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Abstract. In this paper we investigate the security of 5-round AES
against two different attacks in an adaptive setting. We present a practi-
cal key-recovery attack on 5-round AES with a secret s-box that requires
232 adaptively chosen ciphertexts, which is as far as we know a new
record. In addition, we present a new and practical key-independent dis-
tinguisher for 5-round AES which requires 227.2 adaptively chosen cipher-
texts. While the data complexity of this distinguisher is in the same range
as the current best 5-round distinguisher [14], it exploits new structural
properties of 5-round AES.
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1 Introduction

Block ciphers are typically designed by iterating an efficiently computable round
function many times in the hope that the resulting composition behaves like a
randomly drawn permutation. The designer is typically constrained by various
practical criterion, e.g. security target, implementation boundaries, and special-
ized applications, that might lead the designer to introduce symmetries and
structures in the round function as a compromise between efficiency and secu-
rity. In the compromise, a round function is iterated enough times to make sure
that any symmetries and structural properties that might exist in the round
function vanish. Thus, a round function is typically designed to increasingly de-
correlate with structure and symmetries after several rounds. Low data- and
computational-complexity distinguishers and key-recovery attacks on round-
reduced block ciphers have recently gained renewed interest in the literature.
There are several reasons for this. In one direction cryptanalysis of block ciphers
has focused on maximizing the number of rounds that can be broken with-
out exhausting the full codebook and key space. This often leads to attacks
marginally close to that of pure brute-force. These are attacks that typically
have been improved over time based on many years of cryptanalysis. The most
successful attacks often become de-facto standard methods of cryptanalysis for
a particular block cipher and might discourage anyone from pursuing new direc-
tions in cryptanalysis that do not reach the same number of rounds. This in itself
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might hinder new breakthroughs, thus it can be important to investigate new
promising ideas that might not have reached its full potential yet. New meth-
ods of cryptanalysis that break or distinguish fewer rounds faster but with lower
complexity than established cryptanalysis is therefore interesting in this process.
Many constructions employ reduced round AES as part of their design. On the
other hand, reduced versions of AES have nice and well-studied properties that
can be favorable as components of larger designs (see for instance Simpira [13]).

The security of Rijndael-type block cipher [5] designs is believed to be a
well-studied topic and has been in the focus of a large group of cryptanalysts
during the last 20 years (see e.g. [1–4,6–9,12,14]). Several distinguisher attacks
exists against reduced-round of AES. The aim of a distinguisher attack is to
distinguish the cipher from a sufficiently generic permutation i.e. the aim is to
find some properties of the cipher that allows to set up a test for an unusual
event with sufficiently different probability of happening in comparison to ran-
dom (e.g. finding certain collision-events in a set of ciphertexts when restricted
to structured sets of plaintexts). At Crypto 2016, Sun et al. [15] presented the
very first 5-round key-dependent distinguisher for AES. They extend a 4-round
integral property to 5-rounds by exploiting properties of the AES MixColumn
matrix. Although their distinguisher requires the whole codebook, it spawned
a series of new fundamental results for AES. It was later improved to 298.2

chosen plaintexts with 2107 computations by extending a 4-round impossible
differential property to a 5-round property. Then, at Eurocrypt 2017, Grassi
et al. [12] proposed the first 5-round key-independent chosen plaintext distin-
guisher which requires 232 chosen plaintexts with a computational cost of 236.6

look-ups into memory of size 236 bytes. They showed that by encrypting cosets
of certain subspaces of the plaintext space the number of times the difference
of ciphertext pairs lie in a particular subspace of the state space always is a
multiple of 8. Later, at Asiacrypt 2017, Rønjom et al. [14] presented new fun-
damental properties for Rijndael-type block cipher designs leading to new types
of 3- to 6-round key-independent distinguishers for AES that beats all previous
records. They showed that zero-differences of encrypted plaintext (or decrypted
ciphertext) pairs are left invariant by encrypting new pairs formed by exchang-
ing ciphertext/plaintext-dependent values between already observed pairs. Using
this property they present the first 6-round distinguisher which requires 2122.83

adaptively chosen ciphertexts and which has computational cost of 2121.83 XORs.
Note that their result is in the adaptive setting where the adversary can actively
query the encryption and decryption function depending on observed values,
while the previous distinguishers are in the chosen plaintext or ciphertext
setting.

The security of AES with a secret s-box has been investigated in several
papers. In this case, when the choice of s-box is made uniformly at random from
all 8-bit s-boxes, the size of the secret information increases from 128− and 256-
bit keys to 1812− and 1940-bits of secret key material. In FSE 2015, Tiessen
et al. [16] proposed the first 5-round key recovery attack on AES with a secret
s-box based on integral cryptanalysis, which requires 240 chosen plaintexts with a
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computational cost of 238.7 encryptions. In their attack, they first derive an affine
equivalent s-box before they recover the secret key. Then at FSE 2016, Grassi
et al. [11] proposed a key recovery attack which exploits a particular property of
the AES MixColumn matrix. They then combine this with impossible differential
cryptanalysis to derive the secret key. Their attack requires 2102 chosen plaintexts
with 2100.4 computations. It was later improved to 253.25 chosen plaintexts and
252.6 computations in [10] by using a similar approach, but instead of using
impossible differential cryptanalysis, they apply multiple-n cryptanalysis.

1.1 Our Contribution

So far, various 5-round key recovery attacks on AES with a secret s-box have been
presented based on integral, impossible differential and multiple-n cryptanalysis.
In this paper, we raise the question whether it is possible to set up a 5-round
key recovery attack on AES with a secret s-box based on recently developed
attack techniques called zero-difference cryptanalysis. In this paper we present an
efficient key-recovery attack on 5-round AES with a secret s-box based on zero-
difference cryptanalysis that requires 232 adaptively chosen ciphertexts and that
has computational complexity consisting of 231 XORs. We also present a new
key-independent distinguisher for 5-round AES which requires 227.2 adaptively
chosen ciphertexts and which has computational complexity consisting of 226.2

XORs. The latter distinguisher exploits new structural properties in 5-round
AES.

1.2 Overview of this Paper and Main Results

In Sect. 2 we briefly recall some results and notation that we use in the rest of
this paper. In Sect. 3, we describe a new 5-round distinguisher for AES. Then in
Sect. 4 we present a new key-recovery attack for AES with a secret s-box. The
current best secret key distinguishers for 5-round AES and best key-recovery
attacks for 5-round AES-128 with a secret s-box are presented in Tables 1 and
2. We adopt that data complexity is measured in a minimum number of cho-
sen plaintexts/ciphertexts CP/CC or adaptively chosen plaintexts/ciphertexts
ACP/ACC. Time complexity is measured in equivalent number of AES encryp-
tions (E), memory access (M) and/or XOR operations (XOR).

Table 1. Secret-key distinguishers for 5-round AES

Property Rounds Data Cost Key-independent Ref.

Multiple-8 5 232 CP 236.6 M � [12]

Zero difference 5 227.2 ACC 226.2XOR � Sect. 3

Zero difference 5 226.8 ACC 225.8 XOR � [14]
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Table 2. Comparison of key-recovery on 5-round AES with a secret s-box

Attack Rounds Data Computation Memory Ref.

Imp. diff 5 276.37 CP 274.09 E 28 [10]

Multiple of n 5 253.25 CP 252.6 E 216 [10]

Integral 5 240 CP 238.7 E 240 [16]

Zero difference 5 229.19CP + 232 ACC 231 XOR small3 Sect. 4

Fig. 1. Description of one AES round

2 Preliminaries

2.1 A Short Description of AES

The AES internal state is typically represented as a 4 by 4 matrix over the finite
field F28 . The state is sometimes also represented as a vector of length 4 over
F
4
28 typically formed by concatenating the columns of the matrix state from left

to right. This is the view typically taken in SuperBox cryptanalysis. One full
round of AES consists of SubBytes (SB), ShiftRows (SR), MixColumns (MC)
and AddKey (AK), R = AK ◦MC ◦SR ◦SB (depicted in Fig. 1). The SB-layer
applies a fixed 8-bit to 8-bit s-box independently to each byte of the state, the
SR-layer cyclically shift the i-th row by i positions, while the MC-layer applies
a fixed linear transformation to each column. The key addition simply XORs a
secret round-dependent value to the state. Also, Rn(x) means n rounds of AES.
We omit the last MC ◦SR operations to simplify the presentation of our attacks
(our attacks work as well in the case in which the final linear layer is omitted).

2.2 Subspace Trail on AES

In [11], Grassi et al. present subspace trail cryptanalysis on AES. They define
two different subspaces related to AES. If we let {e0,0, ..., e3,3} form the unit
vectors of F4×4

28 , we have the following.

Definition 1. (Diagonal spaces) The diagonal spaces Di are defined as

Di =< e0,i, e1,i+1, e2,i+2, e3,i+3 >
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where i + j is computed modulo 4. For instance, the diagonal space D0 corre-
sponds to the symbolic matrix:

D0 =
{

⎡
⎢⎢⎣

x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

⎤
⎥⎥⎦

∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 2. (Column spaces) The column spaces Ci are defined as

Ci =< e0,i, e1,i, e2,i, e3,i > .

For instance, the columns space C0 corresponds to the symbolic matrix

C0 =
{

⎡
⎢⎢⎣

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

⎤
⎥⎥⎦

∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 3. Let I ⊆ {0, 1, 2, 3}. Let DI and CI be defined as

DI =
⊕
i∈I

Di, CI =
⊕
i∈I

Ci.

The dimension of the subspaces DI and CI are both 4 · |I|. The following
theorem describes the deterministic mapping between these two subspaces.

Theorem 1. [11] For I ⊂ {0, 1, 2, 3} and for each a ∈ D⊥
I (orthogonal comple-

ment of DI), there exists one and only one b ∈ C⊥
I (orthogonal complement of

CI) such that:

R(DI ⊕ a) = CI ⊕ b.

Lemma 1. [11] For all x, y ∈ F
4×4
28 and for all I ⊆ {0, 1, 2, 3}, it follows that

Pr(R(x) ⊕ R(y) ∈ CI |x ⊕ y ∈ DI) = 1.

In the other word, we can deduce that for each c ∈ C⊥
I , there exists exactly one

d ∈ D⊥
I such that

R−1(CI ⊕ c) = DI ⊕ d

and in general

Pr(R−1(x) ⊕ R−1(y) ∈ DI |x ⊕ y ∈ CI) = 1.

Lemma 2. [11] For any CI and DJ , we have that

Pr(x ∈ (CI ∩ DJ)|x ∈ CI) = (2−8)4·|I|−|I|·|J|

Pr(x ∈ (CJ ∩ DI)|x ∈ DI) = (2−8)4·|I|−|I|·|J|.
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This means that if two elements belong to the same coset of DI (respectively
CI), then they also belong to the same coset of CJ ( respectively DJ) with
probability (2−8)4·|I|−|I|·|J|. More precisely, when we encrypt two plaintexts from
the same coset of DI for one round, then they belong to the same coset of CI ∩DJ

with probability (2−8)4·|I|−|I|·|J|. We use this lemma to compute most of the
probabilities in our attacks.

2.3 Zero-Difference for 4-Round AES

In [14], Rønjom et al. present zero-difference cryptanalysis against generic Sub-
stitution Permutation Networks (SPNs). In the following, we recall the basic
zero-difference properties for 4-rounds of AES.

Definition 4. [14] For a vector v ∈ F
4
2 and a pair of states α, β ∈ F

4×4
28 define

a new state
ρv(α, β) = (αivi ⊕ βi(vi ⊕ 1) | 0 ≤ i < n).

where αi and βi are ith columns of α and β

The new pair (α′, β′) = (ρv(α, β), ρv(β, α)) is formed by exchanging individual
words between α and β according to the binary coefficients of v.

Zero-difference cryptanalysis exploits a fundamental property of the SLS
construction (S is a non-linear layer and L is a linear transformation) which is
encapsulated in the following theorem originally presented in [14].

Theorem 2. [14] Let α, β ∈ F
4×4
28 and α′ = ρv(α, β), β′ = ρv(β, α) then

ν(S ◦ L ◦ S(α) ⊕ S ◦ L ◦ S(β)) = ν(S ◦ L ◦ S(α′) ⊕ S ◦ L ◦ S(β′))

where ν(x) denotes the indicator vector which is 1 if the word i of x is zero and
0 otherwise.

Due to the symmetry of SLS, we get exactly the same result in the decryption
direction. Note that the SLS construction essentially corresponds to 4 full rounds
of AES. In [14], the authors fix plaintexts with fixed zero diagonals and decrypt
the exchanged ciphertext pairs to a new plaintext pair which with probability 1
have exactly the same zero diagonals.

We can represent Theorem 2 in terms of subspace cryptanalysis. Consider
two plaintexts in the same coset of a diagonal space DI , p0, p1 ∈ DI + a. Then
let c0 = R4(p0), c1 = R4(p1), p′0 = R−4(ρv(c0, c1))) and p′1 = R−4(ρv(c1, c0))).
Then with probability one, we also have that p′0 ⊕p′1 ∈ DI (different coset than
DI +a). In the next two sections, we present two practical different attacks based
on this 4-round property. We have practically verified the attacks on full-scale
AES in C/C++1.

1 https://github.com/Kryptoraphy/practical-attacks.

https://github.com/Kryptoraphy/practical-attacks
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3 5-Round Key-Independent Distinguisher

In this section we extend the 4-round distinguisher mentioned in the previous
section to a 5-round distinguisher by adding one round at beginning. We encrypt
a plaintext set and expect that some of them follow the 4-round property after
one round encryption. Thus, we present a new 5-round key-independent distin-
guisher which requires 227.2 adaptively chosen ciphertexts. The idea for setting
up a 5-round distinguisher is as follows. We pick a plaintext set P from a coset
of a diagonal space D0, P ⊂ D0 + a, and encrypt them. Then from the set of all
possible ciphertext pairs we form 7 new ciphertext pairs by exchanging mixed
values between the original pairs. Then we decrypt the set of these newly gener-
ated ciphertext pairs and expect to observe one such pair belonging to the same
coset of DL with |L| = 3.

We know that each coset of DI is mapped into a coset of CI with probability
one, and diagonal and column spaces always have an intersection with a certain
probability (Lemma 2). So, when we encrypt the plaintexts set P , one of following
cases may happen after one round encryption.

R R R R SB

R R R R SB

Fig. 2. 5-round truncated differential characteristic used in case 1

First case. After one round encryption, then according to Lemma 2, with prob-
ability 4 · 2−24 (a single byte can be active in 4 different positions in a column)
we have that

R(pi) ⊕ R(pj) ∈ DK ∩ C0

where |K| = 1. If we swap word(s) between the ciphertexts and decrypt them,
we have, according to the 4-round property mentioned in Sect. 2.3, that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK

and

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ∩ CL

where |L| = 3 with probability 4 · 2−8 (there are 4 possible choices for choosing
L). It means that after one more round of decryption, according to Theorem 1,
the two new plaintexts, p′i and p′j , are in same coset of a diagonal space DL
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where |L| = 3. Thus, it happens with a probability 4 ·2−24 ·4 ·2−8. The truncated
differential characteristic used in this case is depicted in Fig. 2.

Second case. In this case, R(pi)⊕R(pj) differ in only two bytes with probability
6 · 2−16. In other words:

R(pi)⊕ R(pj) ∈ DK ∩ C0

where |K| = 2. Then, according to the 4-round property, we have that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ,

and with probability 4 · 2−16 we have that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ∩ CL

so R−5(ρv(ci, cj))⊕R−5(ρv(cj , ci)) is zero in a diagonal with probability 6 ·2−16 ·
4·2−16. Figure 3 depicts the truncated differential characteristic used in this case.

R R R R SB

R R R R SB

Fig. 3. 5-round truncated differential characteristic used in case 2

R R R R SB

R R R R SB

Fig. 4. 5-round truncated differential characteristic used in case 3

Third case. There is also a case that R(pi) ⊕ R(pj) is zero in all bytes except
three bytes, which happens with probability 4 · 2−8. It means that

R(pi) ⊕ R(pj) ∈ DK ∩ C0
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where |K| = 3. Thus, this pair follows the 4-round property

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ,

and with probability 4 · 2−24, we also have that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ∩ CL.

Then after one more round of decryption, it follows that p′i ⊕ p′j ∈ DL where
|L| = 3. In total, we expect this event happens with probability 4 · 2−8 · 4 · 2−24.
In Fig. 4, the truncated differential characteristic used in this case is depicted.

In total, the probability that there is a plaintext pair such that p′i ⊕p′j ∈ CL

is 16 · 2−24 · 2−8 + 24 · 2−16 · 2−16 + 16 · 2−8 · 2−24 = 2−26.19. In order to set up
a distinguisher, we encrypt 212.2 plaintexts from a coset of D0. We generate all
223.4 possible ciphertext pairs and for each pair we generate all 7 possible new
ciphertext pairs by swapping words between them. Then we decrypt all 7 · 223.4
ciphertext pairs and expect that there is at least one plaintext pair such that
p′0 ⊕ p′1 ∈ DL with |L| = 3. At random, the probability that two plaintexts
belong to the same coset of DL is 2−30. For AES, the probability of having a
plaintext pair with our desired difference pattern is 1 − (1 − 2−26.2)2

26.2
= 0.63

after decrypting 226.2 ciphertext pairs, while for a random permutation, this
probability is 1 − (1 − 2−30)2

26.2
= 0.07. Thus, the probability of success is

0.58. So, we can distinguish 5-round AES from a random permutation using
212.2 chosen plaintext and 2 · 226.2 = 227.2 adaptively chosen ciphertext. The
algorithm for this distinguisher is presented in Algorithm 1.

The data complexity of this distinguisher is in the same range as the data
complexity of the best 5-round adaptive distinguisher presented in [14]. Both
distinguishers extend on the 4-round distinguisher mentioned in Sect. 2.3 to a
5-round distinguisher by adding a round at the begining. In the distinguisher
presented in [14], the aim is to find plaintext pairs such that all of them have
a certain property (a certain zero-byte set). To achieve this, attacker needs to
generate new pairs of plaintexts and ciphertexts adaptively from the original
pairs. To set up our distinguisher, we just need to generate new ciphertext pairs
adaptively. Our distinguisher exploits another structural properties over 5-round.

4 Key Recovery Attack on 5-Round AES with a Single
Secret S-Box

In this section we present a new key-recovery attack on 5-round AES with a
secret s-box. The idea is to turn the 4-round distinguisher mentioned in Sect. 2.3
to a key recovery attack by adding a round at beginning using a property of the
MixColumn operation in AES. The MixColumns matrix M in AES is defined
by

M =

⎡
⎢⎢⎣

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 1

⎤
⎥⎥⎦ .
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Algorithm 1. 5-round key-independent distinguisher
Input: Set P contains 212.2 plaintext pi where bytes in first diagonal takes a

random values and others are constant
Output: 1 for an AES, -1 otherwise.
for i from 0 to 212.2 do

ci ← enck(p
i)

end
for i from 0 to 212.2 do

for j from i + 1 to 212.2 − 1 do
for r from 1 to 7 do

c′i ← ρvr (ci, cj), c′j ← ρvr (cj , ci)
p′i ← deck(c

′i), p′j ← deck(c
′j)

if p′i ⊕ p′j ∈ DL where |L| = 3 then
return 1

end

end

end

end

We pick two pairs of plaintexts p0 and p1 where the first diagonal is given by
SR−1(p00) = SR−1(0, i, j, 0) and SR−1(p10) = SR−1(z, z + i, z + j, 0) and where
z is a random non-zero element of F28 . Let k0 = (k0,0, k1,1, k2,2, k3,3) denote the
key-bytes XORed with the first diagonal of the plaintext. Then the difference
between the first column after one encryption of the two plaintexts becomes

αΔx0 ⊕ (α + 1)Δx1 ⊕ Δx2 = y0

Δx0 ⊕ αΔx1 ⊕ (α + 1)Δx2 = y1

Δx0 ⊕ Δx1 ⊕ αΔx2 = y2

(α + 1)Δx0 ⊕ Δx1 ⊕ Δx2 = y3.

where Δx0 = s(k0,0) ⊕ s(z ⊕ k0,0), Δx1 = s(k1,1 ⊕ z ⊕ i) ⊕ s(k1,1 ⊕ i), Δx2 =
s(k2,2 ⊕ z ⊕ j)⊕ s(k2,2 ⊕ j) and where s(x) is the AES-sbox. Since the plaintexts
are equal in the last byte, this part cancels out in the difference. In particular, if
we look at the first two equations, it is not hard to see that they are zero when
Δx0 = Δx1 = Δx2,

s(k0,0) ⊕ s(z ⊕ k0,0) = s(k1,1 ⊕ z ⊕ i)⊕ s(k1,1⊕ i) = s(k2,2 ⊕ z ⊕ j) ⊕ s(k2,2 ⊕ j)

This happens when i ∈ {k0,0⊕k1,1, z⊕k0,0⊕k1,1} and j ∈ {k0,0⊕k2,2, z⊕k0,0⊕
k2,2}. Thus, if we let i and j run through all values of F28 , we are guaranteed
that there are at least four values for which the first two equations are zero.

We prepare a set P of plaintext pairs as follows. For each i and j, we
generate a pair of plaintexts p0 and p1 where the first diagonal of p0 is
SR−1(p00) = SR−1(0, i, j, 0) while the first diagonal in the second text is
SR−1(p10) = SR−1(z, z ⊕ i, z ⊕ j, 0). We then encrypt this pair five rounds
to a pair of ciphertexts c0 and c1. We then pick all 7 new ciphertext pairs
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c′0, c′1 = (ρv(c0, c1), ρv(c1, c0)) and return the corresponding plaintexts p′0 and
p′1. Now we know that there are 28 pairs in the set such that

R−4(ρv(c0, c1)) ⊕ R−4(ρv(c1, c0)) ∈ DK

where |K| = 2, since for each of the pair satisfy R(p0) ⊕ R(p1) ∈ DK . Thus,
according to Lemma 2, with probability 4 · 2−16 we have that

R−4(ρv(c0, c1)) ⊕ R−4(ρv(c1, c0)) ∈ DK ∩ CL

where |L| = 3. This means that p′0 ⊕ p′1 ∈ DL. Thus, for this pair, we can
deduce the values of i and j which corresponds to k0,0 ⊕k1,1 (z ⊕k0,0 ⊕k1,1) and
k0,0 ⊕ k2,2 (z ⊕ k0,0 ⊕ k2,2) respectively. The truncated differential characteristic
used in the attack is depicted in Fig. 5. Since there are 28 right pairs in the set
P, the probability that there is a new plaintext pair such that p′0 ⊕ p′1 ∈ CL

is 1 − (1 − 2−14)28 = 2−9.19. Then we need to encrypt 29.19 sets P (by picking
different constants for the last three diagonals). Thus, to find two bytes of the key,
the attacker needs 2 ·29.19 ·216 = 226.19 chosen plaintexts and 2·7 ·29.19 ·216 = 229

adaptively chosen ciphertexts. Then the attacker can repeat the attack for other
diagonals (two times for each diagonal) and guess one byte of the key for each
diagonal. In total the attacker needs 229.19 chosen plaintexts and 232 adaptively
chosen ciphertexts to form an attack with success rate of 0.63. The algorithm
for this key recovery attack is presented in Algorithm 2.

Algorithm 2. Key recovery attack on 5-round AES with a single secret
s-box

Input: 29.12 different sets P where each contains 216 plaintext pairs
Output: Candidates for k0,0 ⊕ k1,1 (1 ⊕ k0,0 ⊕ k1,1) and k0,0 ⊕ k2,2

(1 ⊕ k0,0 ⊕ k2,2)
for c from 0 to 29.12 do

for i from 0 to 28 do
for j from 0 to 28 do

p0
0 ← (0, i, j, 0), p1

0 ← (1, 1 ⊕ i, 1 ⊕ j, 0)
p0
l = p1

l = Random − value for l = 1, 2, 3
c0 ← enck(p

0), c1 ← enck(p
1)

for r from 1 to 7 do
c′0 ← ρvr (c0, c1), c′1 ← ρvr (c1, c0)
p′0 ← deck(c

′0), p′1 ← deck(c
′1)

if p′0 ⊕ p′1 ∈ DL where |L| = 3 then
(i, j) is a candidate for two bytes of key.

end

end

end

end

end



308 N. G. Bardeh and S. Rønjom

R R R R SB

R R R R SB

Fig. 5. 5-round truncated differential characteristic used in key recovery attack AES

The key-recovery attacks on 5-round AES with a secret s-box presented in [10]
are based on impossible and multiple-n cryptanalysis, while our attack is based
on zero-difference cryptanalysis. Since our attack exploits a probability one 4-
round property, it requires less texts than others which exploit probabilistic
4-round properties. Also, the best 5-round key recovery attacks in adaptive set-
ting [14] and non-adaptive setting [1] require 211.3 adaptively chosen ciphertexts
and 222 chosen plaintext respectively (with a known s-box), so compared to our
attack, and despite the increased size of the secret information, the required data
is increased, at most, by a factor of 221.

5 Conclusion

In this paper we have introduced a new 5-round key-independent distinguisher
which requires 212.2 chosen plaintexts and 227.2 adaptively chosen ciphertexts.
In addition, we present a new key recovery attack against 5-round AES with
a secret s-box based on zero-difference cryptanalysis. The attack requires 229.19

chosen plaintexts and 232 adaptively chosen ciphertexts. Both attacks mentioned
in this paper are practical and have been verified experimentally on a standard
laptop.
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