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Optimal Microgrid Operational Planning
Considering Distributed Energy
Resources
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Abstract This chapter introduces an approach for Optimal Microgrid Operational
Planning (OMOP) considering wind and photovoltaic power generations, combined
heat and power generation units, electrical energy storages and interruptible loads.
The problem explores the optimal maintenance scheduling and operational planning
of a microgrid. A framework for OMOP is presented based on a two-level opti-
mization procedure taking into account the system uncertainties. The formulated
problem is modelled as a Mixed Integer Nonlinear Programming (MINLP) problem
and a heuristic optimizationmethod is utilized for the first level problem;meanwhile,
a MINLP solver is used for the second level problem. This model is applied to the
9-bus and 33-bus test systems and the numerical results assess the effectiveness of
the introduced method.

Keywords Microgrid · Maintenance scheduling · Optimal operational planning ·
Heuristic optimization

Nomenclature

CMC Maintenance cost
COP Operation cost
X Decision variable of maintenance
Nsub Number of substations
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Fr Number of feeders
DERM Number of DERs
MWI Maintenance time window
NDASC Number of DA market scenarios
λ Probability of scenario
ρDA Energy price purchased from DA market
NH Number of DA market hours
EDA Energy purchased from upward network in DA market
ρ ′DA Energy price sold to DA market
E′DA Energy purchased to upward network in DA market
NDG Number of DGs
ϕDG Decision variable for DG commitment
CDG Operational cost of DG
NESS Number of ESSs
ϕESS Decision variable for ESS commitment
CESS Operational cost of ESS
NIL Number of ILs
ϕIL Decision variable for IL commitment
CIL Operational cost of IL
NCHP Number of CHPs
ϕCHP Decision variable for CHP commitment
CCHP Operational cost of CHP
NCONT Number of contingencies
ENSC Energy not supplied costs
P Active power generation
Q Reactive power generation
Smax Maximum apparent power generation
RU Ramp up power generation
RD Ramp down power generation
PIL Active power interrupted in IL
cosϕIL Power factor of IL
PESS Active power of ESS

Sets

I Index of substation set
J Index of under maintenance substation set
K Index of feeder set
l Index of under maintenance feeder set
m Index of DER set
n Index of under maintenance DER set
i′ Index of DA scenarios set
j′ Index of hour-ahead scenarios set
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k′ Index of DG set
I ′′ Index of ESS set
m′ Index of IL set
n′ Index of CHP set
l′ Index of contingencies set

20.1 Introduction

DistributedEnergyResources (DERs) arewidely integrated into power systemopera-
tional planning paradigms and the DER-based systems aremainlyMicrogrids (MGs)
[1].

As shown in Fig. 20.1, a microgrid can be introduced as a system, which includes
DERs such as solar Photo Voltaic (PV) system, Combined Heat and Power (CHP)
unit, small Wind Turbine (WT) , Electrical Storage System (ESS) and Interruptible
Loads (ILs) ; in a way that it has it has at least one controllable energy source [1].

The Microgrid Operator (MGO) performs the optimal scheduling of its dispatch-
able resources by considering the uncertainties of upward electricity market price,
intermittent energy resources and ILs [2].

Over recent years, different aspects of optimal scheduling of the microgrid prob-
lemhave been studied. Ref. [3] presents an optimal stochasticmeta-heuristic schedul-
ing algorithm for the networked microgrids considering uncertainties of DERs and
Demand Response Programs (DRPs). Reference [4] explores the day-ahead schedul-
ing of CHP systems considering DERs and boilers and considers different scenarios
of demand and electricity price.

Reference [5] introduces an optimal day-ahead operational planning algorithm
that minimizes pollutant emission and operating cost. The model is solved using a
Species-basedQuantumParticle SwarmOptimization (SQGA) evolutionarymethod.
Reference [6] proposes a robust optimization algorithm for scheduling of microgrid
resources that uses an information gap method to model the wholesale electricity
market uncertainties.

Reference [7] presents a bi-level algorithm to optimize interactions between park-
ing lot agent and distribution system operator. The upper-level problem minimizes
the cost of DSO;meanwhile, the lower-level problem schedules the parking lot owner
resources.

Reference [8] introduces a risk-based optimal scheduling of reconfigurable sys-
tem that maximizes profit the system operator. The uncertainties of upward network
prices, intermittent electricity generation facilities are considered. The optimal com-
bination of system switches is explored using a meta-heuristic optimization method.

Reference [9] introduces a two-stage stochastic algorithm to minimize the reserve
cost that is used for compensating the intermittent DER power generation forecast
errors.
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Fig. 20.1 Schematic diagram of a microgrid

Reference [10] presents an algorithm for maximizing of MGO profit considering
WT power generation and wholesale market uncertainties. The algorithm uses a
stochastic optimization method to model uncertainties.

Reference [11] uses a stochastic optimization algorithm tominimize the operation
cost. The uncertainties of the DERs and DRPs are modelled by scenarios and inter-
ruptible load bids, respectively. Reference [12] introduces a stochastic scheduling
algorithm that the uncertainties of intermittent DERs are modelled by the probability
density functions. The results show that the DRP can reduce operating costs. These
references do not consider the security constraints and thermal loads.

This book chapter is about the OMOP algorithm that considers the intermittent
power generation uncertainties and contingencies scenarios.
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20.2 Problem Modelling

The MGO maximizes its profit in the Day-Ahead (DA) market; meanwhile, it min-
imizes its system’s operational costs. In addition, the DA market price is assumed
to depend on unpredictable market conditions, which makes it extremely difficult
to investigate the problem by considering the stochastic parameters. Therefore, in
this book chapter, the uncertainty of the intermittent energy resource outputs, MG
contingencies and the DA market price are modelled with the scenario.

Figure 20.2 shows the MGO interactions with upward network and its DERs.
TheMGOmust determine the optimal values of problem decision variables. Thus,

the OMOP decision variables can be categorized as:

(1) Maintenance scheduling of MG’s resources,
(2) Energy generation of MG’s dispatchable energy resources,
(3) The volume of energy purchased from the upward network.

The system costs can be presented as:

(1) Operation and maintenance costs of system resources,
(2) Energy purchased costs,
(3) The expected profit of energy sold to upward network in the DA market.

The Energy Not Supplied Cost (ENSC) is considered in OMOP as reliability
criteria [13].

20.2.1 First Level Problem Formulation

TheMGOoptimizes itsmonthlymaintenance scheduling and it encounters the uncer-
tainties of power exchanges with the upward network, intermittent power generation,

Fig. 20.2 The MGO
interactions
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and system contingencies. The first level optimization problem considers the main-
tenance starting periods, forecasted peak load, and system costs.

The first level problem objective function is proposed as:

minC1 =
∑

i∈Nsub

∑

j∈MWsub

CMC_Sub ij × (1 − XSub ij) + XSub ij × COP_Sub ij

+
∑

k∈Fr

∑

l∈MWFr

CMC_Feed kl × (1 − XFeed kl) + XFeed kl × COP_Feed kl

+
∑

m∈DER

∑

n∈MWDER

CMC_DERmn × (1 − XDERmn) + XDERmn

× COP_DERmn (20.1)

The objective function is decomposed into transformers, feeders and DERs main-
tenance costs. The first level optimization problem is subjected to maintenance con-
straints and load flow constraint.

The second level problem deals with optimal MGO estimated costs in DAmarket
for the different scenarios.

20.2.2 Second Level Problem Formulation

At the second level optimization problem, the MGO maximizes its expected profit;
meanwhile, it minimizes the system operation costs. The MGO determines the opti-
mal schedule of dispatchable DERs and the energy transacted in the DA market.

min
NDASC∑

i′=1

λi

⎛

⎝
NH∑

j′=1

ρDA
i′j′ ∗ EDA

i′j′ −
NH∑

j′=1

ρ ′DA
i′j′ ∗ E′DA

i′j′

+
NDG∑

k ′=1

ϕDG
i′k ′ × CDG

i′k ′ +
NESS∑

k ′′=1

ϕESS
i′k ′′ × CESS

i′k ′′

+
NIL∑

m′=1

ϕIL
i′m′ × CIL

i′m′ +
NCHP∑

n′=1

ϕCHP
i′n′ × CCHP

i′n′ +
NCONT∑

l′=1

ENSCi′l′

)
(20.2)

The objective function consists of the following groups: (1) the costs of energy
purchased from the upward wholesale market; (2) the profits of energy sold to the
upward network; (3) the commitment of DGs; (4) the commitment of ESSs; (5) the
commitment of ILs; (6) the commitment of CHPs; (7) ENSCs.

The objective function is restricted to these constraints:
The maximum and minimum power generations of microgrid energy resources,

ramp constraints, minimum up-time and down-time, AC power flow, state of charge
and the limits of ESSs that can be written as:
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PDG
Min.ϕ

DG ≤ PDG ≤ PDG
Max.ϕ

DG (20.3)

QDG
Min.ϕ

DG ≤ QDG ≤ QDG
Max.ϕ

DG (20.4)

PCHP
Min .ϕCHP ≤ PCHP ≤ PCHP

Max .ϕCHP (20.5)

QCHP
Min .ϕCHP ≤ QCHP ≤ QCHP

Max .ϕCHP (20.6)

√(
QDG

)2 + (
PDG

)2 ≤ SDG
Max (20.7)

(
PDG

(t+1)

) − (
PDG

(t)

) ≥ RUDG (20.8)

(
PDG

(t)

) − (
PDG

(t+1)

) ≥ RDDG (20.9)

√(
QCHP

)2 + (
PCHP

)2 ≤ SCHP
Max (20.10)

(
PCHP

(t+1)

) − (
PCHP

(t)

) ≥ RUCHP (20.11)

(
PCHP

(t)

) − (
PCHP

(t+1)

) ≥ RDCHP (20.12)

PIL
Min × ϕIL ≤ PIL ≤ PIL

Max × ϕIL (20.13)

QIL = (
PIL

)
.

√
1

cosϕIL
− 1 (20.14)

t∑

k=1

PESS
k ≤ PESS

max (20.15)

20.3 Solution Algorithm

For the first level optimization problem, the Genetic Algorithm (GA) ALGORITHM
is used. Figure 20.3 depicts the flowchart of the introduced algorithm.The upper-level
problem implements the GA for finding the best solutions of the estimated scenarios;
meanwhile, the second level problem uses a mixed-integer nonlinear optimization
procedure [13, 14].

The MATLAB software is used to generate random numbers. Then, by connect-
ing the MATLAB to GAMS, the generated scenarios are inserted into GAMS, and
scenario reduction is implemented by a forward method. Next, for each of the sce-
narios, the introduced decompositionmethod is applied. The scenario generation and
reduction procedure are shown in Fig. 20.4.
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Fig. 20.3 The flowchart of the two-level optimization introduced algorithm
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Fig. 20.4 The scenario generation and reduction procedure

Fig. 20.5 The 9-bus microgrid

20.4 Numerical Results

The introduced model is implemented on the 9-bus and 33-bus test systems.
Figures 20.5 and 20.6 depict the 9-bus and 33-bus system, respectively. The 9-bus
and 33-bus test system data are presented at [15–18], respectively. The wind turbine
and solar panel data are available at [18].



500 M. Setayesh Nazar et al.

Fig. 20.6 The 33-bus microgrid

Fig. 20.7 The base load of the 9-bus system

20.4.1 The 9-Bus Test System

Figures 20.7 and 20.8 depict the base load and upward network electricity price of
the 9-bus microgrid, respectively.

Table 20.1 presents the optimization input data for the 9-bus system.
Figures 20.9 and 20.10 show the electricity generation of solar photovoltaic panels

and wind turbines, respectively.
Figure 20.11 shows the stacked column of the estimated electricity generation of

CHPs. As shown in Fig. 20.11, the CHPs are at full load when they are committed.
The first CHP is supplying the base electrical load of the MG and the third CHP is
supplying the peak electrical load.

Figure 20.12 depicts the heating generation of CHPs and boilers. As shown in
Fig. 20.12, the CHPs are at full load when they are committed and the boiler is
tracking the heating load.
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Fig. 20.8 The base electricity price of upward network of the 9-bus system

Table 20.1 The optimization input data for the 9-bus system

Parameter Value

Discount rate (%) 13

Load power factor 0.90

Load growth rate of (%) 5

Number of solar irradiation scenarios 5000

Number of wind turbine power generation scenarios 6000

Number of upward market price scenarios 500

Number of solar irradiation reduced scenarios 400

Number of wind turbine power generation reduced
scenarios

45

Number of upward market price reduced scenarios 15

Fig. 20.9 The electricity generation of solar photovoltaic of 9-bus system
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Fig. 20.10 The electricity generation of wind turbines of 9-bus system

Fig. 20.11 The stacked column of the estimated electricity generation of CHPs of 9-bus system

Fig. 20.12 The stacked column of the estimated heating generation of CHPs and boilers of 9-bus
system

Figure 20.13 displays the optimal maintenance scheduling of system for the first
half of the year. The optimalmaintenance scheduling for the second half of the year is
the same as the first one. TheOMOP ensures themaintenanceworkload of the system
is evenly distributed across the year. Table 20.2 depicts the optimal operational and
maintenance costs of the system.

20.4.2 The 33-Bus Test System

Figure 20.14 depicts the base load of the 33-bus microgrid.
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Fig. 20.13 The optimal maintenance scheduling of 9-bus system for the first half of the year

Table 20.2 The optimal aggregated operational and maintenance costs of the 9-bus system

Costs (MMUs)

CHP operation and maintenance
costs (MMUs)

3.9812 Transformers operation and
maintenance costs (MMUs)

0.5871

ENSCs 0.36541 IL costs (MMUs) 0.7982

Energy loss costs (MMUs) 0.13815 Energy purchased from upward
network costs (MMUs)

0.1974

Fig. 20.14 The base load of the 33-bus test system

Figure 20.15 shows the electricity generation of solar photovoltaic panels and
wind turbines.

Figure 20.16 presents the stacked column of the estimated electricity generation
of CHPs and DGs. As shown in Fig. 20.16, the CHPs and DGs are at full load when
they are committed. The CHP250A and CHP330 are fully committed to supplying
the base electrical load of the system.

Figure 20.17 depicts the stacked column of the estimated heating generation of
CHPs and boilers of the system. The boiler is tracking the heating load.

Figure 20.18 displays the optimal maintenance scheduling for the first half of the
year. The optimal maintenance scheduling for the second half of the year is the same
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Fig. 20.15 The electricity generation of solar photovoltaic panels and wind turbines of 33-bus
system

Fig. 20.16 Stacked column of estimated electricity generation of CHPs and DGs of 33-bus system

Fig. 20.17 Stacked column of estimated heating generation of CHPs and boilers of 33-bus system
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Fig. 20.18 The optimal maintenance scheduling of 33-bus system for the first half of the year



506 M. Setayesh Nazar et al.

Table 20.3 The optimal aggregated operational and maintenance costs of the 33-bus system

Costs (MMUs)

CHP and DG operation and
maintenance costs (MMUs)

12.3918 Transformers operation and
maintenance costs (MMUs)

2.6918

ENSCs 0.3487 IL costs (MMUs) 4.1287

Energy loss costs (MMUs) 0.3915 Energy purchased from upward
network costs (MMUs)

0.3621

as the first one. The optimization algorithm distributes the maintenance workload
across the year.

Table 20.3 depicts the optimal operational and maintenance costs of the 33-bus
system for the operational planning horizon.

20.5 Conclusions

A microgrid optimal operational planning framework was reviewed in the present
chapter. The introduced method used a two-level optimization model to investigate
the intermittent power generations and ILs impacts on the OMOP problem. The
proposed framework for OMOP considered the system uncertainties and the problem
explores the optimal maintenance scheduling and operation. The OMOP procedure
had a great non-convex discrete state space and the proposed solution algorithm had
the ability to model the nonlinearity and non-convexity of the system’s state space
and the dynamic coupling constraints of the electric and heating systems.

The model of OMOP was a MINLP problem, and the GA algorithm was used
for the first level problem. The second level problem utilized the DICOPT solver.
The algorithm was assessed for the 9-bus and the 33-bus test systems with quite
acceptable results.

In conclusion, the adoption of the proposedOMOP includesmaintenance schedul-
ing allows increasing significantly the microgrid benefits and reliability.
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