that should be addressed here is that while the dual 
representations of the technology in (3) and (4) are clearly identified in a 
parametric exercise by the different sets of both dependent and explana-
tory variables, this is not the case for the primal representations based on 
the distance functions in (1) and (2). At first sight, all of them are func-
tions of the same vector of inputs and outputs. Thus, if we were able to 
estimate a function of inputs and outputs, say ln D(xi, yi,β), how do we 
ensure that we have estimated our preferred choice, say, an output distance 
function, and not an input distance function? Note also that, regardless the 
orientation of the distance function, the term measuring firms’ inefficiency  
(i.e. ln Di) is not observed by the researcher, and thus, it cannot be used 
as a proper dependent variable to estimate (18). For identification pur-
poses, we need to rely on the theoretical properties of distance functions. 
In particular, the key property for identification is the translation prop-
erty for the DDF, the almost homogeneity condition for the GDF (and 
its particular case corresponding to the hyperbolic definition) and the lin-
ear homogeneity condition for the input and output distance functions. 
Identification works because each homogeneity condition involves differ-
ent sets of variables. Although the underlying technology is the same, the  
coefficients of each distance function differ. In the case of output distance 

(18)ln Di = ln D(xi, yi,β)+ vi,

18Although most early SFA applications used production functions, the distance function became as 
popular as the production functions since Coelli and Perelman (1996), who helped practitioners to 
estimate and interpret properly the distance functions. In addition, the distance functions can consti-
tute the building blocks for the measurement of productivity change and its decomposition into its 
basic sources (see, e.g., Orea 2002). This decomposition can be helpful to guide policy if estimated with 
precision.
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function, for example, linear homogeneity in outputs implies that the deter-
ministic distance function ln D(xi, yi,β) can alternatively be rewritten as:

This specification immediately “produces” an observed dependent varia-
ble for the above model once (19) is inserted into (18). Indeed, rearranging 
terms, model (18) can be expressed as follows19:

where ui = − ln Di ≥ 0 is a nonnegative random term measuring firms’ 
inefficiency that can vary across firms. Note that this model can be immedi-
ately estimated econometrically once a particular functional form is chosen 
for ln D(xi, yi/y1i,β), and ui is properly modelled.

The input and generalized (hyperbolic) distance functions, as well 
as the DDF, deserve similar comments. While the standard radial dis-
tance functions are mainly estimated in the literature using the  
Translog specification, the Quadratic function is often used for the DDF. 
The reason is that the translation property can be easily imposed on this 
specification (see Färe et al. 2005). Both Translog and Quadratic functions 
are not only differentiable allowing for the estimation of shadow prices 
and output/input substitutability, but also provide a second-order approx-
imation to a true, but unknown distance function (see Diewert 1971, pp. 
481–507).20 It is worth mentioning that inefficiency is measured in physi-
cal units if a Quadratic specification is used, and not in percentage terms as 
it happens if we use a traditional Translog specification. Both measures are 
correct, albeit they are simply using different approaches to measure the dis-
tance to the frontier. On the other hand, an interesting feature that is often 
overlooked is that the Quadratic specification is normally estimated once 
the variables are normalized with the sample means (see Färe et al. 2005, 
p. 480). As the normalized variables are unit free, in practice the estimated  

(19)ln D(xi, yi,β) = ln D
(
xi, yi

/
y1i,β

)
+ ln y1i.

(20)ln y1i = − ln D(xi, yi/y1i,β)+ vi − ui,

20While the flexibility of the functional forms allows a more precise representation of the production 
technology and economic behaviour, it is prone to some drawbacks. For instance, Lau (1986) proved 
that flexibility is incompatible with global regularity if both concavity and monotonicity are imposed 
using standard econometric techniques. That is, imposing regularity conditions globally often comes 
at the cost of limiting the flexibility of the functional form. It should be pointed out, however, that 
it is possible to maintain local flexibility using Bayesian techniques. See Griffiths et al. (2000) and 
O’Donnell and Coelli (2005).

19To obtain this equation, we have taken into account that the vi and −vi have the same normal 
distribution.
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inefficiency scores can be interpreted as proportional changes in outputs and 
inputs, in the same fashion as in the standard radial distance functions.

Note also that the composed error term εi = vi − ui in (20) comprises 
two independent parts, a noise term and an inefficiency term. They are likely 
to follow different distributions given their different nature. Indeed, it is 
conventionally assumed that vi follows a symmetric distribution since ran-
dom shocks and specification errors might take both positive and negative 
values. However, by construction, inefficient performance always produces a 
contraction in firms’ output. For this reason, ui is assumed to be nonnegative 
(and asymmetrically) distributed. This results in a composed error term εi 
that is asymmetrically distributed. As customary in the literature, it is also 
assumed throughout that both random terms are distributed independently 
of each other and of the input variable.

We now turn to explaining how to estimate the above frontier model. The 
estimation of the model involves both the parameters of the distance (pro-
duction) function and the inefficiency. Even with very simple SFA models, 
the researcher has several estimation methods at hand and, in most applica-
tions, chooses only one. All have their own advantages and disadvantages. 
Equation (20) can first be estimated via Maximum likelihood (ML) once par-
ticular distributional assumptions on both random terms are made. ML is 
the most popular empirical strategy in the literature, but it relies on (per-
haps strong) assumptions regarding the distribution of these terms and the 
exogenous nature of the regressors. A second method that we can choose 
is the Method of Moments (MM) approach, where all technological param-
eters of the production function are estimated using standard economet-
ric techniques without making specific distributional assumptions on the 
error components. If, in addition, we are willing to compute the firms’ effi-
ciency scores with no distributional assumptions on the error components, 
we can follow the so-called Distribution-Free Approach, which includes the 
well-known Corrected Ordinary Least Squares (COLS) method for cross-sec-
tional data and the CSS method (from Cornwell et al., 1990) in a panel data 
setting.

If Eq. (20) is estimated via ML, both technological parameters of 
the production function (β) and the structure of the two error com-
ponents (i.e. the variance of vi and ui) are estimated simultaneously 
in a single stage. If the MM approach is chosen, an additional stage is 
involved. In the first stage, all technological parameters of the produc-
tion function are estimated using standard econometric techniques, such 
as OLS or GMM. This stage is independent of distributional assump-
tions in respect of either error component. In the second stage of  
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the estimation procedure, distributional assumptions are invoked to obtain 
ML estimates of the parameter(s) describing the structure of the two error 
components, conditional on the first-stage estimated parameters.21 Although 
the MM approach is much less used by practitioners than the traditional 
ML approach, the most comprehensive SFA versions of the MM estimator 
are becoming increasingly popular among researchers because it allows for 
instance dealing with endogenous variables (see Guan et al. 2009) or distin-
guishing between transient and permanent efficiency (Filippini and Greene 
2016).

Whatever the approach we favour, we are forced to choose a distribution 
for vi and ui in order to estimate the parameters in Eq. (20) by ML. While 
the noise term is often assumed to be normally distributed with zero mean 
and constant standard deviation, several distributions have been proposed in 
the literature for the inefficiency term, viz. half-normal (Aigner et al. 1977), 
exponential (Meeusen and van den Broeck 1977) and gamma (Greene 
1990). By far, the most popular distribution is the half-normal, which is 
the truncation (at zero) of a normally distributed random variable with zero 
mean and constant standard deviation, that is ui ∼ N+(0, σu).22 The most 
important characteristic of this distribution is that the modal value of the 
inefficiency term (i.e. the most frequent value) is close to zero, and higher 
values of ui are increasingly less likely (frequent). Stevenson (1980) relaxed 
the somehow strong assumption that the most probable value is being fully 
efficient by introducing the truncated normal distribution, which replaces 
the zero mean of the pretruncated normal distribution by a new parameter 
to be estimated. It should be pointed out that the identification of both ran-
dom terms in these models relies on the one-sided nature of the distribution 
of ui and not necessarily on the asymmetry of the inefficiency term (see Li 
1996). In other words, if the inefficiency term could take both positive and 
negative values, it would not be distinguishable from the noise term.

Several comments are in order regarding the above distributional 
assumptions. First, all of them provide closed-form solutions for the distri-
bution of the composed error term, making the direct application of ML  
straightforward. Newer models are appearing in the literature that do not 
yield tractable likelihood functions and must be estimated by simulated 

21Both variances can also be estimated using the second and third moments of the composed error term 
taking advantage of the fact that, while the second moment provides information about both variances, 
the third moment only provides information about the asymmetric random conduct term.
22Note that, for notational ease, we use σu to indicate hereafter the standard deviation of the  
pretruncated normal distribution, and not the standard deviation of the post-truncated variable ui.
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maximum likelihood. See Parmeter and Kumbhakar (2014, Section 7) for 
an excellent review of recent contributions dealing with this issue. Second, 
rigidities derived from the nature of some inputs, regulations, transaction 
costs, information failures and other adjustment costs may prevent firms 
from moving instantly towards long-run optimal conditions. In this context, 
firms may not only find it optimal to remain inefficient in the short run, but 
also their inefficiency may persist from one period to the next. Two differ-
ent approaches have been used in the literature to incorporate the dynamic 
nature of the decision-making process into efficiency analyses: reduced-
form models that do not define explicitly a mathematical representation of 
dynamic behaviour of the firm, and structural models that make explicit 
assumptions regarding the objective of the firm and on a rule for forming 
expectations with respect to future input prices and technological advances. 
For a more comprehensive review of this literature, see Emvalomatis (2009).

Third, so far we have assumed that the inefficiency and noise terms are 
independently distributed. This could be a strong assumption for instance 
in agriculture, where noisy and seasonal fluctuations often affect produc-
tive decisions. The error components independence assumption has been 
recently relaxed by Bandyopadhyay and Das (2006) and Smith (2008). 
While the first authors assume that vi and ui are jointly distributed as nor-
mally truncated bivariate so that ui is truncated below zero, the second uses 
the copula approach. The copula allows parameterizing the joint behaviour 
of vi and ui and tests the adequacy of the independence assumption.23 The 
latter author also shows that the distribution of the composed error term 
can yield wrong skewness problems, making it difficult to estimate the above 
model by ML. The so-called wrong skew problem appears in a SFA model 
when the OLS residuals have skewness of the wrong sign relative to the SFA 
frontier model that includes a one-sided error term. In this case, ML esti-
mation will almost always produce fully efficient scores as σu tends to zero. 
Also, the ML estimator is subject to significant biases when error compo-
nent dependence is incorrectly ignored. Using a set of simulation exercises, 
Simar and Wilson (2010) show that the wrong skewness issue might also 
appear even when the underlying skewness is the correct one.

Finally, O’Donnell et al. (2010) show that the application of standard 
methods of efficiency analysis to data arising from production under uncer-
tainty may give rise to spurious findings of efficiency differences between 

23Other authors have used the copula method in other types of SFA applications. For instance, Amsler 
et al. (2014) employ them to model time dependence, while Carta and Steel (2012) suggest their use in 
modeling multi-output models.
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firms. This may be a serious issue in many applications, such as agriculture, 
fishing or banking where production uncertainty is relatively high. To deal 
with this issue, Chambers and Quiggin (2000) found it convenient to treat 
uncertainty as a discrete random variable and proposed to model uncertainty 
in terms of a state contingent technology, where each state represents a par-
ticular uncertain event. They also show that all the tools of modern produc-
tion theory, including cost and distance functions, may be applied to state 
contingent production technologies.24

Once the model has been estimated, the next step is to obtain the effi-
ciency values for each firm. They are often estimated by decomposing the 
estimated residuals of the production function. Following Jondrow et al. 
(1982), both the mean and the mode of the conditional distribution of ui 
given the composed error term εi can be used as a point estimate of ui.25 
Three comments are in order regarding the point estimates of ui. First, Wang 
and Schmidt (2009) show that inference on the validity of the chosen spec-
ification of the inefficiency term should not be carried out by simply com-
paring the observed distribution of ûi to the assumed distribution for ui. To 
carry out this test, we should compare the distribution of ûi and E(ui|εi).  
In this sense, they propose nonparametric chi-square and Kolmogorov-
Smirnov type statistics to perform this test properly. Second, the choice of 
a particular distribution for the inefficiency term should not only rely on 
statistical criteria, but also on the competitive conditions of the markets 
where the firms are operating. For instance, the above-mentioned distribu-
tions allow for the existence of very inefficient firms in the sample, which 
is an unappealing feature if they are operating in very competitive markets. 
For these markets, it might be more appropriate to use the double-bounded 
distribution introduced by Almanidis et al. (2010) that imposes both 
lower and upper theoretical bounds on the values of the inefficiency term. 
Moreover, the results of some recent papers providing evidence on the corre-
lation between market power and operational inefficiency suggest that differ-
ent market equilibrium outcomes might yield different distributions for the 
inefficiency term—e.g. Huang et al. (2017).

24Empirical application of the state contingent approach has proved difficult for several reasons because 
most of the data needed to estimate these models are lost in unrealized states of nature (i.e. outputs are 
typically observed only under one of the many possible states of nature).
25As aforementioned, firms’ efficiency scores can also be computed without making specific dis-
tributional assumptions on the error components using the so-called distribution-free approach. As 
Kumbhakar et al. (2015, p. 49) remark, the drawback is that the statistical properties of the estimator 
of ui may not be ready available.
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Finally, the previous discussion is concerned with the technical side of 
the firm. Recent developments in duality theory allow the decomposition 
of overall economic efficiency into technical and allocative terms in a con-
sistent way. For an updated presentation of the models based on numerical 
methods that are deterministic, we refer the reader to Aparicio and Zofío 
(2017). These authors show that, if the production or cost functions are 
known, the process is simplified when the analysis involves self-dual homog-
enous technologies, as in the Cobb-Douglas or generalized production func-
tion cases. When the estimation of unknown production or cost function is 
required, Parmeter and Kumbhakar (2014) summarize the existing methods, 
favouring those relying on the primal perspective that are easier to identify 
and estimate, over systems of equations based on the dual approach. Their 
preferred approach estimates a system consisting of a stochastic production 
function, which allows for technical inefficiency, and a set of first-order con-
ditions for cost minimization. Departure from the optimality conditions 
can be measured by the difference in the bilateral ratios corresponding to 
the marginal productivities and input prices. A parametric decomposition 
of overall cost efficiency solves the system of equations by maximum likeli-
hood for a given functional form (e.g. Translog). The error term of the sto-
chastic production function can be decomposed using Jondrow et al. (1982) 
in order to compute firms’ technical inefficiency, while the allocative ineffi-
ciencies are obtained from the residuals of the first-order conditions, and the 
input demands functions.26 Again, the method could be adapted to decom-
pose overall revenue and profit efficiency. For the latter case, see Kumbhakar 
et al. (2015), who also show how to implement these methods using the 
STATA software.

3.3  Evaluating, Comparing and Reconciling DEA 
and SFA Methods for Decision Making

Once the basic characteristics of the standard DEA and SFA approaches 
have been presented, it is clear that the individual results, rankings and  
distributions obtained from both methods will generally differ. However,  

26However, Aparicio and Zofío (2017) show that the use of radial measures is inadequate to  decompose 
cost efficiency in the case of nonhomothetic production functions because optimal input demands 
depend on the output targeted by the firm, as does the inequality between marginal rates of substitu-
tion and market prices—i.e. allocative inefficiency. They demonstrate that a correct definition of techni-
cal efficiency corresponds to the DDF.
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the difference between the nonparametric and parametric methods is less 
pronounced nowadays than they used to be because both approaches now 
benefit from recent advances that address their shortcomings. In the past, 
it was their deterministic or stochastic nature and therefore their relative 
ability to accommodate noise and error that marked the difference. A sec-
ond difference was their nonparametric and parametric nature, prevent-
ing second-order differentiability and proneness to misspecification error, 
respectively. In passing, we note that most DEA results are based on the 
envelopment programmes (10) and (11), which successfully identify ref-
erence peers, but do not offer the characterization of the production tech-
nology, except the nature of returns to scale. To unveil the characteristics 
of production technology and economic optima, one must resort to the 
“multiplier forms” (12) and (13) providing linear hyperplanes (facets), from 
which one gains information on the optimal weights and from there mar-
ginal productivities, rates of substitution and transformation, etc. Still, the 
mathematical programming approach does not enjoy the interpretative con-
venience of the econometric approach, e.g. in terms of average technical 
and economic elasticities (scale, cost, revenue, etc.). In turn, in this latter 
approach it is the “average” firm that characterizes technology, rather than 
the observations at the frontier, which are essentially those that represent 
“best practice” behaviour, i.e. those with the highest efficiency, productivity 
and optimal economic performance.

From the perspective of DEA, its deterministic nature has been qual-
ified thanks to the extension of statistical methods to mathematical pro-
gramming. This is the case of chance-constrained DEA and recent robust 
statistical techniques based on data resampling (bootstrapping, fuzzy meth-
ods, stochastic approaches, etc.), which can be customarily found in sev-
eral software packages thanks to the increase in processing capacity—e.g. 
Álvarez et al. (2016). As for the need to adopt a specific—even if flexible— 
functional form in SFA, that may satisfy the desired regularity conditions 
locally, and be prone to misspecification bias, the availability of semip-
arametric and Bayesian techniques is opening new opportunities—e.g.  
Kumbhakar, Park, et al. (2007). Also, new proposals based on Convex 
Nonparametric Least Squares (CNLS) and the so-called Stochastic 
Nonparametric Envelopment of Data (StoNED) are also trying to bridge the 
gap between both methods—Johnson and Kuosmanen (2015).

The extent to which results obtained with both approaches differ is a 
general matter of concern that has been addressed by several authors, who 
employing the same data sets resort to nonparametric tests to compare the 
similarity of the distributions of the efficiency scores (see, e.g. Hjalmarsson 
et al. 1996 and Cummins and Zi 1998). Ultimately, what matters is the 
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ability to provide reliable results on individual performance, not only for  
the managers of the firms operating within an industry, but also for stake-
holders and government agencies involved in regulation, competition and 
general policy analysis. Bauer et al. (1998) are worth referencing because they 
propose a set of consistency conditions for the efficiency estimates obtained 
using alternative methodologies. The consistency of results is related to: (1)  
the comparability of the estimates obtained across methods, assessed with 
respect to the efficiency levels (comparable means, standard deviations and 
other distributional properties), rankings and identification of best and  
worst firms; (2) the degree to which results are consistent with reality, deter-
mined in relation to their stability over time, in accordance with the com-
petitive conditions in the market; and finally, (3) similarity with standard 
nonfrontier measures of performance (e.g. KPIs). In general, the higher the 
consistency of efficiency results across all these dimensions, the more con-
fidence regulators and competition authorities will have on the conclusions 
derived from them and the intended effect of their policy decisions. These 
authors survey a number of studies on financial institutions and examine all 
these consistency conditions for regulatory usefulness.

Several authors have used meta-analyses to confront results from differ-
ent studies and identify the main factors behind the observed variability in 
efficiency. For instance, Brons et al. (2005) and Bravo-Ureta et al. (2007) 
conclude that results from alternative models vary due to several factors 
including the methods used (e.g. nonparametric vs. parametric), alterna-
tive model specifications (e.g. returns to scale), specific observations and  
variables (e.g. nondiscretionary), time periods (e.g. cross-section or panel 
data), etc. Also, Odeck and Bråthen (2012) find that: (1) the random effects 
model outperforms the fixed effects model in explaining the variations 
in mean technical efficiencies; (2) studies relying on nonparametric DEA  
models yield higher values than SFA models (as expected given their deter-
ministic nature); and (3) that panel data studies have lower scores as com-
pared with those using cross-sectional data.

4  Dimension Reduction and Variable 
Selection

This section is devoted to the discussion of several issues related to firms’ 
technology and the number of frontier determinants. Indeed, new tech-
nologies allow researchers to collect larger amounts of data. A relative 
trade-off exists between the number of observations and variables, serving 
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to determine the confidence level and reliability of results. This trade-off is 
summarized within the concept of degrees of freedom. Degrees of freedom 
is a function relating the sample size (I ) with the number of independent 
variables (e.g. N inputs and M outputs), and the larger the number of inde-
pendent observations with respect to the number of explanatory variables, 
the greater the confidence offered to researchers when making inferences 
about a statistical population (i.e. hypotheses testing). This serves for both 
DEA and SFA approaches when performing parametric tests relying on 
asymptotic theory, meaning that theoretical properties can be established for 
large samples (e.g. regarding parameter estimates, the nature of returns to 
scale, input and output substitutability, etc.).27

Moreover, besides the use of parametric tests, in DEA, the ability of these 
methods to discriminate observations by their efficiency is compromised 
when the number of observations is limited. As DEA methods search for 
the most favourable weights for the firm under evaluation, it is more likely 
to assign weights that render the firm efficient when there are less degrees 
of freedom. Any firm for which the ratio of outputs to inputs can be max-
imized by varying weights (including zero values) will be deemed effi-
cient—i.e. any extreme firm employing the lowest amount of any of the N 
inputs or producing the largest amount of any of the M outputs is catego-
rized as efficient by default. In a DEA context, this situation has resulted in 
a “rule of thumb” proposal by which the number of observations should be 
at least twice the number of inputs and outputs: I ≥ 2(N +M)—Golany 
and Roll (1989), while Banker et al. (1989) raise this threshold to three. 
However, if the population is small with industries composed of just a few 
firms in a particular market, the DEA benchmarking results can still be 
helpful, while a regression based analysis may yield inconclusive results—
regardless of the lack of statistical validity.

While the availability of massive data sets has reshaped statistical think-
ing, and computational power allows carrying out statistical analyses on 
large size databases, the trade-off between observations and variables persists 
as a relevant issue in many applications. Reducing the dimensions of data is 
a natural and sometimes necessary way of proceeding in an empirical anal-
ysis using either DEA or SFA. Indeed, dimension reduction and variable 
selection are the main approaches to avoid the curse of dimensionality.

27Alternative hypotheses testing methods corresponding to nonparametric and bootstrap-based infer-
ence have been proposed in the literature, see the chapter devoted to the statistical analysis of nonpara-
metric benchmarking contributed by Leopold Simar, Camilla Mastromarco and Paul Wilson.
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4.1  Dimension Reduction

This empirical strategy can be viewed as a two-stage procedure. In the first 
stage, a set of variables are aggregated into a small number of composites or 
aggregated variables. In a second stage, the composites are plugged into a 
production or economic frontier (e.g. profit) that is estimated using either 
nonparametric or parametric techniques. Therefore, this approach reduces 
the input (output) dimensionality of the data set by replacing a set of deci-
sion variables and regressors with a lower-dimensional function.

The most common methods used to achieve this objective are Principal 
Component Analysis (PCA) and Explanatory Factor Analysis (EFA). The 
dimensionality of the data set is reduced using these statistical methods by 
expressing the variance structure of the data through a weighted linear com-
bination of the original variables. Each composite accounts for maximal 
variance while remaining uncorrelated with the preceding composite. These 
methods have been used to carry nonparametric efficiency analyses. For 
instance, Ueda and Hoshiai (1997) and Adler and Golany (2002) develop 
PCA-DEA models to obtain the efficiency estimates where a set of principal 
components replace the original variables. Other remarkable applications of 
this approach are Adler and Yazhemsky (2010) and Zhu (1998). As only a 
percentage of the information is retained from each of the original variables, 
the discriminatory power of the DEA model is improved. Yu et al. (2009), 
Nieswand et al. (2009), and Growitsch et al. (2012) use these PCA and EFA 
in a SFA framework to control for the effect of many environmental condi-
tions on cost efficiency of electricity distribution networks.

From an analytical perspective, this two-stage procedure implicitly 
assumes that the technology is separable. Separability hinges on how the 
marginal rate of substitution between two individual variables only depends 
on the variables within the composite. Therefore, a necessary condition 
for the existence of a theoretically consistent composite is the separability 
of the elements within the aggregate from those outside the aggregate.28 
Otherwise, the use of composites in estimation may well be subject to spec-
ification errors. A tentative action is to test the existence of separability 
using cost and production functions as in Kim (1986). However, when the 
number of inputs (outputs) is large, the precision of these tests is probably  

28A comprehensive discussion about the theoretical implications of different types of separability (e.g. 
strong vs. weak) can be found in Chambers (1988).
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too low to be used with confidence. Moreover, carrying out such tests can be 
an impossible task when the dimensionality problem becomes truly severe.

Regardless the separability issue, PCA and EFA are unsupervised methods 
for reducing the dimension of the data in the terminology coined by Fisher 
(1922) because they only use information on how the input and output var-
iables are statistically distributed, how large their variances are or whether 
they are highly correlated. That is, both methods ignore information on the 
dependent variable when reducing the dimension of the data. Therefore, 
their predictions might be biased because relevant predictive variables can 
be underweighted, while irrelevant factors can be overweighed. This type of 
error might explain the fact that clear relationships are not often obtained in 
many studies using PCA and EFA composites.

The so-called supervised or sufficient methods take somehow into account 
the relationship between the variable to be predicted and the vector of 
explanatory variables to be aggregated when they reduce the dimension of 
the data. See Bura and Yang (2011) for an overview of sufficient dimension 
reduction in regression. Li (1991) introduces the first method for sufficient 
dimension reduction, i.e. Slice Inverse Regression (SIR), and since then, 
various types of inverse regressions have been proposed. The inverse regres-
sion methods have been intensively applied in fields such as biology, genome 
sequence modelling and pattern recognition involving images or speech. 
However, the potential of sufficient dimension reduction methods for reduc-
ing data sets has barely been explored in economics. An exception is Naik 
et al. (2000) that use the SIR techniques to aggregate marketing data, and 
Orea et al. (2015) in the first attempt to apply supervised methods to pro-
duction economics using a SFA model.

The popularity of inverse regression methods in other fields is due to the 
fact that most of them are computationally simple. We next describe briefly 
the procedure of the original SIR method. Simplifying the notation in Li 
(1991), the model to be estimated can be written as:

where θ = (θ1, θ2) is a vector of unknown coefficients, and ε is a random 
term which is assumed to be independent of the inputs levels. This method 
makes no assumption about the distribution of the error term. This makes it 
appealing for SFA applications where the error term includes noise and inef-
ficiency random terms. In this formulation, the response variable is related 
to x1 and x2 through the reduced 1-dimensional variable X = θ1x1 + θ2x2.  
SIR and other sufficient dimension reduction methods are developed to 
find the space generated by the unknown θ vector. This space should be 

(21)ln y = β0 + β1 ln f (θ1x1 + θ2x2)+ ε,
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estimated from the data and is based on the spectral decomposition of a ker-
nel matrix K that belongs to the central subspace (i.e. the smallest dimen-
sion reduction subspace that provides the greatest dimension reduction in 
the predictor vector). To this aim, Li (1991) proposes to reverse the conven-
tional viewpoint in which y is regressed on X and showed that a PCA on a 
nonparametric estimate of E(X|y) can be used to estimate K. The approach 
relies on partitioning the whole data set into several slices according to the 
y-values. Thus, the dependent variable is only used to form slices while the 
standard PCA does not use any information from y. As the above procedure 
provides a rather crude estimate of E(X|y), other first-moment based meth-
ods have been proposed. For instance, parametric inverse regression aims to 
estimate the central subspace using least squares. This parametric version 
of inverse regression regresses each (standardized) input variable on a set of 
arbitrary functions of y. The fitted values of E(X|y) are then used as an esti-
mate of K.

Regarding the choice between supervised and unsupervised variable 
dimension reduction methods, it is apparent from the above discussion that 
we will always get better results using a supervised method than an unsuper-
vised one. In theory, this is true, but not in practice. Note that the super-
vised methods need to control the relationship between the variable to be 
predicted and the vector of explanatory variables when they proceed with 
the aggregation. In practice, this relies on a PCA of a (non)parametric esti-
mate of E(X|y). In this sense, Adragni and Cook (2009) point out that 
some of the best moment-based methods turned out to be rather inefficient 
in relatively simple settings. Thus, in any particular efficiency analysis it 
could occur that E(X|y) is too poorly estimated meaning that an unsuper-
vised method might yield better results. In order to minimize biases associ-
ated with inaccurate inverse regressions, we thus suggest using more recent, 
albeit more complex supervised methods.29 Even then, a limitation of these 
variable dimension reduction methods in efficiency analysis is that their 
sample property results have been obtained with normally distributed error 
components. A field of future research is the analysis of their properties in 
SFA models with asymmetric error terms.

A final issue that should be examined in this subsection is determining 
the number of composites to retain. To choose the number of composites, 

29For instance, whereas Xia et al. (2002) and Bura (2003) propose semiparametric techniques to esti-
mate the inverse mean function, E(X|Y ), Cook and Ni (2005) develop a family of dimension reduction 
methods by minimizing Quadratic discrepancy functions and derive the optimal member of this family, 
the inverse regression estimator.
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we propose using conventional model selection tests that balance the lack 
of fit (too few composites) and overfitting (too many composites). The use 
of model selection tests is usually restricted to cases where economic theory 
provides no guidance on selecting the appropriate model, and the alternative 
models are not nested, as in the present approach.

4.2  Variable Selection

In biology, industrial engineering and other noneconomic fields, the elim-
ination of variables is highly desirable as they are mainly interested in pre-
dicting a response (dependent) variable, and the cost of overfitting (i.e. 
estimating a more complex model than it needs to be) is the increased var-
iability of the estimators of the regression coefficients. In economics, we 
should at least add three additional reasons to proceed with the elimination 
of variables. First, the “dimensionality” issue becomes acute when flexible 
functional forms are estimated as the number of parameters increases more 
rapidly when interactions are considered, or the semiparametric or nonpar-
ametric techniques require a manageable number of explanatory variables to 
be implemented. Second, for interpretability, the identification of relevant 
variables based on economic theory or “expert” knowledge may or may not 
be correct if the model is overfitted. Finally, it is always preferable to build a 
parsimonious model for easier data collection. This is especially relevant in 
efficiency analyses in regulated industries where the regulators need to col-
lect costly data on a large set of variables in order to control for many geo-
graphical, climatic or network characteristics of the utilities sector that affect 
production costs, but which go unobserved.

Many different procedures and criteria for selecting the best regression 
model have been suggested. See Mittelhammer et al. (2000) for a general 
and critical analysis of the variable selection problem and model choice in 
applied econometrics. The so-called backward, forward and stepwise proce-
dures may lead to interpretable models. However, the results can be erratic 
as any single test used at some stage in the above mentioned procedures is 
not indicative of the operating characteristics of the joint test represented 
by the intersection of all the individual tests used. That is, because the sub-
set selection is a discrete process, small changes in the data can lead to very 
different statistical models, and the sampling properties of these processes 
are virtually unknown. In addition to these procedures, other criteria such 
as Akaike’s criterion (AIC), Schwarz’s Bayesian criterion (SBC) and some 
of their variants have been used to evaluate the impact of adding/removing 



Common Methodological Choices in Nonparametric …     449

variables in regression models. For more details about these criteria and the 
associated penalty functions, see Fonseca and Cardoso (2007). The pen-
alty term penalizes very complex models and increases with the number of 
parameters of the model. Thus, these criteria involve minimizing an index 
that balances the lack of fit (too few variables) and overfitting (too many 
variables).

It should be pointed out that dimensionality reduction and variable selec-
tion also carry a long tradition in the DEA literature. There are methods 
that study correlation among variables, with the goal of choosing a set that 
do not represent largely associated values. However, these approaches may 
yield unreliable results because the removal of even highly correlated vari-
ables can still have a large effect on the DEA results—Nunamaker (1985). 
For instance, Lewin et al. (1982) and Jenkins and Anderson (2003) apply 
regression and multivariate analysis to select and reduce the number of var-
iables in the DEA model, respectively. In both cases, they study the explan-
atory power of the variables using a stepwise method by which variables 
are included sequentially. The latter regression yields a better goodness of 
fit, and based on these results, they select the specific inputs, outputs and 
nondiscretionary variables to be included in the DEA model. It is inter-
esting to note that Dyson et al. (2001), when studying several pitfalls and 
protocols in DEA, call for exercising caution when simply dropping some 
variables based on their high correlation (e.g. inputs) since reference hyper-
planes, and therefore efficiency scores, can change significantly. As the 
sequential regression method suggested by Lewin et al. (1982) is influenced 
by the collinearity between regressors, it is prone to the previous selection  
problem.

To precisely address the arbitrariness and problems related to discarding 
variables based on their high correlations with those ultimately retained in 
the analysis, Jenkins and Anderson (2003) propose a multivariate analysis 
to reduce the dimensionality of variables. After reviewing previous propos-
als based on multivariate analysis, such as canonical correlation (Sengupta 
1990; Friedman and Sinuany-Sterns 1997), discriminant analysis (Sinuany-
Sterns and Friedman 1998) and the already mentioned principal compo-
nents analysis (Ueda and Hoshiai 1997; Adler and Golany 2002), these 
authors propose a multivariate method to identify which variables can be 
discarded with least loss of information. The method is based on the vari-
ance of the input or output about its mean value, for if its value is constant, 
then it plays no part in distinguishing one DMU from another. On the con-
trary, a large variation indicates an important effect. Comparing the results 
obtained with their method using the databases of several published studies 
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confirms the worries expressed by Dyson et al. (2001) as there are large vari-
ations in the computed efficiencies.

A second strand of literature examines whether removing or adding vari-
ables in a sequential way results in significant changes in the DEA efficiency 
distributions—Norman and Stoker (1991). In this approach, variables are 
to be discarded or included according to a selection process that assesses 
their statistical significance. In this vein, Kittelsen (1993) surveys sev-
eral tests to establish the significance of change in efficiency results when 
sequentially removing or adding variables. He shows that the usual tests (F, 
Kolmogorov–Smirnov, t-ratio, etc.) used to determine if the subsequent effi-
ciency distributions remain the same or change after removing or adding 
variables are invalid because they assume that the scores are independently 
and identically distributed. This is not the case with the sequential method 
because the individual DEA efficiencies are nested, with those corresponding 
to the augmented model including more variables (restrictions) and present-
ing larger scores—a property deriving from linear optimization theory and 
resulting also in more efficient firms.

This is a valuable exercise that nevertheless should be revisited with the 
use of tests that take into account the nested nature and distributional forms 
of the efficiency scores as proposed by Pastor et al. (2002). These authors 
define a new “efficiency contribution measure” (ECM, representing the mar-
ginal impact on efficiency of a variable) that compares the efficiency scores 
of two radial DEA models differing in one output or input variable (termed 
candidate). Then, based on this ECM, at a second stage a statistical test is 
developed that allows an evaluation of the significance of the observed effi-
ciency contribution of the differing variable (i.e. the effects above a level of 
tolerance or threshold). This test provides useful insights for the purpose of 
deciding whether to incorporate or delete a variable into/from a given DEA 
model, on the basis of the information supplied by the data. Two procedures 
for progressive selection of variables are designed by sequentially applying 
the test: a forward selection and a backward elimination. This method for 
selecting the variables to be included in the model is reworked by Wagner 
and Shimshak (2007), who improve these procedures by formalizing a step-
wise method which shows how managers can benefit from it in a structured 
decision making process.

We now refer to variable selection procedures involving hundreds or 
thousands of explanatory variables, i.e. model selection with high dimen-
sional data sets. The traditional methods face significant challenges when the 
number of variables is comparable to or larger than the sample size. These 
challenges include how to make the estimated models interpretable, in our 



Common Methodological Choices in Nonparametric …     451

case, from an economic perspective. An approach to proceed with variable 
selection with high dimensional data sets is Penalized Least Squares (PLS), 
which is a method that tends to produce some coefficients that are exactly 
zero. As this outcome is equivalent to a reduction in candidate explanatory 
variables from the model, LASSO and other PLS estimators help in getting 
more interpretable models.

As remarked by Fan and Lv (2010), what makes high dimensional sta-
tistical inference possible is the assumption that the underlying (distance) 
function does have less variables than the data set. In such cases, the d-di-
mensional regression parameters are assumed to be sparse with many com-
ponents being zero, where nonzero components indicate the important 
variables. With sparsity, variable selection can improve the estimation accu-
racy by effectively identifying the subset of important predictors and can 
enhance the model interpretability with parsimonious representation. Many 
variable selection criteria or procedures are closely related to minimizing the 
following PLS:

where d is the dimension of xi, and p�j(·) is a penalty function indexed by the 
regularization parameter � ≥ 0, controlling for model complexity. The depend-
ence of the penalty function on j is very convenient in production and cost 
analyses as it allows us to keep certain important explanatory variables in the 
model (e.g. key inputs in a production function or the output and input prices 
variables in a cost function) thus choosing not to penalize their coefficients. 
The form of the penalty function determines the general behaviour of the esti-
mator. With the entropy or L0-penalty, the PLS in (22) becomes

where |M| is the size of the candidate model. In this formulation, among 
models with the same number of variables, the selected model is the one 
with the minimum residual sum of squares. With the L1-penalty specifically, 
the PLS estimator is called LASSO in Tibshirani (1996). When p ≤ 1, the 
PLS automatically performs variable selection by removing predictors with 
very small estimated coefficients. The LASSO estimator satisfies the sparsity 
condition as it should automatically set small estimated coefficients to zero 
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in order to accomplish variable selection. However, it is a biased estimator, 
especially when the underlying coefficient of dropped variables is large.

The PLS approach can also be easily extended to the likelihood frame-
work. Define a penalized likelihood function as:

Maximizing the penalized likelihood results in a penalized estimator. For 
certain penalties, the selected model based on the penalized likelihood sat-
isfies βj = 0 for specific βj’s. Therefore, parameter estimation is performed 
at the same time as the model selection. As the likelihood framework is the 
most used framework in the SFA literature, we believe that this is a promis-
ing area of research for the near future when we will progressively be able to 
collect larger data sets.

4.3  The Choice Between Variable Dimension 
Reduction and Variable Selection

We conclude this section with a practical discussion concerning the choice 
between variable dimension reduction and variable selection in efficiency anal-
yses. Variable dimension reduction is appealing when: (1) the main issue is 
the overall effect of a wide-ranging (holistic) phenomenon formed by a large 
number of factors with complex interactions, and not the partial effect of its 
components; and (2) it is difficult to either formulate hypotheses associated 
with these variables or impose restrictions derived from production theory on 
the technology. In this sense, environmental variables are good candidates for 
aggregation using some of the techniques outlined above. On the other hand, 
this approach is probably more suitable in DEA applications where researchers’ 
main interest is in measuring firms’ inefficiency and performing benchmarking 
exercises, and not in disentangling specific technological characteristics such as 
economies of scale, scope and substitution between inputs and outputs.

5  Controlling for Observed Environmental 
Conditions

The concern about the inclusion of environmental variables (also called con-
textual, nondiscretionary or z-variables) has generated the development of 
several models either using parametric, nonparametric or semiparametric 
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techniques. Although we do not pretend to provide a complete survey of the 
alternatives for including z-variables, given the wide range of models that 
have been developed, here we only mention the methods most frequently 
applied. For a more detailed review of this topic in SFA, see Parmeter and 
Kumbhakar (2014). A brief summary of this issue in the nonparametric liter-
ature can be found in Johnson and Kuosmanen (2012).30

5.1  Frontier Determinants vs. Determinants of Firms’ 
Inefficiency

The first methodological choice is whether we should incorporate the  
z-variables as either frontier determinants, determinants of firms’ inefficiency 
or as determinants of both the frontier and the inefficiency term. While 
the above dilemma may not be very relevant in practice as the sign of the 
contextual variables is not necessarily assumed to be known beforehand, 
the key question that should be responded in order to include the z-vari-
ables as frontier determinants is whether a fully efficient firm will need to 
use more inputs to provide the same services or produce the same output 
level if an increase in a contextual variable represents a deterioration in the 
environment where it operates. To respond properly to this question most 
likely requires having a good knowledge of the industry that is being exam-
ined or recurring to technical (e.g. engineering) support. In general, we 
should include as frontier drivers those variables that are fundamental to 
production.

Whether z-variables should be included in the frontier function or the 
inefficiency term may not be a semantic issue from a conceptual point of 
view and might have very different implications for policy makers, regula-
tors and managers. For instance, the traditional time trend can be viewed as 
a noncontrollable z-variable. If this variable is added to the production or 
cost frontier, it captures technical change. A poor rate of technical progress  
might suggest implementing policy measures encouraging R&D activities. 
In contrast, if the same variable is included as a determinant of firms’ ineffi-
ciency, it captures changes in firms’ inefficiency over time. In this case, dete-
rioration in firms’ performance might suggest implementing policy measures 
aiming to improve (update) managerial skills.

30The chapter by John Ruggiero discusses environmental variables and how to render observations com-
parable in performance studies.
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The above distinction may also be important in regulated industries where 
regulators purge firms’ cost data in order to control for differences in envi-
ronmental conditions. In these settings, can firms use unfavourable weather 
conditions as an excuse to avoid being penalized due to their bad perfor-
mance? As the environment is not controlled by the firm, one might argue 
that firms should not be blamed for environment-induced inefficiency. This 
interpretation implies that regulators should purge firms’ cost data when 
environmental conditions have both direct and indirect effects on firms’ 
cost. We should remark, however, that purging the data completely is likely 
to be a fairer policy in the short run, i.e. conditional on current firms’ mana-
gerial skills. However, if the estimated indirect effect is significant, one could 
conclude that not compensating all weather effects could help to encourage 
these firms to hire better qualified executives and staff, perhaps not imme-
diately, but at least in the long run. Thus, regulators might be aware of this 
trade-off between short-run and long-run objectives when they design their 
incentive schemes.

5.2  DEA Estimation of the Effects of Contextual 
Variables

The inclusion of environmental variables in DEA has been done in one or 
two stages.31 The one-stage DEA approach (hereafter 1-DEA) is to augment 
the model by treating the z-variables as inputs or outputs that contribute to 
defining the frontier. For instance, the DDF with environmental variables 
would be:

In the two-stage DEA method (hereafter 2-DEA), the efficient frontier and 
the firm-level efficiency scores are first estimated by DEA or other nonpara-
metric method using a representation of the firm’s technology without envi-
ronmental variables, as in (1). Let Êi denote the first-stage estimate of firm’s 
(xi, yi) efficiency level. In the second stage, the estimated DEA efficiency 
scores are regressed on contextual variables. The two-stage regression can be 
written in general terms as:

(25)DV

(
y, x, z;−gx, gy

)
= max

{
β : (x − βgx, y + βgy) ∈ V(z)

}
.

31Although the two-stage method is the most popular one in DEA for identifying inefficiency determi-
nants, three-stage models have also been developed (see, e.g., Fried et al. 2002).
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where τ is a vector of parameters, and εi is a random variable. The inequality 
in (26) yields a truncated (linear) regression model.32 From the equations 
above, it is straightforward to notice that while the one-stage methods incor-
porate the z-variables as frontier determinants, the two-stage methods incor-
porate them as determinants of firms’ inefficiency, which in turn is measured 
with respect to an uncorrected production (or cost) frontier. This difference 
implies that the sign of the contextual variables is assumed to be known 
beforehand in one-stage DEA methods, whereas the sign of these variables 
is estimated in two-stage methods. Thus, from a conceptual point of view, 
2-DEA methods are more appropriate in applications where the environ-
ment is multifaceted and consists of a large and varied number of factors 
with complex interactions, so that it is difficult to formulate hypotheses with 
respect to the effect of weather conditions on firms’ performance.

The choice of a proper method to control for environmental conditions 
has attracted merited attention in the DEA literature. The seminal paper of 
Banker and Morey (1986) modified the measure of inefficiency obtained by 
removing the effect of contextual variables on the measured inefficiency level 
within the DEA model. Ruggiero (1996) and other authors have highlighted 
that the one-stage model introduced by the previous authors might overesti-
mate the level of technical inefficiency. To solve this problem, other models 
using several stages have been developed. Ray (1988) was the first to propose 
a second stage where standard DEA efficiency scores were regressed on a set 
of contextual variables. The 2-DEA method was widespread until Simar and 
Wilson (2007) demonstrated that this procedure is inconsistent because it 
lacks a coherent data generating process and the first-stage DEA efficiency 
estimates are serially correlated. The problems arise from the fact that (26) 
is the assumed model, whereas the true model is Ei = τ zi + εi ≥ 1. Here, 
the dependent variable is unobserved and must be replaced by an estimate 
Êi. Simar and Wilson (2007) show that, unfortunately, Êi is a biased esti-
mator of Ei because, by construction, zi is correlated with the error term εi. 
To address this issue, these authors propose the use of a bootstrap method to 
correct for the small sample bias and serial correlation of the DEA efficiency 

(26)Êi = τ zi + εi ≥ 1,

32Interesting enough, this specification of the way efficiency scores depend on z-variables corresponds to 
the popular KGMHLBC model in the SFA approach (see next subsection).
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estimates. Further, they advocate the use of the truncated regression model 
that takes into account explicitly the bounded domain of the DEA efficiency 
estimates.33

Since this remarkable paper, the statistical foundations of the 2-DEA 
method have been subject to intensive debate. For instance, Banker and 
Natarajan (2008) show that the second-stage OLS estimator of the con-
textual variables is statistically consistent under certain assumptions and 
regularity conditions. Subsequent discussion has focused on the assump-
tions. Banker and Natarajan (2008) argue that their statistical model 
allows for weaker assumptions than the model of Simar and Wilson 
(2007). In turn, Simar and Wilson (2010) discuss the assumptions made 
by Banker and Natarajan and find them rather restrictive. On these 
grounds, Johnson and Kuosmanen (2012) further elaborate the assump-
tions and the statistical properties of the two-stage estimators under more 
general assumptions.

These latter authors also develop a new one-stage semi-nonparametric 
DEA-style estimator that facilitates joint estimation of the frontier and 
the effects of contextual variables. They introduce the contextual varia-
bles to the already mentioned StoNED model, where the z-variables are 
incorporated additively to the parametric part of the model, which is esti-
mated jointly with the nonparametric frontier. The new StoNED method  
is similar to the 1-DEA in that it jointly estimates the frontier and the 
contextual variables using convex nonparametric least squares regres-
sion. Both models mainly differ in the assumption made with respect to 
the truncated noise term. In the recently developed semiparametric lit-
erature, it is worthwhile mentioning another two models that also allow 
controlling for environmental variables. The first one is the Semiparametric 
Smooth Coefficient Model (SPSCM) introduced by Li et al. (2002) where 
the regression coefficients are unknown functions, which depend on a set 
of contextual variables. Sun and Kumbhakar (2013) extend this model by 
allowing the environmental variables to also enter through the inefficiency. 
The second model is the Latent Class Model (LCM), where z-variables 
enter in nonlinear form for the probabilities of belonging to the classes 
(see, e.g., Orea and Kumbhakar 2004).

33Daraio and Simar (2005) propose an alternative approach by defining a conditional efficiency meas-
ure. This approach does not require a separability condition as demanded by the two-stage approach.
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5.3  The Inclusion of Contextual Variables in SFA

Like the two-stage DEA method, early papers aiming to understand firms’ 
inefficiency using the SFA approach proceeded in two steps. In the first step, 
one estimates the stochastic frontier model and the firms’ efficiency lev-
els, ignoring the z-variables. In the second step, one tries to see how effi-
ciency levels vary with z. It has long been recognized that such a two-step 
procedure will give biased results (see, e.g., Wang and Schmidt 2002). The 
solution to this bias is a one-step procedure based on the correctly specified 
model for the distribution of y given x and z.

Once we have decided to treat the z-variables as inefficiency determinants 
and hence heteroscedastic SFA models are to be estimated, a second meth-
odological choice appears: How to do it. Summaries of this literature can 
be found in Kumbhakar and Lovell (2000) and Parmeter and Kumbhakar 
(2014). The available options can be discussed using the general model 
introduced by Álvarez et al. (2006)34:

where x′iβ is the log of the frontier production (distance) function (e.g. 
Translog), ui ∼ N+

(
µi, σ

2
ui

)
, µi = exp

(
δ0 + z′iδ

)
, σui = exp

(
γ0 + z′iγ

)
,  

and δ0, δ, γ0 and γ are parameters to be estimated, and zi is the vector of 
efficiency determinants. The environmental variables enter into the model 
through both the pretruncated mean and variance of the inefficiency term, 
and hence, the model allows for nonmonotonic effects of the z-variables 
on firms’ inefficiency. According to this model, Álvarez et al. (2006) divide 
most heteroscedastic SFA models into three groups. In the KGMHLBC-type 
models, it is assumed that the variance of the pretruncated normal variable 
is homoscedastic (i.e. γ = 0) and, thus, the contextual variables are intro-
duced here through the pretruncated mean. In contrast, in the RSCFG-type  
models, it is assumed that the mean of the pre-truncated normal variable 
is homoscedastic (i.e. δ = 0) and, hence, the environmental variables are 
treated as determinants of the variance of the pretruncated normal vari-
able. Finally, the contextual variables are introduced in the general models 
through both the mean and the variance of the normal distributed random 
variable. Some of the above models satisfy the so-called scaling property in the 

(27)yi = x′iβ + vi − ui,

34The general models introduced by Wang (2002) and Lai and Huang (2010) are similar, but they 
parameterize the pretruncation mean of the distribution as a linear function of the z-variables.
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sense that the inefficiency term can be written as a deterministic (scaling) 
function of a set of efficiency covariates times a one-sided random variable 
that does not depend on any efficiency determinant. That is,

As Parmeter and Kumbhakar (2014) point out, the ability to reflect the 
scaling property requires that both the mean and the variance of the trun-
cated normal are parameterized identically and with the same parameters in 
each parameterization. The defining feature of models with the scaling prop-
erty is that firms differ in their mean efficiencies, but not in the shape of the 
distribution of inefficiency. That is, the scaling property implies that changes 
in zi affect the scale but not the shape of ui. In this model, u∗i  can be viewed 
as a measure of basic inefficiency which captures things like the managers’ 
natural skills, which we view as random. How well these natural skills are 
exploited to manage the firm efficiently depends on other variables zi, which 
might include the manager’s education or experience, or measures of the 
environment in which the firm operates.

Although it is an empirical question whether or not the scaling property 
should be imposed, it has some features that make it attractive to some authors 
(see, e.g., Wang and Schmidt 2002). Several authors have found the scaling 
property useful to remove individual fixed effects and still get a closed form for 
the likelihood function (Wang and Ho 2010), to address endogeneity issues 
(Griffiths and Hajargasht 2016), to relax the zero rebound effect assumption 
in traditional demand frontier models (Orea et al. 2015), or to allow for spa-
tial correlation among firms’ efficiency (Orea and Álvarez 2019). From an sta-
tistical point of view, the most fundamental benefit of the scaling property is 
that the stochastic frontier and the deterministic component of inefficiency 
can be recovered without requiring a specific distributional assumption on ui.  
Indeed, if we take into account our specification of firms’ inefficiency in (28) 
and define u∗ = E(u∗i ), then taking expectations in (27) yields:

where ε∗i = vi − hi(zi, γ )
(
u∗i − u∗

)
. Equation (29) can be estimated by 

Nonlinear Least Squares (NLLS).35

(28)ui = hi(zi, γ )u
∗
i , u∗i ∼ N+

(
µ, σ 2

u

)
.

(29)yi = x′iβ − hi(zi, γ ) u
∗ + ε∗i ,

35Parmeter and Kumbhakar (2014) show that, if zi and xi do not include common elements, the con-
ditional mean E[ui|zi] can be estimated in a nonparametric fashion without requiring distributional 
assumptions for ui.



Common Methodological Choices in Nonparametric …     459

6  Endogeneity Issues and the Choice 
of Orientation

Endogeneity problems can arise in stochastic frontier models if the frontier 
determinants are correlated with the noise term, the inefficiency term or 
both. As noted by Kumbhakar et al. (2013), the endogeneity issue is typical 
in econometric models, especially when economic behaviours are believed to 
affect both inputs and/or outputs levels (Kumbhakar and Tsionas 2011) and 
inputs and/or outputs ratios (Tsionas et al. 2015). On the other hand, in 
cost (profit) settings, endogeneity problems might appear when the outputs’ 
levels (prices) or input prices depend on random shocks and economic inef-
ficiency. This might happen if firms are allocative inefficient, or firms have 
market power as, in this case, input/output prices are not set competitively 
in the market. Although endogeneity issues were first discussed in the regres-
sion framework, it has also been addressed in the programming approach. 
Therefore, in this section we present a series of models addressing endogene-
ity in the nonparametric DEA and parametric SFA frameworks.

6.1  Endogeneity in DEA Models

It should be mentioned that ignoring the random nature of the data gener-
ating process does not preclude the existence of endogeneity problems in the 
calculation of efficiency in DEA models when the regressors (inputs or out-
puts) are correlated with technical inefficiency. Initially, Wilson (2003) sur-
veys a number of tests that can be used to determine the independence and 
uncorrelated hypotheses in the context of efficiency measurement, includ-
ing their merits and drawbacks. Afterwards, this author performs Monte 
Carlo simulations to establish that these tests have poor size properties 
and low power in moderate sample sizes. Peyrache and Coelli (2009) build 
upon these previous findings and propose a semiparametric Hausman-type 
asymptotic test for linear independence (uncorrelation). Resorting to Monte 
Carlo experimentation they show that it has good size and power proper-
ties in finite samples. Additionally, Cordero et al. (2015) show that with low 
and moderate levels of correlation, the standard DEA model performs well, 
but that for high levels—either negative or positive, it is mandatory to use 
instrumental techniques that correct the bias.

Based on these findings, Santín and Sicilia (2017) devise a semiparametric 
strategy similar to the instrumental variables approach in regression analysis, and 
that results in a DEA specification that accounts for the exogenous part of the  
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endogenous regression and that is uncorrelated with technical efficiency. As 
in the parametric counterpart, the first step is to choose an instrumental var-
iable z that is significantly correlated with the endogenous regressor x (rele-
vance), but uncorrelated with the true efficiency (exogeneity). Empirically, 
the relevance condition can be tested regressing the endogenous regressor x 
on the exogenous regressors and the instrument. As for the second condi-
tion of exogeneity, it cannot be tested since it is unobserved. In that case, 
these authors suggest interpreting it as the absence of correlation between 
the instrument z and the variables characterizing the alternative dimension 
of the production process, e.g. outputs y in the case of endogenous inputs. 
In that case, z should not have a partial effect on y (beyond its effect on the 
endogenous input) and should be uncorrelated with any other omitted var-
iables (when this is the cause of endogeneity). Under these assumptions, the 
authors implement an instrumental variable process by substituting the esti-
mated exogenous regressor for the endogenous regressor when solving the 
DEA programme associated with the relevant orientation, e.g. output. They 
find using Monte Carlo experiments that both standard and instrumental 
DEAs yield similar results in the case of low correlation, but that the latter 
clearly outperforms the former under high correlation. Also, coinciding with 
Orme and Smith (1996) the instrumental DEA performs better as the sam-
ple size increases.

6.2  Endogeneity in SFA Models

Researchers need to deal with endogeneity issues because the usual pro-
cedures for estimating SFA models depend on the assumption that the 
inputs are exogenous. However, dealing with the endogeneity issue is rel-
atively more complicated in a SFA framework than in standard regression 
models due to the special nature of the error term. Several authors have 
recently proposed alternative empirical strategies to account for endoge-
nous regressors in SFA settings. Some of them allow only for correlations 
between the regressors and the noise term, while other authors allow for 
correlations with the inefficiency term. Models can be estimated using 
Instrumental Variables (IV) techniques, Maximum Likelihood (ML) pro-
cedures or Bayesian estimation methods. Moreover, many of them can be 
estimated in one or two stages. Therefore, the researcher has several meth-
ods at hand to deal with endogeneity issues when estimating a SFA model. 
In the next paragraphs, we outline the main features of these methods, 
trying to identify their relative advantages and disadvantages.
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Let us first assume that we are interested in estimating the following pro-
duction model with endogenous regressors and panel data:

where xi is a vector of endogenous variables (excluding ln yi), and zi is a vec-
tor of exogenous or instrumental variables, and the second equation in (30) 
can be viewed as a reduced-form expression that links the endogenous varia-
bles with the set of instruments. The endogeneity problem arises if ηi in the 
second equation is correlated with either vi or ui in the first equation.

In order to estimate consistently the frontier model (30), Guan et al. 
(2009) propose a two-step estimation strategy. In the first step, they ignore 
the structure of the composed error term and suggest estimating the fron-
tier parameters using a Generalized Method-of-Moments (GMM) estimator 
as long as valid instruments are found. In the second step, distributional 
assumptions are invoked to obtain ML estimates of the parameter(s) describ-
ing the variance of vi and ui, conditional on the first-stage estimated param-
eters. If the inefficiency term follows a homoscedastic distribution, only 
the GMM intercept is biased. However, we should be aware that ignoring 
that in the first stage of the process, the inefficiency term depends on a set 
of covariates could bias all model parameters. Indeed, a relevant issue that 
is often ignored when using OLS or GMM in a stochastic frontier frame-
work is the endogeneity problem caused by the so-called left-out variables 
(Wang and Schmidt 2002), which arises because variables influencing tech-
nical inefficiency are ignored when estimating the model. Guan et al. (2009) 
mention this issue, but do not discuss its implications for the GMM estima-
tion. To achieve consistent estimates, it is critical to ensure that the chosen 
instruments do not include determinants of ui.

In line with the current chapter, Kumbhakar et al. (2013) and Malikov 
et al. (2015) suggest bringing economic behaviour into the analysis to solve 
endogeneity problems. Instead of introducing instruments for these endog-
enous variables in an ad hoc fashion (e.g. temporal lags of inputs and out-
puts), they address the endogeneity issue by defining a system in which they 
bring additional equations for the endogenous variables from the first-order 
conditions of profitability (cost) maximization (minimization). They advo-
cate using a system approach for two reasons. First, estimates of allocative 
inefficiencies can be obtained from the residuals of the first-order condi-
tions. Second, since the first-order conditions contain the same technological 
parameters, their estimates are likely to be more precise (efficient). However, 
estimation of such a system requires availability of input and output prices. 

(30)
ln yi = x′iβ + vi − ui,

xi = z′iδ + ηi,
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Their identification strategy also relies on competitively determined output 
and input prices as a source of exogenous variation.36

Other authors make efforts to address the endogeneity problem in a fully 
maximum likelihood estimation context. They use likelihood based instru-
mental variable estimation methods that rely on the joint distribution of 
the stochastic frontier and the associated reduced-form equations in (30). 
The simultaneous specification of both types of equations has the advantage 
that it provides more efficient estimates of the frontier parameters as well as 
improvement in predicting the inefficiency term. For instance, Kutlu (2010) 
proposes a model that aims to solve the endogeneity problem due to the cor-
relation between the regressors and the two-sided error term.37 He assumes 
that the error terms in (30) satisfy the following:

where �η is the variance-covariance matrix of ηi and ρ is a correlation vector 
between vi and ηi. Based on (31), the equations in (30) can be written as:

where ωi = (1− ρ′ρ)vi and τ = σvρ
′�

−1/2
η , which can be viewed as a cor-

rection term for bias. Note that ωi − ui is conditionally independent from the 
regressors given xi and zi. Hence, conditional on xi and zi, the distribution of 
the composed error term in (32) is exactly the same as their traditional counter-
parts from the stochastic frontier literature. They then show that for the sample 
observations (yi, xi, zi), the joint log-likelihood function of yi and xi is given by

where

(31)

(
�

−1/2
η ηi
vi

)
∼ N

((
0

0

)
,
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ρ′σv σ 2

v

))

(32)ln yi = xiβ + τ(xi − ziδ)+ ωi − ui,

(33)ln L(θ) = ln Ly|x(θ)+ ln Lx(θ),

(34)

ln Ly|x(θ) = −
I

2
ln(σ 2

ω + σ 2
u
)
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u
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ln�
(
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/
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)

−
1

2(σ 2
ω + σ 2

u
)

I∑

i=1

(ln yi − xiβ − τ(xi − ziδ))
2,

37In his model, the distribution of ui is not allowed to have efficiency determinants.

36Kumbhakar (2011) also relies on profitability maximization, but he solves the endogeneity of both 
outputs and inputs first by deriving a particular form of the estimating equation in which the regressors 
are ratios of inputs and outputs. Thus, his transformed specification can be estimated consistently by 
ML methods using standard stochastic frontier software.
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and

The first part of the log-likelihood function (33) is almost the same as 
that of a traditional stochastic frontier model where the residual is adjusted 
by the τ(xi − ziδ) factor. The second part is just the likelihood function 
of a multivariate normal variable. The likelihood function (33) can be 
maximized to obtain consistent estimates of all parameters of the model. 
However, if computational difficulties appear, one can use a two-step maxi-
mum likelihood estimation method. In the first stage, ln Lx(θ) is maximized 
with respect to the relevant parameters. In the second stage, conditional 
on the parameters estimated in the first stage, ln Ly|x(θ) is maximized. 
However, the standard errors from this two-stage method are inconsistent 
because the estimates are conditional on the estimated error terms from the 
first stage. Kutlu (2010) suggests using a bootstrapping procedure in order 
to get the correct standard errors. Alternatively, an analytical approach is 
possible as remarked by Amsler et al. (2016, p. 284).

The above mentioned ML model does not address the potential corre-
lation with the inefficiency term, and neither does it assure consistency of 
parameter estimates when ηi is correlated with both vi and ui. Amsler et al. 
(2016) is the first paper to allow endogeneity of the inputs with respect to 
statistical noise and inefficiency separately. They propose using a copula in 
order to specify the joint distribution of these three random variables.38 
They select a multivariate normal (or “Gaussian”) copula that does not per-
mit to analytically integrate ui out from the joint density for vi, and ηi. For 
this reason, the parameter estimates should be obtained by maximum simu-
lated likelihood estimation, where the joint density is approximated by tak-
ing many draws from the distribution of ui and averaging.39 One obvious 
difficulty with this approach is the need to specify a copula. Another diffi-
culty of this approach is that it may be computationally challenging. Tran 
and Tsionas (2015) also use a Gaussian copula function to directly model 
the dependency of the endogenous regressors and the composed error 

(35)ln Lx(θ) = −
I

2
ln
(∣∣�η

∣∣)−
1

2

I∑

i=1

η′i�
−1
η ηi.

38A copula is a multivariate probability distribution for which the marginal probability distribution of 
each variable is uniform.
39Applications of simulations to evaluate a likelihood can be found in Greene (2005, p. 24), Amsler 
et al. (2016), and Parmeter and Kumbhakar (2014; Sects. 6 and 7).
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without using instrumental variables. Consistent estimates can be obtained 
by maximizing the likelihood function in a two-step procedure. The first 
step requires, however, using numerical integration as in Amsler et al. 
(2016).

In the above mentioned papers, there were no environmental variables 
determining firms’ inefficiency. Amsler et al. (2017) provides a systematic 
treatment of endogeneity in heteroscedastic stochastic frontier models and 
allows environmental variables to be endogenous because they are correlated 
with either the statistical noise or the basic inefficiency term or both. When 
they are only correlated with vi as in Kutlu (2016), the endogeneity issue is 
relatively easy to handle. When some environmental variables are endogenous 
because they are correlated with the random part of ui neither IV and ML 
method is simple, because a specific copula must be assumed and simulation 
methods are necessary to form the IV criterion function or the likelihood.

6.3  The Choice of Orientation: Exogenous 
and Endogenous Directions

In standard primal and dual representations of firm’s technology, research-
ers often choose between input- and output-oriented measures of firms’ 
inefficiency. However, the distance functions depend on the same vector of 
inputs and outputs. Both the mathematical programming and econometric 
regression methods need further qualifications to identify and calculate or 
estimate the relevant distance functions. In standard DEA, there are models 
such as the additive formulation that are non-oriented, but traditional ori-
ented models require the specification of different objective functions, either 
in the envelopment or in the multiplier formulations. In SFA, one needs to 
select a set of inputs and/or outputs to impose a particular homogeneity or 
translation property. As Greene (2008, p. 153) notes, the question is which 
form is appropriate for a given setting? Also, the emergence of new charac-
terizations of the production technology through the directional and GDFs 
opens a new range of possibilities related to economic behaviour given their 
flexibility to choose the direction towards the production frontier.

These developments show that the traditional binary choice between 
input and output orientations is not the only option, unless it is grounded 
on the firm’s economic objective. Indeed, what should lead researchers when 
deciding on it is the notion of Pareto efficiency and the maximization of 
utility, which in our current context, and assuming competitive pricing, 
corresponds either to profit or profitability maximization—ten Raa (2008). 
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This underlies the choice of duality framework to perform overall economic 
efficiency analyses (as summarized in Sect. 2.4). For instance, as the input 
distance function suggests when referring to the degree by which the cur-
rent input level exceeds the input requirement for production of a particular 
amount of outputs, it is natural to associate it to (lack of ) cost minimiza-
tion. In this case, it is assumed that inputs are the choice variables and the 
firm can reduce them at least in the short run without reducing output pro-
duction. Likewise, as the output distance function suggests when referring 
to the degree by which output falls short of what can be produced with a 
given input vector, it is natural to associate this output-oriented function to 
revenue maximization. In this case, it is assumed that outputs are the choice 
and adjustable variables. Thus, while the input orientation is intuitive when 
output is out of control for the firm (e.g. when demand is determined or 
fixed), the output orientation is intuitive when the inputs are exogenously 
determined.

Regarding dual representations of firms’ technology, the cost approach is 
preferred if the output side of the firms is exogenous and nondiscretionary, 
and the opposite is applicable to the revenue side. The choice between profit 
and profitability (return-to-dollar) is less clear, as both choices are available 
when both inputs and outputs can be freely adjusted at the discretion of 
managers. In the short term, managers are normally concerned with attain-
ing maximum profit, but it can be argued that the long-term viability of a 
firm critically depends on its ability to remain competitive in the market, 
with profitability representing an economically weighted (by prices) measure 
of productivity. This is particularly true in markets where the degree of com-
petition is large, firms cannot exert market power, and are expected to make 
economic profit.

Therefore, the choice of orientation should be determined, at least par-
tially, by the capability of firms to adjust their decisions in order to become 
fully efficient. However, it should be noted that the distance function con-
cept was originally developed to represent the technology using multiple-in-
put and multiple-output data. Kumbhakar (2012) shows that, while the 
underlying technology to be modelled is the same, the different orientations 
only provide different sets of theoretical restrictions to identify the frontier 
parameters to be estimated. This is also clear in a nonparametric context, 
where the DEA technology represented by (9) is common to all orientations, 
while technical efficiency can be measured considering alternative orien-
tations. Moreover, in the SFA framework Kumbhakar, Orea, et al. (2007) 
show that, once the distance function is known, input (output) oriented 
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inefficiency scores can be obtained from output (input) distance functions. 
In a similar manner, Orea et al. (2004) and Parmeter and Kumbhakar 
(2014; Sect. 4.2) show that both output- and input-oriented inefficiency 
scores can be computed from an estimated cost function. Thus, if any meas-
ure of firms’ inefficiency can be estimated using any primal or dual rep-
resentation of firms’ technology, why is the choice of orientation a relevant 
issue?

It is a relevant issue for at least two empirical reasons. First of all, because 
both the efficiency scores and the estimated technologies are expected to be 
different. In the nonparametric DEA framework, Kerstens et al. (2012) and 
Peyrache and Daraio (2012) study how efficiency results critically depend 
on the choice of orientation. The latter authors study the sensitivity of the 
estimated efficiency scores to the directional selection. In the parametric SFA 
setting, Kumbhakar and Tsionas (2006) and Kumbhakar (2010) also esti-
mate input- and output-oriented stochastic frontier production functions 
and find that the estimated efficiency, returns to scale, technical change, 
etc. differ depending on whether one uses the model with input- or output- 
oriented technical inefficiency. Using a dual approach, Orea et al. (2004) 
estimate cost frontiers under different specifications which assess how ineffi-
ciency enters the data generating process. These authors show that the differ-
ent models yield very different pictures of the technology and the efficiency 
levels of the sector, illustrating the importance of choosing the most appro-
priate model before carrying out production and efficiency analyses. Similar 
comments can be made if DDFs are used. For instance, Vardanyan and Noh 
(2006) and Agee et al. (2012) also show that the parameter estimates depend 
on the choice of the directional vectors.

Second, the choice of orientation is also relevant for the “complexity” of 
the stochastic part of the model in a SFA model. For instance, Kumbhakar 
and Tsionas (2006) show that the standard Maximum Likelihood (ML) 
method cannot be applied to estimate input-oriented production func-
tions. They instead use a simulated ML approach as estimation method.  
Similarly, Orea et al. (2004) estimated stochastic cost frontier models with 
output-oriented measures of firms’ inefficiency using a nonlinear fixed effect 
approach. If, in contrast, inefficiency is modelled as a one-sided random 
term, Parmeter and Kumbhakar (2014) show that a stochastic cost frontier 
model with output-oriented inefficiency is difficult to estimate without addi-
tional restrictions on the technology.

In the following subsections, we discuss the choice of orientation from 
the modelling perspective of the DEA and SFA approaches and summa-
rize the most recent proposals related to the rationale underlying different 
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possibilities, including those endogenizing the orientation, and driven by the 
data. This last approach emerges in situations in which there is not an eco-
nomic or managerial rationale to impose a specific goal.

DEA Framework

As both the directional and GDFs nest the traditional input and output par-
tial orientations, which may not provide the discretion needed in empirical 
studies that require an independent treatment of both inputs and outputs, 
we focus our discussion on the DDF (but it can be equivalently extended 
the GDF).

Clearly, when choosing an orientation, several criteria are on the list. 
The first one mirrors the rationale behind the input and output distance 
functions, by setting the orientation for each DMU equal to the observed 
amounts of inputs and outputs, 

(
−gx, gy

)
= (−x, y). Färe and Grosskopf 

(2000, p. 98) justify the choice on the grounds that it provides a link and 
symmetry with the traditional distance functions as presented above. This 
implies solving problem (10) substituting the directional vector by the 
observed amounts, constituting the most common approach in empir-
ical applications relying on the DDF. Alternatively, rather than using 
individual directions for each firm, it is possible to adopt a so-called egal-
itarian approach assigning the same direction to all firms. An example 
of such common direction is to take the average input and output mixes: (
−gx, gy

)
= (−x̄, ȳ), or the unit vector 

(
−gx, gy

)
= (−1, 1). Both have the 

advantage that the direction is neutral. However, the interpretation of the β 
value corresponding to the distance function is different. When the direc-
tional vector is measured in the units of measurement of inputs and outputs, 
e.g. as with (−x, y) or (−x̄, ȳ), the efficiency measure corresponds to the pro-
portion of the observed input and outputs amounts that is to be detracted 
and increased to reach the frontier—e.g. for β = 2, twice the observed 
amounts, which eases its interpretation. However, its main drawback is that 
the metric for each observation is different, so their individual values cannot 
be numerically compared. Also, the DDF is units free in the sense that if we 
rescale inputs and outputs, as well as their directional vector, by the same 
vector, then β remains unchanged. However, if the direction is not in the 
same units of measurement than those of the inputs and outputs, its inter-
pretation differs while the unit free property does not hold. For example, if 
the unitary vector is chosen, then the distance function β yields the amount 
in which inputs and outputs need to be decreased and increased to reach the 
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frontier. This can be easily seen taking the difference between the optimal 
and observed output and input vectors: i.e. y+ DT (x, y;−1, 1) · 1M − y 
and x + DT (x, y;−1, 1) · 1N − x, and the amount in which outputs can be 
increased and inputs reduced corresponds to the value of the distance func-
tion. This discussion simply shows that since the value of the distance func-
tion depends on the directional vector, this should be explicitly considered 
when choosing a specific metric.

The above directional distance vectors can be considered exogenous, since 
they are chosen by the researcher based on ad hoc criteria. A second pos-
sibility that endogenizes the choice is based on the economic behaviour of 
the firm. When market prices are observed and firms exhibit an economic 
optimizing behaviour, Zofío et al. (2013) introduce a profit efficiency meas-
ure that projects the evaluated firm to the profit maximizing benchmark, 
which is in accordance with the ultimate utility-maximizing criteria guiding 
this chapter, and within the duality framework. Their method searches for 
a directional vector (−g

∗
x
, g∗

y
) that endogenizes the projection of the evalu-

ated firm so as to achieve that goal—represented by the input-output vector 
(xπ , yπ) in Fig. 1. The associated profit efficiency measure simultaneously 
solving the directional vector and identifying the profit-maximizing bench-
mark given the input and output market prices (w, p) can be calculated in 
the following way:

By solving this programme, we gain information about firm i’s profit 
inefficiency, the profit maximizing benchmark and the optimal course that 
it should follow when planning and adopting profit improving strategies. 

(36)D∗
T (xi′ , yi′ ;w, p) = maxβ,�i,gx ,gy β

s.t.

I∑

i=1

�ixin ≤ xi′n − βg∗xn , n = 1, . . . ,N ,

I∑

i=1

�iyim ≥ yi′m + βg∗ym , m = 1, . . . ,M,

M∑

m=1

pmg
∗
ym
+

N∑

n=1

wng
∗
xn

= 1,

I∑

i=1

�i ≤ 1, � ∈ RI
+.
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Programme (36) departs from (10) in two crucial ways. First, as previ-
ously remarked, the directional vector is not preassigned and therefore (36)  
searches for it given the price normalization constraint. Second, the ele-
ments of the directional vector (g∗

x
, g∗

y
) could adopt any value, positive and 

negative, as long as (g∗
x
, g∗

y
) �= (0N , 0M). This means that inputs may be 

increased and outputs reduced when projecting the evaluated firm to the 
profit maximizing benchmark. The choice of orientation also has relevant 
consequences when measuring overall economic efficiency according to (7), 
as the profit normalizing condition is a function of the directional vector 
pgy + wgx. Therefore, the proposal by Zofío et al. (2013) normalizing the 
price constraint to pg∗y + wg∗x = 1 allows measuring the overall, technical 
and allocative efficiencies in monetary terms (e.g. dollar valued).

Most importantly, a relevant consequence of this proposal is that it ren-
ders the decomposition of overall economic efficiency (7) and (8) redun-
dant when inputs and outputs are fully adjustable at the discretion of  
managers. This result derives from the fact that the overall economic effi-
ciency is obtained by identifying the profit efficiency measure along the 
directional vector (g∗

x
, g∗

y
), which in turn allows determining whether 

the evaluated firm is on the production frontier or not. Particularly, when 
D∗
T (xi′ , yi′ ;w, p) > 0, so the firm is profit inefficient, and in conjunction 

with the value of the DDF (10), we can determine whether the source 
of the inefficiency is technical, DT

(
xi′ , yi′ ; gx, gy

)
> 0, or allocative, 

DT

(
xi′ , yi′ ; gx, gy

)
= 0. From a theoretical and conceptual perspective, this 

proposal solves the arbitrary decomposition of profit efficiency as the rela-
tive values of the technical and residual allocative efficiencies depend on the 
exogenous choice of the directional vector. Nevertheless, when some output 
or inputs are fixed, exogenous or nondiscretionary, it might not be possible 
to change the production process so as to attain maximum profit, resulting 
in overall economic decompositions as in (7) and (8).

When selecting a given orientation, several authors, both in the DEA 
and in the SFA, rely on the existing data to identify the most relevant peers. 
Based in part on the initial contribution by Payrache and Daraio (2012),  
Daraio and Simar (2016) proposed a method that allows choosing  
context specific (or local) directions for firms, considering as benchmarks 
those facing similar conditions, and without assuming any economic behav-
iour. These conditions can be associated with the closeness of those bench-
mark peers to the production (input–output) mix of the evaluated firm 
or their share of the same contextual conditions (factors), represented by 
a vector W, e.g. benchmarks facing the same nondiscretionary inputs and 
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outputs. The method produces an automatic “peer grouping” of the firms 
as by-products, depending on their comparable circumstances and exter-
nal conditions. This last feature is what represents the data driven approach 
these authors refer to.

However, the implementation of the algorithm is complex, as it defines 
the directional vector in terms of angles in polar coordinates in the multidi-
mensional input–output space, which nevertheless allows these authors to: 
(1) impose the same direction (angle) using the average of the angles, rather 
than the average of the observed input and output quantities (so large indi-
vidual firms will not weigh more in the egalitarian direction) or (2) consider 
different directions when the contextual factors justify their use. How these 
external factors in W influence the direction (angles) is carried out through 
nonparametric regression analysis of the direction on W. It is then a “local” 
direction determined by its neighbouring (similar) firms. These authors 
apply their method to simulated and original databases. They compare the 
results following their data driven method, testing the influence of the exter-
nal factors included in W and comparing results with those obtained for 
alternative orientations such as individual-specific distances or the egalitarian 
approach. The method captures the influence of the contextual factors and 
provides an efficiency measure that takes into account the particularities of 
the firms being evaluated with respect to their potential benchmark peers. 
An implementation of the method in a standard software package would be 
necessary to popularize this potentially useful, but computationally complex 
method.

SFA Framework

As mentioned in the introduction of this section, the choice of orientation 
in SFA shows its relevance with respect to the “complexity” of the stochas-
tic part of the model. To see this clearly, assume that we want to estimate 
firms’ technology using a stochastic input-oriented distance function 
DI

(
x∗i , y

∗
i

)
evi = 1, where the asterisk stands for efficient units and vi is the 

traditional noise term. If inefficient production is measured in terms of out-
put reductions (in this case, we assume that xi = x∗i ), the model to be esti-
mated can be written after imposing linear homogeneity in inputs as:

(37)− ln x1i = ln DI

(
xi

x1i
, y1e

ui

)
+ vi
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As customary, if we assume that the distance function has a flexible func-
tional form such as the Translog and the firm only produces a single output, 
the model to be estimated can be written as:

where

The composed error term εi involves three random terms, vi, ui and u2i . As 
Parmeter and Kumbhakar (2014) point out in a cost setting, the presence of 
the u2i  term in εi makes the derivation of a closed likelihood function impos-
sible. Thus, this precludes using standard maximum likelihood techniques 
to obtain the parameter estimates. Similar comments can be made if we 
were to use a directional or generalized−hyperbolic distance function. In all 
cases where we have intractable likelihood functions, they can be maximized 
by simulated maximum likelihood.40 A final important remark regarding 
Eqs. (38) and (39) is that the input orientation of the distance function does 
not force the researcher to use an input-oriented measure of firms’ ineffi-
ciency. We first do it just for simplicity and in doing so are likely to attenu-
ate endogeneity problems as well. The same remark obviously can be made 
for other primal (and dual) representations of firms’ technology.

So far, we have implicitly assumed that the researcher selects a particu-
lar orientation before carrying out production and efficiency analyses. The 
selection is normally based on the features of the industry being examined, 
e.g. on whether input or outputs are exogenously determined. However, 
as in its nonparametric DEA counterpart, the input–output orientation 
issue may also be viewed as a data driven issue, and thus, the decision can 
be based on performing proper model selection tests. If we allow for more 
than one orientation, these tests select the orientation that better fit the data 
or the orientation that provides the largest value for the likelihood function 

(38)

− ln x1i = β0 +

N∑

n=2

βn ln
(
xni

/
x1i

)
+

1

2

N∑

n=2

N∑

n′=2

βnn′ ln
(
xni

/
x1i

)
ln
(
x
n
′
i

/
x1i

)

+ βy ln yi +
1

2
βyy ln y

2
i
+

N∑

n=2

βny ln
(
xni

/
x1i

)
ln yi + εi,

(39)εi = vi +

[
βy +

N∑

n=2

βny ln
(
xni

/
x1i

)
]
ui +

1

2
βyyu

2
i .

40As shown by Parmeter and Kumbhakar (2014, p. 52) using a Translog cost function, if the produc-
tion technology is homogeneous in outputs, the model can be estimated using simple ML techniques.
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given the number of parameters to be estimated. For instance, Orea et al. 
(2004) fit input-, output- and hyperbolic-oriented cost frontier models 
using a panel data set on Spanish dairy farms. The performed tests show that 
the input-oriented model is the best among the models estimated, a result 
that is consistent with the fact that this provides the most credible estimates 
of scale economies given the structure of the sector.

In the SFA framework, traditional output- and input-oriented models 
impose a common orientation for all firms over time. The same happens in 
the paper mentioned above. Kumbhakar et al. (2007) note that this could 
be a strong assumption in some applications. That is, a given firm could be 
operating in either regime at any time. These authors treat the input and 
output distance functions as two latent regimes in a finite mixture model, 
representing firms’ technology by a general stochastic distance function: 
0 = ln D(xi, yi,β)+ vi + sui, where β is a vector of technological parame-
ters, and ui is a one-sided random variable representing technical inefficiency 
whose sign (i.e. s = 1 or s = −1) depends on the chosen orientation. The 
determination of the efficiency orientation for each firm is addressed by 
adopting a latent class structure so that the technologies and the probabil-
ity of being in the input-/output-oriented inefficiency model are estimated 
simultaneously by ML. The contribution of firm i to the likelihood is:

where γ = (β, σv, σu) is the whole set of parameters of the stochastic dis-
tance function, LFI

i (γI) is the likelihood function of an input distance 
function model, LFO

i (γO) is the likelihood function of an output distance 
function model, �i(θ) is the probability of being in the input-oriented class, 
and 1−�i(θ) is the probability of being in the output-oriented class. The 
computed posterior probabilities are then used to know whether a particu-
lar firm is maximizing output (revenue) or minimizing input use (cost). In 
essence, the Kumbhakar et al. (2007) model allows the data to sort them-
selves into the input- and output-oriented regimes rather than arbitrarily 
assuming that all observations obey one or the other at the outset.

The latent class model used by these authors allows different orientations 
in an exogenous fashion. There are more probable efficiency measures than 
others, but the latent class structure of the model does not allow firms to 
choose the orientation (i.e. the economic objective) they wish to pursue. 
Therefore, one interesting extension of this model is to endogenize the selec-
tion of the orientation of the efficiency measures. This likely can be carried 
out by adapting one of the models recently introduced in the SFA literature 

(40)LFi = LFI
i (γI)�i(θ)+ LFO

i (γO)(1−�i(θ)),
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to deal with sample selection problems for this setting (see, e.g., Greene 
2010, Kumbhakar et al. 2009, and Lai 2013). The key feature of these mod-
els is that production technology is a decision made by the firm itself and 
thus renders the sample split variable endogenous. The direct consequence 
of ignoring the endogeneity of the sample split variable is the estimation bias 
of the production technology, even if the differences in technology (in our 
case, efficiency orientations) are allowed in the model.

Atkinson and Tsionas (2016, 2018) pursue a similar objective using 
DDFs. The typical fixed direction approach often assumes +1 directions 
for outputs and −1 directions for inputs. They argue, however, that since 
goods (inputs) are produced (demanded) by firms, their relative valu-
ation may not be 1-to-1 for all firms. They generalize the standard (and 
restricted) models by jointly estimating a quadratic technology-oriented 
DDF, not with directions chosen a priori, but with chosen optimal direc-
tions that are consistent with cost minimization or profit maximization. 
In particular, providing the parametric SFA counterpart to Zofío et al. 
(2013), they first consider the typically employed Quadratic directional 
distance function of all inputs and outputs, and next, they append price 
equations to obtain a cost-minimization or profit-maximization DDF sys-
tem. Therefore, they also generalize the dual relationship between the profit 
function and the technology oriented DDF, as established by Chambers 
(1998). These equations allow identification of directions for each input 
and output. They estimate their DDF systems using respectively Bayesian 
and GMM techniques, obtaining estimates of all structural parameters and 
optimal directions.

7  Concluding Remarks

This contribution serves as guide to efficiency evaluation from an eco-
nomic perspective and, complementing several chapters in this handbook, 
intends to make the reader aware of the different alternatives available 
for choice when undertaking research in the field. The analytical frame-
work relies on the most general models and up to date representations of 
the production technology and economic performance through directional 
and GDFs, nesting the traditional approaches well known in the literature, 
while complementing them with current issues related to their empirical 
implementation.

In this chapter, we stress the importance of choosing a suitable analyti-
cal framework that is in accordance with the industry characteristics and the 
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restrictions faced by the firm, most particularly the relative discretion that 
managers have over output production and input usage. This sets the stage 
for the economic objective of the firm that, in an unconstrained setting, is 
assumed to maximize profit or profitability, both of which can be related 
to cost minimization and revenue maximization. Therefore, the under-
lying principle in the measurement of economic efficiency and the neces-
sary choice of orientation for flexible distance functions is that of Pareto 
efficiency, i.e. utility maximization, which indeed corresponds to the above 
objectives under the assumption of competitive market prices. Once the 
theoretical foundation for the measurement of overall economic efficiency 
is determined, the next question that scholars face is the choice of methods 
that are available to study variability in firm performance. Following previ-
ous chapters, we discuss the main characteristics, pros and cons and relevant 
assumptions that need to be made to successfully undertake a study using 
either DEA or SFA techniques. As all concerns discussed here are shared 
by both approaches, we do not add to the almost endless debate on which 
approach is best, loosely based on their relative strengths and weaknesses, 
but advice the reader on the capabilities of each method to better address the 
existing empirical limitations and deal with research constraints.

We conclude emphasizing the relevance of the methods surveyed in this 
chapter in unveiling the economic performance of firm in terms of tech-
nical and allocative (in)efficiencies, whose persistence and variability call 
for further integration within the discipline of industrial organization. 
Efficiency and productivity analysis is now part of the toolbox in regulation 
and competition theory, providing the necessary analytical and quantita-
tive results that allow the setting of firms’ incentives in regulated industries 
(Agrell and Bogetoft 2013), the evaluation of firms’ market power through 
mark-ups (Abhiman and Kumbhakar 2016; Orea and Steinbuks 2018) or 
the effects of mergers and acquisitions from the perspective of competition 
theory (Fiordelisi 2009). Nevertheless, it is possible to think of additional 
fields where firms’ heterogeneity in terms of their relative productivity is 
fundamental, as in the new trade models proposed by Melitz and Ottaviano 
(2008), where trade openness among countries triggers the Darwinian pro-
cess of firm selection in domestic markets, with those situated in the lower 
tail of the (in)efficiency distribution exiting the industry. It is by now clear 
that the homogeneity associated with the canonical model of perfect compe-
tition is giving way to the reality associated with the indisputable evidence 
of inefficient behaviour. On these grounds, in terms of economic, techni-
cal and allocative fundamentals, the pieces of the inefficiency puzzle go 
towards explaining why firms deviate from best practice operations and, in  
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this sense, make a valuable contribution to a wide range of research issues. 
As shown in this handbook, many challenges are still ahead, but cross-fer-
tilization of ideas with other research fields will result in a better under-
standing of the ultimate causes and consequences of inefficient economic 
performance.
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1  Introduction

Giving policy advices solely based on market prices may be misleading when 
the prices give distorted signals, i.e., diverge from socially efficient prices. 
Potential reasons for market prices to diverge from efficiency prices include, 
but not limited to, controlled prices, externalities, imperfect competition, 
taxes, trade controls, etc. Broadly, market failure may occur due to structure 
(characteristics) of the market or government intervention.

Imperfect competition (either in input or in output markets) or external-
ities are causes of market failures due to the structure of the market. Most 
markets face some forms of imperfect competition. For example, in a market 
with tacitly colluding firms or a natural monopoly, the prices deviate from 
the socially optimal prices. An externality occurs when an economic activity 
affects others. The externality can be positive as in the case of training and 
human capital improvement or it can be negative as in the case of environ-
mental damage.
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Government interventions that may lead to market distortions include 
controlled prices, taxes, trade controls, etc. For example, tariffs on imports 
increase the prices of relevant imports and their substitutes above their costs, 
insurances, and freight (cif ) prices. The distortion, however, is not limited to 
price divergence in the imported goods. Since the domestic prices increase 
relative to the world prices, this affects exchange rates too. Hence, in some 
cases in order to determine the efficiency prices, we need to rely on an 
approach that considers macroeconomic factors as well.

In the presence of market failures, it would be sensible to identify the 
shadow value (efficient value) of relevant outputs or inputs. To this end, it is 
essential to understand the relationship between market prices and shadow 
prices. This may help policy makers to determine the direction in which the 
mix of outputs or inputs should change in order to enhance social welfare. 
For example, Grosskopf et al. (1999) compare market school district admin-
istrative and teaching salaries in Texas with their corresponding shadow 
prices. This enables them to determine whether the schools are under-utiliz-
ing or over-utilizing their administrators and teachers. Similarly, using plant-
level data taken from Wisconsin coal-burning electric utility plants, Coggins 
and Swinton (1996) compare the prices paid for sulfur dioxide (SO2)  
permits and the corresponding shadow prices. Swinton (1998) uses a sim-
ilar comparison using plant-level data taken from Illinois, Minnesota, and 
Wisconsin. They find that the shadow prices are close to the permit prices. 
There are many other similar examples that we will briefly talk about later in 
the review.

It appears that a sensible starting point is considering an undistorted 
market where the market prices and shadow prices coincide. As Drèze and 
Stern (1990) argue, even in a perfectly competitive market the prices may be 
distorted, e.g., when the income distribution is not “optimal.” Due to this 
reason, it is even possible to have shadow prices that are distinct from the 
perfectly competitive market prices. However, in many occasions, this aspect 
is ignored and the perfectly competitive market is assumed to be socially 
optimal. In Sect. 4, we present an approach that aims to control for macroe-
conomic factors and distributional disturbances.

In the case of non-market goods or bads, the price is not observed. 
Since the utility of a consumer depends on not only market goods but also 
non-market goods and bads, a social planner who cares about the social wel-
fare should allocate some value to the non-market goods and bads. Shadow 
pricing methods, which we will provide a review, can be used to account for 
environmental factors or in general the non-market goods and bads.
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In the next section, we talk about market prices and efficiency prices in 
the case of imperfect competition and present the welfare effects of pricing 
with market power. In Sect. 3, we summarize some of the widely used val-
uation methods that are used in valuation of non-market goods, services, 
or bads, which may cause an externality. In Sect. 4, we introduce a valua-
tion approach for projects that can accommodate not only allocative effi-
ciency viewpoint but also their impact on the growth and redistribution of 
income. Section 5 discusses identification of shadow prices using different 
approaches while the following section concludes the chapter.

2  Imperfect Competition, Market Power, 
and Welfare

2.1  Measures Related to Market Power

Imperfect competition is one of the most commonly encountered reasons 
for why market prices diverge from efficiency prices. The antitrust litera-
ture relates this divergence to market power, which is the ability of a firm 
or a group of firms to set prices above the efficiency prices (or competitive 
prices). The extent of price distortion critically depends on the market struc-
ture, i.e., characteristics of the market and firms.

Structure-conduct-performance paradigm generally uses market concen-
tration measures such as Herfindahl-Hirschman index (HHI) to describe the 
market structures. The HHI, which is defined as the sum of squared mar-
ket shares, gives some idea about the extent of welfare loss due to the price 
distortions and market power. One particular advantage of this approach is 
that the HHI can be calculated using the market share data only. However, 
this measure ignores many of the important characteristics and aspects of the 
market such as capacity constraints, dynamic factors, durability of product, 
price discrimination,1 and substitutes. For example, a typical market with 
perishable goods can be modeled in a static setting whereas a market struc-
ture with durable goods requires a dynamic model. Being a static measure, 
the HHI may not be suitable in this context. Moreover, the HHI is mar-
ket-specific and thus does not provide information about firm-specific dis-
tortions. Although market share data is relatively easier to find compared 

1For details of advancements in the price discrimination literature, see Armstrong (2006) and Stole 
(2007).
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to other market data, calculation of market share involves some conceptual 
difficulties related to definition of the market. This, however, is a common 
problem for market power studies. Finally, the HHI is not always positively 
related with the welfare. For example, let’s start from a situation with two 
symmetric firms. Now, assume that one of these firms reduces its production 
costs. This would tend to increase the welfare and reduce prices charged to 
consumers. However, the HHI will increase. Therefore, the changes in the 
value of HHI may not always be in line with the changes in welfare.

Another widely used measure of market power is the Lerner (1934) index, 
which is defined as the ratio of price-marginal cost markup and price:

where P is the market price and MC is the marginal cost. The benchmark 
scenario for the Lerner index is perfect competition where price equals 
marginal cost, and thus, the Lerner index equals zero for the benchmark 
scenario. As the output price diverges from the efficiency price, i.e., mar-
ginal cost, the Lerner index increases and reaches its maximum value at the 
inverse of price elasticity of demand (in absolute value). Unlike the HHI, 
the Lerner index directly measures the price distortion that stems from 
imperfect competition. Moreover, it can be calculated as either a firm- 
specific or a market-specific measure of market power. The market-specific 
Lerner index is usually calculated as the market share weighted average of 
firm-specific Lerner index values.

Estimation of market power is an important issue to public policy mak-
ers and empirical industrial organization economists. Lerner index provides 
a simple way to address this issue as long as the marginal costs can be calcu-
lated. However, the usual assumption of price being at least as great as the 
marginal cost may not hold under certain market situations. Prices may be 
lower than marginal costs if firms either engage in price wars, or intention-
ally lower price of one product to promote sales of other similar products, or 
practice price discrimination, or if pricing of a product includes coupon dis-
counts. Weiher et al. (2002) adopt a novel approach to overcome problems 
associated with estimation of Lerner index for US airlines, where prices can 
be lower than marginal costs. Since prices can possibly be zero for customers 
buying air tickets with frequent flyer miles, Weiher et al. (2002) use 

(
p−MC
MC

)
 

as a measure of market power instead of the usual Lerner index. This formu-
lation allows them to put less weight on the below marginal cost prices, and 
averages of these normalized indices lead to more reasonable results in their 
study of US airlines.

(1)LI =
P −MC

P
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Similar to the HHI, the conventional Lerner index assumes profit max-
imization in a static setting so that marginal revenue equals marginal cost. 
However, in a market characterized by dynamic factors, the price and pro-
duction are determined intertemporally. If the current decisions of a firm 
involve a stock variable such as goodwill or knowledge or a level of qua-
si-fixed output, then the Lerner index needs to be adjusted to take these 
factors into account. Similarly, in the presence of an exhaustible or renew-
able resource, the conventional Lerner index needs to be adjusted. Pindyck 
(1985) proposes using what he calls full marginal cost (FMC), which is mar-
ginal cost plus competitive user cost, rather than marginal cost:

where � is the competitive user cost of one extra unit of cumulative produc-
tion evaluated at the monopoly output path. Note that the user cost may 
depend on the extent of competition and other aspects of the market. Since 
a market power measure aims to reflect price distortions in comparison with 
competitive prices, the competitive user cost should be used as the correc-
tion term when calculating the FMC. Moreover, the competitive user cost 
must be calculated using the monopolist’s output path just as marginal cost 
being evaluated at the monopoly output level when calculating the conven-
tional Lerner index. Pindyck’s (1985) market power measure ignores how 
the firms interact with each other, and thus, this measure is concerned with 
the measurement of potential market power.

Another case where the Lerner index needs to be interpreted carefully is 
when the firms have capacity constraints. With capacity constraints, price 
exceeds marginal costs (i.e., Lerner index is positive), and this indicates a 
welfare loss relative to perfect competition (without capacity constraint). 
But, if the capacity constraints are exogenous, then they are not under the 
control of the firms. Therefore, the deadweight loss should be calculated 
compared to perfect competition under capacity constraints, which indi-
cates that the Lerner index needs to be adjusted to reflect this interpreta-
tion of deadweight loss. Puller (2007) suggests an adjusted Lerner index for 
markets where the firms have capacity constraints. In particular, he exam-
ines the market power of firms in the California electricity market. In this 
case, the adjusted Lerner index is the same as Eq. (2) except that � equals the 
shadow cost of the capacity constraint. Since this shadow cost is not directly 
observed, it needs to be estimated along with the marginal cost. We will dis-
cuss this issue later in this section.

(2)LI =
P − FMC

P
=

P − (MC + �)

P
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Even after adjusting for dynamic factors or capacity constraints, the Lerner 
index may not reflect price distortions precisely if a proper notion of mar-
ginal cost is not used. More precisely, the standard approaches for calculating 
the Lerner index implicitly assume that the firms are fully efficient. However, 
in reality, imperfect competition may lead to managerial inefficiency in both 
revenue and cost. The managerial inefficiency is present for a given produc-
tion technology and can be improved if the firms do not waste resources 
and make optimal decisions in the production process. In practice, a com-
mon approach is estimating a cost function and calculating the marginal 
cost from the cost function parameter estimates. Using these marginal cost 
estimates and observed prices, the Lerner index is calculated. However, this 
does not reflect inefficiencies of firms in the Lerner index. Note that here we 
interpret the Lerner index as a measure of welfare loss for given production 
technologies in the market. Since the inefficiency reflects suboptimal out-
come in the production process for given production technologies, calcula-
tion of the Lerner index needs to reflect such inefficiencies. In a static setting, 
Koetter et al. (2012) propose an efficiency adjusted measure of the Lerner 
index to overcome this issue. In a dynamic strategic framework where firms 
have repeated interactions, Kutlu and Sickles (2012) propose other efficiency 
adjusted Lerner index measures, but they only concentrate on inefficiency in 
cost. The Lerner index measure of Kutlu and Sickles (2012) is given by:

where EFMC = EMC + � is the efficient FMC, EMC is the marginal cost 
for the full efficiency scenario, and � is a term that adjusts for dynamic fac-
tors. Although they use different approaches, both Koetter et al. (2012) and 
Kutlu and Sickles (2012) calculate EMC from the stochastic cost frontier 
estimates. In contrast to these studies, Kutlu and Wang (2018) present a 
game theoretical model that estimates EMC directly.

All these Lerner index variations mentioned above require the marginal 
cost information, which is not readily available in most cases and needs to 
be estimated using a cost function model or other means. However, since 
the total cost data contains sensitive information for the firms, they may be 
reluctant to share this information. Even when the total cost data is availa-
ble, it may not be available for the market of interest. For example, Kutlu 
and Sickles (2012) and Kutlu and Wang (2018) argue that the airline- 
specific total cost of the US airlines is available for the whole industry, but 
the route-specific total cost data is not available. Therefore, this poses some 

(3)LI =
P − EFMC

P
=

P − (EMC + �)

P
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issues when estimating route-specific marginal costs and Lerner indices for 
the airlines. Moreover, in the case where the firms have capacity constraints, 
the shadow cost of capacity is not available as well.

The conduct parameter (conjectural variations) method enables the esti-
mation of marginal cost and an alternative market power measure, which 
is called conduct parameter, without using the total cost data. The conduct 
parameter is simply a demand elasticity adjusted counterpart of the Lerner 
index, and similar to the Lerner index, it can either be firm-specific or mar-
ket-specific. Bresnahan (1989) and Perloff et al. (2007) are two good surveys 
on conduct parameter models. Some of the earlier examples of this approach 
include Gollop and Roberts (1979), Iwata (1974), Appelbaum (1982), 
Porter (1983), and Spiller and Favaro (1984).

The conduct parameter approach measures the market power of firms 
“as if ” the firms have conjectures about other firms’ strategies so that the 
equilibrium outcomes may not be supported by the standard market con-
ditions: perfect completion, Nash equilibrium (in quantity or price), and 
joint profit maximization. For instance, in a Cournot model, the conjecture 
is that the firms will have zero reaction, i.e., conjecture is the Nash assump-
tion in determining the equilibrium. Given the action (in this case, output) 
of other firms, each firm chooses its output optimally. Basically, conduct 
parameter approach assumes that firms may act as if they have more general 
types of reactions. Note that, in the conduct parameters method, the con-
jectures of firms refer to what firms do as a result of their expectations about 
other firms’ behaviors, and it does not necessarily reflect what they believe 
will happen if they change their actions, e.g., quantities or prices. Based on 
this interpretation, one can consider the conduct parameter as an index that 
takes a continuum of values. Since the existing theories (e.g., perfect com-
petition, Cournot competition, and joint profit maximization) are consist-
ent with only a few of these potential values, some researchers may not be 
comfortable with the idea of conduct parameter taking a continuum of val-
ues. Hence, they would categorize the estimated conduct parameter using 
the competitive behavior of firms by using statistical tests (e.g., Bresnahan 
1987).

Since the conduct parameter approach is based on game theoretical 
 models, the researchers may add some structure to the model that describes 
the market structure in a market. In particular, capacity constraints (e.g., 
Puller 2007; Kutlu and Wang 2018), dynamic factors (e.g., Corts 1999; 
Puller 2009; Kutlu and Sickles 2012), managerial inefficiency (e.g., Koetter 
et al. 2012; Kutlu and Sickles 2012; Kutlu and Wang 2018), multi-out-
put production (e.g., Berg and Kim 1998; O’Donnell et al. 2007; Kutlu 
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and Wang 2018), price discrimination (e.g., Graddy 1995; Kutlu 2017; 
Kutlu and Sickles 2017), and other characteristics of the market and firms 
can be incorporated to the game theoretical model, which describes the  
characteristics of the imperfect competition and market. In the literature, 
most conduct parameter models assume imperfectly competitive behavior 
by firms only in one side of the market, e.g., output market, and the other 
side of the market, e.g., input market, is assumed to be perfectly competi-
tive. Hence, in general, these models only consider price distortions in out-
put market but not in the input market. O’Donnell et al. (2007) present a 
general conduct parameter model that allows imperfect competition in both 
input and output markets.

Although the conduct parameter method relaxes the cost data require-
ment and allows more structural modeling, this does not come without a 
cost. In order to estimate a conduct parameter model, one needs to estimate 
a system of equations consisting of a demand function and supply relation 
that is derived from the first-order conditions of the structural game that 
the firms are playing. Hence, the required variables are the same as one 
would need for estimating a demand-supply system but with the exception 
that one needs to be more careful about identification. More precisely, if 
the researcher is not careful about the functional form choices, the marginal 
cost and conduct parameter may not be separately identified. For example, 
it may be possible to confuse competitive markets with high marginal cost 
and collusive markets with low marginal cost. Lau (1982) and Bresnahan 
(1982) present some conditions for identification in this setting. As argued 
by Bresnahan (1982), this identification problem can be solved by using 
general demand functions that the exogenous variables not only lead to par-
allel shifts but also change the demand slope by rotations. The simplest way 
to achieve this is including an interaction term with the quantity variable. 
However, Perloff and Shen (2012) illustrate that such rotations may cause 
some multicollinearity issues. Another approach that enables identification is 
assuming a constant marginal cost, which does not depend on quantity but 
may depend on other variables. For certain commonly used conduct param-
eter settings (Lau 1982), the conduct parameter and marginal cost can be 
separately identified if the inverse demand function P(Q,Z), where Q is the 
quantity and Z is a vector of exogenous variables, is not a separable function 
of Z in the sense that we can write P(Q,Z) = f(Q,h(Z)) for some functions 
f and h. An alternative possibility is using the non-parametric structural 
identification approach in Brown (1983), Roehrig (1988), and Brown and 
Matzkin (1998). Another approach is modeling the conduct as a random 
variable and achieving the identification through distributional assumptions. 
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Orea and Steinbucks (2012) and Karakaplan and Kutlu (2019) achieve 
identification using such distributional assumptions and using econometric 
tools from the stochastic frontier literature. They use skewness of the distri-
bution of conduct parameter in order to identify marginal cost and conduct 
parameter separately. This allows them to relax some of the strong functional 
form restrictions on the demand and marginal cost functions. Kumbhakar 
et al. (2012) propose another approach that estimates market powers of 
firms using the stochastic frontier approaches.

The conventional models for assessing market power assume either price 
or quantity competition to be the only endogenous variable. In reality, the 
degree of market power in the product market is likely to be related to input 
markets such as R&D, advertisement, finance, labor, capacity, and so on. 
A few recent studies investigate the influence of input markets on market 
power at the product market level. For example, Röller and Sickles (2000) 
examine whether the degree of market power at the product market is sen-
sitive to capacity. They specify and estimate a two-step structural model 
in which firms make capacity decisions first and then decide the product- 
differentiated prices. In this framework, costs are endogenized through the 
first stage, which has important implications for the measurement of market 
power in the product market. In particular, Röller and Sickles (2000) specify 
a product-differentiated, price-setting game under the duopoly assumption, 
where each producer faces a demand of the form:

where N is the number of producers, qi is the quantity demanded, pi is a 
price index for producer i, pj is a price index for competitor’s prices, and Zi 
is a vector of producer specific, exogenous factors affecting demand. While 
producers can affect costs only through changes in prices in the short-run, 
they can change the capital stock in the long run, thereby changing the 
long-run cost structure. Adopting a conjectural-variation framework, the 
first-order conditions of the two-stage profit maximization game in which 
producers purchase capital in stage 1 and decide prices in stage 2 can be 
written as:

where ηii is the own price elasticity, ηij is the cross-price elasticity, MC(.) 
is the marginal cost based on the short-run cost structure, and the market 

(4)qi
(
pi, pj,Zi

)
, i = 1, . . . ,N ,

(5)
pi −MC(.)

pi
=

1
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conduct parameter θ ≡ ∂pj/∂pi, represents the degree of coordination in a 
price-setting game. Based on this framework and profit-maximizing prin-
ciple of firms, Röller and Sickles (2000) discuss estimation of the model, 
specification tests regarding the relevance of the sequential set-up for meas-
uring market power and apply their method to analyze the European airline 
industry.

There are some theoretical examples (e.g., Rosenthal 1980; Stiglitz 1989; 
Bulow and Klemperer 1999) that suggest that more intense competition 
may lead to higher price-cost margins. Boone (2008a, b) proposes market 
power measures that are theoretically robust yet can be estimated using data 
sets that are similar to the ones that are used in estimating price-cost mar-
gins. In particular, Boone (2008a) proposes relative profit differences (RPD ) 
measure and Boone (2008b) proposes the relative profits (RP ) measure. The 
RPD measure is defined as follows. Let π(n) denote the profit level of a firm 
with efficiency level n where a higher n value means higher efficiency. For 
three firms with efficiency levels n′′ > n′ > n, let:

be a variable representing RPD. Boone (2008a) argues that in models where 
a higher competition reallocates output from less efficient firms to more 
efficient firms, RPD increases in the extent of competition. Therefore, this 
measure covers a broad range of models. The relative profits measure is 
defined as follows. For two firms with efficiency levels n′ > n, let:

be a variable representing profit differences. This measure is a robust market 
power measure as well.

2.2  Welfare Analysis

Having discussed the market power aspect of pricing inputs and outputs, 
it is imperative that we look into the welfare effects of such pricing. The 
conventional argument against market power evolves around the fact that 
by charging a price that is higher than the marginal cost, a firm is able to 
grab higher surplus, leaving the consumers with a lower surplus compared 
to the competitive market outcomes. However, the gain in producer sur-
plus is often not big enough to compensate for the loss in the consumer  

(6)RPD =
(
π
(
n′′
)
− π(n)

)
/
(
π
(
n′
)
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(7)PD = π
(
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surplus, unless the producer employs perfect price discrimination. Thus, 
in the presence of market power, it is likely that the market outcome will 
be inefficient in terms of total surplus maximization and the society will 
experience welfare loss. The degree of welfare loss depends not only on the  
market power, i.e., the extent to which a firm is able to raise price above the 
marginal cost, but also on the elasticity of demand and size of the market.

Inefficiency of a non-competitive market is rooted in the inequal-
ity between price and the marginal cost of production (after factoring out 
restrictions that firms face in a suitable way). As mentioned in the previ-
ous section, one must consider an adjusted benchmark while identifying 
inefficiency of a non-competitive market in the presence of exogenous con-
straints. Otherwise, one may end up with an upward bias in the measured 
inefficiency. However, in the absence of any exogenous constraints, the dif-
ference between price and marginal cost is an indicator of the divergence 
between the marginal benefit to consumers and the marginal costs to pro-
ducers. For a given technology (and cost) of production, such divergence 
leads to inefficient allocation of resources and static welfare loss for the soci-
ety. The social cost of misallocation due to the presence of extreme market 
power like monopoly can be approximated by the well-known welfare tri-
angle showing the difference between gain in producer surplus and loss in 
consumer surplus, when price is higher than the marginal cost. Prominent 
empirical research in this regard includes Harberger (1954) and Rhoades 
(1982). Using differences among profit rates in the US manufacturing 
industries, Harberger (1954) measures the possible increase in social welfare 
by eliminating monopolistic resource allocation. Rhoades (1982) studies the 
US banking sector and calculates the deadweight loss due to monopoly in 
the US banking system. However, Formby and Layson (1982) suggest to use 
caution while analyzing the relationship between market power as measured 
by the Lerner index or profit rates and allocative inefficiency. They find that 
under conditions of linear and constant price elasticity of demand functions, 
changes in monopoly power, as measured by the Lerner index or profit rates, 
are not adequate to predict changes in the allocative inefficiency.

The lack of competitiveness in a market is also likely to be associated 
with lower productive efficiency through wastage of resources and manage-
rial efforts, which in turn may have crucial welfare implications. The study 
by Good et al. (1993) is worth noting in this regard. They discuss welfare 
implications for the US and European airlines by measuring changes in pro-
ductive efficiency and market power due to liberalization. Focusing on rela-
tive efficiency scores defined by a stochastic production function frontier for 
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selected US carriers over the period 1976–1986, they find a clear evidence 
of convergence toward a common efficiency standard under deregulation for 
US carriers. However, European carriers that did not enjoy deregulation to 
a similar extent suffered from low efficiency and associated costs during the 
period. To identify potential welfare gain from deregulation for European 
airlines, Good et al. (1993) estimate the existing market power and compare 
it with the simulated effects of increased competition due to deregulation in 
a product-differentiated, price-setting game framework.

The argument in favor of privatization also stems from the fact that it is 
likely to increase operating efficiency and performance of economic units, 
thereby improving economic welfare. Several countries implemented privat-
ization in different sectors of the economy over time to improve economic 
performance. While studying the economic impacts of privatization of the 
electricity company in Sub-Saharan Africa, Plane (1999) finds substantial 
evidence in support of improved productive efficiency, total factor produc-
tivity gain, and a reduction in the relative price of electricity, as a result of 
which, consumers are the main beneficiaries of privatization.

The presence of market power may also impose cost inefficiency in pro-
duction systems. Possible reasons for such inefficiency include lack of man-
agerial effort in cost minimization, following objectives other than profit 
maximization and utilizing resources for unproductive purposes like main-
taining and gaining market power. Hicks (1935) identifies the lack in man-
agerial effort in maximizing operating efficiency in the presence of extreme 
market power like monopoly, as the “quiet life” effect of market power. 
Empirical evidence suggests that the cost of inefficiency due to slack man-
agement may exceed the social loss from mispricing. While studying US 
commercial banks, Berger and Hannan (1998) find strong evidence for poor 
cost efficiency of banks in more concentrated markets. They also point to 
the fact that the efficiency cost of market concentration for US banks may 
outweigh the loss in social welfare arising from mispricing. On the contrary, 
in the specific case of European banking sector, Maudos and Guevara (2007) 
find welfare gains associated with a reduction of market power to be greater 
than the loss of cost efficiency—rejecting the “quiet life” hypotheses.

Finally, it is worth noticing that while the presence of market power 
may be associated with inefficiency and welfare loss, a producer with mar-
ket power may also provide better-quality products and spread information 
through advertising, which in turn may contribute to the gain in economic 
well-being of consumers. A major difficulty in assessing welfare conse-
quences of market power further arises from the fact that in more globalized 
economies with segmented markets and differentiated products, it is not 
straightforward to precisely define a market.
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3  Externalities and Non-market Valuation

Besides imperfect competition, externalities are other commonly encoun-
tered reasons for why market prices diverge from efficiency prices. In a mar-
ket, an externality is present when the production or consumption of a good 
leads to an indirect effect on a utility function, a production function, or a 
consumption set. Here, indirect refers to any effect created by an economic 
agent that is affecting another agent, where the effect is not transmitted 
through prices. In many occasions, the indirect effect is due to a produced 
output or used input that may not have a market value. For example, if a 
production process involves carbon dioxide (CO2) emission that results in 
climate change, this would cause a negative effect on the society. However, 
no individual producer would try reducing the CO2 levels unless there is 
some cost imposed on the emission levels or another mechanism that 
restricts emission. Another example is the production of public goods and 
services that provide benefits to the society, i.e., positive externality. Hence, 
the externality leads to distortions in the market prices that lead to devia-
tions from efficiency prices unless it is somehow internalized. One potential 
way to internalize the externality is creating markets for non-market value 
inputs and outputs, which requires determining their values. The literature 
on valuation of non-market goods is vast. Hence, we only provide a broad 
summary of this literature. Additional summaries of literature on both 
theory and methods are given by Freeman (1979, 2003). Broadly speak-
ing, there are two types of general approaches that are used in determining 
the valuation of goods in the presence of externalities—approaches based 
on technical relationships and behavioral (link) approaches, which rely on 
responses or observed behaviors. For the technical relationship approaches, 
we consider the damage function approach and distance function related 
approaches. For the behavioral approaches, we consider travel cost approach, 
hedonic pricing approach, and contingent valuation approach. While this 
list is not exhaustive, it covers some of the most widely used approaches in 
the literature.

3.1  Damage Function Approach

A procedure that belongs to the first group is the expected damage func-
tion approach. This method assumes a functional relationship between 
the good (bad) and expected social damage from decreasing (increasing) 
the amount of the good (bad). This approach is commonly used in risk 
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analysis and health economics. Rose (1990) (airline safety performance), 
Michener and Tighe (1992) (highway fatalities), Olson (2004) (drug 
safety), and Winkelmann (2003) (incidence of diseases and accident rates) 
exemplify some studies that use this approach in the risk analysis context. 
In general, the expected damage function approach can be used to meas-
ure the value of a good or a service (bad) that provides benefit in terms of 
decreasing (increasing) the probability and severity of some economic neg-
ative effect by the reduction in the expected damage. In an early applica-
tion of this approach in the context of non-market valuation, Farber (1987) 
estimates the value of gulf coast wetlands due to its role of protection from 
wind damage to property that results from hurricanes. Obviously, the wet-
lands are non-market inputs, and thus, we cannot observe its value directly. 
The methodology aims to estimate a hurricane damage function in which 
wetlands moved by storms are a variable that determines the damage. He 
calculates the expected marginal damage from winds due to loss of the wet-
lands using the historic hurricane probabilities. Another example that uses 
the damage function approach is Barbier (2007) who measures the effects of 
mangrove forests on tsunami damages in Thailand. While the applications 
directly model the damage function, the starting point of this approach is 
the compensation surplus approach used for valuing a quantity or quantity 
change in non-market goods or services. In this setting, the expected damage 
due to a change in the amount of non-market good or service is the integral 
of the marginal willingness to pay for services that protect from the damage 
(e.g., avoid storm damage). The approach is useful in many occasions, but 
it only concentrates on one aspect of incremental benefits at a time. Hence, 
evaluation of the full valuation of a non-market good/bad or service would 
be difficult as this requires considering all aspects.

3.2  Distance Function Approach

Another non-market valuation approach based on technical relationships 
is the distance function approach. When the data on inputs and outputs is 
available, this enables us to construct a production model through a distance 
function. The properties of distance functions enable us to calculate the 
shadow prices for the inputs or outputs of production, which can be used 
to assign values to non-market goods or services. Färe and Grosskopf (1990) 
model the technology using input distance functions to represent technol-
ogy. They use the duality of input distance function and cost function to 
calculate the cost normalized shadow prices. Färe et al. (1993) model the 
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technology using output distance function, which can accommodate mul-
tiple outputs and allows weak disposability of undesirable outputs. They 
obtain the normalized shadow prices by applying a dual Shephard’s lemma 
and convert this to absolute shadow prices by assuming that the shadow 
price of one marketable output equals its market price. Another related 
approach to calculate shadow values is using the directional distance func-
tions developed by Chambers et al. (1996, 1998). Chung et al. (1997) is 
the first example that models goods and bads using the directional distance 
functions. Among others, Lee et al. (2002), Färe et al. (2005), Färe et al. 
(2006), and Cross et al. (2013) are examples that use the directional distance 
function approaches. In contrast to Shephard’s (1953, 1970) distance func-
tions, which are defined in terms of radial expansions to the frontier, the 
directional distance functions are defined in terms of directional expansions 
along a specified vector. The radial distance functions are special cases of the 
directional distance functions. The directional distance function approach 
allows non-proportional changes in outputs (and inputs). Moreover, this 
approach allows mixture of expansions and contractions for outputs. That 
is, while some outputs may be expanded, the others can be contracted. 
Although the choice of direction is left to the researcher, a common choice is 
the unit vector with negative signs for bads. The trade-off between the good 
and the bad outputs is not meaningful unless technical efficiency is removed 
by projecting on the frontier. The issue is that such projections are not 
unique as there are competing projection methods and we need to choose 
one of them. Moreover, a change in a bad and a good output as we move 
from one point on the frontier to another depends on the direction and the 
size of the change. Hence, for an inefficient point, a directional projection 
may be a more sensible choice as it lies between the bad-oriented and the 
good-oriented projections. However, this flexibility in the choice of direction 
vector raises some concerns. In particular, the estimates may be sensitive to 
the direction choice as illustrated by Vardanyan and Noh (2006). Moreover, 
unlike the directional distance functions, the conventional radial distance 
functions allow unit-free multiplicative changes in arguments. Therefore, 
these two approaches do not have a decisive winner and the choice depends 
on the particularity of the problem that a researcher wants to answer. Finally, 
a general concern about distance functions is that modeling goods and 
by-products in the same technology may not be sensible. Fernández et al. 
(2002), Førsund (2009), and Murty et al. (2012) raise this concern and 
suggest separating the technology of goods and by-product bads. For this 
purpose, Fernández et al. (2002) assume that two technologies are separa-
ble and Murty et al. (2012) use distinct technologies. Acknowledging these 
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issues, Bokusheva and Kumbhakar (2014) present an approach that models 
the technology by two functions. They use a single technology specification 
but allow good and bad outputs to be related via a hedonic function. They 
provide the shadow price of the bad (pollutant) under the assumption that 
the shadow price of the marketed output equals its market price. Another 
paper that utilizes hedonic functions in this context is Malikov et al. (2016), 
which models undesirable outputs via a hedonic output index. This ensures 
that pollutants are treaded as outputs with undesirable nature as opposed 
to inputs or frontier shifters. For this purpose, Malikov et al. (2016) use a 
radial input distance function generalized to allow an unobservable hedonic 
output index of desirable and undesirable outputs.

Finally, we finish our notes about distance function approach by some 
application examples from a variety of contexts. Färe et al. (1993) (effluents 
by paper and pulp mills), Coggins and Swinton(1996), Swinton (1998), 
Färe et al. (2005) (SO2 emission), Hetemäki (1996) (sulfate pulp plants), 
and Aiken and Pasurka (2003) (SO2 and PM-10 emissions) exemplify some 
studies that concentrate on undesirable outputs. Other examples for shadow 
price estimates include Färe et al. (2001) (characteristics of sites), Aiken 
(2006) (activity of recycling), and Cross et al. (2013) (vineyard acres by 
quality).

3.3  Travel Cost Approach

The travel cost approach is developed by Trice and Wood (1958) and 
Clawson (1959). A good review is Parsons (2017). This approach belongs to 
the group of behavioral approaches, which is based on revealed preferences. 
In the context of environment, this method relies on the complementarity 
of quality of a natural resource and its recreational use value (e.g., visiting a 
national forest or fishing at a lake). The idea is that as the quality of a natural 
resource (e.g., quality of water) changes, the demand for the natural resource 
shifts. The change in the consumer surplus can be used to determine the 
value associated with the incremental benefit. Hence, individuals’ willing-
ness to pay for the recreational activity is revealed by the number of trips 
that they make and where they choose to visit among the potential options. 
Two subcategories of the travel cost models are single-site models and ran-
dom utility maximization models. The single-site models consider the travel 
cost as the price and work similar to a demand function where the total 
number of trips is treated as the quantity of demand. On the other hand, 
the random utility maximization models assume multiple choices for the 
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individuals where the random utility is maximized based on these choices. 
In the random utility model, the sites are characterized by their attributes 
and travel cost for reaching the site. By choosing sites, the individuals reveal 
their preferences. Prior to the random utility travel cost models, multiple 
sites models were introduced in a demand system (Burt and Brewer 1971; 
Cicchetti et al. 1976). The random utility models became popular around 
the 1980s and 1990s starting with the works of Bockstael et al. (1984, 
1987) on beach use and Carson et al. (1987) on recreational fishing. Parsons 
and Kealy (1992) and Feather (1994) (choice set formation), Adamowicz 
(1994) (intertemporal decisions), Train (1998) (simulated probability 
and mixed logit), and Hauber and Parsons (2000) (nested logit) exemplify 
some earlier works and developments around this time period. Meanwhile, 
the single-cite models concentrated on relaxing some other aspects of the 
problem such as continuity assumption of number of trips variable. This is 
achieved by using limited dependent variable and count data models (e.g., 
Shaw 1988; Hellerstein 1991, 1992; Hellerstein and Mendelsohn 1993). 
More recently, instrumental variable approach to handle endogeneity in 
congestion (Timmins and Murdock 2007) and models for handling on-site 
sampling are introduced in the random utility framework.

In a standard single-site model, the demand function is represented as:

where qi represents the number of trips, pi is the trip cost or price, psi is a 
vector of trip costs or prices for substitute sites, zi is a vector of individual 
characteristics, and yi is the income of individual i. A common choice for 
the demand function is the log-linear form. Using this demand function, the 
consumer surplus difference between with and without quality change can 
be used as a measure for quality improvement.

The random utility models provide a better behavioral explanation com-
pared to the single-site models with an expanse of being somewhat more 
complicated. The individuals are assumed to choose among a set of possible 
sites (e.g., beaches, camping areas, parks, rivers, etc.) for a trip. In its sim-
plest form, the utility from visiting a site is assumed to be a function of trip 
cost, pki, and a vector of site attributes (quality), Xi:

where α and β are parameters and εki is an error term. The individual picks 
the site that gives the highest utility:

(8)qi = f (pi, psi, zi, yi)

(9)Uik = αpki + βXi + εki

(10)Vi = max(U1i,U2i, . . . ,UKi)



502     A. Bhattacharyya et al.

where Uki is the utility from site k and Vi is the trip utility of individ-
ual i from visiting their top preference. If the quality level (e.g., more 
clean water) of a site, say U1i, changes so that the new utility becomes 
V∗
i = max(U∗

1i,U2i, . . . ,UKi), the compensation variation measure for the 
trip is given by:

3.4  Hedonic Pricing Approach

Hedonic price method is another approach that belongs to the group of 
behavioral approaches, which is based on revealed preferences. In this 
approach, the goods are characterized by their attributes or characteristics. 
The market transactions do not directly reveal the values of each character-
istic, and this method aims to derive the values attached to these different 
characteristics of the goods indirectly. Quigley (1982), Freeman (1995), 
Bockstael and McConnell (2007), Phaneuf and Requate (2016), and Taylor 
(2017) are some reviews on hedonic pricing. Some of the applications of 
hedonic methods in a variety of markets include Griliches (1961) (automo-
bile industry), Ridker and Henning (1967), Boyle et al. (1999) (housing 
markets), Triplett (1984) (computers), Triplett (2004) (information tech-
nology products), Primont and Kokoski (1990) (medical field), Schwartz 
and Scafidi (2000) (university education), and Good et al. (2008) (airline 
industry). The hedonic price method goes as early as Waugh (1928), but the 
utility theoretic connections between consumer preferences and equilibrium 
price for non-market valuation are provided in Rosen (1974).

The hedonic analysis has two stages. The first stage involves estimation of 
the hedonic price function. The second stage uses the first stage price esti-
mates and combines them with the individual characteristics to estimate 
demand or utility function parameters. However, due to data availability 
limitations, the second stage is not always implemented. We will concen-
trate on the first stage. A detailed discussion on the second stage is given by 
Taylor (2017).

In a standard hedonic price analysis, estimation of the first stage involves 
regressing the price on the characteristics variables. Although there is no 
general rule for functional form choice, using the linear model requires some 
compelling reasons as the price and quality variables are likely to have some 
non-linear relationship. Cropper et al. (1988) provide evidence in support 
of relatively simpler models such as semilog functional form. However, 

(11)wi =

(
V∗
i − Vi

)

−α
.
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Kuminoff et al. (2010) find evidence supporting the more flexible functional 
forms. Another concern in price function estimation is the identification of 
model parameters. In particular, if the price variable is simultaneously deter-
mined with a characteristic variable or a relevant variable is omitted, this 
leads to inconsistent parameter estimates. The simultaneity problem can eas-
ily be handled by an instrumental variables approach (Irwin and Bockstael 
2001). A particular omitted variable problem in the housing market context 
is omitting a relevant spatial lag variable, which can be addressed by using 
spatial hedonic price models. Anselin and Lozano-Gracia (2009) and Brady 
and Irwin (2011) provide extensive reviews for spatial hedonic price models.

3.5  Contingent Valuation Approach

Contingent valuation approach is the final behavioral method that we con-
sider, which is based on stated preferences. This approach estimates the price 
of a good or a service through a contingent valuation question that care-
fully describes a hypothetical market. Contingent valuation method is useful 
when the market prices are unreliable or unavailable. Mitchell and Carson 
(1989) is an earlier book that provides a detailed discussion on designing 
a contingent valuation study. Boyle (2017) is a good recent review on con-
tingent valuation for practical applications of the method. Although the 
approach has been widely critiqued, it is used in practice such as in some 
legal cases. Recently, Kling et al. (2012) argued that having some numbers 
is likely to be better than no number. On the other hand, Hausman (2012) 
focuses on the issues related to hypothetical bias and discrepancy between 
willingness to pay and willingness to accept. Therefore, the debate is still not 
conclusive.

Boyle (2017) identifies the steps in conducting a contingent valuation 
study as follows: (1) Identifying the change in quantity or quality to be eval-
uated; (2) identifying whose values to be estimated; (3) selecting data collec-
tion mode; (4) deciding about the sample size; (5) designing the information 
component of the survey instrument; (6) designing the contingent valuation 
question; (7) designing auxiliary questions; (8) pretesting and implementing 
survey; (9) analyzing data; and (10) reporting the results.

First, the researcher has to decide not only what needs to be measured 
but also whether there are risks involved. For example, in the case where 
there is some uncertainty about contamination of a water source, the val-
uation method would concentrate on the willingness to pay for a reduc-
tion in probability of contamination. The choice of whether the study  
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would be based on individuals or households is important. Quiggin (1998) 
argues that if intra-household altruism does not exist or it is paternalis-
tic, the aggregate measure of welfare is the same. Whereas Munro (2005) 
argues that this happens when the household incomes are pooled. Bateman 
and Munro (2009) and Lindhjem and Navrud (2011) illustrate that the 
values for individuals and households differ. Traditionally, the most widely 
used survey method has been by mail, but Internet surveys became popu-
lar recently due to its cost and convenience advantages. However, response 
rates for Internet surveys are relatively lower compared to the other means. 
The cost or response rates are not the only concerns when choosing a sur-
vey method. Boyle et al. (2016) find that the Internet-based surveys give 
8% lower estimates for willingness to pay compared to the other methods of 
survey. An important aspect of these surveys is description of what is being 
valued. Bergstrom et al. (1990), Poe and Bishop (1999), and MacMillan 
et al. (2006) exemplify studies that illustrate sensitivity of the results to 
the information provided. Another important aspect of these surveys is 
the payment mechanism. The response formats in these contingent valua-
tion questions include open-ended (direct statement of willingness to pay) 
(Hammack and Brown 1974), iterative bidding (bid increases if respondent 
says yes to a bid and decrease for a no) (Randall et al. 1974), payment-card 
(choose among possible willingness to pay options) (Mitchell and Carson 
1989), or dichotomous choice (yes or no to a specified willingness to pay 
amount) (Bishop and Heberlein 1979) questions. Among these, dichoto-
mous choice questions are most commonly used. Carson and Groves (2007)  
and Carson et al. (2014) present conceptual arguments for desirable proper-
ties of this type of questions.

4  Macroeconomic Valuation of Projects:  
LM Methodology

As mentioned in the introduction, even in the case of perfect competition, 
the prices may be distorted if the income distribution is not optimal. The 
early days of cost-benefit analysis literature aimed to assess projects based on 
not only allocative efficiency viewpoint but also their impact on the growth 
and redistribution of income. Both optimal growth and optimal income dis-
tribution are important factors that need to be considered when evaluating 
the value of projects as suboptimal growth or income distribution leads to 
welfare loss. Hence, Little and Mirrlees (1969, 1974) (LM) and UNIDO 
(UN Industrial Development Organization) (1972) develop approaches 
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that aim to address this objective. The approach of LM is subsequently 
extended by Squire and van der Tak (1975) and UK Overseas Development 
Administration (1988). Combining allocative efficiency, growth, and redis-
tribution aspects requires a common measure, which may be aggregated into 
a single measure. The LM approach uses the world price as numeraire. This 
method converts the domestic prices to world prices by using the standard 
conversion factor. Note that this does not claim that the world prices are 
undistorted and reflect perfectly competitive prices. Rather, the world prices 
are used because they represent the conditions in which the economy can 
participate in world trade and they reflect comparative advantages. On the 
other hand, UNIDO (1972) uses the domestic price numeraire and con-
verts domestic prices using the shadow exchange rate. The approaches of LM 
and UNIDO are similar in spirit but the LM approach is a more widely 
adopted methodology for shadow price estimation. Therefore, in this sec-
tion, we concentrate on the LM approach. Further details can be found in 
the cited studies as well as in Chowdhury and Kirkpatrick (1994) and Asian 
Development Bank (2013).

The valuation of public projects requires prices for traded and non-traded 
goods. The LM approach determines the valuations of traded goods based on 
world prices, which reflect the opportunity costs to the country evaluating the 
project. This reflects the net benefit of a traded good. The non-traded goods 
are not traded internationally due to either an export ban or another rea-
son. Since the traded goods are valued at world prices, the non-traded goods 
should be valued comparably. This is achieved by first estimating the marginal 
cost of production and converting input costs to world prices. The conversion 
involves decomposing the inputs into traded and non-traded inputs labor and 
land. Then, the non-traded land and labor prices are converted into world 
prices. This conversion process involves determining the traded goods that 
they substitute in domestic production. The world prices of these goods can 
be used in order to drive shadow prices for the non-tradable goods.

As mentioned earlier, shadow prices for traded goods are based on world 
prices. In particular, for imports cif and for exports fob (free on board) 
prices are used. The prices can be given in either foreign exchange terms or 
domestic currency values. The world prices need to be adjusted for the costs 
of internal transportation and distribution. Since the world price is intrin-
sically an abstract concept, it must be estimated. One challenging issue is 
that the goods are rarely homogenous. Moreover, the goods may be subject 
to different price discrimination practices, e.g., different unit prices for dif-
ferent amounts. Hence, it is impossible to avoid researcher’s judgment when 
calculating the world price estimates.
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A common way to calculate a shadow price for a non-tradable good is 
using a conversion factor, which is the ratio between the market price and 
the shadow price of the good. The shadow value for the relevant non-trada-
ble good is calculated by multiplying the market price with the relevant con-
version factor. Whenever the researcher does not have enough information 
about the non-tradable good or if the amount of the non-tradable good is 
small, the so-called standard conversion factor is used.

The development of semi-input-output method helped the consistent 
estimation of macroconversion factors. After identifying a set of primary 
factor inputs, primary inputs are given (exogenously or endogenously deter-
mined) values. Then, the economic price of a sector s (EP s) is determined by 
a weighted average of conversion factors of primary inputs x into s:

where vxs is the value of primary input x into sector s, FPs is the financial 
price value of s. This approach has the disadvantage of input-output systems 
as they employ fixed coefficients. However, it has the advantage of picking 
up both direct and indirect effects. For example, not only the direct employ-
ment effects but also the linkage employment effects from expansion of pro-
duction are reflected.

Especially in economies with labor surplus, unskilled labor takes an 
importance place. In LM approach, the shadow price of unskilled labor is 
calculated using a separate conversion factor. If the production involves mul-
tiple goods, then the weighted mean of conversion factors for each output 
produced is applied to the market value of the opportunity cost of unskilled 
labor. The skilled labor shadow price is calculated by applying the standard 
conversion factor to the market wage.

As stated earlier, one of the aspects of LM approach is that it takes distri-
butional issues into account as well. This is particularly important because 
the policy maker may not only be interested in allocative efficiency but also 
be interested in how the resources are distributed. LM approach consid-
ers two types of distributional issues. The first one is about distribution of 
output among members of the society with different incomes. The second 
one is about intertemporal distribution of resources. This involves decid-
ing about which portion of a project’s output will be saved and which por-
tion of the project’s output will be consumed. These procedures involve 

(12)EPs =
∑

x
vxsCFx

(13)CFs =
EPs

FPs
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assigning distributional weights, which in turn contribute to the calculation 
of the shadow prices. For example, the poor are given higher weights com-
pared to the rich. Squire and van der Tak (1975) present this approach more 
formally and show how distributional weights can be fed into a variety of 
parameters. Ray (1984) formalizes many of the expressions by Squire and 
van der Tak (1975) further and explains the underlying welfare theory. In 
practice, however, the distributional weight approach is not applied with-
out some concerns. The main issue is that many times the weights are based 
on value judgments. Harberger (1978) argues that the weighting scheme 
gives implausibly high/low weights to some groups. Some even argue that 
even equal weights are subjective (e.g., Brent 2006). The arbitrarily chosen 
weights may make the allocative efficiency less important than the distribu-
tional objectives. Hence, sometimes the analysis for allocative efficiency and 
distributional impact is made separately. Overall, the LM method provides 
us a macroperspective when evaluating valuations of projects and is a useful 
tool along with other valuation methods that we summarized in this short 
review.

5  Shadow Prices of Inputs and Outputs

Shadow prices are virtual prices that can be calculated as changes in the 
optimal value of an objective function for marginal relaxation in the con-
straint, in a constrained optimization framework. Inevitably, shadow prices 
are highly relevant in constrained output, revenue, profit maximization, and 
cost minimization problems faced by production units. These prices are pri-
marily theoretical values, estimation of which can be useful when market 
prices do not exist or do not reflect the true value of products. There are 
several approaches for identifying and estimating measures related to shadow 
prices in the productivity literature. These approaches differ in their objec-
tive functions, nature of inputs and outputs, and methods of identification.

5.1  Shadow Prices Based on the Cost Function

One plausible approach for identifying shadow price measures for inputs is 
to focus on the dual profit function. Under the standard regularity produc-
tion conditions, this approach allows one to identify the profit-maximizing 
output supply and input demand system by virtue of the Hotelling’s lemma. 
The output supply and input demand functions then can be modified to 
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incorporate different types of inefficiency, which in turn reflect the rela-
tionship between the perceived and the actual market prices of inputs and 
outputs. For example, Lovell and Sickles (1983) use the dual profit func-
tion to model technology of a competitive profit-maximizing multi- product 
firm and estimate the ratio of perceived to actual price of inputs. This ratio 
reflects the systematic component of allocative inefficiency and plays a piv-
otal role in estimating the cost of the forgone profit due to inefficiency. 
Based on this approach, Sickles et al. (1986) study the US airline industry 
for allocative distortions during a period of regulatory transition.

In the presence of quasi-fixed inputs, the production technology can 
be modeled using a dual restricted (variable) cost function that allows for 
the existence of temporary disequilibrium (Sickles and Streitwieser 1998). 
Temporary disequilibrium may occur for unexpected demand shocks or 
changes in factor prices. Under the assumptions of exogenous input and 
output prices, the short-run variable cost function can be obtained as a solu-
tion of the minimization problem of a firm operating at full capacity:

where H is the transformation function of the production technology, Y is 
the output, W represents input prices, and X represents the quantity of qua-
si-fixed inputs. The short-run variable cost function is then given by:

where G is linearly homogeneous, non-decreasing, and concave in input 
prices; non-decreasing and convex in the levels of quasi-fixed inputs; 
and non-negative and non-decreasing in output. For example, G can be a 
non-homothetic translog function. Then, given exogenous input prices and 
by Shephard’s lemma, the first-order conditions of the cost minimization 
problem yield the variable cost share (Mi) for variable input (Xi). For esti-
mation purposes, the shadow share equation, − ∂lnG

∂lnXk
=

ZkXk
CV

, can be added 
to the model where the shadow price, Zk, is the real rate of return or ex-post 
value of the fixed input Zk. The shadow price can be derived as the resid-
ual between revenues and variable costs. Since the effects of economic opti-
mization are incorporated in the shadow value equations, they can be used 
in the system of estimating equations. The long-run cost function can also 
be obtained from the restricted cost function as C = H(W ,Y ,Z∗) where 
Z∗
k = − ∂G

∂Xk
. Sickles and Streitwieser (1998) apply their model and method-

ology to study the interstate natural gas transmission industry in the USA.

(14)min
∑

WiXi subject toH(Y ,X; T) = 0

(15)CV = G(Y ,W ,X; T)
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A production technology may be subject to inherent complexities, con-
straints, and distortions that are needed to be integrated into the optimi-
zation problems of firms. Good et al. (1991) formulate a multiple output 
technology in which the choice of production technique is an endogenous 
decision. They employ the concept of virtual prices in their modeling to esti-
mate technology that corresponds to efficient resource allocation. They also 
discuss estimation of parameters that explain the divergence between vir-
tual and observed prices and apply their method to analyze the US airline 
industry.

The institutional constraints and policy environment can substantially 
affect the relative input price in unobserved ways, resulting in a divergence 
between the relative market price and the relative shadow price. Extent of 
this divergence measures the relative price efficiency. Getachew and Sickles 
(2007) estimate the divergence of the relative market price form the rela-
tive shadow price using a generalized cost function approach. The first-order 
conditions for a standard neoclassical problem of cost minimization subject 
to an output constraint yield the equality between the marginal rate of tech-
nical substitution (MRTS) and the ratio of market price of inputs. However, 
in the presence of additional constraints due to the policy environment, 
the optimal allocation of inputs that minimize cost requires the equality 
between the MRTS and the ratio of shadow or effective prices. Thus, a firm’s 
cost minimization problem in the presence of additional restrictions can be 
given as:

where P and X are h× 1 vectors of price and quantity of inputs, respec-
tively, f(X ) is a well-behaved production function, Q is output, R(.) is an RC- 
dimensional function representing additional constraints, and ϕ is a vector 
of parameters. The first-order conditions for cost minimization become

The parameters of the unobservable shadow prices then can be estimated 
using a first-order Taylor series approximation to a general shadow price 
function gi(Pi) such that gi(0) = 0 and ∂gi(Pi)

∂Pi
≥ 0. One way to approx-

imate these shadow prices (Lau and Yotopoulos 1971; Atkinson and 
Halverson 1984) is to consider:

(16)minX C = P′X s.t. f (X) ≤ Q andR(P,X;ϕ) ≤ 0

(17)
fi

fj
=

Pi +
∑RC

r=1 �r∂Rr/∂Xi

Pj +
∑RC

r=1 �r∂Rr/∂Xi

=
Pe
i

Pe
j

, i �= j = 1 . . . h

(18)Pe
i = kiPi, i = 1 . . . h
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where ki is an input-specific factor of proportionality, the value of which 
informs us about the price efficiency of inputs. The shadow cost function in 
this case is given by:

Using the logarithmic differentiation and Shephard’s lemma, one can derive 
the input demand functions from the shadow cost function and hence 
can derive the actual cost function and share equations. In particular, the 
demand for factor i is:

where MS
i  is the shadow share of factor i. Thus, the actual cost function 

(
CA

)
 

and the actual share equation for input i are derived as CA = CS
∑h

i=1
MS

i

ki
 

and MA
i =

XiPi
CA , respectively. Getachew and Sickles (2007) use this econo-

metric model to analyze the Egyptian private manufacturing sector.
The regulatory constraints are likely to have major implications for the 

productivity and resource costs of production systems. For example, regula-
tions regarding capital requirements affect resource costs in banking systems. 
Duygun et al. (2015) discuss measurement of shadow returns on equity 
associated with regulatory capital constraints on emerging economy bank-
ing systems. They model the cost function by incorporating regulatory con-
straints and measure productivity cost of changes in the regulatory capital 
requirements by measuring shadow price of the equity capital over time. In 
particular, in the presence of regulated equity-asset ratio in banking systems, 
they model the parametric frontier dual-cost function as:

where x, w, and y are vectors of variable inputs, input prices, and output, 
respectively, and z

0
 is a particular input that is either fixed in the short run, 

or required in a fixed ratio to output, but variable in the long run. Price of 
z
0
 is w

0
. The transformation function F

(
x, z

0
, y, t

)
 is the efficient boundary 

of the technology set. Assuming weak disposability and applying the envelop 
theorem showing the relationship between the long-run and short-run total 
cost, they derive the shadow price interpretation of the target equity capital 
ratio in terms of the shadow share of equity costs to total expenses as:

(19)CS = CS(kP,Q)

(20)Xi =
MS

i C
S

kiPi

, i = 1 . . . h

(21)c
(
y,w, r

0
, t
)
+ w

0
z
0
= minx

{
w′x + w

0
z
0
: F

(
x, z

0
, y, t

)
= 0, z

0
= r

0
y
}
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Applying this model, Duygun et al. (2015) confirm the importance of regu-
lated equity capital as a constraint on cost minimizing behavior of banks in 
emerging economies.

The literature in this area has expanded to incorporate dynamic produc-
tion and cost models as well. Captain et al. (2007) introduce a dynamic 
structural model to simulate the optimal levels of operational variables and 
identify sources of forgone profit. Using Euler equations derived from the 
first-order conditions of a dynamic value function maximization problem 
along with demand and cost equations, they simulate operating behavior of 
production units. They apply their model using data from the European air-
line industry to identify inefficiency in airlines by comparing the simulation 
results with the actual data and identify several sources of forgone profit like 
suboptimal network size. The methodology and modeling approach used in 
Captain et al. (2007) can be used to analyze potential impacts of economic 
policies in other setting as well.

While the shadow cost minimization based on shadow prices is widely 
used in the literature for identifying shadow values of inputs, an alterna-
tive approach is to use a shadow distance system. The shadow distance 
system can be estimated both in the static framework and in the dynamic 
framework, which accounts for adjustment costs of inputs. Atkinson and 
Cornwell (2011) discuss minimization of shadow costs of production in 
a dynamic framework using input distance function. Their formulation 
is based on the idea that shadow input quantities are likely to differ from 
actual input quantities, resulting in an inequality between the marginal 
rate of substitution and input price ratios. Divergence between the shadow 
and actual input quantities can occur due to policy regulations, contrac-
tual obligations, or shortage. Further, the production process may involve 
adjustment costs in terms of reduced output during the initial testing phase 
of a new capital good or training period of a newly hired worker. In this 
framework, they estimate the shadow costs by estimating a set of equations 
including the first-order conditions from the short-run shadow cost mini-
mization problem for the variable shadow input quantities, a set of Euler 
equations derived from subsequent shadow cost minimization with respect 
to the quasi-fixed inputs, and the input distance function expressed in terms 
of shadow quantities.
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Tsionas et al. (2015) further expand the literature by proposing estima-
tion methods for a flexible system of input distance function in the pres-
ence of endogeneity of inputs. In their study, they discuss computation of 
the cost of allocative inefficiency, which is defined as the predicted difference 
between the actual and the frontier cost and is computed as a fraction of the 
predicted frontier cost. They apply their model and method to analyze pro-
duction of Norwegian dairy firms.

Based on the standard economic model of shadow cost minimizing 
behavior of firms, it seems a natural choice to use shadow input quantities 
while analyzing cost minimizing behavior of firms. However, this approach 
involves significant challenges in terms of estimation. Coelli et al. (2008) 
propose a model based on shadow input prices in a similar framework and 
identify allocative inefficiencies in terms of shadow input prices. They also 
apply their method to a panel on US electricity generation firms.

5.2  Shadow Prices Based on the Directed Distance 
Function

Many production technologies produce undesirable or “bad” outputs along 
with desirable or “good” outputs. Some examples of undesirable outputs 
include the environmental degradation associated with use of pesticides in 
farming and greenhouse gas emission from industrial production technol-
ogies. It is logical to adjust producer performance based on shadow values 
of the undesirable outputs produced as a by-product of desired outputs. 
However, the undesirable outputs are often non-marketable, and thus, the 
valuation of such outputs is not straightforward. Often policy regulations 
are imposed to restrict the ability of producers to costlessly dispose of unde-
sirable outputs. These regulations involve abatement of pollutants. There is 
an associated opportunity cost to the abatement process, which is the for-
gone marketable output. One possible approach of measuring shadow price 
of undesirable outputs is to rely on the data on abatement cost. The problem 
with this approach is that the data on abatement cost is likely to be subject 
to a wide range of errors.

An alternative approach is to estimate an output distance function which 
is dual to the revenue function (Shephard 1970). Then, by dual Shephard’s 
lemma, the output distance function yields the revenue deflated shadow 
prices of all outputs, including undesirable outputs. In particular, the output 
distance function, as introduced by Shephard (1970), is given by:
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where x ∈ RN
+ is the input vector, u ∈ RM

+ is the output vector, and 
P(x) =

{
u ∈ RM

+ : x can produce u
}
 represents the convex output set. 

Under the assumption that the technology satisfies the standard properties 
and axioms (Shephard 1970; Färe 1988), P(x) satisfies weak disposability 
of outputs, meaning reduction of an undesirable output can be achieved by 
simultaneously reducing some desirable output(s).

Färe et al. (1993) discuss the process to retrieve output shadow prices 
from the following duality relationships between the revenue function and 
the output distance function:

where ru is the inner product of output price and quantity vectors, r  = 0.  
Assuming the revenue and output distance functions are differentiable, 
and the output distance function is linearly homogeneous in outputs, the 
first-order conditions of the Lagrange problem can easily be written as:

Further, from the second duality relationship, we have:

where r∗(x, u) is the revenue maximizing output price vector from the sec-
ond duality condition. Then, by Shephard’s dual lemma:

and therefore:

The r∗(x, u) term can be interpreted as a vector of normalized or reve-
nue deflated output shadow prices. Since R(x, r) depends on the vector of 
shadow prices r, for identification purposes one needs to assume that one 
observed output price equals its absolute shadow price. This assumption 
can easily be justified for a desired output, which is observable and market- 
determined price. This approach is straightforward to implement with a 
suitable parameterization of the output distance function. Färe et al. (1993) 

(23)D0(x, u) = inf
{
θ :

(u
θ

)
∈ P(x)

}

(24)R(x, r) = supu {ru : D0(x, u) ≤ 1}

(25)D0(x, u) = supr {ru : R(x, r) ≤ 1},

(26)r = R(x, r) · ∇uD0(x, u)

(27)D0(x, u) = r∗(x, u)u

(28)∇uD0(x, u) = r∗(x, u)

(29)r = R(x, r) · r∗(x, u).
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point out that shadow prices retrieved by this approach “reflect the trade-off 
between desirable and undesirable outputs at the actual mix of outputs which 
may or may not be consistent with the maximum allowable under regula-
tion.” They showcase their method on a sample of paper and pulp mills in 
the USA.

In a recent working paper, Färe et al. (2015) use an input distance 
 function and dual Shephard’s lemma to derive shadow prices and use them 
to construct an imputed price index. Assuming that a good is endowed with 
z = (z1, . . . , zN ) characteristics that generate a value p ≥≥ 0, they model 
the input correspondence as:

With the help of Shephard’s (1953) input distance function and some mild 
assumptions on L(p), they discuss a complete characterization of the input 
correspondence as:

Then, the cost function, which is the dual to the input distance, can be 
given as:

where w ∈ RN
+ are the unknown prices of characteristics. Using the duality 

between D(p, z) and C(p,w), the shadow price vector can be obtained as:

Färe et al. (2015) illustrate this method by constructing property price indi-
ces for houses in Netherlands. They also point out that this method avoids 
the multicollinearity problem associated with traditional hedonic regression.

Over the last two decades, the issues related to productivity growth and 
environmental quality have drawn a great deal of attention from economists. 
It is more important for production processes that experience substantial 
production of undesirable output like carbon dioxide and other green-
house gases in the course of producing desirable outputs. The traditional 
productivity indices assume that undesirable outputs, if any, are freely dis-
posable. However, that is a very strong assumption to be imposed on the 
technology and is often violated in reality. When undesirable outputs are 
produced as by-products of desirable outputs, it is reasonable to assume  

(30)L(p) =
{
z ∈ RN

+ : z generates value p
}
, p ≥ 0.

(31)Di(p, z) ≥ 1 ⇔ z ∈ L(p).

(32)C(p,w) = min{wz : z ∈ L(p)}

(33)ws =
p · ∇zDi(p, z)

Di(p, z)
.
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weak disposability of outputs. The weak disposability of output implies that 
a reduction in undesirable outputs can only be achieved by the reduction of 
desirable outputs, given fixed input levels.

Several studies (Chung et al. 1997; Boyd et al. 1999) focus on the con-
struction of productivity indices in the presence of both “good” and “bad” 
outputs. The study by Jeon and Sickles (2004) is notably relevant in this 
regard. They use the directional distance function method to construct 
the Malmquist and Malmquist-Luenberger productivity indices under the 
assumption of weak disposability of undesirable outputs. While exploring a 
sample of OECD and Asian countries in their study, they discuss compu-
tation of incremental costs of pollution abatement. More specifically, they 
choose the direction vectors for the pollutant—carbon dioxide levels that 
are not freely disposable, derive the production frontier using the specific 
restrictions on carbon dioxide emissions, and calculate incremental costs 
by dividing the change in the frontier value of GDP under the assumption 
of free disposability by the corresponding frontier level of carbon dioxide 
emissions. The incremental costs of pollution abatement can give us a fair 
idea about the shadow values of pollution control and prices of pollution 
permits.

Undesirable output may be generated in other production systems as well. 
For example, banking services produce nonperforming loans that are not 
desired. While finding shadow prices of bank equity capital using paramet-
ric forms of directional distance functions, Hasannasab et al. (2018) con-
sider deposits and borrowed funds as inputs to produce desirable outputs 
loans and leases along with undesirable output nonperforming loans. Since 
reducing undesirable output is costly, they assume undesirable and desirable 
outputs satisfy joint weak disposability while desirable inputs and outputs 
satisfy strong disposability. Accordingly, they obtain shadow prices using the 
estimated distance functions via the Lagrangian method. In the process, they 
use different pricing rules based on differently oriented distance functions 
that are associated with different economic optimization criteria like cost 
minimization, revenue maximization, and profit maximization.

6  Concluding Remarks

In this chapter, we discuss pricing methods that are adopted when the com-
petitive or socially efficient prices are not established because of either mar-
ket imperfections or externalities. We also discuss several shadow pricing 
methods and their implications when the market price is not observed or 
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when the commodity is not marketable. However, the degree of price dis-
tortion due to market imperfection is not easy to measure, and the standard 
indices like the Lerner index need adjustment for dynamic factors, capac-
ity constraints, and inefficiency of the production system that can affect the 
cost of production. Further, data for estimating market power and hence the 
degree of price distortion may not be readily available, and the researcher 
may need to modify the relevant methodology accordingly. Similarly, in the 
presence of externalities, market prices are likely to be far away from efficient 
prices, unless the external effects are accounted for in the pricing methods. 
This is more relevant when a production system produces undesirable out-
puts along with the desired ones. There are different methods for identify-
ing and internalizing such external effects. In this chapter, we discuss several 
directions based on the most recent literature for dealing with these issues.

The literature on the estimation of shadow prices and their efficiency 
implications has expanded vastly in the last three decades. We discuss sev-
eral approaches in this regard based on different objective functions and the 
nature of inputs and outputs. The pricing methods are not only important 
from microeconomic perspectives but also from macroeconomic perspec-
tives, especially for international trade, growth, and distribution. The wel-
fare implications of pricing under different circumstances are also crucial for 
policy makers. While there is an apparent conflict between the producers’ 
and consumers’ interests, factors like advertising or quality improvement for 
maintaining market power positively affect both groups. Since total welfare 
is influenced by both producer and consumer surplus, it is not straightfor-
ward to measure the welfare impacts of different pricing policies. Though 
some researchers have ventured into measuring welfare impacts in this 
regard, as is discussed in the chapter, it is still an open area of research, both 
from the microeconomic and macroeconomic perspectives.
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1  Introduction

While analyzing the efficiency or productivity of organizations (firms, banks, 
hospitals, or their departments, or industries or countries, etc.), it is usu-
ally of interest to consider not only the efficiency of each individual but 
also (and often more importantly) an aggregate measure summarizing the 
efficiency of a group. To do so, researchers often used simple averages of 
individual measures or indices. Such an approach, however, ignores the eco-
nomic weight of each organization whose efficiency or productivity scores 
are averaged, and so such simple or equally weighted averages can severely 
misrepresent the situation.

Consider, for example, a case when an industry has one or very few large 
firms and many small firms. In fact, many industries in practice display this 
scenario. Suppose that the large firm(s) happens to be very inefficient for 
various reasons: e.g., due to being almost monopolies, due to better polit-
ical or financial connections or status (‘too big to fail’ phenomenon), etc. 
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On the other hand, suppose the hundreds of small firms cannot afford to 
be inefficient and so are highly competing for ‘their place under the sun’ so 
to speak, and thus attain very high efficiency scores. If one applies the sim-
ple average to aggregate the individual efficiency scores in such an indus-
try, then this aggregate measure of efficiency will give a very high aggregate 
efficiency score—because the simple average ignores the economic weight, 
assigning equal weight to each firm. Indeed, even if the majority of the small 
firms take only say 1% of the industry share, while each being say 100% 
efficient, and the rest of the industry is dominated by the large say 50% effi-
cient firm(s), the simple average will give the aggregate score close to 100% 
efficiency, while the reality of such an industry is that it operates at a very 
inefficient (about 50%) level. Using some economic weighting of the effi-
ciency scores, entering the averaging therefore appears to be very useful, if 
not critical for analysis and policy implications.

Not surprisingly, such questions of measuring aggregate or group effi-
ciency have been explored extensively in the last few decades. It goes back 
to at least Farrell (1957), who proposed what he dubbed the ‘structural effi-
ciency of an industry’—his idea was to use the observed output shares of 
firms in a group (in a single output case) to weight the individual efficiency 
scores (input-oriented and estimated under the assumption of constant 
returns to scale) of these firms. Farrell gave intuition for such an aggregation 
scheme but did not derive it from any assumptions or reasoning and so it 
remained an ad hoc aggregate measure.

Farrell’s idea of an industry efficiency measure was then explored in 
many works. One of the earliest works on this was due to Førsund and 
Hjalmarsson (1979), who appears to be the first who introduced the con-
cept of the efficiency of the average decision-making unit. This idea was 
further elaborated by the very insightful work of Li and Ng (1995), who 
appear to be the first to derive a scheme of aggregation using shadow prices, 
where the aggregate revenue efficiency is decomposed into aggregate tech-
nical efficiency and aggregate allocative efficiency. On the purely theoretical 
level, the aggregation question was also explored by Blackorby and Russell 
(1999) who discovered several impossibility results for a general efficiency 
aggregation problem. Various ideas of aggregate efficiency were also critically 
discussed in an influential article by Ylvinger (2000), who pointed out vari-
ous problems with the existing approaches and suggested aggregation using 
weights derived from data envelopment analysis (DEA).1

1The name DEA was coined by Charnes et al. (1978), who generalized the approach of Farrell (1957) 
to the multi-output case, refined it from the mathematical programming perspective and immensely 
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More recently, Färe and Zelenyuk (2003), synthesized the existing results on 
aggregation, and in particular modified the approach of Li and Ng (1995) by 
modifying the important (yet forgotten at that time) results from Koopmans 
(1957) and proposed a new approach for aggregation of Farrell-type individual 
efficiency scores, where the aggregation function and the weights are derived 
from an economic theory perspective under certain assumptions. The weights 
that were derived turned out to be observed revenue shares (for output-ori-
ented measurement) or observed cost shares (for the input orientation). In the 
special case of single output, they become the observed output shares, i.e., the 
same weights as in Farrell’s ‘structural efficiency of an industry’ (although note 
that his ad hoc measure was aggregated input-oriented efficiency scores).

The strategy of Färe and Zelenyuk (2003) for solving the aggregation prob-
lem was then used to derive similar aggregation results in other related contexts. 
For example, Färe et al. (2004) applied it for the input (cost) orientation context 
and Färe and Zelenyuk (2005) used it further to suggest the aggregation weights 
for cases when one wants to use the geometric aggregating function, which they 
derived using an alternative approach, based on solving functional equations. 
Furthermore, Zelenyuk (2006) used a similar strategy, extended to the inter-
temporal context, to derive aggregation results for the Malmquist productivity 
index (MPI, see Caves et al. (1982)) and its decompositions. A similar solution 
strategy was also applied by Zelenyuk (2011) to resolve the problem of aggregat-
ing individual growth rates and its sources in the Solow-type growth accounting 
framework. Meanwhile, the problem of aggregating individual scale elasticities 
was considered and solved by Färe and Zelenyuk (2012), while Zelenyuk (2015) 
resolved the problem of aggregating individual scale efficiencies.

It is important to note that the aggregation approach from Färe and 
Zelenyuk (2003) and all those mentioned in the paragraph above required a 
key assumption that the input endowment across firms in the group is fixed 
and cannot be reallocated between the individual organizations in the group. 
This assumption was later relaxed by Nesterenko and Zelenyuk (2007) who 
proposed a more general approach, embracing that of Färe and Zelenyuk 
(2003) as a special case.2 Specifically, they proposed new output-oriented 
group efficiency measures that allow for inputs to be reallocated between 
decision-making units within the group. This relaxation is particularly 
important for contexts where reallocation of inputs is possible, e.g., when 

2Also see Färe et al. (2008) for aggregation of efficiencies based on directional distance functions.

popularized it in the business and management science research. While this is perhaps the most popular 
approach to estimate the Farrell efficiency, other methods can be used as well, and most of the discus-
sion here is general, for any suitable estimators, unless specified otherwise.
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the analyzed organizations are branches within a larger unity (e.g., depart-
ments as part of a firm), when two or more organizations are merging, or 
when countries are uniting into an economic union. For instance, consider 
an organization (bank, hospital, etc.) with multiple sub-units, which can 
move its staff and other resources (capital, materials, energy, etc.) between 
these sub-units. In this case, treating the inputs as fixed when measuring 
aggregate efficiency of this organization without accounting for the possibil-
ity or reallocation of inputs seems inadequate. More recently, ten Raa (2011) 
arrived at a similar result, deriving it from a different angle and showing a 
new relationship to concepts from the field of industrial organization.

The ideas from Nesterenko and Zelenyuk (2007) were then elaborated by 
Mayer and Zelenyuk (2014a) to generalize the aggregation approach developed 
by Zelenyuk (2006) for the Malmquist productivity index of Caves et al. (1982).3

While MPI remains the most popular approach for measuring produc-
tivity changes, more attention has been given recently to an alternative 
approach—the Hicks-Moorsteen Productivity Index (HMPI), introduced  
by Diewert (1992) and Bjurek (1996). The HMPI has some appealing the-
oretical and practical properties; e.g., it always has a total factor productivity 
(TFP) interpretation. That is, it has the interpretation of measuring a change 
in aggregate output relative to the change in aggregate input, an intuitive 
notion of productivity for a multi-output economic unit (see Epure et al. 
2011). Like the MPI, the HMPI uses the Shephard (1953, 1970) distance 
functions to calculate the resulting productivity change for an individual 
organization, without including price information. Aggregation for HMPI 
was outlined in the working paper of Mayer and Zelenyuk (2014b), and 
here, we present a brief and refined version of it.

In a nutshell, the rest of the paper aims to fulfill three goals: The first 
goal is to summarize some of the key existing results on aggregate efficiency 
measures and aggregate productivity indices. Reaching this goal will outline 
the foundation and the building blocks for the second, and as important, 
goal—to outline the results for aggregation of HMPI. The third goal is more 
modest, yet still important—it is to outline some insights on ongoing and 
future directions of research in this area.

In the next section, we present the individual efficiency and productivity 
measures. Section 3 presents the key aggregation results for the group effi-
ciency measures. Section 4 presents the main results, while Sect. 5 considers 

3Also note that this is an alternative approach in the theory of index number aggregation (e.g., see Diewert 
(1983, 1985) and references therein). For applications of these type of indexes, see a review by Badunenko 
et al. (2017).
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practical issues about estimation and deriving price-independent weights. 
Section 6 concludes. For a related (shorter and simplified) discussion, also 
see Chapter 5 of Sickles and Zelenyuk (2019).

2  Individual Efficiency and Productivity 
Measures

Let us start by considering individual efficiency measures for a group of K 
organizations. In different contexts, this group could be a country consist-
ing of regions, or an industry consisting of firms, banks, hospitals, or a firm 
consisting of departments, etc. Suppose an organization k(k = 1, . . . , K) 
uses vector xk =

(
xk1, . . . , x

k
N

)′
∈ R

N
+ of N inputs to produce a vector 

yk =
(
yk1, . . . , y

k
M

)′
∈ R

M
+ of M outputs. For a given organization k and 

time period τ, we assume the organization’s technology can be expressed as 
the technology set Tk

τ :

We will also use two alternative and equivalent characterizations via the 
input requirement correspondence, Lkτ : RM

+ → 2R
N
+:

and the output correspondence, Pk
τ : RN

+ → 2R
M
+:

We accept the standard regularity axioms of production theory (see Färe and 
Primont (1995) and Sickles and Zelenyuk (2019)) for more detailed discus-
sions. Specifically (for all k = 1, . . . , K and for all τ), we assume:

Axiom 1 The technology set Tk
τ  is closed.

Axiom 2 The output correspondence Pk
τ

(
xk
)
 is bounded for all xk ∈ R

N
+.

Axiom 3 There is no ‘free lunch,’ i.e., nothing cannot produce  something, i.e., (
0N , y

k
)
/∈ Tk

τ , for all yk ≥ 0M (i.e., ykm ≥ 0 for m = 1, . . . , M, yk �= 0M).

(1)Tk
τ =

{
(x, y) ∈ R

N
+ × R

M
+ : organization k can produce y from x in periodτ

}
.

(2)Lkτ

(
yk
)
=

{
xk ∈ R

N
+ : (xk , yk) ∈ Tk

τ

}
, yk ∈ R

M
+ .

(3)Pk
τ

(
xk
)
=

{
yk ∈ R

M
+ : (xk , yk) ∈ Tk

τ

}
, xk ∈ R

N
+.
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Axiom 4 It is possible to produce nothing, i.e., 0M ∈ P
k
τ

(
x
k
)
, for all 

x
k ∈ R

N
+.4

Axiom 5 Outputs and inputs are freely (strongly) disposable, i.e., (
x0, y0

)
∈ Tk

τ ⇒ (x, y) ∈ Tk
τ , for all y≦ y

0, for all x≧ x
0, y ≥ 0.

Axiom 6 Output correspondences Pk
τ

(
xk
)
 are convex, for all xk ∈ R

N
+.

Axiom 75 Input requirement correspondences Lkτ
(
yk
)
 are convex, for all 

yk ∈ R
M
+.

2.1  Individual Efficiency Measures

Following the literature (e.g. see Sickles and Zelenyuk (2019) and detailed 
references there), the input- and output-oriented Farrell-type technical effi-
ciency measures for an individual organization k in period τ are defined, 
respectively, as:

and

This allows us to measure the efficiency of a organization k without needing 
to take prices into account.6 Likewise the dual characterization of technol-
ogy, the cost and revenue functions are defined, respectively, as:

(4)
ITE

k
τ = ITE

k
τ

(
yk , xk

)
= inf

{
� ∈ R++ : �xk ∈ Lkτ

(
yk
)}

,

(
xk , yk

)
∈ R

N
+ × R

M
+ .

(5)
OTEk

τ = OTEk
τ (x

k , yk) = sup

{
θ ∈ R++ : θyk ∈ Pk

τ

(
xk
)}

,
(
xk , yk

)
∈ R

N
+ × R

M
+ .

6Note that some authors define the output oriented Farrell-type technical efficiency measures as the 
reciprocal of (5), which range in value between 0 and 1. The derivations following could be rewritten 
with this definition, but the definition we have given appears to be the more common definitions in the 
literature, particularly in previous works on aggregation of efficiency, so we continue with it.

4Note that Axioms 3 and 4 together imply that (0, 0) ∈ Tk for all k.
5We require Axioms 6 and 7 for duality results to hold. For our theoretical results, we do not require 
convexity of Tk, but when discussing practical methods of estimation we then introduce this stronger 
assumption.
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and

given an input price row-vector w = (w1, . . . , wN) ∈ R
N
++ corresponding 

to the N inputs and output price row-vector p = (p1, . . . , pM) ∈ R
M
++ cor-

responding to the M outputs. Throughout, we make the assumption that  
w and p are identical across every organization, which is necessary to derive 
the aggregation results discussed in Sect. 3. The cost and revenue efficiencies of 
organization k at period τ are, respectively:

and

Note that in all cases, for 
(
xk , yk

)
∈ Tk

τ , we have 
CEk

(
yk , xk ,w

)
≤ ITEk

(
yk , xk

)
 and REk

(
xk , yk , p

)
≥ OTEk

(
xk , yk

)
, and 

these inequalities can be closed by introducing the multiplicative residu-
als referred to as input- and output-oriented allocative efficiency, respectively, 
defined as:

and

(6)Ck
τ

(
yk ,w

)
= inf

x

{
wx : x ∈ Lkτ

(
yk
)}

, yk ∈ R
M
+ , w ∈ R

N
++,

(7)Rk
τ

(
xk , p

)
= sup

y

{
py : y ∈ Pk

τ

(
xk
)}

, xk ∈ R
N
+, p ∈ R

M
++,

(8)CEk
τ = CEk

τ

(
yk , xk ,w

)
=

Ck
τ

(
yk ,w

)

wxk
, forwxk �= 0,

(
xk , yk

)
∈ R

N
+ × R

M
+ ,

(9)REk
τ = REk

τ

(
xk , yk , p

)
=

Rk
τ

(
xk , p

)

pyk
, for pyk �= 0,

(
xk , yk

)
∈ R

N
+ × R

M
+ .

(10)IAE
k
τ = IAE

k
τ

(
yk , xk ,w

)
=

CEk
τ

(
yk , xk ,w

)

ITEk
τ

(
yk , xk

) ,

(
xk , yk

)
∈ R

N
+ × R

M
+ ,

(11)OAE
k
τ = OAE

k
τ

(
xk , yk , p

)
=

REk
τ

(
xk , yk , p

)

OTEk
τ

(
xk , yk

) ,
(
xk , yk

)
∈ R

N
+ × R

M
+ .
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So, one gets the following decompositions for any period τ and any organi-
zation k,

and

Later on, we will want aggregate analogues of such decompositions to hold as 
well. It is also worth noting that all these efficiency measures can be deduced 
as special cases or components of the general profit efficiency measure in Färe 
et al. (2019) and, in particular, related to the profit-optimization paradigm.

It is also worth noting that there are extreme cases when the functions 
discussed in these sections attain zero or ∞, which is problematic when 
using these functions as building blocks of productivity indices. For this 
reason, from now on we explicitly assume and limit our discussion to only 
cases when these functions attain finite and strictly positive values. Also, see 
related discussion on regularizations in Färe et al. (2019).

2.2  Individual Productivity Indices

Following Diewert (1992) and Bjurek (1996), the Hicks-Moorsteen productiv-
ity index (HMPI) for measuring the productivity change from period s to t 
(for organization k) can be defined as:

Note that there is now a time subscript for inputs and outputs in the compo-
nents representing input- and output-oriented efficiency, unlike in the previ-
ous section. In particular, note that for the output-oriented measures, inputs 

(12)
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are held constant at the same period as the technology (while outputs are 
varied), and for the input-oriented measures, outputs are held constant at 
the same period as the technology (while inputs are varied). Also note that, 
of course, one can get rid of the reciprocal by flipping all the ratios, yet here 
and everywhere below we decided not to do so to remind and emphasize that 
we are using Farrell-type technical measures rather than their reciprocals (or 
Shephard’s distance functions), as is typically done in the literature.

In light of the duality between the revenue or cost efficiency meas-
ures with the technical efficiency measures, one can define a dual Hicks-
Moorsteen productivity index, analogous to the original HMPI but with 
price information, i.e.,

and we will refer to this measure as the profitability Hicks-Moorsteen productivity 
index from periods s to t for organization k. This name seems justified because 
for any τ , j ∈ {s, t} the measure can alternatively be represented in terms of 
profitability components (optimal and observed) of the following form:

As before, outputs (inputs) and technology are kept in the same periods 
for input- (output-) oriented measures, while the input (output) prices are 
permitted to vary with the inputs (outputs) for the input- (output-) oriented 
measures. In other words, by measuring cost/revenue w.r.t. a given orien-
tation, the organization is treated as making choices regarding that factor 
(inputs or outputs), taking as given the amount of the other factor and the 
prices of the first factor in that period.

Before going further, let us pause here and consider the meaning of (15). 
Although rarely used in the literature, (15) may actually be seen as supe-
rior to the more frequently used primal HMPI (14), because it also takes 
into account such important economic information as prices (and potential 
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inefficiency with respect to them). Meanwhile, the productivity change 
between periods s and t measured by the primal HMPI ignores the price 
information completely (both w.r.t. period s technology (the initial fraction) 
and w.r.t. period t technology).

In light of the duality results we mentioned in the previous section, sub-
stituting (12) and (13) into (15) and arranging terms to isolate (14), we 
immediately get the following useful decomposition

where the last term is a remainder, defined as

which can be called the allocative Hicks-Moorsteen productivity index from 
periods s to t for organization k. This decomposition holds for any input–
output prices combination, in any periods s and t, and for all k.

In words, (17) suggests that our profitability index can be decomposed 
into a measure of productivity change with and without accounting for 
prices: The primal HMPI considers productivity changes using inputs and 
outputs but not prices, whereas the allocative HMPI considers productiv-
ity changes both due to changes in the allocation of inputs/outputs and in 
addition to changes between periods for each price. Given the value of this 
decomposition, an analogous decomposition at the aggregate level is desira-
ble, which is the topic we discuss next. For more of theoretical and practical 
details of these and other indexes, see Chapter 4 and Chapter 7 of Sickles 
and Zelenyuk (2019).7
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7It is worth noting that there is also an additive form of the Hicks-Moorsteen productivity index, often 
referred to as the Luenberger–Hicks-Moorsteen productivity indicator (e.g., see Briec and Kerstens 
2004). The aggregation theory for such an index can also be developed in a similar fashion based on 
aggregation results for directional distance functions from Färe et al. (2008).
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3  Aggregate Efficiency Measures

We now consider aggregate efficiency measures which measure the efficiency 
of a group of organizations, which will be useful in constructing our aggre-
gate HMPI measures in Sect. 4. For ease of notation, we present results for 
aggregating all organizations in a group. (One can extend it to aggregation 
into subgroups of organizations, which can then be consistently aggregated 
into larger groups, similarly to Simar and Zelenyuk (2007), at a cost of more 
complex notation and some additional derivations.) In the interests of space, 
we also only present results for input orientation for this section; the formu-
lae and derivations for output orientation are analogous and readers inter-
ested in more details can find them in Färe and Zelenyuk (2003), Zelenyuk 
(2006), Nesterenko and Zelenyuk (2007), Mayer and Zelenyuk (2014a). 
Also see ten Raa (2011) for related derivations and interesting discussions 
in the context of industrial organization. While we focus on input and out-
put orientations, readers interested in applying aggregation to directional 
distance functions are referred to Briec et al. (2003) and Färe et al. (2008) 
and the references cited therein. Also, for a related (and more introductory) 
discussion, also see Chapter 5 of Sickles and Zelenyuk (2019).

3.1  Aggregate Efficiency Measures with Restrictions 
on Reallocation

We denote the input and output allocations among organizations within the 
group at a given period τ as Xτ =

(
x1τ , . . . , x

K
τ

)
 and Yτ =

(
y1τ , . . . , y

K
τ

)
, 

and the sum of these over all organizations in the group as Xτ =
∑K

k=1 x
k
τ 

and Y τ =
∑K

k=1 y
k
τ, respectively.

Now, building on the seminal work on aggregation with optimization 
by Koopmans (1957), consider a group input requirement correspondence for 
period τ defined as the Minkowski sum8 of the individual input requirement 
correspondences for a given period τ9:

(19)Lτ (Y) ≡

K∑

⊕k=1

Lkτ

(
yk
)
, yk ∈ R

M
+ , k = 1, . . . , K .

8The symbol ⊕ is used following a common notation in mathematics to distinguish the summation of 
sets (or Minkowski summation) from the standard summation. See Oks and Sharir (2006) for more 
details on Minkowski summation.
9This follows Färe et al. (2004), which in turn has built upon the work of Koopmans (1957) and Färe 
and Zelenyuk (2003), with extensions here to the intertemporal context.
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This shows the possible overall group input requirement sets that would 
allow a given output level Y  by the organizations (i.e., output production 
cannot be reallocated among organizations, a restriction we will relax later). 
Based on this definition, the group cost function can be defined analogously 
to the individual cost function, as:

with the group cost efficiency measure defined as

Note the assumption here that the input information on organization is 
aggregated using the same input prices. We can think of this common price 
as a theoretical benchmark (e.g., equilibrium) price against which group 
cost efficiency is derived. Conceptually, this is similar to the assumption that 
the group technical efficiency is benchmarked against common technology 
although in practice organizations can use different technologies. For prac-
tical applications, cost/revenue and quantity data is commonly used to con-
struct average prices which can be treated as the common price (see, e.g., 
Fukuyama and Weber 2008). Another option is to derive shadow prices after 
requiring the ‘Law of One Price’ (see, e.g., Kuosmanen et al. 2006, 2010). 
The limitations of different methods of estimating the prices are something 
researchers need to consider for their own applications, as they already do 
for alternative estimators of the technology.

In order to determine the aggregation functions, below we summarize a 
number of key aggregation results.

Lemma 1 We have

and so, the group cost efficiency is:

(20)
Cτ (Y ,w) ≡ inf

x

{
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}
,
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M
+ , k = 1, . . . ,K , w ∈ R

N
++,
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wX
, forwX �= 0.
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)
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τ

(
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)
, ykτ ∈ R

M
+ , wj ∈ R

N
++,

(23)CEτ ≡ CEτ

(
Yτ ,Xj,wj

)
=

K∑

k=1

CEτ

(
ykτ , x

k
j ,wj

)
·Wk

j ,
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with weights

so that CEτ can be further decomposed as

where

represents input-oriented group technical efficiency, while

represents input-oriented group allocative efficiency, with the weights given 
by10

In words, this lemma shows that the minimum overall cost of the organ-
izations considered as a group equals the sum of their individual minimum 
costs, given their individual output production and facing the common input 
prices. We can then use a weighted sum of individual efficiencies to express 
group efficiencies, while also preserving the decomposition into technical and 
allocative efficiency on the aggregate level (25), analogous to the one observed 

(24)Wk
j =

wjx
k
j

wjXj

, k = 1, . . . , K ,

(25)CEτ

(
Yτ ,Xj,wj

)
= ITEτ
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Yτ ,Xj

)
× IAEτ

(
Yτ ,Xj,wj

)
, for all τ, j,

(26)ITEτ ≡ ITEτ
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)
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ITEk
τ
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k
j

)
·Wk
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j ITE

k
τ

(
ykτ , x

k
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)
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wjx
k
j ITE

k
τ

(
ykτ , x

k
j

) , k = 1, . . . , K .

10Note that the weights here involve the technical efficiency scores. This is intuitive because while tech-
nical efficiency is measured from some base point x, allocative efficiency is not measured from this 
point x but from its radial projection on to the frontier, defined by adjusting (multiplying) x by the 
relevant technical efficiency score to bring it to the frontier. Thus, it is intuitive that this projection (i.e., 
x̂ = xITE (y, x) rather than x) must be involved in the aggregation of the allocative efficiency (evaluated 
at some relevant price level w). This explains why technical efficiency appears in the weights of aggrega-
tion of allocative efficiency.
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on the individual level. Note that these weights are not ad hoc but are derived 
from cost-minimizing behavior w.r.t. the aggregation structure (19) and rela-
tive to common input prices. Also note that throughout, τ and j are two time 
periods (which can be the same). The proof of Lemma 1 is similar to that of 
the output-oriented case in Färe and Zelenyuk (2003) and is therefore omit-
ted (see Färe et al. (2004) for some details).11

This lemma takes the allocation among organizations of required outputs 
as given and considers the overall group level of inputs; but where technol-
ogy does not exhibit constant returns to scale (or some organizations have 
inferior technologies), further output may be possible through reallocating 
output production between organizations. These gains would be additional 
to those from all organizations operating efficiently with respect to their cur-
rent production requirements.

3.2  Aggregate Efficiency Measures Allowing 
Reallocation

In order to measure the gains from relaxing the restriction on reallocation of 
resources between organizations in a group, consider a group potential technol-
ogy, as a Minkowski sum of individual technologies for a given period τ12:

By aggregating technology sets instead of output and input requirement 
correspondences, this group potential technology allows full reallocation of 
inputs and outputs among organizations in the group. An equivalent char-
acterization is the group potential input requirement correspondence, defined as

Now, using this group technology, let the group potential input-oriented 
technical efficiency be defined as

(29)T∗
τ ≡

K∑

⊕k=1

Tk
τ .

(30)L∗τ
(
Y
)
=

{
x : (x,Y) ∈ T∗

τ

}
.

11This result can also be viewed as a cost-analogue of Koopmans’ theorem of aggregation of profit func-
tions (Koopmans 1957). For a related result in the context of the consumer analysis area of economic 
theory, see Luenberger (1996).
12This technology aggregation structure was earlier used in Li and Ng (1995), Blackorby and Russell 
(1999), and Nesterenko and Zelenyuk (2007).
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while the dual characterization of L∗τ (Y), the group potential cost function can 
be defined as

and the related group potential cost efficiency is then defined as

Note that CE∗
τ ≤ ITE∗

τ, and so analogous to the individual level, we define 
the group potential input-oriented allocative efficiency, which closes the above 
inequality:

In words, (31) and (33) measure group efficiency relative to the group 
potential input requirement correspondence (30), in a manner analogous to 
measurements on the individual level.

In comparing the group input requirement correspondence when full 
reallocation is permitted to that when it is not, the following important 
lemma emerges:

Lemma 2 We have

A proof of (35) is analogous to that for the output-oriented case found in 
Nesterenko and Zelenyuk (2007) and so we omit it. Intuitively, the group 
potential input requirement correspondence (where full reallocation is per-
mitted) will always encompass a linear aggregation of the input requirement 
correspondences (where full reallocation is not permitted). By implication, 
for any 
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)
 we have C∗

τ

(
Y τ ,wj

)
≤ Cτ

(
Yτ ,wj

)
 from which it fol-

lows that CE∗
τ ≤ CEτ. Analogous to the terminology of Nesterenko and 

Zelenyuk (2007), we can define the group cost reallocative efficiency, as the 
multiplicative residual which closes the latter inequality, i.e.,
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(35)Lτ (Yτ ) ⊆ L∗τ
(
Y τ

)
.
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and so we get the following decomposition of the group cost efficiency:

Moreover, CRE∗
τ can be further decomposed, as summarized in the next 

lemma.

Lemma 3 We have

where group input-oriented technical reallocative efficiency is:

and group input-oriented allocative reallocative efficiency is:

In words, this lemma says that each reallocative efficiency measure reveals 
the difference for the group between individual efficiency in each organ-
ization in input orientation (w.r.t. their individual output plans), and the 
collective efficiency in input orientation, where outputs are permitted to be 
reallocated among organizations.

With the same logic as Nesterenko and Zelenyuk (2007), we can define 
reallocative measures for individual input-oriented organizations as:

Next, in Lemma 4, we summarize the relationship between individual and 
group reallocative measures.
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τ
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Yτ ,Y τ ,wj

)
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τ
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)
/Cτ

(
Yτ ,wj

)
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(37)CE∗
τ = CEτ × CRE∗

τ , for all τ .

(38)CRE∗
τ = ITRE∗

τ × IARE∗
τ , for all τ,

(39)ITRE
∗
τ = ITE

∗
τ /ITEτ,

(40)IARE
∗
τ = IAE
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τ /IAEτ.

(41)CREk
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τ /CE
k
τ ,

(42)ITREk
τ = ITE∗

τ /ITE
k
τ ,

(43)IAREk
τ = IAE∗

τ /IAE
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τ .
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Lemma 4 We have

where (24) and (28) define the weights.

In turn, note that decompositions (25), (37), and (38) imply the follow-
ing decomposition of group potential cost efficiency:

Similar results hold for output orientation, with group efficiency measures  (
REτ , OTEτ , OAEτ

)
, group potential efficiency measures 

(
RE∗

τ , OTE
∗
τ , OAE

∗
τ

)
,  

and group reallocative efficiency measures 
(
RRE∗

τ , OTRE
∗
τ , OARE

∗
τ

)
 for 

 revenue, output-oriented technical and output-oriented allocative efficien-
cies, respectively, defined analogously to the input-oriented results stated 
above (see Mayer and Zelenyuk 2014a). Having restated the key results for 
aggregate efficiency measures, with and without reallocation, we can now 
construct our aggregate HMPIs, as we do in the following section. We aim 
to do so in a manner which permits decompositions similar to (47).

4  Aggregate Hicks-Moorsteen Productivity 
Indices

Here, we start by constructing a group potential profitability HMPI in 
terms of the group potential revenue and cost efficiencies (i.e., an aggregate 
profitability HMPI allowing full reallocation), defined similarly to the indi-
vidual profitability HMPI, and then decompose it into technical and alloca-
tive components.
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τ , for all τ .
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Proposition 1 Let the group potential profitability Hicks-Moorsteen productiv-
ity index from period s to t be given by

then it can be decomposed to technical and allocative components for any s, t as

where

is the group potential Hicks-Moorsteen productivity index from s to t, and

is the group potential allocative Hicks-Moorsteen productivity index from s to t.

To demonstrate this proposition, substitute decompositions of the group 
potential revenue and cost efficiency measures, (34) and its output-oriented 
analogue into the group potential profitability HMPI (for each period), 
and afterward separate out the group potential primal and allocative HMPI 
measures. Note that these measures are in the same form as the individual 
HMPIs.

Intuitively, these group potential HMPIs capture the productivity change 
for the group between the two periods, allowing full reallocation of outputs 
and inputs among the organizations. Improvements in these measures indicate 
that the group potential productivity (i.e., productivity when full reallocation 
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is possible) has improved. This measure is particularly relevant in those cases 
where such reallocation is possible—for studying a firm with many branches, 
countries forming an economic union where such reallocation is relevant, etc.

Our goal now is to relate aggregate HMPI measures to the individual 
HMPIs. To achieve this, we decompose these group potential HMPIs into 
the productivity change with and without allowing full reallocation, the 
latter of which can be related to the individual measures. We present these 
in the next two propositions and then show their relationship to the group 
potential HMPIs as corollaries.

Proposition 2 Let the group profitability Hicks-Moorsteen productivity index 
from s to t be given by

then it can be decomposed into technical and allocative components (for any 
s, t) as

where

is the group Hicks-Moorsteen productivity index from s to t, and
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is the group allocative Hicks-Moorsteen productivity index from s to t, where 
the weights for the output orientation part are the revenue analogues of the 
cost-shares derived in the previous section (see Mayer and Zelenyuk (2014a, 
b) for the details).

Again, the proof of this proposition follows from taking the group prof-
itability HMPI, substituting in the decompositions of the group revenue 
and cost efficiency measures, (25) and its output-oriented analogue, for 
each period, and rearranging so as to isolate the group primal and allocative 
HMPI measures. Note that for the group profitability and primal HMPIs, 
the weights for the measure of each orientation (input or output) are cal-
culated using that factor-price combination for that period (e.g., input-ori-
ented measures use the weights for the same period as the inputs and prices). 
For the group allocative HMPI, the weights depend both on the period of 
the technology and the period of the variable factors (cost shares for input 
orientation, revenue shares for output orientation).

Intuitively, each of the group HMPIs measures the productivity change 
of the overall group taking current input endowments (for output-oriented 
measures) and output production (for input-oriented measures) as given, 
that is, without allowing full reallocation. Increases in these measures indi-
cate that the group productivity (taking the input or output allocation 
among organizations as given) has improved. They have each been con-
structed in terms of the group efficiency measures, which in turn are con-
structed from the individual efficiency measures (with appropriate weights). 
It is the latter that are usually estimated in practice, and this result shows 
how these individual measures can be consistently aggregated into a group 
productivity index. Moreover, the aggregation results of Färe and Zelenyuk 
(2003) for the group efficiency measures decompose analogously to the indi-
vidual measures (following (25)), and so our group productivity indices also 
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decompose analogously to the individual productivity indices, (17). Thus, 
the group profitability HMPI can be decomposed following (53), i.e., into 
the group productivity change due to changes in group efficiency or tech-
nology (the group primal HMPI) and group productivity change due to 
changes in the allocation of factors within each organization in the group or 
changes in the prices faced by the group (the group allocative HMPI). One 
can also obtain similar results for the group reallocative HMPIs, as summa-
rized next.

Proposition 3 Let the group profitability reallocative Hicks-Moorsteen produc-
tivity index from s to t be given by

then for any s and t, it can be decomposed as

(56)
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(57)PRHM∗
st = RHM∗

st × ARHM∗
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where

is the group reallocative Hicks-Moorsteen productivity index from s to t, and
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is the group allocative reallocative Hicks-Moorsteen productivity index from  
s to t.

Intuitively, this proposition says that the change in productivity from per-
mitting full reallocation of inputs and outputs within the group of organiza-
tions is measured by the group reallocative HMPIs, a change in addition to 
that of every organization operating efficiently. Similarly to as we did before, 
this proposition can be proved by starting with the group profitability real-
locative HMPI, substituting in the decompositions of the group revenue and 
cost reallocative efficiency measures, (38) and its output-oriented analogue, 
for each period, and then rearranging to get the desired components. For 
each measure, the last equality (expressing it in terms of individual realloca-
tive efficiency measures) follows from Lemma 4.

Furthermore, the group potential profitability HMPI can decompose into 
the group profitability HMPI and the group profitability reallocative HMPI, 
as done in the next corollary.

Corollary 1 We have

for any two periods s and t.

This proposition is derived by starting with the group potential profit-
ability HMPI (48), substituting in the decompositions of group potential 
revenue and cost efficiency, (37) and its output-oriented analogue, and rear-
ranging using Propositions (2) and (3).

This decomposition (60) is important because it shows the source of changes 
in group potential productivity changes. Consider an improvement in group 
potential productivity—group productivity could improve proportionally, in 
the case of technological improvement (here, group reallocative productivity 
would be close to unity); or group productivity may be unchanged, if the new 
allocation merely shifts along the frontier (here, group reallocative productiv-
ity would proportionally increase); or group productivity could end up lower, 
where individual efficiency is sacrificed to move toward an optimal group allo-
cation (here, group potential productivity would not increase as much as group 
reallocative productivity); or it could be the case that both group productivity 
and group reallocative productivity improve together.

(60)PHM∗
st = PHMst × PRHM∗

st ,
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Similar decompositions hold for the group potential primal and allocative 
HMPIs, as we summarise in the next corollary.

Corollary 2 We have

and

both for any periods s and t.

To prove this result, given the group potential [allocative] HMPI from 
(50), substitute in the decompositions of group potential technical [alloca-
tive] efficiency, (39) [(40)] and their output-oriented analogues, before rear-
ranging using Propositions (2) and (3).

The decomposition of the primal group potential HMPI, (61), is of particu-
lar value to researchers because it does not require the price information that 
is necessary to calculate its dual, the group potential profitability HMPI. As 
input and output prices are not always available to researchers, this motivates 
the need for a decomposition that does not require such information, i.e., this 
primal decomposition (see below for how price independent weights can be 
calculated for the group HMPI). Again, this decomposition reveals the source 
of changes in group potential productivity—from changes in group productiv-
ity without allowing full reallocation (54), or from changes due to allowing full 
reallocation (58), similarly to the group potential profitability HMPI.

Finally, we can determine a full decomposition of the group potential 
profitability HMPI, analogous to the efficiency decomposition (47), which 
we summarize next.

Corollary 3 We have

for any periods s and t.

The proof of this corollary is via substituting the decompositions of the 
group and group reallocative profitability HMPIs, (53) and (57) obtained 
in Propositions (2) and (3), into the decomposition of the group potential 
profitability HMPI, (60), obtained due to Corollary (2).

(61)HM∗
st = HMst × RHM∗

st ,

(62)AHM∗
st = AHMst × ARHM∗

st ,

(63)PHM∗
st = HMst × AHMst × RHM∗

st × ARHM∗
st ,
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A value of (63) is in providing a more complete decomposition of the 
group potential profitability HMPI, identifying the change due to the group 
technical HMPI 

(
HMst

)
, the group allocative HMPI 

(
AHMst

)
, the group 

technical reallocative HMPI 
(
RHM∗

st

)
, and the group allocative reallocative 

HMPI 
(
ARHM∗

st

)
. This gives researchers a clearer indication of the sources 

of productivity change in the group.13

Note again that all the group HMPI measures can be calculated from the 
individual efficiency scores, after appropriate aggregation. It should be stressed 
that the aggregation weights used here for aggregating individual efficiency 
scores are not ad hoc but are derived from economic theory arguments and con-
sistent with other aggregation results in the literature. Incidentally, note that the 
weights derived are also intuitive measures of the ‘economic importance’ of each 
firm in each orientation—observed revenue shares in output orientation and 
observed cost shares in input orientation. We certainly do not claim that these 
are the best possible weights, but the value in using them here is that we know 
how they are derived and from what assumptions. Moreover, they maintain 
group decompositions analogous to the individual level, and in this productivity 
context, the derivation scheme reveals which weights to use for each period.

In general, these group HMPI measures may yield different results from the 
case when the simple (equally weighted) sample mean is used. For example, 
consider an industry that is dominated by a few large firms and also contains 
a number of much smaller firms. If the large firms decline in productiv-
ity by 10% each (over a given period) and the small firms improve, also by 
10% each, a simple mean may suggest that overall industry productivity has 
improved, but weighting by the economic importance of the firms will reveal 
that overall industry productivity has actually declined. This is just one exam-
ple where the two measures (the [weighted] group HMPI measures derived 
above and the [equally weighted] simple mean) will yield quite different 
results. This is not to say that the simple arithmetic mean is useless—rather, 

13Note that the functional forms of the aggregation results discussed here are either arithmetic or har-
monic but never geometric. Färe and Zelenyuk (2005) used an alternative approach (based on solving 
functional equations) to justify a geometric aggregation, which can be advocated for due to the effi-
ciency or productivity indices being multiplicative in their nature. However, their approach did not 
provide the weights of aggregation (which are typically a much more important part of an aggrega-
tion)—they were endogenously selected to be the weights derived from the Koopman-type reasoning 
we used here. Zelenyuk (2006) pointed out that the first-order approximation relationship of geomet-
ric, arithmetic, and harmonic aggregations of productivity indices (with the same weights) and inves-
tigated their difference via Monte Carlo experiments. He concluded that for moderate variations of 
growth in a sample, the difference is very small. One shall remember, however, that the arithmetic and 
harmonic aggregations are usually more robust to outliers, while the geometric aggregation can be very 
sensitive to very small values and, will in fact, fail when at least one score is zero (unless its weight is set 
to zero, with a convention that 00 = 1).
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it should be used as a complementary statistic to estimate the first moment of 
the distribution of HMPI. We would argue, however, that it is important to 
also compare it to an average that accounts for the economic weight of each 
observation, e.g., the group measures we have derived here.

5  Practical Matters

Here, we discuss two matters related to the practical estimation of aggregate 
efficiencies and HMPIs in particular, and especially the most challenging 
part—estimating the group potential measures and calculating price inde-
pendent weights.

5.1  Estimation of Group Potential Measures

Note that the group potential HMPI measures are not calculated from the indi-
vidual efficiency scores, but require calculation directly from the group potential 
technology. However, with the imposition of two additional assumptions we can 
recover these measures from the individual scores. These two assumptions are 
in fact very common for many methods in productivity and efficiency analysis, 
especially in DEA, which appears to be the most popular in practice for comput-
ing productivity indices like HMPIs. Another (and similarly popular) approach 
of estimation is usually referred to as Stochastic Frontier Analysis (SFA), largely 
due to Aigner et al. (1977) and many developments since then (e.g., for a recent 
review, see Kumbhakar et al. (2019) and Parmeter and Zelenyuk (2019)). 
Specifically, we assume the technology set Tk

τ  is the same for all organizations for 
each period (i.e., Tk

τ = T , for all k = 1, . . . , K) and is convex, and then fol-
lowing Li and Ng (1995) and Nesterenko and Zelenyuk (2007), we get:

and in turn, for any period τ, we also get:

where ỹτ ≡ K−1
∑K

k=1 y
k
τ, so Lτ

(
ỹτ
)
 is the input requirement corre-

spondence of the average organization in the group in period τ. Following 
this, the input-oriented group potential efficiencies are the same as the 

(64)T∗
τ ≡

K∑

k=1

Tk
τ = KTτ for all k = 1, . . . , K , for all τ ,

(65)L∗τ
(
Y τ

)
= KLτ

(
ỹτ
)
,



Aggregation of Individual Efficiency …     553

efficiency measures of the average organization in the group; that is, for all 
j = 1, . . . , n, we have:

where x̃j ≡ K−1
∑K

k=1 x
k
j  for any period j and where ITE, CE, and IAE are 

as defined in (4), (8), and (10), respectively, with superscript k dropped.
It is worth noting that measure (66) is the aggregate efficiency meas-

ure suggested by Førsund and Hjalmarsson (1979). Calculating the group 
potential measures as the average organization (when all organizations have 
the same convex technology) enables further intuition. If all organizations 
were individually efficient but spread across different points of the fron-
tier, the average organization would be inefficient relative to that frontier  
(i.e., the group potential measure would be inefficient). This is because, 
though the organizations are individually efficient, if they pooled their 
resources and technology, they could do better—and the gap between their 
individually efficient and collectively efficient level is the group reallocative 
efficiency.

5.2  Price Independent Weights

For practical applications, price information is sometimes unavailable to 
a researcher (whether input prices, output prices, or both). Shadow prices 
could be used instead to calculate this aggregation scheme (see Li and Ng 
1995). Another approach is to use price independent weights. Färe and 
Zelenyuk (2003) developed such weights originally, and Färe and Zelenyuk 
(2007), and Simar and Zelenyuk (2007) extended them, all for the output 
orientation. Here, we present analogous results for the input orientation.

First, we assume that industry cost share of each input is a known con-
stant (which can vary across time); with these price independent weights can 
be calculated. Specifically, for a given period τ assume:

(66)ITE∗
τ

(
Y τ ,Xj

)
= ITEτ

(
ỹτ , x̃j

)
,

(67)CE∗
τ

(
Y τ ,Xj,wj

)
= CEτ

(
ỹτ , x̃j,wj

)
,

(68)
IAE∗

τ

(
Y τ ,Xj,wj

)
= IAEτ

(
ỹτ , x̃j,wj

)

= CEτ

(
ỹτ , x̃j,wj

)
/ITEτ

(
ỹτ , x̃j

)
,

(69)

wn,τXn,τ

N∑
n=1

wn,τXn,τ

= bn,τ , n = 1, . . . , N ,
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where Xn,τ =
∑K

k=1 x
k
n,τ and bn,τ ∈ [0, 1] (n = 1, . . . , N) are constants 

(estimated or assumed) such that 
∑N

n=1 bn,τ = 1. With these constants, let

be organization k’s industry share of the nth input. The input-oriented price 
independent weights for each organization will then become:

i.e., a weighted sum comprising the industry input share of an organization 
for each input, weighted by the industry cost share of the same input, in 
period τ. Where the bn,τ cannot be determined, as a special case they can 
be assumed the same for every input, resulting in an unweighted arithmetic 
average of input shares in (71) (see Färe and Zelenyuk 2003).

6  Conclusion

This work has summarized various results on aggregation of individual effi-
ciency measures and individual productivity indices into their group ana-
logues. In our discussion, we mainly focused on the Farrell-type efficiency 
context and on Hicks-Moorsteen productivity indices. We discussed aggre-
gation schemes for these indices with and without allowing full reallocation 
of inputs and outputs among organizations in the group. This is a valuable 
extension because of the increasing popularity of these indices, given their 
appealing theoretical properties and intuitive notion of productivity. The 
aggregation scheme is theoretically justified, consistent with previous aggre-
gation results, and maintains aggregate decompositions that are analogous to 
the decompositions at the individual level.

While we have discussed the theoretical measures for aggregate efficiency 
measures and productivity indices, in practice we only have their estimates. 
Important extensions therefore will include further development of a boot-
strapping methodology. In the DEA context, ideas from Simar and Wilson 
(1999) and Daskovska et al. (2010) could be merged with those of Simar 
and Zelenyuk (2007, 2018) and Simar and Wilson (2011). Determining 
how to estimate group potential technology without requiring the assump-
tions of convex and identical technology across organizations is a further 
natural extension.

(70)ωk
n,τ = xkn,τ /Xn,τ ,

(71)W
k

τ =

N∑

n=1

bn,τω
k

n,τ , k = 1, . . . ,K ,
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1  Introduction

This chapter explains productivity measurement within input-output (I–O) 
analysis. We aim to cover the literature on both the techniques of perfor-
mance analysis and the limitations and issues encountered in practice.

The addition of intermediate production into productivity and efficiency 
measurements has an important advantage, because this allows for a clean 
separation of the intermediate and final production, thus removing potential 
measurement biases that arise in other techniques.

When describing advantages of the use of the I–O approach for total pro-
ductivity growth (TFP) measurement, Wolff (1994) identified five valuable 
features: ‘First, TFP growth can be measured using gross output and incor-
porating materials as an input. Second, a growth accounting framework can 
be developed to measure the effect of final output mix changes on aggregate 
productivity growth. Third, capital can be treated as a produced means of 
production. Fourth, measures of composite technical change can overcome 
difficulties engendered by the substitution of externally provided inputs 
for those previously provided by the firm. Fifth, TFP growth of secondary 
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production can be analytically separated from that of primary output.’ 
The ability of I–O analysis to account for intermediate product flows and 
emission flows is especially valuable in the current economic conditions 
of increasing trade in intermediate inputs and globalization of production 
activities and environmental pressures. Therefore, these properties make I–O 
analytical frameworks extremely suitable for performance measurement in 
these economic conditions.

While the applications of the I–O methodology in industrial performance 
studies clearly have its merits, simplifying assumptions used by these tech-
niques, notably the assumption of fixed proportions, pose serious limitations 
in dynamic contexts. Therefore, in this chapter we will also spend some time 
to discuss limitations.

In the theoretical exposition, we approach the subject of performance 
measurement from the interface between I–O analysis and frontier analy-
sis. This is done by means of an I–O-based frontier model that combines 
the advantages of both techniques. Notably, all the prices are endogenous 
in this model, and the resulting productivity measures are tractable in terms 
of efficiency. The methodology outlined in this chapter is suitable for per-
formance measurements within both national and international industrial 
studies, environmental analysis, and other policy-relevant analyses. This type 
of analysis can be applied in policy evaluation studies and scenario analyses, 
such as analyses of the gains of free trade or effects of environmental policies. 
The theoretical exposition of the model draws from the earlier work by ten 
Raa (2005, 2008), ten Raa and Shestalova (2015a), and Shestalova (2017).

The chapter proceeds as follows: We start by explaining the merits of the 
I–O accounting framework in the current economic conditions in Sect. 2, 
after which we will outline the methodology in detail in Sects. 3 (Traditional 
Model) and 4 (Frontier Model). Section 5 introduces the performance meas-
ures embedded in these models. Section 6 pays attention to data require-
ments and international databases. Section 7 provides some illustrative 
examples of empirical applications of I–O models for performance measure-
ment. Section 8 concludes.

2  Renewed Interest to I–O Framework

Before discussing the methodology, let us first highlight the reasons for the 
renewed interest to I–O models in the last decades. The latter has to do 
with the changing economic conditions that are characterized by increasing 
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volumes of international trade in intermediate inputs1 and growing envi-
ronmental pressures. These two trends pose significant challenges to perfor-
mance measurement, because failing to account for intermediate inputs and 
environmental effects can result in significant biases of performance meas-
ures. Several recent papers explore potential biases in productivity account-
ing, arguing about the need to revisit some productivity estimates due to 
these two trends, on which we elaborate below.

First of all, globalization processes in the world economy increase 
 international trade. Since a large share of international trade consists of 
intermediate inputs, their proper accounting in economic models, and 
especially in international trade models, becomes increasingly important 
(Bems 2014). Even though, nearly fifty years ago Melvin (1969) pointed 
out the possibility of accounting for intermediate inputs in the context of 
international trade, traditional value-based models have still often been 
used in practice. Bems (2014) shows that traditional value-added trade 
models—ignoring production inputs calibrated on gross-flow trade data— 
result in mismeasured preference weights and price elasticities. These mis-
measurements substantially alter model predictions regarding the relative 
price response to external rebalancing, in comparison with a (preferred) 
model that is consistent with gross-flow trade data. While early international 
trade studies were ascribing the trade volume differences to differing pro-
duction factors—the phenomenon referred to as Heckscher–Ohlin–Vanek 
paradigm—more recent studies based on currently available data do not 
support this hypothesis. Instead, they point toward the increasing role of 
international trade in intermediate products and their differentiation (e.g.,  
Fisher and Marshall 2016).

The international differentiation dictates the need for a proper valuation 
of internationally traded intermediate products. The gap in intermediate 
product prices becomes a reason that firms have being increasingly moved 
abroad in order to benefit from cheaper intermediate product prices. The 
problem of using incorrect prices in the value of offshored products has 
been discussed by Houseman et al. (2011), arguing that failing to account 
for lower production costs in other countries due to the increased substitu-
tion of imported goods for domestic goods results in overstated productivity 
measurement for the United States. Eldridge and Harper (2010) estimated 
the bias in multifactor productivity in the United States at about 0.1, 

1Also known as global value chains fragmentation.
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suggesting a framework for estimating the effects of imported intermediate 
inputs in order to solve this problem.2

Secondly, growing environmental pressures and resource prices suggest that 
excluding materials, energy and other intermediate inputs from the pro-
duction function may be increasingly inappropriate. Baptist and Hepburn 
(2013) explored the relationship between intermediate input intensity, pro-
ductivity, and national accounts using a panel dataset of manufacturing sub-
sectors in the United States over 47 years. They found a negative correlation 
between intermediate input intensity and total factor productivity (TFP) 
both at the aggregated level and at the firm level. The finding that both firms 
and sectors that are less intensive in their use of intermediate inputs have 
higher productivity implies that failing to account for intermediate inputs 
properly would result in biased productivity measurements. Baptist and 
Hepburn (2013) suggest that current conventions of measuring productiv-
ity in national accounts may overstate the productivity of resource-intensive 
sectors relative to other sectors. This calls for changing national accounting 
framework to include material inputs and improving the scope and qual-
ity of their measurement in order to facilitate the development of policies 
toward efficient employment of resources, thus increasing productivity.

After establishing the need to account for intermediates and environment, 
there is still a variety of techniques to be used. I–O analysis has an advan-
tage of providing the most detailed and consistent accounting tool. Due to 
this and constant improvements of the databases available, I–O analysis is 
an important tool for performance measurements in industrial studies when 
it comes to accounting for international product flows, environmental con-
straints or resource constraints. Notably, useful decomposition techniques 
developed within the field of I–O analysis enable its application in policy 
evaluations and policy scenario analyses. Baumol and Wolff (1994) identify 
two areas in which I–O analysis becomes indispensable for the formulation 
of policies: (i) in situations where inputs as well as outputs enter society’s 
objective function directly, such as in the case of employment or pollu-
tion and (ii) for open economies, because macroeconomic policy is largely  
powerless to influence employment or the use of other inputs. Examples 
are policies aimed at reducing petroleum use through subsidies for other  
energy sources, curbing the polluting emissions of production processes, and 
stimulating employment.

2Besides, separating intermediate goods from final goods is important for policy analyses, because of 
different effects of their tariff rate changes on productivity (e.g., Amity and Konings 2007).
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3  Traditional I–O Model

In this section, we introduce the basic methodology for I–O analysis, paying 
attention to the key analytical assumptions on which it rests and consider 
several extensions.

3.1  Basic Model: Technical Coefficients 
and Multipliers

An I–O framework introduced by Leontief in the 1930s provides a formal 
description of relationships between sectors of the economy. In the basic 
model considered below, the production sectors of the economy are associ-
ated with industries each of which produces one homogeneous product, so 
that there are n different industries and n respective products.3

Let us start with the simplest case of a closed economy. Suppose, the 
production can be separated in n industries producing homogeneous 
products, where the production by one industry uses the output of other 
industries. Then, the gross output vector x goes into intermediate and final 
uses: x = Ax + f  where f stands for final uses and A is a n× n matrix of  
coefficients in which each coefficient aij specifies industry j ’s production 
requirement from industry i to produce one unit of output. Hence, the gross 
output of industry i is decomposed as follows:

Assuming k primary factor inputs, the factor use can be specified in the 
same vein: Bx = g, where g is a k-dimensional factor use vector and the 
industrial factor input requirements per unit of output are specified by a 
k × n-dimensional matrix B. Each cell of this matrix represents a ratio of 
the corresponding primary factor input employment to the gross output 
produced by the industry. These primary factor inputs are typically capital 
and labor, but also resources such as land or environment can be included. 
In a simple case of only one primary input, for example labor, matrix B is 
represented by a row vector of labor coefficients, bl = (bl1, bl2, . . . , bln). 

xi = ai1x1 + ai2x2 + · · · + ainxn + fi

3Note that ‘industries’ is the term used in National Accounting. Although common for IO practition-
ers, the term sector should be avoided when referring to industries. Note that, SUIOTs are part of 
National Accounts. In National Accounts, ‘sector’ refers to the so-called Institutional Sectors (govern-
ment, households, corporations, etc.) and they are represented in the ‘Sectoral Accounts.’
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The basic I–O structure of the economy is represented by the system of two 
equations: x = Ax + f  and Bx = g.

Three assumptions are central to the model.4

Key assumptions

1. Constant returns to scale
2. The technical coefficients are fixed
3. No capacity constraints

The assumption of constant returns to scale is typical in neoclassical growth 
accounting. Although it may be violated in practice, in competitive indus-
tries firms must operate at the optimal scale of production to survive, 
because the mechanism of entry and exit yields constant returns to scale 
at the industry level. This agrees with the findings of empirical studies. For 
instance, Burnside (1996) and Basu and Fernald (1997) provide robust  
evidence that the manufacturing industry in the United States displays con-
stant returns to scale. While the assumption of constant returns to scale is 
reasonable for a stationary economy case, it is important to realize that it 
may still violate in a nonstationary case, when the economy is on a transi-
tion path. Also, some industries are characterized by high scale economies, 
such as railroads.

The second assumption—of fixed proportions—is more restrictive, as it 
ignores the possibility of both product and factor substitution, existing even 
in a short run, which is an important limitation (see, e.g., Christ 1955; 
Duchin and Steenge 2007). The assumption of fixed coefficients can be 
rationalized by the idea that the technologies need time to adjust and, there-
fore, cannot change fast. It is implicitly assumed that the coefficients repre-
sent an average technology employed in the industry in a given year. Because 
technical coefficients may change with changed conditions, the model is well 
suitable for the case of stable technologies, but is less suitable for applica-
tions in more dynamic industry contexts, such as ICT.

The same point holds also for the assumption of fixed proportions in 
consumer preferences. While convenient and theoretically grounded in 

4These assumptions are central to the model. In addition to them, the traditional model assumes perfect 
divisibility, no joint production, the independence of consumption from production, and that only the 
current input and output flows are important (see, e.g., Christ 1955; Duchin and Steenge 2007). As 
will be discussed in Sects. 3–4, some important assumptions of the traditional model can be released by 
extending the model.
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empirical applications,5 assuming fixed proportions of final uses (also treat-
ing it as independent from production) remains a strong assumption, as the 
economy may not need to increase the consumption of some products to 
the same degree as other products. Therefore, if we assume that one must 
expand all final demand values in the same proportion, then some compo-
nents would be expanded too much, leading to some waste of resources. 
However, this effect is small as long as we stay within a range of small  
deviations from the observed situation, or use this model to make inferences 
regarding the direction of competitive pressures in the economy.

Finally, the third assumption—of no capacity constraints—suggests that 
the economy is not restricted in means to expand production, which is 
probably problematic in the case of a closed economy. Even if it was an open 
economy, unless the assumption of ‘small open economy’ (price taker) can 
be applied, the effects of capacity constraints should not be disregarded.

Note also that we implicitly assume a perfect divisibility of production 
factors. However, the production factors may be indivisible in practice, and 
there may be bottlenecks in these factors, restricting the possibilities of the 
proportional economy expansion in comparison with the model result.

On the positive side, these key assumptions make the model extremely 
transparent, supporting a straightforward method for impact assessment. 
Since the coefficients are assumed to be fixed, irrespectively, the produc-
tion volume, any increase of output requires a proportional expansion of 
the inputs used. For example, based on equation (I − A)x = f , it is easy to 
establish that in the absence of constraints on primary inputs, an increase 
of final uses by �f  would translate in the increase of the gross output by 
�x = (I − A)−1�f =

∑∞
k=0 A

k�f . In other words, to facilitate the 
increase in final uses each industry would need to produce intermediate 
inputs into other industries, and this would create a loop of consequent 
increases, thus multiplying the effect of the initial change. Because any other 
industry having linkages to this industry would also have to adjust its out-
put, the total economic effect exceeds the initial change in spending. The 
ratio of the total effect to the initial effect is called a multiplier. This mul-
tiplier property provides a method for impact assessments.6 The interest to 

5As will be discussed in Sect. 5.1, this preference structure allows for performance measurement that 
is clean from inefficiency that arises because of product misallocations between individual consumers 
(Diewert 1983; ten Raa 2008).
6See Coughlin and Mandelbaum (1991), for more detail on multipliers, including those on consump-
tion and employment. Coughlin and Mandelbaum (1991) stressed the following limitations in con-
nection to multipliers, because of which the results of multipliers need to be interpreted with caution. 
First, the evaluated effects of multipliers are likely to be transitory, as multipliers do not account for 
price adjustments and behavioural response to changes. Besides, the total effect can easily be overstated 
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this type of analysis has recently been renewed in the view of the growing 
environmental pressures and the creation of more detailed environmental 
accounts. For example, indirect effects need to be accounted for in the eval-
uation of carbon footprint (Sect. 7 provides some references on this topic).

3.2  Structure of the I–O Table of an Open Economy

Let us next assume that the economy is open and consider the basic struc-
ture of the product flows shown in Table 1. The first n rows of this table 
decompose the gross output of each industry i, xi, into intermediate uses, 
domestic final uses and export exi as follows:

Domestic final uses cover household consumption, government purchases, 
and private investor purchases. These products may partly be imported, as 
shown by the vector imf .

On the input side, next to domestically produced intermediate inputs, 
production of any industry j involves also imported products and primary 
factor inputs. Therefore, the production value of industry j equals to the col-
umn sum of the respective values:

xi = ai1x1 + ai2x2 + · · · + ainxn + fi + exi,

xj =
(
a1j + a2j + · · · + anj

)
xj + vj + imj,

 
due to accounting for household consumption as final demand and ignoring re-spending within this 
economic system or because of ‘double accounting’ of intermediate products in the model (because 
of which the total business activity value exceeds its market value, as pointed out by Stevens and Lahr 
1988). Second, the effects of an increased spending could easily be overstated because of ignoring sup-
ply constraints that may exist in some industries. These constraints relate to both the availability of 
additional primary inputs and the possibility of their higher employment at unchanged prices. Such 
supply constraints are especially important in the period of business cycle peaks and less during reces-
sions. Third, multipliers computed based on a regional table account for feedback effects within the 
economy in question, but not for feedback effects between economies. These effects may be very impor-
tant for some particular industries. Fourth, the model assumes fixed relationships, while those may 
change over time, for example due to technical progress of because of substitution between inputs that 
are induced by changing prices. This critique is especially important since IO tables are often based on 
data that are a few years old. Fifth, missing data issues arise at the stage of construction of IO table. 
These are dealt by means of estimation methods, and therefore, the resulting estimates contain some 
error. Even the calculation of the initial change in spending that is a starting point of the analysis incurs 
limitations because of the need to account for taxes and heterogeneity of sectoral output. Finally, there 
is an issue of estimating regional effects of a firm in a new sector.



Intermediate Inputs and Industry Studies …     567

where vj denotes the value-added payments to primary inputs, and imj 
denotes the value of imported products used by industry j. Nowadays, 
information on imports is available split by products as an imports matrix. 
Denoting the elements of this matrix by imij, where subscript j corre-
sponds to the industry j and i runs over the imported intermediate inputs 
i = 1, . . . I, the intermediate input value in industry j is decomposed as 
imj =

∑I
i imij. Note also, that imports in the exports columns are usually 

not null in national IOTs, this reflects the so-called re-exports.
Schematically, these flows of products and payments are summarized in 

Table 1. The last column corresponds to the sum of all purchases along each 
row, and the last row represents the sum of all payments along each column.

3.3  Extensions of the Traditional Model

While the key assumptions discussed in Sect. 3.1 are critical to the model, 
thus setting the limits to the application range of the model, some other 
restrictive assumptions can be released by model extensions, which we dis-
cuss in this section. This concerns: (i) accounting for international trade 
flows, (ii) environmental constraints, (iii) secondary products, (iv) treatment 
of households, (v) modeling investment, and (vi) endogenizing prices.

Table  1 Basic I–O flow table

Production Final uses Total
Industry 1 Industry 2 … Industry n Domestic 

final uses
Export Gross 

output

Products of 
industry 1

a11x1 a12x2 … a1nxn f1 ex1 x1

Products of 
industry 2

a21x1 a22x2 … a2nxn f2 ex2 x2

… … … … … … …
Products of 

industry n
an1x1 an2x2 … annxn fn exn xn

Import 1 im11 im12 … im1n im1f

Import 2 im21 im22 … im2n im2f

… … … … …
Import I imI1 imI2 … imIn imIf

Value-added 
payments 
to primary 
inputs

v1 v2 … vn

Total value x1 x2 … xn
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International Trade Flows

This is the most natural extension of the model. Modern I–O analyses are 
conducted with multi-regional models presenting detailed accounts of inter-
national trade flows. We provide some examples of existing I–O databases 
detailing the international product flows and some studies based on these 
tables in Sects. 6 and 7.

Environment

Another natural extension concerns the inclusion of environmental flows. 
Environmental constraints can be incorporated in the model in the same 
way as other primary inputs; thus, pollution coefficients are introduced in 
the same manner as other input coefficients. Given that both international 
trade and environment are the most important extensions, we will return 
to this topic in Sects. 4–6, discussing both theory and applications in more 
detail.

Secondary Products Within Supply-Use Framework

One issue with the traditional I–O model concerns the difficulty of account-
ing for secondary products, because of which a supply-use model may be 
preferable, which we discuss next. Supply and use tables provide an inte-
grated framework for checking consistency and completeness of national 
accounts data, representing a balancing framework that reconciles income, 
expenditure, and production data. In this framework, the production 
side is represented by the use and supply matrices, U and V. The dimen-
sion of a supply or use table is product by industry. Under a commodity 
technology model, ‘industry’ stands for technology. Each product is pro-
duced by a certain industry, i.e., certain technology.7 Subtraction of the 
use from the supply matrix defines the net output table of an economy, 
U − V ; the summation of net output across industries defines its net out-
put vector. It is straightforward to modify the theoretical exposition of a 
supply-use model into an I–O model. The matrix of technical coefficients 

7This results in a product-by-product model matrix. There exists also an alternative model, the so-called 
industry-technology model associated with an industry-by-industry matrix. See, e.g., ten Raa (2005) for 
more detail.
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is expressed by the formulae: A = U
(
VT

)−1. In the traditional one-matrix 
I–O framework, V is assumed to be a diagonal matrix with gross outputs of 
each industry on the diagonal. Therefore, under this assumption we obtain: 
U − V = (I − A)x.

Household Consumption

An important inconsistency in the basic model is that the level of con-
sumption is assumed exogenous, while the level of income of the labor is 
endogenous. When production adjusts, so does the value added. The income 
change should affect household consumption; however, this is not the case 
in the basic I–O model. This problem, however, can be repaired by making 
the labor value-added row and the household consumption column interde-
pendent (Duchin and Steenge 2007).

Investment

Another critique concerns the treatment of investment as exogenous factor. 
A possible solution to this problem is the inclusion of a capital good sector. 
Duchin and Steenge (2007) consider a dynamic model, in which each sector 
purchases capital goods in order to assure adequate capital capacity level for 
its future production. The simplest version of this model assuming a one-
year time lag for all the capital goods has the following representation:

Here t and t + 1 are two consequent years, kt is the vector of capital capacity 
in year t, and k∗t+1 is the vector of desired capacity in year t + 1, Bt+1 is the 
matrix of capacity production coefficients, and the other notations are the 
same as in the basic model in Sect. 3.2. Vector k∗t+1 is projected as a mov-
ing average of recent past growth of output, starting with the initial value at 
some year, that is taken as a starting point. The expression max

(
0, k∗t+1 − kt

)
 

represents the desired capacity extension in year t.

Endogenous Product Prices

The model can be extended to endogenize prices. Section 4 will introduce 
the full general equilibrium model which endogenizes both product and 

xt = Atxt + Bt+1max
(
0, k∗t+1 − kt

)
+ ft
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factor input prices. However, before turning to the fully endogenous case, let 
us first discuss an intermediate step, in which only product prices are endog-
enous, while factor prices are exogenous.

Duchin (2005) develops a world trade model with m regions, n products, 
and k factors of production, which represents a closure of a one-region I–O 
model for international trade with respect to product international prices. 
While the product prices are endogenous, the model still relies on exogenous 
factor prices. Therefore, comparative advantage is assumed to be given by 
exogenously fixed, region-specific technologies, consumption pattern, factor 
endowments, and also factor prices. Under the assumption of full mobility 
of products and factors, the model could be specified as follows:

where m is the number of regions; fi and xi are n-dimensional vectors of 
final uses and gross output (subscript i running over m regions), Ai are the 
respective matrices of technical I–O coefficients; Bi are the matrices of factor 
input requirement coefficients; bi are k-dimensional endowment vectors of 
factor inputs; lastly, notation π ′

i  denotes the exogenous rows of each region’s 
factor prices.

Since product prices are endogenous, any region in this model will engage 
in trade only to the point at which its imports without trade are worth at 
least as much as its exports at no-trade prices. However, since primary factor 
prices are endogenous, a factor will engage in production as long as there is 
demand at these prices.

The model was applied to the database of 10 regions, 8 products, and 
3 primary production factors8 (Duchin 2005). The empirical application 

min π ′
1B1x1 + · · · + π ′

mBmxm

s.t. (I − A1)x1 + · · · + (I − Am)xm ≥ f1 + · · · + fm

B1x1 + · · · + Bmxm ≤ b1 + · · · + bm

x1 ≥ 0, . . . , xm ≥ 0

8The database includes North America, Western Europe, Former Soviet Union, Low-Income Asia, 
China, Japan, Oil-Rich Middle East, Eastern Europe, Middle-Income Latin America, and Rest-of-
World (Africa and Low-Income Latin America). The products considered are coal, oil, gas, electricity, 
mining, agriculture, manufacturing, and services. The primary production factors are labor, capital, and 
the land. It is assumed that all production sectors need capital and labor, but the land is specific to 
agriculture.
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compares three cases: no trade, world trade, and one-region world. In mov-
ing from no-trade model to the world trade model, the products (including 
services) become tradeable; and in moving from world trade to the one-re-
gion world model, the factor mobility is allowed at factor prices of the desti-
nation region. The results show that the introduction of international trade 
leads to little change in the total output in comparison to the first case, 
except for the energy sector, where the total energy use falls, the fuel mix 
shifts toward more coal and less gas. However, moving to the one-region 
world leads to a large change. The latter model results in the lowest value 
of the objective function. The production takes place using labor-intensive 
technologies at low labor costs with the greatest export surpluses earned by 
Eastern Europe and low-income Asia.

The theoretical assumption of exogenous prices is relevant for small open 
economies, but may be too restrictive for large open economies, such as sev-
eral economies in these applications. While the move of production toward 
cheaper inputs confirms the intuition, the comparative advantages of ini-
tially low-wage regions could be easily overstated due to the lack of a price 
adjustment mechanism for factor prices. Therefore, in the next section, we 
will turn to the case of fully endogenous prices.

4  Frontier I–O-Based Model

After outlining traditional I–O analysis and some of its extensions in the 
previous section, we are turning to an I–O-based frontier model, which lays 
the basis to the performance measures that are central to this chapter. The 
model is based on fundamentals of the economy and internalizes both all 
the product prices and all the factor input prices. It will be formulated in 
terms of supply-use tables, since this framework is more general. In order to 
stay closer to practical applications, we will use a separate notation for each 
distinct primary factor input considered: capital, labor, and environment. 
The model exposition in this section draws from the earlier work by ten Raa 
(2005, 2008), ten Raa and Shestalova (2015a), and Shestalova (2017).

4.1  Model Setup

The model setup specifies the fundamentals of an economy, the technolog-
ical and behavioral assumptions used, and the physical and financial con-
straints that must hold in an economy.
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Fundamentals

In supply-use framework, the production side is represented by the use and 
supply matrices, U and V. Here, we apply supply-use framework, following the 
model exposition in ten Raa and Shestalova (2015a); however, it is straight-
forward to modify the exposition for the case of I–O coefficient matrices. 
In a closed economy setting, the net output must fully satisfy the domestic 
final demand for this output, denoted by product vector f; while in an open 
economy, the difference can be compensated by international trade. The dif-
ference between net domestic output and domestic final demand constitutes 
net export from the economy, which will be denoted by product vector z. The 
observed net export satisfies the condition: z0 = (V − U)e− f , where e is the 
unity vector, all components of which are equal to one. Throughout this sec-
tion, we assume that all products (including services) are tradeable and we treat 
trade as the residual between net domestic output and domestic final demand. 
The case of non-tradeable products can be incorporated by setting the respec-
tive components of z at zero. In particular, the case of a closed economy is 
characterized by the condition: z = z0 = 0.

The economy produces goods using factor inputs. Typically, these are 
capital and labor; therefore, we present the model for this case. Later, we 
will show how also environmental input can be included. The allocation 
of the total employed amounts of capital and labor across industries is 
given by the respective employment vectors. For notational convenience, 
we denote the employment row vectors k = Ke and l = Le, where K and 
L are respective diagonal matrices and e is the unity vector, as before. The 
factors are not always fully employed in production in the observed situ-
ation. To account for this, we introduce the diagonal matrices κ and � of 
inverse capital and labor utilization rates.9 For example, a capital utilization 
rate of 80% for industry 1 corresponds to a full capacity level that is a fac-
tor κ1 = 1/0.8 = 1.25 higher than utilized in industry 1. The full amounts 
of capital and labor that are available in the economy are expressed by vec-
tors Kκe and L�e. This also includes idle amounts of these factors that are 
not currently employed in production. Note that if factors are mobile across 
industries, then the allocation across industries can be suboptimal, and it is 
sufficient to know only the total amounts and the overall utilization rates of 
both factors.

9While the concept of utilization rates is theoretically very straightforward and useful, the data on utili-
zation rates are scarce in practice.
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To summarize, formally an economy is represented by the set 
E = (k, l, κ , �,V ,U, f ) of capital and labor employment and the respective 
utilization rate matrices, supply and use tables, and domestic final demand 
vector. All the components are non-negative, and the inverse utilization rate 
matrices have diagonal values greater or equal to one.

Technological Assumptions

Having explained the main concepts and notations used, we turn to the 
model assumptions.

Assumption 1 
The technology satisfies free disposal of inputs
Free disposal means that the same amount of output can be produced with 
more inputs, and it is a typical assumption in defining production frontier.

Assumption 2 
The technology satisfies constant returns to scale
Constant returns to scale (CRS) means that if industry j produces the net 
output vector (V − U)·j by using factor inputs Kj and Lj, then for any 
non-negative value sj, the scaled net output vector (V − U)·jsj can be pro-
duced by using factor inputs Kjsj and Ljsj. The value sj is called the activ-
ity level of the industry, where the observed level corresponds to sj = 1. For 
example, if s1 equals 1.1, then industry 1 is operated at a 10% higher level 
than observed. Taken together, these activity levels form the activity vector 
of the economy s.

Combining the assumption of free disposal and CRS, we obtain that for 
any non-negative activity vector s = (s1, s2, . . . , sn), production of the net 
output 

∑n
j=1 (V − U)·jsj = (V − U)s requires at least 

∑n
j=1 Kjsj = Ks 

capital and 
∑n

j=1 Ljsj = Ls labor.

Behavioral Assumptions

Assumption 3 
Firms maximize profit
The assumption of the profit-maximizing behavior of producers is com-
mon in the economic literature (Varian 2010). Denote the product 
prices by row vector p, the rental rate of capital by row vector r, and the 
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wage rate by row vector w. The vector of industry profits is expressed by 
p(V − U)− rK − wL.

Assumption 4 
Final demand represents domestic preferences
On the consumption side, it is assumed that domestic preferences are rep-
resented by the vector of domestic final demand, f. Therefore, the propor-
tions of final demand vector are fixed, and the economy maximizes welfare 
by expanding the final demand vector to a higher level cf , where c denotes 
an expansion coefficient of the economy.

While here we impose it by assumption, this behavior can be generated 
by assuming Leontief preferences (e.g., Leontief 1966). Ten Raa (2008) pro-
vides a micro-foundation to the use of this assumption in the context of effi-
ciency measurement, showing that the optimal outcome thus defined would 
be Pareto improving under any preference structure.

The important advantage of this assumption is that it is sufficient to know 
only the aggregate domestic final demand and no detailed information at 
the level of consumers is needed. The domestic final demand vector contains 
consumption and investment. The theoretical foundation for the inclusion 
of investment into final demand to account for the whole stream of future 
consumption is given by Weitzman (1976). It can be shown for competi-
tive economies that domestic final demand measures the present discounted 
value of future consumption.

Physical Constraints

The material economy must satisfy feasibility constraints on quantities of 
products and factor inputs.

Products: Material balance constraints imply that consumption cannot 
exceed production. This holds in the observed data: V − U ≥ f + z0. The 
constraint must hold in any situation, characterized by expanded demand 
vector cf  and activity vector s: (V − U)s ≥ cf + z.

Production factors: Factor input constraints restrict the amount of fac-
tor inputs available. However, the availability of factors depends on factor 
mobility across industries and countries. Industry-specific features yield 
the immobility of some types of labor and capital. Similarly, there may 
be restrictions on cross-border factor mobility. For instance, ten Raa and 
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Shestalova (2015a) assume that capital is both industry-specific and country- 
specific, while labor is mobile between industries and countries.

For the sake of notational simplicity and without loss of generality, the 
exposition of the base model will focus on the case in which both factor 
inputs are immobile across industries or countries. Then for any production 
activity vector s, the factor inputs must satisfy the conditions: Ks ≤ Kκe and 
Ls ≤ L�e. The separate restrictions on each industry and country imply that 
the wage rates and capital returns may differ across industries and countries.

Any other assumption on factor mobility can be incorporated in the 
model by modifying the respective condition. For instance, the case in 
which both factors are mobile between industries (but not between econo-
mies) can be incorporated by assuming that only the total amount of each 
factor in the economy is restricted: eTKs ≤ eTKκe and eTLs ≤ eTL�e, 
where eT is a row vector all elements of which are equal to one. In such a 
case, the respective equilibrium factor prices will equalize across industries. 
Alternatively, if a system of several economies is considered, and capital or 
labor could also move freely between these economies, then only the total 
amount of each specific factor in the system would need to be restricted, 
which is obtained by summing up the amounts of factors over all the econ-
omies included in this system: 

∑
Ks ≤

∑
Kκe and 

∑
Ls ≤

∑
L�e. If this 

condition is imposed, the equilibrium prices of both factors will equalize 
across countries. Allowing for more factor mobility increases allocative effi-
ciency in the same fashion as in Amores and ten Raa (2014).

Next to the main production factors (capital and labor), the problem may 
include other relevant factors, such as natural resources (land or minerals). 
Furthermore, aggregated factor inputs can be disaggregated by type: For 
instance, labor can be subdivided into skilled and unskilled labor, in which 
case there will be a separate constraint per type. An example of the latter can 
be found in ten Raa and Pan (2005).

Budget Constraint

On the value side, economies must satisfy budget constraints that the expendi-
tures cannot exceed the income, thus restricting the ability to borrow. An open 
economy derives income from three income sources: capital, labor, and interna-
tional trade; it spends this income on buying products for final consumption.

Assuming all products (including services) be tradeable and prices 
of domestic and imported products being equalized, this constraint is 
expressed by the inequality: pcf ≤ rκKe+ w�Le− pz. In fact, since there 
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is no satiation, a strict inequality will never occur in equilibrium, as long as 
c > 0. Thus, the equilibrium will be always characterized by the following 
income-expenditure condition:

In a closed economy case, net export is zero, z = 0, and the last term drops. 
To define equilibrium in an open economy setting, international trade 
models often assume balance of payments between imports and exports 
in equilibrium, implying that pz = 0. In both these cases, the national 
economy budget is equal to the income derived from production factors 
rκKe+ w�Le. The theoretical assumption of balanced payments does not 
hold in reality, since most countries run a trade deficit or surplus. This 
imbalance can be preserved in the model by assuming that the value of the 
optimal net import vector must be within the current budgets, as reflected 
by the observed international trade pattern:

where S0 denotes the trade surplus achieved at the observed trade level z0.  
Therefore, this constraint represents a budget constraint for the welfare 
maximization problem of an open economy. Since the country uses trade 
to maximize its own consumption, the constraint will hold with equality in 
equilibrium. The exact expression for the condition on international trade 
depends on the model assumptions. In particular, three cases can be distin-
guished: (i) a closed economy, (ii) a small open economy that is a price taker 
in international product markets, and (iii) a large open economy.

The feasibility constraints discussed in this section are most commonly 
present in practical applications. Therefore, the exposition of the base model 
includes only these main constraints. However, the model can accommodate 
other types of constraints. For example, Kagawa (2008) and ten Raa and 
Shestalova (2015a, b) include undesirable outputs such as greenhouse gas 
emissions and consider environmental policy constraints. The inclusion of 
additional constraints reduces the scope for efficiency improvements, which 
we will discuss later in this chapter.

4.2  Optimization Problem as a Linear Programming 
Problem

This model setup allows us to formulate the optimization problem for the 
economy. In the simplest case of a closed economy, this problem is a linear 
programming problem:

(1)pcf = rκKe+ w�Le− pz

(2)pz ≥ pz0 = S0
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with the respective dual problem

The primary problem expands final demand (with the expansion factor c ) 
subject to product and factor constraints.10 Therefore, the optimal outcome 
includes the optimal activity levels (s ) of industries together with support-
ing optimal (shadow) prices of all the constraints included in this prob-
lem. In contrast, the dual problem sets constraints on prices, requiring that 
all the prices are non-negative, while all the profits are non-positive. The 
shadow variables for the constraints on profits are the respective activity 
levels of each industry. The normalization condition on prices ensures that 
the shadow variable for the normalization rule corresponds to the shadow 
expansion factor c∗. Therefore, based on the main theorem of linear pro-
gramming, both primary and dual problems produce exactly the same set of 
optimal values (c∗, s∗, p∗, r∗,w∗), including the expansion factor, the activ-
ity vector, and the supporting prices of products and inputs.

The list of all the constraints of both problems includes simple  
non-negativity constraints on each variable11 and five other constraints that 
impose restrictions either on quantities or on prices. It is easy to see that, in 
equilibrium, if there is slack in a constraint, there is no non-negativity slack 
in the associated variable and vice versa. This phenomenon is called comple-
mentarity slackness. It says that slacks in constraints on products are com-
plementary to the product prices; similarly, slacks in constraints on prices 
are complementary to the respective optimal quantities.

In the case of a system of open economies linked by trade (but utilizing 
the own factor inputs), we would obtain a set of similar model equations for 
each economy. However, the product prices would need to satisfy also the 
equality constraints for all the economies. This means that the resulting sys-
tem would not be a simple linear program anymore. Yet, the same principles 
of complementarity can also be applied to find the solution in this case, as 
will be shown in the next section.

(3)max
s,c

{c|cf − (V − U)s ≤ 0,Ks ≤ Kκe,Ls ≤ L�e, s > 0},

(4)min
p,r,w

{rKκe+ wL�e|rK + wL − p(V − U) ≥ 0, p ≥ 0, r ≥ 0,w ≥ 0, pf = 1}.

11Adding a non-negativity constraint on variable c will not change the outcome, because the optimal c 
is always positive.

10The theoretical idea is due to Ginsburg and Waelbroeck (1981, pp. 30–31), who consider the maxi-
mization of consumption subject to commodity and factor constraints.
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4.3  Equilibrium Conditions

Based on the assumptions and constraints specified in Sect. 4.1, we derive a 
set of equilibrium conditions, which satisfies the optimization problem con-
sidered in Sect. 4.2, or a more general optimization model in the case of an 
open economy.

First, a combination of the assumption of CRS and the assumption of 
profit maximization rules out the possibility of positive profits in equilib-
rium. If profits were strictly positive in equilibrium, then at these prices, 
firms would be able to increase profits by increasing production. However, 
that would mean that these prices could not be equilibrium prices. Note, 
however, that negative profit values may be feasible if the respective industry, 
say industry i, is not active, si = 0. Therefore, the assumptions made imply 
the condition of non-positive profits: (V − U)− rK − wL ≤ 0, with the 
following complementarity condition:

Second, the material balance constraints imply that consumption may not 
exceed production. However, since there is no idle production in equilib-
rium, a positive equilibrium product price would imply that the constraint 
must bind in equilibrium. If the constraint is not binding, the price must be 
zero. Therefore, there can be only one of the two possibilities:

Third, also a positive factor input price would ensure that there is no slack in 
inputs, leading to the conditions:

Finally, as long as the expansion factor is positive, c > 0, the budget con-
straint binds in equilibrium:

(5)
si > 0 ⇒ (V − U − rK − wL)i = 0 for all i

(V − U − rK − wL)i < 0 ⇒ si = 0 for all i

(6)
pj > 0 ⇒ (cf − (V − U)s)j = 0 for all j

(cf − (V − U)s)j < 0 ⇒ pj = 0 for all j

(7)r > 0 ⇒ K(κe− s) = 0 and K(κe− s) > 0 ⇒ r = 0

(8)w > 0 ⇒ L(�e− s) = 0 and L(�e− s) > 0 ⇒ w = 0

(9)pcf − rκKe− w�Le+ pz0 = 0
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The last term on the left-hand side of Eq. (9), pz0, is zero in a closed econ-
omy setting, but differs from zero in an open economy setting (if we pre-
serve trade imbalance).

The problem specified by the Eqs. (5)–(9) that includes a comple-
mentarity condition on each variable is called a complementarity prob-
lem. Introducing the notation ⊥ for the complementary vectors, the set of  
equilibrium conditions (5)–(9) can be rewritten as follows:

The solution is given by the set of values (c∗, s∗, p∗, r∗,w∗), including the 
expansion factor, the activity vector, and the supporting prices of products 
and inputs.

Since all the prices in model (10) are determined in relative terms, mul-
tiplication of all the prices by any fixed positive value gives again a set of 
equilibrium prices. Hence, the solution is not unique. Uniqueness can be 
achieved by imposing a normalization rule for prices that equates the total 
final demand value at equilibrium prices to any constant value v: p∗f = v. 
A natural choice in empirical applications would be to take v = ef , equating 
the final demand value at equilibrium prices to that at observed prices.

Notice the similarity with computable general equilibrium models 
(CGE), which also generally solve in relative prices. In CGE models, all 
the values are expressed in terms of the value of one commodity, called the 
numeraire good, whose price is fixed.

While model (10) is specified for a single economy, it can be easily 
extended to a more general case of open economies linked by trade by add-
ing a restriction equalizing international prices. See also Ferris and Pang 
(1997) for more detail on complementarity problems in other settings.

4.4  General Case: A System of Economies Linked 
by Trade and Environmental Constraints

Let us consider a system of several economies each of which is characterized 
by its set Ei = (ki, li, κi, �i,Vi,Ui, fi) of capital and labor employment with 
the respective utilization rate matrices, supply and use tables, and domestic 

(10)

0 ≤ s⊥rK + wL − (V − U) ≥ 0

0 ≤ p⊥(cf − (V − U)s) ≥ 0

0 ≤ r⊥K(κe− s) ≥ 0

0 ≤ w⊥L(�e− s) ≥ 0

0 ≤ c⊥(pcf − rκKe− w�Le+ pz0) ≥ 0
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final demand vector. Assume for the sake of simplicity that all products 
(including services) are tradeable between economies and all production fac-
tors are immobile between economies.

In addition to labor and capital, each economy employs environmental 
resources. The employment vector of environmental resources of economy 
i is denoted by Mi, whose components record the damage to the environ-
ment by industry, resulting in the total amount of environmental damage 
Mie, measured in terms of emission volumes of a particular pollutant. Under 
the assumption of CRS, the proportional increase of each industry’s activity 
leads to the proportional increase in the use of the environmental resource.

Environmental policies are modeled by means of constraints on the 
amount of pollutants, in the same vein as constraints on capital and 
labor. For example, a national pollution cap is given by the constraint 
Mi(µie− si) ≥ 0, in which µi is the fraction of the observed damage, and si 
is the activity vector.

Denoting the shadow prices of emissions by ti we obtain the complemen-
tarity condition:

The equilibrium conditions for this system are similar to those given by 
Eq. (10) and can be expressed as follows:

Note that in a system of economies with different marginal values of environ-
mental damage, it would be beneficial to shift production in such a way that 
the environmental damage would be reallocated from the parts with a high 
marginal value toward the parts with a low marginal value of damage. Such a 
reallocation could be achieved by means of an international market for emis-
sion rights, equalizing shadow prices of environmental resources in each coun-
try. A system with internationally tradeable emission permits generates a more 
efficient allocation of production, thus enabling a higher total consumption in 
the system of economies. Under tradeable emission rights, the environmental 
constraints of the participating countries are pooled together, resulting in the 
following common environmental constraint on the economic system:

(11)0 ≤ ti⊥Mi(µie− si) ≥ 0

(12)

0 ≤ si⊥riKi + wiLi + tiMi − p(Vi − Ui) ≥ 0

0 ≤ p⊥(cfi − (Vi − Ui)si) ≥ 0

0 ≤ ri⊥Ki(κie− si) ≥ 0

0 ≤ wi⊥Li(�ie− si) ≥ 0

0 ≤ ti⊥Mi(µie− si) ≥ 0

0 ≤ ci⊥cipfi − riKiκie− wiLi�ie− tiMiµie+ pzi,0 ≥ 0
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where t denotes the international shadow price of emissions in this system.

5  Performance Measures

In this section, we introduce performance measures associated with our 
model to measure efficiency and productivity growth.

5.1  Efficiency

Accounting for the links and constraints in an economy, the model outlined 
above naturally embeds the concept of efficiency in terms of expansion pos-
sibilities for final demand.

Definition of efficiency
Efficiency is defined by the inverse expansion factor:

As an example, if an economy’s expansion factor equals 1.25, the econ-
omy can expand 25%. This means that the efficiency score is 1/1.25 = 0.8. 
In other words, the economy can produce its output using just 80% of its 
resources.

The inverse expansion factor 1/c∗ can be interpreted in terms of input 
contraction. It follows from the expenditure-income identity (1), that 
1/c = pf /(rκKe+ w�Le+ tµMe− pz). Therefore, efficiency characterizes 
the minimal resource utilization rate to produce the observed final demand.

The efficiency measure defined above relates to the coefficient of resource 
utilization introduced by Debreu (1951) for measuring the ‘dead loss’ that 
arises in a non-optimal situation, individual preferences been given. Ten Raa 
(2008) shows that it is possible to remove the dependence on individual 
preferences by turning to a more conservative measure that removes ineffi-
ciency that arises because of product misallocations between individual con-
sumers. According to Diewert (1983), the latter can be done by assuming 
Leontief preferences, which is also our assumption in this model. Hence, the 
efficiency measure introduced above is in fact Debreu-Diewert resource uti-
lization measure.

(13)0 ≤ t⊥
∑

i
Mi(µie− si) ≥ 0

(14)E = 1/c∗
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5.2  Total Factor Productivity (TFP)

Here, we discuss productivity measures that arise in both the traditional 
model and the frontier model, showing how they can be related to each 
other. While the traditional model attributes total productivity growth to 
change in technical coefficients, the frontier approach allows also for changes 
in efficiency and international trade (in an open economy).

We start with the traditional I–O framework and considering the indus-
try-by-industry specification. According to the national accounting identity, 
the value of the gross production by industry j can be expressed as follows:

Here pj denotes the price of the product of industry j, xj is gross output, xij 
is intermediate requirements to this industry from industry i, wl is the price 
of factor l, and glj is the use of this factor by industry j.

Therefore, the rate of TFP growth of an industry is defined as the Solow 
residual between the growth rate of the gross output and the growth rate of 
all the inputs, including both primary and intermediate inputs, using the 
value share of each input in the gross output value as weight. Introducing 
the notation SRj for the Solow residual of industry j, we obtain the follow-
ing formal definition of industrial TFP growth.

Definition of TFP growth at the industry level
The TFP growth is expressed as a Solow residual between the growth of gross out-
put and the growth of inputs:

In terms of technical coefficients of the traditional I–O model, aij = xij/xj 
and blj = glj/xj, the TFP growth is expressed as:

At the total economy level, the intermediate production enters on both 
input and output side; therefore, its growth does not contribute to TFP 
growth, leading to the expression of TFP growth as Solow Residual between 
the net output growth and the primary input growth.

pjxj =

n∑

i=1

pixij +

k∑

l=1

wlglj.

(15)SRj = x̂j −

[
n∑

i=1

pixijx̂ij +

k∑

l=1

wlgljĝlj

]
/(pjxj).

(16)SRj = −

[
n∑

i=1

pixijâij +

k∑

l=1

wlgljb̂lj

]
/(pjxj).
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Definition of TFP growth of an economy
The TFP growth of an economy is defined as the Solow residual between the 
growth of the net output value and the growth of primary factor inputs, expressed 
by Divisia index:

where y = (I − A)x is net output of the economy, and g is a vector of total fac-
tor inputs with components gl =

∑n
j=1 glj, and p and w are the respective price 

vectors of outputs and factor inputs.
The corresponding expression in terms of technical coefficients can be 

derived as follows. Combining (15) and (17), the aggregate TFP growth of 
an economy expresses as a weighted average of all industries’ TFP growth 
rates, weights being equal to industries’ gross output value shares in the net 
output value of the economy. Since the gross output exceeds the net output, 
the sum of these weights is greater than one. The expression for the aggre-
gate TFP growth is known as the Domar decomposition (Domar 1961):

Combining (16) and (18), we obtain the aggregate TFP growth expression 
in terms of changes of technical coefficients:

Traditionally, the observed prices and output levels have been used within 
the I–O field to compute the TFP growth rates using these expressions. An 
implicit assumption behind this traditional approach is that the economy is 
in competitive equilibrium. Competitive equilibrium being assumed, prices 
of inputs are linked by the relationship: pj =

∑n
i=1 piaij +

∑k
l=1 wlblj.

Since intermediate goods are produced by the economy, their price 
changes also contribute to TFP changes. Therefore, Aulin-Ahmavaara (1999) 
suggested that the model can be extended to account for these indirect 
effects, which results in the so-called effective rates of TFP growth.

In addition to this extension also other extensions are known in the liter-
ature, which treat capital input as produced means of production (Peterson 
1979; Wolff 1985) or treat both labor and capital as produced by the 

(17)SR =

n∑

i=1

piyi

py
ŷi −

k∑

l=1

wlgl

wg
ĝl

(18)SR =

n∑

j=1

pjxj

p(I − A)x
SRj

(19)SR =

n∑

j=1

−
∑n

i=1 pixijâij −
∑k

l=1 wlgljb̂lj

p(I − A)x
=

−p(dA)x − w(dB)x

p(I − A)x
.
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economy (Aulin-Ahmavaara 1999), thus resulting in more comprehensive 
performance measures.

Another extension of the TFP growth measurement is obtained within 
the general equilibrium framework presented in Sect. 4 of this chapter. 
The extended TFP growth measure is consistent with the consumer utility 
maximization behavior under budget constraint, where TFP growth rate 
is measured by subtracting the change in endowment from the change in 
consumption (ten Raa 2012). We discuss this performance measure in more 
detail below, using the notation from Sect. 4.

Definition of TFP growth in a general equilibrium framework
TFP growth in an economy is defined as Solow residual between the growth in 
overall final demand and the growth in aggregate inputs of the economy:

where the notation d denotes the change in the respective variable or expression, 
and the prices (p, r,w, t) = (p∗, r∗,w∗, t∗) are shadow prices of products and 
primary factor inputs resulting from the general equilibrium model.

Since environment and international trade also contribute to the econ-
omy, their contribution is also taken into account in this measure. The envi-
ronment enters the expression in the same way as other primary inputs, 
while the treatment of international trade depends on the type of the model 
used (in particular, international trade is zero in a closed economy; traded 
product price ratios are exogenous in a small open economy, while endoge-
nous in a large open economy).

It is easy to see that the two aggregate performance measures—SR and 
TFP—are equivalent in a closed economy with full employment and no 
environmental constraints. In a traditional one-matrix I–O framework, the 
latter assumptions imply that f = (I − A)x, the capacity utilization coeffi-
cients of capital and labor equal 1, and the net export is zero. Therefore, 
Eq. (19) simplifies into: SR =

pd[(I−A)x]−rd(Ke)−wd(Le)
p(I−A)x

. Next, we denote a 
row vector of factor prices by w̃ = (r,w) and use the primary factor require-
ments to construct the matrix of primary factor technical coefficients as 
follows:

(20)TFP =
pdf

pf
−

rd(κKe)+ wd(�Le)+ td(µMe)− pdz0

rκKe+ w�Le+ tµMe− pz0

B =
K1/x1 . . . Kn/xn
L1/x1 . . . Ln/xn
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Then, Eq. (19) turns into TFP =
pd[(I−A)x]−w̃d(Bx)

p(I−A)x
=

−p(dA)x−w̃(dB)x
p(I−A)x

, 
which is equivalent to Eq. (18).

5.3  TFP Growth Decomposition

Utilizing complementarity conditions from Sect. 4, Eq. (20) can be trans-
formed into the following sum of three terms:

The first term in this decomposition—technical change, TC—represents the 
shift of the technological frontier and therefore is equivalent to the Solow 
Residual evaluated at the equilibrium shadow prices and the optimal pro-
duction levels resulting from the model. Similarly to the traditional aggre-
gate Solow residual, this term can be attributed to different industries by 
means of the Domar decomposition (ten Raa and Shestalova 2011).

The second term is efficiency change, EC. Since efficiency is defined as the 
inverse of expansion factor c, a positive change in c corresponds to a negative 
change in efficiency.12 This term is similar to the efficiency change term that 
arises in the decomposition of Malmquist productivity index used by fron-
tier approaches such as data envelopment analysis (DEA) or stochastic fron-
tier analysis (SFA), the link to which will be discussed in Sect. 5.4.

The last term will be called terms-of-trade effect, TT. The wedge between 
the optimal and the observed net export values reflects the gains of free 
trade. Therefore, this term captures the contribution of free trade to TFP 
growth. The assumption that the balance of payments is pegged at the 
observed level follows that −pd(z − z0) = (dp)(z − z0). Therefore, this 
effect can be ascribed to changes in the terms of trade (see Diewert and 
Morrison [1986], ten Raa and Mohnen [2001, 2002], and Shestalova 
[2001] on the effect of international trade on productivity).

(21)
TFP =

pd((V − U)s)− rd(Ks)− wd(Ls)− td(Ms)

cpf

−
dc

c
−

pd(z − z0)

cpf
= TC + EC + TT

12Efficiency change can further be decomposed into efficiency sources, such as X-efficiency change and 
allocative efficiency change (Färe and Grosskopf 1996; ten Raa 2012).
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5.4  Link to Other Performance Measurement 
Approaches

The efficiency concept defined in Sect. 5.1 is similar to that from other fron-
tier methods, such as DEA and SFA. These methods define efficiency in 
terms of distance functions. See, for example, Färe and Grosskopf (1996) 
for definitions.13 Under the assumption of CRS, the efficiency measures in 
terms of input and output distance functions are equivalent. Also in the I–O 
model considered here, the efficiency measure can be interpreted in terms of 
both final demand expansion and input contraction.

Another similarity between different frontier methods is the presence 
of both technical change and efficiency change in TFP growth decompo-
sitions. In DEA and SFA, TFP growth is decomposed into two sources: 
TFP = TC + EC, while the frontier I–O-based methodology accounts also 
for the contribution due to changes in terms of trade.

More generally, ten Raa and Shestalova (2011) show that the TFP growth 
measure arising in the frontier I–O-based model is interrelated with the 
main traditional approaches to TFP, namely Solow’s residual analysis, the 
index number approach, and DEA. In particular, any of these measures can 
be derived within a general unifying framework for TFP growth measure-
ment; the term of technical change arising in all the approaches is equivalent 
to the shift of the production frontier.

A conceptual difference between different approaches to TFP growth 
measurement consists in the treatment of prices and the underlying assump-
tion of optimizing behavior. The traditional index number approach uses 
observed prices, assuming that they are competitive, so that factors are 
paid their marginal products, and no inefficiency is allowed.14 Frontier 
approaches, such as DEA or SFA, make no behavioral assumption, thus 
allowing for inefficiency. However, since only the production side is opti-
mized, the shadow prices in these analyses do not guarantee all the other 
equilibrium conditions. In contrast, a frontier I–O-based framework allows 
for inefficiency as well as defines truly endogenous shadow prices.

13While standard data envelopment analysis does not consider intermediate production, it is possible to 
extend it to account for the effect of intermediate production prices. See Färe and Grosskopf (1996) for 
more detail. Yet, as discussed later in this section, DEA shadow prices are not fully endogenous, because 
DEA does not account for material balances or income-expenditure identity.
14Alternatively, adjustments could be made for markups and returns to scale (Diewert and Fox 2008).
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6  Data Requirements and International 
Databases

From the theoretical exposition above, it is already clear that the applica-
tion of I–O analysis requires the use of I–O (or supply-use) tables, as well 
as data on primary factor inputs. While initial applications of I–O analyses 
were mainly within national economies, with more globalization and with 
more available and harmonized international I–O data, there has been a 
notable increase in the use of I–O techniques in the international economic 
and policy literature in the last two decades. Several important international 
databases have been developed over the years, facilitating multi-economy 
I–O analyses. We briefly describe these developments below, providing some 
examples of such databases and the issues associated with their construction.

I–O tables are constructed by statistical offices and specialized organiza-
tions (e.g., research institutes or universities) based on the same principles 
as the system of national accounts in order to achieve the consistency both 
within the tables and with the other data sources. Cross-country harmoniza-
tion requires the development of a common industrial classification, coordi-
nation of price-concepts and definitions used.

International organizations, such as United Nations, the OECD, and 
Eurostat, put a lot of coordinating efforts, for example, by issuing the guide-
lines for the national accounts. In 1968, the United Nations issued guide-
lines for a new overall framework which forms the basis for today’s System 
of National Accounts, describing the compilation of I–O data in the form of 
use and make tables. Therefore, the modern system is compiled making dis-
tinction between commodities and industries (Duchin and Steenge 2007). 
The latest release of the international statistical standard for the national 
accounts by the United Nations Statistical Commission is the System of 
National Accounts 2008 (SNA 2008).15,16

In Europe, a consolidated annual supply-use system and derived I–O 
tables for the European Union and the euro area were for the first time 
published by Eurostat in 2011. The consolidated European tables result 
from the aggregation of national tables and a rebalancing treatment of the 

15https://unstats.un.org/unsd/nationalaccount/docs/SNA2008.pdf.
16As pointed out by the anonymous referee of this chapter, SNA2008 introduces changes with signif-
icant impact on GDP figures (i.e., capitalization of R&D) and on trade flows as recorded in national 
accounts (i.e., international processing). Not all countries have aligned their practices to these new 
standards yet; therefore, cross-country/years comparison or data usage becomes trickier.

https://unstats.un.org/unsd/nationalaccount/docs/SNA2008.pdf
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intra-EU import use totals with the intra-EU export supply totals. Until 
recent, these tables distinguished 59 industries and 59 product groups, now-
adays extended to 64 by 64.17

With respect to modeling international flows, four levels of I–O tables 
can be distinguished, namely regional, intranational, multiregional and inter-
regional (see Wixted et al. 2006; Kanemoto and Murray 2013, for the dis-
cussion on the terminology). In a regional I–O model, a technology matrix 
for one region is specified along with product inflows in this region from 
other regions and outflows from this region to other regions. A basic exam-
ple of a one-region table is the I–O table shown at the beginning of this 
chapter. In contrast, intra-, inter-, and multiregional tables feature multiple 
regions, with separate technology matrices for each of these regions. The dif-
ference between the latter three model types lies in the level of details on 
international trade flows. In an intranational model, only net (rather than 
gross) outflows or inflows are specified for each commodity in each region. 
In a multiregional model (MRIO), gross flows of each commodity to and 
from each region are specified. Finally, an interregional model (in particular,  
an intercountry model, ICIO) displays the industry and the region of 
production as well as the industry and the region of consumption, thus, 
 allowing for analyses of differentiated product flows between economies.

Below, we describe the most-known I–O databases, namely GTAP, Eora, 
OECD ICIO, and WIOD. While GTAP is compiled for reference years, 
the three other databases provide time series of tables, thus providing more 
detail on the development over the period covered.

The most common data source of intercountry CGE modelers is the 
Global Trade Analysis Project (GTAP) Data Base, which contains complete 
bilateral trade information, transport, and protection linkages.18 The GTAP 
Data Base represents the world economy. The last release—GTAP 9—fea-
tures 140 regions, 57 commodities for three reference years: 2004, 2007, 
and 2011. The GTAP breakdown is especially focused on agricultural and 
energy products (being its strength and the fields where it is widely used, 
such as agricultural or energy focused studies, or environmental studies in 
which energy is a key issue).

The Eora MRIO database provides a time series of very detailed IO tables 
over 1990-2012 with matching environmental and social satellite accounts. 

17http://ec.europa.eu/eurostat/statistics-explained.
18https://www.gtap.agecon.purdue.edu.

http://ec.europa.eu/eurostat/statistics-explained
https://www.gtap.agecon.purdue.edu
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The database traces the bilateral flows between 15,909 sectors in 187 coun-
tries (Lenzen et al. 2012, 2013).19

Another data source is the OECD ICIO database including the tables 
for 34 industries and 71 countries (regions). The latest release provides a 
time series 1995–2011.20 Wood et al. (2019) provides more detail on envi-
ronmental and labor accounts for these tables. Also, EU ICIOs will be 
integrated into OECD ICIOs. The production of experimental EU-Inter 
Country Supply, Use and Input-Output Tables (EU-IC-SUIOTs) falls  
under the project ‘Full International and Global Accounts for Research in 
Input-Output Analysis’ (FIGARO).21

The recently developed World Input-Output Database (WIOD22) 
 provides new information regarding production fragmentation trends. The 
newest release—WIOD 2016—represents a series of tables, covering 28 EU 
countries and 15 other major countries in the world for the period from 
2000 to 2014 (Dietzenbacher et al. 2013; Timmer et al. 2014a, 2015).

To facilitate I–O analyses in the environmental field, I–O tables are 
linked to environmental accounts. The I–O framework for economic and 
environmental accounts traces environmental flows(Leontief 1970). By 
linking intermediate inputs to environmental data for all sectors in an econ-
omy, an environmentally extended I–O framework allows for an allocation 
of emission flows to final consumption. Since many goods are internation-
ally traded, this process requires the inclusion of emissions released in other 
countries to be included.

For example, several large projects were undertaken in Europe to facil-
itate the estimation of environmental impacts and resource consumption 
allocations within the EU. Eurostat (2011) has launched several projects to 
extend individual country supply and use tables (SUTs) with emission data 
and to create consolidated EU27 tables.23 The EXIOPOL project founded 
by the European Commission has integrated research efforts of institutions 
from different member states to set up a detailed EXIOBASE, currently 
available for the 2004 and 2007 reference years24 (Tukker et al. 2009, 2013; 
Tukker and Dietzenbacher 2013). EXIOBASE2 is one of the most extensive 

19http://worldmrio.com.
20http://www.oecd.org/sti/ind/inter-country-input-output-tables.htm.
21http://ec.europa.eu/eurostat/web/economic-globalisation/globalisation-macroeconomic-statistics/
multi-country-supply-use-and-input-output-tables/figaro.
22http://www.wiod.org.
23See also the Eurostat Environmental Accounts. http://ec.europa.eu/eurostat/web/environment/overview.
24http://www.exiobase.eu.

http://worldmrio.com
http://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
http://ec.europa.eu/eurostat/web/economic-globalisation/globalisation-macroeconomic-statistics/multi-country-supply-use-and-input-output-tables/figaro
http://ec.europa.eu/eurostat/web/economic-globalisation/globalisation-macroeconomic-statistics/multi-country-supply-use-and-input-output-tables/figaro
http://www.wiod.org
http://ec.europa.eu/eurostat/web/environment/overview
http://www.exiobase.eu
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environmentally extended MRIO tables available worldwide, which includes 
also detailed information on water. Furthermore, the WIOD database men-
tioned above includes links to detailed socioeconomic and environmental sat-
ellite accounts (Genty et al. 2012 and Corsatea et al. 2019).25

Also, a new database has recently been created for the comparison of 
the results based on output from the five databases described above (Eora, 
EXIOBASE, GTAP, OECD ICIOs, and WIOD).26

In addition to I–O data, performance analysis requires the data on pri-
mary inputs. A well-known international database that includes output and 
intermediate input data, as well as primary input data regarding employ-
ment and aggregate investment27 by industry in the OECD countries is the 
OECD Structural Analysis Database (STAN) and also its predecessor—the 
International Sectoral Database (ISDB). In addition to this database, to gen-
erate comparative productivity trends in the EU, the EU KLEMS Growth 
and Productivity Accounts have recently been created. The EU KLEMS 
database provides output and input measures on country-industry level, 
as well as output, input, and productivity growth measures for 25 individ-
ual member states Japan and the United States, for the period from 1970 
onward.28 The database distinguishes various capital and labor types, as well 
as three types of intermediate inputs: materials, energy, and service inputs, 
which data are derived from supply and use tables of the national accounts. 
With respect to capital and labor, the database provides a breakdown of cap-
ital into ICT and non-ICT assets; it provides a breakdown of hours worked 
per worker skill type (see O’Mahony and Timmer [2009] for more detail on 
this database).

While a lot of work has been done to improve the international data-
bases, some practical issues with their construction still pose challenges. In 
particular, there are difficulties with defining the common industry classi-
fication, data confidentiality, accounting for international trade in services 
and environmental flows (Wixted et al. 2006). These difficulties result in 
measurement issues, because of which the I–O tables relay on estimates,  

25Both EXIOBASE and WIOD have SEA (socioeconomic accounts). Note that labor is split in skills pref-
erably based on occupations in EXIOBASE, while in education in WIOD.
26For an overview, see http://www.environmentalfootprints.org/mriohome.
27For a limited number of countries, also capital stock data are available. Note that capital input series 
are generally not available from the National Accounts, where only aggregate investment is mostly 
available.
28The maximum disaggregation level includes 72 industries; some variables are at 32 industry level.

http://www.environmentalfootprints.org/mriohome
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which may be subject to errors. The use of stochastic methods helps to over-
come some data issues (see, e.g., ten Raa and Steel [1994], ten Raa and 
Rueda-Cantuche [2007], Rueda-Cantuche and Amores [2010], and Rueda-
Cantuche et al. [2013] for more detail on the use of stochastic methods in 
I–O analysis).

7  Empirical Applications

In this section, we focus on three application areas of I–O framework, 
namely international and interregional trade, environmental analyses, and 
policy scenario analyses. In the literature, I–O approach has been applied 
both to describe the observed allocations and to derive potential efficient 
allocations. Since both types of analyses are valuable, we include both types 
of examples in this section, illustrating the applicability of I–O models in 
these research areas.

7.1  International and Interregional Trade

This section provides examples of I–O models measuring the direction of 
technical change, TFP growth and efficiency in open economies.

Direction of Technical Change

Since the early 1990s, the trade content is more and more dominated by 
intermediate goods (e.g., Arto et al. 2015). This trend is especially strong 
in manufacturing, where the foreign value-added content of production 
increases on a global scale. By accounting for intermediate production, I–O 
analysis offers a useful decomposition technique, providing insight in the 
direction of technical change in different countries.

Timmer et al. (2014b) use the WIOD database, described in Sect. 6, to 
trace the value added to all capital and labor inputs employed in the pro-
duction process of final manufacturing goods. To adequately account for 
differences in labor, they distinguish three levels of worker skills, based on 
educational attainments. The cells of I–O tables show the origin of all value 
added needed for the production of a final good, allowing for the representa-
tion of the total final output value of each country and industry as a value 
chain, thus tracing all intermediate good values to their origin. By includ-
ing 40 countries (representing more than 85% of the global GDP) over the 
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period 1995–200829 and decomposing the final output value of manufac-
turing by its international content, the study established four major stylized 
facts: (i) a rapid increase of the foreign share in the value added of a final 
product, also known as ‘international fragmentation’30; (ii) a strong shift 
toward value being added by capital and high-skilled labor, and away from 
less-skilled labor; (iii) within value chains, an increased high-skilled labor 
share of advanced nations; and (iv) perhaps surprisingly, an increased capital 
share of the emerging economies, while a declining share of low-skilled labor 
in their value added.

TFP Growth Measurement

As explained, I–O analysis offers a framework for the measurement of TFP 
growth. Here, we focus on applications in the context of frontier models (see 
Wolff [1994] for more detail on productivity measurement within the tradi-
tional I–O framework).

An important advantage of the frontier I–O-based approach to the TFP 
growth measurement is that it enables decomposition into technical change, 
efficiency change, and the terms-of-trade effect. Therefore, the model can 
deliver new insights into the productivity drivers in the context of open 
economies. For example, ten Raa and Mohnen (2002) analyze productivity 
changes in the Canadian economy. The Canadian economy is modeled as 
a small open economy,31 which is a price taker in the world market; hence, 
the traded goods prices are exogenously determined, and the exchange rate 
adjusts producing the terms-of-trade effect on TFP growth. The analysis 
of the TFP growth reveals the change in the sources of TFP growth over 
the period 1962–1991. In particular, in the beginning of the period, TFP 
growth was driven by technical change, then by efficiency, and at the end 
by the exceptionally high terms-of-trade effect. Similarly, Shestalova (2001) 
identifies the sources of TFP growth in a model of three large economies 

29The end of the period was chosen in such a way that the period ends just before the large world econ-
omy crisis.
30Two important trends in manufacturing are offshoring and international fragmentation. Here, off-
shoring refers to the transfer of parts of the production process (goods or services) to international 
locations, while international fragmentation refers to the transformation of previously continuous pro-
duction processes taking place in one location into those involving sub-processes taking places in differ-
ent locations.
31The model distinguishes 50 industries and 94 commodities, some of which are assumed to be 
non-tradeable, and distinguishes three capital types: buildings, equipment, and infrastructure.



Intermediate Inputs and Industry Studies …     593

linked by trade—the United States, Japan, and Europe—in 1985 and 1990. 
Since this paper considers three large economies, all prices are endoge-
nous. The analysis identifies Japan as having the highest TFP growth in this 
period, which was driven by technical change.

Efficiency Analysis

The efficiency measure that arises in frontier I–O models provides useful 
insights on the effects of trade in open economies. Several studies apply 
frontier-based models for the analysis of efficiency and gains of free trade. In 
particular, ten Raa and Mohnen (2001) for the analysis of trade between the 
European and Canadian economies and Sikdar et al. (2005) for measuring 
the effects of freeing bilateral trade between India and Bangladesh.

The efficiency measure has also been applied within the field of econom-
ics of development, focusing on inter-regional flows and consequences of 
liberalization for welfare allocation between different income groups and 
inequality. Ten Raa and Pan (2005) and ten Raa and Sahoo (2007) utilize 
this methodology to study the effects of competitive pressures in the China 
and India (respectively). Both analyses include detailed modeling of differ-
ent household groups in order to study welfare allocation between these 
groups, thus identifying the groups that would be winners and losers from 
competition.

7.2  Environmental Analysis

There is a trade-off between productivity and environmental objectives, 
because production increases are often accompanied by emission growth 
and require more non-renewable resources.32 Exploring this interrelated-
ness, input-output approaches have been extended to include environment. 
Extended I–O models have been applied in different policy contexts, in par-
ticular, in CGE environmental analyses (such as GEM-E333), measurements 
of the effects of environmental regulation on productivity, providing useful 
insights for international agreements (such as Paris Agreements), or carbon 

32Many research and policy efforts have been put to internalize the environmental externalities of the 
economic activity, in particular, in the efficiency realm (see, e.g., Amores and Contreras 2009).
33GEM-E3 stands for the General Equilibrium Model for Economy-Energy-Environment. See more 
detail on https://ec.europa.eu/jrc/en/gem-e3/model.

https://ec.europa.eu/jrc/en/gem-e3/model
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price information. Below, we consider the use of the integral accounting 
framework for assigning responsibility for internationally traded greenhouse 
gas emissions34 and evaluating pollution haven hypothesis.

While the model introduced in Sect. 4 considers externalities that arise in 
the production phase, one should keep in mind that externalities may arise 
also during the consumption or disposal phases, that is during the whole 
life-cycle of the products, which gives rise to an important field linking I–O 
and life-cycle analyses.

Because of the capability to trace product flows in a consistent way, I–O 
analysis provides a natural tool for attributing direct and indirect emissions 
associated with final consumption to their sources. Multi-region input-out-
put (MRIO) models have increasingly been used for this type of research 
because they provide an appropriate methodological framework for attrib-
uting emissions both at the national and at the supra-national levels. More 
availability of environmental accounts and higher computer processing 
capacities have spurred more application of these approaches (e.g., Minx 
et al. 2009; Wiedmann 2009). Presenting the experience with the use of 
environmentally extended MRIO models from the UK, Wiedmann and 
Barrett (2013) argue that these models deliver specific, policy-relevant infor-
mation that would be impossible to obtain otherwise.

An important methodological advance in this area is the development of 
integral accounting framework. While the traditional territorial emission 
accounting allocates emissions to places where they are generated (territo-
rial or producer responsibility), the role of demand for products and inter-
national product flows has also been recognized in the literature, giving 
rise to a more integral emission accounting framework. On the one hand, 
consumer responsibility approach follows the flows of goods and services, 
accounting for the embodied emissions. On the other hand, income respon-
sibility considers the flow in the opposite direction of payments for goods 
and services, thus extending the definition of downstream responsibility 
beyond the product use and disposal (enabled emissions). Total responsi-
bility reconciles the two (Rodrigues et al. 2006, 2010; Lenzen and Murray 
2010; Marques et al. 2012; see also Domingos 2015, for an overview).

Next to these studies, I–O analysis was also applied to evaluate the pol-
lution haven hypothesis. The hypothesis suggests that the implementation 
of stringent environmental policies by industrialized countries may lead to 
the relocation of dirty production to developing countries, which typically 

34It is most commonly defined as the direct and indirect greenhouse gas emissions, measured in tonnes 
of carbon dioxide equivalent using a 100-year horizon (Fuglestvedt et al. 2003; Minx et al. 2009).
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adopt less stringent environmental regulations, thus turning them into  
pollution havens (Coperland and Tailor 2003). Using traditional I–O meth-
odology, Dietzenbacher and Mukhopadhyay (2007) address the question 
whether India becomes a pollution haven. Kagawa (2008) uses a frontier 
(linear programming) model to analyze whether competitive pressure and 
Japan’s compliance with the Kyoto protocol may turn China into a pollution 
haven. Both papers do not find this effect.

Ten Raa and Shestalova (2015a, b) formulate a complementarity model 
with environmental constraints, demonstrating the valuable capabilities of 
the I–O methodology in facilitating policy scenario analyses, which is the 
topic of the next section.

7.3  Policy Scenario Analysis for International Trade 
and Environment

Because of its ability to account for both trade in intermediates and environ-
mental externalities, the I–O methodology is useful in evaluating the impact 
of different policies in open economies which are subject to environmental 
and other constraints.

Baumol and Wolff (1994) stress the usefulness of I–O analysis in the field 
of policy analysis, providing examples of such analyses for policies aimed at 
reducing petroleum use through subsidies for other energy sources, reducing 
polluting emissions of production processes, and increasing employment.

Policy scenario analyses often need to cope with uncertainty; therefore, 
any insight into the sensitivity of the model prediction to uncertainty about 
the model parameters would be very valuable. Uncertainty is especially a 
concern in the case of environmental policies, where it arises with respect 
to both the measurement of emissions and the effects of abatement policies. 
Wiedmann (2009) reviews analyses dealing with uncertainties associated 
with MRIO models.

Ten Raa and Shestalova (2015a, b) illustrate how the I–O model consid-
ered in Sect. 4 of this chapter could be amended to cope with uncertainty in 
a policy scenario analysis on the effect of pollution caps. The paper considers 
a system of open economies, linked by trade, and applies the ‘economic sys-
tem’ version of the I–O model expressed by Eq. (12), simulating the effect 
of emission caps on greenhouse gas emissions. Different policy scenarios are 
modeled by modifying the emission constraints in this system; uncertainty 
with respect to the underachievement of pollution caps is incorporated by 
the inclusion of an extra randomly distributed pollution cap parameter for 
each economy.



596     V. Shestalova

8  Concluding Remark

In this chapter, we reviewed the literature on the use of I–O analysis in 
efficiency and productivity measurements covering also extensions to envi-
ronmental analysis, explaining the technique, its place in the productivity 
literature, and its practical applications. We also reviewed the limitations 
and challenges that play a role in practice, thus defining the application 
scope of this methodology.
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1  Introduction

The mainstream definition of neoclassical economics has long focused 
on the analysis of scarce resources that can be marketed through demand 
and supply. As underlined in Mehta (2013), the ‘scarcity’ concept in neo-
classical economics concerns mostly resource allocation through markets 
where there exist infinite substitution possibilities of abundant resources to 
scarce ones. Yet the non-priced outcomes of production activities have to 
some extent been overlooked. Following the publication of Our Common 
Future (Keeble 1988), the concept of sustainable development has come to 
the political forefront. Sustainable production plays a key role to this end. 
Production processes frequently generate not only the intended outputs, 
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but also negative and positive environmental externalities. This calls for an 
extension of the usual production framework.1 The main challenge for the 
empirical analyst is to do this in an axiomatically accurate way. This chap-
ter provides a theoretical review and discussion of the existing approaches to 
deal with negative externalities.2 This mainly includes models that consider 
pollution as an input or as an output under the weak disposability assump-
tion (WDA); materials balance models and the multi-equation modelling 
of pollution-generating technologies. Though the last decades have seen an 
emergence of such models, the existing reviews have focused on a method-
ological discussion. For instance, Dakpo et al. (2017b) and Adler and Volta 
(2016) have discussed pollution-generating technologies regarding the non-
parametric framework of data envelopment analysis (DEA), and Zhou et al. 
(2018) have undertaken a bibliometric analysis of pollution studies. In this 
chapter, we present a more theoretical discussion without an explicit allu-
sion to performance benchmarking (DEA or stochastic frontier analysis—
SFA). Our work is grounded on Førsund (2009, 2017, 2018). This chapter 
complements these latter papers with a specific discussion of each of the 
models that deal with bad outputs in a more exhaustive way. We have also 
provided a brief discussion related to abatement technologies. If traditionally 
environmental bads are mostly encountered in the literature, environmen-
tal goods (positive externalities) must also be credited to decision-making 
units (DMUs) that produce them. For instance, in livestock farming, carbon 
sequestration in grasslands area is viewed as one of the most important pil-
lars for mitigating greenhouse gas (GHGs) emissions from this sector and 
therefore this positive non-marketed output should not be neglected. In this 
chapter, we propose how to deal with environmental goods. Finally, this 
chapter summarizes the lessons from the different models discussed as well 
as the challenges that need to be dealt with in modelling environmentally 
adjusted production technologies.

2In this chapter, we refer to negative externalities as environmental bads, pollution, residuals, detrimen-
tal outputs, undesirable outputs, bad outputs, wasters or unintended outputs. On another hand, we 
refer to the traditional outputs as good outputs or intended outputs. About positive externalities, we 
refer to them as environmental goods.

1Pigou (1920) initiated the integration of externalities into a partial static analysis framework and sup-
ported the idea that public intervention is a vector of efficiency. Welfare economics has thus focused on 
the processes of internalization of these externalities.
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2  The Thermodynamics of Pollution 
Generation

Though the concepts of thermodynamics are largely applied to physics or 
chemistry, they have been extended to various life sciences (biology, ecology, 
psychology) and lately to economics. The first discussion of economic systems 
in relation to thermodynamics and the second law can be dated to Georgescu-
Roegen (1971). More discussion on the entropy law and environmental eco-
nomics can be found in Ayres (1998). The first law has been introduced in 
economics by Ayres and Kneese (1969) in what is known as the materials bal-
ance principle (Kneese et al. 1970). The materials balance principle acknowl-
edges mass conservation and, applied to the economic system, it translates as: 
‘the mass of all material inputs from the environment to the economy, ignoring 
flows from the environment directly to the final consumption sector, equals the 
mass of inputs to the intermediate product sectors; the mass of inputs to the 
intermediate product sectors equals the mass of products supplied to the final 
consumption sector plus the mass of residuals discharged to the environment 
minus the mass of materials recycled; and the mass of all final products equals 
the mass of materials recycled plus residuals generated by the final consump-
tion sector. Assuming no accumulation or recycling, the mass of all inputs from 
the environment must equal the mass of all residuals discharged to the environ-
ment’ (James 1985, pp. 271–272). Considering a circular flow economy, the 
materials balance can be described as in Fig. 1.

Fig. 1 Materials balance in a circular economy (Source Callan and Thomas 2009, p. 5)
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It is worth stressing that while Fig. 1 describes the material flows between 
different economic agents and nature, we will only focus on the firms’ side 
in this chapter as mentioned in the introduction section.

To summarize, the main message on the role of thermodynamics on eco-
nomic activities has been adequately conveyed in the following saying by 
Faucheux (1994, p. 8): ‘energy and mass conservation, together with the 
second law of thermodynamics (entropic irreversibility), implies the inevi-
tability of unwanted by-products or waste energy in the course of economic 
production and consumption’. Baumgärtner et al. (2001) used the term of 
‘joint production’ to describe economic systems that simultaneously produce 
desirable and undesirable goods.

Formally, the mass conservation equation can be written as follows:

where xM represents the material inputs, y the desirable outputs and z 
the residuals also known as the ‘uncontrolled byproducts’ (Rødseth and 
Romstad 2013). In (1), xM , y and z are all expressed in the same mass con-
tent. Formula (1) can be generalized to several material inputs and outputs 
using mass contents as in formula (2).

In (2), r can be viewed as the vector of material coefficients per unit of mass 
in the desirable outputs. In many applications (especially in the case of pol-
lution), these coefficients are set to zero (Coelli et al. 2007; Rødseth and 
Romstad 2013; Hampf and Rødseth 2015). Due to non-homogeneity in the 
inputs and outputs, and also the role of some external factors (like weather), 
the material flow coefficients (a, c, r) may differ from one DMU to another.

According to Førsund (2017), the mass balance equations in (1) and (2) 
are accounting identities which hold true for any observation (efficient or not) 
and introduce some restrictions on the specification of the production tech-
nology. Besides, the mass balance equation as accounting identity does not 
explicitly explain how residuals are actually generated (Førsund 2009, 2017). 
As a consequence, we do believe that the mass balance equation cannot be 
directly used to derive optimal economic behaviours. Finally, the relations 
in (1) and (2) do not include non-material or service inputs xS, which can 
be used to some extent as ‘dematerialization’ to reduce the levels of residuals 
by scaling down the amount of material inputs (Ayres and Ayres 2002, p. 9;  
De Bruyn 2002; Baumgärtner 2004, p. 311). This issue will be discussed in 
the next sections.

(1)xM = y+ z

(2)a′xM = r′y+ c′z.
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The second law of thermodynamics implies the following (Baumgärtner 
et al. 2001; Pethig 2006):

The relation in (3) has been included in the modelling of polluting technol-
ogy by Rødseth (2015) as the axiom of input essentiality for bad output.

In practice, a production process involves a great number of variables 
among which many are unobservable and therefore not accounted in the 
mass balance equation. Thereby, the equality in relations (1) and (2) may be 
violated. Since not all the variables can be accounted for, we consider that 
what matters is a proper modelling of the production technology without 
explicit inclusion of mass balance equations.

3  Modelling Pollution-Generating 
Technologies

In this section, we discuss two ways of representing pollution-generating 
technologies. The first one is based on the single representation of pollut-
ants, considering pollution as either an input or an output and the second 
one is the multi-equation representation, which describes the production 
system as a collection of different subprocesses. Given the argument made 
above, stating that all physical production activities are governed by the 
materials balance principle, the discussion that follows will refer to this con-
cept to discuss all models.

3.1  Single Representation of Pollution-Generating 
Technologies

Frisch (1965, p. 10) has defined a single production technology as follows: 
‘if a production process is such that it results in a single, technically homoge-
neous kind of goods or services, we call it single production’. In this frame-
work, residuals have been treated either as inputs or as outputs. Let’s denote 
x = (x1, x2, . . . , xK) ∈ R

K
+ the vector of all inputs (material xM and ser-

vice inputs xS), y =
(
y1, y2, . . . , yQ

)
∈ R

Q
+ the vector of good outputs and 

z = (z1, z2, . . . , zR) ∈ R
R
+ the vector of residuals.

(3)
dz

dxM
> 0
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Residuals as Inputs

A single representation of the production technology �, where residuals are 
treated as inputs, is:

The graph technology in (4) can also be described using input and output 
sets (correspondences) that summarize the properties of the isoquant curves. 
The input correspondence is:

In (5), L(y) is the input set or the input requirement set (Färe and 
Grosskopf 1996). Similarly, the output correspondence is represented by:

where P(x, z) is the output set. These representations of the production tech-
nology are very helpful in focusing on particular aspects (marginal rates of 
substitution for example) of production such as substitution among outputs 
or inputs.

Equivalently, the production technology described in (4) can also be rep-
resented using the transformation function:

For any point located at the boundary of the technology or at the transfor-
mation frontier, we can write the following:

The signs of the derivatives in (8) are related to the monotonicity condi-
tions, which imply that all the variables are strongly disposable. In other 
words, we have:

(4)� =

{
(x, y, z) ∈ R

K+Q+R
+ |(x, z) can produce y

}

(5)L : R
Q
+ → L(y) =

{
(x, z) ∈ R

K+R
+ |(x, y, z) ∈ �

}

(6)P : RK+R
+ → P(x, z) = {y ∈ R

Q
+|(x, y, z) ∈ �}

(7)� =

{
(x, y, z) ∈ R

K+Q+R
+ |F(x, y, z) ≤ 0

}

(8)F(x, y, z) = 0,Fy =
∂F

∂y
≥ 0,Fx =

∂F

∂x
≤ 0,Fz =

∂F

∂z
≤ 0

(9)
(x, y, z) ∈ �, ŷ ≤ y ⇒ (x, ŷ, z) ∈ �

(x, y, z) ∈ �, x̂ ≥ x, ẑ ≥ z ⇒ (x̂, y, ẑ) ∈ �
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Moreover, in the presence of inefficiency, the transformation relation in (8) 
can be written as F(x, y, z) < 0. Let’s assume Fz < 0, then using implicit 
function theorem, one can express z as a function of x and y (Murty et al. 
2012):

In (10), the trade-off between desirable outputs and residuals is captured by 
the following:

This positive correlation between desirable and residuals has been—to our 
point of view—the sole reason for studies that consider residuals as inputs. 
For instance, considering that pollution generates social costs and that an 
input orientation is straightforwardly interpreted in terms of costs savings 
(minimization), some authors treat pollution as an input in the production 
technology (Tyteca 1997; Courcelle et al. 1998; Hailu and Veeman 2000; De 
Koeijer et al. 2002; Reinhard et al. 2002; Prior 2006; Telle and Larsson 2007; 
Yang and Pollitt 2009; Mahlberg et al. 2011; Mahlberg and Sahoo 2011). 
Their argument is that detrimental variables are considered as an indirect ‘use 
of natural resources’ (Dyckhoff and Allen 2001), or the use of environment as 
a ‘free’ input (Paul et al. 2002; Considine and Larson 2006), and that, empir-
ically, pollution and good outputs are generally positively correlated.

The trade-off in (11) is obtained by assuming that the input levels are 
fixed. Yet under this condition, considering the mass equation in (1) and 
differentiating it totally implies:

The conservation law implies a negative constant correlation between desira-
ble outputs and residuals for fixed levels of material input, which contradicts 
the results in (11). Given that the materials balance is not a technology but 
rather an accounting identity, the correlation in (12) implies that two obser-
vations may have the same level of xM but different values of y and z.

(10)z = h(x, y),F(x, y, h(x, y)) = 0

(11)
∂z

∂y
=

∂h(x, y)

∂y
= −

Fy

Fz

≥ 0

(12)0 = dy+ dz ⇔
dy

dz
= −1 < 0
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Let us suppose that the material inputs are no longer fixed. Therefore, we 
have:

The last constraint in (13) is always non-negative because the mass of the 
material inputs is greater or equal to the mass of the residuals (thereby 
dxM
dz

≥ 1). From (13), it appears that the trade-offs in (11) are only feasible 
if the material inputs are no longer held fixed. In other words, ceteris paribus, 
trade-offs in (11) are not ‘thermodynamiaclly’ feasible.

Similarly, the trade-offs between residuals and all the inputs (for fixed 
level of intended outputs) are obtained by:

The trade-offs in (14) are physically inconsistent because the relation in (14) 
is valid for all the inputs, be it materials or non-materials. Yet from the dis-
cussion in Sect. 2, material inputs generate residuals as in the expression of 
the entropy law in formula (3). However, for service inputs, the relation in 
(14) will simply reflect dematerialization.

It appears that the modelling of residuals as inputs has been mainly guided 
by the search for a positive relation between desirable outputs and residuals, 
while all other relations have been overlooked. Yet until now all the demonstra-
tions consistently reject the modelling of pollution as input given the materials 
balance principle. At this point, one may wonder why many empirical stud-
ies have considered residuals as inputs despite the aforementioned issues. We 
believe that the simplicity of this modelling facilitates empirical illustrations.

The relation in (14) is a consequence of modelling residuals as inputs. It 
is worth noting that, given the input essentiality axiom, zero residuals imply 
also zero material inputs and it is clear that production cannot occur with 
zero level of material inputs.3 This last feature has been considered restrictively 
as the null-jointness property in Shephard and Färe (1974) and Färe et al. 
(1989). The null-jointness of desirable outputs and residuals is formalized as:

(13)dxM = dy+ dz ⇔
dy

dz
=

dxM

dz
− 1 ≥ 0

(14)
∂z

∂x
=

∂h(x, y)

∂x
= −

Fx

Fz

≤ 0

(15)(x, y, z) ∈ � and z = 0, then y = 0

3See Pethig (2003) and Baumgärtner (2004) for more discussion on the Inada conditions.
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As formulated in (15), the null-jointness property is very restrictive and is 
incompatible with the materials balance principle. Following the discussion 
in the previous paragraph, a proper null-jointness property can be written as:

Moreover, from the mass balance equation in (1) we know that y < xM, 
which implies that FxM < 1, which in turn rules out the Inada condition 
limxM→0 FxM = ∞.

It is worth noting that the amount of residuals can be reduced through 
end-of-pipe activities or investment into new technologies. As aforemen-
tioned, however, wastes cannot be infinitely recycled. Moreover, as under-
lined by Førsund (2009), it is difficult to imagine how increasing residuals 
(all the other inputs fixed) will increase the intended output. Clearly, residu-
als are consequences of production processes and not the opposite.

The production technology presented in (5) can also be described using 
the Shephard input distance function (Shephard 1953, 1970) defined as:

Considering the mass condition in (1) and the distance function, we have:

As pointed out in Coelli et al. (2007), the only solution to the problem in 
(18) is when θ = 1, which implies no inefficiency can be measured under 
the case where residuals are treated as inputs.4 There seems to be a misuse 
of the materials balance in demonstration (18), where frontier levels of the 
variables are inserted in the materials balance identity. This may not be the 
appropriate way of using the materials balance for an unobserved frontier 
point. Besides, as said earlier, the materials balance is also valid for inefficient 
points. Therefore, a point worth discussing relatively to the demonstration 
in (18), which is also put forward in Coelli et al. (2007), is the disposabil-
ity of the intended outputs. In the technology described by the input dis-
tance function in (17), the intended outputs are strongly disposable. Yet in 
demonstration (18), those outputs are held fixed. If we introduce this dis-
posability of intended outputs in (18), we have:

(16)(x, y, z) ∈ � and xM = 0, then z = 0 and y = 0

(17)Di(x, y, z) = sup
{
θ :

( x
θ
,
z

θ

)
∈ L(y)

}

(18)
xM

θ
= y+

z

θ
⇔

1

θ
(xM − z) = y

4See Hoang and Coelli (2011) for the case of directional distance function.
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and then some inefficiency can be measured especially if ŷ < y. The demon-
stration in (19) complies with the materials balance but it doesn’t mean that 
the model is correct given the trade-off issues (garbage-in, garbage-out).

At this point, the question is: Are there some special conditions under 
which residuals can be treated as inputs? The answer to this question has 
been provided in Ebert and Welsch (2007), from which most of the follow-
ing developments are derived.

Let us explicitly split the input into material inputs xM and service inputs 
xS. Ebert and Welsch (2007) have considered the following representation:

where F satisfies the usual productivity axioms (Chambers 1988) account-
ing of course for the limitations introduced by the mass balance equation. 
Considering the mass balance equation, the production system in (20) can 
be transformed into:

The developments in (21) are possible by considering y as an implicit func-
tion G of z and xS. In the last equation in (21), residuals z play the role of 
input variable (see Ebert and Welsch 2007 for more discussion of the prop-
erties of the function G).

The difference between the representations in (21) and (8) is that in the 
former material inputs are replaced by the residual levels, while in the lat-
ter both material inputs and residuals appear in the transformation function. 
It seems that in model (8), there is a double accounting of material inputs 
given that residuals are intrinsically related to those inputs.5

A particular case of the model in (21) can be obtained when there are 
no service inputs in the technology described by the function G. Then 
the good output is a function of only the residuals: y = G(z). This case is 

(19)xM

θ
= ŷ +

z

θ
⇔

1

θ
(xM − z) = ŷ ≤ y

(20)y = F(xM , xS), xM = y+ z

(21)y = F(y+ z, xS) ⇔ y = G(z, xS),
∂G

∂xS
≥ 0,

∂G

∂z
≥ 0

5This situation particularly makes sense since the relation describing how bad outputs are generated is 
missing.
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reminiscent of the frontier eco-efficiency (FEE) discussed in Kortelainen and 
Kuosmanen (2004) and Kuosmanen and Kortelainen (2005), where residu-
als (environmental damages) are used as input to explain the value added.6 
The traditional definition of eco-efficiency is the ratio of value added to 
environmental damages. It links the ecological and economic outcomes, 
abstracting the conventional relations between inputs and outputs. In 
other words, the economic outcome is maximized given the environmental 
impacts, or, conversely, the environmental by-production is minimized given 
the economic outcome (profit, added value).7

Finally, though Ebert and Welsch (2007) have proved that residuals can 
be treated as inputs, their model representation still does not explicitly show 
how residuals are actually generated. Therefore, substituting for xM may also 
be a misuse of the materials balance. Besides, describing a production pro-
cess will show residuals as outputs of the transformation and not inputs; and 
for an economic actor, if residuals are considered as input, then their opti-
mal level can be zero given other input quantities. Hereby, we can conclude 
that considering residuals as inputs actually goes against the materials bal-
ance principle.

Residuals as Outputs

In this part, we discuss residuals as outputs under the classic strong dispos-
ability assumption and also under the WDA (Shephard and Färe 1974). Let 
us redefine the graph technology and the input and output requirement sets 
as follows:

Under the strong disposability assumption, the residuals are treated as 
another good output. The single structure of production technology has 
the maximum degree of assortment, defined by Frisch (1965) as the ability 

(22)

� =

{
(x, y, z) ∈ R

K+Q+R
+ |x can produce (y, z)

}

L : R
Q+R
+ → L(y, z) =

{
x ∈ R

K
+|(x, y, z) ∈ �

}

P : RK
+ → P(x) =

{
(y, z) ∈ R

Q+R
+ |(x, y, z) ∈ �

}

6Lauwers (2009) has considered FEE models as a special case of pollution-generating technology mod-
elling. Moreover, he has referred to the model presented in Eq. (17) as environmentally adjusted pro-
duction efficiency models.
7The genesis of the FEE model can be found in Tyteca (1996, 1997).
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to divert inputs to the production of any output without the generation of 
extra costs. Therefore, given this maximum flexibility the levels of residu-
als can be zero, which actually contradicts the mass balance equation. In 
Fig. 2, we have plotted the output isoquant and under the free disposability 
assumption the isoquant is represented by (OabcdO), which shows the pos-
sibility of zero residuals given some fixed levels of input.

A Shephard output distance function representing the technology will 
imply under this case an equiproportionate increase in both residuals and 
desirable outputs, which controverts the idea that residuals—especially bad 
environmental outputs—generate negative externalities and need to be 
reduced. The Shephard output distance function is defined as:

Using the mass balance equation in (1) and the Shephard output distance 
function, we have:

(23)Do(x, y, z) = inf
{
� :

(y
�
,
z

�

)
∈ P(x)

}

(24)xM =
y

�
+

z

�

Fig. 2 Outputs isoquant representation under strong and weak disposability 
assumptions
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Again, the only solution to problem (24) is when � = 1 and hence no 
inefficiency can be measured. As previously, the material input levels are 
held fixed and the strong disposability assumption of these inputs is not 
accounted for.

In terms of trade-offs, if we consider the transformation in (25):

Using implicit function theorem, it is easy to show that for a fixed level of 
inputs dy

dz
≤ 0, which is coherent with the mass condition as demonstrated 

in (12). When desirable outputs are fixed, we have the following relation: 
dz
dx

≥ 0, which is true for all the inputs (materials and services) yet we know 
that dematerialization through substitution of service inputs to material ones 
can help mitigate the level of residuals. In the absence of service inputs, the 
relation dz

dx
≥ 0 is consistent with the mass balance equation if we totally 

differentiate the equation in (1) under a fixed level of the intended output. 
However, as we show using the Shephard output distance function, treating 
residuals similarly as another good output violates the idea that residuals cre-
ate social costs that need to be alleviated.

To overcome the previous issues, Färe et al. (1986) have proposed the 
WDA to deal with residuals in addition to the null-jointness property in 
(15). In this peculiar situation, WDA means that reducing undesirable out-
puts requires decreasing the desirable output quantities by the same factor 
(Färe et al. 1996). Formally, the WDA can be summarized as:

Graphically, the WDA disposability of both residuals and intended-outputs 
restrains the output requirement set in Fig. 2 to (ObcO). However, the strong 
disposability of intended outputs is generally maintained. Then the output set 
is defined by (ObcdO). The WDA property presented in (26) is based on fixed 
levels of input and using the mass balance equation in (1) will imply γ = 1. 
In terms of distance function, Färe et al. (1989) estimated the hyperbolic effi-
ciency which allows a simultaneous equiproportionate expansion of the good 
outputs and a contraction of the bad outputs and inputs by the same radial 
factor. Yet Coelli et al. (2007) prove the inconsistency of this measure regard-
ing the mass balance equation (the efficiency equals one as a solution).

The hyperbolic distance function can be represented by:

(25)F(x, y, z) = 0,Fy =
∂F

∂y
≥ 0,Fx =

∂F

∂x
≤ 0,Fz =

∂F

∂z
≥ 0

(26)(y, z) ∈ P(x), 0 ≤ γ ≤ 1 ⇒ (γ y, γ z) ∈ P(x)

(27)Dh(x, y, z) = inf
{
� :

(
�x,

y

�
, �z

)
∈ �

}
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Using the mass balance equation and the hyperbolic distance function 
yields:

Again, no inefficiency can be observed. Clearly, the hyperbolic efficiency 
estimation in (27) goes against the materials balance. Let us go one step fur-
ther and introduce explicitly the WDA in the formulation in (28). We have:

The previous demonstrations prove that the WDA may not be consistent 
with materials balance unless very restrictive condition where all observa-
tions are efficient and the abatement factor (scaling factor or disposability 
parameter) γ equals unity. The production technology under the WDA has 
also been described using a directional distance function (Chung et al. 1997; 
Färe and Grosskopf 2004b) and the inconsistency with the materials balance 
is discussed in Hoang and Coelli (2011). Alternative distance functions to 
(27) can be proposed, for example:

Introducing this distance function in the mass balance equation yields:

If we consider that in (30), material inputs are actually strongly disposable, 
we have:

This last demonstration is consistent with the materials balance with the 
introduction of inefficiency in the use of material inputs. However, this is 

(28)

�xM =
y

�
+ �z ⇔

�
2(xM − z) = y

⇒ � = 1

(29)

�xM =
γ y

�
+ �γ z ⇔

xM =
γ y

�2
+ γ z

⇒ � = 1, γ = 1

(30)Da(x, y, z) = inf
{
� :

(
x,

y

�
, �z

)
∈ �

}

(31)
xM =

y

�
+ �b = y+ b

⇒ � = 1

(32)x̂M =
y

�
+ �z ≥ xM = y + z
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not a strategy for a rational producer to become inefficient in order to com-
ply with the materials balance principle.

In terms of trade-offs, the isoquant in Fig. 2 shows that the relation 
between residuals and intended outputs can alternatively be positive (along 
Ob), negative (along bc) or zero (along cd). See Dakpo et al. (2017b) for 
an extensive discussion of the limits of the WDA. Besides, most of the lim-
its discussed for the case where residuals are treated as inputs or as other 
good outputs are also valid here. Along the Ob on the isoquant, residuals are 
like inputs, and along bc they are like another good output.8 Despite those 
limitations, the WDA is the most widely used approach for benchmarking 
under a pollution-generating technology (Färe et al. 1996, 2001a, 2005, 
2007; Weber and Domazlicky 2001; Arocena and Waddams Price 2002; 
Boyd et al. 2002; Lee et al. 2002; Domazlicky and Weber 2004; Zaim 2004; 
Picazo-Tadeo et al. 2005; Yörük and Zaim 2005; Kumar 2006; Marklund 
and Samakovlis 2007; Watanabe and Tanaka 2007; Lozano and Gutiérrez 
2008; Picazo-Tadeo and Prior 2009; Kumar Mandal and Madheswaran 
2010; Sahoo et al. 2011; Lee et al. 2016; Kao and Hwang 2017; Shen et al. 
2017), even though Leleu (2013) has shown that many studies have inap-
propriately specified this property (incorrect linearization in the case of 
DEA). Some extensions of the WDA have even been discussed in the lit-
erature (Kuosmanen 2005; Zhou et al. 2008a; Kuosmanen and Podinovski 
2009; Yang and Pollitt 2010; Kuosmanen and Kazemi Matin 2011; 
Podinovski and Kuosmanen 2011; Valadkhani et al. 2016; Chen et al. 2017; 
Pham and Zelenyuk 2018; Roshdi et al. 2018).

In the DEA literature, to address the issues associated with negative/pos-
itive shadow prices of residuals due to the WDA, many studies have used 
non-radial or slack-based measures (SBM) that account for all the sources 
of inefficiency and allow to compute the inefficiency separately for each 
input and output. They are termed non-radial measures and are consid-
ered ‘complete’ since they take into consideration all types of inefficiencies 
(Cooper et al. 1999a, b). For instance, one can find non-radial directional 
distance functions (Chang and Hu 2010; Zhou et al. 2012; Zhang et al. 
2013); a weighted Russell directional distance model (WRDDM) in  

8The fundamental problem with Fig. 2 is that when the bad z is treated as a normal good, then the 
obvious result is that a zero level of z can be realized. However, the crucial point is that the relation 
showing how z is generated is missing. The apparent trade-off between y and z is therefore an illusion 
and goes against the materials balance. The bad output is generated using input xM that is constant 
along the output transformation curve implying that y cannot be increased and z decreased. This fact 
is independent of whether disposability is strong or weak, it simply follows from how the bad output is 
generated (Førsund 2018).
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Chen et al. (2011) and Barros et al. (2012); the additive efficiency index 
(AEI) in Chen and Delmas (2012); range adjusted measures (RAM) in 
Sueyoshi and Goto (2010, 2011b) and Sueyoshi et al. (2010); median 
adjusted measures (MAM) in Chen (2013); and SBM in Tone (2004), 
Lozano and Gutiérrez (2011), and Song et al. (2014). Despite the interesting 
features of these models, at some point they are all equivalent to models that 
treat residuals as inputs and therefore they suffer from the same trade-off lim-
its. Finally, in this framework of nonparametric DEA, Wang et al. (2012) have 
suggested to consider undesirable outputs as fixed outputs in the modelling.

Iso-Environmental Lines

Coelli et al. (2005) treated residuals not as inputs or outputs, but more as 
an ‘outcome’. We choose this terminology here to specify that residuals are 
the results of a behaviour/attitude like in the case of profit, revenue maximi-
zation or cost minimization. ‘Outcomes’ here refer to an impact. The idea 
has been further elaborated in Coelli et al. (2007) and is based on earlier 
unpublished empirical work by Lauwers et al. (1999) on nutrient balance in 
pig production. The approach does not require the introduction of a residual 
variable contrary to all previous models (whether as an additional input or as 
an additional output). On the contrary, it relies on a mass balance equation 
as defined in (1) and (2). Since the objective is to minimize the ‘surplus’ 
z = a′x − r′y, the problem can be resolved analogously to a cost minimiza-
tion programme. Many papers/empirical applications are based on the null 
vector for r, assuming that the desirable outputs do not contain any mate-
rials (Rødseth 2013; Rødseth and Romstad 2013; Guesmi and Serra 2015; 
Wang et al. 2018a). However, this may be misleading and it is better to 
assume that the levels of desirable outputs are given.

The problem that needs to be solved is then presented as:

where � = {(x, y) ∈ R
K+Q
+ |x can produce y}. The boundary of N(y, a) is 

equivalent to what is called an ‘iso-environmental cost line’ (in allusion to 
the commonly known iso-cost line). Based on this concept, environmental 
efficiency can be decomposed into technical efficiency (classic measure) and 
allocative efficiency (inefficiency due to a mix in material inputs). As in the 
case of a cost function, N is function of the desirable outputs and the input 
flow coefficient a. N(y, a) thereby satisfies the following properties:

(33)N(y, a) = min
x
{a′x|(x, y) ∈ �}
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• Non-decreasing in a and y. if a′ > a then N(y, a′) > N(y, a), if y′ > y 
then N(y′, a) > N(y, a).

• Homogeneous of degree 1 in a. N(y, ta) = tN(y, a) for t > 0.

• Concavity in a. N(y, ta+ (1− t)a′) ≥ tN(y, a)+ (1− t)N(y, a′).

• Continuity in a.

The first property guarantees a positive correlation between residuals and 
good outputs. If price information is available, one can also identify the cost 
(w′xe) of the input bundle xe that minimizes the residual surplus N(y, a) 
and, in addition, determine the residual level associated with a cost mini-
mization programme (a′xmin). The difference between the two costs values 
(w′xe − w′xmin) is the ‘shadow cost’ of pollution reduction.9 An advantage 
of this framework of environmental performance assessment is that it can 
be helpful to determine a tax level (α > 0) aiming at residual reduction [in 
fact the two iso-lines (cost and environmental) coincide when w = αa]. 
Another interesting aspect of this approach is that, depending on the region 
of the isoquant, some improvements towards the environmental efficiency 
point can result in a decrease of the costs. For instance in Fig. 3, we have 
represented the two iso-lines considering two material inputs x1 and x2. 
The environmental efficiency for the observation A is OB/OA and the cor-
responding costs are lower in point B. Of course this is not always the case 
since it depends on ‘whether the movement is towards or away from the cost 
minimizing point’ (Coelli et al. 2005).

Within this framework of environmental economics, the materials bal-
ance principle offers four different ways of reducing residuals: (i) improving 
technical efficiency (which is cost reducing), (ii) increasing environmental 
allocative efficiency (the effect of which depends on the direction),10 (iii) 
using extra inputs for pollution abatement (which is costly) and (iv) out-
put reduction (which implies profit losses). Applications of the materials 
balance principle can be found in Welch and Barnum (2009), Van Meensel 
et al. (2010), Hoang and Alauddin (2011), Hoang and Nguyen (2013), 
Kuosmanen and Kuosmanen (2013), Kuosmanen (2014), Aldanondo-
Ochoa et al. (2017), and Wang et al. (2018b). A SFA of the materials bal-
ance principle has also been discussed by Hampf (2015).

9This cost can be lowered using abatement options. The pollution excess then equals a′xmin − a
′
xe.

10This idea suggests substituting high emission factor inputs with ones with low emission factor or sub-
stituting low recuperation factor outputs with ones with high recuperation factor.
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In the same line of Ebert and Welsch (2007) and Hoang and Rao (2010) 
formulated two main drawbacks of the traditional materials balance prin-
ciple: (i) ‘ambiguous treatment of immaterial inputs’ and (ii) ‘lack of uni-
versally accepted weights for various materials’. According to these authors, 
the minimization of problem (33) ignores the existence of non-material 
inputs that do not fall in the range of residuals-generating inputs and there-
fore have zero material contents. Besides, the problem in (33) can only deal 
with one type of residual (or impact) unless some weights can be provided to 
aggregate different kind of impacts (Dakpo et al. 2017b). Modelling residu-
als as outcomes like costs, revenues or profits, implies that these residuals are 
not ‘immediately observable’ or measurable. They need to be estimated to 
some extent. While this is true for many residuals, such as non-point source 
pollution, other residuals can be directly measured at the firm level, for 
example, smoke emission at a plant level, toxic releases in water, etc. Even if 
residuals are considered outcomes rather than outputs, we still do not know 
how they are generated within this framework.

Fig. 3 Iso-cost and iso-environmental line representations (Source Adapted from 
Coelli et al. 2007, p. 7)
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The Weak G-Disposability

Acknowledging the importance of the materials balance principle, Hampf 
and Rødseth (2015) and Rødseth (2015) have recently introduced the weak 
G-disposability as a restriction of the G-disposability discussed by Chung 
et al. (1997). If the technology is defined as in (22), the G-disposability 
implies that:

where gx, gy, gz are directional vectors. The weak version of the 
G-disposability constrains the directional vectors using a summing-up 
condition:

Using the mass balance equation in formula (2), we have:

The summing-up condition is therefore a restriction to make the technology 
representation to comply with the materials balance principle.

Following Hampf and Rødseth (2015) and Rødseth (2015), the technol-
ogy � should verify the following postulates:

MB1: No free lunch
MB2: Non-emptiness
MB3: Closedness
MB4: The output set P(x) is bounded
MB5: Convexity
MB6:         Output essentiality for the unintended outputs: (x, y, z) ∈ �, 

z = 0 ⇒ xM = 0, where xM represent the residuals-generating inputs
MB7:     Input essentiality for the unintended outputs: (x, y, z) ∈ �,

xM = 0 ⇒ b = 0

MB8:     Weak G-disposability of inputs and outputs: (x, y, z) ∈ �, 
a
′
gx + r

′
gy − c

′
gz = 0 ⇒ (x + gx, y − gy, z + gz) ∈ � where g. are 

direction vectors
MB9: Returns to scale assumptions.

(34)(x, y, z) ∈ � ⇒ (x + gx, y − gy, z + gz) ∈ �

(35)a′gx + r′gy − c′gz = 0

(36)
a
′(x + gx) = r

′(y− gy)+ c
′(z + gz) ⇒

a
′
gx + r

′
gy − c

′
gz = 0
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Under the postulates MB6 and MB7, the second law of thermodynamics 
is verified. As opposed to the weak disposability model (under the WDA) 
inputs are no longer freely disposable. As a matter of fact, under the WDA, 
the free disposability of inputs stipulates that for a given input bundle and 
a produced output set (including good and residual outputs), it is possible 
for a higher input bundle to produce the same amount of the output set. 
However, this is technically infeasible under the conditions of the materials 
balance principle (especially for the residuals).

Figure 4 shows two DMUs (A,B) that use the same non-zero amount 
of inputs to produce one good output and one residual. For this figure, we 
have assumed zero recuperation factors for the good outputs. Under the 
WDA, the residual level that can be generated is zero (meaning that resid-
uals are not essential to the consumption of material inputs) because of the 
null-jointness assumption, while under the weak G-disposability this mini-
mum can be found in point D. More explicitly, under the WDA, the out-
put technology set spans over (OABCO), but under the materials balance 
principle, the output set is (DABCD), which is narrower than the one under 
the WDA. The vertical lines capture the inelasticity between good and unde-
sirable outputs since we have posited no recuperation factors. The segment 
[AB] reflects the convexity assumption. It is worth noting that in Fig. 4 the 
good output intensity per bad output is higher in point A than in point B. 
However, under the materials balance principle and variable returns to scale, 
the technology � is represented by (DABCD) while under constant returns 
to scale (CRS) the technology is displayed by all points on the east side of 
(DAE).

Only a few applications of the weak G-disposability can be found in the 
literature (Rødseth 2016; Cui and Li 2017b; Hampf and Rødseth 2017; 
Hampf 2018a, b; Wang et al. 2018a).

Again, the technology is restricted to satisfy the mass balance equation, 
and there is no description of how residuals are generated. Rigorously speak-
ing, at the frontier the residual is considered as another input (see segment 
[AB] in Fig. 4) under this single structural representation of the technology. 
This means that a functional trade-off between the good and the bad output 
is assumed and as we previously argued this crucial feature is incompatible 
with the materials balance principle. Methodologically, Hampf and Rødseth 
(2015) have shown that under some conditions, the weak G-disposability is 
equivalent to the WDA and therefore it suffers from the same limitations. 
Finally, the summing-up condition imposes some specific constraints on 
the disposability of the different variables. A producer may not be aware of 
those, and therefore, his decisions will not be made simply to comply with 
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the materials balance principle. Therefore, it does not really help to have the 
materials balance constraint.

Data Transformation or Indirect Approaches

Among the single structure representations of production technolo-
gies including residuals, we have the data transformation models. The 
approaches proposed in this category are based on applying an asymmet-
ric transformation function to the residuals and then considering a classic 
model with multiple outputs. A review of several transformation functions 
that can be used to deal with residuals can be found in Scheel (2001). 
Seiford and Zhu (2002) suggested for example a linear monotone decreasing 
function (additive inverse):

(37)z̄r = −zr + v ≥ 0

Fig. 4 Weak G-disposability representation (Source Adapted from Hampf and 
Rødseth 2015)
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where v is a proper11 translation vector.12 The model can only be estimated 
under variable returns to scale.

This approach has recently been challenged by Färe and Grosskopf 
(2004a) through a comparison with the model under the WDA.13 Their 
results showed the inconsistency of the data transformation approach. This 
is quite understandable since the transformation distorts the real produc-
tion process. Moreover, the model implies that residuals are freely dispos-
able and can be reduced without any cost, which is not realistic (Du et al. 
2013). While many studies make assumptions based on the linear trans-
formation function, others directly consider residuals as a negative output 
(Jahanshahloo et al. 2004; Zhu and Cook 2007; Fleishman et al. 2009; 
Liang et al. 2009). On the other hand, Lovell et al. (1995) and Scheel 
(2001) proposed to use the inverse function (multiplicative inverse):

However, this model alters the production function, creating missing values 
(for zero values, the inverse does not exist), and thus may lead to questiona-
ble results.

Other applications and illustrations of the data transformation approach can 
be found in Vencheh et al. (2005), Hua et al. (2007), and Pérez et al. (2017).

In conclusion, single structure systems—even though they can be made 
compatible with the materials balance principle—are very limited in describ-
ing production technologies, especially in terms of the way residuals are 
generated.

3.2  Multi-equation Pollution-Generating Systems

Some Concepts

The concept of multi-equation production was introduced in the economic 
literature by Frisch (1965) to describe complex transformation systems 
involving several technically connected products for which inputs are jointly 

(38)z̄r =
1

zr

12For the case of the banking industry, Berg et al. (1992, p. 219) have used the additive inverse where 
v = 0 to introduce loans losses as negative outputs.
13See also Liu and Sharp (1999) for further discussion on issues related to data transformation.

11v is sufficiently large so that the new variable is positive.
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or alternatively used. According to Frisch, a production system can be rep-
resented by multiple functional relations, each one describing the relations 
between inputs and outputs and among inputs or outputs. Frisch (1965) 
has defined some concepts that help understand this type of modelling. 
Considering a system that produces Q different outputs related by µ (inde-
pendent) functional relations between outputs and or inputs, the degree of 
assortment (freedom) of the system equals α = Q− µ. When µ = 1, we 
have a standard representation of the production technology with a single 
production relation and maximum degree of assortment. In this case, given 
the maximal flexibility of this system, inputs can be directed towards the 
production of any outputs without generating additional costs. It is possible 
to have some relationships between inputs, independently of outputs. These 
relations have been coined pure factor bands and the degree of assortment 
can be negative in their presence. When the degree of assortment equals 
zero, we have factorially determined multi-equation production. In factori-
ally determined technologies, given the level of inputs, all the outputs are 
determined. Irrespective of Q,µ,α, relations involving only product quanti-
ties (pure product bands) can be present in the system. The number of these 
relations (κ) represents the degree of coupling (factor free) of a multi-equa-
tion production. κ is simply the number of output relations that can be 
deduced from µ independently from the production factors. Both the degree 
of assortment and coupling determine the level of flexibility present in a sys-
tem, i.e. the flexibility in the determination of output mix. For instance, a 
higher assortment corresponds to a higher flexibility and a degree of cou-
pling equal to zero also implies flexibility.

The By-Production Approach

Initial adaptation of the multi-equation production system to the case of 
residual generation (environmental externalities) can be found in Førsund 
(1972, 1973) with illustrations of general equilibrium models. However, 
it took more than three decades for the ideas put forward in Frisch (1965) 
to be extended to the performance benchmarking of firms. In this frame-
work, Førsund (1998) is to our knowledge the first to use the Frisch con-
cept to criticize the treatment of residuals as inputs or as outputs under the 
WDA. Later, Murty and Russell (2002) and Murty et al. (2012) have intro-
duced the by-production approach as a formal way to treat residuals under 
the multi-equation production system, even though these authors have 
not explicitly referred to the concepts defined in the previous sub-section.  
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In this line, Murty (2010b) has defined five attributes that characterize pol-
lution-generating technologies:

• The use of material inputs will necessarily result in the generation of 
residuals (wastes, pollution). Murty (2010b) has referred to this as 
nature’s emission generating mechanism14 that is triggered when one uses 
emission-causing inputs. We believe that this attribute is very close to the 
material inputs essentiality previously defined.

• Since the idea of the by-production is to explicitly model how resid-
uals are generated, a distinction must be made between inputs destined 
to the production of intended outputs and those that generate residuals. 
Those inputs are non-rival or joint because their use in the production 
of intended outputs does not prevent them from generating residuals. 
This attribute is the essence of Frisch (1965) ideas where each output is 
described by its own production relation. Thereby, the production system 
is described by two sub-technologies, one producing intended outputs 
and the other generating residuals.

• Residuals are not freely disposable but costly to dispose (Murty 2010a). 
The costly disposability implies that for each level of emission-causing 
input, there is a minimal level of residuals that can be generated and more 
than this minimal level is possible in the presence of inefficiency. Under 
this property, the function describing the shape of the frontier of residual 
generation is convex. Costly disposability is simply the polar opposite15 
of the standard free disposability assumption. Moreover, strong dispos-
ability is maintained for service inputs and intended outputs, while pol-
lution-generating goods violate the free disposability assumption. At this 
point, it is worth mentioning that in some cases some intended outputs 
can generate negative externalities; however, we do not deal with those 
cases in this chapter. Recently, Murty (2015) has extended the free and 
costly disposability to conditional versions. Conditional free disposabil-
ity refers to the changes in the minimal amount of residuals given that 
higher levels of material inputs are feasible under the intended output 
production sub-technology. The conditional costly disposability assump-
tion implies the opposite, i.e. with lower levels of material inputs feasible 

14Even if the idea around this concept is clear, it is worth mentioning that it is very strange to quote 
‘nature’s emission generating mechanism’.
15We believe that the expression ‘polar opposite’ used by Murty et al. (2012) simply refers to a system-
atic reverse in the inequalities. This means that free disposability and costly disposability are complete/
exact opposites of one another.
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under the residuals-generating sub-technology, the maximum amount of 
intended outputs has to change consequently.

• A positive correlation between residuals and intended outputs is a direct 
consequence of all the previous attributes. Any increase in material inputs 
will result in an increase in both intended outputs and residuals.

• The fifth attribute is related to the treatment of abatement or cleaning 
activities. According to Murty (2010a) and several other papers (Kumar 
and Managi 2011; Färe et al. 2012; Yu-Ying Lin et al. 2013), resources 
can be diverted from the production of intended outputs to the genera-
tion of abatement outputs useful in mitigating residuals. The cost of this 
resource diversion is the production of less intended outputs. Under this 
approach, both intended and abatement outputs are treated under the 
same activity (same technological process). In other words, intended out-
puts and abatement outputs cannot be identified separately.

The specific case of by-production discussed in Murty et al. (2012) [MRL 
hereafter] described the global technology as the intersection of two 
sub-technologies: one dedicated to the production of goods and the other 
one to the generation of bads. The global technology can be specified as 
follows:

where

and f  and g are both continuously differentiable functions. At this point, a 
relevant fact that has not been clearly mentioned by Murty et al. (2012) is 
whether the global technology defined as the intersection of two sub-tech-
nologies can be empty. The answer to this question is directly linked to the 
mass balance equation in (1) or (2), where for each level of material input 
there will always be a (minimal) corresponding value of pollution generated 
through the production process. In other words, as long as the materials bal-
ance principle is satisfied, the global technology can never be empty.

(39)� = �1 ∩�2 =

{
(xM , xS , y, z) ∈ R

KM+KS+Q+R
+ | f (xM, xS, y) ≤ 0,

z ≥ g(xM)

}

(40)�1 =

{
(xM , xS, y, z) ∈ R

KM+KS+Q+R
+ |f (xM , xS, y) ≤ 0

}

(41)�2 =

{
(xM , xS, y, z) ∈ R

KM+KS+Q+R
+ |z ≥ g(xM)

}
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The intended-outputs sub-technology satisfies the standard disposability 
assumptions:

For the transformation function in (40), the disposability assumptions in 
(42) imply:

The costly disposability assumption with respect to the residuals can be 
expressed as follows:

The costly disposability implies that it is possible to generate more residuals 
given the levels of material inputs xM, i.e. that the set of technology �2 is 
bounded below (Fig. 5) (Murty 2010a). This implies that:

Using implicit function theorem, by definition we have xM = h(z) and then 
one can write for an efficient observation:

The trade-off between residuals and intended outputs is then16:

Following MRL, through changes in material inputs, the trade-off between 
intended outputs and residuals is positive, which is consistent with the mass 
balance equation as shown in (13). The by-production case described here 

(42)(xM , xS , y, z) ∈ �1, x̃M ≥ xM , x̃S ≥ xS , ỹ ≤ y ⇒ (x̃M , x̃S , ỹ, z) ∈ �1

(43)
∂f

∂xM
≤ 0,

∂f

∂xS
≤ 0,

∂f

∂y
≤ 0

(44)(xM , xS, y, z) ∈ �2, z̄ ≥ z, x̄M ≤ xM ⇒ (x̄M , xS, y, z̄) ∈ �2

(45)
∂g

∂xM
≥ 0

(46)f (h(z), xS, y) = 0

(47)
dy

dz
= −

∂f

∂xM

∂h

∂z
≥ 0

16Using the same ideas of trade-off estimation, MRL also proved the issues related to the single struc-
ture representation of a pollution-generating technology.
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is one of many possible cases. Murty (2015) and Murty and Russell (2016) 
demonstrated and argued that modelling residuals-generating technology 
has to be done case-by-case and that multiple models exist. Depending on 
the case under consideration, one may require multiple production relations 
to describe the overall technology (see for instance Levkoff 2013). However, 
in every case, one first describes the real-world production relations that cor-
respond to the case at hand.

Early applications of MRL’s by-production approach can be found in 
Chambers et al. (2014) and Serra et al. (2014). Lozano (2015) has also 
applied the by-production approach but described the technology as a parallel- 
processes network. Other applications can also be found in Guesmi and 
Serra (2015), Malikov et al. (2015), Kumbhakar and Tsionas (2016), Cui 
and Li (2017a), Dakpo et al. (2017a), Seufert et al. (2017), Zhao (2017), 
and Arjomandi et al. (2018).17

In the same line as Murty et al. (2012), Sueyoshi et al. (2010), and 
Sueyoshi and Goto (2010) also defined two efficiency models: an 

Fig. 5 The by-production technology representation (Source Adapted from Sueyoshi 
and Goto 2010)

17In the stochastic frontier framework, the idea of describing production systems using separable tech-
nologies for intended and unintended outputs has also been discussed in Fernández et al. (2002), 
Fernández et al. (2005), and Malikov et al. (2018).
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operational performance model and an environmental performance model. 
Their work can be related to the by-production approach as their operational 
performance concept is based on sub-technology �1 while the environmen-
tal performance concept is related to sub-technology �2. Sueyoshi et al. 
(2010) did not consider input separation (all the inputs cause residuals). The 
operational performance can be easily estimated as shown in Fig. 6, where 
an inefficient DMUn can be projected towards the frontier for instance on 
point B (in Fig. 6, S represents the slacks).

For the environmental performance, Sueyoshi et al. (2010) and Sueyoshi 
and Goto (2010) have defined two disposability concepts aiming at ana-
lysing the ‘adaptive behaviors’ of DMUs in the presence of environmental 
regulations. The first concept is natural disposability (negative adaptation), 
where the manager chooses to reduce the consumption of inputs as the 
strategy for decreasing pollution (see Fig. 7 where the inefficient DMUn is 
projected towards point J). The second concept is managerial disposability 
or positive adaptation (Sueyoshi and Goto 2012a, b, d), where managerial 
efforts, such as the adoption of cleaner technologies or the substitution of 
clean inputs for polluting ones, enable an increase in the consumption of 
inputs and simultaneously a reduction in pollution (see Fig. 8 where DMUn 

Fig. 6 Operational performance (Source Adapted from Sueyoshi and Goto 2010)
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is projected on point E). This concept is grounded on the idea developed 
by Porter and van der Linde (1995) that regulation might offer innovation 
opportunities to secure the production of more good outputs and decrease 
the generation of bad outputs. However, from the economist’s notion of 
economic efficiency-improvement, an inefficient production vector must 
imply increasing good outputs, reducing emission, while at the same time 
using fewer resources (inputs). More discussion on those disposability con-
cepts can be found in Sueyoshi and Goto (2018a).

Those new disposability concepts have been largely used in many appli-
cations by the same authors and others (Sueyoshi and Wang 2014; Sueyoshi 

Fig. 7 Environmental performance under natural reduction of residuals

Fig. 8 Environmental performance under managerial effort
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and Yuan 2015, 2016) under the framework of DEA (Sueyoshi and Goto 
2011a, b, c, 2015b, 2018b; Sueyoshi et al. 2013, 2017a, b, 2018; Cui 
and Li 2018; Sun et al. 2018). Fundamentally, the ideas that underlie the 
managerial and natural disposability are very similar to the ones previously 
proposed for the by-production. There are hardly any new concepts here, 
‘natural disposability’ is reducing the use of inputs, and ‘managerial dispos-
ability’ is input substitution and the introduction of new waste-reducing 
technology. These two concepts are different and usually treated separately. 
However, their representations (unification) do not properly describe resid-
ual generation in terms of DEA representations. In addition, in this latter 
framework, they have sometimes introduced some non-linearity which may 
not identify efficient DMUs (Manello 2012).

On the other hand, Ray et al. (2017) have recently introduced a joint 
disposability between residuals and material inputs where the former can-
not be reduced without reducing the latter. The joint disposability can be 
expressed as:

Nevertheless, the joint disposability only applies to the residuals sub-tech-
nology omitting the links with the intended-outputs sub-technology. This 
may result into the violation of the materials balance principle.

An important step has been brought forth by Førsund (2017), who 
argued that MRL representation of the technology is partly incomplete since 
dematerialization through substitution between material and service inputs 
is not covered (see Fig. 9 for the isoquant representation in the presence of 
substitution possibilities between the two type of inputs).

(48)(xM , xS, y, b) ∈ �2, 0 ≤ α ≤ 1 ⇒ (αxM , xS, y,αb) ∈ �2

Fig. 9 Input isoquants representation (Source Taken from Førsund 2017)
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As such, he proposed to extend the residual-generating sub-technology as 
follows:

where the marginal productivity signs are:

As argued in Førsund (2017), the multi-equation representation of a residu-
al-generating production system is certainly one of the best strategies with-
out an explicit inclusion of the mass balance equation. The model describes 
several processes that govern the production system without violating 
physical laws (or the materials balance principle). Moreover, the factorially 
determined multi-output model discussed in Førsund (2017) may crucially 
satisfy the materials balance where the single-equation model cannot.

4  Abatement Outputs (Technologies)

Throughout the previous discussion, we barely touched on abatement out-
puts that are possible with the adoption of end-of-pipe technologies. End-
of-pipe technologies are pollution-control treatments aimed at improving 
the environmental performance of processes by partially removing already 
formed pollutants (Hellweg et al. 2005). As such solutions are physically 
separated from the production process, these type of technologies are gen-
erally located in the last stage of the system, before the disposal of the out-
puts, hence the name ‘end-of-pipe technologies’. Since the installation of 
end-of-pipe technologies is a separate activity, they require the operational-
ization of their own inputs (materials and energy) (Zotter 2004). Examples 
of end-of-pipe technologies range from carbon dioxide removal or capture 
technologies (Olajire 2010; van Vuuren et al. 2018) to palm oil mill effluent 
management (Wu et al. 2010), incineration for waste disposal or wastewa-
ter treatment plants (Rennings et al. 2006). End-of-pipe technologies can 
be viewed as add-on packages (‘react and treat’) and should be clearly dis-
tinguished from clean production technologies (Glavič and Lukman 2007). 
The latter involve changes in the production process itself (process, prod-
uct and organizational innovations) and therefore prevent the generation 

(49)�2 = {(xM , xS, y, z) ∈ R
KM+KS+Q+R
+ |z ≥ g(xM , xS)}

(50)
∂g

∂xM
≥ 0,

∂g

∂xS
≤ 0
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of pollution during the production process (Sarkis and Cordeiro 2001; 
Rennings et al. 2006).

The main question remains: What are the incentives for the adoption of 
these abatement technologies? The literature shows that adoption is highly 
dependent on regulatory measures and the stringency of environmental pol-
icies (Frondel et al. 2007; Hammar and Löfgren 2010). While the adoption 
of cleaner integrated technologies is an important avenue for pollution mit-
igation, its relation with the modelling of pollution-generating technolo-
gies is beyond the scope of this chapter. Similarly, the short- and long-term 
effects of environmental policies (for instance the competitive advantage in 
relation to the porter hypothesis (Porter 1991; Porter and van der Linde 
1995)) are also beyond the scope of this chapter. Our focus is rather on how 
to properly include abatement options in the modelling of pollution-gener-
ating technologies to consider the supplementary costs associated with these 
technologies.

In the presence of such outputs, the mass balance equation in (2) is writ-
ten as:

where za is the amount of pollution abated through end-of-pipe control 
technologies and zd the residual pollution disposed in the environment. 
The primary amount of pollution is the addition of the two new subtypes 
(z = c′zd + f ′za). According to Rødseth (2014) and Hampf and Rødseth 
(2015), the WDA as proposed in Färe et al. (1989) is consistent with the 
materials balance principle only in the presence of end-of-pipe technologies. 
For the case of profit maximization, Rødseth and Romstad (2013) augment 
the classic production technology with the identity in (51) to account for 
abatement outputs. Later, Rødseth (2015, p. 3) argued that ‘this is not a 
satisfactory result since the requirements on end-of-pipe abatement efforts 
are strong and, generally, physically unattainable’. Moreover, all these mod-
els are still framed in the single framework structure, with all of its limita-
tions. Other papers deal with abatement activities using a network structure 
(Färe et al. 2013; Hampf 2013; Cui and Li 2016; Song et al. 2017; Bi et al. 
2018). Nevertheless, the primary levels of pollution are treated in a single 
framework structure that again suffers from the aforementioned issues. In 
the case of by-production, Murty et al. (2012) have considered abatement 
output as another intended output which appears in both the intended and 
the unintended sub-technologies. However, in their formulation, abatement 
output through end-of-pipe technologies is still not properly modelled as a 

(51)a′xM ≡ r′y + c′zd + f ′za
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separate activity. An adequate modelling of abatement output can be found 
in Førsund (2018).

5  Environmental Goods as Conventional 
Outputs in a Distance Function18

The previous sections have dealt with residuals as detrimental or unwanted 
outputs like pollution. However, many production processes also yield good 
environmental outputs, such as carbon sequestration in livestock farm-
ing. These good outputs are different from abatement outputs produced 
through end-of-pipe technologies. We believe that these outputs must also 
be accounted to gain a complete representation of an environmental tech-
nology that simultaneously generates bad and good environmental outputs.

5.1  Theoretical Background

Consider a firm that transforms a vector of k = 1, . . . ,K inputs, x ∈ R
K
+ to 

a vector of q = 1, . . . ,Q outputs, y ∈ R
Q
+. This transformation also yields a 

vector of d = 1, . . . ,D environmental goods, e ∈ R
D
+. In analogy to treating 

pollutants as inputs in the tradition of Baumol and Oates (1988), environ-
mental goods are commonly assumed to have the same axiomatic properties 
as outputs. All feasible combinations of inputs, outputs and environmental 
goods (x, y, e) are characterized by the primitive technology set �:

� is assumed to be a closed and convex technology set with strongly dis-
posable inputs, outputs and environmental goods. The corresponding out-
put set is bounded. Most reviewed studies employ an output set, holding 
inputs constant. However, this keeps the relationship between inputs and 
environmental goods implicit. The primitive technology set encompasses the 

(52)� = {(x, y, e) : x can produce (y, e)}

18A similar, condensed argumentation with corresponding references can be found in the introduction 
of Ang, Mortimer, Areal and Tiffin (2018).

The reference to be added is:
Ang, F., S.M. Mortimer, F.J. Areal, and R. Tiffin, On the opportunity cost of crop diversification. 
Journal of Agricultural Economics 69 (3): 794–814 (2018).

And I suggest to replace the logical symbol for 'and' (an inverse V) by a comma. See formulas (8), (9), 
(21), (25), (29), MB6, MB7, MB8, (42)–(44), (48) and (50). Makes them simpler, like (26).
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output set and makes this relationship explicit (Färe and Grosskopf 2005). 
Following Chambers et al. (1996, 1998), technology in (52) can be equally 
represented by the directional distance function:

where gx, gy and ge are the directional vectors that specify the direction of, 
respectively, input contraction, output expansion and environmental good 
expansion towards the frontier. �D�(.) ≥ 0 is differentiable and measures the 
distance to the frontier in the direction of (gx, gy, ge).

The derivative of �D�(.) with respect to outputs is:

The derivative of �D�(.) with respect to inputs is:

The derivative of �D�(.) with respect to environmental goods is:

Although environmental goods are non-marketed, we can assess the 
unknown shadow price u by exploiting the directional distance function’s 
dual relationship to the profit function and by using the envelope theorem.

5.2  The Trade-Off Between Environmental Goods 
and Conventional Outputs

The trade-off between environmental goods and conventional outputs can 
be inferred using the envelope theorem (Chambers et al. 1996, 1998):

Equation (57) assumes that the shadow price u is positive and the relation-
ship between marketable outputs and environmental goods is competitive 
for all levels of the environmental good. Figure 10 shows the production 
possibility frontier for one environmental good e1 and one marketable 

(53)�D�(x, y, e; gx , gy, ge) = max
β

{β : (x − βgx , y + βgy, e+ βge) ∈ �}

(54)∂y �D�(x, y, e; gx, gy, ge) ≤ 0

(55)∂x �D�(x, y, e; gx, gy, ge) ≤ 0

(56)∂e �D�(x, y, e; gx, gy, ge) ≤ 0

(57)−
∂e �D�(x, y, e; gx, gy, ge)

∂y �D�(x, y, e; gx, gy, ge)
= −

u

p
≤ 0
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output y1, holding other environmental goods, as well as other outputs and 
inputs constant.

Färe et al. (2001b), Bellenger and Herlihy (2010), Ruijs et al. (2013), 
Sipilainen and Huhtala (2012), Bostian and Herlihy (2014), and Ruijs 
et al. (2015) use Eq. (58) to calculate the shadow price of environmen-
tal goods. To our surprise, only a handful of studies that use an augmented 
distance function discuss or check the assumption of a competitive rela-
tionship between marketable outputs and environmental goods in depth. 
Macpherson et al. (2010) conduct a correlation analysis and do not find a 
robust negative competitive relationship between the environmental goods 
and the marketable outputs. Sipilainen and Huhtala (2012) briefly mention 
that crop diversification has a private value, as it is a way to hedge against 
uncertainty. Ruijs et al. (2013, 2015) empirically check the transformation 
function between marketable outputs and environmental goods by paramet-
ric estimation and confirm a competitive relationship. Bostian and Herlihy 
(2014) expect that agricultural production contributes to the degradation of 
wetland conditions due to drainage, channelization and run-off, but qualify 
this by claiming that the biophysical relationship is not exactly known.

The assumed competitive relationship has been contested in recent liter-
ature. Several contributions argue that some environmental goods are com-
plementary to conventional production for lower levels of the environmental 
good and competitive for higher levels (Hodge 2008). Such a complementa-
ry-competitive relationship is hypothesized for inter alia the environmental 
quality of grassland and livestock production (Vatn 2002), pollinator habitat 

Fig. 10 Trade-off between one marketable output y1 and one environmental good 
e1, holding other outputs, environmental goods and inputs constant
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and crop production (Wossink and Swinton 2007), and the entire ecosystem 
on the farm and total agricultural production (Hodge 2000).

There is nonetheless only limited empirical evidence of this relationship. 
Peerlings (2004) arrives at a competitive relationship between milk produc-
tion on the one hand, and wildlife and landscape services on the other hand. 
Havlik (2005) finds evidence of a complementary-competitive relationship 
between grassland biodiversity and cattle production. Sauer and Wossink 
(2013) approximate a ‘bundled’ environmental good as the total green pay-
ments provided by the CAP. They apply a flexible transformation function 
and obtain a complementary relationship for most farms and a competitive 
relationship for a minority of farms.

5.3  The Trade-Off Between Inputs and Environmental 
Goods

Using the envelope theorem, the trade-off between inputs and environmen-
tal goods can also be inferred (Chambers et al. 1996, 1998):

By treating an environmental good as a conventional output, it is implicitly 
assumed that the provision of any environmental good is non-decreasing for 
increases in any input. Figure 11 shows the production possibility frontier 
for one input x1 and one environmental good e1, holding other inputs, other 
environmental goods and outputs constant. Equation (58) can in princi-
ple be used to compute the shadow value u. However, as most studies focus 
on the trade-off between environmental goods and marketable outputs, 
Eq. (58) has not been of interest in practice.

The augmented production economics approach
Färe et al. (2001b), Areal et al. (2012), and Sipilainen and Huhtala (2012) 
augment a conventional production economics framework (with marketa-
ble inputs and outputs) with, respectively, the characteristics of public land 
conservation (the number of conservation sites, the area at each site and the 
total area available for fishing), the share of grassland and the Shannon index 
for crop diversification. This ‘augmented production economics approach ’ is 
intuitive for economists as it is an extension of familiar neoclassical mod-
els. Interestingly, none of these studies elaborates on the implicit assumption 

(58)−
∂x �D�(x, y, e; gx, gy, ge)

∂e �D�(x, y, e; gx, gy, ge)
=

w

u
≥ 0
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that the provision of an environmental good is non-decreasing in the inputs 
if one models an environmental good as a conventional output.

One may argue that this assumption holds for inputs that compete for 
environmental goods jointly produced with marketable outputs. For exam-
ple, farmers may set aside land and other inputs to produce conservation 
buffers and cover crops. The same inputs could also have been used to pro-
duce marketable outputs (Wossink and Swinton 2007). However, as both 
inputs and environmental goods are heterogeneous, we argue that the 
expected relationship between input use and provision of environmental 
goods may also be non-positive or unclear. We expect a non-positive rela-
tionship for inputs that contain environmentally damaging substances. 
Fertilizer use may lead to nitrogen leaching in the soil and eventually to 
reduced groundwater quality. It may also volatilize into nitrogen oxide, 
a GHG (Reinhard et al. 1999). Pesticide use is expected to have a nega-
tive impact on farm biodiversity as it suppresses beneficial organisms such 
as beetles and birds (Skevas et al. 2012). The relationship may depend on 
the environmental good. For instance, although fertilizer use may decrease 
groundwater quality, its impact on farm biodiversity is uncertain.

Augmented production economics approaches have focused on the out-
put distance function, holding inputs constant. This may be the reason why 
the implicit assumption of the non-negative relationship between inputs and 
environmental goods has not been motivated. Nevertheless, the underlying 
production technology still depends on inputs. An incorrect assumption 
about the relationship between inputs and environmental goods also leads 
to an incorrect computation of the output distance function. Unfortunately, 
making such an a priori assumption is no trivial task.

Fig. 11 Trade-off between one input x1 and one environmental good e1, holding 
other inputs, environmental goods and outputs constant
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The biophysical approach
Several studies veer from the augmented production economics approach. 
The ‘biophysical approach ’ considers marketable outputs and environmental 
goods, but no marketable inputs. Although environmental, non-market-
able inputs are generally chosen more sparingly and carefully than in the 
augmented production economics approach, this is necessarily done on an 
ad hoc basis, which compromises economic intuition. Macpherson et al. 
(2010) consider four environmental inputs (percentage edge forest, per-
centage of impervious surface, percentage of riparian agriculture and road 
density). Explicitly stating that ‘this model specification lacks the clarity of 
the input–output relationship of a typical model in production economics’ 
(p. 1921), they conduct a correlation analysis with the outputs (per capita 
income, population density, percentage of wetland and percentage of inte-
rior forest) as a robustness test and only partly confirm a positive relation-
ship. Bostian and Herlihy (2014) solely implement joint land use as an 
input. Bellenger and Herlihy (2009, 2010) and Ruijs et al. (2013) do not 
even consider any inputs.

Finally, following the previous discussion in the case of multi-equation 
modelling, a factorially determined production system can also be estimated, 
where one sub-technology describes the production of abatement outputs.

6  Data Requirements

Assessing pollution-adjusted efficiency requires data on the environmen-
tal outputs. One can distinguish between observable or measurable outputs 
and estimated (approximated) outputs. Point source pollution and non-
point source pollution are the main classes of measurable outputs. Point 
source pollutants can be easily traced back to their source. Examples can 
be found for wastewater treatment plants, factories for which pollution is 
discarded through pipes, and to some extent animals in agriculture. In the 
benchmarking literature, one can find applications in various sectors such as 
power plants, or the petroleum, cement or pulp and paper industry (Coggins 
and Swinton 1996; Färe et al. 2001a; Kumar Mandal and Madheswaran 
2010; Sueyoshi and Goto 2012c, 2015a; Yu et al. 2016; Bostian et al. 2018; 
Sueyoshi and Wang 2018).19 Non-point source pollution has several sources 
and requires monitoring of prohibitive costs. A common example is runoff 

19See Zhou et al. (2008b) for more applications.
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and leaching of agricultural chemical inputs. Another feature of this type of 
pollution is its variability, since it can be affected by environmental factors 
such as weather variables and soil quality. In the agricultural sector, a com-
mon approach to evaluate environmental impacts like GHGs emissions is life 
cycle assessment (Ekvall and Finnveden 2001; Finnveden et al. 2009). This 
method attributes an emission factor (for instance IPCC guidelines) to each 
agricultural input for the computation of GHGs emissions. Applications in 
the agricultural sector can be found in Iribarren et al. (2011), Shortall and 
Barnes (2013), Toma et al. (2013), and Dakpo et al. (2017a).

Since they are related to a physical process, all these data must satisfy the 
laws of thermodynamics. However, it is very hard to survey all the variables 
that intervene in the production process, for instance, the oxygen from the 
atmosphere. It is worth stressing one of our main conclusions, i.e. what mat-
ters is an adequate modelling of pollution-generating technologies and not 
an explicit accounting of the materials balance principle. When the tech-
nology is properly modelled, the materials balance principle is implicitly 
satisfied.

7  Conclusion

This chapter focused on the modelling of pollution-adjusted technologies in 
a production framework. The first part has been devoted to the appropriate 
modelling of environmental bads. Earlier contributions suggest that pollut-
ants should be modelled as conventional inputs, as these are assumed to be 
complements of marketable outputs (e.g. Baumol and Oates 1988; Reinhard 
et al. 1999, 2000; Hailu and Veeman 2001). However, this approach unre-
alistically assumes that fixed amounts of inputs can produce an unlimited 
amount of pollutants (Färe and Grosskopf 2003). Most authors therefore 
treat pollutants as weakly disposable outputs which have complementary 
characteristics for lower levels of pollution and competitive characteristics 
for higher levels of pollution (e.g. Pittman 1983; Färe et al. 2005, 2014). 
Hundreds of papers assume treat pollutants as weakly disposable out-
puts (Dakpo et al. 2017b). The rationale is that conventional production 
increases with pollution, but that clean-up opportunity costs arise for higher 
pollution levels. This implies that the shadow price of pollution can also 
become negative. This has been contested by Hailu and Veeman (2001), 
who therefore model pollution as an input. Färe and Grosskopf (2003) 
claim that this is a conflation of the choice of the production technology 
and the directional vector. They put forward that although pollution should 
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be modelled as a weakly disposable output, it is still possible to choose a 
directional vector that points towards the complementary part of the fron-
tier, which would result in positive shadow prices.

Modelling pollutants as inputs or weakly disposable outputs are essen-
tially a black-box approach. This may result in unacceptable implications 
for trade-offs among inputs, outputs and pollutants (Førsund 2009). Coelli 
et al. (2007) introduce an environmental efficiency measure that complies 
with the materials balance principle. Instead of adding pollution as an addi-
tional variable, polluting inputs and outputs are chosen in a pollution-min-
imizing way. Murty et al. (2012) model the polluting technology as the 
intersection of an intended-output technology and a residual-generating 
technology. This approach of accurately accounting for multiple processes 
is typical for engineering science and is appealing for economists. The mul-
ti-equation approach opens the black box by making the technical relation-
ships between all inputs and outputs explicit. This increase in accuracy does, 
however, require appropriate knowledge of the production system (what 
products are produced by the same process, what are the specific inputs and 
is the role of the other inputs, are products joint or substitutes, etc.). The 
benefit of the multiple equation representation is that you can model the 
technology without explicitly introducing the mass balance identity equa-
tion and without violating it. However, this approach still requires inher-
ently subjective judgement. It is an open question whether residuals should 
be treated as outcomes and iso-environmental lines should be used, or 
whether a structural representation with multiple equations is needed.

While the literature on environmental bads is abundant, interest in envi-
ronmental goods has only recently emerged. Environmental goods are now 
commonly modelled as conventional outputs in a distance function frame-
work, analogous to how pollutants have been modelled as conventional 
inputs in the earlier environmental economics literature. This assumes that 
there is a competitive relationship with marketable outputs for all levels 
of the environmental good and that the shadow price of an environmen-
tal good is positive. Recent studies have put forward that an environmental 
good may also be complementary to marketable outputs. Treating an envi-
ronmental good as a conventional output also implies that its provision is 
assumed to be non-decreasing in the inputs. For the augmented production 
economics approach, which includes all marketable inputs, this assumption 
may be incorrect for at least some inputs. Clearly, inputs such as fertilizers 
and pesticides decrease the provision of some environmental goods. This cri-
tique is somewhat analogous to Murty et al. (2012), who argue that treat-
ing a pollutant as an input incorrectly implies that the trade-off between a 
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pollution-generating input and a pollutant is assumed to be non- positive. 
One could adapt a biophysical approach and focus on environmental, 
non-marketable inputs. However, inputs are in that case chosen ad hoc, 
which compromises economic intuition. An additional difficulty is that 
environmental goods are considerably more heterogeneous than environ-
mental bads, where the axiomatic properties are better understood.

A potentially complementary-competitive relationship between envi-
ronmental goods and marketable outputs calls into question whether the 
WDA should be invoked for an environmental good (Van Huylenbroeck 
et al. 2007), as has been frequently done for pollutants. This would imply 
that the shadow price of an environmental good could be negative or pos-
itive (Wossink and Swinton 2007). However, the empirical evidence of a 
complementary-competitive relationship is limited. Moreover, the sheer 
heterogeneity of inputs and environmental goods complicates the a priori 
assumption about the trade-off between inputs and environmental goods. 
The research on modelling environmental goods would benefit from the 
lessons in modelling environmental bads. Ultimately, we believe that the 
appropriate modelling of environmental goods requires a multi-equation 
approach that makes the technical relationships between all inputs and out-
puts explicit.

We have several paths for future research. First, it should take into 
account other challenges that have appeared over time: the treatment of 
abatement outputs (end-of-pipe technologies, adoption of cleaner tech-
nologies) and the shadow pricing of undesirable outputs, especially in the 
multi-equation scenario. Second, while the main focus of this chapter is on 
material-based technologies, more research is needed for non-materials tech-
nologies like the bank industry. If physical laws are not present, does this 
mean that we can do whatever we want?
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1  Introduction

In this chapter, we will review the ways that economists measure the aggre-
gate economic performance of national economies. This is the lead-in to a 
number of separate chapters that develop particular themes so that this 
chapter is intended to give an overview and anticipation of general issues 
that may be met in more detail subsequently. Efficiency and productiv-
ity analysis using the methodologies of data envelopment analysis and 
stochastic frontier analysis has made a significant contribution to this chal-
lenge after the initial research which arose in the context of the analysis of 
economic growth. That initial research led to the idea of measuring total 
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factor productivity change, TFP,1 and its identification with an unobserved 
data residual representing technological progress. The contribution of effi-
ciency and productivity analysis has been to expand our understanding of 
what TFP could consist of and what could drive it and how we can extend 
our understanding of it beyond the idea of an unexplained data residual. 
Amongst the critical questions in this search is the exact definition of what 
measure of economic performance economists should use. The conventional 
answer is to measure economic performance by real gross domestic prod-
uct, GDP, i.e. the gross value-added measure of GDP. However, it has been 
frequently suggested that a broader measure of economic welfare should be 
used and research in this area is particularly lively now in the early part of 
the twenty-first century.

It is important also to be clear about what this chapter cannot do and 
does not do. We cannot properly survey the existing literature on the per-
formance of national economies since there are already tens of thousands of 
papers on this topic and no selection could possibly give a balanced or even-
handed guide to this vast literature. Nor do we plan to survey the method-
ologies involved in measuring the performance of national economies using 
efficiency and productivity analysis: by these, we mean growth accounting 
and the construction of index numbers, data envelopment analysis DEA, 
including free disposal hull methods FDH, stochastic frontier analysis SFA, 
stochastic non-parametric envelopment of data methods StoNED and other 
non-parametric regression methods. The reason is clear: the remainder of 
this book treats these methods in detail, and it would be foolish to offer 
any duplication of this material. The purpose of this chapter, once these 
two impractical directions are excluded, therefore arises from the title and 
the idea of introducing the comparative ideas and themes that a researcher 
into the performance of national economies might want to consider when 
evaluating this massive research challenge. We have deliberately organised 
our range of topics very widely in order to meet the challenge set for us and 
while we are not so naïve as to imagine that our selection will meet with 
wide approval, we hope that we will stimulate researchers to think broadly 
about the sort of issues that a non-specialist might ask about when consider-
ing the wide-ranging topic of the performance of national economies.

The most important theme that we wish to emphasise is that we have 
interpreted the concept of the relative performance of national economies 

1We adopt the usage of representing total factor productivity change by the symbols TFP since that is the 
convention adopted elsewhere in the Handbook. Much of the macroeconomic literature simply calls 
this total factor productivity even though it is measured by the difference between two weighted rates 
of change over time. Where the reference is to the level of total factor productivity, we point this out.
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very widely. Anyone familiar with the upsurge in questions by econom-
ics students about the relevance of their studies will know that neoclassical 
economics and the overriding dominance of GDP as the only measure of 
performance is under serious debate. A good example of this is the CORE 
project2 which is an innovative approach to widening the economics curric-
ulum in response to student-centred requests and which is now being widely 
adopted in Europe and the USA. Consequently, we devote space to examin-
ing a wide range of different concepts of economic performance including 
but certainly not limited to the value-added definition of GDP. In part, this 
reflects the expanding interest in behavioural economics, see Thaler (2018) 
who has emphasised how individual decision makers in reality appear to use 
concepts of altruism, fairness, subjective adjustment of objective frequencies, 
and heuristics that lead to behaviour that is at odds with the idea of maxim-
ising productivity growth.

This chapter is structured to fall broadly into two parts. The first part, 
which consists of Sects. 2 and 3, begins with the conventional neoclassi-
cal3 definition of TFP using the change in the gross value-added measure 
of GDP in order to show what needs to be assumed to arrive at the iden-
tification of TFP with the unobserved residual that represents technologi-
cal progress. There is a wide debate on why this measure of technological 
progress appears to have slowed down considerably in developed economies 
in recent years. The phrase “productivity slowdown” or “productivity gap” 
has become common in public discussion. Theories range from the idea that 
humanity has run out of new technological ideas all the way to secular stag-
nation meaning there is nothing worthwhile left in which to invest. We do 
not survey all of these ideas but we do discuss the methodological context in 
which they are considered.

It may of course simply be that the TFP measure used for this debate is 
severely at fault. This raises two types of question. First, do the conventional 
measures of GDP, i.e. aggregate expenditure on final goods and services or 
aggregate gross value-added, exclude important components of GDP? We 
briefly review some of the most important recent contributions to this ques-
tion. Second, is GDP the appropriate indicator of national economic perfor-
mance? Therefore, we follow this by a discussion of other measuring metrics 

2See https://www.core-econ.org.
3The proponents of the conventional treatment of TFP as a residual use the term neoclassical to describe it.

https://www.core-econ.org
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of economic performance, for example, economic welfare which can present 
a totally different picture.

However, since the majority of the empirical work until now has focused 
on the measurement of economic performance in terms of GDP or GDP 
per capita, we treat this approach in the second part of the chapter, which 
consists of Sects. 4–8. We begin this part with the approach of efficiency 
and productivity analysis which explicitly relaxes the strong assumptions 
made to achieve the conventional residual TFP measure. By efficiency and 
productivity analysis, we mean the whole range of methodologies which 
flowed from the pioneering work of Farrell (1957), Charnes et al. (1978) 
and Aigner et al. (1977), i.e. data envelopment analysis, stochastic frontier 
analysis and all the subsequent developments that measure the distance of 
economies from their technological frontier. We show how stochastic fron-
tier analysis and data envelopment analysis modelling has been able through 
the idea of TFP decomposition and the measurement of inefficiency to tell 
us much more about TFP than the conventional approach. In particular, we 
show how these methodologies are able to relax the assumptions needed for 
the conventional neoclassical approach and we discuss how they attempt to 
model the components of TFP. We can conveniently classify these meth-
odologies into regression-based approaches4 and programming-based 
approaches depending on the importance attached to errors of measure-
ment, sampling and specification. We discover that in the regression-based 
approach the critical ingredient in the TFP decomposition is the computa-
tion of the elasticities of the production, input distance, output distance or 
cost functions. In the programming-based approach, the critical ingredients 
are the estimated efficiency scores under different constraints. Naturally, we 
leave to the other chapters in the handbook the technical details of imple-
menting these methodologies.

We review a number of critical issues such as whether the size of national 
economies matters, whether there is an important role for exogenous var-
iables in explaining the unobserved TFP residual, and the role of incen-
tives to be efficient arising from the market structure of the economy. We 
will explain how programming-based approaches and regression-based 
approaches can model these issues and the difficulties and problems in doing 
so. There is an important distinction between the two broad approaches. 
In a regression-based methodology, the key to developing a deeper 

4In the regression-based methodology, we concentrate on the frequentist approach and do not include 
discussion of Bayesian methods.
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understanding of the components of TFP is by addition of further explan-
atory variables. In the mathematical programming methodology, the key is 
to develop additional constraints on the optimisation problem which is at 
the heart of computing the efficiency scores. Since the programming-based 
approach can be expressed in either primal envelopment form or dual multi-
plier form, adding (row) constraints to the primal involves adding (column) 
variables to the dual.

Following these methodological sections, the chapter turns to empirical 
issues, and for this we deliberately use the context of the regression-based 
approach, because the discussion of critical issues is, in our view, more 
transparent in this context than if we were to use the programming-based 
approach. We emphasise however that the concept of output or outputs 
used can include any of the performance metrics raised earlier, not only 
GDP. The first empirical problem we consider arises from the fact that inter-
est in the performance of national economies is inseparable from the com-
parison of different national performances and this requires us to address 
the problem of latent heterogeneity in cross-country samples, i.e. differ-
ences across countries. In discussing these, we review the issue of whether 
the performance of national economies converges over time, or whether, as 
suggested by endogenous growth models, the individual performance of dif-
ferent countries is endogenous to the country itself.

We identify a second empirical problem in the way that technological 
change is modelled in efficiency and productivity analysis. The majority of 
studies in both the regression-based approach and the programming-based 
approach treat technological change as a shift over time in the complete 
technology frontier. This shift may be Hicks-neutral or input increasing but 
it assumes that all production techniques benefit simultaneously from tech-
nological change. However, there is an important literature which has a long 
history emphasising the idea of localised technical change in which inno-
vation and progress applies to one or two production techniques but does 
not shift the whole frontier. We show that there are modelling problems for 
efficiency and productivity analysis in this idea but that programming-based 
methodology or other non-parametric approaches may offer a more fruit-
ful starting point than conventional regression-based analysis. Finally, a third 
estimation issue that we identify refers to similarities amongst neighbour-
ing countries rather than the differences between them that were discussed 
previously. This compels us to incorporate developments in spatial analysis 
into our review of the performance of national economies, and we do this 
in a particular example of the technological spillovers amongst neighbouring 
countries at the level of the aggregate production function. The issue here is 
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how to meld together the spatial models with the standard error term speci-
fications, and we review some very recent contributions to this problem.

This topic of the performance of national economies is very broad indeed. 
We can see that there is an implicit dilemma in the topic: is it macroeco-
nomics or is it microeconomics? Certainly, in terms of plain numbers, the 
volume of macroeconomics treatments of national economic performance 
outstrips the volume of microeconomics treatments, but efficiency and pro-
ductivity analysis is essentially embedded in microeconomics. There are dif-
ferent ways of addressing this dilemma, but we should explain ours clearly 
since it will not be in agreement with some approaches that other research-
ers may favour. We emphasise microeconomic developments particularly in 
regression-based and programming-based methodologies. However, we can-
not pretend that the vast macroeconomics literature on the performance of 
national economies does not exist or is not relevant. Therefore, we set the 
scene by first reviewing the key ideas from the macroeconomic literature 
on national economic performance so that we bring out the four critical 
assumptions that underlie the conventional neoclassical measures of perfor-
mance: allocative efficiency, constant returns to scale, no exogenous variable shifts 
and no inefficiency of performance. This enables us to motivate the microeco-
nomic approach embedded in efficiency and productivity analysis because 
each of these assumptions is relaxed by the microeconomic approach to 
measuring national economic performance.

Our purpose in this chapter is not to present a detailed literature survey 
of the vast amount of research papers on the performance of national econo-
mies5—that would be an impossible task today. Instead, we wish to present 
an analytical overview of how efficiency and productivity analysis can pro-
vide the appropriate tools for assessing national economic performance. This 
will therefore be an introduction to the more detailed range of topics devel-
oping this issue in the following chapters.

5One of the co-authors has already written a detailed survey of different stochastic frontier analysis 
models and specifications, Sickles et al. (2017).
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2  TFP: Unobserved Data Residual 
Representing Technological Progress

To most macroeconomists, TFP simply means the unobserved residual in 
aggregate data on the gross value-added measure of GDP when account 
is taken of the payments to inputs or factors of production. This is identi-
fied with technological progress, the key factor in raising per capita living 
standards over time. This measure which is known as growth accounting 
has been standard since the classic papers of Solow (1957) which stated that 
most of the growth in per capita GDP in the USA over the first half of the 
twentieth century was not due to factor accumulation but was due instead 
to the unobserved residual which he named as technological progress, and 
Jorgenson and Griliches (1967) which demurred from this conclusion. In 
the macroeconomics literature, this measure is arrived at by the following 
calculation,6 see, for example, Goodridge et al. (2016). Suppose that for 
sector or industry j = 1, . . . , J, aggregate labour used and aggregate capital 
used, Lj and Kj, produce gross value added, Vj. Then the relative change in 
aggregate real value added is

The weights vj and wj are respectively nominal value added in industry 
j = 1, . . . J as a share of aggregate value added and shares of factor cost in 
nominal industry value added. TFP is 

∑J
j=1 wj� ln TFPj, i.e. the data resid-

ual required to ensure that the right-hand side aggregates sum to the left-
hand side. This is what macroeconomists identify as technological progress. 
In ten Raa and Mohnen (2002), there is suggested a neat way of overcom-
ing the problem in this growth accounting literature of using input prices 
as exogenous components in the weights to measure TFP when the input 
prices are themselves endogenous to the performance of the economy itself. 
ten Raa and Mohnen (2002) use shadow prices measured from an optimis-
ing model of national economic performance in which the objective is to 
maximise the level of final demand given the endowments and technology of 
the economy represented by its input-output social accounting matrix.

(1)� lnV =

J∑

j=1

wj� lnVj =

J∑

j=1

wjvj� ln Lj +

J∑

j=1

wjvj� lnKj +

J∑

j=1

wj� ln TFPj

6The chapter by Fox and Diewert elsewhere in this volume addresses this issue in much more detail.
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From these data, national economic performance is often defined in terms 
of output per worker or output per hour worked: � ln (V/N) or � ln (V/H) 
using measures of the workforce, N, or hours worked, H. The apparent 
downwards trend in the major developed economies, USA, Japan and the 
European economies including the UK, in recent years is what constitutes 
the productivity slowdown. There are two types of explanation of national 
economic performance using this approach. The first is a careful deconstruc-
tion and refinement of the labour and capital data to ensure the minimum 
role for TFP. The second is a range of speculations on the variability of TFP 
measured in this way.

However, it is important to understand that very strong implicit assump-
tions about the structure of the aggregate economy are needed in order 
to use the growth accounting approach outlined above. These include the 
assumptions:

• that inputs are paid the value of their marginal products and output is 
priced at the marginal benefit of consumption, i.e. that there is allocative 
efficiency in all markets;

• that there are constant returns to scale in every industry;
• that no producers display inefficiency of performance due, for example, to 

agency problems or behavioural patterns different from those of rational 
economic agents, i.e. every producing unit is on its production frontier;

• that ceteris paribus prevails, i.e. there are no important exogenous variable 
changes or changes in the market structure or regulations of the economy 
under study.

Goodridge et al. (2016) are careful to comment that they estimate TFP as 
a residual, but, they ask, what drives TFP? In theory, they say, it is techni-
cal progress, but it could also be: “increasing returns to scale, omitted inputs, 
factor utilisation and cyclical effects, measurement error and a host of other fac-
tors ”. In other words, the neoclassical approach to measuring TFP assumes 
by necessity that all of these factors are absent. As we shall see, the approach 
of efficiency and productivity analysis is to focus on these other factors. In 
this way, the efficiency and productivity analysis methods reviewed here offer 
a much more flexible and open way of testing large theories of the nature of 
economic performance. There is no shortage of such theories, e.g. the ency-
clopaedic summary of growth under good and bad capitalism outlined by 
Baumol et al. (2007). These authors offer, like others, a wide range of sug-
gestions for enhancing economic growth which are testable using the meth-
ods of efficiency and productivity analysis but which are difficult to assess 
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when the neoclassical assumptions of the growth accounting approach are 
used. Therefore, relaxing these assumptions becomes the key to understand-
ing how national economic performance can be compared.

Before we do this, we briefly examine the two other explanations: decon-
struction of the input data and speculation about the socio-economic deter-
minants of TFP treated as technological progress alone.

A widely cited example of the input data deconstruction approach is 
Gordon (2003). Suppose that we examine the measure of the rate of change 
of real gross value added, GDP, � ln(V). We might believe that a useful 
decomposition is7

Here

V/H is gross value-added per hour worked in the sector under study;
H/E is aggregate hours worked per employee;
E/N is the employment rate—current employees as a share of the labour 

force;
N/POP is the labour force participation rate—those in the labour force as a 

proportion of the relevant population.

Only the population is regarded as a non-cyclical variable, the other ratios 
may all be cyclical. In Gordon (2003), the underlying trends in these ratios 
are identified using Hodrick-Prescott and Kalman filter time-series meth-
ods which then permit the development of socio-economic analyses of 
why the trends may be pointing in a particular direction. There are multi-
ple versions of these speculative analyses in the literature. For example, with 
reference to the USA and other advanced economies, Baker et al. (2005) 
highlight demographic and population issues suggesting that populations 
are ageing and there are limited further reservoirs of female participation in 
employment because feminism is in a mature stage. To the extent that the 
productivity slowdown or weaker national performance is technical pro-
gress, Gordon (2016) is amongst the most prominent advocates of the argu-
ment that it has slowed because the modern age has run out of ideas. There 
has been a temporary boost to economic performance from the ICT-based 

(2)V = (V/H)× (H/E)× (E/N)× (N/POP)× POP

7Using an expanded identity as an analytical starting point is a popular technique for developing a new 
direction in research, but sooner or later it has to be supported by empirical evidence for testing theo-
ries about human behaviour.
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digital revolution including the smartphone but this is ending and Gordon 
makes the bold claim that these innovations of the twenty-first century are 
as nothing compared with the great inventions of the previous 150 years: 
steam power, railways, natural gas pipelines, the internal combustion engine, 
electrical power generation and the jet engine. Why is technological progress 
slowing down? Gordon’s explanation is that advanced economies are running 
into what he terms “headwinds”. These include demographics associated 
with the retirement of ageing baby boomers leading to lower labour force 
participation rates. Additionally, there is an education headwind because, he 
argues, there is no further room for greater high-school, i.e. secondary edu-
cation, completion rates. Gordon adds that inequality is worsening as the 
top 1% stretch away from the rest and that this reduces incentives to raise 
productivity generally. There are echoes of these arguments in the revival of 
early Keynesian ideas about secular stagnation, and related research on the 
long-term trend towards a falling real return on capital and consequent disin-
centives to invest, e.g. Lukasz and Smith (2015) who characterise the global 
economy as experiencing higher saving rates due to ageing populations and 
growing inequality, and lower returns due to falling public investment.

We might expect that there should be an important role for the shift to 
the digital-knowledge economy in this type of analysis, and one approach 
focused largely on this is the shift towards “capitalism without capital” sug-
gested by Haskel and Westlake (2017). The starting point is their obser-
vation that investment in tangible fixed assets is becoming much less 
important in developed economies than what they refer to as “intangible 
investment” which comprises investment in design, branding, R&D, data 
and software. They quote the example of Microsoft which in 2006 had 
recorded assets that amounted to about 30% of its then market value, but 
85% of these assets consisted of cash while conventional plant and equip-
ment accounted for only 3% of the assets and 1% of the market value. 
They cite Microsoft as one of the first examples of capitalism without cap-
ital. Haskel and Westlake (2017) use as a critical indicator the ratio of the 
value of the tangible assets on a firm’s balance sheet to the market value of a 
firm. They show that for the world’s five most valuable companies, this ratio 
is currently (2017) below 5%; they comment that although these include 
the global “tech” companies this phenomenon is spreading to every sector. 
They argue that this makes the modern intangible-rich economy fundamen-
tally different from one based on tangibles. Several problems arise for the 
measurement of performance as a result of this development. Investment 
in intangibles is difficult to measure in national statistics and often R&D 
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is simply recorded as a cost rather than a form of investment. Haskel and 
Westlake argue that intangible investment such as a brand, or an algorithm 
can be scaled up much more easily than tangible investment through the 
transfer of software. In addition, intangible investment has spillovers making 
it more difficult to stay ahead of the competition but also driving a wedge 
between the private and social rates of return on this form of investment. 
Issues such as these suggest that the way that national economic perfor-
mance can be measured is likely to change radically in the future compared 
with the way it has been carried out up to now.

There are therefore numerous analyses in the literature that allow econ-
omists to speculate in general socio-economic terms about perceived facts 
of modern society, but all of them suffer from a departure from well-for-
mulated empirical analysis and the imposition of strong assumptions about 
markets and behaviour and that is a gap that efficiency and productivity 
analysis research tries to fill. Before considering the efficiency and produc-
tivity analysis in more detail however, we must first ask whether the gross 
value-added measure of GDP is adequate for addressing national economic 
performance.

3  Is GDP the Right Way to Measure National 
Performance?

There are two questions to ask in this context.
Is GDP measured properly? GDP in the national accounts is gross val-

ue-added and it equals not only spending on final goods and services but 
also factor incomes.

Is GDP the appropriate output variable to measure?
There is considerable literature on each of these issues for which we pro-

vide a brief introduction.
There is a widely perceived idea that measured GDP excludes many 

important areas of economic activity, particularly in relation to mis-
priced goods and services. The proper definition of GDP has been a sub-
ject of debate since the development of national accounts, which were an 
outcome of the problems that Keynes and his followers in the USA and 
the UK encountered in trying to measure the level of economic activity 
before and during the Second World War—for a lively account of the early  
Keynesian efforts to define and understand GDP, see Skidelsky (2003). A 
key issue is the definition of the production boundary, Coyle (2014, 2017). 
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The production boundary8 separates “paid-for activities in the market econ-
omy from unpaid activities” so that firms and government are considered 
productive but households are not (Coyle 2017). As a consequence, much 
of the work done largely by women in the home is not generally included 
in GDP—see Folbre and Nelson (2000), On the other hand, it is plain that 
the options for female participation in the labour force differ widely because 
childcare provisions vary so markedly across even the developed economies 
in the OECD and EU, as shown by Bettio and Plantenga (2004). Most lei-
sure activity is excluded as well, and the digital economy is said to be hav-
ing a massive but unmeasured effect on economic activity, Varian (2016). 
Once we start to unravel the definition of GDP, the problems of using it to 
measure the economic performance of national economies seem to multiply 
exponentially. For example, there are massive policy changes under debate 
and in progress to combat climate change. The achievement of a viable car-
bon-neutral economy is the objective of many in the environmental move-
ment, but without a clear consensus on the social cost of carbon, we have no 
way of measuring the benefits in GDP terms of the success or otherwise of 
environmental policy.

Consequently, economists have for decades argued that GDP is an inad-
equate measure of the economic performance of nations and have sought to 
develop alternative measures of national economic welfare. There have been 
many suggestions for a welfare or even a “happiness”-based index instead, 
see Helliwell et al. (2012). Particularly important have been suggestions by 
international bodies like the UN which has developed its own human devel-
opment index, HDI that includes measures of education and health. Many 
of the suggested substitute measures such as “happiness” are based on sur-
vey responses, and Helliwell et al. (2012) are the most widely cited of these. 
The initial observation that commenced this line of research is the Easterlin 
(1974) paradox that states that at any point in time richer people appear 
to be happier than poorer people but over time society does not appear to 
become happier as it becomes richer. Easterlin’s explanation is that individ-
uals use relative income levels to evaluate their well-being but if these stay 
constant over time happiness is unchanged. The contention of Helliwell, 
Layard and Sachs is that happiness differs over time and across societies for 

8The idea of the production boundary separating productive and non-productive services goes back to 
Adam Smith (1776) where Smith famously distinguished the output of productive labour from that of 
non-productive labour whose “services generally perish in the very instant of their performance, and 
seldom leave any trace or value behind”. Many professions fell into this category, according to Smith, 
including the menial servant, the Sovereign, men of letters of all kinds, buffoons and opera singers.
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identifiable reasons, and it may be alterable by public policy. Their 2012 
report used the Gallup World Poll, the World Values Survey, the European 
Values Survey and the European Social Survey from 2005 to 2011 to com-
pile a broad happiness index. For example, the Gallup World Poll asked 
1000 people aged 15 or over in 150 countries to evaluate the quality of their 
lives on an ascending score from 0 to 10. For the world as a whole weighted 
by population, the modal category, i.e. the category with the largest num-
ber of people reporting (26.2%), was 5, exactly the mid-point. In categories 
6–10, there was a further 42.9% of respondents so that 69.1% of the total 
reported that they were not below the mid-point of the happiness scale. For 
North America, Australia and New Zealand, the modal life satisfaction cat-
egory was 8 with 92.9% of respondents reporting that their life satisfaction 
was not below the mid-point (5). By contrast in sub-Saharan Africa, only 
47.4% of respondents were not below mid-point category 5. Clearly level 
of development with all of its associated implications plays a major role in 
the relative evaluation of happiness. In their analysis of responses, Helliwell 
Layard and Sachs identified key categories affecting life evaluations as: work 
(employment and quality); social capital (trust, freedom, equality); values 
(altruism, materialism, environment); health (mental, physical); family; edu-
cation level; gender. For example, improvements in the nature of work or the 
support for social capital and health were evaluated as being worth several 
multiples of a 30% increase in income. Based on results like these, Helliwell 
Layard and Sachs noted that changes in these factors can be brought about 
by policy reform, offering considerable scope for rich and deep analysis on 
the relative performance of national economies.

However, there has also been a consistent strand of economic research 
that attempts to measure economic welfare amongst nations empirically 
rather than subjectively. In Jones and Klenow (2016), for example, there is 
a detailed empirical study that compares the performance of a wide range 
of countries on a measure of economic welfare determined by an equivalent 
consumption metric. Their aim is to determine how an easily computable 
measure of economic welfare correlates with GDP as a measure of economic 
performance. It is interesting to examine this example of much of the recent 
work on the usefulness of GDP as a measure of national economic per-
formance. Jones and Klenow imagine an individual living in an arbitrarily 
chosen country and drawing his/her life experiences from that country’s dis-
tributions of consumption, work-leisure trade-off opportunities, inequality and 
life expectancy. Using simple logarithmic assumptions about preferences, they 
construct from observed macro- and micro-data a measure of utility for that 
individual in that country. They then construct a variable: the “consumption 
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equivalent measure of standard of living” which is the factor lambda which 
if applied to the random draws of consumption, leisure and life expectancy 
from the distributions applying in the USA would make that individual 
indifferent between living in the USA and his/her original country. The fac-
tor lambda is the number which multiplicatively reduces the level of con-
sumption of a US citizen sufficiently to provide a level of utility equivalent 
to the citizen of another country when utility depends on consumption, ine-
quality and leisure, and when consumption in each country is a randomly 
distributed variable with a mean and variance particular to the country in 
question. In other words, the proportion of USA consumption—given the 
leisure, mortality and inequality in the USA—which would provide the 
same expected utility as the values elsewhere.

Jones and Klenow provide a simple example.9 They postulate an intercept 
level of utility, ū, e.g. the lifetime subsistence level of consumption or value 
of life, and concentrate on two key variables: the first is consumption per 
capita, C, which is the individual’s random draw from the consumption dis-
tribution for the country in which he/she lives, and the second is the utility 
of leisure time, v(l ), drawn from the leisure distribution in the country. The 
flow of utility is

They assume that consumption is log-normally distributed, a result often 
found to describe all but the top percentile of the income distribution in 
many countries:

where µ = E(logC) and σ 2 = var(logC).
Jones and Klenow parameterise the mean of consumption in country i as 

E(Ci) = ci, then, using the properties of the log-normal distribution, they 
are able to write10:

(3)u(C, l) = ū+ logC + v(l)

(4)logCi ∼ N
(
µi, σ

2
i

)

(5)E(C) = exp

(
µ+

1

2
σ 2

)
= c ⇒ logE(C) = µ+

1

2
σ 2 = log c

9Jones and Klenow present a complex analysis of which this is the simplest example assuming a zero 
discount rate for utility of consumption and a zero growth rate for consumption.
10The derivation of these results is compressed in Jones and Klenow (2016) so we have expanded the 
explanation.
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i.e. after rearranging Eq. (5) and using (4):

Assuming that typical life expectancy in any year for a citizen in this country 
i is ei, Jones and Klenow then write, in their simplest case, that a citizen’s 
expected lifetime utility is the product of the flow of utility multiplied by 
life expectancy:

This tells us that welfare of the typical citizen in this country is increasing in 
life expectancy, increasing in consumption per person, increasing in the util-
ity of leisure available per person but decreasing in the variance of consump-
tion per person, which is a measure of the inequality of the distribution of 
consumption per person.

Now for the case i = USA multiply cUSA by �i, the multiplier by which 
UUSA must be reduced to yield the level of welfare that is equivalent to that 
of a citizen living in country i.

In other words, find �i that satisfies

The result is

This “consumption equivalent measure of standard of living” therefore con-
sists of four additive terms for each country:

• Relative life expectancy in country i compared with USA weighted by the 
mean flow of utility of consumption and leisure in country i

• Relative mean consumption compared with USA
• Relative utility of leisure time compared with the USA

(6)E(logC) = µ = logE(C)−
1

2
σ 2 = log c−

1

2
σ 2

(7)Ui = ei

(
ū+ log ci + v(li)−

1

2
σ 2
i

)

(8)UUSA(�i) = Ui(1)

(9)eUSA

(
ū+ log (�icUSA)+ v(lUSA)−

1

2
σ 2
USA

)
= ei

(
ū+ log ci + v(li)−

1

2
σ 2
i

)

(10)
log �i = [(ei − eUSA)/(eUSA)]

(
ū+ log ci + v(li)−

1

2
σ 2
i

)
+

[
log ci − log cUSA

]

+ [v(li)− v(lUSA)]−
1

2

(
σ 2
i
− σ 2

USA

)
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• Relative variance of consumption compared with the USA, which is a 
measure of consumption inequality.

In general, log �i will be negative so that �i < 1 due to the dominance of the 
second term, the gap between the county’s per capita consumption and that 
of the USA. However, as the other terms have an impact, for some countries 
log �i will approach zero so that �i ∼= 1. In other words, while many coun-
tries will have consumption per capita much lower than in the USA some 
may have higher leisure time, higher life expectancy and a more equitable 
distribution of income all of which contribute positively to the citizen’s wel-
fare in the Jones-Klenow social welfare function. Therefore, we may expect 
that compared to the ranking by GDP or consumption per capita, the con-
sumption equivalent welfare measure may show that some countries rank 
equally highly with the USA in terms of national welfare performance but 
that others may be much more worse off than the raw GDP data indicate.

Jones and Klenow draw on the research literature to parameterise these 
components in particular using a value for the Frisch elasticity of labour 
supply of 1 which implies disutility from working rises with the square of 
the number of hours worked so that v(l) then depends on the real wage and 
the marginal tax rate of labour income. Constructing �i for a wide range of 
countries provides a set of important results for the evaluation of GDP as a 
measure of comparative national performance compared with the consump-
tion equivalent measure of welfare.

• The correlation between GDP per capita and consumption equivalent 
welfare is very high, of the order of 0.95–0.98.

• In Western Europe, living standards are much closer to the USA than 
income per capita suggests due to longer lives with more leisure.

• In most developing countries, welfare is much lower than income per 
capita due mainly to shorter lives with more inequality.

• Economic growth in consumption equivalent welfare (except in sub-Saha-
ran Africa) is 50% higher than growth in GDP per capita due to declin-
ing mortality.

Jones and Klenow are conscious of leaving out other aspects of welfare in 
which they include morbidity, environmental quality, crime, political free-
dom and intergenerational altruism; nevertheless, this example of a grow-
ing literature indicates how the measurement of the performance of national 
economies opens up a massive range of modelling developments. It is 



An Overview of Issues in Measuring the Performance of National …     675

possible, for example, to consider the consumption equivalent measure of 
standard of living as providing an alternative conception of the frontier of 
national economic performance to which further efficiency and productivity 
analysis could then be applied. In general, efficiency and productivity analy-
sis of the “happiness frontier” or welfare frontier is a largely unexplored area.

4  National Economic Performance: 
Programming Analysis

From this point on we take up the second part of the chapter and focus on 
using real value-added GDP as the key measure of performance of national 
economies so that the estimation of TFP is the central preoccupation of the 
analysis. In this section, we concentrate on the programming approach to 
measuring TFP, generally known by the generic name of data envelopment 
analysis.

The paper by Farrell (1957) and the comments by Winsten (1957) con-
tributed hugely to the development of efficiency and productivity analysis, 
and it is interesting that the initial example related to efficiency in aggre-
gate agricultural production of the USA. However, it can be said that the 
pioneering paper in the application of efficiency and productivity analysis 
to measuring the performance of national economies is Färe et al. (1994). 
This paper used data envelopment analysis to evaluate productivity change 
across different countries and introduced two major changes to the assump-
tions required by the neoclassical growth accounting method. Constant 
returns to scale was replaced by the possibility of variable returns to scale 
and the assumption that every country was on the international production 
frontier was replaced by the possibility that countries could display ineffi-
ciency of performance. In this way, efficiency and productivity analysis 
moved on from the conventional neoclassical macroeconomic approach to 
measuring TFP. Färe, Grosskopf, Norris and Zhang used data envelopment 
analysis with variable returns to scale to develop Malmquist indices of TFP. 
Subsequently, Ray and Desli (1997) refined the analysis on how the effect 
of variable returns to scale should be measured. In ten Raa and Shestalova 
(2011), the Solow residual concept is neatly reconciled with the data envel-
opment analysis approach to productivity measurement by embedding it in 
an input-output analysis. This approach which makes uses of duality and 
shadow prices offers a potentially interesting way to conceptualise the theo-
retical measurement of TFP.
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The distance function contains the same information about the technol-
ogy as the production function. Consequently Caves et al. (1982) by adopt-
ing a normative approach rather than the neoclassical data residual approach 
show that productivity growth can be represented by a Malmquist index 
defined to be the ratio of the values of an output distance function after an 
event to the value of an output distance function before the event. The out-
put distance function directly measures Farrell radial efficiency. The result-
ing index M > 1 if there is positive productivity growth. Färe et al (1994) 
developed this in several ways. First, by assuming that the producing unit 
need not be on the transformation surface either before or after the event. 
In other words, the producing unit could be technically inefficient despite 
the existence of productivity growth. The possibility of building in a meas-
ure of inefficiency allows the researcher to decompose the shift in the pro-
ducing unit’s position into two separate components: the efficiency change 
effect and the technical change effect. Secondly, Färe et al derived the equiv-
alent Malmquist indices for the input distance function which measures the 
inverse of the Farrell radial efficiency, so that to maintain the convention 
that the resulting index M > 1 if there is positive productivity growth the 
inverses of the input distance functions, i.e. the Farrell radial technical effi-
ciency scores were used. Finally, Färe et al. addressed the issue of returns to 
scale by defining the Malmquist index for distance function values assum-
ing constant returns and a separate Malmquist index for distance functions 
assuming variable returns to scale. The difference between the two technol-
ogies is defined by the description of the technology as a convex cone in the 
case of constant returns and a convex hull in the case of variable returns.

We isolate two periods for comparison: t and t + 1, representing the 
before and after positions relative to a productivity change. We need to com-
pare the value of the distance function at t + 1 to its value at t, but there is 
the option of choosing the period t or the period t + 1 output possibility set 
as the reference technology. For example, Färe et al. (1994) use the geomet-
ric mean of these two reference sets as the reference technology. We observe 
the inputs and outputs at each of these periods and set up the corresponding 
programming analysis with input-orientated radial efficiency measures (θ).  
Non-radial measures of efficiency can also be incorporated into develop-
ments of the distance function approach.

The output distance function is defined for a given technology such 
that a vector of inputs x′ = (x1 . . . xK) can make a vector of outputs 
y′ = (y1 . . . yR). The technology set is

(11)T = {x, y : x canmake y}
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The output distance function is the smallest positive scalar divisor δ of a 
bundle of the production unit’s outputs y such that (y/δ) is in the technol-
ogy set, T.

A piecewise linear representation of the technology of production with con-
stant returns to scale is.

The matrices X,Y represent all of the observed data in the efficiency meas-
urement exercise and the vectors x, y represent one particular country. The 
output distance function can be measured by the Farrell radial efficiency, δ, 
of each country’s outputs:

There is an equivalent approach to the input distance function defined as 
the largest scalar divisor ρ of a bundle of inputs x such that (x/ρ) is still in 
the technology set which leads to a Farrell radial efficiency measure, θ, of the 
inverse input distance function:

In the both cases of the output and input distance function, the assumption 
of variable rather than constant returns to scale is implemented by adding 
the constraint e′� = 1 to the piecewise linear representation of the technol-
ogy, where e is a vector of ones.

We use the notation θ t+1,t
C  to represent the input-orientated measure of 

radial efficiency with constant returns to scale for a country observed in 
period t relative to the technology prevailing in period t + 1 while θ t+1,t

V  
refers to the variable returns to scale version.

Scale efficiencies are given by the ratio of the Farrell radial efficiency 
under CRS to the Farrell radial efficiency under VRS. There are four meas-
ures: respectively scale efficiency for the observation in period t with ref-
erence to the period t technology, scale efficiency for the observation in 
period t with reference to the period t + 1 technology, scale efficiency for the 
observation in period t + 1 with reference to the period t + 1 technology, 
and scale efficiency for the observation in period t + 1 with reference to the 
period t technology:

(12)DO(x, y) = min{δ : (x, y/δ) ∈ T} ≤ 1

(13)Tr = {x, y : X� ≤ x,Y� ≥ y}

(14)DO(x, y) = min
{
δ : (x, y/δ) ∈ Tr

}
= min{δ : X� ≤ x,Y� ≥ y/δ}

(15)DI(x, y) = max
{
ρ : (x/ρ, y) ∈ Tr

}
= min{θ : X� ≤ θx,Y� ≥ y}
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This produces a scale decomposition:

Malmquist indices can then be defined for CRS or VRS technology

Each index can be decomposed into a measure of efficiency change, EFC, 
the first ratio in square brackets, and technical change, TEC, the second 
ratio in square brackets.

Finally, we have a relationship between the indices:

This provides us with a complete decomposition into efficiency change EFC, 
technical change TC and scale efficiency change, SEC:

Fare et al. (1994) and Ray and Desli (1997) applied the analysis to an inter-
national sample using data on real GDP, labour and capital inputs from 
the Penn World Tables, Summers and Heston (1991) and this procedure 
has become commonplace in international productivity comparisons using 
the efficiency and productivity analysis approach. In summary, this early 
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literature was able to introduce two ways in which the neoclassical assump-
tions could be relaxed by employing data envelopment analysis. The data 
envelopment analysis assumes that countries can be below the international 
production frontier and that they can operate with technologies that dis-
play variable returns to scale. The procedure for doing this is straightforward 
once we abandon the neoclassical approach and specify the ideas associated 
with the distance function and Farrell radial efficiency.

There are many ways in which this initial work on international TFP 
comparisons used efficiency and productivity analysis. For example, Milner 
and Weyman-Jones (2003) in a study confined to developing nations also 
drew on the Penn World Tables to measure the radial efficiency compo-
nent of different countries and to relate that to different measures of coun-
try heterogeneity, thereby combining the neoclassical approach that focused 
on determinants of differences in national GDP performance and the effi-
ciency and productivity analysis approach which modelled the technology 
as a performance measure that varied with returns to scale. In their study 
of developing nations, Milner and Weyman-Jones (2003) looked for possi-
ble determinants of the measured Farrell radial efficiency scores of different 
countries that used inputs of labour, capital and agricultural land to generate 
real GDP. The explanatory factors they used in a 2-stage analysis included 
relative country size, per capita income, education level, health level, indus-
trialisation, degree of democracy, trade openness. There have been many 
further advances in the data envelopment analysis approach to international 
productivity comparisons. Giraleas et al. (2012) demonstrated that the data 
envelopment analysis approach using Malmquist indices performed par-
ticularly well in simulation studies when compared against the neoclassical 
growth accounting and deterministic regression-based frontiers. Since the 
development of the programming approach by Färe, Grosskopf, Norris and 
Zhang, there has been a massive expansion in the number of data envelop-
ment analysis studies of the Malmquist estimation of TFP for a multiplicity 
of economies.

5  National Economic Performance: 
Regression-Based Analysis

In assessing the performance of national economies from the point of view 
of efficiency and productivity analysis, we have the choice of measuring 
either efficiency levels or productivity changes across space and time. The 
major part of the literature concentrates on productivity comparisons and 
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changes because simply focusing on the measured distance to a frontier does 
not bring out the major factors that could be important in decomposing the 
changes in productivity over time. In Sect. 4, we showed that by using data 
envelopment analysis to construct normative Malmquist indices of TFP, we 
are able to relax two critical assumptions of the conventional neoclassical 
approach: the assumption of constant returns to scale and the assumption 
that every country is on the international production frontier. The other 
two assumptions of the neoclassical approach can also be investigated. These 
are that allocative efficiency prevails and that ceteris paribus is invoked—i.e. 
there are no exogenous variable shifts to take into consideration. The neo-
classical approach gets around the second of these two requirements by ad 
hoc qualitative speculation about long-term socio-economic trends including 
demographics supported by detailed deconstruction of the data on inputs 
and GDP used in the traditional index number approach. We have now 
seen how efficiency and productivity analysis in the form of data envelop-
ment analysis can address issues that the neoclassical approach cannot. It 
is natural to ask whether data envelopment analysis could also contribute 
to the relaxation of the allocative efficiency assumption and the ceteris par-
ibus assumption. It is certainly the case that a vast amount of useful data 
envelopment analysis has addressed these issues as well. Allocative efficiency 
has been researched in the data envelopment analysis approach since the 
original Farrell contribution and data envelopment analysis models can be 
developed using input price data to capture allocative inefficiency, see, e.g. 
Bogetoft and Otto (2011). It is also true that data envelopment analysis can 
be redesigned to accommodate additional shift factors representing the role 
of exogenous variables—this is done by adding constraint rows to the primal 
envelopment DEA programmes or equivalently adding variable columns to 
the dual DEA multiplier problems. In addition, some progress towards the 
inclusion of idiosyncratic error in the form of sampling error can also be 
made using bootstrapping approaches, Simar and Wilson (2007). However, 
these issues can also be addressed using stochastic frontier analysis and argu-
ably in the context of comparing the performance of national economies 
rather than individual decision-making organisations, the stochastic fron-
tier analysis approach offers clearer and more direct methods of analysis. 
Consequently, in continuing our discussion of the relaxation of the conven-
tional neoclassical approach to TFP we turn to stochastic frontier analysis.

There are different ways of deriving the full TFP formulae for different 
representations of the technology. One procedure as we saw is to start from 
the generalised Malmquist index form shown in Eqs. (20) and (21) in which 
the Malmquist index of distance function values, which can be decomposed 
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into a technological shift and a frontier catch-up, is adjusted by a scale factor 
to take account of non-constant returns to scale. Orea (2002) showed how 
this can be developed in a stochastic frontier analysis framework to gener-
ate a Tornqvist index of total factor productivity change, TFP, by using the 
empirically estimated elasticities and the key idea of the quadratic identity 
lemma due to Diewert (1976). Coelli et al. (2003) apply this to the pro-
duction function, input distance function and multi-product cost function 
representations of the technology.

Another derivation starts from the basic properties of a TFP index. An 
index of TFP is the weighted growth rates of outputs minus the weighted 
growth rates of inputs. Two of the most important properties of the weights 
are monotonicity and proportionality. Monotonicity requires that the 
weighted output growth rates and input growth rates are chosen so that 
higher output and lower input unambiguously improve TFP. This requires 
that in an empirical application based on regression analysis the elasticities 
must all be adjusted to have non-negative signs. Proportionality requires that 
the weights in the output and input growth indices add to unity. We can 
apply these requirements to the empirical estimation of the single output 
production function, the multi-product input distance function, the mul-
ti-product output distance function and the multi-product cost function to 
derive TFP indices from each representation of the technology. We first dif-
ferentiate our functional representation with respect to time to obtain the 
proportional rates of change of the outputs and the inputs then we choose 
a functional form to estimate by regression procedures so as to generate the 
required elasticity weights.

We apply this as follows in Table 1. The analysis here is based on the 
approach of Lovell (2003) who illustrated the output distance function. 
For each function: production, input distance, output distance and cost, we 
derive the elasticity weights from the logarithmic form of the function by 
total differentiation with respect to time. We use these elasticities as the out-
put and input weights ensuring that they satisfy monotonicity and propor-
tionality. In the case of the input distance function, for example, we must 
take care that the output elasticities which are negative when estimated are 
changed in sign to ensure monotonicity and in the case of the output dis-
tance function where the input elasticities are negative the same adjustment 
applies. The proportionality property is ensured by adjusting the elastici-
ties by the elasticity of scale value for the function in question, respectively 
E,EI ,EO,EC for the production, input distance, output distance and cost 
functions. When E,EI ,EO,EC > 1 there are increasing returns or econo-
mies of scale, when E,EI ,EO,EC = 1 there are constant returns and when 



682     A. Glass et al.

Ta
b

le
 1

 
Fu

n
ct

io
n

al
 f

o
rm

s 
an

d
 d

ec
o

m
p

o
si

ti
o

n
s 

o
f 

TF
P 

fo
r 

d
if

fe
re

n
t 

re
p

re
se

n
ta

ti
o

n
s 

o
f 

th
e 

te
ch

n
o

lo
g

y

Fu
n

ct
io

n
 f

o
r 

es
ti

m
at

io
n

Fo
rm

 f
o

r 
es

ti
m

at
io

n
Fo

rm
 f

o
r 

TF
P 

co
m

p
o

n
en

ts
 s

at
is

fy
in

g
 m

o
n

o
to

n
ic

it
y 

an
d

 p
ro

p
o

rt
io

n
al

it
y

Pr
o

d
u

ct
io

n
:

El
as

ti
ci

ty
 o

f 
sc

al
e:

 E
=

∑
k
ε
x
k

ln
y
=

ln
f( x

′ ,
z
′ ,
t) −

u
+

v

ε
x
k
=

∂
ln

f/
∂
ln

x
k
≥

0

ln
y
=

ln
f( x

′ ,
z
′ ,
t) −

u
,u

≥
0

[ ẏ
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ẋ
−

ε
O
′

z
ż
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E,EI ,EO,EC < 1 there are decreasing returns or diseconomies of scale. 
These elasticity of scale formulae are derived for the distance functions in 
Fare and Primont (2012) and for the cost function in Panzar and Willig 
(1977). The resulting TFP index will therefore be decomposable into four 
components: scale efficiency change, SEC, the change due to exogenous var-
iables, EXC, the technological change or frontier shift effect, TC, and the 
efficiency change component, EFC, derived from the inefficiency compo-
nent of the error term in the empirical estimation form.

To construct the TFP measures shown in Table 1, we have identified 
for each function an elasticity weighted average of rates of output growth 
minus an elasticity weighted average of rates of input growth. Monotonicity 
requires that the TFP measure increases if outputs increase and decreases if 
inputs increase. This requirement determines the sign properties of the com-
ponents. Proportionality requires that the different elasticity weights apply-
ing to outputs and to inputs each sum to one. This requirement is partly 
satisfied when the functional form representing the underlying technology 
has some form of linear homogeneity property; otherwise, it must be satis-
fied by making a scale adjustment to the elasticity weighted rates of change 
of outputs or inputs. In stochastic frontier analysis, we find that different 
decompositions are available depending on the way in which we choose to 
model the technology and the behaviour of producers.

The simplest place to begin is the aggregate production function relating 
our preferred output measure, y, e.g. the real gross value-added estimate of 
GDP to the economy’s aggregated inputs: x1, . . . , xK, the exogenous varia-
bles held constant under the ceteris paribus assumption: z1, . . . , zL and time 
representing the possibility of technological progress, t. Write the stochastic 
aggregate production function as

The error term has as usual two components: v is a two-sided symmetri-
cally distributed zero-mean random variable representing idiosyncratic error 
which is usually assumed to encompass all the measurement error, sampling 
error and specification error in the data generating process; u is an asymmet-
rically distributed non-negative random variable with its distribution trun-
cated at zero so that it has a positive expected value which is assumed to 
encompass the inefficiency of producer performance. In this way, we arrive 
at a measure of stochastic efficiency of performance

(22)y = f (x1, . . . , xK , z1, . . . , zL, t)exp(v− u)

(23)0 < TE = e−u = y/f (x1, . . . , xK , z1, . . . , zL, t)exp(v) ≤ 1
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To arrive at a productivity change measure, we must take the logarithmic 
derivative of the initial aggregate production function with respect to time. 
Write

We use the same convention for all of the other variables.
In Table 1, we show in the first row the TFP decomposition for the 

aggregate production function representation of the technology. The term 
E =

∑
k εxk is the elasticity of scale (<1, =1, >1, according as there are 

decreasing, constant and increasing returns to scale). The left-hand side of 
the TFP expression (in square brackets) is the growth rate of output minus 
the weighted growth rates of the inputs with the weights designed to sum 
to 1. Therefore, it is by definition a measure of total factor productivity 
change, TFP. The terms on the right-hand side represent first the growth rate 
of inputs adjusted by the elasticity of scale, which is scale efficiency change, 
SEC, second the weighted growth rates of the exogenous variables, EXC, 
third the growth of output over time when all other variables are held con-
stant, i.e. technological progress or technical change, TC, and fourth the 
rate of decline of inefficiency over time, i.e. efficiency change, EFC. Each 
of these terms depends on knowledge of the relevant production function 
elasticities.

Consequently, the stochastic frontier analysis has permitted a generalisa-
tion of the previous expressions for TFP to give us:

In this way, the stochastic frontier analysis has relaxed three of the four key 
assumptions of the conventional neoclassical growth accounting approach—
we no longer assume constant returns to scale or that exogenous factors 
must be held constant, or that all producers are on their respective produc-
tion frontiers. These factors can be added to technological progress as com-
ponents of TFP so long as we are able to estimate them from the available 
data. We do this by econometric estimation of the functional form shown in 
the second column of Table 1, and we choose a functional form from which 
it is possible to extract the relevant elasticity information.

We can derive a productivity decomposition TFP for each of our func-
tional forms using the log-derivatives as we did above, and the second, third 
and fourth rows of Table 1 show the corresponding TFP decompositions.11 

(24)ẏ ≡ ∂ ln y/∂t = (∂y/∂t)/y

(25)TFP = SEC+ EXC+ TC+ EFC

11Key references on these ideas are Bauer (1990), Orea (2002) and Coelli et al. (2003).
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Note that in each case, the left-hand side of the TFP expression contains the 
definition of TFP and it is required to be the difference between a weighted 
sum of the log-output changes minus a weighted sum of the log-input 
changes with the weights summing to 1 in each case. In the case of the input 
distance or output distance, this requires the use of a homogeneity property 
and a rescaling by the corresponding measure of the elasticity of scale. For 
the input distance, the input elasticities must sum to 1 by the homogeneity 
property, and it is the output elasticities which are rescaled on the left-hand 
side. In the output distance, the output elasticities sum to 1 by homogeneity 
and the input elasticities are rescaled on the left-hand side.

None of these decompositions contains a measure of allocative ineffi-
ciency. To achieve this, we need to introduce input prices: w1, . . . ,wK and 
therefore move to a dual expenditure function or cost function for each 
industry or sector of gross value added separately. In the case of the dual 
expenditure function, the cost-output elasticities on the left-hand side of the 
TFP decomposition are rescaled and the cost-input elasticities are weighted 
by their actual cost shares, sk which must sum to 1.

Table 1 is completed by showing the TFP decomposition in this cost 
function case for industry j and this may be aggregated into an overall TFP 
decomposition using the industry weights as indicated in the conventional 
growth accounting approach. It is from this last row of Table 1 that we 
are able to incorporate an allowance for allocative efficiency change, AEC, 
which is measured by the log-input-price changes weighted by the difference 
between the actual cost shares and the optimal cost minimising cost shares, 
see Bauer (1990), and Orea (2002).

The procedure for estimating the TFP decomposition then proceeds 
as follows. Since this form of research is often used to compare different 
national economic performances across countries and across time, we will 
illustrate with panel data.

• Select a function to represent the technology and the chosen TFP 
decomposition.

• Select a functional form for the function.
• Estimate the functional form using stochastic frontier analysis so that 

the efficiency change component, EFC is included. In the case of the 
input and output distance functions, the homogeneity property must be 
imposed to make estimation feasible by identifying the dependent varia-
ble. In the production function case, homogeneity is not assumed unless 
constant returns to scale are imposed. In the cost function homoge-
neity in input prices can be imposed or it may simply be tested on the 
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estimated equation without homogeneity. In each case, the relevant esti-
mated elasticities from the homogeneous and non-homogeneous form are 
the same.

• The left-hand side of the TFP decomposition defines the measure of TFP 
and is not to be calculated, since it is by definition equal to the right-
hand side. Instead, the elasticity estimates are used to calculate each of the 
right-hand side components.

• The elasticity estimates are used to multiply the log-variable changes to 
arrive at the corresponding TFP decomposition. However, all of the anal-
ysis so far has assumed continuous functions and the measures must be 
adapted to discrete data, e.g. annual changes.

These derivations are adapted to discrete, e.g. annual, data as shown in 
Table 2. The analytical derivations of TFP used Eq. (24) which defines a 
Divisia index as the starting point. The formulation in Table 2 approximates 
the Divisia index by the Törnqvist index but this is not the only possibility. 
The paper by ten Raa and Shestalova (2011) presents and explains the differ-
ent possible approximations to the Divisia index for discrete data and out-
lines their properties. We illustrate in the example of the dual expenditure 
or cost function but the same ideas are applied to each of the other forms. 
Table 2 shows the TFP from the dual expenditure cost function for each 
component based on the estimated elasticity values for a panel data sample.

6  Estimation Issues 1: Between Country 
Differences: Do They Converge?

The idea of testing for convergence in the performance of countries over 
time has evolved from the literature on macroeconomic growth models.

Although economic historians have a long tradition of investigating 
national economic convergence, Baumol (1986) was one of the first papers 
by an economist to bring the topic to the forefront of economists’ atten-
tion. Baumol’s key empirical finding was relatively simple: he investigated 
the total productivity growth in GDP per labour-hour recorded in 16 major 
economies over the period 1870–1979 and regressed this against the pro-
ductivity level measured in each country in 1870:

(26)GrowthRate 1870−1979 = 5.25− 0.75 (ln GDP perwork− hour 1870)
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With an R2 = 0.88 Baumol concluded that the lower the starting level of 
productivity in a given country the higher was its subsequent rate of growth. 
In other words, unproductive economies caught up with the productiv-
ity leaders over a long period of time. However, Baumol also demonstrated 
that the catch-up effect was more pronounced in a cluster of market-orien-
tated economies than in a cluster of centrally planned economies, and the 
catch-up or convergence factor was absent in a cluster of less developed 
economies. Subsequently, this empirical regularity was addressed theoreti-
cally and empirically by many other economists notably Barro and Sala-i-
Martin (2004), who regress a model which states that the average growth 
rate of per capita real output yit in country i, i = 1 . . .N over a fixed period 
depends negatively on the starting value yi,t−T and also depends on other 
variables, z′it:

They demonstrate that with a constant saving rate, the Solow-Swan theoreti-
cal one-sector growth model gives:

α elasticity of output with respect to capital in the Cobb-Douglas produc-
tion function

n rate of population growth
x rate of labour-augmenting technical progress, i.e. the steady-state growth 

rate of output per capita, which we met earlier as Solow’s residual measure 
of productivity

δ rate of depreciation of the capital stock.

Therefore, the log of income per effective worker is a weighted aver-
age of the initial value and the steady-state value of income per effective 
worker, with the weight on the initial value declining exponentially at the 
rate β. Barro and Sala-i-Martin referred to this finding as beta-convergence. 
Subsequently, a different form of convergence was also identified, e.g. as 
stated in Young et al. (2008): “when the dispersion of real per capita income 
across a group of countries falls over time there is sigma convergence; when 
the partial correlation between the growth in income over time and its initial 
level is negative there is beta-convergence”. Barro and Sala-i-Martin sum up 
the debate by stating:

Two concepts of convergence are:

(27)(1/T) ln
(
yit/yi,t−T

)
= a−

((
1− eβt

)
/T

)(
ln yi,t−T

)
+ z′itµ+ uit

(28)β = (1− α)(n+ x + δ)
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(i) a poorer country tends to grow faster than a rich one, (beta-conver-
gence) (i.e. the transition growth rate to the steady state is higher the 
lower the initial value of output per capita)

and

(ii) the dispersion of income per capita across countries diminishes over 
time (sigma-convergence). They suggest: beta-convergence can lead to 
sigma-convergence but new disturbances appear which offset this effect.

These ideas have been carried over to the literature on efficiency and produc-
tivity analysis of national economies, by incorporating into the analysis the 
measured data envelopment analysis or stochastic frontier analysis efficiency 
scores. Beta-convergence is measured by regressing the change in the log of 
countrywide mean efficiency against the previous level of the log mean effi-
ciency and the lagged log change. Beta-convergence occurs if the coefficient 
on the lagged level is negative. Sigma-convergence is measured by regressing 
the change in the deviation in the log of countrywide mean efficiency from 
the log of the whole sample mean efficiency against the lagged value and 
the lagged change of this deviation. Sigma-convergence is said to occur if 
the coefficient on the lagged value of the deviation is negative. Panel least 
squares and GMM estimation are usually used. This type of analysis has typ-
ically been found in studies of national banking and financial systems, e.g. 
Casu and Girardone (2010).

However, a very different approach to the idea of convergence of TFP 
emerges from the development of endogenous growth theory in the 1990s. 
To understand how this relates to the neoclassical theory that we have dis-
cussed so far it is useful to go back to the simplest aggregate production 
function.

As we saw in Sect. 2, TFP in much of the literature is measured as a resid-
ual between an index of outputs with weights summing to one and an index 
of inputs with weights summing to one as well. Such measures are defined 
by the standard neoclassical production function relating the aggregate out-
put Yit of country i, i = 1 . . .N at time t, t = 1 . . . T  to its inputs of capital, 
Kit labour Lit and time. The impact of technological progress is contained in 
the role of the time variable which smoothly improves the production func-
tion as time passes

(29)Yit = f (Kit ,Lit , t)
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Usually, an explicit assumption about the impact of technological progress 
would be made, and in the standard neoclassical growth model developed 
by Solow (1956) and Swan (1956) this took the form of labour enhancing 
technical change:

This form of the production function, when assumptions of positive but 
diminishing marginal products of the inputs and constant returns to scale 
are imposed in conjunction with the standard aggregate demand constraint, 
the definition of net investment as gross capital formation less deprecia-
tion of the capital stock and the Keynesian investment savings equilibrium 
condition, leads to an equilibrium in which income per capita grows at the 
constant rate ρi, and the capital income ratio and the consumption income 
ratios are constant. Eventually poorer countries would catch up with richer 
countries, and if there were international differences in ρi these would be 
unexplained since ρi is assumed to arise exogenously from a black box. In 
particular, only two explanations existed for the improvement in perfor-
mance by different countries: either some had higher rates of input accu-
mulation, especially capital, or some had faster trends in the productivity of 
labour. Initial research suggested that the second factor accounted for most 
US growth in the first half of the twentieth century, while considerable evi-
dence (Krugman 1994; Young 1995) favoured the first factor in the growth 
of the tiger-economies of Southeast Asia in the second half of the twentieth 
century.

There emerged from this literature a set of “stylized facts” about produc-
tivity growth, as described in Jones and Romer (2010).

(1) Labour productivity has grown at a sustained rate.
(2) Capital per worker has also grown at a sustained rate.
(3) The real interest rate, or return on capital, has been stable.
(4) The ratio of capital to output has also been stable.
(5) Capital and labour have captured stable shares of national income.
(6)  Amongst the fast-growing countries of the world, there is an appreciable 

variation in the rate of growth “of the order of 2–5 percent”.

In terms of the neoclassical growth model, the first five facts are predicted 
and fact (6) is left unexplained, it is simply the Solow residual which implies 
that growth arises in a country exogenously, who knows from where?

(30)Yit = f
(
Kit ,Li0e

ρit
)
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The importance of this from our point of view in comparing international 
economic performance is that Eq. (29) is the standard starting point for a 
very large part of the efficiency and productivity analysis literature. Technical 
change is identified with the passage of time and is usually assumed to be an 
exogenous factor in the estimation model, which seems to indicate no policy 
direction which could improve a country’s prospects. However, this is very 
much at odds with subsequent developments in the macroeconomic produc-
tivity growth literature, leading Jones and Romer (2010) to define a new set 
of stylised facts appropriate to modern developments. In brief, these are:

(1) Increases in the extent of the market. Increased flows of goods, ideas, 
finance and people—via globalisation, as well as urbanisation—have 
increased the extent of the market for all workers and consumers.

(2)  Accelerating growth. For thousands of years, growth in both population 
and per capita GDP has accelerated, rising from virtually zero to the rel-
atively rapid rates observed in the last century.

(3)  Variation in modern growth rates. The variation in the rate of growth of 
per capita GDP increases with the distance from the technology frontier.

(4)  Large income and total factor productivity (TFP) differences. 
Differences in measured inputs explain less than half of the enormous 
cross-country differences in per capita GDP.

(5)  Increases in human capital per worker. Human capital per worker is ris-
ing dramatically throughout the world.

(6)  Long-run stability of relative wages. The rising quantity of human cap-
ital, relative to unskilled labour, has not been matched by a sustained 
decline in its relative price.

It is fact (3) which started the trend towards endogenous growth models 
and was originally noted by Romer (1986) who plotted the annual aver-
age growth rate of GDP per capita over the period 1960–1985 for a large 
number of developing economies12 against the income per capita in 1960 
relative to the USA. The USA defined the technology frontier when the 
countries started growing and those with the lowest GDP per capita relative 
to the USA in 1960 subsequently showed a much larger variation in annual 
growth rates than countries that started from a position closer to the USA. 

12Recall that the Baumol (1986) did not find convergence for countries outside a small sample of the 
most developed economies. Romer’s finding of large variation in TFP rates for different countries used a 
much larger sample of chiefly developing countries.
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This led to the suggestion that it must be the behaviour of producers, con-
sumers and policy makers in different countries that had the largest impact 
on the variations in national growth rates. Globalisation, urbanisation and 
human capital provision are now key factors in determining different rates 
of productivity growth and economic performance. This is both an incentive 
and an obstacle to efficiency and productivity analysis. It provides an incen-
tive because the ability of efficiency and productivity analysis to incorporate 
different approaches and variables for modelling productivity growth is its 
main strength but the obstacle is that formulating a theory of production on 
these lines that can be summarised in an aggregate production function is 
very difficult. In particular, it is necessary to ensure that the return to capital 
including human capital does not diminish as capital is accumulated.

One way of thinking about this is shown by Romer (1994) and Stiroh 
(2001). Compare Eq. (29) above with the production function represented 
in Eq. (31) below:

In this equation, the new variable R is the stock of knowledge and ideas 
which may be partially embodied in human capital. Each country’s output 
depends on its own stock of knowledge and ideas, Rit, but the production 
function shifts up over time because of the global stock of knowledge and 
ideas, R. It is the stock of knowledge that permits the non-diminishing 
returns to investment that mean that growth is not exogenously limited but 
can be endogenously determined. The return to investment in knowledge 
broadly defined is given by the marginal product of knowledge:

This can remain high even when fRit, the rate of return on the country’s own 
knowledge stock for a constant state of global knowledge, tends to zero and 
it also incorporates a spillover term in the last expression. Spillovers and 
more generally the concept that ideas and knowledge are non-rival goods 
which are only partially or perhaps not at all excludable means that produc-
tivity measurement incorporating endogenous growth theory offers a very 
wide range of modelling design possibilities but these, for example, in the 
format of Eq. (31) may be difficult to incorporate into a standard efficiency 
and productivity analysis framework.

Nevertheless, there is a wide-ranging literature on spillover estimation 
particularly in the context of Leontief input-output analysis (I-O) which 
allows that commodities can be both intermediate inputs and final goods. 

(31)Yit = A(R)f (Kit ,Lit ,Rit)

(32)∂Yit/∂Rit = A(R)fRit + f (Kit ,Lit ,Rit)A
′(R)(dR/dRit)
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ten Raa and Wolff (2000) offer an interesting suggestion for spillover meas-
urement in the context of this input-output approach. Commenting that 
usually spillover effects in each sector are measured by a weighted average 
of R&D in the sectors supplying intermediate inputs, ten Raa and Wolff 
instead suggest that spillover effects in an industry can be measured by TFP 
growth in its supplying sectors and they build up an analysis of interindus-
try spillovers that distinguishes four factors: autonomous growth, R&D 
in the sector in question, direct productivity spillovers using the direct 
 input-output linkages between sectors to weight the supplying sectors’ TFP 
growth rates and capital embodied spillovers using the investment coefficient 
of the supplying sector’s capital to weight its productivity growth. ten Raa 
and Wolff (2000) then argue that productivity growth in a sector is counted 
in the sectors that trigger it. They find that for the I-O tables for the USA 
for 1958–1987, it is computers and office equipment and electronic compo-
nents which are the sectors to which most productivity growth is imputed.13

It seems essential therefore to allow for the widest possible range of varia-
bles in explaining international differences in productivity and performance 
and Jones and Romer suggest that differences in institutions must be the 
fundamental source of the wide differences in growth rates; by institutions 
they mean a very wide range of different factors in each society and econ-
omy that should be incorporated into TFP models at the international level, 
in particular that weak and strong institutions affect the adoption and uti-
lisation of ideas from leading nations on the frontier and that the potential 
for ideas to diffuse across nations amplifies the key role of institutions.

The role of institutions in TFP has been particularly strong in the work 
of North (1991) and Acemoglu et al. (2005) whose definition of good eco-
nomic institutions means those that provide security of property rights and 
relatively equal access to economic resources to a broad cross section of soci-
ety. The key argument here is the difference between the proximate causes of 
long-run TFP, i.e. factors like innovation and the spillover of ideas, which to 
North are not the causes of growth but are growth itself, and the fundamen-
tal causes of long-run TFP which are embedded in the evolution of society 
and the emergence of good economic institutions. This poses a problem for 
researchers: efficiency and productivity analysis by necessity focuses only on 
the proximate causes of TFP and, even then, the issues such as the form of 

13The number of studies confirming the role of information technology in driving innovation and pro-
ductivity growth throughout the world is expanding rapidly, see, for example, the long-term study in 
Chen and Fu (2018).
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the production technology are difficult to model. Much more difficult is the 
problem of applying efficiency and productivity analysis to the understand-
ing of the historical evolution of the fundamental causes of long-run TFPC.

The paper by Sickles et al. (2017) offers one solution to the problem 
of measuring what we must now call the proximate causes of TFP, i.e. the 
impact of innovation and new ideas in the production technology. In this 
treatment, Eq. (29) is the starting point, i.e. the essential neoclassical for-
mulation of the production function. When this is extended to incorpo-
rate ideas of endogenous growth theory, Sickles et al. (2017) argue that 
the explanation for the spillover that endogenously determines technology 
change is the loosening of constraints on the utilisation of that technology, 
and that this is just another way of saying that TFP is primarily determined 
by the efficiency with which the existing technology (inclusive of innova-
tions) is utilised.

Transformed into an empirical equation: write yit as the log of GDP per 
capita in country i.i = 1 . . .N at time t, t = 1 . . . T , write Xit as the vector 
of logged inputs and other technology factors including innovations some of 
which may be endogenous, and write ηi(t) to represent the country-specific 
fixed effect, which may be time varying, so that with the error term vit

This is the generic stochastic frontier analysis model of the production func-
tion. This is the basic model for estimating efficiency change using panel 
data frontier methods. If we assume that innovations are available to all 
countries and that idiosyncratic errors are due to relative inefficiencies, then 
the country-specific fixed effects can be used to capture the behavioural dif-
ferences amongst countries that correspond to the key insight of the endog-
enous growth theory approach. Modern stochastic frontier analysis models 
offer a wide range of panel data methods for estimating the role of the coun-
trywide time-varying fixed effects. The overall level of innovation change 
(innovation is assumed to be equally appropriable by all countries) can be 
measured directly by such factors as a distributed lag of R&D expenditures, 
or patent activity, or some such direct measure of innovation. In this way, 
Sickles et al. (2017) argue that the panel data methods incorporating endo-
geneity in the stochastic frontier analysis literature allow the researcher to 
address the issues raised by the endogenous growth models.

(33)yit = X′
itβ + ηi(t)+ vit

(34)vit ∼ Nid
(
0, σ 2

v

)
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7  Estimation Issues 2: Technical Change

The technical change component of the decomposition of TFP is written as 
we saw as the log-derivative of the technology representation with respect 
to time, e.g. in the case of the production function in Table 1 using the 
Tornqvist form:

The convention is to construct a very general role for the technical change 
component so that it shifts the whole production function (cost function) 
upwards (downwards) as illustrated in Fig. 1a. The nature of the technical 
change may be classified as Hicks-neutral if the ratio of marginal products 
of two inputs remains unchanged when the ratio of the inputs is unchanged, 
or the technical change may be labour-augmenting or capital augmenting 
(Harrod neutral or Solow neutral). In the case of a Cobb-Douglas produc-
tion function, all three forms of technical change have the same parametric 
form but the measured rate of technical change in the labour-augmenting 
(capital augmenting) case is the Hicks-neutral rate scaled down by the out-
put elasticity of labour (capital). Alternatively, the technical change may be 
non-neutral in which case it will depend on the levels of the inputs and pos-
sibly other variables as well.

However, in an important but to some extent empirically neglected paper, 
Atkinson and Stiglitz (1969) discussed the idea of localised technical change, 
as illustrated in Fig. 1b. Here, the smooth production function of Fig. 1a 
is a limiting case of the piecewise linear production function arising in the 
activity analysis approach to representing technology. This is the approach 
that also underlies the concept of the efficient frontier in data envelopment 
analysis. Technical change may then apply to a subset only of the portfolio 
of blueprint techniques available to producers. Atkinson and Stiglitz give the 
appealing example of a technical change in textile production that applies 
to a single technique rather than to every technique from a fully automated 
loom to the crudest handloom. The type of technical change which lifts 
the whole production function implies that technical progress spills over to 
every technique in the portfolio of technology. Localised technical change 
on the other hand limits the potential for spillovers from gains in knowledge 
from one form of production to another. The nature of the technical change 
is important here—the digital and information revolution may have much 
greater spillover potential for all techniques than, for example, the types of 

(35)−
1

2
((∂ ln yit/∂t)+ (∂ ln yit−1/∂t))
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specific technological innovations which Gordon (2016) argues constituted 
the industrial revolution.

Two empirical issues arise from this concept of localised technical change, 
in addition to requiring a re-evaluation of the potential for spillovers. The 
first is that a technical improvement in a specific technique may have an 

(a)

(b)

Fig. 1 a Conventionally representing the role of technical change as a shift in the 
whole production function. b Representing the role of technical change as a shift in a 
localised technique of production, Atkinson and Stiglitz (1969)
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effect on the piecewise linear production function that means other tech-
niques are dropped from the portfolio of technologies. In Fig. 1b, we can 
see that a localised technical change in the marginal product of technique 
2 only, shifts the corresponding segment of the piecewise linear production 
frontier so that technique 3 will no longer be relevant to production as the 
scale expands; production moves directly from technique 2 to technique 4. 
This has the added effect that improvements in a localised technology that 
result in potential techniques dropping out of the portfolio may reduce the 
elasticity of substitution between inputs.

The second issue is empirical. Modelling of the possibility of technical 
change and its part in the decomposition of total factor productivity change 
may require non-parametric or semi-parametric estimation techniques if the 
existence of localised technical change makes the usual parametric functions 
(in which technical change shifts the whole function) inappropriate for the 
data-generation process.

This idea has had a consistent following in the empirical literature since it 
first appeared and amongst the most recent treatments is Acemoglu (2015) 
where the link is made with induced technical change and developments in 
localised, biased and directed technological change. For example, Acemoglu 
points out that frontier technologies developed in rich, capital-intensive 
countries may be inappropriate to a capital-scarce developing economy 
where such machinery may be limited. This approach has however had lim-
ited impact yet on the efficiency and productivity analysis modelling that we 
have been surveying here, and it poses problems for the way in which sto-
chastic frontier analysis models can be specified.

8  Estimation Issues 3: Spillovers  
and Spatial Effects

In further research, one can consider similarities across countries since the 
performance of one national economy cannot be easily separated from that 
of its closest neighbours to assess how efficiency and productivity analysis 
using the newest developments in spatial econometrics can contribute to 
this question. In other words: Why might spatial spillovers be important in 
understanding the performance of national economies?

Spatial analysis in general has a long history in statistical modelling, and 
spatial econometrics has become recognised in recent years as an impor-
tant new field of applications. In this survey of work on the performance of 
national economies, we do not have space to give a full summary of spatial 
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econometric applications but we can indicate briefly a relatively recent 
development which is the specification of a spatial econometric model with 
stochastic frontier analysis. We do this because there is a small emerging 
literature on using this approach to begin to understand the role of spatial 
spillovers on the performance of national economies with stochastic fron-
tier analysis. Consider the aggregate production function relating output y 
to inputs x, other exogenous variables z and time t together with the usual 
composed error term from stochastic frontier analysis as shown in Table 1:

Conventionally, this is fitted as a Cobb-Douglas or translog functional form, 
but at present there is no allowance for spillovers onto the technology of one 
country from the technological advances in another neighbouring country. 
Spatial econometrics repairs this gap and we can make a simple start with 
the following Cobb-Douglas specification adapted from Glass et al. (2016) 
for a cross section of countries labelled ior j over time periods labelled t.

This production function is very familiar in the first three expressions rep-
resenting inputs and other exogenous variables with constant output elas-
ticities together with Hicks-neutral technological progress. The fourth 
expression however adds a weighted summation of the output levels in other 
countries to the explanation of production in country i. This spatial autore-
gressive model SAR represents the effect of accumulated spatial lags which 
are one way of modelling spillovers from one technology to another. With 
appropriate numerical values for the spatial weights matrix 

[
wij

]
= W we 

can devise a set of explanatory variables whose spillover effects are captured 
by the estimated parameter δ. These imposed numerical values permit the 
researcher to investigate a variety of nearby neighbour effects based on geo-
graphical dispersion to capture possible spillovers. A multiplicity of exten-
sions to this idea can be devised, see, for example, Greene (2017), which 
include the application of the spatial weights matrix to the explanatory vari-
ables and to the error components.

There are issues of interpretation of the results that require careful anal-
ysis, as Glass et al. (2016) point out, “a unit in a spatial model is therefore 
simultaneously exporting and importing spillovers to and from its neigh-
bours. The indirect marginal effects from a spatial model measure the mag-
nitude of the spillovers which are imported and exported in the sample”. 
More interesting from our point of view of the estimation issues in the 

(36)ln y = ln f
(
x′, z′, t

)
− u+ v

(37)ln yit = α +
∑

k

βk ln xkit +
∑

l

γl ln zlit + ρt + δ
∑

j �=i

wij ln yjt − uit + vit
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modelling of national performance by stochastic frontier analysis is how the 
composed error term can be addressed. Use can be made of a concentrated 
likelihood function approach first suggested by Fan et al. (1996). This was 
used in the spatial autoregressive model by Glass et al. (2016) and its use 
in non-parametric estimation is recommended by Kuosmanen et al. (2015). 
We can show here the Glass et al. (2016) procedure adapted to the problem 
in hand.

The first-order conditions for the log-likelihood function for the stochas-
tic frontier analysis model are still valid even if the frontier is unknown and 
estimated separately, provided it does not depend on σ 2 = σ 2

v + σ 2
u  and 

� = σu/σv.
Following Glass et al. (2016), a two-step procedure is available:

Step 1 Solve the spatial regression model estimators retaining the SAR 
residuals

Step 2 Now use these to obtain the concentrated log-likelihood in terms 
of � = σu/σv only. Maximise this by grid search for �̂ and iterate jointly 
with σ̂ 2 to convergence.

With the estimators obtained, a transformation of the usual measures of 
conditional efficiency can be derived and these depend on turn on the spa-
tial lag effects; these results can then be written as direct, indirect and total 
efficiency measures. Glass et al. (2016) used this approach to estimate a sto-
chastic frontier analysis aggregate production function using aggregate data 
for 41 European countries for the period 1990–2011 with a dense spatial 
weights matrix based on distances. The output variable was real aggregate 
value added, and the inputs were capital and labour with additional varia-
bles of export openness relative to GDP and government expenditure rel-
ative to GDP. A key finding was that on average, countries are more adept 
at importing efficiency than they are at exporting efficiency. This finding is 
consistent with the diffusion of knowledge embodied in imports of hi-tech 
goods and services from a relatively small number of technological leaders in 
the sample (e.g. Germany).

9  Summary and Conclusions

This chapter serves as an introduction to the issues of comparing the per-
formance of national economies. We could not hope to survey in detail the 
massive number of empirical papers that have accumulated on this topic and 
of course the methodologies of data envelopment analysis and stochastic 
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frontier analysis are well covered in other chapters; therefore, we could have 
little to add on strict methodology. Instead, we have opted to present a 
broad overview of a wide range of different topics of relevance to the general 
idea of comparing the national performance of countries.

We began with basic historical ideas that are still important for research-
ers coming new to the topic. Productivity comparisons are critical and are 
made every day in the media and in political and economic commentary. 
We showed how a myriad of different ideas have evolved from the original 
growth model of Solow and the identification of TFP with a residual. We 
questioned whether the key variable of real value-added GDP tells us any-
thing about economic welfare and presented a few ideas on this from the 
current wealth of contributions that are available, including the suggestion 
of measuring the “happiness frontier”. Then we investigated the roles of 
data envelopment analysis and stochastic frontier analysis in making effi-
ciency and productivity comparisons amongst countries. Our key argument 
here is that the data envelopment analysis and stochastic frontier analysis 
approaches permit the relaxation of the major assumptions associated with 
TFP measures reported in the media and which are usually the basis of pol-
icy making. We explored ways in which the data envelopment analysis and 
the stochastic frontier analysis permit the researcher to relax the assumptions 
of allocative efficiency, constant returns to scale, absence of exogenous var-
iable effects (the ceteris paribus assumption) and the absence of inefficient 
performance that characterise the conventional growth accounting or neo-
classical approach to the comparison of national economic performance.

From there we investigated a number of estimation issues both settled and 
unsettled in the efficiency and productivity analysis approach to national 
TFP measurement.

We considered the ideas about convergence of national performance and 
how this might be measured, and we saw the contrast between the con-
vergence in national economic performance and TFP rates predicted by 
the neoclassical model and the lack of convergence due to the endogeneity 
innovations associated with the endogenous growth model. A second esti-
mation issue concerned the modelling of technological change and whether 
this applied to the whole representation of the frontier as is conventional in 
stochastic frontier analysis or whether we could consider localised technical 
change as initially suggested by Atkinson and Stiglitz. Intuitively, it seemed 
as if data envelopment analysis or other non-parametric approaches could be 
more fruitful than stochastic frontier analysis in this context but researcher 
ingenuity will no doubt overcome this. The final estimation issue that we 
examined was the interface between spatial econometrics and stochastic 
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frontier analysis and we gave an example of comparison of national eco-
nomic performance in which the composed error term of stochastic frontier 
analysis was incorporated in a spatial autoregressive model using a concen-
trated likelihood estimation approach.

In many ways, this chapter differs from the other technical chapters in 
this book. However, this is deliberate. Our intention has been to provide a 
broad overview of the whole context in which we can compare, as econo-
mists particularly interested in efficiency and productivity analysis, the per-
formance of national economies. We have deliberately not attempted the 
impossible task of summarising the empirical literature on international dif-
ferences in TFP, even those using only efficiency and productivity analysis 
since there are literally tens of thousands of such papers. Instead, we have 
consciously taken a wide and eclectic view about what constitutes interna-
tional economic performance, in the belief that the powerful tools of effi-
ciency and productivity analysis will successfully address these massive issues 
gaining an accurate picture of how different countries compare with each 
other using the widest range of concepts of what constitutes a country’s eco-
nomic performance.
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… it is not reasonable for us to expect the government to produce statistics 
in areas where concepts are mushy and where there is little professional agree-
ment on what is to be measured and how. (Griliches 1994 Presidential Address 
to the American Economic Association, p. 14)

1  Introduction

Productivity is a major driver of long-term economic growth and welfare 
improvements. Productivity indexes are used in a wide variety of policy con-
texts, such as for government budget forecasting, designing innovation pol-
icy and assessing the relative effectiveness of government policies.

Productivity growth slowdowns cause much policy debate and concern. 
The slowdown from the early 1970s to the mid-1990s in many industrial-
ized countries was much debated, especially given that this was the period 
during which personal computers diffused rapidly into workplaces. This 
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resulted in much attention to the measurement of productivity—if the slow-
down was simply a case of measurement lagging behind developments in an 
increasingly complex economy, then the solution is to modernize the collec-
tion and construction of economic statistics (see Diewert and Fox [1999] 
and references therein for more on this slow growth episode and potential 
explanations).

From around the mid-1990s, a measured increase in productivity allayed 
concerns and was viewed in most countries as the benefits of computeriza-
tion finally being realized. However, a subsequent decline in productivity 
growth since 2004 across all industrialized countries has again heightened 
concerns. It raises the possibility that the earlier productivity recovery was an 
unusual episode and that lower growth is the new norm. In the latter case, 
we should expect lower increases in living standards in the future. This is 
the view of, for example, Gordon (2016) and Cowen (2011).1 Alternatively, 
perhaps measurement problems associated with the digital economy and 
rapid quality change in products have come to the fore. In his Independent 
Review of UK Economic Statistics, interim report, Bean (2016, p. 7) noted 
that “Statistics have failed to keep pace with the impact of digital technol-
ogy”. This concern has yielded a growing literature on measurement prob-
lems for National Statistical Offices (NSOs), their potential to explain away 
the productivity slowdown and alternative approaches to measuring eco-
nomic activity in a modern economy.2

In this chapter, to provide a means to better understand such debates, we 
begin by examining the theoretical basics of productivity growth measure-
ment as employed by NSOs. In particular, we provide the theoretical justi-
fications for the index number formulae that are commonly used. We then 
turn to a discussion of data used in index number construction in practice 
and highlight the measurement challenges.

The productivity of a production unit is defined as the output pro-
duced by the unit divided by the input used over the same time period.3 
If the input measure is comprehensive, then the productivity concept is 

1However, others provide a more optimistic view; see, e.g., Sichel (2016), Mokyr et al. (2015) and 
Brynjolfsson and McAfee (2011, 2014).
2See, for example, Brynjolfsson et al. (2019), IMF (2018), Diewert et al. (2018), Feldstein (2017), 
Groshen et al. (2017), Hulten and Nakamura (2017), Syverson (2017), Ahmad and Schreyer (2016), 
Byrne et al.(2016), Brynjolfsson and Saunders (2009), Brynjolfsson and Oh (2012) and Greenstein and 
McDevitt (2011).
3A production unit could be an establishment, a firm, an industry or an entire economy.
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called Total Factor Productivity (TFP ) or Multifactor Productivity (MFP ).4 If 
the input measure is labour hours, then the productivity concept is called 
Labour Productivity.

The Bureau of Labor Statistics in the USA was the first NSO to intro-
duce an official program to measure MFP in 1983 (see Dean and Harper 
2001). Other countries with MFP programs now include Canada, Australia, 
the UK and New Zealand. The OECD also publishes MFP and Labour 
Productivity statistics for member countries (see OECD 2018).

We will focus on MFP and how to measure it rather than Labour 
Productivity. The Labour Productivity concept has its uses but the problem 
with this concept is that it could be very high in one country compared to 
another country with the difference being entirely due to a larger amount  
of non-labour input in the first country. On the other hand, if MFP is much 
higher in country A compared to country B, then country A will be genu-
inely more efficient than country B and it will be useful to study the organ-
ization of production in country A in order to see if the techniques used 
there could be exported to less efficient countries.

A problem with the MFP concept is that it depends on the units of meas-
urement for outputs and inputs. Hence, MFP can only be compared across 
production units if the production units are basically in the same line of 
business so that they are producing the same (or closely similar) outputs 
and using the same inputs. However, in the time series context, Multifactor 
Productivity growth rates can be compared over dissimilar production units, 
and hence, we will focus most of our attention on measuring Multifactor 
Productivity Growth (MFPG ).

We begin by providing an introduction to the issues involved in measur-
ing MFPG by considering the special case where the production unit pro-
duces only a single output and uses only a single input. It turns out in this 
case that there are four equivalent ways for measuring MFPG. Section 3 gen-
eralizes this framework to the multiple input and output case, as faced by 
NSOs. This requires the choice of index number formula. Section 4 exam-
ines this problem from the test (or “axiomatic”) approach. Essentially, this 
involves comparing the mathematical properties of the formula against 
a battery of tests which are deemed as desirable. Section 5 examines this 

4The terms “Multifactor Productivity” and “Total Factor Productivity” are synonymous. National 
Statistical Offices tend to favour “Multifactor Productivity”, presumably to avoid giving the impression 
that a claim is being made that all factors of production have been taken into account. Academics are 
typically immune to such caution and tend to use the term “Total Factor Productivity”. As our focus is 
on NSO practice, we will use the term “Multifactor Productivity”.
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formula choice problem from the perspective of economic theory, recogniz-
ing that the resulting indexes are measuring economic concepts. Thus, these 
sections provide the justification for the index number choices made by 
NSOs in constructing productivity growth estimates.

Section 6 discusses data needs for constructing the productivity indexes 
and reviews the concepts, sources and methods that are used for the out-
put, labour and capital components. Section 7 highlights several difficult 
measurement problems faced by NSOs and suggests some ways forward. 
Section 8 concludes.

2  Productivity Measurement in the Case 
of One Input and One Output

We consider in this section the problem of measuring the Multifactor 
Productivity (MFP ) (and the growth of Multifactor Productivity, MFPG ) of 
a one output, one input firm.5 To do this, we require data on the amounts 
of output produced, y0 and y1, during two time periods, 0 and 1, and on 
the amounts of input utilized, x0 and x1, during those same two time peri-
ods. It is also convenient to define the firm’s revenues Rt and total costs Ct 
for period t where t = 0, 1. The average selling price of a unit of output in 
period t is assumed to be pt and the average cost of a unit of input in period 
t is wt for t = 0, 1. Thus, we have:

and

Our first definition of the MFPG of the firm going from period 0 to period 
1 (or more briefly, of the productivity of the firm) is:

Note that y1/y0 is (one plus) the firm’s output growth rate going from period 
0 to period 1 while x1/x0 is the corresponding input growth rate going from 

(1)Rt = ptyt for t = 0, 1

(2)Ct = wtxt for t = 0, 1.

(3)MFPG(1) =
(
y1/y0

)
/

(
x1/x0

)
.

5The material in this section is largely taken from Diewert (1992) and Diewert and Nakamura (2003).
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period 0 to period 1.6 If MFPG(1) > 1, then the output growth rate was 
greater than the input growth rate and we say that the firm has experienced 
a productivity improvement going from period 0 to period 1. If MFPG(1) < 1, 
then we say that the firm has experienced a productivity decline.

The output growth rate, y1/y0, can also be interpreted as a quantity index 
of outputs. Indeed, in the following section where we consider the case of 
multiple outputs, we will replace y1/y0 by a quantity index for outputs. 
However, if there is only one output, it can be verified that the output 
quantity indexes defined there all reduce to the output growth rate, y1/y0. 
Similarly, the input growth rate, x1/x0, can be interpreted as a quantity index 
of inputs. Hence, our first definition of productivity growth, MFPG(1) 
defined by (3), can be interpreted as an output quantity index divided by an 
input quantity index.

An alternative method for measuring productivity in a one output, 
one input firm is the change in technical coefficients method. Define the 
input-output coefficient of the firm in period t as:

Thus, at is the total amount of output yt produced by the firm in period 
t divided by the total amount of input utilized by the firm in period t, xt. 
It can be interpreted as a coefficient which summarizes the engineering and 
economic characteristics of the firm’s technology in period t: at describes the 
rate at which inputs are transformed into outputs during period t.

Our second definition of total factor productivity can be expressed in 
terms of the output-input coefficients, a0 and a1, as follows:

Thus, if a1 is greater than a0, so that the firm is producing more output per 
unit input in period 1 compared to period 0, then MFPG(2) and the firm has 
experienced an increase in productivity going from period 0 to period 1.

It should be noted that the two productivity growth concepts that 
we have defined thus far, MFPG(1) and MFPG(2), are both relative con-
cepts. This is a general feature of economic definitions of productivity: 
the performance of the firm in a current period 1 is always compared to 
its performance in a base period 0. In contrast, an engineering concept of 

(4)at ≡ yt/xt , t = 0, 1.

(5)MFPG(2) = a1/a0.

6In what follows, we will somewhat incorrectly refer to y1/y0 as the output growth rate and x1/x0 as the 
input growth rate, where these are both actually one plus growth rates.



712     W. E. Diewert and K. J. Fox

productivity or efficiency is usually an absolute one, concerned with obtain-
ing the maximum amount of output in period one, y1, given an available 
amount of input in period one, x1, consistent with the laws of physics.7

Using (3), (4) and (5), it is easy to show that MFPG(2) coincides with an 
earlier MFPG(1) concept in this simple one output, one input model of pro-
duction; i.e., we have:

We turn now to a third possible method for defining productivity:

Thus, MFPG(3) is equal to the firm’s revenue ratio R1/R0 deflated by the 
output price index p1/p0 divided by the cost ratio between the two periods 
C1/C0 deflated by the input price index w1/w0.

Using (1), we have

and using (2), we have

(6)
MFPG(2) = a

1/a0 =

(
y
1/x1

)
/

(
y
0/x0

)
=

(
y
1/y0

)
/

(
x
1/x0

)

= MFPG(1).

(7)MFPG(3) ≡
[(

R1/R0
)
/

(
p1/p0

)]
/

[(
C1/C0

)
/

(
w1/w0

)]
.

(8)
(
R1/R0

)
/

(
p1/p0

)
=

(
p1y1/p0y0

)
/

(
p1/p0

)
= y1/y0

(9)
(
C1/C0

)
/

(
w1/w0

)
=

(
w1x1/w0x0

)
/

(
w1/w0

)
= x1/x0.

7The engineers Norman and Bahiri (1972, p. 27) define productivity as the quotient obtained by 
dividing output by one of the factors of production. Since our simple model has only one factor of 
production, this engineering definition of productivity reduces to a1 = y1/x1. However, even engineers 
recognize that this definition of productivity is unsatisfactory, since it is not invariant to changes in the 
units of measurement. Thus, Norman and Bahiri (1972, p. 28) later define productivity as a relative 
concept as the following quotation indicates:

Consequently, we define and measure relative productivity levels in comparison with a level 
achieved in the past or in comparison with another establishment in the same industry, or in 
comparison with the national average achieved by another nation.

Thus, a1 is compared to a0 where a0 = y0/x0 is a reference input-output coefficient. Note that a1/a0 is 
invariant to changes in the units of measurement. It should be mentioned that sometimes economists 
(such as Jorgenson and Griliches 1967, p. 252) define productivity as total output divided by total 
input, y1/x1 = a1 and then define productivity change as the rate of change of a1. However, it is only 
their productivity change concept that is regarded as being meaningful.
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Thus, in this simple one input, one output model, (8) says that the deflated 
revenue ratio is equal to the output growth rate and (9) says that the deflated 
cost ratio is equal to the input growth rate. Hence, (7) equals (3) and we 
have, using (6):

There is a fourth way for measuring productivity change that is a generaliza-
tion of a method originally suggested by Jorgenson and Griliches (1967). In 
order to explain this fourth method, we need to introduce the concept of the 
firm’s period t margin, mt; i.e., define

Thus, 1 + mt is the ratio of the firm’s period t revenues Rt to its period t costs 
Ct. If mt is zero, then the firm’s revenues equal its costs in period t and the 
economic profit of the firm is zero. If mt is positive, then the bigger mt is, the 
bigger are the firm’s profits.

We can now define our fourth way for measuring productivity change in 
a one output, one input firm:

Thus, MFPG(4) is equal to the margin growth rate (1 + m 1)/(1 + m 0) times 
the rate of increase in input prices w1/w0 divided by the rate of increase in 
output prices p1/p0.

If we use Eqs. (11) to eliminate (1 + m 1)/(1 + m 0) in (12), we find that

and thus, by (10), MFPG(1) = MFPG(2) = MFPG(3) = MFPG(4). Thus, 
in a one output, one input firm, we have four conceptually distinct meth-
ods for measuring productivity change that turn out to be equivalent. 
Unfortunately, this equivalence does not generally extend to the multiple 
output, multiple input case.

Definition (12) of productivity can be used to show the importance of 
achieving a productivity gain: a productivity improvement is the source 
for increases in margins or increases in input prices or decreases in output 
prices. Equation (12) also indicates the relationship between total factor pro-
ductivity and increased profitability. Rearranging (12), we have:

(10)MFPG(1) = MFPG(2) = MFPG(3).

(11)1+ mt ≡ Rt/Ct; t = 0, 1.

(12)MFPG(4) ≡
[(

1+ m1
)
/

(
1+ m0

)](
w1/w0

)
/

(
p1/p0

)
.

(13)MFPG(4) = MFPG(3)

(14)
(
1+ m1

)
/

(
1+ m0

)
= [MFPG(4)]

(
p1/p0

)
/

(
w1/w0

)
.
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Thus, the rate of growth in margins is equal to MFPG times the output price 
growth rate divided by the input price growth rate.

If there are constant returns to scale in production or margins mt are zero 
for whatever reason in periods 0 and 1, then MFPG(4) reduces to (w1/w 0)/
(p1/p 0), which is the input price index divided by the output price index, a 
formula due to Jorgenson and Griliches (1967, p. 252).

We conclude this section with a rather lengthy discussion of the prob-
lem of distinguishing MFPG from the concept of technical change or tech-
nical progress, TP. In order to distinguish MFPG from TP, it is necessary 
to introduce the concept of the firm’s period t production function f t; i.e., 
in period t, y = f t(x ) denotes the maximum amount of output y that can 
be produced by x units of the input. We assume that in periods 0 and 1, 
the observed amounts of output, y0 and y1, are produced by the observed 
amounts of input, x0 and x1, according to the following production function 
relationships:

Note that we are now explicitly assuming that production is technically effi-
cient during the two periods under consideration.8

We define technical progress TP as a measure of the shift in the produc-
tion function going from period 0 to period 1. There are an infinite number 
of possible shift measures but it turns out that four measures of technical 
progress (involving the observed data y0, y1, x0 and x1 in some way) are the 
most useful. First, define:

(15)y0 = f 0
(
x0
)
;

(16)y1 = f 1
(
x1
)
.

(17)y0∗ = f 1
(
x0
)
and y1∗ = f 0

(
x1
)
.

8In benchmarking studies or in studies where we compare the relative efficiency of different production 
units producing the same outputs and using the same inputs, we do not assume that each production 
unit is globally efficient; i.e., the best practice production unit is regarded as being technically efficient 
but the other production units may not be technically efficient relative to the global best practice tech-
nology. In the time series context, it may be acceptable to assume that each production unit is techni-
cally efficient in each period relative to its own knowledge of the technology available to it. In other words, 
individual production units are efficient relative to their own knowledge base but of course they can be 
inefficient relative to the world wide best-practice technology.
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Thus, y0* is the output that could be produced by the period 0 input x0 if the 
period 1 production function f 1 were available and y1* is the output which 
could be produced by the period 1 input x1 but using the period 0 tech-
nology which is summarized by the period 0 production function f  0. Note  
that in order to define these hypothetical outputs y0* and y1*, a knowledge of 
the period 0 and 1 production functions f 0 and f 1 is required. This knowl-
edge is not easy to acquire but it could be obtained by engineering studies or 
by nonparametric or econometric methods for obtaining a suitable reference 
technology.

With y0* and y1* defined, we can define the following two output-based 
indexes of technical progress TP(1) and TP(2)9:

Thus, TP(1) is one plus the percentage increase in output due to technical 
and managerial improvements (going from period 0 to period 1) evaluated 
at the period 0 input level x0 and TP(2) is one plus the percentage increase 
in output due to the new technology evaluated at the period 1 input level x1.

It is also possible to define input-based measures of technical progress 
TP(3) and TP(4). First, define x0* and x1* as follows:

Thus, x0* is the input required to produce the period 0 output y0 but by 
using the period 1 technology, and so x0* will generally be less than x0 
(which is the amount of input required to produce the period 0 out-
put using the period 0 technology). Similarly, x1* is the amount of input 
required to produce the period 1 output y1 but by using the period 0 tech-
nology, and x1* will generally be larger than x1 (because the period 0 tech-
nology will generally be less efficient than the period 1 technology). Now 
define the following two input-based measures of technical progress, TP(3) and 
TP(4)10:

(18)TP(1) = y0∗/y0 = f 1
(
x0
)
/f 0

(
x0
)
;

(19)TP(2) = y1/y1∗ = f 1
(
x1
)
/f 0

(
x1
)
.

(20)y0 = f 1
(
x0∗

)
and y1 = f 0

(
x1∗

)
.

9TP(1) and TP(2) are the one input, one output special cases of Caves et al.’s (1982, p. 1402) out-
put-based “productivity” indexes.
10TP(3) and TP(4) are the one input, one output special cases of Caves et al.’s (1982, p. 1407) input-
based “productivity” indexes. However, in the present chapter, we regard these “productivity” indexes as 
measures of the shift in the production functions and hence as measures of technical progress.
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The above four measures of TP can be illustrated with the aid of Fig. 1. The 
diagram shows that each of the TP measures can be different.

The lower curved line is the graph of the period 0 production function; 
that is, it is the set of points (x, y ) such that x ≥ 0 and y = f 0(x ). The higher 
curved line is the graph of the period 1 production function; that is, it is 
the set of points (x, y ) such that x ≥ 0 and y = f 1(x ). The observed data 
points are A, which has coordinates (x0, y 0) and B, which has coordinates 
(x1, y 1). Note that the absolute amounts of production function shift in the 
direction of the y-axis are y0* − y0(at point A ) and y1 − y1* (at point B ). The 
absolute amounts of production function shift in the direction of the x-axis 
are x0 − x0*(at point A ) and x1*− x1(at point B ). We have chosen to measure 
TP in terms of the relative shifts, y0*/y0, y1/y1*, x0/x0* and x1*/x1 rather than 
the absolute shifts, y0* − y0, y1 − y1*, x0 − x0* and x1* − x1 in order to obtain 
measures of shift that are invariant to changes in the units of measurement. 
Note that MFPG = MFPG(2) = (y1/x 1)/(y0/x 0) is equal to the slope of the 
straight line OB divided by the slope of the straight line OA.

It turns out that there is a relationship between each of our technical pro-
gress measures, TP(1), TP(2), TP(3), TP(4), and MFPG. We have:

(21)TP(3) = x0/x0∗;

(22)TP(4) = x1∗/x1.

Fig. 1 Production-based measures of technical progress
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where the four returns to scale measures RS(i ) are defined as follows:

The returns to scale measures RS(1) and RS(3) pertain to the period 1 pro-
duction function f 1 while the measures RS(2) and RS(4) pertain to the 
period 0 production function f 0. To interpret each of these returns to scale 
measures geometrically, see Fig. 1. Each of these returns to scale measures is 
the ratio of two input-output coefficients, say yj/xj divided by yk/xk, the two 
points on the same production function, with xj > xk. Thus, if the returns 
to scale measure is greater than 1, then yj/xj > yk/xk and we say that the 
production function exhibits increasing returns to scale between the two 
points. If RS(i ) = 1, then the production function exhibits constant returns 
to scale between the two points and finally if RS(i ) < 1, then the production 
function exhibits decreasing returns to scale between the two points.

The decompositions given by Eq. (23) tell us that MFPG is equal to the 
product of a technical progress term TP(i ) (this corresponds to a shift in the 
production function going from period 0 to period 1) and a returns to scale 
term RS(i ) (this corresponds to a movement along one of the production 
functions). In Fig. 1, definitions (18)–(22) and definitions (24)–(27) can be 
used to verify that each of the four decompositions of MFPG given by (23) 
corresponds to a different combination of shifts and movements along a pro-
duction function that take us from point A to point B.

For firms in a regulated industry, returns to scale will generally be greater 
than one, since increasing returns to scale in production is often the reason 
for regulation in the first place. Thus, MFPG will exceed TP for growing 
firms in a regulated industry (provided that there are increasing returns to 
scale for that firm).

(23)MFPG = TP(i)RS(i); i = 1, 2, 3, 4

(24)RS(1) ≡
(
y1/x1

)
/

(
y0∗/x0

)
;

(25)RS(2) ≡
(
y1∗/x1

)
/

(
y0/x0

)
;

(26)RS(3) ≡
(
y1/x1

)
/

(
y0/x0∗

)
;

(27)RS(4) ≡
(
y1/x1∗

)
/

(
y0/x0

)
.
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We note that the technical progress and returns to scale measures defined 
above cannot in general be calculated without a knowledge of the produc-
tion functions that describe the technology for the two periods under con-
sideration. However, in a one input, one output firm, the MFPG measures 
defined above can be calculated unambiguously provided that we know 
inputs used and outputs produced during the two periods.

Next, we shall generalize the above production function-based definitions 
of productivity and technical progress to cover the case of many outputs and 
many inputs.

3  Productivity Measurement in the Case 
of Many Outputs and Inputs

The approach taken in this section will be to replace the single output 
growth factor, y1/y0, by an output quantity index and to replace the single 
input growth factor, x1/x0, by an input quantity index. The approach out-
lined in this section is a practical one that is implemented by statistical agen-
cies to calculate industry estimates of MFP growth.

Recall our first definition of productivity growth in the one output, 
one input case, MFPG(1) ≡

(
y1/y0

)
/
(
x1/x0

)
, which was the output 

ratio divided by the input ratio between periods 0 and 1. In order to find 
a counterpart to this definition in the multiple output, multiple input 
case, we need only replace the output ratio by an output quantity index, 
Q
(
p0, p1, y0, y1

)
, and replace the input ratio by an input quantity index, 

Q∗
(
w0,w1, x0, x1

)
, where pt ≡

(
pt1, . . . , p

t
M

)
 and wt ≡

(
wt
1, . . . ,w

t
N

)
 are 

the period t output and input price vectors and yt ≡
(
yt1, . . . , y

t
M

)
 and 

xt ≡
(
xt1, . . . , x

t
M

)
 are the period t output and input quantity vectors for 

t = 0, 1. Thus, an output quantity index, Q
(
p0, p1, y0, y1

)
, is defined to be 

a function of the output prices and quantities for the two periods under 
consideration. Similarly, an input quantity index, between periods 0 and 1, 
Q∗

(
w0,w1, x0, x1

)
, is simply a function of 4N variables, the input prices and 

quantities pertaining to the two periods under consideration.
Two of the most frequently used functional forms for quantity indexes are 

the Laspeyres (1871) and Paasche (1874) quantity indexes.11 The Laspeyres 
output quantity index between periods 0 and 1 is defined as:

11Actually, Laspeyres and Paasche originally defined the price counterparts to the quantity indexes that 
we are defining here (see (41) and (42) below).
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where the period t revenue share for output m is defined as

Thus, the Laspeyres output quantity index is a base period revenue share 
weighted sum of the M individual quantity ratios, y1m/y0m.

The Paasche output quantity index between periods 0 and 1 is defined as:

Thus, the Paasche output quantity index is a current period revenue share 
weighted harmonic mean of the M individual quantity ratios, y1m/y0m.

In what follows, we shall concentrate on the problems involved in choos-
ing a functional form for the output index Q; an analogous discussion 
applies to the choice of a functional form for the input index Q*.

Another commonly used functional form for a quantity index is the 
Fisher (1922, p. 234) ideal quantity index QF which is equal to the square 
root of the product of the Laspeyres and Paasche quantity index defined by 
(28) and (30), i.e.:

(28)

QL

(
p0, p1, y0, y1

)
≡

M∑

m=1

p0my
1
m/

M∑

m=1

p0my
0
m

=

M∑

m=1

(
y1m/y

0
m

)
p0my

0
m/

M∑

m=1

p0my
0
m

=

M∑

m=1

(
y1m/y

0
m

)
s0m

(29)stm ≡ ptmy
t
m/

∑M

k=1
ptky

t
k; m = 1, . . . ,M; t = 0, 1.

(30)

QP

(
p0, p1, y0, y1

)
≡

M∑

m=1

p1my
1
m/

M∑

m=1

p1my
0
m

=

(
M∑

m=1

p1my
0
m/

M∑

m=1

p1my
1
m

)−1

=

[
M∑

m=1

(
y1m/y

0
m

)−1

p1my
1
m/

M∑

m=1

p1my
1
m

]−1

=

[
M∑

m=1

(
y1m/y

0
m

)−1

s1m

]−1

.
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Another commonly used functional form for a quantity index is the 
Törnqvist (1936) quantity index QT. The natural logarithm of QT is defined 
to be the right-hand side of (32) below:

where the revenue shares stm are defined by (29) above. Note that the quanti-
ties ytm must all be positive in order for QT to be well defined.

The quantity index QT is also known as the translog quantity index (e.g. 
see Jorgenson and Nishimizu [1978] who introduced this terminology) 
because Diewert (1976, p. 120) related QT to a translog production func-
tion. This index is also known as the Divisia index since Jorgenson and 
Griliches (1967, 1972) used QT to provide a discrete time approximation to 
the continuous time Divisia index.12

The four quantity indexes QL, QP, QF and QT, defined by (28), (30), (31) 
and (32) respectively, all have a common property: if the number of outputs 
M equals one, then each of these quantity indexes reduces to the output 
ratio, y11/y

0
1. Thus, it can be seen that the use of quantity indexes for outputs 

and inputs can be used to generalize our one output, one input measure of 
productivity change, MFPG(1), discussed in the previous section. More for-
mally, let us define the direct quantity index measure of productivity growth 
MFPG(5) in the general multiple output, multiple input case as follows:

where Q is the output quantity index and Q* is the input quantity index. If 
the number of outputs equals one and the number of inputs equals one, if 
Q equals one of QL, QP, QF or QT, and if Q∗ equals one of Q∗

L, Q∗
P, Q∗

F or 
Q∗
T , then MFPG(5) = MFPG(1). Thus, the approach to productivity meas-

urement outlined in this section reduces to the approach outlined in the pre-
vious section if there is only one input and only one output.

(31)QF

(
p0, p1, y0, y1

)
≡

[
QL

(
p0, p1, y0, y1

)
QP

(
p0, p1, y0, y1

)]1/2
.

(32)lnQT

(
p0, p1, y0, y1

)
≡ 1/2

M∑

m=1

(
s0m + s1m

)
ln
(
y1m/y

0
m

)

(33)MFPG(5) ≡ Q
(
p0, p1, y0, y1

)
/Q∗

(
w0,w1, x0, x1

)

12Unfortunately, there are many discrete time approximations to the Divisia index including the 
Paasche and Laspeyres quantity indexes (see Frisch 1936; Diewert 1980).



Productivity Indexes and National Statistics …     721

In the general multiple output, multiple input case, we still have to 
address a problem: Which functional forms for the output index Q and the 
input index Q∗ should we choose? We shall return to this functional form 
problem shortly.

We turn now to an index number measure of productivity that gener-
alizes the deflated revenues divided by deflated costs productivity measure 
MFPG(3) that was defined earlier by (7) in the previous section.

Denote period t revenue by Rt and period t cost by Ct. We have:

The multiple output analogue to the output price ratio which occurred 
in formula (34) in the previous section is the output price index, 
P
(
p0, p1, y0, y1

)
, which is a function of 4M variables, the output prices and 

quantities that pertain to the two periods under consideration. The multi-
ple input analogue to the input price ratio which occurred in the previous 
section is the input price index, P∗

(
w0,w1, x0, x1

)
, which is a function of 

4N variables, the input prices and quantities that pertain to the two periods 
under consideration.

Using the output price index P as a deflator for the revenue ratio R1/R0 
between periods 0 and 1 and using the input price index P*as a deflator for 
the cost ratio C1/C0 between the two periods leads to the following defini-
tion of the productivity growth of the production unit going from period 0 
to 1:

Note that (35) is a generalization to multiple inputs and outputs of our ear-
lier productivity change measure MFPG(3) defined in the previous section.

Suppose that the output quantity index Q(p0, p1, y0, y 1) which appeared 
in definition (33) matches up with the output price index P(p0, p1, y0, y 1) 
which appears in definition (35) in the sense that the product of the price 
and quantity index equals the revenue ratio for the two periods under con-
sideration so that we have:

Suppose further that the input quantity index Q*(w0,w1,x0,x 1) which 
appeared in definition (33) matches up with the input price index P*(w0, w1, 

(34)Rt ≡

M∑

m=1

ptmy
t
m; Ct ≡

N∑

n=1

wt
nx

t
n; t = 0, 1.

(35)MFPG(6) ≡

[(
R
1/R0

)
/P

(
p
0
, p

1
, y

0
, y

1
)]

/

[(
C
1/C0

)
/P∗

(
w
0
,w

1
, x

0
, x

1
)]

.

(36)R1/R0 = P
(
p0, p1, y0, y1

)
Q
(
p0, p1, y0, y1

)
.
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x0, x 1) which appears in definition (35) in the sense that the product of the 
price and quantity index equals the cost ratio for the two periods under con-
sideration so that we have:

Now substitute (36) and (37) into (35) and we find that:

Thus if the two pairs of price and quantity indexes satisfy the relations (36) 
and (37), we find that both of the productivity measures introduced in this 
section, MFPG(5) defined by (33) and MFPG(6) defined by (35) are equal 
to each other.

Recall that in the previous section, we defined the period t markup, mt, 
for the production unit by 1 + mt = Rt/Ct for t = 0,1. Using these defini-
tions of the markup in each period again, it can be seen that we can rewrite 
MFPG(6) as follows:

The above definition says that MFPG(7) is equal to the margin growth rate 
times the input price index divided by the output price index. Defining prof-
itability as Rt/Ct for t = 0,1, we can see from the second line of (39) that 
we have productivity growth equal to the growth in profitability times the 
relative growth of input prices to output prices. Reorganizing, we get that 
profitability growth equals productivity growth times the relative growth of 
output prices to input prices. This highlights the role of productivity as a key 
determinant of profitability (see, e.g., Balk [2003, p. 2] for more on this).

Note that MFPG(7) is an exact analogue to our earlier one output, 
one input MFP growth measure MFPG(4) defined by (12) in Sect. 1. 
Equations (38) and (39) show that this “new” measure of MFP growth is 
equal to the previous measure MFPG(5), which was the ratio of the out-
put quantity index to the input quantity index, and to MFPG(6), which was 
equal to the revenue growth rate deflated by the output price index divided 

(37)C1/C0 = P∗
(
w0,w1, x0, x1

)
Q∗

(
w0,w1, x0, x1

)
.

(38)MFPG(5) = MFPG(6).

(39)

MFPG(6) =

[(
R
1/R0

)
/P

(
p
0
, p

1
, y

0
, y

1
)]

/

[(
C
1/C0

)
/P∗

(
w
0
,w

1
, x

0
, x

1
)]

=

[(
R
1/R0

)
/

(
C
1/C0

)][
P
∗
(
w
0
,w

1
, x

0
, x

1
)
/P

(
p
0
, p

1
, y

0
, y

1
)]

=

[(
1+ m

1
)
/

(
1+ m

0
)][

P
∗
(
w
0
,w

1
, x

0
, x

1
)
/P

(
p
0
, p

1
, y

0
, y

1
)]

= MFPG(7).
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by the cost growth rate deflated by the input price index.13 Thus, we have 
obtained multiple output, multiple input counterparts to the following 
Sect. 1 equalities:

There remains the problem of choosing a functional form for the output 
price index P and the input price index P*. The same four index number 
formulae that were used for quantity indexes, (28), (30), (31) and (32), can 
also be used for price indexes, except that the role of prices and quantities 
are interchanged. Thus, define the Laspeyres price index PL, the Paasche 
price index PP, the Fisher price index PF and the translog price index PT by 
(41), (42), (43) and (44), respectively:

The Laspeyres, Paasche, Fisher and Translog input price indexes, 
P∗
L

(
w0,w1, x0, x1

)
, P∗

P

(
w0,w1, x0, x1

)
, P∗

F

(
w0,w1, x0, x1

)
, and 

P∗
T

(
w0,w1, x0, x1

)
, respectively, may be defined in an analogous manner.

If M = 1, so that there is only one output, then it can be verified that the 
output price indexes defined by (41)–(44) all collapse down to the output 
price ratio, p11/p

0
1. Similarly, if N = 1, so that there is only one input, then 

P∗
L, P∗

P, P∗
F and P∗

T all collapse down to the input price ratio, w1
1/w

0
1. Thus, 

the use of the Laspeyres, Paasche, Fisher or translog price indexes in (35) or 
(39) leads to the following equalities in the M = 1, N = 1:

Thus, our new definitions of productivity change defined by (33), (35) or 
(39) are generalizations to the case of many outputs and inputs of our earlier 

(40)MFPG(1) = MFPG(3) = MFPG(4).

(41)PL

(
p0, p1, y0, y1

)
≡ QL

(
y0, y1, p0, p1

)
;

(42)PP

(
p0, p1, y0, y1

)
≡ QP

(
y0, y1, p0, p1

)
;

(43)PF

(
p0, p1, y0, y1

)
≡ QF

(
y0, y1, p0, p1

)
;

(44)PT

(
p0, p1, y0, y1

)
≡ QT

(
y0, y1, p0, p1

)
.

(45)MFPG(6) = MFPG(7) = MFPG(1).

13We require that (36) and (37) hold in order to obtain these equalities.
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one output, one input measure of productivity change defined by (3) in the 
previous section.

Returning to the general case of many outputs and many inputs, it can be 
seen that different choices of the output price index P and the input price 
index P* will generate different productivity change measures MFPG(6) 
defined by (35). Similarly, different choices of the output quantity index Q 
and the input quantity index Q* will generate different productivity change 
measures MFPG(5) defined by (33).

However, the degree of arbitrariness in the formulae (33) and (35) 
is not quite as large as it might seem at first glance. It turns out that the 
two families of productivity measures are related, because the deflated rev-
enue ratio which occurs in the numerator of the right-hand side of (35), (
R1/R0

)
P
(
p0, p1, y0, y1

)
, can be interpreted as an implicit quantity index of 

outputs, and the denominator in (35), 
(
C1/C0

)
P∗

(
w0,w1,w0,w1

)
, can be 

interpreted as an implicit quantity index of inputs.
From Sect. 2, it was evident that the total factor productivity growth 

measures that were defined there measure the combined effects of techno-
logical progress, movements towards the production frontier and increasing 
(or decreasing) returns to scale. The MFP growth measures defined in this 
section also measure the combined effects of these three factors. When we 
allow for the possibility of increasing returns to scale in production, it turns 
out to be very difficult to estimate separately the effects of increasing returns 
to scale from technical progress. In general, in order to perform this separa-
tion, it is necessary to have panel data or to perform an econometric study 
on time series data.14 Econometric approaches are, in general, not practical 
for a statistical agency. And usually, statistical agencies do not have usable 
panel data on hand in order to undertake nonparametric studies of relative 
efficiency. Hence, we will not cover these econometric approaches and appli-
cations of nonparametric methods utilizing cross-sectional data in this brief 
survey of how to measure MFP growth.15

In the next two sections, we turn to an assessment of the alternative index 
number formulae introduced in this section. This will help explain the 

14See Basu and Fernald (1997, 2002), Lawrence and Diewert (2006) and Diewert and Fox (2008) for 
econometric methods that can estimate the separate contributions of technical progress and returns to 
scale in the time series context. Their work draws on the earlier work of Nakajima et al. (1998, 2002).
15There is a huge literature on the nonparametric approach to measuring productivity and efficiency 
(see, e.g., Farrell (1957), Afriat (1972), Charnes et al. (1978), Diewert and Parkan (1983), Varian 
(1984), Färe (1988), Balk (1998, 2003), Diewert and Nakamura (1999), Diewert and Mendoza (2007)
and Diewert and Fox (2014, 2017, 2018a).
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properties of index number formulae used by NSOs, and why some formu-
lae are favoured over others.

4  The Test Approach to Index Number 
Theory

First, we introduce another index number formula to be assessed. It can be 
shown that (R1/R 0)/PT(p0,p1,y0,y 1) is not equal to the Törnqvist quantity 
index, QT. Hence, we simply define the implicit Törnqvist quantity index, 
QIT, as follows:

The five quantity indexes, QL, QP, QF, QT and QIT, are the five functional 
forms for quantity indexes that are used most frequently in applied econom-
ics. The question now arises: Which of these five formulae should we use in 
the multiple output, multiple input definition of MFP growth, MFPG(5) 
defined by (35)?

Using the results from Diewert (1976), it can be shown that from the per-
spective of the economic approach to index number theory, QF, QT and QIT 
are clearly preferred to the Paasche and Laspeyres quantity indexes, QP and 
QL. Again, from the perspective of the economic approach to index num-
ber theory, PF, PT and PIT are clearly preferred to the Paasche and Laspeyres 
price indexes, PP and PL. The economic approach provides equal justifica-
tions for QF, QT and QIT or for PF, PT and PIT. Hence, any of these indexes 
would be equally good from the economic perspective.16 We will pursue the 
economic approach in more detail in the following section.

Another major approach to index number theory is the test or axiomatic 
approach to index number theory. This approach to the determination of 
the functional form for P and Q works as follows: researchers suggest var-
ious mathematical properties that P or Q should satisfy based on a priori 
reasoning—these properties are called “tests” or “axioms”—and then math-
ematical reasoning is applied to determine: (i) whether the a priori tests are 
mutually consistent and (ii) whether the a priori tests uniquely determine 

(46)QIT

(
p0, p1, y0, y1

)
≡

(
R1/R0

)
/PT

(
p0, p1, y0, y1

)
.

16Diewert (1978) showed that for normal time series data, all of these indexes give much the same 
answer since they approximate each other to the second order around an equal price and quantity 
point.
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the functional form for P or Q. The main contributors to the test or axio-
matic approach were Walsh (1901, 1921a, b), Fisher (1911, 1922), Frisch 
(1936), Eichhorn (1978), Eichhorn and Voeller (1976) and Funke and 
Voeller (1978, 1979).17

We will not cover the test approach in great detail in this chapter but we 
will present some material on this important approach to index number 
theory.

One fundamental test that the price and quantity index should jointly 
satisfy is the test (36) above; that is, the product of the output price and 
quantity indexes between periods 0 and 1 should equal the revenue or value 
ratio between the two periods, R1/R0 =

∑M
m=1 p

1
my

1
m/

∑M
m=1 p

0
my

0
m. This 

test was called the product test by Frisch (1930, p. 399), but it was first for-
mulated by Irving Fisher (1911, p. 388).

If we accept the validity of the product test (and virtually all researchers 
do accept its validity), then P and Q cannot be determined independently. 
For example, if the functional form for the price index P is given, then (36) 
determines the functional form for the quantity index Q.

Thus, in what follows, we focus on the determination of the functional 
form for the price index P. Once P has been determined, Q will be deter-
mined residually by (36).

We list a few examples of tests that have been proposed for price indexes.
The Identity or Constant Prices Test, originally proposed by Laspeyres 

(1871, p. 308) and also by Walsh (1901, p. 308), and Eichhorn and Voeller 
(1976, p. 24) is the following test:

i.e., if p0 = p1 ≡ p, so that for each commodity, prices are equal in the two 
periods being compared, then the price index is equal to 1 no matter what 
the quantities are in period 0 and 1, y0 and y1 respectively.

The Constant Basket Test or the Constant Quantities Test, proposed by 
many researchers including Walsh (1901, p. 540), is the following test:

(47)P
(
p, p, y0, y1

)
= 1;

(48)P
(
p0, p1, y, y

)
=

M∑

m=1

p1mym/

M∑

m=1

p0mym;

17For more recent contributions and surveys, see Diewert (1992, 1993, 1997, 2008) and Balk (1995, 
2008).
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i.e., if quantities are constant over the two periods 0 and 1 so that 
y0 = y1 ≡ y, then the level of prices in period 1 compared to period 0 is the 
value of the constant basket of quantities evaluated at the period 1 prices, ∑M

m=1 p
1
mym, divided by the value of the basket evaluated at the period 0 

prices, 
∑M

m=1 p
0
mym.

The Proportionality in Period t Prices Test, proposed by Walsh (1901,  
p. 385) and Eichhorn and Voeller (1976, p. 24), is the following test:

i.e., if each price in period 1 is multiplied by the positive constant �, then 
the level of prices in period 1 relative to the level of prices in period 0 
increases by the same positive constant �.

Our final example of a price index test is the Time Reversal Test, which was 
first informally proposed by Pierson (1896, p. 128) and more formally by 
Walsh (1901, p. 368; 1921b, p. 541) and Fisher (1922, p. 64):

i.e., if the prices and quantities for periods 0 and 1 are interchanged, then 
the resulting price index is the reciprocal of the original price index.

The four tests (47)–(50) will suffice to give a flavour of the test approach 
to index number theory. For a much more extensive list of twenty or so tests 
(see Diewert (1992)).

There are five leading functional forms for the output price index P that 
are most frequently used in empirical work: (i) the Laspeyres price index 
PL, (ii) the Paasche price index PP, (iii) the Fisher price index PF, (iv) the 
Törnqvist price index PT defined by (44) and (v) the implicit Törnqvist price 
index PIT defined by:

where the Törnqvist quantity index QT is defined by (32). The Fisher index 
satisfies the four tests (47)–(50), but PL fails (50), PP fails (50), PT fails (48) 
and PIT fails (47).

When more extensive lists of tests are compiled, the Fisher ideal price 
index PF continues to satisfy more tests than other leading candidates (see 
Diewert 1976, p. 131; 1992). In fact, the Fisher price index satisfies all 
twenty tests utilized by Diewert (1992). Moreover, satisfactory axiomatic 

(49)P(p0, �p1, y0, y1) = �P
(
p0, p1, y0, y1

)
for all � > 0;

(50)P
(
p1, p0, y1, y0

)
= 1/P

(
p0, p1, y0, y1

)
;

(51)PIT

(
p0, p1, y0, y1

)
≡

[
M∑

m=1

p1my
1
m/

M∑

m=1

p0my
0
m

]
/QT

(
p0, p1, y0, y1

)
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characterizations of PF have been obtained (see Funke and Voeller 1978,  
p. 180; 1979; Diewert 1992). Thus, from the viewpoint of the test approach 
to index number theory, the Fisher quantity index QF defined by (31) and 
the corresponding Fisher price index PF defined by (43) seem to be the best 
choices. It should also be noted that PF and QF satisfy the product test in 
(36). Hence, if the Fisher indexes are used in the productivity measures 
defined by (33) or (35), then both of these productivity measures will coin-
cide; that is, if we use Fisher price and quantity indexes for P and Q and P* 
and Q* wherever they occur in (33), (35) or (39), we obtain the following 
equality:

where we have added a subscript F to the three productivity measures to 
indicate that Fisher indexes are being used. Thus, an added benefit of using 
Fisher price and quantity indexes is that three conceptually distinct (but equally 
attractive) productivity change measures become identical.

While the Törnqvist index fails nine of twenty tests of Diewert (1992), 
it passes the time reversal test, which is regarded as an important property. 
Also, it usually approximates the Fisher index closely in empirical applica-
tions, so we can regard it as satisfying all twenty tests to a high degree of 
approximation. The Laspeyres and Paasche indexes fail only three (“reversal”) 
tests, but the failure to satisfy the time reversal test is regarded as serious. 
Hence, from the test approach to index numbers, the Fisher and Törnqvist 
indexes are preferred.

In the next section, we look at an index number method for estimat-
ing MFP growth in the time series context that draws on the economic 
approach to the measurement of MFP growth and the theory of exact index 
numbers.

5  The Exact Index Number Approach 
to Productivity Measurement

The test approach to index number choice discussed in Sect. 4 related to the 
mathematical properties of the index formulae. There was no direct con-
nection with economic theory. However, such a connection can be made, 
as will be shown in this section. This “economic” or “exact” approach to 
index number choice has been influential in guiding index number choice 
by NSOs and is a reason why the USA switched to using a Fisher index 

(52)MFPGF(5) = MFPGF(6) = MFPGF(7)
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formula for calculating gross domestic product (GDP) in the mid-1990s. It 
is also a reason why it is common practice to use Törnqvist in constructing 
industry-level MFP estimates.18

Konüs (1939) introduced the idea of a true cost of living index, which is 
a ratio of cost functions where utility is held constant. The corresponding 
concept in the production context is that the true price index is the ratio 
of revenue functions R(pt,y )/R(pt−1,y ), where y is a reference output level. 
For a choice of functional form for the revenue functions, this unobserved 
theoretical true price index can be exactly calculated. In this case, we say that 
there is an “exact” relationship between the functional form and an index 
number formula. For example, it can be shown that for a linearly homoge-
neous quadratic unit revenue function, assuming optimizing behaviour (so 
that Hotelling’s Lemma can be used), the true price index exactly equals the 
Fisher price index.19

The justification for the Törnqvist index can be argued to be stronger than 
for the Fisher index from this approach, as the assumption of linear homo-
geneity is not required to establish its exact relationship with the translog 
functional form. Both translog and quadratic functional forms have the 
property of “flexibility”; Diewert (1974) defined a flexible functional form as 
one that provides a second-order approximation to a twice continuously dif-
ferentiable function at a point. Many popular functional forms in economics 
(e.g. Cobb-Douglas and CES) do not have this rather minimal property. An 
index number which is exact for a flexible functional form was defined by 
Diewert (1976) as being superlative. Thus, Fisher and Törnqvist indexes are 
superlative indexes.

Laspeyres and Paasche indexes are not superlative. They are exact for a lin-
ear unit cost function (Konüs and Byushgens 1926), which is dual to a (zero 
substitution) Leontief production function. Thus, these indexes are regarded 
as quite restrictive from the economic approach to index numbers.

In this section, we appeal to the exact index number approach to develop 
our approach to measuring MFP growth when there are many outputs and 
many inputs. We describe the exact index number approach to the meas-
urement of technical change and productivity growth that was initially 
developed by Diewert and Morrison (1986) and Kohli (1990). This theory 

18Both the U.S. Bureau of Labor Statistics and the Australian Bureau of Statistics use the Törnqvist 
formula for constructing MFP estimates (see BLS [n.d.] and Moulton [2018] for the U.S. and ABS 
[2015a, 2018a] for Australia).
19Drawing on results from Byushgens (1925), Konüs and Byushgens (1926) and Diewert (1976,  
pp. 133–134) obtained this result in the consumer context.
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is adapted into a method for measuring the growth in the real income gen-
erated by a production unit with a decomposition of this growth in real 
income into components that reflect:

• technical progress;
• changes in the prices of outputs; and
• growth of primary inputs.

This methodology can provide measures of how changes in the prices of 
imports and exports can affect real income growth.

We assume that there is a period t market sector technology set St that 
exhibits constant returns to scale. The components of net output are the 
usual components of GDP, namely C + G + I + X − M (household and govern-
ment consumption, investment, exports minus imports). Later we will also 
subtract depreciation and revaluation terms from GDP in order to obtain 
net domestic product, which is closer to an income concept. For now, we 
interpret the net output vector for period t, yt, as the net output components 
of market sector of the economy. The corresponding market sector primary 
input vector for period t is denoted by xt. The components of xt consist of 
different types of labour services supplied to the market sector by house-
holds and the various types of capital services used by the market sector. The 
corresponding vectors of period t net output prices is denoted by Pt and the 
corresponding vector of period t primary input prices is denoted by Wt. In 
period t, we assume that there is a feasible set of output vectors y that can be 
produced by the market sector if the vector of primary inputs x is utilized by 
the market sector of the economy; denote this period t production possibil-
ities set by St. We assume that St is a closed convex cone that exhibits a free 
disposal property.20

20For more explanation of the meaning of these properties, Diewert (1973, 1974, p. 134) or Woodland 
(1982) or Kohli (1978, 1991). The assumption that St is a cone means that the technology is subject 
to constant returns to scale. This is an important assumption since it implies that the value of outputs 
should equal the value of inputs in equilibrium. In empirical work, this property can be imposed upon 
the data by using an ex post rate of return in the user costs of capital, which forces the value of inputs 
to equal the value of outputs for each period. The function gt is known as the GDP function or the 
gross national product function in the international trade literature (see Kohli 1978, 1991, 2004a, b; 
Woodland 1982; Feenstra 2004, p. 76). It was introduced into the economics literature by Samuelson 
(1953). Alternative terms for this function include: (i) the gross profit function (see Gorman 1968); (ii) 
the restricted profit function (see Lau 1976; McFadden 1978); and (iii) the variable profit function (see 
Diewert (1973, 1974).
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Given a vector of output prices P and a vector of available primary inputs 
x, we define the period t market sector GDP function, gt(P,x ), as follows21:

Thus, market sector GDP depends on t (which represents the period t tech-
nology set S t), on the vector of output prices P that the market sector faces 
and on x, the vector of primary inputs that is available to the market sector.

If Pt is the period t output price vector and xt is the vector of inputs used 
by the market sector during period t and assuming that actual outputs equal 
the theoretical market sector outputs given by the solution to Eq. (53), then 
the period t vector of market sector outputs yt will be equal to the vector of 
first-order partial derivatives of gt(Pt,x t) with respect to the components of P; 
that is, we will have the following equations for each period t22:

Thus, assuming profit maximization, the period t market sector (net) supply 
vector yt can be obtained by differentiating the period t market sector GDP 
function with respect to the components of the period t output price vector 
Pt.

Assuming that actual primary inputs equal the theoretical market sector 
inputs that minimize the cost of producing a given amount of GDP, then 
the period t vector of input prices Wt will be equal to the vector of first-or-
der partial derivatives of gt(Pt,x t) with respect to the components of x; that 
is, we will have the following equations for each period t23:

Thus, assuming cost minimization, the period t market sector input prices 
Wt paid to primary inputs can be obtained by differentiating the period t 

(53)gt(P, x) ≡ maxy
{
Py : (y, x) belongs to St

}
; t = 1, 2, . . . .

(54)yt = ∂Pg
t
(
Pt , xt

)
; t = 1, 2, . . . .

(55)Wt = ∂xg
t
(
Pt , xt

)
; t = 1, 2, . . . .

21The function gt(P, x ) will be linearly homogeneous and convex in the components of P and line-
arly homogeneous and concave in the components of x (see Diewert 1973, 1974, p. 136). Notation: 
Py ≡

∑
M
m=1 Pmym .

22These relationships are due to Hotelling (1932, p. 594). Note that 
∇pg

t
(
Pt , xt

)
≡

[
∂gt

(
Pt , xt

)
/∂P1, . . . , ∂g

t
(
Pt , xt

)
/∂PM

]
.

23These relationships are due to Samuelson (1953) and Diewert (1974, p. 140). Note that 
∇xg

t
(
Pt , xt

)
≡

[
∂gt

(
Pt , xt

)
/∂x1, . . . , ∂g

t
(
Pt , xt

)
/∂xN

]
.
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market sector GDP function with respect to the components of the period t 
input quantity vector xt.

The assumptions of price-taking behaviour in relating quantities to prices, 
i.e., the assumption of pure competition, will be maintained in the remain-
der of this chapter. The fascinating violations of this assumption are analysed 
in Chapters 13 and 15 of this Handbook.

The constant returns to scale assumption on the technology sets St implies 
that the value of outputs will equal the value of inputs in period t; that is, we 
have the following relationships:

This says that nominal GDP constructed using the production approach 
(value of outputs) should equal GDP constructed using the income 
approach (payments to the factors of production). NSOs typically aim to 
ensure that this is the case. Whether or not the assumption of constant 
returns to scale is desirable could be questioned, as it forces the value of out-
put to equal the value of input, but here we simply note that it is standard 
NSO practice to do so.24

Our focus is on the income generated by the market sector or more pre-
cisely, on the real income generated by the market sector. However, since mar-
ket sector net output is distributed to the factors of production used by the 
market sector, nominal market sector GDP will be equal to nominal mar-
ket sector income, as in (56). As an approximate welfare measure that can 
be associated with market sector production,25 we will choose to measure 
the real income generated by the market sector in period t, ρt, in terms of the 

(56)gt
(
Pt , xt

)
= Pt · yt = Wt · xt; t = 1, 2, . . . .

24At issue is whether, in calculating costs, we should use a endogenous balancing rate of return in the 
user cost of capital formula or an exogenous one (see Diewert and Fox [2018b] for (much) more on the 
calculation of user costs). Both approaches are used. For example, the ABS and Statistics New Zealand 
use a mixture of endogenous and exogenous rates, through placing a floor the rate of return as CPI plus 
4% (see ABS 2015a). The advantage of the balancing rate approach is that we do not have to introduce 
a pure profits cell into the production accounts (which is problematic when it comes to deflating this 
nominal cell in the “real” accounts). Do we use a Consumer Price Index to deflate this balancing pure 
profits (or losses) item or what is the alternative? We do have to force ex post balance between the nom-
inal value of output and the nominal value of input plus net pure profits? There are also unresolved 
issues when we have increasing returns to scale (or decreasing costs due to large fixed costs) (see, e.g., 
Diewert and Fox 2008).
25Since some of the primary inputs used by the market sector can be owned by foreigners, our measure 
of domestic welfare generated by the market production sector is only an approximate one. Moreover, 
our suggested welfare measure is not sensitive to the distribution of the income that is generated by the 
market sector.
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number of consumption bundles that the nominal income could purchase 
in period t; that is, define ρt as follows:

where Pt
C > 0 is the period t consumption expenditures deflator and the 

market sector period t real output price pt and real input price wt vec-
tors are defined as the corresponding nominal price vectors deflated by 
the consumption expenditures price index; that is, we have the following 
definitions26:

The first and last equality in (57) imply that period t real income, ρt, is equal 
to the period t GDP function, evaluated at the period t real output price 
vector pt and the period t input vector xt, gt(pt,x t). Thus, the growth in real 
income over time can be explained by three main factors: Technical Progress or 
Total Factor Productivity growth,27 growth in real output prices and the growth 
of primary inputs. We will shortly give formal definitions for these three 
growth factors.

Using the linear homogeneity properties of the GDP functions gt(P,x ) in 
P and x separately, we can show that the following counterparts to the rela-
tions (54) and (55) hold using the deflated prices p and w28:

(57)ρt ≡ Wt · xt/Pt
C = wt · x = pt · yt = gt

(
pt , xt

)
; t = 0, 1, 2, . . .

(58)pt ≡ Pt/Pt
C;w

t ≡ Wt/Pt
C; t = 0, 1, 2, . . . .

(59)yt = ∇pg
t
(
pt , xt

)
; t = 0, 1, 2, . . .

(60)wt = ∇xg
t
(
pt , xt

)
; t = 0, 1, 2, . . . .

26This approach is similar to the approach advocated by Kohli (2004b, 92), except he essentially 
deflated nominal GDP by the domestic expenditures deflator rather than just the domestic (household) 
expenditures deflator; i.e., he deflated by the deflator for C + G + I, whereas we suggest deflating by the 
deflator for C. Another difference in his approach compared to the present approach is that we restrict 
our analysis to the market sector GDP, whereas Kohli deflates all of GDP (probably due to data limita-
tions). Our treatment of the balance of trade surplus or deficit is also different.
27Technical progress and MFP (and hence TFP) are synonymous here due to the assumption of con-
stant returns to scale.
28If producers in the market sector of the economy are solving the profit maximization problem that 
is associated with gt(P, x ), which uses the original output prices P, then they will also solve the profit 
maximization problem that uses the normalized output prices p ≡ P/PC; i.e., they will also solve the 
problem defined by gt(p, x ).
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Now we are ready to define a family of period t productivity growth factors 
or technical progress shift factors τ(p, x, t)29:

Thus, τ(p, x, t) measures the proportional change in the real income pro-
duced by the market sector at the reference real output prices p and refer-
ence input quantities used by the market sector x where the numerator in 
(61) uses the period t technology and the denominator in (61) uses the 
period t−1 technology. Thus, each choice of reference vectors p and x will 
generate a possibly different measure of the shift in technology going from 
period t−1 to period t. Note that we are using the chain system to measure 
the shift in technology.

It is natural to choose special reference vectors for the measure of tech-
nical progress defined by (61): a Laspeyres type measure τ tL that chooses the 
period t−1 reference vectors pt−1 and xt−1 and a Paasche type measure τ tP that 
chooses the period t reference vectors pt and xt:

Since both measures of technical progress are equally valid, it is natural to 
average them to obtain an overall measure of technical change. If we want to 
treat the two measures in a symmetric manner and we want the measure to 
satisfy the time reversal property from the index number theory in Sect. 2, 
then the geometric mean will be the best simple average to take.30 Thus, we 
define the geometric mean of (62) and (63) as follows31:

(61)τ(p, x, t) ≡ gt(p, x)/gt−1(p, x); t = 1, 2, . . . .

(62)
τ tL ≡ τ

(
pt−1, xt−1, t

)

= gt
(
pt−1, xt−1

)
/gt−1

(
pt−1, xt−1

)
; t = 1, 2, . . . ;

(63)τ tP ≡ τ
(
pt , xt , t

)
= gt

(
pt , xt

)
/gt−1

(
pt , xt

)
; t = 1, 2, . . . .

(64)τ t ≡
(
τ tLτ

t
P

)1/2
; t = 1, 2, . . . .

30See the discussion in Diewert (1997) on choosing the “best” symmetric average of Laspeyres and 
Paasche indexes that will lead to the satisfaction of the time reversal test by the resulting average index.
31The specific theoretical productivity change indexes defined by (62)–(64) were first defined by 
Diewert and Morrison (1986, pp. 662–663). See Diewert (1993) for properties of symmetric means.

29This measure of technical progress is due to Diewert (1983, p. 1063) and Diewert and Morrison 
(1986, p. 662). Salter (1960) introduced the analogous measure for cost functions.
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At this point, it is not clear how we will obtain empirical estimates for the 
theoretical productivity growth factors defined by (62)–(64). One obvious 
way would be to assume a functional form for the GDP function gt(p,x ), 
collect data on output and input prices and quantities for the market sector 
for a number of years (and for the consumption expenditures deflator), add 
error terms to Eqs. (59) and (60) and use econometric techniques to esti-
mate the unknown parameters in the assumed functional form. However, 
econometric techniques are generally not completely straightforward: dif-
ferent econometricians will make different stochastic specifications and will 
choose different functional forms.32 Moreover, as the number of outputs and 
inputs grows, it will be impossible to estimate a flexible functional form. 
Thus, we will suggest methods for estimating measures like (64) that are 
based on exact index number techniques.

We turn now to the problem of defining theoretical indexes for the effects 
on real income due to changes in real output prices. Define a family of 
period t real output price growth factors α

(
pt−1, pt , x, s

)
33:

Thus, α
(
pt−1, pt , x, s

)
 measures the proportional change in the real income 

produced by the market sector that is induced by the change in real output 
prices going from period t−1 to t, using the technology that is available dur-
ing period s and using the reference input quantities x. Thus, each choice 
of the reference technology s and the reference input vector x will generate 
a possibly different measure of the effect on real income of a change in real 
output prices going from period t−1 to period t.

Again, it is natural to choose special reference vectors for the measures 
defined by (65): a Laspeyres type measure αt

L that chooses the period t−1 ref-
erence technology and reference input vector xt−1 and a Paasche type measure 

(65)α

(
pt−1, pt , x, s

)
≡ gs

(
pt , x

)
/gs

(
pt−1, x

)
; s = 1, 2, . . . .

32“The estimation of GDP functions…can be controversial, however, since it raises issues such as esti-
mation technique and stochastic specification. … We therefore prefer to opt for a more straightforward 
index number approach” (Kohli 2004a, p. 344).
33This measure of real output price change was essentially defined by Fisher and Shell (1972, pp. 
56–58), Samuelson and Swamy (1974, pp. 588–592), Archibald (1977, pp. 60–61), Diewert (1980, 
pp. 460–461; 1983, p. 1055) and Balk (1998, pp. 83–89). Readers who are familiar with the theory 
of the true cost of living index will note that the real output price index defined by (65) is analogous 
to the Konüs (1939) true cost of living index which is a ratio of cost functions, say C(u, p t)/C(u, p t−1) 
where u is a reference utility level: gs replaces C and the reference utility level u is replaced by the vector 
of reference variables x.
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αt
P that chooses the period t reference technology and reference input vector 

xt:

Since both measures of real output price change are equally valid, it is natu-
ral to average them to obtain an overall measure of the effects on real income 
of the change in real output prices34:

Finally, we look at the problem of defining theoretical indexes for the effects 
on real income due to changes in real output prices. Define a family of 
period t real input quantity growth factors β

(
xt−1, xt , p, s

)
35:

Thus, β
(
xt−1, xt , p, s

)
 measures the proportional change in the real income 

produced by the market sector that is induced by the change in input quan-
tities used by the market sector going from period t−1 to t, using the tech-
nology that is available during period s and using the reference real output 
prices p. Thus, each choice of the reference technology s and the reference 
real output price vector p will generate a possibly different measure of the 
effect on real income of a change in input quantities going from period t–1 
to period t.

Again, it is natural to choose special reference vectors for the measures 
defined by (69): a Laspeyres type measure β t

L that chooses the period t−1 ref-
erence technology and reference real output price vector pt−1 and a Paasche 
type measure β t

P that chooses the period t reference technology and reference 
real output price vector pt:

(66)
αt
L = α

(
pt−1, pt , xt−1, t − 1

)

= gt−1
(
pt , xt−1

)
/gt−1

(
pt−1, xt−1

)
; t = 1, 2, . . . ;

(67)αt
P = α

(
pt−1, pt , xt , t

)
= gt

(
pt , xt

)
/gt

(
pt−1, xt

)
; t = 1, 2, . . . .

(68)αt =

(
αt
Lα

t
p

)1/2
; t = 1, 2, . . . .

(69)β

(
xt−1, xt , p, s

)
≡ gs

(
p, xt

)
/gs

(
p, xt−1

)
; s = 1, 2, . . . .

34The indexes defined by (65)–(67) were defined by Diewert and Morrison (1986, p. 664) in the nomi-
nal GDP function context.
35This type of index was defined as a true index of value added by Sato (1976, p. 438) and as a real 
input index by Diewert (1980, p. 456).
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Since both measures of real input growth are equally valid, it is natural to 
average them to obtain an overall measure of the effects of input growth on 
real income36:

Recall that market sector real income for period t was defined by (57) as ρt 
equal to nominal period t factor payments Wt · xt deflated by the household 
consumption price deflator Pt

C. It is convenient to define γ t as the period t 
chain rate of growth factor for real income:

It turns out that the definitions for γ t and the technology, output price and 
input quantity growth factors τ(p, x, t), α

(
pt−1, pt , x, s

)
, β

(
xt−1, xt , p, s

)
 

defined by (61), (65) and (69), respectively, satisfy some interesting identi-
ties, which we will now develop. We have:

In a similar fashion, we can establish the following companion identity:

(70)
β t
L ≡ β

(
xt−1, xt , pt−1, t − 1

)

= gt−1
(
pt−1, xt

)
/gt−1

(
pt−1, xt−1

)
; t = 1, 2, . . . ;

(71)β t
P ≡ β

(
xt−1, xt , pt , t

)
= gt

(
pt , xt

)
/gt

(
pt , xt−1

)
; t = 1, 2, . . . .

(72)β t ≡
(
β t
Lβ

t
P

)1/2
; t = 1, 2, . . . .

(73)γ t ≡ ρt/ρt−1; t = 1, 2, . . . .

(74)

γ t ≡ ρt/ρt−1; t = 1, 2, . . . .

= gt
(
pt , xt

)
/gt−1

(
pt−1, xt−1

)
using definitions (57)

=

[
gt
(
pt , xt

)
/gt−1

(
pt , xt

)][
gt−1

(
pt , xt

)
/gt−1

(
pt−1, xt

)]

[
gt−1

(
pt−1, xt

)
/gt−1

(
pt−1, xt−1

)]

= τ tPα

(
pt−1, pt , xt , t − 1

)
β t
L using definitions (63), (65) and (70).

36The theoretical indexes defined by (70)–(72) were defined in Diewert and Morrison (1986, p. 665) in 
the nominal GDP context.
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Thus multiplying (74) and (75) together and taking positive square roots of 
both sides of the resulting identity and using definitions (64) and (72), we 
obtain the following identity:

In a similar fashion, we can derive the following alternative decomposition 
for γ t into growth factors:

It is quite likely that the real output price growth factor [
α
(
pt−1, pt , xt , t − 1

)
α
(
pt−1, pt , xt−1, t

)]1/2 is fairly close to αt 
defined by (68), and it is quite likely that the input growth factor [
β
(
xt−1, xt , pt , t − 1

)
β
(
xt−1, xt , pt−1, t

)]1/2 is quite close to β t defined by 
(72); that is, we have the following approximate equalities:

Substituting (78) and (79) into (76) and (77), respectively, leads to the 
following approximate decompositions for the growth of real income into 
explanatory factors:

where τ t is a technology growth factor, αt is a growth in real output prices factor 
and β t is a growth in primary inputs factor.

Rather than look at explanatory factors for the growth in real market sec-
tor income, it is sometimes convenient to express the level of real income 
in period t in terms of an index of the technology level or of Total Factor 
Productivity in period t, Tt, of the level of real output prices in period t, At, 
and of the level of primary input quantities in period t, Bt.37 Thus, we use the 
growth factors τ t, αt and β t as follows to define the levels Tt, At and Bt:

(75)γ t ≡ τ tLα

(
pt−1, pt , xt−1, t

)
β t
P using definitions (62), (65) and (71).

(76)γ t ≡ τ t
[
α

(
pt−1

, pt , xt , t − 1

)
α

(
pt−1

, pt , xt−1
, t
)]1/2

β t; t = 1, 2, . . . .

(77)γ t ≡ ttαt
[
β

(
xt−1

, xt , pt , t − 1

)
β

(
xt−1

, xt , pt−1
, t
)]1/2

; t = 1, 2, . . . .

(78)
[
α

(
pt−1

, pt , xt , t − 1

)
α

(
pt−1

, pt , xt−1
, t
)]1/2

≈ αt; t = 1, 2, . . . ;

(79)
[
β

(
xt−1, xt , pt , t − 1

)
β

(
xt−1, xt , pt−1, t

)]1/2
≈ β t; t = 1, 2, . . . .

(80)γ t ≈ τ tαtβ t; t = 1, 2, . . .

37This type of levels presentation of the data is quite instructive when presented in graphical form. It 
was suggested by Kohli (1990) and used extensively by him (see Kohli 1991, 2003, 2004a, b; Fox and 
Kohli 1998).
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Using the approximate equalities (80) for the chain links that appear in 
(81)–(83), we can establish the following approximate relationship for the 
level of real income in period t, ρt, and the period t levels for technology, 
real output prices and input quantities:

We now consider a set of assumptions on the technology sets that will 
ensure that the approximate real income growth decompositions (80) and 
(84) hold as exact equalities.

Specifically, we follow the example of Diewert and Morrison (1986, 
p. 663) and assume that the log of the period t (deflated) GDP function, 
gt(p,x ), has the following translog functional form38:

Note that the coefficients for the quadratic terms are assumed to be constant 
over time. The coefficients must satisfy the following restrictions in order 
for gt to satisfy the linear homogeneity properties that we have assumed in 
Sect. 4 above39:

(81)T0 = 1; Tt = Tt−1τ t; t = 1, 2, . . . ;

(82)A0 = 1; At = At−1αt; t = 1, 2, . . . ;

(83)B0 = 1; Bt = Bt−1β t; t = 1, 2, . . . .

(84)ρt/ρ0 ≈ TtAtBt; t = 1, 2, . . . .

(85)

lngt(p, x) ≡ at0 +

M∑

m=1

atmlnpm + 1/2

M∑

m=1

M∑

k=1

amklnpmlnpk

+

M∑

n=1

btnlnxn + 1/2

M∑

n=1

M∑

j=1

bnjlnxnlnxj

+

M∑

m=1

M∑

n=1

cmnlnpmlnxn; t = 0, 1, 2, . . . .

38This functional form was first suggested by Diewert (1974, p. 139) as a generalization of the translog 
functional form introduced by Christensen et al. (1971). Diewert (1974, p. 139) indicated that this 
functional form was flexible.
39There are additional restrictions on the parameters which are necessary to ensure that gt(p, x ) is convex 
in p and concave in x.
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Recall the approximate decomposition of real income growth going from 
period t−1 to t given by (80) above, γ t ≈ τ tαtβ t. Diewert and Morrison 
(1986, p. 663) showed that if gt−1 and gt are defined by (85)–(93) above, 
and there is competitive profit-maximizing behaviour on the part of market 
sector producers for all periods t, then (80) holds as an exact equality40; that 
is, we have

In addition, Diewert and Morrison (1986, pp. 663–665) showed that τ t, αt 
and β t could be calculated using empirically observable price and quantity 
data for periods t−1 and t as follows:

(86)
M∑

m=1

atm = 1 for t = 0, 1, 2, . . . ;

(87)
N∑

n=1

btn = 1 for t = 0, 1, 2, . . . ;

(88)amk = akm for all k,m;

(89)bnj = bjn for all n, j;

(90)
M∑

k=1

amk = 0 form = 1, . . . ,M;

(91)
N∑

j=1

bnj = 0 for n = 1, . . . ,N;

(92)
N∑

n=1

cmn = 0 form = 1, . . . ,M;

(93)
M∑

m=1

cmn = 0 for n = 1, . . . ,N .

(94)γ t = τ tαtβ t; t = 1, 2, . . . .

40Diewert and Morrison established their proof using the nominal GDP function gt(P, x ). However, 
it is easy to rework their proof using the deflated GDP function gt(p, x ) using the fact that gt(p, 
x ) = gt(P/PC, x ) = gt(P, x )/PC which in turn uses the linear homogeneity property of gt(P, x ) in P.
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where PT

(
pt−1, pt , yt−1, yt

)
 is the Törnqvist output price index and 

QT

(
wt−1,wt , xt−1, xt

)
 is the Törnqvist input quantity index.41

Since (80) now hold as exact identities under our present assumptions, 
Eq. (84), the cumulated counterparts to Eq. (80), will also hold as exact 
decompositions; that is, under our present assumptions, we have

Thus, it is very easy to implement the above decompositions of real income 
growth into explanatory growth factors, including the observable measure of 
technical progress τ t defined by the right-hand side of (97), which corresponds 
to MFP growth due to the assumption of constant returns to scale. This result 
illustrates the exact index number method for estimating productivity growth.42

6  Measurement of Output, Labour, Capital 
and Productivity Indexes in Practice

This section discusses the data needed to implement calculate the index 
numbers used by NSOs. The key components are an output index and 
indexes of the primary inputs of labour and capital.

(95)
lnαt =

M∑

m=1

1/2
(
pt−1
m yt−1

m /pt−1yt−1 + ptmy
t
m/p

tyt
)
ln
(
ptm/p

t−1
m

)

= lnPT

(
pt−1, pt , yt−1, yt

)
;

(96)
lnβ t =

N∑

n=1

1/2
(
wt−1
n xt−1

n /wt−1xt−1 + wt
nx

t
n/w

txt
)
ln
(
xtn/x

t−1
n

)

= lnQT

(
wt−1,wt , xt−1, xt

)
;

(97)τ t = γ t/αtβ t

(98)ρt/ρ0 = TtAtBt . t = 1, 2, . . . .

41A decomposition of the type in (97) has been used in firm (or more correctly, plant) level analysis to 
decompose profits; see, e.g., Fox et al. (2003) and Dupont et al. (2005).
42For more on this economic approach to index numbers, including dropping the assumptions of perfect 
competition and constant returns to scale, see Diewert and Fox (2008) and Diewert and Fox (2010). They 
show that standard index number theory is consistent with quite general cases of imperfect competition. 
Hence, index number use does not have to be restricted to industries where there is thought to be (close to) 
perfect competition.
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At the aggregate national level, GDP from the national accounts is usu-
ally taken as the output measure. In most countries, GDP is calculated 
using a Laspeyres quantity index. However, due to it being a superlative 
index, the USA uses a Fisher quantity index. For labour input, hours worked 
from household labour force surveys are typically used. A simple and pop-
ular measure of productivity growth is then GDP growth divided by the 
growth in aggregate hours worked. This is often used as an indication of 
the wage growth that can be expected given it represents the growth in real 
value added produced by workers that exceeds the growth in hours worked. 
However, some of this growth can be caused by an increase in capital inputs, 
or capital deepening, hence the interest in MFP. With more than one input, 
an index number formula is used to construct an aggregate input.

Before going into more specifics, it is important to note that many coun-
tries, such as the USA, Australia, Canada and the UK, have productivity 
programs which produce industry-level productivity statistics. The case of 
Australia is given as an example. Figure 2 plots the cumulated MFP indexes 
for the Australian Market Sector,43 so that the lines represent relative produc-
tivity levels compared to the base year, which is the fiscal year 1989–1990.44 
What is immediately striking is the diversity of the productivity growth expe-
rience between 1989–1990 and 2017–2018. This illustrates the benefit of 
industry-level analysis rather than simply a national aggregate approach.45

For each industry, value-added growth is taken to be the output series. 
This is taken from the national accounts and is calculated using a Laspeyres 
formula. The labour series used can either be a raw hours worked series or a 
quality-adjusted labour input series. This adjusts hours worked to take into 
account the changing composition of the labour force. The idea is to adjust for 
improvements in education and for changes in the age and sex distribution of 
the workforce, reflecting the assumption that differences in wages among types 
of workers are determined by differences in their productivity. Wage equa-
tions are estimated and the predicted wages used in constructing the weights 
for aggregating over the hours growth of different types of workers. In doing 
this, the Australian Bureau of Statistics (ABS) follows the approach of the US 
Bureau of Labor Statistics (see BLS 1993, 2016; Reilly et al. 2005).

43There are two versions of the Australian Market Sector; one with twelve industries and one with six-
teen industries. Here, the focus is on the twelve original industries. An additional four were added later,  
and only go back to 1994–1995. Measurement in these additional sectors seems more challenging than 
the others (such as for the industry “Rental Hiring and Real Estate Services”, so are not considered here.
44“MFP” is used rather than “TFP” to be consistent with the usual NSO terminology.
45For more analysis of the Australian industry level productivity experience, see Fox (2018).
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The ABS provides productivity estimates using both quality-adjusted 
and quality-unadjusted labour inputs. An argument can be made of the use 
of either. Raw hours worked represent society’s time resources dedicated to 
production. Being able to get more output growth relative to hours worked 
growth can be interpreted as an enhancement in the use of these resources, 
which can be interpreted as productivity growth. Alternatively, the fact that 
society invested in the improvement of labour quality, through, e.g., educa-
tion, means that more of society’s resources are tied up in the hours worked, 
and hence ignoring that can give a distorted view to the meaning of productiv-
ity growth, or improvements in the ability to turn inputs into outputs. Quality 
change effectively means that the inputs are not the same between periods, and 
it can be argued that this change needs to be accounted for in productivity 
measure; this leads to the use of quality-adjusted labour inputs.

For capital, it is too complex to go into detail in this chapter, except to 
note the following. Estimates of productive capital stocks, based on data 
on past investment along with estimates of how an asset’s services deteri-
orate over its service life are calculated. Then, it is standard to use a user 
cost approach for the rental prices of capital (see OECD 2009; Diewert and 
Fox 2018b). Combined with information from the capital accounts in the 
national accounts, these rental prices can be used to calculate the cost share 
of each type of capital considered. The ABS then uses a Törnqvist index to 

Fig. 2 Multifactor productivity levels, Australian market sector industries (Source 
ABS [2018a]. Note that the indicated years are fiscal years, which run from July 1 to 
June 30. The plotted series are cumulated indexes, indicating the level of productivity 
relative to the base year of 1989–1990)
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aggregate over the different types of productive capital to create a capital ser-
vices index. The (quality-adjusted) labour input index and the capital ser-
vices index are then aggregate, again using a Törnqvist index. Productivity 
is then defined as the ratio of the value-added index calculated using a 
Laspeyres index divided by an input index constructed using a Törnqvist 
index (see ABS 2015a, Chapter 19 for further details).

This mismatch of index number formula between the output and input 
indexes is not commonly seen in the academic literature, where it is more 
common to consistently use one index formula for both outputs and inputs, 
as in the Diewert and Morrison (1986) approach in Sect. 5. The reason 
why this mismatch occurs in NSO practice is that value added by industry 
is readily available from the national accounts, where the Laspeyres index 
tends to be favoured due to being less demanding in terms of data needs 
(only base period shares are needed for its calculation, whereas the Törnqvist 
index requires shares from both periods being compared). In addition, the 
Laspeyres index has an additivity property which is valued in the national 
accounts community due to it providing a simple additive way of seeing 
how each component of value added contributes to aggregate growth. From 
a national accounts point of view, having different outputs indexes for the 
same industry (depending on the purpose of the index) would be somewhat 
inconsistent.

For the USA, the numerator of the BLS MFP calculation for major sec-
tors is an index of real value added excluding the government, non-profit 
or household sectors. This is a Fisher index (see BLS 2007, pp. 7–8). The 
denominator is a Törnqvist quantity index of quality-adjusted labour (BLS 
1993) and capital services (BLS 2006).46 For MFP of individual indus-
tries, the numerator used by BLS is total gross output for the sector, and 
the input index is comprised of capital, labour, energy, non-energy materi-
als and purchased business services inputs, where both aggregate output and 
input indexes have the Törnqvist. That is, intermediate inputs which are 
subtracted from gross output to produce value added are treated the same 
as the primary inputs of labour and capital in this case (see Moulton 2018,  
p. 12). The reason for this approach given by the OECD (2001) is as fol-
lows: “At the aggregate level of the economy, gross-output and value-added 
based measures converge when the gross-output measures are defined as 

46Thus, there is an inconsistency in the index formula between the numerator and the denominator, 
due to the numerator being consistent with the use of the Fisher index in calculating GDP in the 
national accounts. As the Fisher and Törnqvist indexes tend to approximate each other closely in empir-
ical studies, using the Törnqvist index in the numerator is unlikely to make much difference.
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sectoral output. Sectoral output is a measure of production corrected for 
deliveries within a given sector”.47

As for Australia, the BLS calculates capital services (BLS 2006), and the 
measure of labour input is adjusted for changes in labour composition in 
addition to changes in hours worked and uses a Törnqvist index to aggregate 
over inputs.

Using gross output in the numerator in calculating productivity is often 
referred to as a KLEMS approach, as the input index in the denominator 
is then comprised of capital (K), labour (L), energy (E), materials (M) and 
services (S). This approach is synonymous with Dale Jorgenson and his col-
laborators (see Jorgenson and Timmer 2016).48

7  Measurement Challenges

Why don’t we know more after all these years? Our data have always been 
less than perfect. What is it about the recent situation that has made mat-
ters worse? The brief answer is that the economy has changed and that our 
data-collection efforts have not kept pace with it. “Real” national income 
accounts were designed in an earlier era, when the economy was simpler…. 
(Griliches 1994, p. 10)

While productivity slowdowns intensify interest in measurement issues, 
there remain persistent measurement challenges. New (administrative) data 
sources and (digital) collection methods can help address these challenges,49 
but the changing nature of the economy presents new challenges or intensi-
fies old ones. Here, we briefly acknowledge some selected challenges and pro-
vide references for those interested in potentially contributing to solutions.

47It can be argued that this explanation is not particularly convincing. Value added-based measures can 
be considered appropriate for welfare-related issues whereas gross output-based measures are appropri-
ate for issues concerning industrial policy, as gross output is closer to actual enterprise operations than 
value added. See Balk (2009) and Diewert (2015) for more on the relationship between gross output 
and value added based measures of productivity growth.
48In addition to the headline MFP series published by the ABS (which use value added as the output 
concept), they also publish experimental gross output-based KLEMS productivity estimates (see ABS 
2015b). This requires more effort than calculating the value added-based estimates, as the intermedi-
ate inputs have to be “added back” to the value added estimates in the national accounts. Hence, the 
KLEMS estimates are released with a significant delay relative to the value added-based estimates.
49For example, measurement of labour can become more complicated with new occupations emerging 
and survey respondents being unsure of which industry they are working in. In this case, “administra-
tive” data from employer records can be used to confront the survey results and improve estimates (see 
ABS 2018b).



746     W. E. Diewert and K. J. Fox

Net Output: Depreciation is not a productive asset, yet is part of GDP. 
It can be argued that depreciation should be subtracted from value added 
before constructing productivity indexes. This requires removing the depre-
ciation charge in user cost from factor income and subtracting it like an 
additional intermediate input from the product side (see, e.g., Diewert 
and Fox 2016). Even if it is agreed that net output is the appropriate out-
put measure, a conceptual issue arises for which there is perhaps no clear 
resolution yet; Pigou (1941) argued that the key issue was the maintenance 
of physical capital, so only wear-and-tear depreciation should be subtracted 
from output (or income). This contrasted with the view of Hayek (1941) 
who argued for the concept of real financial maintenance of capital. This 
means that asset revaluations represented a decline in income and therefore 
should also be subtracted along with physical depreciation.

Missing Inputs: Land is often omitted from the list of capital inputs in 
productivity databases. This is true for the EUKLEMS and World KLEMS 
databases, which also omit inventories (see Jorgenson and Timmer 2016). 
When land is included, often extreme assumptions are made (e.g. no change 
in quantity or quality of the land over time), and the estimates can exhibit 
concerning patterns (see Alston 2018; Diewert and Fox 2018b).50

More broadly, environmental and ecosystem services are typically omit-
ted, even water input for agricultural. This is due to the measurement 
difficulties of accounting for these inputs. However, some progress contin-
ues to be made on improving measurement of these key inputs (see UN  
2014a, b). In the productivity context, Brandt et al. (2016) looked at the 
impact of explicitly accounting for non-renewable resources in productivity 
measurement, which is a start for a broader economic accounting of natural 
capital and ecosystem services in productivity measurement. However, sev-
eral important issues remain unresolved regarding the inclusion of natural 

50Alston (2018, footnote 9, p. 397): “In evaluating the results from these estimations, I noticed that the 
USDA-ERS price index for services from land is remarkably volatile, dropping from 1.05 in 1996 to 
0.16 in 2000 and 0.12 in 2002 before jumping to 1.35 in 2004. These land rental price gyrations have 
significant (and seemingly implausible) implications for both the observed and predicted cost share of 
land (including some negative predicted values from the Translog model) and could well have influ-
enced the cost function estimation results and other analysis using these data. This feature of the land 
price index appears to be attributable to the practice of treating land as the residual claimant, for the 
purpose of computing factor payments to land. In their review of the USDA-ERS data, Shumway et al. 
(2014, 2017) discussed (and largely endorsed) this approach, but they do not appear to have noticed its 
implications for the measures”.
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resources and ecosystems in productivity measurement, such as the appro-
priate method for valuing the services.51

There are many more assets that could potentially be considered. For 
example, Diewert and Fox (2019) advocate having cash balances as part of 
the asset base.

New Goods and Quality Change: Hulten (2001, p. 29) quoted Adam 
Smith as follows: “Quality … is so very disputable a matter, that I look 
upon all information of this kind as somewhat uncertain”. However, qual-
ity change is an important feature of any modern economy that should not 
be ignored. NSOs typically try to adjust for quality change using a variety 
of methods. For example, Landefeld and Grimm (2000) reported that 18% 
of US final GDP expenditures were deflated using indexes that are calcu-
lated with hedonic methods. However, rapid entry of new goods increases 
the challenge for NSOs. Finding appropriate prices and quantities for goods 
like cloud computing can be challenging, and appropriately calculating the 
price declines for the goods early in their lives can be problematic, leading 
to nominal output deflators being too high and hence downwardly biasing 
real quantity growth. Much recent measurement effort has gone into dealing 
with such measurement challenges.52

Financial and Insurance Services: This is a very difficult and develop-
ing area of measurement. This is problematic for producing aggregate and 
industry-level productivity growth estimates. Output from Financial and 
Insurance Services is included in GDP and sectoral productivity estimates 
tend to be high (see Fig. 2 for Australia). However, debate continues about 
what exactly this sector does and how its output should be measured (for 
more on this, see, e.g., Diewert et al. 2016).

Intangibles: A major change in the UN System of National Accounts 2008 
was there cognition of expenditure on Research and Development (R&D) 
as capital formation. Many countries have now implemented this recom-
mendation, along with capitalizing other intangibles such as artistic origi-
nals, mineral exploration and computer software. However, there remain 
other classes of intangibles which could also be capitalized, as investments 
in these also create assets which lasts more than a period. Due to the pio-
neering contributions for Corrado et al. (2005, 2006), there are now 
many studies which calculate estimates of broader classes of intangibles. 

51See Diewert and Fox (2016) and references therein, Hoang (2018) and Fox et al. (2018).
52See, e.g., Bryne et al. (2018), Diewert and Feenstra (2017), Diewert et al. (2018) and references 
therein.
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They classified intangibles into three groups: Computerized Information, 
Innovative Property and Economic Competencies.53 See Haskel and 
Westlake (2017) for an excellent description of the nature, measurement and 
increasing importance of intangible capital in modern economies.54

Digital Economy: As noted in the introduction, the presence of new and 
free digital goods and services provides significant challenges for measure-
ment. There are broader reasons than the productivity slowdown to suggest 
that economic statistics are not keeping up with developments in the econ-
omy. With the advent of digital cameras, we are taking more photographs 
than ever; worldwide an estimated 80 billion photos in 2000 and 1.6 tril-
lion in 2015. The price per photo gone from 50 cents to 0 cents, meaning 
that we are consuming more yet the activity is vanishing from GDP (Varian 
2016). Such examples, and the massive increase in consumption of free dig-
ital entertainment and communication, raise concerns about the measure-
ment of economic activity and the welfare benefits accruing from the digital 
economy. Traditional NSO economic statistics are increasingly seen as not 
reflecting the experiences of businesses and consumers, leading for calls 
to completely jettison standard frameworks (e.g. Coyle and Mitra-Kahn 
2017). Others have advocated extending traditional statistics (Jones and 
Klenow 2016; Corrado et al. 2017; Heys 2018; Sichel 2019) and improv-
ing measurement methodologies to incorporate new data sources (Bean 
2016). If measurement is lacking, through methodological challenges, sta-
tistical agency budgets or data availability, then we are severely hampered in 
our ability to understand the impact of new technologies and goods on the 
economy, and consequently the prospects for future productivity, economic 
growth and welfare change.

Recent work by Brynjolfsson, Eggers and Gannamaneni (BEG) (2019), 
Brynjolfsson, Collis, Diewert, Eggers and Fox (BCDEF) (2019) and 
Diewert et al. (2018, 2019) has opened up new avenues for exploring the 

54The appropriate way of thinking about asset lives and depreciation of certain intangibles remains an 
active area of research. For example, Diewert and Huang (2011) proposed an alternative approach to 
capitalizing R&D.

53Elnasri and Fox (2017) present results for Australia and examine the implications for productivity 
from having this broader asset base included in the calculation of the capital services input.
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impact of the digital economy on core economic statistics. BEG (2019) 
demonstrated that massive online choice experiments can be used to elicit 
valuations of free digital goods. Specifically, consumers’ willingness to 
accept compensation for losing access to various digital goods can be elic-
ited, providing a valuation. They demonstrated this approach using non- 
incentive compatible and incentive compatible experiments online, along 
with laboratory experiments. The incentive compatible choice experiments 
required participants to potentially give up Facebook for a certain period in 
exchange for compensation. Their results indicated that digital goods have 
created large gains in well-being that are missed by conventional measures 
of GDP and productivity. They concluded that by “periodically querying a 
large, representative sample of goods and services, including those which are 
not priced in existing markets, changes in consumer surplus and other new 
measures of well-being derived from these online choice experiments have 
the potential for providing cost-effective supplements to existing national 
income and product”.

BCDEF (2019) extended this work to the measurement of welfare change 
and derived an extended concept of GDP (“GDP-B”) which is consist-
ent with this welfare change. This framework provides a means by which 
to understand the potential mismeasurement that arises from not fully 
accounting for the digital goods. From running incentive compatible labora-
tory experiments on the willingness to accept (WTA) to forego consumption 
for eight popular digital goods, they found that valuations vary dramatically 
across goods, from a median monthly WTA of over €500 for WhatsApp to 
€0 for Twitter. Yet the measured prices by NSOs is the same: zero. BCDEF 
(2019) suggest that a new measure of productivity, Productivity-B, could be 
calculated, using their extended definition of output, GDP-B.

This literature is still in its infancy. Yet it provides an example of how 
new data collection approaches, utilizing the reach of the digital economy 
through online experiments, can be used to enhance our traditional meas-
ures of welfare and growth.

8  Conclusion

This chapter has considered productivity theory, measurement and chal-
lenges with particular reference to productivity statistics produced by NSOs. 
As should be clear, the challenges facing NSOs in constructing productivity 
estimates are not insignificant. This has led to questions about the adequacy 
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of methods and data for appropriately measuring economic activity and pro-
ductivity in modern economies.

There are too many complexities (in each of output, capital and labour 
measurement) to provide a thorough step-by-step guide to NSO practice 
in a single book chapter, especially given that agencies can follow different 
approaches. However, the references to the NSO documentation and inter-
national manuals, such as those of the OECD (2001, 2009), provide sources 
for further reading on the range of decisions, methods and data required for 
producing aggregate and industry productivity statistics.

While the attention here has been on NSO methods, much of material is 
of course relevant to productivity measurement at the firm level. With the 
advent of more firm-level databases, constructed using administrative data 
and using data linking techniques, much more can be learned about mac-
roeconomic performance from examining performance from the firm level 
upwards (see, e.g., Syverson 2011; Australian Treasury 2018). Combined 
with new data collection and emerging measurement techniques which take 
into account the unique features of a digital economy, it can be concluded 
that this is a very exciting era for productivity measurement.
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