
Johannes Buchmann
Abderrahmane Nitaj
Tajjeeddine Rachidi (Eds.)

LN
CS

 1
16

27

11th International Conference on Cryptology in Africa
Rabat, Morocco, July 9–11, 2019
Proceedings

Progress in Cryptology –
AFRICACRYPT 2019

Lecture Notes in Computer Science 11627

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Johannes Buchmann • Abderrahmane Nitaj •

Tajjeeddine Rachidi (Eds.)

Progress in Cryptology –

AFRICACRYPT 2019
11th International Conference on Cryptology in Africa
Rabat, Morocco, July 9–11, 2019
Proceedings

123

Editors
Johannes Buchmann
Technical University of Darmstadt
Darmstadt, Germany

Abderrahmane Nitaj
Université de Caen
Caen, France

Tajjeeddine Rachidi
Al Akhawayn University
Ifrane, Morocco

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23695-3 ISBN 978-3-030-23696-0 (eBook)
https://doi.org/10.1007/978-3-030-23696-0

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-23696-0

Preface

The 11th edition of the International Conference on the Theory and Applications of
Cryptographic Techniques, Africacrypt 2019 was held in Rabat, Morocco, during
July 9–11, 2019. The conference was organized by Al Akhawayn University in Ifrane
(AUI), Morocco, in cooperation with the International Association for Cryptologic
Research (IACR). Tajjeeddine Rachidi (AUI, Morocco) was responsible for the local
organization, supported by a local organizing team consisting of Dr. Latifa ElMortaji,
Ibtissam Latachi, and Bouchra Saad. We are indebted to them for their support and
smooth collaboration.

The aim of Africacrypt 2019 was to provide an international forum for researchers
from academia and practitioners from industry from all over the world, for discussions
regarding all forms of cryptology, coding theory, and information security.

We had the privilege of chairing the Program Committee, which consisted of 35
members. There were 53 papers submitted to the conference. Each paper was assigned
to at least three members of the Program Committee and was reviewed anonymously.
The review process was challenging and the Program Committee, aided by reports
from 59 external reviewers, produced a total of 166 reviews in all. In total, 22 papers
were accepted on May 2, 2019. Authors then had the opportunity to update their papers
until May 10, 2019. The present proceedings include all the revised papers. We are
indebted to the members of the Program Committee and the external reviewers for their
diligent work.

The conference was honored by the presence of two invited speakers, namely,
Martin R. Albrecht, who spoke on “So How Hard Is Solving Hard Lattice Problems
Anyway?” and Sebastian Faust with his talk “Scaling Blockchains with Off-chain
Protocols.” We are grateful to them.

We also would like to thank the authors of all submissions and all the speakers, as
well all the participants. They all contributed to the success of the conference, and to
making Africacrypt conference series an excellent forum for the advancement of
cryptology.

We are also thankful to the staff at Springer for their help with producing the
proceedings and to the staff of EasyChair for the use of their conference management
system.

Last but not least, we thank Professor Driss Ouaouicha, President of Al Akhawayn
University in Ifrane, Morocco, for his unconditional support of Africacrypt. We extend
our gratitude to Group OCP and Les Eaux Minérales d’Oulmès, gold and bronze
sponsors of the conference.

May 2019 Johannes Buchmann
Abderrahmane Nitaj
Tajjeeddine Rachidi

Organization

Africacrypt 2019 was organized by Al Akhawayn University in Ifrane, Morocco.

General Chair

Tajjeeddine Rachidi Al Akhawayn University in Ifrane, Morocco

Program Chairs

Johannes Buchmann TU Darmstadt, Germany
Abderrahmane Nitaj University of Caen Normandie, France
Tajjeeddine Rachidi Al Akhawayn University in Ifrane, Morocco

Invited Speakers

Martin R. Albrecht Royal Holloway, University of London, UK
Sebastian Faust TU Darmstadt, Germany

Organizing Committee

Tajjeeddine Rachidi (Chair) Al Akhawayn University in Ifrane, Morocco
Latifa ElMortaji Al Akhawayn University in Ifrane, Morocco
Ibtissam Latachi FSDM, USMBA, Morocco
Bouchra Saad Al Akhawayn University in Ifrane, Morocco

Program Committee

Elena Andreeva Katholieke Universiteit Leuven, Belgium
Muhammad Rezal Kamel

Ariffin
Institute for Mathematical Research, UPM, Malaysia

Hatem M. Bahig Ain Shams University, Egypt
Magali Bardet University of Rouen Normandie, France
Lejla Batina Radboud University, The Netherlands
Hussain Ben-Azza ENSAM, Meknes, Morocco
Olivier Blazy University of Limoges, France
Colin Boyd Norwegian University of Science and Technology,

Norway
Sébastien Canard Orange Labs, Caen, France
Sherman S. M. Chow The Chinese University of Hong Kong, SAR China
Nicolas Courtois University College London, UK
Joan Daemen Radboud University, The Netherlands

Luca De Feo University of Versailles, France
Sow Djiby University Cheikh Anta Diop, Dakar, Senegal
Nadia El Mrabet SAS - CGCP - EMSE, Saint Etienne, France
Javier Herranz Universitat Politècnica de Catalunya, Spain
Sorina Ionica University of Picardie, France
Tetsu Iwata Nagoya University, Japan
Juliane Krämer TU Darmstadt, Germany
Subhamoy Maitra Indian Statistical Institute, India
Abderrahmane Nitaj University of Caen Normandie, France
Yanbin Pan Chinese Academy of Sciences, Beijing, China
Christophe Petit University of Oxford, UK
Elizabeth Quaglia Royal Holloway, University of London, UK
Tajjeeddine Rachidi Al Akhawayn University of Ifrane, Morocco
Adeline Roux-Langlois CNRS - IRISA, France
Palash Sarkar Indian Statistical Institute, India
Alessandra Scafuro North Carolina State University, USA
Ali Aydin Selcuk TOBB University, Turkey
Pantelimon Stanica Naval Postgraduate School, Monterey, USA
Noah Stephens-Davidowitz Massachusetts Institute of Technology, USA
Joseph Tonien University of Wollongong, Australia
Damien Vergnaud Pierre and Marie Curie University/Institut Universitaire

de France, Paris, France
Vanessa Vitse University of Grenoble Alpes, France
Amr Youssef Concordia University, Montreal, Canada

Additional Reviewers

Khalid Abdelmoumen
Alexandre Adomnicai
Guy Barwell
Jean Belo Klamti
Pauline Bert
Carl Bootland
Laura Brouilhet
Ahmet Burak Can
Ilaria Chillotti
Thomas Debris
Christoph Dobraunig
Gautier Eberhart
Pierre-Alain Fouque
Ashley Fraser
Ariel Gabizon
Lydia Garms
Chris Hicks
Murat Ilter

Saqib A. Kakvi
Orhun Kara
Robin Larrieu
Rio LaVigne
Ela Lee
Isis Lovecruft
Jack P. K. Ma
Ramiro Martínez
Pedro Maat Massolino
Simon-Philipp Merz
Romy Minko
Lina Mortajine
Suleyman Ozarslan
Kostas Papagiannopoulos
Albrecht Petzoldt
Robert Primas
Chen Qian
Sebastian Ramacher

Constanza Riera
Yann Rotella
Simona Samardjiska
Olivier Sanders
Patrick Struck
Halil Kemal Taskin
Yannick Teglia
Oleksandr Tkachenko
Jacques Traoré
Marloes Venema
Jorge Villar
Jiafan Wang
Xiuhua Wang
Léo Weissbart
Weiqiang Wen
Yang Yu
Yongjun Zhao

viii Organization

Sponsoring Institutions

• OCP Group, Morocco (Gold sponsor)

• Les Eaux Minérales d’Oulmès, Morocco (Bronze sponsor)

Origin of Submissions

Australia
Austria
Belgium
Brazil
Canada
China
Cyprus
Estonia
Finland
France
Germany
Hong Kong
India

Italy
Japan
Morocco
The Netherlands
Norway
Spain
Switzerland
Tunisia
Turkey
United Arab Emirates
United Kingdom
United States

Organization ix

Abstracts of Invited Talks

So How Hard Is Solving Hard Lattice
Problems Anyway?

Martin R. Albrecht

Information Security Group, Royal Holloway, University of London

Abstract. Establishing the cost of solving hard lattice problems is a pressing
concern at the moment owing to schemes reliant on these problems being
considered for deployment. In this talk, I discuss recent advances in this area in
recent years, both in the classic and in the quantum world, to arrive at the current
state of the art.

Keywords: Lattice-based cryptography � Post-quantum � Learning with errors

Scaling Blockchains with Off-Chain Protocols

Sebastian Faust

TU Darmstadt, Germany

Abstract. One of the main challenges of decentralized blockchain systems is
scalability. For instance, in Bitoin – the most popular blockchain system –

transactions can take up to 10 minutes until they are processed, and throughput
is limited to five to seven transactions per second. A promising approach to
improve scalability of blockchains is represented by off-chain protocols.
Off-chain protocols work by building a second layer network over the block-
chain, thereby allowing that the massive amount of transactions is carried out
directly between the involved users. There has recently been a plethora of
different constructions for off-chain protocols proposed by industry and acade-
mia. Examples of such systems are the Lightning network for Bitcoin, state
channel constructions such as Counterfactual or Perun, and various types of
Plasma systems for Ethereum. In this talk, we summarize some of the recent
progress that has been made in the field of off-chain protocols.

Keywords: Blockchain � Off-chain protocols � State channels

Contents

Protocols

Tiny WireGuard Tweak . 3
Jacob Appelbaum, Chloe Martindale, and Peter Wu

Extended 3-Party ACCE and Application to LoRaWAN 1.1. 21
Sébastien Canard and Loïc Ferreira

Post-quantum Cryptography

The Mersenne Low Hamming Combination Search Problem Can
Be Reduced to an ILP Problem. 41

Alessandro Budroni and Andrea Tenti

Simple Oblivious Transfer Protocols Compatible
with Supersingular Isogenies . 56

Vanessa Vitse

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric . . . 79
Hamad Al Shehhi, Emanuele Bellini, Filipe Borba, Florian Caullery,
Marc Manzano, and Victor Mateu

Zero-Knowledge

UC-Secure CRS Generation for SNARKs . 99
Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim,
and Michał Zając

On the Efficiency of Privacy-Preserving Smart Contract Systems 118
Karim Baghery

Lattice Based Cryptography

Ring Signatures Based on Middle-Product Learning with Errors Problems . . . 139
Dipayan Das, Man Ho Au, and Zhenfei Zhang

Sampling the Integers with Low Relative Error . 157
Michael Walter

A Refined Analysis of the Cost for Solving LWE via uSVP. 181
Shi Bai, Shaun Miller, and Weiqiang Wen

New Schemes and Analysis

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 209
Leon Botros, Matthias J. Kannwischer, and Peter Schwabe

Reducing the Cost of Authenticity with Leakages: a CIML2-Secure AE
Scheme with One Call to a Strongly Protected Tweakable Block Cipher 229

Francesco Berti, Olivier Pereira, and François-Xavier Standaert

An Improvement of Correlation Analysis for Vectorial Boolean Functions . . . 250
Youssef Harmouch, Rachid El Kouch, and Hussain Ben-Azza

Block Ciphers

On MILP-Based Automatic Search for Differential Trails Through Modular
Additions with Application to Bel-T . 273

Muhammad ElSheikh, Ahmed Abdelkhalek, and Amr M. Youssef

Practical Attacks on Reduced-Round AES . 297
Navid Ghaedi Bardeh and Sondre Rønjom

Six Shades of AES . 311
Fatih Balli and Subhadeep Banik

Side-Channel Attacks and Countermeasures

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 333
Clément Massart and François-Xavier Standaert

Side Channel Analysis of SPARX-64/128: Cryptanalysis
and Countermeasures . 352

Sumesh Manjunath Ramesh and Hoda AlKhzaimi

Analysis of Two Countermeasures Against the Signal Leakage Attack. 370
Ke Wang and Haodong Jiang

Signatures

Handling Vinegar Variables to Shorten Rainbow Key Pairs 391
Gustavo Zambonin, Matheus S. P. Bittencourt, and Ricardo Custódio

Further Lower Bounds for Structure-Preserving Signatures
in Asymmetric Bilinear Groups. 409

Essam Ghadafi

A New Approach to Modelling Centralised Reputation Systems 429
Lydia Garms and Elizabeth A. Quaglia

Author Index . 449

xvi Contents

Protocols

Tiny WireGuard Tweak

Jacob Appelbaum(B), Chloe Martindale(B), and Peter Wu(B)

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, Netherlands

jacob@appelbaum.net, chloemartindale@gmail.com, peter@lekensteyn.nl

Abstract. We show that a future adversary with access to a quantum
computer, historic network traffic protected by WireGuard, and knowl-
edge of a WireGuard user’s long-term static public key can likely decrypt
many of the WireGuard user’s historic messages. We propose a simple,
efficient alteration to the WireGuard protocol that mitigates this vul-
nerability, with negligible additional computational and memory costs.
Our changes add zero additional bytes of data to the wire format of the
WireGuard protocol. Our alteration provides transitional post-quantum
security for any WireGuard user who does not publish their long-term
static public key – it should be exchanged out-of-band.

Keywords: WireGuard · Post-quantum cryptography ·
Mass surveillance · Network protocol · Privacy · VPN · Security

1 Introduction

WireGuard [12] is a recently introduced Virtual Private Network (VPN) proto-
col which is both simple and efficient. It aims to replace other protocols such
as IPsec [22] and OpenVPN [44] for point-to-point tunnels with a secure pro-
tocol design that rejects cryptographic agility. WireGuard uses a fixed set of
sound cryptographic primitives and does not negotiate them – in stark contrast
to nearly every other major VPN protocol. Unlike many protocols, WireGuard
requires out-of-band peer configuration information to be exchanged before it
may be used. All peers must exchange fixed pairwise-unique long-term static
public keys as well as Internet host name or address information out-of-band.
WireGuard optionally allows peers to fix a pairwise-unique static symmetric
value known as a Pre-Shared Key (PSK). A well-known VPN provider, Mull-
vad, has a worldwide deployment [31] of WireGuard that uses this PSK [32] as

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work was done when the third author was
a master student at Eindhoven University of Technology under the supervi-
sion of Jacob Appelbaum and Tanja Lange. This work was supported in part
by the Netherlands Organization for Scientific Research (NWO) under grants
639.073.005 and 651.002.004 (CHIST-ERA USEIT). Permanent ID of this document:
tue-wireguard-africacrypt-2019. Date of this document: May 9, 2019.

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-23696-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_1&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1007/978-3-030-23696-0_1

4 J. Appelbaum, C. Martindale and P. Wu

a method of adding post-quantum transitional security to the protocol. Wire-
Guard does not require, nor use a PSK by default. A protocol is post-quantum
transitionally secure when it is secure against a passive adversary with a quan-
tum computer [40]. If this transitionally secure protocol is used today, it is not
possible for a quantum attacker to decrypt today’s network traffic, tomorrow.

If a future adversary has access to a quantum computer, historic network
traffic protected by WireGuard, and knowledge of one WireGuard user’s long-
term static public key, this threatens the security of the protocol for all related
WireGuard users, as explained in Sect. 5. In this paper we propose a tiny tweak
to the WireGuard protocol that makes WireGuard traffic flows secure against
such an adversary; if our alteration is incorporated into the WireGuard protocol,
a user’s historic traffic will not be able to be decrypted by such an adversary if
they do not release their long-term static public key to the network, as explained
in Sect. 6. We accomplish this with both extremely minimal costs and minimal
changes to the original protocol, as detailed in Sect. 6.1.

Note that our analysis applies to the current version of WireGuard [14] as
implemented in the Linux kernel [18] as opposed to the older version described
in the NDSS paper [12]. A major difference exists in the application of the PSK
during the handshake which results in two incompatible protocols.

Acknowledgements. We would like to thank Jason A. Donenfeld for WireGuard and
for insightful discussions about possible ways to improve WireGuard against quantum
adversaries including for suggesting hashing of public keys. We would like to thank
various anonymous helpers for their reviews of earlier drafts of this paper. We would
also like to thank those in the TU/e coding theory and cryptology group and the
cryptographic implementations group including Gustavo Banegas, Daniel J. Bernstein,
and especially Tanja Lange for their valuable feedback.

2 Realistic Adversary Concerns

It is well-documented and indisputable that a number of nation-state-sponsored
adversaries are unilaterally conducting mass surveillance of the Internet as a
whole. This has created new notions of realistic threat models [3,35,38] in the
face of such pervasive surveillance adversaries. Some of these adversaries have
an openly stated interest in “collecting it all” [25] and have directly stated that
they use this data as actionable information, for example, for use in internation-
ally contested drone strikes against unknown persons. The former director of the
CIA, General Michael Hayden, famously said: “We kill people based on meta-
data” [9]. We additionally see that these adversaries target encrypted protocols
and for example seek to exploit properties of handshakes, which may allow them
to launch other subsequent attacks. These types of attacks are documented in the
publication of numerous internal documents [1,29,30] that show attacks, claims,
and results against a number of VPNs and other important cryptographic proto-
cols. Development of quantum computers for attacking cryptographic protocols
is explicitly a budget line item [4]. We consider it prudent to analyze WireGuard
as a protocol that is, among others, of interest to these adversaries.

Tiny WireGuard Tweak 5

We consider nation-state mass surveillance adversaries (for example NSA [5,
7] using XKeyscore [26]) as one of the primary adversaries to users of encrypted
network tunnels, and we find that WireGuard will be vulnerable when these
adversaries gain access to a quantum computer (see Sect. 5 for details). This is
primarily due to the fact that large-scale [27] surveillance data sets which contain
logged encrypted traffic are explicitly kept for later attempts at decryption [23].

We also consider less powerful adversaries which are directly coercive, oppres-
sive, or political (COPs). These adversaries are able to take possession of any
endpoint, such as through theft or other ill-gotten means, which includes a long-
term public static cryptographic key pair. This type of attack is regularly carried
out against VPN providers and is commonly understood as a kind of compul-
sion [11] attack.

3 WireGuard Overview

In this section we present an overview of the WireGuard protocol, briefly consider
relevant implementations, and discuss traffic analysis considerations.

3.1 WireGuard Implementations

WireGuard is implemented in multiple languages and is easy to understand.
The primary implementation is available as a patch to the Linux kernel and is
written in C [18]. Implementations targeting MacOS and iOS [19], Android [17],
and Windows [20] use the wireguard-go [15] implementation which is written
in the Go programming language. An experimental implementation in the Rust
programming language is also available, wireguard-rs [16].

The first author has implemented a user space Python implementation for
experimentation using Scapy [8] for use on GNU/Linux. The third author has
implemented a protocol dissector [43] for WireGuard in Wireshark [10], a soft-
ware program that can capture and analyze network traffic. Our implementa-
tions are based on the published WireGuard paper [12] and the evolving white
paper [14].

3.2 WireGuard as a Tunneling Protocol

WireGuard is a point-to-point protocol for transporting IP packets. It uses the
UDP protocol for transporting protocol messages. It is implemented as a device
on common operating systems and users of WireGuard route IP packets into
the WireGuard device to securely send those packets to their WireGuard peer.
WireGuard does not have state for any IP packets that it transmits and it does
not re-transmit packets if they are dropped by the network.

To start using the WireGuard protocol, a user must first generate a long-
term static Curve25519 [6] key pair and acquire the long-term static public key
of their respective peer. This precondition for running the WireGuard protocol
is different from common Internet protocols as users must exchange these keys

6 J. Appelbaum, C. Martindale and P. Wu

out of band. This is in contrast to services such as OpenVPN which may only
need to exchange a user name or password for access control reasons. Example
methods of distributing WireGuard keys include using a camera on a smart
phone to import the peer public keys with a QR code, or by manually entering
the data. This must be done before attempting to run the WireGuard protocol
and the would-be agents running the protocol are designed to not emit packets to
parties which do not have possession of previously exchanged public keys. Users
are also required to exchange a DNS name or an IP address along with a UDP
port number for at least one of the two parties. To use the WireGuard tunnel,
the peers additionally have to exchange the expected internal IP addressing
information for their respective WireGuard tunnel endpoints. This again is in
contrast to other VPN solutions which usually include some sort of automatic IP
addressing scheme to ease automatic configuration of internal tunnel endpoint
addresses.

Initiator Responder
Initiator packet
Responder packet

Initiator’s first data packet
Bi-directional session established

Fig. 1. Informal protocol narration of the 1.5 Round Trip Time (1.5-RTT) handshake
valid for a ninety second session; parties may change roles in subsequent sessions; for
additional information see Fig. 7 and Algorithm 1

After configuring the endpoints with the respective public keys and IP
addresses, peers will be able to create new cryptographic WireGuard sessions
with each other as shown in Fig. 1.

3.3 WireGuard’s Cryptographic Handshake

The Noise Protocol framework [34] abstractly defines different Diffie-Hellman
handshakes with different security, and privacy properties for use in crypto-
graphic protocols. Protocol designers select a Noise Protocol pattern and then
select the ideal abstract handshake properties. They must then select concrete
objects such as an authenticated encryption scheme and a Diffie-Hellman prim-
itive. WireGuard’s cryptographic handshake [14] is a variant of IKpsk2 pattern
from the Noise Protocol [34, Section 9.4] framework. A WireGuard handshake
consists of the initiator sending an initiation message (see Fig. 3) and the respon-
der replying with a corresponding responder message (see Fig. 4).

WireGuard selected Curve25519 [6] for Diffie-Hellman non-interactive key
exchange messages, BLAKE2s [39] for hashing operations, HKDF [28] as the
key derivation function (KDF), and ChaCha20Poly1305 [33] for authenticated
encryption with additional data (AEAD).

Tiny WireGuard Tweak 7

WireGuard additionally augments the Noise protocol in certain areas that
weaken conventional security assumptions relating to identity hiding; WireGuard
reduces the identity hiding properties of the Noise IK protocol as part of a trade-
off strategy to reduce computational costs and to resist detection by untargeted
Internet-wide scanning. The popular Wireshark traffic analysis program displays
a peer’s identity and associates it with flows of traffic. We observe that precon-
ditions of the protocol more closely resemble the Noise KK pattern; KK assumes
that both parties know their peer’s respective long-term static public key while
IK assumes that only the responder’s long-term static public key is known by the
initiator. However, it is strictly weaker than the KK pattern in that the initiator
always reveals their own long-term static public key identity to the responder,
and thus to the network, encrypted to the responder’s long-term public key.
Unlike other protocols, the roles of initiator and responder do also reverse [14].
This happens automatically when the responder attempts to send a data packet
without a valid session.

3.4 Handshake Details

The initiator’s long-term static public key is encrypted using the
ChaCha20Poly1305 AEAD using a key derived from the responder’s long-term
static public key and a per-session ephemeral Curve25519 key pair generated
by the initiator. The resulting ciphertext is decrypted, and the public key of
the initiator is found, and matched to a corresponding data structure previously
initialized for cryptographic operations on the responder side; see Algorithm 1
for details. In Sect. 5.2, we describe an attack based on the transmission of the
encrypted long-term static public key.

Notes on Algorithm 1:

– As in the WireGuard protocol, we use the following notation for symmetric
encryption with a nonce and additional authenticated data (AEAD):
ciphertext = aead-enc(key, nonce, message, associated data).

– Algorithm 1 gives a simplified version of the WireGuard key agreement pro-
cess; the only fundamental simplifications that we have applied are:
• We introduce Laura and Julian as parties in the role of Initiator and

Responder.
• Compressing the application of multiple hash function operations from
H(H(x)||y) to a single H(x||y).

• Omission of some constants in the initial hash and KDF salt.
• Omission of details about construction of the 96-bit nonce. This value

also serves as a counter for replay detection within a given session.
• Compressing the application of multiple KDF’s to a set of variables to the

application of a single KDF to the set of variables.

8 J. Appelbaum, C. Martindale and P. Wu

4 Traffic Analysis

WireGuard traffic visible to a third party observer is subject to trivial finger-
printing and confirmation that the WireGuard protocol is in use. The protocol is
not designed to resist traffic analysis: session identifiers, sequence numbers, and
other values are visible. For any surveillance adversary, writing a comprehen-
sive network protocol dissector is quick work as evidenced in our Wireshark and
Scapy implementations. There are four message types. Three of these types have
a fixed length and each has static values which act as distinguishers or network

Algorithm 1. Simplified WireGuard key agreement process

Public Input: Curve25519 E/Fp, base point P ∈ E(Fp), hash function H, an empty
string ε, key derivation function KDFn returning n derived values index by n, and
a MAC function Poly1305.

Secret Input (Laura): secret key skL ∈ Z, public key pkL = skL ·P ∈ E(Fp), Julian’s
pre-shared public key pkJ ∈ E(Fp), shared secret s = DH(skL, pkJ), message time,
PSK Q ∈ {0, 1}256; Q = 0256 by default.

Secret Input (Julian): secret key skJ ∈ Z, public key pkJ = skJ ·P ∈ E(Fp), Laura’s
pre-shared public key pkL ∈ E(Fp), shared secret s = DH(skJ , pkL),
PSK Q ∈ {0, 1}256; Q = 0256 by default.

Output: Session keys.

1: Both parties choose ephemeral secrets: eskL ∈ Z for Laura, eskJ ∈ Z for Julian.
2: Laura publishes epkL ← eskL · P .
3: Laura computes seJL ← eskL · pkJ ; Julian computes seJL ← skJ · epkL.
4: Both parties compute (ck1, k1) ← KDF2(epkL, seJL).
5: Laura computes h1 ← H(pkJ ||epkL).
6: Laura computes and transmits enc-id ← aead-enc(k1, 0, pkL, h1).
7: Julian decrypts enc-id with aead-dec(k1, 0, enc-id, h1) and verifies that the resulting

value (pkL) is valid user’s public key; aborts on failure.
8: Both parties compute (ck2, k2) = KDF2(ck1, s).
9: Laura computes h2 ← H(h1||enc-id).

10: Laura computes and transmits enc-time ← aead-enc(k2, 0, time, h2).
11: Both parties compute pkt ← epkL||enc-id||enc-time.
12: Laura computes and transmits mac1 ← MAC(pkJ , pkt).
13: Julian verifies that mac1 = MAC(pkJ , pkt); aborts on failure.
14: Julian computes time = aead-dec(k2, 0, enc-time, h2); aborts on failure.
15: Julian transmits epkJ ← eskJ · P .
16: Laura computes seLJ ← skL · epkJ ; Julian computes seLJ ← eskJ · pkL.
17: Laura computes ee ← eskL · epkJ ; Julian computes ee ← eskJ · epkL.
18: Both parties compute (ck3, t, k3) ← KDF3(ck2||epkJ ||ee||seLJ , Q).
19: Julian computes h3 ← H(h2||enc-time||epkJ ||t).
20: Julian computes and transmits enc-e ← aead-enc(k3, 0, ε, h3).
21: Laura verifies that ε = aead-dec(k3, 0, enc-e, h3).
22: Both parties compute shared secrets (Ti, Tr) ← KDF2(ck3, ε).
23: return (Ti, Tr).

Tiny WireGuard Tweak 9

selectors [36]. The fourth type has variable length, it additionally has static dis-
tinguishers and is linkable to other packets in any given flow. WireGuard does
not attempt to hide that the WireGuard protocol is in use from a surveillance
adversary, and it additionally does not attempt to hide information that allows
sessions within network flows to be distinguished. WireGuard does attempt to
resist active probing by requiring any initiating party to prove knowledge of the
long-term static public key of the responder.

4.1 Example WireGuard Protocol Run

To create a WireGuard session, the protocol is broken into several phases.
The initiating party is called an initiator, and the receiving party which must
be reachable, is called the responder. The first phase is a handshake protocol
described in detail in Sect. 3.3, and the second phase is a time-limited data-
transfer window. The third phase is reached when a time limit or a data-transfer
limit is reached, at which point a new cryptographic session is established. Unlike
other cryptographic protocols, the WireGuard protocol has no session renegoti-
ation, peers simply start again as if they have never had a session in the first
place.

After a successful handshake, once the initiator has received a responder mes-
sage, it may proceed to send transport data messages (see Fig. 6) which contain
encrypted IP packets. The responder is only permitted to send data messages
after successfully receiving and authenticating the transport data packet sent by
the initiator. Data messages with an encrypted empty payload act as Keep-Alive
messages. These are trivially distinguishable messages by their type and length
as shown in Fig. 2.

Fig. 2. Flow graph between two WireGuard peers as seen in Wireshark

An example interaction taken from a packet capture between two WireGuard
peers can be found in Fig. 2, and an informal protocol narration in Fig. 1.

If either initiator or responder are under heavy computational load, they
may send a Cookie message (see Fig. 5) in response to an initiation or responder

10 J. Appelbaum, C. Martindale and P. Wu

message without making further progress in completing the handshake. The
recipient of a Cookie message should decrypt the cookie value and use it to
calculate the MAC2 value for use in the next handshake attempt. It will not re-
transmit the same handshake message under any circumstances. If a handshake
is unsuccessful, the initiator will try to start a new handshake.

There is no explicit error or session-tear-down signaling. A session is invali-
dated after a fixed duration of time; session lifetimes are currently around ninety
seconds.

4.2 Packet Formats

We display the four packet formats. The protocol includes only these four wire
message formats, though there is an implied fifth type: an empty data message
may be used as keep alive message. Each message is encapsulated entirely inside
of an IP packet with UDP payload.

WireGuardInitator
01

message type WireGuardInitator

00 00 00

reserved zero ”

00 00 00 00

sender index 0

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

unencrypted ” laremehpe

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

encrypted static ”
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

encrypted timestamp”
00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00
mac1 ”

00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

mac2 ”

Fig. 3. 148 byte initiator packet payload

In Fig. 3, the initiator message is shown. It is a fixed-size frame of 148 bytes.
The MAC2 field is set to zero unless the sender has received a Cookie message
before. This message is larger than the responder’s message intentionally to
prevent misuse such as amplification attacks using forged source addresses.

WireGuardResponder
02

message type WireGuardResponder

00 00 00

reserved zero ”

00 00 00 00

sender index 0

00 00 00 00

receiver index 0

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

unencrypted ” laremehpe

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

encrypted nothing ”

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

mac1 ”

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

mac2 ”

Fig. 4. 92 byte responder packet payload

In Fig. 4, the responder message is shown. It is a fixed-sized frame of 92 bytes.
Unlike the initiator packet, it does not contain a long term static public key.

In Fig. 5, the cookie message is shown. It is a fixed-sized frame of 64 bytes.
This is not used for each run of the WireGuard protocol. This message is only
sent by the initiator or responder when they are “under load”. The recipient
must decrypt the cookie value and store it for inclusion in future handshake
messages.

Tiny WireGuard Tweak 11

WireGuardCookie
03

message type WireGuardCookie

00 00 00

reserved zero ”

00 00 00 00

receiver index 0

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

nonce ”

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

encrypted cookie ”

Fig. 5. 64 byte Cookie packet payload

While all handshake messages (Figs. 3, 4, 5) have fixed lengths, the Transport
Data message (Fig. 6) has a variable length. At minimum it is 32 bytes in length.
This includes the Transport Data message headers and the authentication tag for
the encrypted payload. For any given WireGuard protocol run, the maximum size
of a generated UDP packet depends on the maximum transmission unit (MTU)
of the network interface. These are typically much smaller than the theoretical
limits of an IP packet.

WireGuardData
04

message type WireGuardData

00 00 00

reserved zero ”

00 00 00 00

receiver index 0

00 00 00 00 00 00 00 00

counter 0

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

encrypted encapsulated” tekcap

Fig. 6. Variable length (32 up to ∞ + 16) byte data packet payload.

The UDP layer has a theoretical maximum length of 216− 1, this length also
includes eight bytes of the UDP header so the actual maximum length for the
UDP payload is 216 − 1 − 8 bytes. While WireGuard itself does not impose a
maximum length, implementations on various platforms might be constrained
by their environment. For example, the Linux kernel does not support IPv6
Jumbograms [21] and FreeBSD currently does not support IPv6 Jumbograms
with UDP due to the lack of a physical medium [24].

5 Security and Privacy Issues

We consider both the mass surveillance adversary and the less powerful local
adversary conducting targeted attacks from Sect. 2.

5.1 Identity Hiding Weakening

Throughout this section, suppose, as was justified in Sect. 2 to be a realistic
situation, that a WireGuard user has released its long-term static public key. We
analyze a handshake involving this user with this user in the role of responder.

12 J. Appelbaum, C. Martindale and P. Wu

Initial handshake message creation and processing

Laura Julian

pkL, skL, time, secret key Q pkJ , skJ

. Out-of-band key exchange: pkL, pkJ , PSK Q .

(epkL, eskL) = EphemeralKey()

Compute enc-id, enc-time, mac1

epkL, enc-id, enc-time, mac1

Initiator packet

. Responder receives initiator packet .

Compute pkt, verify mac1

Compute emphemeral DH

Decrypt enc-id to a known pk

Find session for resulting pk

Decrypt enc-time to get time

VerifyAntiReplay(time)

. Handshake continues .

Fig. 7. Informal protocol narration of sending and receiving an initiator packet. (For
definitions of terms and details on how to compute, decrypt, and verify, see Algorithm 1)

The initiation packet contains the static public key of the initiator and it is
encrypted as previously described with an ephemeral key pair used in conjunction
with the responder’s static key pair. The initiation packet is augmented with
what WireGuard’s design describes as a MAC. Under our assumptions, the input,
which is an initiator or a responder packet, and the MAC key, which is the static
public key of the receiving party, are both public values.

Third party observers are able to passively confirm the identity of both peers
when their public keys are known to the observer. This is strictly worse than
NoiseIK’s identity hiding properties and allows non-sophisticated attackers to
link known static public keys to individual flows of traffic.

Ostensibly the additional MAC over the whole packet is done primarily as
a verification step: to prevent arbitrary packets (e.g. from an adversary) from
causing the responder to compute a Diffie-Hellman key-exchange. This is a known
deficiency in OpenVPN [13].

The MAC check also prevents practical Internet-wide scans from finding
unknown WireGuard responders. While a verification step may be necessary
to prevent unknown parties from exhausting resources or forcing a responder
message, this additional MAC verification method is strongly divergent from
the identity hiding properties of the Noise IK pattern; because of this identity
hiding property, it is easier for a quantum adversary to attack, as we show below.

Tiny WireGuard Tweak 13

A simple shared secret value, set either on a per-site or per-peer basis would
provide a similar protection without revealing the identity of one or both of the
peers.

5.2 Quantum Attack

Consider an attacker capable1 of running Shor’s algorithm [41]. Shor’s algorithm
breaks the discrete logarithm problem in any group in time polynomial in the size
of the group; observe that this includes elliptic curve groups. Suppose that the
long-term static public key of some WireGuard user U0 is known to an adversary.
We show in Algorithms 2 and 3 that in this situation, Shor’s algorithm will apply
to users of the WireGuard protocol, as given in Algorithm 1.

Recall from Sect. 4 that network traffic is visible to a third-party observer.
In particular, an adversary can detect when a handshake takes place between
U0 and any other WireGuard user. We describe in Algorithm 2 how to extract
the long-term static secret key of any initiator with a quantum computer when
U0 is the responder.

Of course after computing the ephemeral keys, an adversary who has access
to the static secret and public keys of both the initiator and the responder
of a WireGuard handshake can completely break the protocol (assuming the
responder U0 and the initiator use the default WireGuard settings, i.e. no PSK).

Now suppose an adversary wishes to attack some user Un. Suppose also that
there exists a traceable path from U0 to Un, that is, if by analyzing the traffic flow
the adversary can find users U1, . . . , Un−1 for which every pair of ‘adjacent’ users
Ui and Ui+1 have performed a WireGuard handshake. We show in Algorithm 3
how the adversary can then compute Un’s long-term static key pair. Recall from
Sect. 4 that the information of which pairs of users have performed a WireGuard
handshake is freely available; if such a path exists then an adversary can easily
find it.

An important remark on this attack: if two WireGuard users do not publish
their static public keys, and both users do not interact with any other WireGuard
users, then this attack does not apply to those two users.

5.3 A Brief Comment on Extra Security Options

In Sect. 5.2 we analyzed the default use of the WireGuard protocol. There is an
option open to WireGuard users to also preshare another secret key, i.e., to use
a PSK Q as an additional input for the KDF in Step 18 of Algorithm 1. If the
user does not configure a PSK, the default value (Q = 0256) will be used.

Use of a secret PSK will not prevent a quantum adversary from computing
skL, pkL using the method described in Sect. 5.2. It does however prevent com-
promise of session keys Ti and Tr in Step 22 of Algorithm 1 as the adversary no
longer has enough information to compute ck3 in Step 18 of Algorithm 1.

1 See [37] for a recent estimate of the resources needed by an attacker to carry out
such an attack using Shor’s algorithm.

14 J. Appelbaum, C. Martindale and P. Wu

Algorithm 2. Extract Initiator’s Long-term Static Key Pair
Input: Long-term static public key pkJ of the responder; Ephemeral public key epkL

of the initiator (transmitted over the wire in Step 2 of Algorithm 1); enc-id as sent
over the wire by the initiator in Step 6 of Algorithm 1.

Output: Long-term static key pair skL, pkL of the initiator.
1: Using Shor’s algorithm, compute eskL from epkL.
2: Compute k1 and h1 as in Steps 4 and Steps 5 respectively of Algorithm 1.
3: Compute pkL = aead-dec(k1, 0, enc-id, h1).
4: Compute skL from pkL using Shor’s algorithm.

return skL, pkL.

Algorithm 3. Extract User Un’s Long-term Static Key Pair
Input: Long-term static public key of some WireGuard User U0; A traceable path

from U0 to WireGuard User of interest Un.
Output: Long-term static key pair of WireGuard User Un.
1: for i := 0, . . . , n − 1 do
2: Ui ← Responder (without loss of generality, c.f. Section 3.3).
3: Ui+1 ← Initiator (also without loss of generality).
4: Compute long-term static key pair of Ui+1 using Algorithm 2.
5: end for

return Long-term static key pair of Un.

A prudent user may still be concerned about an adversary stealing their
PSK; the tiny protocol tweak presented in Sect. 6 addresses this concern as well
as protecting those who use the default mode of the WireGuard protocol.

Of course our tweak cannot protect against an adversary who steals the static
long-term public key of both the initiator and the responder in a WireGuard
handshake.

6 Blinding Flows Against Mass Surveillance

We propose a tiny tweak to the Wireguard handshake which thwarts the quan-
tum attack outlined in the previous section: In Step 6 and Step 7 of Algorithm 1,
replace pkL by H(pkL). We suggest to use BLAKE2s as the hash function H as
it is already used elsewhere in WireGuard. Naturally, the unhashed static public
key pkL of the initiator has still been exchanged out-of-band, so the respon-
der can still perform Diffie-Hellman operations with the initiator’s static public
key pkL, and is able to compute the hash H(pkL). In Step 7 and Step 16 of
Algorithm 1, the responder will use the decrypted value H(pkL) to look up the
corresponding key pkL.

The hashing process conceals the algebraic structure of the static public key
of the initiator and replaces it with a deterministic, predictable identifier. This
requires no extra configuration information for either of the peers. BLAKE2s is
a one-way hashing function and a quantum adversary cannot easily [42] deduce

Tiny WireGuard Tweak 15

the initiator’s static public or secret key from this hash value unless the hash
function is broken.

An attacker as described in Sect. 5.2 may confirm a guess of a known long-
term static public key. If the guess is correct, they may carry out the attack as in
the unchanged WireGuard protocol. However, the tweak protects sessions where
the public keys are not known.

We claim only transitional security with this alteration. That is, that a future
quantum adversary will not be able to decrypt messages sent before the advent
of practical quantum computers, if the messages are encrypted via an updated
version of WireGuard that includes our proposed tweak. The tweaked protocol
is not secure against active quantum attacks with knowledge of both long-term
static public keys and a known PSK value. With knowledge of zero or only
one long-term static public key, the protocol remains secure. A redesign of the
WireGuard protocol to achieve full post-quantum security is still needed.

There are of course other choices of values to replace the static public key
in Step 6 and Step 7 of Algorithm 1 to increase security. One alternative choice
of value is an empty string, as in the case with the message sent in response to
initiator packets by the responder. This would change the number of trial decryp-
tions for the responder for initiator messages to O (n) where n is the number
of configured peers. This change would allow any would-be attacker to force the
responder to perform many more expensive calculations. It would improve iden-
tity hiding immensely but at a cost that simply suggests using a different Noise
pattern in the first place. A second alternative choice of value is a random string
which is mapped at configuration time, similar to a username or a numbered
account, which is common in OpenVPN and similar deployments. This provides
O(1) efficiency in lookups of session structures but with a major loss in ease of
use and configuration. It would also add a second identifier for the peer which
does not improve identity hiding. Both alternative choices have drawbacks. The
first method would create an attack vector for unauthenticated consumption of
responder resources and the second method would require additional configura-
tion. Both weaken the channel binding property of Noise [34, Chapter 14] as the
encrypted public key of the initiator is no longer hashed in the handshake hash.
The major advantage of our proposed choice is that it does not complicate con-
figuration, nor does it require a wire format change for the WireGuard protocol.
Assuming collision-resistance of the hash function, the channel binding prop-
erty is also preserved. Our proposal concretely improves the confidentiality of
the protocol without increasing the computation in any handshake. It increases
the computation for peer configuration by only a single hash function for each
configured public key.

This change does not prevent linkability of flows as it exchanges one static
identifier for another, and it does preclude sharing that identifier in a known
vulnerable context (Fig. 8).

16 J. Appelbaum, C. Martindale and P. Wu

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

type reserved sender index initiator’s ephemeral public keyUnencrypted
header

{

Hash of initiator’s long-term static public key

auth tag initiator’s time stamp auth tag

auth tag (continued)

Encrypted
payload

⎧⎪⎪⎨
⎪⎪⎩

MAC1 MAC2
Unencrypted
trailer

{

Fig. 8. Tweaked initiator packet (in bytes)

6.1 Modified Protocol Costs

Our modification obviously requires implementation changes. We study the effect
on the proposed Linux kernel implementation as outlined in the WireGuard
paper [14] as well as the effect on the alternative implementations.

The hash function input of the initiator’s static public key and the out-
put value have an identical length, thus the wire format and internal message
structure definitions do not need to change to accommodate the additional hash
operation.

Initiators only have a single additional computational cost, calculation of the
hash over their own static public key. This could be done during each handshake
at no additional memory cost, or during device configuration which only requires
an additional 32 bytes of memory in the device configuration data structure to
store the hash of the peer’s long-term static public key.

Responders must be able to find the peer configuration based on the initiation
handshake message since it includes the peer’s static public key, optional PSK,
permitted addresses, and so on. In the unmodified protocol, a hash table could
be used to enable efficient lookups using the static public key as table key.
At insertion time, a hash would be computed over the table key. The Linux
kernel implementation uses SipHash2-4 [2] as hash function for this table key [14,
Section 7.4]. Our modification increases the size of the per-peer data structure
by 32 bytes and requires a single additional hash computation per long-term
static public key at device configuration time. There are no additional memory
or computational costs during the handshake.

The wireguard-go [15, device/device.go] implementation uses a standard map
data type using the static public key as map key. Again, a single additional hash
computation is required at configuration time with no additional memory usage.

Recall that WireGuard is based on the Noise protocol framework. Our mod-
ification is not compatible with the current version of this framework, and thus
implementations that rely on a Noise library to create and process handshake
messages must be changed to use an alternative Noise implementation. This
affects the Rust implementation [16].

Tiny WireGuard Tweak 17

6.2 Alternative Designs and Future Work

In theory, an alternative WireGuard implementation could accept any initia-
tor that connects to it and successfully completes the handshake. Additional
authorization could then be performed after the handshake. Our modification
would make it impossible to create such implementations as it ensures that the
assumed pre-condition of requiring an out-of-band exchange of long-term static
public key is not violated.

Our proposed modification is generic and also applies to other protocols based
on the Noise IK pattern. A new pattern modifier could be defined in the Noise
specification that enables new protocols to improve transitional post-quantum
security in the case where static public keys have been exchanged before, and
only an identity selector needs to be transmitted.

7 Conclusions

We show that a future adversary with access to a quantum computer, historic
network traffic protected by WireGuard, and knowledge of a WireGuard user’s
long-term static public key can likely decrypt many WireGuard users’ historic
messages when the optional PSK was not used or was compromised. We present
a simple solution to this problem: hashing the long-term static public key before
it is sent encrypted over the wire, resulting in the destruction of the algebraic
structure of the elliptic-curve point which otherwise could be exploited by quan-
tum computers via Shor’s algorithm. The resulting hashed public key is the same
size as the original public key and does not increase the size of any of the protocol
messages. The required input for a quantum adversary to run Shor’s algorithm
would not be available from the network flow alone and it would thwart such
an attacker from using a database of network flows to decrypt those very same
flows. Targeted quantum attacks would still be possible in the case that the long-
term keys of both parties, initiator and responder, are known. Active quantum
attacks may still be possible, but our alteration provides transitional security.
Our improvement requires zero extra bytes of data transmitted on the wire,
potentially zero or 32 extra bytes for each peer data structure in memory, and
completely negligible computational costs for cooperating honest parties.

References

1. Adams, A.A.: Report of a debate on Snowden’s actions by ACM members. SIGCAS
Comput. Soc. 44(3), 5–7 (2014). https://doi.org/10.1145/2684097.2684099

2. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 28

3. Barnes, R.L., Schneier, B., Jennings, C., Hardie, T., Trammell, B., Huitema, C.,
Borkmann, D.: Confidentiality in the face of pervasive surveillance: a threat model
and problem statement. RFC 7624, pp. 1–24 (2015). https://doi.org/10.17487/
RFC7624

https://doi.org/10.1145/2684097.2684099
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.17487/RFC7624
https://doi.org/10.17487/RFC7624

18 J. Appelbaum, C. Martindale and P. Wu

4. Gellman, B., Miller, G.: ‘Black budget’ summary details U.S. spy network’s suc-
cesses, failures and objectives (2013). https://www.washingtonpost.com/world/
national-security/black-budget-summary-details-us-spy-networks-successes-
failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972
story.html, news article

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

7. Bieker, F.: Can courts provide effective remedies against violations of fundamental
rights by mass surveillance? The case of the United Kingdom. In: Aspinall, D.,
Camenisch, J., Hansen, M., Fischer-Hübner, S., Raab, C. (eds.) Privacy and Iden-
tity 2015. IAICT, vol. 476, pp. 296–311. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41763-9 20

8. Biondi, P.: Scapy (2010). http://www.secdev.org/projects/scapy/, website
9. Cole, D.: Michael Hayden: “we kill people based on metadata” (2014). https://

www.justsecurity.org/10311/michael-hayden-kill-people-based-metadata/, David
Cole quoting former director of the CIA Michael Hayden

10. Combs, G., et. al.: Wireshark (1998–2019). https://www.wireshark.org/
11. Danezis, G., Clulow, J.: Compulsion resistant anonymous commu-

nications. In: Barni, M., Herrera-Joancomart́ı, J., Katzenbeisser,
S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 11–
25. Springer, Heidelberg (2005). https://doi.org/10.1007/11558859 2.
http://www.freehaven.net/anonbib/cache/ih05-danezisclulow.pdf

12. Donenfeld, J.A.: WireGuard: next generation kernel network tunnel. In: 24th
Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, 26 February–1 March 2017. The Internet Soci-
ety (2017). https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
wireguard-next-generation-kernel-network-tunnel/

13. Donenfeld, J.A.: Wireguard Black Hat 2018 talk slides (2018). https://www.
wireguard.com/talks/blackhat2018-slides.pdf, see slide 41

14. Donenfeld, J.A.: WireGuard: next generation kernel network tunnel (2018).
https://www.wireguard.com/papers/wireguard.pdf, version 416d63b 2018–06-30

15. Donenfeld, J.A.: Source code for the Go implementation of WireGuard (2019).
https://git.zx2c4.com/wireguard-go, commit c2a2b8d739cb

16. Donenfeld, J.A.: Source code for the Rust implementation of WireGuard (2019).
https://git.zx2c4.com/wireguard-rs, commit a7a2e5231571

17. Donenfeld, J.A.: WireGuard Android application source (2019). https://git.zx2c4.
com/wireguard-android/

18. Donenfeld, J.A.: WireGuard Linux kernel source (2019). https://git.zx2c4.com/
WireGuard, tag 0.0.20190227, commit ab146d92c353

19. Donenfeld, J.A.: WireGuard MacOS and iOS application source (2019). https://
git.zx2c4.com/wireguard-ios/

20. Donenfeld, J.A.: WireGuard Windows application source (2019). https://git.zx2c4.
com/wireguard-windows/

21. Dumazet, E.: Linux kernel patch: ipv6: Limit mtu to 65575 bytes (2014). https://
git.kernel.org/linus/30f78d8ebf7f514801e71b88a10c948275168518

https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-319-41763-9_20
https://doi.org/10.1007/978-3-319-41763-9_20
http://www.secdev.org/projects/scapy/
https://www.justsecurity.org/10311/michael-hayden-kill-people-based-metadata/
https://www.justsecurity.org/10311/michael-hayden-kill-people-based-metadata/
https://www.wireshark.org/
https://doi.org/10.1007/11558859_2
http://www.freehaven.net/anonbib/cache/ih05-danezisclulow.pdf
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.wireguard.com/talks/blackhat2018-slides.pdf
https://www.wireguard.com/talks/blackhat2018-slides.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://git.zx2c4.com/wireguard-go
https://git.zx2c4.com/wireguard-rs
https://git.zx2c4.com/wireguard-android/
https://git.zx2c4.com/wireguard-android/
https://git.zx2c4.com/WireGuard
https://git.zx2c4.com/WireGuard
https://git.zx2c4.com/wireguard-ios/
https://git.zx2c4.com/wireguard-ios/
https://git.zx2c4.com/wireguard-windows/
https://git.zx2c4.com/wireguard-windows/
https://git.kernel.org/linus/30f78d8ebf7f514801e71b88a10c948275168518
https://git.kernel.org/linus/30f78d8ebf7f514801e71b88a10c948275168518

Tiny WireGuard Tweak 19

22. Dunbar, N.: IPsec networking standards – an overview. Inf. Sec. Techn. Report
6(1), 35–48 (2001). https://doi.org/10.1016/S1363-4127(01)00106-6

23. Erwin, M.: The Latest Rules on How Long NSA Can Keep Americans’ Encrypted
Data Look Too Familiar (2015). https://www.justsecurity.org/19308/congress-
latest-rules-long-spies-hold-encrypted-data-familiar/, blog entry

24. FreeBSD: Chapter 8. IPv6 Internals - Jumbo Payload. https://www.freebsd.org/
doc/en/books/developers-handbook/ipv6.html#ipv6-jumbo

25. Greenwald, G.: The crux of the NSA story in one phrase: ‘collect it
all’ (2013). https://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-
collect-it-all, news article

26. Greenwald, G.: XKeyscore: NSA tool collects ‘nearly everything a user does on
the internet’ (2013). https://www.theguardian.com/world/2013/jul/31/nsa-top-
secret-program-online-data

27. Hogan, M.: Data flows and water woes: the Utah data
center. Big Data Soc. 2(2), 2053951715592429 (2015).
https://journals.sagepub.com/doi/abs/10.1177/2053951715592429

28. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869, pp. 1–14 (2010). https://doi.org/10.17487/RFC5869

29. Landau, S.: Making sense from Snowden: what’s significant in the NSA surveillance
revelations. IEEE Secur. Priv. 11(4), 54–63 (2013). https://doi.org/10.1109/MSP.
2013.90

30. Landau, S.: Highlights from making sense of Snowden, Part II: what’s significant
in the NSA revelations. IEEE Secur. Priv. 12(1), 62–64 (2014). https://doi.org/
10.1109/MSP.2013.161

31. Mullvad: Introducing a post-quantum VPN, Mullvad’s strategy for a future
problem. https://mullvad.net/en/blog/2017/12/8/introducing-post-quantum-
vpn-mullvads-strategy-future-problem/, blog post

32. Mullvad: mullvad-wg-establish-psk. https://github.com/mullvad/oqs-rs/tree/
master/mullvad-wg-establish-psk, source code post

33. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC 8439, pp.
1–46 (2018). https://doi.org/10.17487/RFC8439

34. Perrin, T.: The Noise protocol framework (2018). https://noiseprotocol.org/noise.
html

35. Preneel, B.: Post-Snowden threat models. In: Weippl, E.R., Kerschbaum, F., Lee,
A.J. (eds.) Proceedings of the 20th ACM Symposium on Access Control Models
and Technologies, Vienna, Austria, 1–3 June 2015, p. 1. ACM (2015). https://doi.
org/10.1145/2752952.2752978

36. Privacy and Civil Liberties Oversight Board: Report on the Surveillance Program
Operated Pursuant to Section 702 of the Foreign Intelligence Surveillance Act
(2014). https://www.pclob.gov/library/702-Report.pdf, July 2nd, 2014; see page
12

37. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource estimates
for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

38. Rogaway, P.: The moral character of cryptographic work. IACR Cryptology ePrint
Archive 2015, p. 1162 (2015). http://eprint.iacr.org/2015/1162

39. Saarinen, M.O., Aumasson, J.: The BLAKE2 cryptographic hash and message
authentication code (MAC). RFC 7693, pp. 1–30 (2015). https://doi.org/10.17487/
RFC7693

https://doi.org/10.1016/S1363-4127(01)00106-6
https://www.justsecurity.org/19308/congress-latest-rules-long-spies-hold-encrypted-data-familiar/
https://www.justsecurity.org/19308/congress-latest-rules-long-spies-hold-encrypted-data-familiar/
https://www.freebsd.org/doc/en/books/developers-handbook/ipv6.html#ipv6-jumbo
https://www.freebsd.org/doc/en/books/developers-handbook/ipv6.html#ipv6-jumbo
https://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-collect-it-all
https://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-collect-it-all
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://journals.sagepub.com/doi/abs/10.1177/2053951715592429
https://doi.org/10.17487/RFC5869
https://doi.org/10.1109/MSP.2013.90
https://doi.org/10.1109/MSP.2013.90
https://doi.org/10.1109/MSP.2013.161
https://doi.org/10.1109/MSP.2013.161
https://mullvad.net/en/blog/2017/12/8/introducing-post-quantum-vpn-mullvads-strategy-future-problem/
https://mullvad.net/en/blog/2017/12/8/introducing-post-quantum-vpn-mullvads-strategy-future-problem/
https://github.com/mullvad/oqs-rs/tree/master/mullvad-wg-establish-psk
https://github.com/mullvad/oqs-rs/tree/master/mullvad-wg-establish-psk
https://doi.org/10.17487/RFC8439
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://doi.org/10.1145/2752952.2752978
https://doi.org/10.1145/2752952.2752978
https://www.pclob.gov/library/702-Report.pdf
https://doi.org/10.1007/978-3-319-70697-9_9
http://eprint.iacr.org/2015/1162
https://doi.org/10.17487/RFC7693
https://doi.org/10.17487/RFC7693

20 J. Appelbaum, C. Martindale and P. Wu

40. Schanck, J.M., Whyte, W., Zhang, Z.: Circuit-extension handshakes for Tor achiev-
ing forward secrecy in a quantum world. Proc. Priv. Enhancing Technol. 4, 219–236
(2016). https://eprint.iacr.org/2015/287.pdf

41. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

42. Wiener, M.J.: The full cost of cryptanalytic attacks. J. Cryptol. 17(2), 105–124
(2004). https://doi.org/10.1007/s00145-003-0213-5

43. Wu, P.: Bug 15011 - Support for WireGuard VPN protocol (2018). https://bugs.
wireshark.org/bugzilla/show bug.cgi?id=15011

44. Yonan, J.: OpenVPN. https://openvpn.net/. Accessed 11 Nov 2018

https://eprint.iacr.org/2015/287.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/s00145-003-0213-5
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=15011
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=15011
https://openvpn.net/

Extended 3-Party ACCE and Application
to LoRaWAN 1.1

Sébastien Canard1 and Löıc Ferreira1,2(B)

1 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,loic.ferreira}@orange.com

2 Univ Rennes, INSA Rennes, CNRS, IRISA, Rennes, France

Abstract. LoRaWAN is an IoT protocol deployed worldwide. Whereas
the first version 1.0 has been shown to be weak against several types
of attacks, the new version 1.1 has been recently released, and aims,
in particular, at providing corrections to the previous release. It intro-
duces also a third entity, turning the original 2-party protocol into a
3-party protocol. In this paper, we provide the first security analysis
of LoRaWAN 1.1 in its 3-party setting with a provable approach, and
show that it suffers from several flaws. Based on the 3(S)ACCE model of
Bhargavan et al., we then propose an extended framework that we use to
analyse the security of LoRaWAN-like 3-party protocols, and describe a
generic 3-party protocol provably secure in this extended model. We use
this provable security approach to propose a slightly modified version of
LoRaWAN 1.1. We show how to concretely instantiate this alternative,
and formally prove its security in our extended model.

Keywords: Security protocols · Security model · Internet of Things ·
LoRaWAN

1 Introduction

Establishing a secure communication between two parties is a fundamental goal
in cryptography as well as formally proving that such a protocol is secure. In their
seminal paper, Bellare and Rogaway [3] propose a security model for the sym-
metric 2-party setting, and describe provably secure mutual authentication and
key exchange protocols. Subsequent models have been proposed (e.g., [6,8,13,18]
to cite a few). All these models consider protocols in a 2-party setting. However
there exist concrete deployments making use of protocols defined or improperly
seen as 2-party schemes, that involve, in fact, three (or more) entities, which dif-
ferent cryptographic operations are attributed to (e.g., the 3G/4G mobile phone
technology).

Whereas the field of 2-party protocols has been intensively investigated, the
3-party case has received less attention so far. Yet (unsurprisingly) this does not
prevent 3-party protocols from being deployed in real-life, despite the lack of
a suitable security model that allows seizing precisely, and incorporating their
specifics. An example of such a protocol is LoRaWAN 1.1.
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 21–38, 2019.
https://doi.org/10.1007/978-3-030-23696-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_2

22 S. Canard and L. Ferreira

LoRaWAN 1.1. The LoRaWAN protocol has been designed to set up a Low-
Power Wide-Area Network (LPWAN) based on a long range, low rate, and wire-
less technology dedicated to IoT and M2M. The version 1.0 [23] has been released
in 2016. It has been shown to be weak against several types of attacks [2], hence
its security is quite questionable. The last version, LoRaWAN 1.1 [22], has been
published in 2017. This version aims, in particular, at providing corrections to
the previous release, and is assumed to be more secure.

Whereas the version 1.0 of LoRaWAN describes a 2-party protocol between
an end-device (ED) and a Network Server (NS), the version 1.1 introduces a third
entity: the Join Server (JS). In this new version, the cryptographic operations of
the authenticated key exchange are now shared among these three components.
This change turns the previous 2-party protocol into a non-standard 3-party
protocol with unknown security properties. Tampering with a 2-party protocol in
order to turn it into a 3-party protocol should be done with care. This motivates
a formal analysis in order to define the security goals, and to verify that the
protocol meets the latter. In the remainder of this paper, “LoRaWAN” refers to
“LoRaWAN 1.1”.

Related Work. Alt, Fouque, Macario-Rat, Onete, and Richard [1] formally
analyse the authenticated key exchange of the 3G/4G technology in its complete
3-party setting (with the addition of components from the core network), and
show how to enhance the security with a small modification easily incorporated
in the protocol. Regarding the same technology, Fouque, Onete, and Richard [12]
use a 3-party security model, and show how to thwart end-device-tracking attacks
while retaining most of the 3G/4G key exchange scheme structure.

Bhargavan, Boureanu, Fouque, Onete, and Richard [5] consider the use of
TLS when it is proxied through an intermediate middlebox (such as a Con-
tent Delivery Network (CDN)). They propose the notion of 3(S)ACCE-security
in order to analyse such a setting. This model extends the classical 2-party
ACCE model of Jager, Kohlar, Schäge, and Schwenk [13] to the 3-party set-
ting. They describe several attacks targeting a specific CDN architecture, and
show that the latter does not meet its claimed security goals. In the same con-
text, Bhargavan, Boureanu, Delignat-Lavaud, Fouque, and Onete [4] describe
several types of attacks against multi-context TLS protocol (mcTLS) [19] which
extends TLS to support middleboxes in order to offer in-network services. In con-
trast, they propose a proper security model called Authenticated and Confiden-
tial Channel Establishment with Accountable Proxies (ACCE-AP), and describe
a generic 3-party construction secure in their model.

These works illustrate that 3-party protocols deserve suitable security models
in order to be properly analysed, and to enlighten subtleties that, otherwise,
would remain ignored at the cost of the security.

Contributions. In this context, our contributions are threefold:

1. We present an improved security model that we call 3-ACCE, based on that
of Bhargavan et al. [5]. This meets the need of a general framework that

Extended 3-Party ACCE and Application to LoRaWAN 1.1 23

incorporates the subtleties of a LoRaWAN-like protocol, and allows explic-
iting the security requirements of such 3-party protocols. As additional
enhancements, we add (i) ED authentication, (ii) the security operations
done by NS during the channel establishment, and (iii) an extended “binding”
property that links all the entities involved in the key exchange.

2. We describe a generic 3-party protocol that is provably secure in our enhanced
model. That is, we provide a general theorem with its full proof in our 3-ACCE
security notion. This generic protocol can be concretely instantiated with
LoRaWAN but also other protocols.

3. We present the first security analysis of LoRaWAN 1.1 using a provable app-
roach. First, we describe several flaws that weaken the protocol. Next, we
apply our generic result to LoRaWAN 1.1, and propose a slightly modified
version of the protocol which achieves stronger security properties. We show
how to concretely instantiate this alternative, and formally prove its security
in our extended 3-party model.

Paper Outline. In Sect. 2, we describe the protocol LoRaWAN 1.1, and show
that it suffers from several flaws that enable theoretical attacks. A general frame-
work that we call 3-ACCE, and aiming at analysing the security of 3-party pro-
tocols is presented in Sect. 3. In addition, we propose a generic 3-party protocol
that we formally prove to be secure in this extended model. We use this frame-
work, in Sect. 4, to propose a slightly modified version of LoRaWAN 1.1 with
stronger security properties, that we prove to be secure in our 3-ACCE model.
Finally, we conclude in Sect. 5.

2 LoRaWAN 1.1

2.1 Overview of the Protocol

We recall the main lines of the LoRaWAN 1.1 protocol. Figure 1 depicts the
protocol. A complete description can be found in the specification [22].

Three entities are involved in the key exchange and secure channel establish-
ment: (i) ED (end-device): wireless sensor or actuator that communicates with
NS through gateways, (ii) NS (Network Server): the entry point to the network,
(iii) JS (Join Server): the server, located in the backend network, that owns the
master keys of each ED. A fourth entity, the Application Server (AS), partici-
pates to the session once the authenticated key exchange is completed, and the
secure channel is established. Exploiting a fleet of EDs, AS aims at collecting
data or monitoring the EDs in order to provide some service.

LoRaWAN 1.1 is a protocol based on shared (static) master keys. All the
cryptographic operations are based on the AES block cipher. Each ED stores two
distinct 128-bit master keys MK1, MK2, and JS owns the list of all the master
keys. Initiated only by ED, the key exchange is made of four main messages.
The first two (Join Request and Join Accept) are used to mutually authenticate
ED and JS, and to share the data used to compute the 128-bit session keys.

24 S. Canard and L. Ferreira

These messages are computed with MK1. The other two (RekeyInd and Rekey-
Conf) are used to validate the session keys. They are computed with the session
keys, as any other post-accept messages (i.e., sent through the secure channel).
In this paper, we focus on the standard method likely the most used to execute
the protocol (the Join procedure), and leave the other methods (the emergency
Rejoin type 1 procedure, and the Rejoin type 0/2 procedure that aims mainly at
changing ED’s radio parameters), much less used, as a future work.

Two counters cntE and cntJ (unique per ED) are transmitted during the key
exchange. They are initialised to 0 and monotonically increased (respectively by
ED and JS) at each new session. From these two counters, JS’s identifier idJ ,
and the master keys MK1, MK2, ED and JS compute four 128-bit session keys:
integrity keys Ki1

c and Ki2
c , and encryption keys Ke

c , and Ke
a. The session keys

Ki1
c , Ki2

c , Ke
c are sent by JS to NS (through an undefined by the specification

but allegedly secure protocol). Ke
a is sent by JS either to AS (through a protocol

undefined by the specification), or to NS.
To that point, ED can send protected messages to the network. The messages

are encrypted with AES-CTR and Ke
c or Ke

a depending on the message type. A
command message is encrypted with Ke

c and exchanged between ED and NS.
An application message is encrypted with Ke

a and exchanged between ED and
AS. All these messages are MAC-ed with two different functions (depending on
the direction) which are based on a tweaked version of AES-CMAC (a block is
prefixed to the input), and output a 4-byte tag.

2.2 Cryptographic Flaws in LoRaWAN 1.1

Size of the Counters. The counters cntE , cntJ are respectively 2-byte and
3-byte long. It is likely that so few values can be exhausted, which brings ED to
be unable to initiate a new session and be lastly (if not for good) “disconnected”
from the network. Note that there are two other methods that allow ED to
initiate a session (the so-called Rejoin procedures). However the Rejoin type 0/2
procedure is available only if a session is ongoing (because the first request is
sent through the current secure channel). As for the Rejoin type 1 procedure, it
is invoked periodically based on a predefined frequency, which means that it is
not available at will.

The specification states that if the cntE counter wraps around, then ED must
use a different idJ value (parameter used in the Join Request and Join Accept
messages, and in the session keys computation). In fact, idJ‖cntE behaves as a
counter where idJ corresponds to the most significant bits, and cntE to the least
significant bits. Therefore it may not be enough to exhaust the cntE counter
in order to stuck ED. However, we do think that, due to lack of clarity of the
specification regarding the rationale in storing more than one idJ value into
ED, and the fact that LoRaWAN 1.1 inherits from the previous version of the
protocol, it is likely that only one idJ value will be stored into ED (as in the
previous version, where cntE is a pseudo-random value). Moreover it has been
shown [2] that it is possible to compel ED to repeatedly send Join Request

Extended 3-Party ACCE and Application to LoRaWAN 1.1 25

Fig. 1. Correct execution of LoRaWAN 1.1 Double line arrows indicate the use of secure
channel keys. There two secure channels: ED-NS (LoRaWAN), and NS-JS (undefined).

messages, hence to likely use all the cntE values. Therefore exhausting ED’s
counter appears feasible.

Size of MAC Tags. The MAC’s output is 4-byte long. Hence, MAC forgeries
are made easier, and, in combination with the fact that data encryption is done
in counter mode, so are attacks against data integrity. Note that the duration

26 S. Canard and L. Ferreira

of this attack is influenced by the fact that ED communicates through a radio
link with NS.

Known Encryption Keystream. Per specification, ED must send a
(encrypted) RekeyInd message as long as it does not receive a RekeyConf
response (up to a fixed number of RekeyInd messages, afterwards ED must start
a new session). Conversely, NS must respond to each RekeyInd message with a
(encrypted) RekeyConf response. The (plaintext) content of both kind of mes-
sages is known. Hence, an attacker can get multiple valid encryption keystreams
for free. If she succeeds in forging a valid MAC tag, then she can get messages
carrying the plaintext of her choice. Of course, encryption does not provide data
integrity, and the attacker needs to forge a valid MAC tag. However this provides
a way to compute encrypted messages which underlying plaintext is semantically
correct.

In order to collect the keystreams, the attacker can forbid NS (resp. ED) from
receiving the RekeyInd (resp. RekeyConf) messages. This compels ED (resp. NS)
to send multiple messages. These messages can then be used to deceive NS (resp.
ED).

Downgrade Attack. According to the specification, an ED implementing ver-
sion 1.1 must fall back to version 1.0 when it faces an NS implementing version
1.0. Hence, even an ED in version 1.1 may succumb to the attacks that have
been shown possible against LoRaWAN 1.0 [2]. Therefore, a current deployment
of LoRaWAN 1.1 may inherit the flaws of the previous version.

Lack of Data Integrity. There is no data integrity provided by LoRaWAN
between NS and AS. This leads to trivial attacks for an attacker sitting between
both servers. The specification deems the lack of data integrity to be not an issue
as long as NS is honest. According to us, this statement is hazardous because it
does not take into account the intermediate servers between NS and AS. Handing
down security properties that is, according to us, incumbent upon LoRaWAN
may lead to security breaches, as some of these servers (such as a MQTT server)
have been shown to be insecurely managed [16].

2.3 The Need for a Suitable Security Model

During the key exchange phase, the only cryptographic operation that NS does,
in order to accept ED as partner, is verifying the RekeyInd message with keys
received from JS. This allows the following theoretical attack. If the attacker,
on the one hand, succeeds in sending keys of her choice to NS on behalf of JS,
she can, on the other hand, provide a consistent RekeyInd message (computed
under these keys), bringing NS to accept although no ED (and possibly no JS) is
actually involved in the session. The attacker is then able to send valid messages
to NS on behalf of ED (the same session keys are used to compute the RekeyInd

Extended 3-Party ACCE and Application to LoRaWAN 1.1 27

message and the subsequent messages of the post-accept phase). This scenario
implies being able either to impersonate JS to NS, or to break the channel
security established (with a protocol undefined by the LoRaWAN specification)
between NS and JS (see Fig. 1). This attack does not even need to target the
core LoRaWAN protocol. It is conceivable because of the way the cryptographic
operations in LoRaWAN are shared between ED, NS and JS, and interleaved
with the undefined protocol used between NS and JS. This highlights how the
security of LoRaWAN crucially depends on this additional protocol. Analysing
LoRaWAN implies to take the latter into account.

LoRaWAN 1.1 is a 3-party protocol, not a 2-party protocol between a client
(ED) and a backend network (NS-JS). Assessing its security (as a 3-party proto-
col) needs care. Therefore, it requires a suitable security model that incorporates
all its subtleties, and makes explicit the security requirements which, for some
of them (such as the protocol between NS and JS), are barely mentioned in the
specification despite their crucial role in the overall security of a LoRaWAN net-
work. In Sect. 3, we describe a 3-ACCE security model that aims at capturing
the security goals of such 3-party protocols.

3 Extended 3-ACCE Model

3.1 Execution Environment

We describe the execution environment related to our model, using the nota-
tions of the ACCE model of Jager et al. [13], and Bhargavan et al. [5]. We
use this execution environment to analyse our generic 3-party protocol Π. The
security definitions of a secure pseudo-random function (PRF), and a secure
pseudo-random permutation (PRP) can be found in Jager et al. [13]. We take
the definition of a stateful authenticated encryption (sAE) scheme from that
of a stateful length-hiding authenticated encryption scheme of Jager et al. [13]
(without the length-hiding property).

Protocol Entities. Our model considers three sets of parties: a set E of end-
devices, a set N of Network Servers, and a set J of Join Servers. Each party is
given a long term key ltk.

Session Instances. Each party Pi maintains a set of instances Instances =
{π0

i , π1
i , . . .} modeling several (sequential or parallel) executions of the 3-party

protocol Π. Each instance πn
i has access to the long term key ltk of its party

parent Pi. Moreover, each instance πn
i maintains the following internal state:

– The instance parent πn
i .parent ∈ E ∪ N ∪ J indicating the party Pi that

owns that instance: πn
i .parent = Pi.

– The partner-party πn
i .pid ∈ E ∪ N ∪ J indicating the party πn

i .parent is
presumably running the protocol with. Pi ∈ E can only be partnered with a
party Pk ∈ J . Pk ∈ J can only be partnered with a party Pj ∈ N . Pj ∈ N
can be partnered with either Pi ∈ E or Pk ∈ J .

28 S. Canard and L. Ferreira

– The role πn
i .ρ ∈ {ed, ns-client, ns-server, js} of Pi = πn

i .parent. If Pi ∈ E ,
then πn

i .ρ = ed. If Pi ∈ J , then πn
i .ρ = js. If Pi ∈ N , then πn

i .ρ ∈
{ns-client, ns-server}. In such a case, πn

i .ρ = ns-client if πn
i .pid ∈ J , and

πn
i .ρ = ns-server if πn

i .pid ∈ E .
– The session identifier πn

i .sid of an instance.
– The acceptance flag πn

i .α originally set to ⊥ when the session is ongoing,
and set to 1/0 when the party accepts/rejects the partner’s authentication.

– The session keys πn
i .ck set to ⊥ at the beginning of the session, and set to

a non-null bitstring corresponding to the encryption and decryption session
keys once πn

i computes the session keys.
– The key material πn

i .km set to ⊥ if πn
i .ρ ∈ {ed, ns-server}. Otherwise km is

set to ⊥ at the beginning of the session, and set to a non-null bitstring once
πn

i ends in accepting state.
– The security bit πn

i .b sampled at random at the beginning of the security
experiments.

– The partner-instances set πn
i .ISet stores the instances that are involved in

the same protocol run as πn
i (including πn

i itself).
– The partner-parties set πn

i .PSet stores the parties parent of the instances
in πn

i .ISet (including Pi = πn
i .parent itself).

A correct execution of the protocol Π involves four instances πn
i , πu

j , πv
j , π�

k

such that

– πn
i .parent = Pi ∈ E , πu

j .parent = πv
j .parent = Pj ∈ N , π�

k.parent = Pk ∈ J
– πu

j .ρ = ns-server and πv
j .ρ = ns-client

– πn
i .sid = πu

j .sid �=⊥ and πv
j .sid = π�

k.sid �=⊥
– πn

i .ck = πu
j .ck = πv

j .km = π�
k.km �=⊥

Then, the partner-instances set and the partner-parties set are defined as
π.ISet = {πn

i , πu
j , πv

j , π�
k} and π.PSet = {Pi, Pj , Pk}, ∀π ∈ {πn

i , πu
j , πv

j , π�
k}.

Adversarial Queries. An adversary may interact with the instances by issuing
the following queries.

– NewSession(Pi, ρ, pid): this query creates a new session πn
i with role ρ, exe-

cuted by party Pi, and intended partner-party pid.
– Send(πn

i ,M): the adversary can send a message M to πn
i , receiving a response

M ′, or an error message ⊥ if the instance does not exist or if πn
i .α = 1. (Send

queries in an accepting state are handled by the Decrypt query.)
– Reveal(πn

i): this query returns the session keys πn
i .ck and the key material

πn
i .km of an instance πn

i ending in accepting state.
– Corrupt(Pi): this query returns the long term key Pi.ltk of Pi.
– Encrypt(πn

i ,M0,M1,H): it encrypts the message Mb, b = πn
i .b, with header

H, with the encryption session keys (stored within πn
i .ck) of an accepting

instance πn
i (if πn

i .α �= 1, then πn
i returns ⊥).

– Decrypt(πn
i , C,H): this query decrypts the ciphertext C with header H, with

the decryption session keys (stored within πn
i .ck) of an accepting instance πn

i

(if πn
i .α �= 1, then πn

i returns ⊥).

Extended 3-Party ACCE and Application to LoRaWAN 1.1 29

3.2 Security Definitions

Partnership. We define the 3-ACCE partnering with the sets ISet and PSet.
πn

i .ISet stores instances partnered with πn
i , and πn

i .PSet stores parties partnered
with πn

i . Moreover, we define sid to be the transcript, in chronological order, of all
the (valid) messages sent and received by an instance during the key exchange,
but, possibly, the last message. Therefore we use the 2-ACCE partnering notion
(based on the definition of matching conversations initially proposed by Bellare
and Rogaway [3], and modified by Jager et al. [13]) to define pairwise partnered
instances, and we use the two sets ISet and PSet in order to identify all the
instances that are partnered in the 3-ACCE model.

Correctness. The correctness in 3-ACCE is defined as follows. We demand
that, for any instance π ending in an accepting state, the following conditions
hold:

– ∀π ∈ {πn
i , πu

j , πv
j , π�

k}, π.ISet = {πn
i , πu

j , πv
j , π�

k} and |π.ISet| = 4
– πn

i .parent = Pi ∈ E , πu
j .parent = πv

j .parent = Pj ∈ N , π�
k.parent = Pk ∈ J

– π.PSet = {Pi, Pj , Pk}
– πn

i .ck = πu
j .ck = πv

j .km = π�
k.km �=⊥

– πn
i .sid = πu

j .sid �=⊥
– πv

j .sid = π�
k.sid �=⊥

Security of ACCE protocols is defined by requiring that (i) the protocol
is a secure authentication protocol, and (ii) in the post-accept phase all data
is transmitted over an authenticated and confidential channel in the sense of
length-hiding sAE. Security of 3-ACCE protocols is defined in a similar way
(but the length-hiding property), but we include an additional requirement in
the entity authentication property in order to “bind” all the parties involved in a
session. The adversary’s advantage to win is defined with two games: the entity
authentication game, and the channel security game. In both, the adversary can
query all oracles NewSession, Send, Reveal, Corrupt, Encrypt, and Decrypt.

Entity Authentication (EA). This security property must guarantee that any
instance πn

i ending in accepting state is partnered with a unique instance. In
addition to the two parties explicitly involved in the communication, we guaran-
tee that a third party participate in the session (each one belonging to a different
set E , N , J). The purpose of this property, that we borrow from Bhargavan
et al. [5], is to make sure that if some ED establishes a communication with
some NS, there is a JS that is also involved. Conversely if a secure channel is
established between an NS and a JS, we want to make sure that it is with the
aim of establishing a communication between that NS and some ED. In this
EA security experiment, the adversary is successful if, when it terminates, there
exists an instance that maliciously accepts according to the following definition.

Definition 1 (Entity Authentication). An instance is said to maliciously
accept if the adversary succeeds in fulfilling one of the following winning
conditions.

30 S. Canard and L. Ferreira

ED adversary – An instance πn
i of parent Pi ∈ E is said to maliciously

accept if
• πn

i .α = 1 and πn
i .pid = Pk ∈ J .

• No instance in πn
i .ISet was queried in Reveal queries.

• No party in πn
i .PSet is corrupted.

• There is no unique πu
j | (πu

j .parent ∈ N ∧ πu
j .sid = πn

i .sid),
or there is no π�

k ∈ Pk.Instances | π�
k.km = πn

i .ck.

NS adversary – An instance πu
j of parent Pj ∈ N is said to maliciously

accept if at least one of the following two conditions holds
(a) • πu

j .α = 1 and πu
j .pid = Pi ∈ E.

• No instance in πu
j .ISet was queried in Reveal queries.

• No party in πu
j .PSet is corrupted.

• There is no unique πn
i | (πn

i ∈ Pi.Instances ∧ πu
j .sid = πn

i .sid),
or there is no π�

k | (π�
k.parent = Pk ∈ J ∧ πn

i .pid = Pk ∧ π�
k.km =

πu
j .ck).

(b) • πv
j .α = 1 and πv

j .pid = Pk ∈ J .
• No instance in πv

j .ISet was queried in Reveal queries.
• No party in πv

j .PSet is corrupted.
• There is no unique π�

k ∈ Pk.Instances | (πv
j .sid = π�

k.sid),
or there is no πn

i | (πn
i .parent ∈ E ∧ πn

i .pid = Pk ∧ πn
i .ck = πv

j .km).

JS adversary – An instance π�
k of parent Pk ∈ J is said to maliciously

accept if
• π�

k.α = 1 and π�
k.pid = Pj ∈ N .

• No instance in π�
k.ISet was queried in Reveal queries.

• No party in π�
k.PSet is corrupted.

• There is no unique πv
j ∈ Pj .Instances | (πv

j .sid = π�
k.sid),

or there is no πn
i | (πn

i .parent ∈ E ∧ πn
i .pid = Pk ∧ π�

k.km = πn
i .ck).

The adversary’s advantage is defined as its winning probability:

advEAΠ (A) = Pr[A wins the EA game].

Channel Security (CS). In the channel security game, the adversary can use all
oracles. At some point, the adversary sends a challenge M0, M1 (issuing a query
Encrypt) to some instance πn

i , and gets Cb the encryption of Mb, b = πn
i .b. The

adversary is successful if she guesses b. That is, she must output an instance πn
i

and its security bit. The security bit πn
i .b is chosen at random at the beginning

of the game.

Definition 2 (Channel Security). An adversary A breaks the channel secu-
rity if she terminates the channel security game with a tuple (πn

i , b) such that

– πn
i .α = 1

– No instance in πn
i .ISet was queried in Reveal queries.

– No party in πn
i .PSet is corrupted.

– πn
i .b = b

Extended 3-Party ACCE and Application to LoRaWAN 1.1 31

The adversary’s advantage is defined as

advCSΠ (A) =
∣
∣
∣
∣
Pr[A wins the CS game] − 1

2

∣
∣
∣
∣
.

Definition 3 (3-ACCE-security). A 3-party protocol Π is 3-ACCE-secure
if Π satisfies correctness, time adversaries A, advEAΠ (A) and advCSΠ (A) are a
negligible function of the security parameter.

3.3 Building 3-ACCE from 2-ACCE

In this section we describe a generic 3-party protocol Π. Next, we show that
protocol Π is generically secure in the 3-ACCE model described in Sects. 3.1
and 3.2.

Our Generic 3-Party Protocol. The Fig. 2 depicts our view of the 3-ACCE
protocol Π between ED, NS and JS. It is composed of two distinct protocols
denoted P and P ′ respectively. P is a 2-ACCE protocol between ED and NS,
and P ′ is a 2-ACCE protocol between NS and JS. The details of the protocol Π
are given in Fig. 3.

Protocol Π is generic in the sense that it depicts a whole class of protocols.
Informally, this class corresponds to 3-party protocols where one entity behaves
mostly as a key server (JS), whereas the post-accept phase is managed by the
other two entities (ED, NS). Moreover, the P component has the following fea-
tures. Its key exchange is made of four main messages: the first two with the
major purpose of exchanging the material intended for the key derivation, and
the last two in order to confirm the session keys or to authenticate the parties.
For example, TLS-PSK [11], SRP [24], and SIGMA-R [15] can be instances of
P . As we will see in Sect. 4, LoRaWAN is such another instance.

Fig. 2. 3-ACCE protocol Π

Main Theorem and Sketch Proof. Based on the security of P and P ′, we
show that protocol Π is 3-ACCE-secure according to Definition 3.

32 S. Canard and L. Ferreira

Fig. 3. Correct execution of protocol Π, made of P (left) and P ′ (right) components.
Double line arrows indicate the use of the secure channel keys.

Theorem 1. The protocol Π is a secure 3-ACCE protocol under the assumption
that P is a secure 2-ACCE protocol, and P ′ is a secure 2-ACCE protocol, with
the following reductions

advEAΠ ≤ nE · nN · nJ

(

2advCSP + 3advCSP ′ + 2pjr + 2pja + advEAP ′,client + advEAP ′,server

)

+nE

(

nJ · advEAP,client + nN · advEAP,server

)

+nN · nJ

(

3advCSP ′ + advEAP ′,client + advEAP ′,server

)

advCSΠ ≤ nE · nN · nJ

(

advCSP + 3advCSP ′

)

+ advEAΠ

where nE, nN, and nJ are respectively the number of ED, NS, and JS parties.

We give here only a sketch of proof of Theorem 1. The extended proof is
given in the full version of the paper [7]. Let us first consider the EA security
property. We split the proof into three parts depending which party (ED, NS,
JS) the adversary targets.

ED Adversary. Roughly speaking, the adversary can first try to impersonate NS
to ED as in a 2-party execution of protocol P (advEAP,client). The adversary can

Extended 3-Party ACCE and Application to LoRaWAN 1.1 33

also try to bypass the intermediate NS in order to get from JS all the necessary
material (Join Accept message, session keys sk) in order for ED to accept. This
implies necessarily that a server adversary be able to impersonate a legitimate NS
to JS, that is to break the EA-security of P ′ (advEAP ′,server). Finally, the adversary
can try to make ED and NS have different sid. In order to be successful, the
adversary has to provide a valid RekeyInd message to NS different than the one
computed by ED. This implies either forging such a message, or getting the keys
used to compute it, and transmitted by JS to NS. We reduce both possibilities
to the channel security w.r.t. P (advCSP), and P ′ (advCSP ′).

Since we have ruled out the impersonation of NS to ED, and the imperson-
ation of NS to JS, ED uses the Join Accept message sent by JS upon reception of
the Join Request message computed by ED. Therefore, ED and JS compute the
P -session keys with the same inputs (and the same function). Hence they out-
put the same keys (i.e., πn

i .ck = π�
k.km). In addition, ED and NS have matching

conversations (i.e., they share the same sid). Taking account of all parties adds
a factor at most nE · nN · nJ.

NS Adversary. First we deal with the winning condition (a). The adversary can
first try to impersonate ED to NS. This implies breaking the EA-security of
P when the server side is targeted (advEAP,server). Then the adversary can try to
impersonate a legitimate JS to NS (advEAP ′,client).

The only cryptographic operation that NS does in order to accept is verifying
the RekeyInd message it gets from ED with the keys provided by JS. Therefore
the adversary is successful if, on the one hand, she provides some keys sk to NS
(through the secure channel ensured by P ′), and, on the other hand, she sends
to NS a RekeyInd message computed under these keys sk. This can be reduced
to the channel security w.r.t. P ′ (advCSP ′).

The remaining possibility in order for the adversary to win is to provide
a RekeyConf message so that NS and ED do not share the same sid. This is
possible either if the adversary forges such a message, or if she is able to get the
keys used to compute the message (transmitted by JS to NS through a secure
channel ensured by P ′). We reduce either possibility respectively to the channel
security w.r.t. P (advCSP), and P ′ (advCSP ′). Furthermore, since we have ruled out
the impersonation of JS to NS, and also the possibility to forge P ′ application
messages, NS and JS share the same P session keys. That is πu

j .ck = π�
k.km.

Regarding condition (b), the adversary can first try to impersonate a legiti-
mate JS to NS (advEAP ′,client). Then the adversary can proceed as under condition
(a). That is, providing to NS some keys sk of her choice, and a RekeyInd mes-
sage computed under sk. This implies forging a valid P ′ application message
carrying the keys sk. We reduce such a possibility to the channel security w.r.t.
P ′ (advCSP ′). Then, in order to have that NS and JS do not share the same sid,
the adversary can try to forge a P ′ application message (carrying a Join Request
or a RekeyInd message) intended to JS. We can reduce the latter to the channel
security w.r.t. P ′ (advCSP ′).

34 S. Canard and L. Ferreira

Finally the adversary wins if NS and ED do not share the same P session
keys. This is possible if the adversary forges either a Join Request message or
a Join Accept message. These two possibilities are respectively bounded by the
probabilities pjr and pja (see Sect. 4.1).
JS Adversary. The adversary can first try to impersonate NS to JS (advEAP ′,server).
Then, in order to have that NS and JS do not share the same sid, the adversary
can try to forge one of the messages exchanged through the secure channel (in
either direction), which can be reduced to the channel security w.r.t. P ′ (advCSP ′).
Ruling out all these possibilities guarantees that JS and NS share the same sid
(i.e., π�

k.sid = πv
j .sid).

Finally, the adversary can try to make ED and JS compute different P -session
keys. Since these keys depend on the data carried in the Join Request and Join
Accept messages, this implies forging either message (probability pjr + pja).
Ruling out both possibilities guarantees that πn

i .ck = π�
k.km.

Regarding the CS property of protocol Π, we first rule out the possibility
that an instance maliciously accepts (advEAΠ). This leaves two possibilities: either
the adversary targets directly the ED-NS secure channel, or the NS-JS secure
channel. We can reduce the latter possibility to the CS-security of P ′ (advCSP ′).
Regarding the former possibility, the adversary can try to get the P session keys
(sk) sent by JS to NS (advCSP ′), or to break the channel security w.r.t. P (advCSP).
Finally, we have also to take into account that the session keys sk (which the
CS-security of P relies on) are sent by JS to NS through the secure channel
provided by P ′ (advCSP ′).

4 3-ACCE Security with LoRaWAN 1.1

In this section, we use the generic result of Sect. 3.3, and apply it to LoRaWAN.
For this purpose, we have to (i) show that LoRaWAN 1.1 fulfills the structure of
the protocol Π proved to be secure by Theorem 1, (ii) prove that the underlying
protocol P = PLoRaWAN is 2-ACCE-secure, and (iii) choose a 2-ACCE-secure
instantiation for the protocol P ′ = P ′

LoRaWAN .
As described in Sect. 2.1, a typical LoRaWAN network involves four entities:

ED, NS, JS, and AS. But only the first three are actually involved in the key
exchange, and the channel establishment. Moreover, in actual deployments, AS
is often co-localised with NS. That is, AS is in fact merely a functionality handled
by NS, and the latter is given the four session keys Ke

a, Ke
c , Ki1

c , Ki2
c . Hence, we

instantiate LoRaWAN accordingly: our protocol is made of three active entities
(ED, NS, JS) which the different cryptographic operations are attributed to.

Since LoRaWAN is based on static symmetric keys, we define the long term
key of each party to be ltk = (pk, sk,mk), made of (i) a private key sk, (ii) the
corresponding certified public key pk, and (iii) a master symmetric key mk. If
Pk ∈ J , the three components of ltk are defined. Otherwise, Pj .ltk = (pk, sk,⊥)
if Pj ∈ N , and Pi.ltk = (⊥,⊥,mk) if Pi ∈ E . Each party Pi ∈ E has a unique
master key mk, shared with a party Pk ∈ J .

Extended 3-Party ACCE and Application to LoRaWAN 1.1 35

4.1 2-Party Protocol P in LoRaWAN 1.1 is 2-ACCE Secure

Theorem for PLoRaWAN . Let PLoRaWAN correspond to the messages
exchanged, and the operations done between a client (ED) and a server (NS-JS).
Let StAEclient (resp. StAEserver) be the AEAD function used by the client (resp.
server) to encrypt and MAC the messages.

Theorem 2. Under the assumption that StAEclient and StAEserver are sAE-
secure, PLoRaWAN is a secure 2-ACCE protocol with the following reductions:

advEAP ≤ q
[

(nC + nS)
(

advPRFMAC + 2advPRFAES

)

+ nC

(

advPRPAES + advsAE
StAEserver

)

+nS · advsAE
StAEclient

+ 2−μ
(

nC · (1 − 2−β) + nS

)]

advCSP ≤ q2 · nC · nS

(

advsAE
StAEclient

+ advsAE
StAEserver

+ 2advPRFAES

)

+ advEAP

where q is the number of instances per party, nC (resp. nS) is the number of
client (resp. server) parties, μ is the bit length of the MAC tag, and β is the bit
length of the counter cntJ .

Sketch Proof of Theorem 2. We consider the ACCE security model of Jager
et al. [13], and define the entity authentication and the channel security experi-
ments accordingly, but we forbid any corruption of the party (and its presumed
partner) involved in the security experiments (the entity authentication game
and the channel security game). That is LoRaWAN does not provide forward
secrecy, nor protects against key-compromise impersonation attacks [6]. We give
here only a sketch of proof of Theorem 2. The extended proof is given in the full
version of the paper [7].

As for the EA-security of PLoRaWAN , we consider first a client (ED) adver-
sary, and then a server (NS-JS) adversary.

Regarding a client adversary, we idealise each cryptographic function used to
compute a Join Accept message: the KDFmk function used to compute the MAC
key MK3 (advPRFAES), the MAC function (advPRFMAC), and the encryption function
(advPRPAES). To that point, the ability of an adversary to forge a valid Join Accept
message lies on the ability to provide a valid counter (probability at most 2β−1

2β),
and a valid MAC tag (probability 2−μ) carried in the Join Accept message. Hence
Pr[forgery Join Accept] ≤ pja = advPRFAES +advPRFMAC+advPRPAES +2−μ(1−2−β). Then
the adversary is successful if the client and the server do not share the same sid.
This is possible if the adversary succeeds in forging a valid RekeyConf message
(advPRFAES+advsAE

StAEserver
). Taking account of all possible client instances adds a factor

q · nC.
Regarding the server adversary, we first idealise each cryptographic function

used to compute a Join Request and a RekeyInd message: the MAC function
used to compute the Join Request’s MAC tag (advPRFMAC), and the KDFc and
KDFa functions used to compute the session keys involved in the calculation of
the RekeyInd message (2advPRFAES). To this point, the probability to forge a valid

36 S. Canard and L. Ferreira

Join Request message corresponds to the probability to forge a valid MAC tag
(2−μ). Hence Pr[forgery Join Request] ≤ pjr = advPRFMAC + 2−μ. Finally, the only
remaining possibility for the adversary is that client and server do not share the
same sid. This implies forging a valid RekeyInd message (advsAE

StAEclient
). Taking

account of all possible server instances adds a factor q · nS.
Regarding the CS experiment, we first abort if there exists an instance of

some client or server party that maliciously accepts (advEAP). Then we idealise
the cryptographic functions used to compute the session keys Ke

c , Ki1
c , Ki2

c , and
Ke

a (2advPRFAES). Finally we reduce the ability to win the CS experiment to the
security of the underlying AEAD functions that are used to encrypt messages
in either direction: StAEclient and StAEserver (advsAE

StAEclient
+ advsAE

StAEserver
). Taking

account of all possible instances adds a factor q2 · nC · nS.

4.2 Meeting 3-ACCE Security

As exhibited by Theorem 2, the (too) short size of several parameters provides
useless security bounds in Theorem 2. Therefore, we modify LoRaWAN 1.1 the
following way.

– We demand that the size μ of the MAC output be high enough so that the
security bounds advEAP and advCSP be tight.

– We slightly change the behaviour of JS as follows (the components surrounded
with brackets in Fig. 3 depict these additional operations): JS verifies entirely
the Join Request message (including ED’s counter cntE), and the RekeyInd
message. Only if the RekeyInd message is valid, JS sends the session keys sk
to NS. This change aims at precluding an attack that allows the adversary to
trivially win the EA experiment. Indeed, if JS does not verify the RekeyInd
message, it accepts as soon as it sends the Join Accept message, without
guarantee that ED completes the protocol run.

– The genuine LoRaWAN specification states that ED must send a RekeyInd
message to NS as long as it does not receive a RekeyConf response. We
demand that ED send only one message. Firstly in order to clearly sepa-
rate the pre-accept and post-accept phases. Secondly, because sending mul-
tiple RekeyInd messages allows the adversary to trivially win the EA experi-
ment. Indeed, the adversary has to merely forbid NS from receiving the first
RekeyInd message, and this breaks the transcript equality. This aims also at
reducing the impact of the flaw described in Sect. 2.2.

– We require that all entities implement version 1.1 (including NS) so that no
fallback to LoRaWAN 1.0 be possible (and the vulnerabilities of that version
be avoided [2]).

Hence our adapted version of LoRaWAN 1.1 fulfills the structure of protocol Π,
and the protocol PLoRaWAN is 2-ACCE-secure.

Now we define the companion security protocol P ′
LoRaWAN that is used

between NS and JS. As explained in Sect. 2.3, the careful choice of this pro-
tocol is crucial to the overall security of a LoRaWAN network. Therefore, we

Extended 3-Party ACCE and Application to LoRaWAN 1.1 37

define the protocol P ′
LoRaWAN to be TLS 1.2 [9] in DHE, or RSA mode, with

mutual authentication, and instantiated with AEAD encryption schemes such
as AES-GCM, AES-CCM [17], or ChaCha20-Poly1305 [20]. TLS 1.2 is known to
be 2-ACCE-secure [13,14]. Alternatively, P ′

LoRaWAN can be defined as TLS 1.3
[21] in (EC)DHE mode, with mutual authentication. We recall that TLS 1.3
uses only AEAD encryption schemes. TLS 1.3 is proved to be 2-AKE-secure
[10]. Although this result applies to an earlier draft of the protocol, we may
reasonably assume that the final version also guarantees 2-AKE-security. Since
AEAD encryption schemes are used, this implies 2-ACCE-security for TLS 1.3.

Combining all the above with Theorem 1, we obtain the 3-ACCE-security of
our adapted version of LoRaWAN 1.1.

5 Conclusion

Using a provable security approach, we have provided the first analysis of
LoRaWAN 1.1, a dedicated IoT protocol that aims at replacing the previous 1.0
version currently deployed worldwide. Our results highlights several flaws that
weaken the protocol, and show, in particular, that the security of LoRaWAN 1.1
crucially depends on the companion security protocol (undefined by the speci-
fication) used between two of the parties. This also reveals that analysing such
a 3-party protocol requires a suitable security model that incorporates all its
subtleties, and makes explicit the security requirements.

Consequently, we have extended the notion of 3-ACCE-security to provide
a general framework that captures the security properties a 3-party protocol
should guarantee, and allows assessing its security. We have described such a
generic protocol provably secure in our model. Applying these results, we have
proposed a slightly modified version of LoRaWAN 1.1 with stronger security
properties, formally proved it to be secure in our security model, and described
how to concretely instantiate it.

References

1. Alt, S., Fouque, P.-A., Macario-rat, G., Onete, C., Richard, B.: A cryptographic
analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 18–35. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39555-5 2

2. Avoine, G., Ferreira, L.: Rescuing LoRaWAN 1.0. In: Financial Cryptography and
Data Security (FC 2018) (2018).https://fc18.ifca.ai/preproceedings/13.pdf

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

4. Bhargavan, K., Boureanu, I., Delignat-Lavaud, A., Fouque, P., Onete, C.: A for-
mal treatment of accountable proxying over TLS. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 339–356 (2018)

5. Bhargavan, K., Boureanu, I., Fouque, P.A., Onete, C., Richard, B.: Content deliv-
ery over TLS: a cryptographic analysis of keyless SSL. In: 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 1–16. IEEE, April 2017

https://doi.org/10.1007/978-3-319-39555-5_2
https://doi.org/10.1007/978-3-319-39555-5_2
https://fc18.ifca.ai/preproceedings/13.pdf
https://doi.org/10.1007/3-540-48329-2_21

38 S. Canard and L. Ferreira

6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

7. Canard, S., Ferreira, L.: Extended 3-Party ACCE and Application to LoRaWAN
1.1. Cryptology ePrint Archive (2019). http://eprint.iacr.org/2019/479

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol - Version
1.2 (August 2008), RFC 5246

10. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel: C. (eds.)
ACM CCS 15. pp. 1197–1210. ACM Press, October 2015

11. Eronen, P., Tschofenig, H.: Pre-Shared Key Ciphersuites for Transport Layer Secu-
rity (TLS) (December 2005), RFC 4279

12. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA
protocol. Cryptology ePrint Archive, Report 2016/480 (2016)

13. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. Cryptology ePrint Archive, Report 2011/219 (2011)

14. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. Cryptology ePrint Archive, Report 2013/367 (2013)

15. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

16. Lundgren, L.: Taking over the world through MQTT - Aftermath. Black Hat USA
(2017)

17. McGrew, D.: An Interface and Algorithms for Authenticated Encryption (January
2008), RFC 5116

18. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS
handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 55–73. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 5

19. Naylor, D., et al.: Multi-Context TLS (mcTLS): enabling secure in-network func-
tionality in TLS. In: Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 2015, pp. 199–212. ACM (2015)

20. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols (May 2015),
RFC 7539

21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 (August
2018), RFC 8446

22. Sornin, N.: LoRaWAN 1.1 Specification (June 2017), LoRa Alliance, version 1.1
23. Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification (July 2016),

LoRa Alliance, version 1.0
24. Wu, T.: The SRP Authentication and Key Exchange System (September 2000),

RFC 2945

https://doi.org/10.1007/BFb0024447
http://eprint.iacr.org/2019/479
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-89255-7_5
https://doi.org/10.1007/978-3-540-89255-7_5

Post-quantum Cryptography

The Mersenne Low Hamming
Combination Search Problem Can Be

Reduced to an ILP Problem

Alessandro Budroni(B) and Andrea Tenti

Department of Informatics, University of Bergen, Bergen, Norway
{alessandro.budroni,andrea.tenti}@uib.no

Abstract. In 2017, Aggarwal, Joux, Prakash, and Santha proposed an
innovative NTRU-like public-key cryptosystem that was believed to be
quantum resistant, based on Mersenne prime numbers q = 2N − 1.
After a successful attack designed by Beunardeau, Connolly, Géraud, and
Naccache, the authors revised the protocol which was accepted for Round
1 of the Post-Quantum Cryptography Standardization Process orga-
nized by NIST. The security of this protocol is based on the assumption
that a so-called Mersenne Low Hamming Combination Search Problem
(MLHCombSP) is hard to solve. In this work, we present a reduction of
MLHCombSP to an instance of Integer Linear Programming (ILP). This
opens new research directions that are necessary to be investigated in
order to assess the concrete robustness of such cryptosystem. We propose
different approaches to perform such reduction. Moreover, we uncover a
new family of weak keys, for whose our reduction leads to an attack
consisting in solving < N3 ILP problems of dimension 3.

Keywords: Post-Quantum Cryptography · Public-key cryptography ·
Integer Linear Programming · Mersenne-based cryptosystem

1 Introduction

In [2], Aggarwal, Joux, Prakash, and Santha introduced a new public-key encryp-
tion scheme similar to the NTRU cryptosystem [12] that employs the properties
of Mersenne numbers.

A Mersenne number is an integer q = 2N − 1 so that N is prime. One
can associate to each element in the ring Zq the binary string representing the
unique representative 0 ≤ a < q of the class [a] ∈ Zq. The secret key is a
pair of elements F and G ∈ Zq so that their Hamming weight is h <

√
N/10.

Let R be a random element of Zq; the public key is given by the pair (R, T ≡
RF +G mod q). The security assumption (and the mathematical problem that
supports the robustness of this cryptosystem) is that it is hard to recover F and
G, knowing only R and T . This assumption is called Mersenne Low Hamming
Combination Search Problem (MLHCombSP).

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 41–55, 2019.
https://doi.org/10.1007/978-3-030-23696-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_3

42 A. Budroni and A. Tenti

This version is actually the second iteration of the cryptosystem, first pre-
sented in [1]. The security assumptions were based on a problem similar to
MLHCombSP called Mersenne Low Hamming Ratio Search Problem (MLHRa-
tioSP). That has been attacked by Beunardeau et al. in [6]. There the attack is
performed via a series of calls to an SVP-oracle. Its complexity has been esti-
mated by de Boer et al. in [7]. They also showed that a Meet-in-the-Middle
attack is possible using locality-sensitive hashing, which improves upon brute
force. However, Beunardeau et al. turned out to be the most effective of the two.
After the publications of these works, Aggarwal et al. revised the protocol [2] to
prevent the above attacks from being effective against full-scale ciphers.

This protocol has been accepted to the Round 1 of the Post-Quantum Cryp-
tography Standardization Process organized by NIST. However, it does not
appear among the proposals for Round 2.

1.1 Our Contribution/Outline

In this work we present a non-trivial reduction to a relatively low-dimensional
Integer Linear Programming (ILP) instance of the underlying mathematical
problem of [2]. The resulting instance of ILP produces the right solution with
probability p, that depends on the size of G. It is possible to perform a trade-off
between the size of the ILP problem to solve and the success probability.

In Sect. 2 we introduce notation and related work. Furthermore, we recap the
Beunardeau et al. attack against [1] with a generalization to the MLHCombSP.
Section 3 describes our reduction together with the success probability analysis.
There we describe variations in the description of the ILP to be solved, that
allow some flexibility for the attacker. In particular, one can perform a trade-off
between the success probability and the dimension of the resulting ILP. The
application of this trade-off is shown for two examples. In Sect. 4 we describe
a new family of weak keys and the probability of such a pair to appear. This
family is obtained by performing two independent rotations on F and G so that,
after these rotations, they become as small as possible. In this way the size of
the set of the weak keys increases. For example, for N = 1279 and h = 17
(parameters used in [6]), a random key is weak in the sense of Beunardeau et al.
with probability ∼ 2−34. It is possible to estimate that a random key becomes
weak after rotations with probability ∼ 2−11.

2 Preliminaries

Definition 1. Let N be a prime number and let q = 2N − 1. Then q is called a
Mersenne number. If q is also prime, then it is called Mersenne prime number.

Let seqN : {0, ..., q − 1} → {0, 1}N be the map which associates to each A
the corresponding N -bits binary representation seqN (A) with most-significant
bit to the left.

Denote with Zq the ring of integers modulo q. We extend the function seqN

also to elements in Zq. Let us consider an integer 0 ≤ B < q, seqN maps [B] ∈ Zq

MLHCombSP Can Be Reduced to an ILP Problem 43

to the N -bits binary representation of B. We define the Hamming weight w(F)
of F as the Hamming weight of seqN (F), i.e. the number of 1s in seqN (F).

Lemma 1. Let k ≥ 0 be a positive integer, let A be an N -bits number, and let
q = 2N − 1. Then seqN (2kA mod q) corresponds to a rotation of seqN (A) of
k positions to the left and seqN (2−kA mod q) corresponds to a rotation of k
positions to the right.

Proof. We prove it by induction on k. Write seqN (A) = (AN−1, ..., A1, A0),
where AN−1 is the most significant bit of A. Then we can represent A as

A = AN−1 · 2N−1 + ... + A1 · 2 + A0.

If we multiply A by 2 modulo q we obtain

2 · A ≡ AN−1 · 2N + AN−2 · 2N−1 + ... + A1 · 22 + A0 · 2 mod q

≡ AN−2 · 2N−1 + ... + A1 · 22 + A0 · 2 + AN−1 mod q.

Then seqN (2 · A) = (AN−2, ..., A0, AN−1), i.e. the left rotation of 1 position
of seqN (A).

By inductive hypothesis, seqN (2k · A) corresponds to the left rotation of k
positions of seqN (A), then seqN (2k+1 · A) = seqN (2 · 2k · A) corresponds to the
left rotation of one position of seqN (2k · A), that is the left rotation of k + 1
positions of seqN (A). The case right rotations of seqN (A) follows trivially. �

The security of the Aggarwal et al. cryptosystem [2] relies on the assumption
that the following two problems are hard to solve.

Mersenne Low Hamming Ratio Search Problem. Let q = 2N − 1 be a
Marsenne prime number, h < N an integer, F and G two integers chosen at
random from the set of N -bits numbers with Hamming weight h. Let H < q be
the non-negative integer such that

H ≡ F

G
mod q. (1)

The Mersenne Low Hamming Ratio Search Problem (MLHRatioSP) is to find
(F,G) knowing h and H.

Mersenne Low Hamming Combination Search Problem. Let q = 2N − 1
be a Marsenne prime number, h < N an integer, R a random N -bits number, and
F,G integers chosen at random from the set of N -bits numbers with Hamming
weight h. Let T < q be the non-negative integer such that

RF + G ≡ T mod q. (2)

The Mersenne Low Hamming Combination Search Problem (MLHCombSP) is
to find (F,G) knowing h and the pair (R, T).

In [1], the authors suggest to choose N and h to be such that
(
N−1
h−1

) ≥ 2λ

and 4h2 < N , for a desired λ-bit security level. After the publications of the
attacks by Beunardeau et al. [6] and De Boer et al. [7], the authors revised the
choice of the parameters [2] to be such that h = λ and 10h2 < N .

44 A. Budroni and A. Tenti

2.1 Previous Attacks

Brute Force Attack. In [1], Aggarwal et al. showed that a brute force attack to
the MLHRatioSP would require

(
N−1
h−1

)
trials. This attack consists in assuming

that one of the two secret numbers, say F , has a 1 in the most significant bit
(condition that can be obtained by a rotation of seqN (F)). Then one should
try, for every N -bits number with 1 as most significant bit and weight h, if the
corresponding G through relation (1) has weight h. This approach does not apply
to the MLHCombSP, which instead requires

(
N
h

)
trials.

Meet-in-the-Middle Attack. De Boer et al. [7] showed that a Meet-in-the-Middle
attack to MLHRatioSP is possible using locality-sensitive hashing with complex-

ity Õ
(√(

N−1
h−1

))
on classical computers and Õ

(
3

√(
N−1
h−1

))
on quantum comput-

ers. This can be generalized to the MLHCombSP.

Weak Keys and Lattice Attack. Following the parameters’ setting in [1],
Beunardeau et al. found a weak key attack to the MLHRatioSP for the case
when both F and G happen to have bits set to 1 only in their right halves, i.e.
F,G <

√
2N [6]. This event happens with probability 2−2h.

Following the above idea, Beunardeau et al. also presented a more general
attack to the MLHRatioSP which consists in guessing a decomposition of F and
G into windows of bits such that all the ‘1’s are “close” to the right-most bit
of such windows. Then F and G can be recovered through a lattice reduction
algorithm such as LLL [13]. Even if Beunardeau et al. showed that this attack
practically hits the security estimations in [1], they did not present any clear
asymptotic analysis of its complexity. However, de Boer et al. [7], computed the
complexity of this attack.

In [2], the authors stated that the above attack likely generalizes to the
MLHCombSP case. Building directly on the work presented in [7], we show in
the next subsection that this is true. However we refer the reader to [6] and [7]
for a more detailed description.

2.2 The Beunardeau et al. Attack on MLHCombSP

Since F is taken at random among the N -bits numbers with Hamming weight
h, w.h.p. the ‘1’ valued bits of seqN (F) do not appear in big clusters along
the N possible positions. One then computes an interval-like partition P of
{0, . . . , N − 1} at random, i.e. each set of P is of the form {a, a+1, . . . , b− 1, b},
with 0 ≤ a < b < N . If each ‘1’ valued bit of seqN (F) falls in the right-half of
one of the sets of P, then each one of them corresponds to a binary substring
of seqN (F), corresponding in turn to a “small” number. Therefore, the array of
these numbers can be seen as a representation of F .

Let P = {P1, .., Pk} and Q = {Q1, ..., Ql} be two interval-like partitions of
{0, ..., N−1} and (R, T) ∈ Z

2
q be public parameters of an MLHCombSP instance.

Let pi, qi be the smallest elements of Pi, Qi respectively. Let us consider the
following integer lattice.

MLHCombSP Can Be Reduced to an ILP Problem 45

LP,Q,R,T =

{
(x1, ..., xk, y1, ..., yl, u) | R ·

k∑
i=1

2pi · xi +
l∑

j=1

2qi · yi − uT ≡ 0 mod q

}

The above defined lattice LP,Q,R,T has determinant det(LP,Q,R,T) = q and
dimension d = k + l + 1. Let (F,G) ∈ Z

2
q be such that w(F) = w(G) = h and

RF + G ≡ T as in a MLHCombSP instance. Define the vector

s = (f1, ..., fk, g1, ..., gl, 1) ∈ LP,Q,R,T ,

where 0 ≤ fi < 2|Pi| and 0 ≤ gj < 2|Qj | are the unique natural numbers such that
∑k

i=1 fi·2pi = F and
∑l

j=1 gj ·2qj = G, where |·| denotes the cardinality operator.
One wishes to find the vector s through some lattice reduction algorithm applied
to LP,Q,R,T .

The lattice LP,Q,R,T is very similar to the one defined in [7] for the MLHRa-
tioSP and their success probability analysis of the attack holds for this case too.
Therefore the following conclusions follow directly from the work of de Boer
et al.

Given two partitions P and Q of {0, ..., N −1} with block size at least N/d+
Θ(log N), where d = k + l + 1 with k = |P | and l = |Q|. The success probability
of finding the vector s ∈ LP,Q,R,T using a SVP-oracle is 2−2h+o(1).

Remark 1. The above attack is actually a simplified version of the attack of
Beunardeau et al. Indeed, a more general attack can be made by considering the
variation of partition sizes and the fraction of each partition block. This vari-
ant of the attack has success probability 2−(2+δ)h+o(1), for some small constant
δ > 0 [7].

Remark 2. In practice, instead of an SVP-oracle, the LLL algorithm [13] which
has polynomial complexity is used. This decreases the overall complexity of the
attack, but the success probability is decreased too [7].

The above attack was made against the parameters setting contained in the
first version of Aggarwal et al. work. However, as already mentioned, in the
most recent version of their work the authors revisited the protocol in order to
withstand it.

2.3 Integer Linear Programming

An Integer Linear Programming (ILP) problem in his canonical form is defined
as follows. Given a matrix A ∈ Q

m×n and two vectors c ∈ Q
n and b ∈ Q

m,
minimize (or maximise) the quantity

cTx

subject to ⎧
⎪⎨

⎪⎩

Ax ≤ b,

x ≥ 0,

x ∈ Z
n

An ILP-oracle is an oracle that solves any ILP instance.

46 A. Budroni and A. Tenti

Solving a general ILP is proved to be NP-hard [17]. Nevertheless, understand-
ing the complexity of specific families of ILP problems is not an easy task: it can
widely vary from case to case [18]. For example, when the number of variables
is fixed, or when the problem can be reduced to a simple Linear Programming
problem, it is proved that it has polynomial complexity [14,20].

Nowadays there exists families of ILP solving algorithms, for example Branch
and Bound [16], Lagrange relaxation [10], Column Generation [3], and the
Cutting Planes [15], whose implementations [9,11] are able to solve in practice
relatively challenging instances.

3 ILP Reduction

Let R, T be two random elements of Z
∗
q . We define the map ϕ : Zq → Zq

sending X 	→ −RX +T . Any point on the graph of ϕ, namely {(X,ϕ(X))}X∈Zq
,

satisfying the condition that both coordinates have Hamming weight equals to
h is a solution to the MLHCombSP. We denote such condition as the graph
condition.

We notice that ϕ is bijective, for it is the combination of two bijective func-
tions (i.e. multiplication times a nonzero element of a field and sum with an
element of the underlying group). This means that for any subset U ⊆ Zq, the
restriction ϕ|U is injective. Hence, | Im(ϕ|U)| = |U|. We assume that Im(ϕ|U) is
a random element of the family of subsets of cardinality |U| of Zq.

Let V be another subset of Zq. The probability that a random element of
Im(ϕ|U) is in V is given by |V|

2N−1
. Hence the expected size of Im(ϕ|U) ∩ V is

given by the mean of the Hypergeometric distribution [8] in |U| draws, from a
population of size 2N − 1 that contains |V| objects that yield a success. That is:

E(| Im(ϕ|U) ∩ V|) =
|U||V|
2N − 1

. (3)

Let EG be the number of ‘0’ valued bits before the first ‘1’ valued bit in
seqN (G). In this case, one can set V = {2N−EG−1, . . . , 2N−EG − 1} and |V| =
2N−EG . With such a bound on G, given a U of size < 2EG , with F ∈ U , there is
only one expected solution to the system of constraints:

⎧
⎪⎨

⎪⎩

T − Rx ≡ y mod q,

x ∈ U ,

y ∈ V.

(4)

and one solution is certainly x = F , y = G.
Our attack is meant to find solid choices for U and V to use to solve (4).

Remark 3. For every fixed instance of x ∈ {0, . . . , q − 1}, there is exactly one
a ∈ Z that satisfies 0 ≤ T +aq−Rx < q. In particular, this means that for every
fixed instance of x ∈ {0, . . . , q − 1} there exists at most one a ∈ Z satisfying
2h ≤ T + aq − Rx ≤ 2N − 2N−h.

MLHCombSP Can Be Reduced to an ILP Problem 47

It is possible to represent (4) in terms of integers:
⎧
⎪⎨

⎪⎩

T + qa − Rx = y,

x ∈ U ,

y ∈ V.

(5)

Here, there is an abuse of notation: we intend U as the intersection U ∩ {2h −
1, . . . , 2N − 2N−h} and V as the intersection V ∩ {2h − 1, . . . , 2N − 2N−h}.

Remark 3 implies that the number of solutions of the system is smaller than
or equal to | Im(ϕ|U) ∩ V|. So the expected number of solutions to (5) is smaller
than or equal to |U||V|

2N−1
.

For some choices of U and V, one can find solutions to (5) using an ILP-oracle.
Let U = {lx3 , lx3 +1, . . . ,ux3 −1,ux3} for some lx3 and ux3 and let V =

{ly, ly +1, . . . ,uy −1,uy} for some ly and uy. Assuming that (5) has a unique
solution, then it is detected by the following ILP instance:

Tx1 + qx2 − Rx3 = y, (6)

with constraints ⎧
⎪⎨

⎪⎩

x1 = 1,

lx3 ≤ x3 ≤ ux3 ,

ly ≤ y ≤ uy .

(7)

Finding good choices on U and V (i.e. small and containing F and G with
high probability) is difficult for the ILP instance (6). At the cost of increasing
the dimension of the ILP problem to be solved, one can reduce the size of U .

One such way is to fully exploit the fact that F has weight exactly h to
establish the following ILP problem in the integer variables x1, x2, x3, n1, . . . , nN :

Tx1 + qx2 − Rx3 + 0n1 + · · · + 0nN = y, (8)

with constraints ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = 1,

x3 =
∑N

i=1 ni2i−1,

0 ≤ ni ≤ 1, for i = 1, . . . , N
∑n

i=1 ni = h,

ly ≤ y ≤ uy .

(9)

Using these constraints results in having U of (5) of size |U| =
(
N
h

)
. On the

other hand, the dimension of the ILP to be solved moved from being 3 to being
N + 3. In Subsects. 3.2 and 3.3, we explore ways to perform trade-offs in order
to choose in advance either the number of variables of the ILP to be solved or
the size of U .

48 A. Budroni and A. Tenti

3.1 Cyclic Shifts

Consider the multiplication in both sides of (2) by 2k, for some k > 0,

2kRF + 2kG ≡ 2kT mod q. (10)

Define R̃ ≡ 2kR mod q, T̃ ≡ 2kT mod q, F̃ ≡ 2kF mod q and G̃ ≡ 2kG
mod q. Note that w(F̃) = w(G̃) = h. Through (10) we can define two new
MLHCombSP instances:

RF̃ + G̃ ≡ T̃ mod q, (11)

where both F and G are rotated by k positions to the left, and

R̃F + G̃ ≡ T̃ mod q, (12)

where only G is rotated. By combining (11) and (12) we can rotate independently
F and G. At the cost of N2 rotations we can always find the cyclic shifts that
minimizes both F and G. Performing the shifts greatly improves the probability
that for small U and V of the form {2l, . . . , 2l+1}, F and G solve (5). This
results in a family of weak keys not considered in [6]. A complete analysis of the
improvements is reported in Sect. 4.

3.2 Portion of F

As mentioned above, it is possible to reduce the dimension of the ILP (8) to be
solved at the cost of increasing the size of U . One of such methods consists in
considering only the most significant bits of F in the constraints. Let γ be in the
real interval (0, 1]. Let h̃ = �γh
 and let Ñ = �γN
. It is possible to solve the
following ILP problem instead of (8):

Tx1 + qx2 − Rx3 + 0n1 + · · · + 0nÑ = y, (13)

with constraints ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = 1,

|∑Ñ
i=1 ni · 2i−1 − x3/2N−Ñ | < 1,

0 ≤ ni ≤ 1, for i = 1, . . . , Ñ

h̃ − t ≤ ∑n
i=1 ni ≤ h̃ + t,

ly ≤ y ≤ uy .

(14)

for some 0 ≤ t ≤ h̃.

Proposition 1. For fixed n1, . . . , nÑ there exist exactly 2N−Ñ possible x3 sat-
isfying the first inequality in (14).

Proof. Let write a general x3 as x3 = FN−12N−1 + · · · + F020. It follows that

x3/2N−Ñ = FN−12Ñ−1 + · · · + FN−Ñ20 + FN−Ñ−12
−1 + · · · + F02Ñ−N .

We notice that FN−1, . . . , FN−Ñ are set to be equal to nÑ , . . . , n1 by (14), while
the remaining coefficients can assume values in {0, 1}. There are exactly 2N−Ñ

such x3. �

MLHCombSP Can Be Reduced to an ILP Problem 49

Let us compute the size of U that arises from the given constraints. Thanks to
Proposition 1, the size of U is determined only by the constraints on n1, . . . , nÑ .
The conditions to be satisfied are:

{
0 ≤ ni ≤ 1, for 1 ≤ i ≤ Ñ ,

h̃ − t ≤ ∑Ñ
i=1 ni ≤ h̃ + t,

for some 0 ≤ t ≤ h̃. In this scenario, the solution to the MLHCombSP is not
guaranteed to be a solution to the above system. Indeed, F satisfies the above
constraints if and only if its most Ñ significant bits contain between h̃ − t and
h̃ + t ‘1’ valued bits. This probability is given by:

P(F ∈ U) =

∑h̃+t

i=h̃−t

(
h
i

)(N−h
Ñ−i

)

(
N
Ñ

) . (15)

Such an U has size

|U| =
h̃+t∑

i=h̃−t

(
Ñ

i

)
2N−Ñ .

3.3 Merging

A possible approach to reduce the dimension of the ILP (8) is to merge more
than one bit in a single ni. Say, for example, that we merge the bits in pairs;
this means that each one of the ni can assume values in {0, 1, 2, 3} and that the
total weight varies between h and 2h, as we prove in Proposition 2.

Example 1. Let us consider F = (00010011). By merging bits in pairs and
assuming the MILP gives the correct solution, one gets n1 = (00), n2 = (01),
n3 = (00), n4 = (11). The total sum results in n1 + n2 + n3 + n4 = 4 ≤ 2h = 6.

Using this method, it is possible to merge an arbitrary number of bits
together. Let S = �N/s
. The instance of ILP that emerges after merging bits
in groups of s is the following:

Tx1 + qx2 − Rx3 + 0n1 + · · · + 0nS = y (16)

under the conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1,

lx2 ≤ x2 ≤ ux2 ,

2h − 1 < y < 2N − 2N−h,

0 ≤ ni ≤ 2s − 1, for 0 ≤ i ≤ S,

h ≤ ∑S
i=1 ni < 2s−1h,

x3 =
∑S

i=1 2s(i−1)ni.

(17)

50 A. Budroni and A. Tenti

Hence the size of the ILP can be established a priori. The more bits one merges,
the harder it is that the ILP will return the correct solution, for it is expected
that the system of inequalities has more than one solution.

The following proposition shows that a solution (X,ϕ(X)) satisfying the
graph condition is also a solution to the system of inequalities (17) and, therefore,
it can be obtained via the ILP-oracle with the instance (16).

Proposition 2. Let F,G ∈ Zq so that ϕ(F) = G and so that the Hamming
weight of seqN (F) is h. Then there exists an instance (y, x2, x3, n1, . . . , nS) with
x3 = F and y = G that solves the system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T + x2q − Rx3 = y,

2h − 1 < y < 2N − 2N−h,

x3 =
∑S

i=1 2s(i−1)ni,

0 ≤ ni ≤ 2s − 1, for 0 ≤ i ≤ S,

h ≤ ∑S
i=1 ni ≤ 2s−1h.

(18)

Proof. The first equation and the first inequality are satisfied by the definition
of ϕ. The second equation and the second inequality represent the fact that we
are writing x3 in base 2s. Hence the only remaining thing to prove is that the
last inequality holds.

Let F = F (0)20 + . . . + F (N − 1)2N−1. We notice that ni =
∑s−1

j=0 F ((i −
1)s + j)2j . For the fact that

∑N−1
i=0 F (i) = h, we conclude that

S∑

i=1

ni =
S∑

i=1

s−1∑

j=0

F ((i − 1)s + j)2j ≥
S∑

i=1

s−1∑

j=0

F ((i − 1)s + j) = h.

We prove the second inequality by induction on h. For h = 1, ni is a string
of weight 1 of s bits. That is at most 2s−1.

Assuming that the inequality holds for h − 1. If ni ≤ 2s−1 for every i, the
inequality is satisfied. Hence we assume that there exists one j for which nj >
2s−1. This means that the Hamming weight of seqs(nj) ≥ 2. Then one gets:

∑

i

ni ≤ 2s +
∑

i�=j

ni.

The sum of the Hamming weights of seqs(nj), j �= i is at most h−2. By inductive
hypothesis, it follows that

∑

i

ni ≤ 2s + 2s−1(h − 2) = 2s−1h.

The Proposition is proved. �

The following Proposition determines the size of U that one obtains from
considering the ILP (17).

MLHCombSP Can Be Reduced to an ILP Problem 51

Proposition 3. Let U be the set containing all 0 ≤ F < q, whose 2s-ary rep-
resentation satisfies 0 ≤ ni ≤ 2s − 1, for 0 ≤ i ≤ S and h ≤ ∑S

i=1 ni ≤ 2s−1h.
Then

|U| =
2s−1h∑

d=h

l2s(S, d),

where lt(n, d) is the number of integer solutions to z1 + . . . + zn = d, 0 ≤ xi < t.

Proof. Let d be one of the values of
∑S

i=1 ni. For each d, we consider all the
possible configurations of n1, . . . , nS . Since each of these is bounded by 2s − 1,
the number of legitimate configurations is l2s(S, d). �

Examples

In the following table we present the size of the resulting ILP instances depending
on the value of s and the corresponding success probability in two concrete
cases. We selected different choices of s and set V = {2N−t−1 +2h−1, . . . , 2N−t −
2N−t−h} for t satisfying log2(|U|) + t ≥ N . The probability of G ∈ V is reported
and corresponds to the success probability. Indeed, if G ∈ V then (F,G) is a
solution to the system of inequalities given by the intersection of (16) with (17)
and we expect it is its unique solution.

Following the attack here presented, we computed the probability that, given
a fixed s, EG is so that log2(|U|) + EG ≥ N . The random variable EG is dis-
tributed according to the negative hypergeometric distribution [4], where we are
looking for the probability that the first success (first ‘1’ valued bit) happens at
the EG-th trial, given a random sample without replacement from a population
of size N containing h successes.

The parameters chosen are N = 1279 and h = 17 (Table 1).

Table 1. Success probabilities for N = 1279 and h = 17

s Probability of success Number of variables in ILP

1 2−2.56 1282

2 2−3.97 643

3 2−6.13 430

4 2−9.13 323

5 2−12.94 259

6 2−17.33 217

7 2−21.73 186

8 2−26.07 163

9 2−30.47 146

10 2−34.06 131

52 A. Budroni and A. Tenti

We notice that for these parameters, N < 10h2, so it violates the guidelines
given in [2]. The reason for which these where chosen is to compare the success
probability with the attack by Beunardeau et al. [6], which was performed against
the previous version of the protocol.

The same experiments were reproduced with N = 1279 and h = 11 (Table 2).

Table 2. Success probabilities for N = 1279 and h = 11

s Probability of success Number of variables in ILP

1 2−1.36 1282

2 2−1.78 643

3 2−2.80 430

4 2−4.29 323

5 2−6.26 259

6 2−8.64 217

7 2−11.18 186

8 2−13.71 163

9 2−16.27 146

10 2−18.42 131

Remark 4. While solving MLHRatioSP MLHCombSP for parameters N =
1279 and h = 17 is enough to break the cryptosystem described in [1], we remark
that the new security parameters suggested in [2] are h = 256 and N > 10h2.

Remark 5. It is possible to generalize all the presented approaches used to
account for the weight of F to account also the weight of G. However this would
result in an increasing of the dimension of the ILP problem. One would nonethe-
less significantly increase the probability of success.

Remark 6. The above work can be easily adjusted in order to solve the MLHRa-
tioSP by taking T = 0 and eliminating the variable x1.

4 A New Family of Weak Keys

In [6] a family of weak keys was introduced for the MLHRatioSP. Those were the
ones for which all the ‘1’ valued bits appeared in the right hand side of seqN (F)
and seqN (G). As noted in [2], one can break keys is this family by performing
a rational reconstruction [19] of the quotient H. Aggarwal et al. also claim that
the family of weak keys described in [6] extends to the MLHCombSP as well. A
key in this family appears with probability 2−2h.

Using the rotations described in Sect. 3.1 and the ILP instance (5), we show
that this family can be extended. One can notice that many keys which have a

MLHCombSP Can Be Reduced to an ILP Problem 53

long sequence of zeros in the middle of their bit-sequence representation are not
considered as weak keys in [6]. However, we show that this is a weakness that
can be exploited.

As mentioned above, one can perform up to N2 shifts in order to get F and G
as small as possible, so that it is more likely that EF + EG ≥ N . Let EF and EG

be respectively the length of the largest sequences of consecutive zeros of F and
G. The distribution of such values of EA is more difficult to compute and require
recursion. Again, the problem is modelled as an urn problem with h white balls
and N −h black balls, where all the balls are samples without replacement. The
probability P(EA ≥ k) can be thought as the complementary of the probability
that there are no sequences of consecutive black balls of length k. The latter, we
call p̄(b, w, k) and is recursively defined as follows:

p̄(b, w, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if b ≤ k,

0 if b > k and w = 0,
w

w+b−k
p̄(b, w − 1, k)+

+
∑k−1

i=1

(∏i−1
j=0

b−j
w+b−j

)
w

w+b−k
p̄(b − i, w − 1, k) otherwise.

Remark 7. The probability given here is actually slightly smaller than the actual
probability that the best shift has EA ≥ k, for the current formula does not
consider that the sequences of consecutive zeros can run from one extreme to the
other of seqN (A). As an example, seq10(A) = (0010001000) will give EA = 5,
while the p̄ distribution will consider for A that the longest sequence of zeros is
3.

Computing this expression is challenging even for small numbers. The esti-
mates that we used is the following. Let Ω be the family of multisets

Ω =

{

{0a0 , . . . , hah}|a0 ≥ ai ≥ 0 for i > 0,
h∑

i=1

ai = N − h

}

.

This family represents all the possible sequences of zeroes and ones of length N
and weight h after the best shift. Let ψ : Z → Ω be the function that assigns an
element of weight h in Zq to the corresponding multiset in Ω. Due to symmetries,
there exist A,B ∈ Ω so that |ψ−1(A)| �= |ψ−1(B)|, so the probability that for
a random multiset S ∈ Ω, a0 = k is different from p̄(h,N − h, k). Nevertheless,
experiments show that the two distributions are very similar. Hence we used the
former distribution, which is easier to compute, for the numerical examples.

These computations reveal a new family of weak keys: namely, if F and
G are so that EF + EG ≥ N . One can perform N2 rotations and guess up to
N − �N/h
 − h possible EF to find a unique solution to the intersection of (6)
and (7), where U = {2N−EF −1 + 2h−1, . . . , 2N−EF − 2EF −h+1 + 1} and where
V = {2EG−1 +2h−1, . . . , 2EG − 2EG−h+1 +1}. Such solution is obtained by asking
the ILP-oracle to solve instances of dimension 3.

For N = 1279 and h = 17, the expected EA is ≈ 256. For these parameters
and using the described estimates, one gets that P(EF + EG ≥ N) ≈ 2−11.

54 A. Budroni and A. Tenti

This improves upon Beunardeau et al. work for which approximately 1 over 234

keys is weak.

5 Conclusions and Future Work

We provide a generalization of the Beunardeu et al. attack to the case of MLH-
CombSP that runs with the same time complexity, as conjectured by Aggarwal
et al. in [2].

We also extend the family of weak keys that should be avoided when gener-
ating the private key (F,G). Those keys can be successfully attacked with < N3

queries to an ILP-oracle that solves ILP instances of dimension 3.
Results in Table 1 show that, using an ILP-oracle, the success probability can

be significantly higher compared to the one of the Beunardeu et al. attack [6,7].
In practice, we would need to replace the ILP-oracle with an ILP solver. Since
many practical ILP algorithms do not provide the exact solution, we expect the
success probability to decrease, in the sense that, even though the system of
inequalities has exactly one solution, it is not detected by the ILP solver.

In general, it is not easy to determine the complexity of an ILP instance.
Unlike Linear Programming, the dimension of ILP is not determinant in estab-
lishing whether an instance is feasible or not to solve [5]. Therefore the size of the
ILPs emerging from our reduction is not necessarily related to their hardness.

Unfortunately, the vast majority of the ILP solvers available does not support
big numbers arithmetic. This prevented us from performing noteworthy experi-
ments since it is an essential requirement when considering parameters that are
cryptographically relevant. With a dedicated implementation it would be possi-
ble to perform such experiments that would provide empirical hints about the
real complexity of those ILP instances.

Anyhow, if one wanted to use the Aggarwal et al. cryptosystem, it is advisable
to investigate the nature of those ILP instances, to be sure that they do not fall
into any category that allows a fast solving algorithm. We remark that ILP
problems in Sect. 3 have only one expected possible solution and large portions
of the variables are bounded by relatively tight constraints.

Aknowledgments. The authors thank Igor Semeav and Qian Guo for useful sugges-
tions in the early stages of this work, and greatly thank Phillippe Samer for insightful
discussions on ILP. The authors are also grateful to anonymous reviewers for construc-
tive comments.

References

1. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosys-
tem via mersenne numbers. Cryptology ePrint Archive, Report 2017/481, ver-
sion:20170530.072202 (2017)

2. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosystem
via mersenne numbers. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 459–482. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 16

https://doi.org/10.1007/978-3-319-96878-0_16
https://doi.org/10.1007/978-3-319-96878-0_16

MLHCombSP Can Be Reduced to an ILP Problem 55

3. Appelgren, L.: A column generation algorithm for a ship scheduling problem.
Transp. Sci. 3, 53–68 (1969). https://doi.org/10.1287/trsc.3.1.53

4. Berry, K.J., Mielke Jr., P.W.: The negative hypergeometric probability distribu-
tion: sampling without replacement from a finite population. Percept. Motor Skills
86(1), 207–210 (1998). https://doi.org/10.2466/pms.1998.86.1.207

5. Bertsimas, D., Weismantel, R.: Optimization Over Integers. Dynamic Ideas, Bel-
mont (2005)

6. Beunardeau, M., Connolly, A., Graud, R., Naccache, D.: On the hardness of
the mersenne low hamming ratio assumption. Cryptology ePrint Archive, Report
2017/522 (2017)

7. de Boer, K., Ducas, L., Jeffery, S., de Wolf, R.: Attacks on the AJPS mersenne-
based cryptosystem. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 101–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-79063-3 5

8. Casella, G., Berger, R.L.: Statistical inference, vol. 2. Duxbury Pacific Grove, CA
(2002)

9. CPLEX Optimizer, I.: IBM ILOG CPLEX optimization studio (2018)
10. Fisher, M.L.: The lagrangian relaxation method for solving integer programming

problems. Manag. Sci. 27(1), 1–18 (1981). https://doi.org/10.1287/mnsc.27.1.1
11. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018)
12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-

tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982). https://doi.org/10.
1007/BF01457454

14. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

15. Marchand, H., Martin, A., Weismantel, R., Wolsey, L.: Cutting planes in integer
and mixed integer programming. Discrete Appl. Math. 123(1–3), 397–446 (2002).
https://doi.org/10.1016/S0166-218X(01)00348-1

16. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch and bound algo-
rithms. Discret. Optim. 19(C), 79–102 (2016). https://doi.org/10.1016/j.disopt.
2016.01.005

17. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986).
https://doi.org/10.1002/net.3230200608

19. Wang, P.S.: A p-adic algorithm for univariate partial fractions. In: Proceedings
of the Fourth ACM Symposium on Symbolic and Algebraic Computation, SYM-
SAC 1981, pp. 212–217. ACM, New York (1981). https://doi.org/10.1145/800206.
806398

20. Wolsey, L.: Integer Programming. Wiley Series in Discrete Mathematics and Opti-
mization. Wiley, New York (1998)

https://doi.org/10.1287/trsc.3.1.53
https://doi.org/10.2466/pms.1998.86.1.207
https://doi.org/10.1007/978-3-319-79063-3_5
https://doi.org/10.1007/978-3-319-79063-3_5
https://doi.org/10.1287/mnsc.27.1.1
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1016/S0166-218X(01)00348-1
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1145/322276.322287
https://doi.org/10.1002/net.3230200608
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398

Simple Oblivious Transfer Protocols
Compatible with Supersingular Isogenies

Vanessa Vitse(B)

Univ. Grenoble Alpes, CNRS, Institut Fourier, 38000 Grenoble, France
vanessa.vitse@univ-grenoble-alpes.fr

Abstract. The key exchange protocol of Diffie and Hellman, which can
be defined for any group, has the special feature of using only exponen-
tiations. In particular, it can also be instantiated in Kummer varieties,
which are not groups, and in the post-quantum isogeny-based setting.

In this article, we propose a new simple oblivious transfer (OT) pro-
tocol, based on Diffie–Hellman key exchange, that only uses exponentia-
tions; we also revisit the older Wu–Zhang–Wang scheme. Both protocols
can be directly instantiated on fast Kummer varieties; more importantly,
they can also be transposed in the isogeny setting. The semantic security
of our proposals relies on the hardness of non-standard versions of the
(supersingular) DH problem, that are investigated within this article. To
the best of our knowledge, these protocols are the simplest discrete-log
based OT schemes using only exponentiations, and the first isogeny-
based OT schemes.

Keywords: Oblivious transfer · Diffie–Hellman key exchange ·
Supersingular isogeny · Post-quantum cryptography

1 Introduction

The key exchange protocol of Diffie and Hellman is undoubtedly the single most
influential concept in the history of modern cryptography, and though more than
forty years old, it continues to see new developments. A convenient feature of
the Diffie–Hellman protocol is that it can be instantiated in any group; current
applications no longer use the multiplicative group of finite fields where it was
first defined but rather the group of points of an elliptic curve or Jacobian
variety. Interestingly, the key exchange does not use group products, but only
exponentiations, or more precisely commuting exponentiation maps. This benign
observation actually allows the generalization of the Diffie–Hellman protocol to
non-group settings, two of which we will describe now.

The first one is Kummer varieties, which are formed from Jacobian varieties
by identifying a point and its inverse. A Kummer variety is not a group, but
nevertheless inherits some of the operations of its parent Jacobian: in particular,
there are well-defined (in additive notations) multiplication maps [D] �→ [aD]
and differential addition {[D], [D′]} �→ {[D+D′], [D−D′]}. These operations are
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 56–78, 2019.
https://doi.org/10.1007/978-3-030-23696-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_4

Simple Oblivious Transfer Protocols Compatible 57

sufficient for implementing Diffie–Hellman key exchange, and more importantly,
they are usually faster than their Jacobian counterparts. For elliptic curves,
this corresponds to the famous x-only Montgomery ladder. The use of Kummer
varieties in higher genus is more recent, and their performances in genus 2 make
them competitive alternatives to elliptic curves [5,22].

The second setting is isogeny-based cryptography (first proposed in [11,23,
24]), whose main advantage over groups is its resistance against quantum attacks.
The most prominent algorithm in this setting is the SIDH key exchange of De
Feo, Jao and Plût [12], which is adapted from Diffie–Hellman: the group of points
of a single elliptic curve is replaced by the set of all supersingular elliptic curves
defined over a finite field Fp2 , and exponentiation maps are replaced by isogenies
of prescribed degrees. In this context, the analog of the discrete logarithm prob-
lem is the computational supersingular isogeny problem: given two supersingular
elliptic curves E and E′, and possibly additional information, find an isogeny φ
from E to E′. There is currently no known subexponential quantum algorithm
for solving this problem. A variant, called CSIDH, has been proposed recently by
Castryck et al. [8]; it is currently slower than SIDH, and asymptotically weaker
because it is subject to the subexponential quantum attack of [9], but it has
smaller key sizes and relies on more natural security assumptions.

The analogy between the group setting and the supersingular isogeny setting
is far from being an exact correspondence, though. Consequently, the adaptation
of a DLP-based protocol using only exponentiations to this second setting can be
quite challenging (while on the other hand, the adaptation to Kummer varieties is
trivial). However, we believe that most exponentiation-only DLP-based protocols
can be modified to work with supersingular isogenies. The goal of this article is
to demonstrate this claim on two examples: the first is a new oblivious transfer
protocol, while the second is an older scheme of Wu, Zhang and Wang [27].
Both protocols are exponentiation-only, and we explain how to convert them
into (C)SIDH-based protocols.

Oblivious transfer is among the fundamental tools of cryptography. It can
be presented quite simply: Alice knows two secrets, say s0 and s1. Bob wants
to know one of these secrets, but he does not want Alice to know which one.
Oblivious transfer protocols (more precisely here,

(
2
1

)
-oblivious tranfer) resolve

exactly that, allowing Bob to learn the secret of his choice without learning any-
thing about the other secret, and without divulging anything about his choice to
Alice. Introduced by Rabin [21] and Even et al. [14], oblivious transfer is a uni-
versal building block for secure multiparty computations [16], and a number of
constructions have been proposed. In many protocols, the security relies on the
computational hardness of either the RSA problem or the Diffie–Hellman prob-
lem, or variants thereof. In this article, we are interested in the latter (DH-based
protocols); the most well-known are Bellare–Micali’s, Naor–Pinkas’s and Chou–
Orlandi’s [4,10,17]. To the best of our knowledge, only Wu, Zhang and Wang’s
construction [27] relies solely on exponentiations, but it requires additional vali-
dation measures to be secure, see Sect. 2.1. And while several post-quantum OT
schemes have been proposed (most notably by Peikert et al. [19]; see also [15]
for more references), none of them are based on supersingular isogenies.

58 V. Vitse

The first contribution of this article is the study and construction of DH-
based oblivious transfer schemes that use only exponentiations (Sect. 2). We
begin by reviewing the protocol of Wu, Zhang and Wang, explaining how to
improve its security. We then propose a new, conceptually simple oblivious trans-
fer scheme. Because it can be straightforwardly adapted to work on fast Kum-
mer varieties, we believe this protocol to be interesting on its own, outside of the
post-quantum setting. For its analysis (Sects. 2.3 and 2.4), we define a notion of
semantic security of an oblivious transfer scheme, capturing the computational
intractability for the receiver of gaining information on both of Alice’s secrets.
The security of our new protocol then relies on the hardness of a new variant of
the Diffie–Hellman problem, the “2-inverse problem”. We also analyze the Wu–
Zhang–Wang protocol, showing that in the random oracle model (and only in
this model), its security is equivalent to the hardness of a second variant of the
Diffie–Hellman problem. Of course, these two problems deserve more scrutiny,
but we give some arguments in favor of their intractability. Then after some
background on the SIDH setting, we present in Sect. 3 the corresponding version
of both OT protocols, raising some interesting open problems along the way.
The last section deals with their security, which mainly relies on the hardness
of the isogeny versions of the previous problems. It turns out that the security
panorama is somewhat different in the group setting, the SIDH and the CSIDH
setting, see Fig. 1.

Setting Wu–Zhang–Wang protocol New OT protocol

Groups
UC sec. (ROM) vs passive adv. [13]

Semantic sec. (ROM) vs malicious adv.
Not semantic sec. (IND-CPA) vs malicious adv.

UC sec. (ROM) vs passive adv. [13]
Semantic sec. (IND-CPA) vs malicious adv.

SIDH [12] UC sec. (ROM) vs passive adv. [13]
Semantic sec. (IND-CPA) vs malicious adv.

UC sec. (ROM) vs passive adv. [13]
Semantic sec. (IND-CPA) vs malicious adv.

CSIDH [8] Semantic sec. (IND-CPA) vs malicious adv. Semantic sec. (IND-CPA) vs passive adv.
Not secure vs malicious adv.

Fig. 1. Security panorama, conditional on the hardness of the underlying problems.
The underlying encryption scheme is either modeled as a random oracle (ROM) or
assumed to be IND-CPA.

Related Works. Since the first version of this article, two preprints have been
posted on the same topic. The first paper, by Barreto, Oliveira and Benits [2],
proposes a supersingular isogeny oblivious transfer protocol that does not derive
from an exponentiation-only algorithm. Instead, it is an adaptation of Chou–
Orlandi’s protocol [10]. The difficulty is to replace the group product appearing
in the protocol; the solution of Barreto et al. requires the use by Alice and Bob
of a secure coin-flipping mechanism. Their protocol is about as efficient as ours,
but this extra mechanism makes it somewhat less natural.

The second paper is a recent preprint by Delpech de Saint Guilhem, Orsini,
Petit and Smart [13]. Their work is quite similar to ours: realizing the impor-
tance of exponentiation-only algorithms, they independently arrived at the same
protocol as the one proposed here, and seem to have rediscovered the Wu–Zhang–
Wang OT scheme. Their focus, however, is more directed toward the definition of

Simple Oblivious Transfer Protocols Compatible 59

a general framework. Their security proofs are also quite different: they decided
to consider UC security, but only for the case of passive adversaries. On the
other hand, in this article we investigate a different security setting (semantic
security), but more importantly we allow malicious adversaries; in particular,
we show that against a malicious receiver, the Wu–Zhang–Wang protocol is not
semantically secure in the group setting outside of the random oracle model,
and the new OT protocol is not secure (even in the random oracle model) in the
CSIDH setting. Both works rely on the hardness of somewhat different problems,
and we believe their paper and ours to be complementary.

2 Simple Diffie–Hellman Based Oblivious Transfer
Protocols

Because of its simplicity, Diffie–Hellman key exchange has served as a basis for
several oblivious transfer methods (see [4,10,17]). However, all these schemes
use some multiplications in the group G, besides exponentiations. To the best of
our knowledge, the only existing exponentiation-only oblivious transfer construc-
tion is the 2003 protocol of Wu, Zhang and Wang [27]. We revisit this protocol
below, before proposing in Sect. 2.2 a new scheme, conceptually close to Bellare
and Micali’s (and Chou and Orlandi’s variant). Being based uniquely on expo-
nentiations, both protocols can be directly adapted to work on fast Kummer
varieties, but we will not delve further on the subject. More importantly, we will
be able in Sect. 3 to turn them into quantum-resistant, isogeny-based protocols.

2.1 The Oblivious Transfer Protocol of Wu, Zhang and Wang

In the oblivious transfer setting, Alice has two secrets s0, s1 and Bob wants to
learn one of them, without allowing Alice to know which one; and Alice does not
want Bob to learn both secrets. Let k ∈ {0, 1} be the index of Bob’s choice. As
published in [27], the Wu–Zhang–Wang protocol requires Alice’s secrets to be
(encoded as) elements of a cyclic group G = 〈g〉. It is based on the “double lock”
principle, which in turn amounts to the commutativity of the exponentiation
maps.

Alice picks an exponent a and “locks” her secrets s0 and s1 by computing
A0 = (s0)a and A1 = (s1)a, that she sends to Bob. Bob chooses his own exponent
b; according to the index k of the secret he is interested in, he adds his lock to Ak

by computing the group element B′ = (Ak)b, that he sends to Alice. Then Alice
computes B = (B′)a−1

, thus removing her lock, and sends it to Bob. Finally,
Bob unlocks his desired secret by computing Bb−1

. Correctness of the protocol
follows from the identity Bb−1

= ((((sk)a)b)a−1
)b−1

= sk; it can be interpreted
in terms of the commutativity of the exponentiation maps φa : g �→ ga and
φb : g �→ gb, see Fig. 2.

60 V. Vitse

s0

s1

B = (s0)b

A0 = (s0)a

A1 = (s1)a

B′ = (s0)ab

φ a

φ a

φ −
1b

φ
b

φ
−1
a

s0

s1

B = (s1)b

A0 = (s0)a

A1 = (s1)a

B′ = (s1)ab

φ a

φ a

φ −
1b

φ
b

φ
−1
a

Fig. 2. Wu–Zhang–Wang protocol
(top, k = 0; bottom, k = 1).

Unfortunately, this protocol is unsecure
against a malicious Bob (we will give more
complete definitions in Sect. 2.4). Indeed, a
dishonest Bob can send B′′ = (Ax

0Ay
1)

b for
some x, y of his choice to Alice, instead of
Ab

0 or Ab
1. If he does that, at the end of the

exchange he will learn not s0 nor s1, but
the quantity sx

0sy
1, which is related to both

(for instance, it will be their quotient s0/s1).
A way to prevent this is to use a valida-
tion method, as discussed in [27], in order to
ensure that Bob sends either Ab

0 or Ab
1, but

this adds to the complexity of the protocol.
A more interesting possibility is to turn

the protocol into a random oblivious trans-
fer [3]. Instead of s0 and s1, Alice starts with
two random elements r0 and r1 of G, and
computes A0 and A1 as (r0)a and (r1)a. At
the end of the exchange, Bob knows either r0
or r1, but not both, and Alice does not know
which one; at this point her secrets s0 and s1
have not been involved yet. Then r0 and r1
can be used as key seeds to encrypt s0 and
s1 using a symmetric encryption function. Of
course, a malicious Bob could still learn rx

0ry
1

instead of r0 or r1; but if the encryption func-
tion is secure enough, that does not help him to decrypt Alice’s secrets. We give
below the complete protocol.

1. Setup: Alice and Bob agree on a cyclic group G of prime order, such that
the Diffie–Hellman problem is hard in G. They also agree on a symmetric
encryption scheme Enc and a key derivation function KDF.

2. Alice picks two uniformly random, non-neutral elements r0, r1 ∈ G, and a
uniformly random integer a ∈ {1, . . . ,#G−1}. She computes A0 = (r0)a and
A1 = (r1)a with a fast exponentiation algorithm and sends them to Bob.

3. Bob performs elementary checks on Alice’s values, then chooses a uniformly
random integer b ∈ {1, . . . ,#G − 1}. According to the index k of the secret
he is interested in, he computes the group element B′ = (Ak)b and sends it
to Alice.

4. Alice encrypts her secrets s0 and s1 with the key derived from the random
values r0 and r1 respectively. She checks Bob’s values, computes B = (B′)a−1

and sends it to Bob, together with the ciphertexts S0 = Enc(s0, KDF(r0)) and
S1 = Enc(s1, KDF(r1)).

5. Bob decrypts Sk with the key derived from Bb−1
= rk.

Simple Oblivious Transfer Protocols Compatible 61

2.2 A New, Simple DH-Based Oblivious Transfer Protocol

We propose in this section a new random oblivious transfer protocol, also based
on Diffie–Hellman key exchange scheme. We will see that it has some advantages
compared to the Wu–Zhang–Wang protocol, with respect to security (Sect. 2.4)
and complexity in the supersingular isogeny setting (Sect. 3.4). As above, Alice
has two secrets s0, s1 and Bob wants to learn one of them, without allowing
Alice to know which one; and Alice does not want Bob to learn both secrets.
The index of Bob’s choice is denoted by k ∈ {0, 1}.

1. Setup: Alice and Bob agree on a cyclic group G of prime order and a generator
g of G, such that the Diffie–Hellman problem is hard in G. They also agree
on a secure symmetric encryption function Enc and key derivation function
KDF.

2. – Alice picks two different integers a0, a1 ∈ {1, . . . ,#G − 1}, chosen inde-
pendently and uniformly randomly.

– For each i ∈ {0, 1}, she computes Ai = gai ; she sends Bob A0, A1.
3. Bob chooses a uniformly random integer b ∈ {1, . . . ,#G − 1}.

– He computes the group element B = gb.
– Bob performs elementary checks on A0, A1, then according to the index

k ∈ {0, 1} of the secret he is interested in, he computes B′ = (Ak)b and
sends it to Alice.

4. After checking Bob’s values, for each i ∈ {0, 1}, Alice computes B′a−1
i where

a−1
i is the inverse of ai modulo #G, and encrypts her secret si with the

key derived from this computed value. She sends Bob the ciphertexts S0 =
Enc(s0, KDF(B′a−1

0)) and S1 = Enc(s1, KDF(B′a−1
1)).

5. Bob computes Enc−1(Sk, KDF(B)).

Correctness of the protocol follows from the identity B′a−1
k = ((gak)b)a−1

k =
gb = B; it can be interpreted in terms of commuting maps φa0 , φa1 and φb, see
Fig. 3. If we compare to a similar diagram for Diffie–Hellman key exchange, we
see that the direction of the lower-right arrows have been reversed, and only one
of them completes a commutative square; the second one points to a value that
Bob should not be able to compute. As discussed above, this actually implements
a random OT scheme: after the two first exchanges, Alice has two random (but
related) elements B′a−1

0 and B′a−1
1 , and only one of them is known to Bob, but

at this point Alice’s secrets have not yet been involved. The use of a symmetric
encryption scheme together with a key derivation function gives the

(
2
1

)
-OT

protocol.

62 V. Vitse

2.3 Security Against a Malicious Sender

g

A0 = ga0

A1 = ga1

B = gb = B′a−1
0

B′ = (A0)b

B′a−1
1

φa1

φ a0

φ
b

φ
b

φ a
−1

0

φ a
−1
1

g

A0 = ga0

A1 = ga1

B = gb = B′a−1
1

B′ = (A1)b

B′a−1
0

φa1

φ a0

φ
b

φ
b

φ a
−1
1

φ a
−1

0

Fig. 3. Another view of our DH-based
OT protocol (top, k = 0; bottom, k = 1)

By definition, Alice should not be able
to discover the secret bit k ∈ {0, 1}
of Bob. In both protocols, the only
information she has access to is Bob’s
computed value B′ = (Ak)b. If Alice
is honest-but-curious, and the order of
the group G is indeed prime as speci-
fied, then A0 and A1, which are equal
to either (r0)a and (r1)a or ga0 and
ga1 , are both generators of the group
G. Since b is uniformly distributed in
{1, . . . ,#G − 1} � (Z/#GZ)∗, the ele-
ment B′ = (Ak)b is also uniformly dis-
tributed in G \ {e} (where e = g0 is the
neutral element) and therefore leaks no
information about k to Alice.

A malicious Alice could, however,
send Bob elements A0, A1 that are not
of the specified form. But for B′ =
(Ak)b not to be uniformly distributed
she needs A0 or A1 not to be a generator
of G. As long as G is of prime order, this
means setting A0 or A1 to e, which Bob
can detect easily. Otherwise, Alice could
try working in a group G of composite
order. This is only possible if Bob does
not check the order of the agreed-upon
group G, or if Alice sends elements A0

and A1 that are not in G, in the spirit of
the invalid curve attack [6]. In any case,
as long as Bob performs some elemen-
tary checks—namely, that G has indeed
prime order, that A0 and A1 belong to G and are different from e—then Alice
obtains no information whatsoever about Bob’s secret bit k.

Note that a malicious Alice could also tamper with the last part of the
protocol and replace one of her secrets (or one of her ciphertexts) with garbage,
and check whether Bob receives something meaningful or not. This weakness is
however inherent to any OT schemes; the only countermeasure is for Bob to stop
further communication with Alice.

2.4 Semantic Security Against a Malicious Receiver

By definition, Bob should not be able to decrypt, or at least gain information on,
both of Alice’s secrets s0 and s1. A difficulty in the analysis is that Bob is not

Simple Oblivious Transfer Protocols Compatible 63

constrained to follow the protocol: instead of sending B′ = (Ak)b, he can send
Alice any element of his choice in G. As discussed above, Alice has little means
of ensuring the validity of Bob’s transmitted value, besides checking whether
B′ ∈ G \ {e}; doing otherwise would require expensive validation mechanisms,
such as providing a zero-knowledge proof that Bob knows the logarithm of B′

in basis either A0 or A1.
Because of this, we need a framework for the security of oblivious transfer

protocols with respect to the sender’s secrets. It is often defined in terms of an
ideal functionality, but this makes for difficult proofs outside of the random ora-
cle model. We prefer to define this security in terms of an indistinguishability
property. Quite classically, in order to express that Bob obtains useful infor-
mation on a secret or not, we consider a situation where the secret is selected
randomly between two messages of his choice and ask if Bob can tell which one
was selected. The following game is modeled on the definition of the IND-CPA
property; in our

(
2
1

)
-oblivious transfer context, it makes no real sense to give Bob

more power and to consider adaptative attacks (see however [7] for the security
of

(
n
k

)
-OT).

Indistinguishability game for oblivious transfer:
Given a message length n:
– Bob sends Alice two pairs of distinct messages (m0,m

′
0) and (m1,m

′
1) of

his choice, of the same length n;
– Alice chooses randomly, uniformly and independently two bits b0 and b1,

then sets s0 =

{
m0 if b0 = 0
m′

0 if b0 = 1
and s1 =

{
m1 if b1 = 0
m′

1 if b1 = 1
– Alice and Bob perform the oblivious transfer protocol with s0 and s1;
– Bob must answer whether b0 = b1 or b0 �= b1.

Definition 1. An oblivious transfer protocol is semantically secure if for any
polynomially-limited Bob, his advantage, defined as P (correct answer) − 1/2, is
a polynomially-negligible function in the security parameter.

The rationale behind this definition is that Bob should not be able to extract
meaningful information about both s0 and s1, or equivalently about both b0 and
b1. Since they are bits, this means being able to answer correctly whether b0 = b1
or b0 �= b1 with probability greater than 1/2. If Bob is honest-but-curious, he
can learn either b0 or b1, and the semantic security implies that he does not learn
non-negligible information on the second bit, as expected. If Bob is malicious,
he could conceivably try to cheat during the protocol by sending invalid data,
exchanging the complete knowledge of either b0 or b1 for a partial knowledge on
both; this is for instance possible in Wu, Zhang and Wang’s original protocol.
Our definition of semantic security implies that only negligible information can
be thus obtained. Overall, it captures the idea that any useful information gained
by Bob on one of Alice’s secrets forbids him to gain any useful information on
the other secret.

64 V. Vitse

Security of Our New Protocol. Obviously, the practical security of the ran-
dom OT schemes we have presented depends on the underlying encryption and
key derivation functions Enc and KDF, and they cannot provide a perfect secrecy
as it is the case for Bob’s secret k. A standard assumption is that Enc combined
with KDF operates as a random oracle, meaning that Bob cannot gain any infor-
mation on s0 and s1 if he does not know the encryption keys. For instance, as in
[4,17], one can simply set Enc(s, KDF(k)) = s⊕H(k) where H is a random oracle
(in practice, a cryptographic hash function). More realistically, we will rather
assume that the combination of the encryption and key derivation functions
is semantically secure, or more precisely satisfies the indistinguishability under
chosen-plaintext attack (IND-CPA) property. Coming back to our indistinguisha-
bility game, under this assumption Bob cannot tell apart the encryptions of m0

and m′
0, resp. m1 and m′

1, with polynomially-limited resources if he does not
have information on the respective encryption key.

The security of our protocol in the IND-CPA model consequently relies on
the assumption that Bob cannot produce an element B′ ∈ G \ {e} such that he
has information on both B′a−1

0 and B′a−1
1 . This is made precise in the following

decisional problem, presented in the form of a game between Bob and an oracle.

2-inverse decisional Diffie–Hellman problem (2-inv-DDHP):
Given a cyclic group G = 〈g〉, elements gα, gβ :
– Bob sends the challenge oracle an element X ∈ G \ {e} of his choice;
– the oracle samples two independently and uniformly random elements

R0, R1 ∈ G \ {e} and bits b0, b1 ∈ {0, 1}.
– the oracle then outputs two pairs (Y, Y ′) and (Z,Z ′) such that

(Y, Y ′) =

{
(Xα−1

, R0) if b0 = 0
(R0,X

α−1
) if b0 = 1

and (Z,Z ′) =

{
(Xβ−1

, R1) if b1 = 0
(R1,X

β−1
) if b1 = 1

– Bob must answer whether b0 = b1 or b0 �= b1.

As in the oblivious transfer indistinguishability game, if this problem is hard
then Bob cannot gain any useful information on the pair (Xα−1

,Xβ−1
) that does

not come from information on only one of them separately. Bob can of course
identify either b0 or b1 by submitting X = (gα)x or (gβ)x for an x of his choice;
if the 2-inv-DDHP is hard in G, he cannot do better with polynomially-limited
resources.

Theorem 1. The protocol of Sect. 2.2 is semantically secure if 2-inv-DDHP is
hard and the underlying encryption scheme is IND-CPA.

(Because of space limitation we cannot give a complete proof; the idea is
that under the IND-CPA assumption, if a contestant has access to an algorithm
solving the oblivious transfer indistinguishability game with a non-negligible

Simple Oblivious Transfer Protocols Compatible 65

advantage, then he can use it to obtain a non-negligible advantage against 2-
inv-DDHP.)

There is an obvious reduction from the standard decisional Diffie–Hellman
problem (DDHP) to 2-inv-DDHP. The decisional problem closest to ours is the
inverse decisional Diffie–Hellman problem (inv-DDHP, see [1]): given g, gα and
h, determine if h = gα−1

. If Bob can solve inv-DDHP, he can solve 2-inv-DDHP
by submitting X = g. However, there is no obvious reduction from 2-inv-DDHP
to inv-DDHP (and neither from inv-DDHP to DDHP), because of the additional
freedom in the choice of X, but we do not believe this freedom to be practically
usable. As a matter of fact, even if Bob manages to obtain some partial infor-
mation on both Alice’s encryption keys B′a−1

0 and B′a−1
1 , he will probably not

be able to use it to gain partial information on both secrets s0 and s1, although
this claim clearly depends on the encryption scheme used (he would need some
kind of related key attacks). Nevertheless, it is safer to implement our oblivious
transfer protocol in a group where the decisional Diffie–Hellman problem is hard,
for instance on cryptographic elliptic curves that are not pairing-friendly.

Security of the Wu–Zhang–Wang Protocol. In the random oracle model,
the security of the Wu–Zhang–Wang protocol against a malicious receiver relies
on the hardness of yet another problem, that we dub the one-more exponen-
tiation problem (1MEP): Given a cyclic group G = 〈g〉 of prime order, two
non-neutral elements Y and Z, and a secret integer α ∈ {1, . . . ,#G − 1},

– Bob submits an element X ∈ G of his choice to an oracle, that outputs Xα;
– then Bob must produce Y α and Zα.

Clearly, Bob can solve 1MEP if he can solve the computational Diffie–
Hellman problem (twice, with inputs X, Xα, Y and then X, Xα, Z). On the
other hand, for an honest-but-curious Bob who follows the protocol and submits
either Y or Z, solving 1MEP is equivalent to solving the CDHP with inputs Y ,
Z and either Y α or Zα. But a malicious Bob is not constrained in his choice of
X; this freedom implies that there is no trivial equivalence between 1MEP and
CDHP, even though it is not at all clear how to use this freedom meaningfully.
In any case, there does not seem to be any practical way to solve these problems
beyond computing discrete logarithms.

However, the decisional version of 1MEP is easy: by submitting Y/Z to the
exponentiation oracle, Bob recovers Y α/Zα and therefore gains information on
the pair (Y α, Zα). This means that the Wu–Zhang–Wang protocol is not seman-
tically secure under the IND-CPA assumption, for the same reason that the orig-
inal version was insecure and had to be transformed in a random OT scheme.
In practice, this is an actual weakness only if Bob manages to mount a kind of
related key attack. But in any case, achieving semantic security for this protocol
would require not only the hardness of 1MEP, but also a form of non-standard
indistinguishability property of the underlying encryption scheme.

66 V. Vitse

2.5 Comparison Between the Two Schemes

From a complexity point of view, we can compare the two schemes by count-
ing the number of group exponentiations, which are usually the most expensive
operations. We can see that the Wu–Zhang–Wang protocol requires five expo-
nentiations, against six for our proposal, and is thus slightly more efficient. This
is however no longer true in the supersingular isogeny setting, as explained in
Sect. 3.4.

From a security point of view, we have seen that the two schemes rely on
distinct hardness assumptions. Still, outside of the random oracle model the Wu–
Zhang–Wang protocol is weaker than ours, and cannot offer semantic security
under standard indistinguishability assumptions on the underlying symmetric
encryption scheme.

Note that the protocols, as presented above, actually implement
(
2
1

)
(or 1-out-

of-2) oblivious transfer. Turning them into
(
n
1

)
-OT can be done using the classical

Naor–Pinkas transform [18]: it only requires O(ln(n)) parallel executions of the
first steps of the protocol, and thus only O(ln(n)) exponentiations; but obviously,
Alice must still send O(n) encrypted messages in the final step. Achieving

(
n
t

)
-

OT is a different task. The Wu–Zhang–Wang protocol admits a solution with
O(n+t) operations, as explained in the original paper [27], whereas our protocol
still necessitates t executions of the

(
n
1

)
scheme.

3 SIDH-based Oblivious Transfer

3.1 Background on (C)SIDH

Let E and E′ be two elliptic curves defined over the same finite field Fq. By a
theorem of Tate, we know that there exists an isogeny φ : E → E′ defined over
Fq if and only if E and E′ have the same number of Fq-rational points, and this
can be checked quite efficiently. On the other hand, finding such an isogeny φ,
or equivalently determining its kernel, is usually much more difficult.

Actually, this gives a construction of a one-way function. Starting from a
subgroup G of E(Fq), Vélu’s formulae allow one to compute the curve E′ � E/G
and the corresponding isogeny φ : E → E′ using O(#G) operations in E. But
when the order of G is smooth (in applications we will have #G = 2n or 3m),
then φ can be efficiently computed as a composition of small degree isogenies,
and the cost drops to Õ(log(#G)); see [12] for more details. On the other hand,
the inverse function, which consists of determining G = ker φ from E, E′ and
potential other information such as #G = deg φ, is harder to compute. How
much harder depends on the setting; in the case of smooth degrees, the best
known quantum attacks have exponential complexity for supersingular elliptic
curves [25].

This one-way function can be used to construct a Diffie–Hellman-type key
exchange. In this context, the exponentiation maps of the Diffie–Hellman proto-
col are replaced by the computation of quotient curves E/G, and recovering G

Simple Oblivious Transfer Protocols Compatible 67

from E and E/G becomes the analog of the discrete logarithm problem. The dif-
ficulty is that the analogy between exponentations and taking quotients of curves
is not perfect. Indeed, Diffie–Hellman key exchange relies on the existence of a
commutative, efficiently computable group action of (Z/#GZ)∗ on G, defined
by (a, g) �→ ga. In the isogeny setting, the corresponding group is the ideal class
group Cl(End(E)) of the endomorphism ring, but End(E) is not commutative
when E is supersingular. CSIDH circumvents this difficulty by working with the
commutative subring EndFp

(E) of endomorphisms defined over Fp; adapting our
group-based OT protocols to the CSIDH setting is therefore rather easy and we
leave the details to the interested reader (but see Sect. 4.3).

The SIDH key exchange of De Feo, Jao and Plût is more complex and uses
two different torsion subgroups of a supersingular curve E defined over Fp2 . We
assume that the full 2n and 3m torsion of E is defined over Fp2 , where n and
m are integers related to the security level (typically 100 ≤ n ≤ 500) such that
2n ≈ 3m; actually, any pair of small prime numbers can be used intead of 2 and
3. The protocol works as follows:

– Alice and Bob agree on a basis 〈U, V 〉 of E[2n] and 〈P,Q〉 of E[3m]
– Alice samples randomly and uniformly a ∈ Z/2n

Z, sets RA = U + aV , then
computes the curve EA � E/〈RA〉 with corresponding isogeny φA : E → EA.
She sends Bob the triple (EA, φA(P), φB(Q)).

– Bob computes similarly the curve EB � E/〈RB〉 and the corresponding
isogeny φB : E → EB where RB = P + bQ and b is sampled from Z/3m

Z. He
sends Alice (EB , φB(U), φB(V)).

– Alice computes EBA � EB/〈φB(U) + aφB(V)〉; Bob computes EAB �
EA/〈φA(P) + bφA(Q)〉

Now Alice and Bob can use the common j-invariant j(EAB) = j(EBA) as a
shared secret; indeed, EBA � EB/〈φB(RA)〉 � E/〈RA, RB〉 � EA/〈φA(RB)〉 �
EAB .

The security of this scheme corresponds to the hardness of the analog of the
computational Diffie–Hellman problem (CDHP):

Supersingular Computational Diffie–Hellman Problem (SSCDH [12]):
Let E be a supersingular elliptic curve defined over Fp2 with rational 2n

and 3m torsion, and let (U, V) and (P,Q) be bases of E[2n] and E[3m]
respectively. Let φA : E → EA and φB : E → EB be isogenies such that
ker φA = 〈U + aV 〉 and kerφB = 〈P + bQ〉, where a, b are chosen randomly
and uniformly in Z/2n

Z and Z/3m
Z.

Given the curves E, EA, EB and the points φA(P), φA(Q), φB(U), φB(V),
find the j-invariant of E/〈U + aV, P + bQ〉.

There is a similar decisional problem, the Supersingular Decisional Diffie–
Hellman Problem (SSDDH); we refer to [12] for its formalization. Currently, the
best approach to solve this problem is to recover kerφA from the knowledge of E,

68 V. Vitse

EA and φA(P) and φA(Q) (CSSI, Computational Supersingular Isogeny
Problem); this is the SIDH analog of the computation of discrete logarithms.
Of course, we can swap the 2n and 3m torsion and obtain a similar problem.
Compared to the one-way function described at the beginning of this section,
here an attacker has access to the images of P and Q. However, currently there
is no known algorithm that exploits meaningfully this extra information, at least
when 2n ≈ 3m (see however [20]).

3.2 Basic Outline

From SIDH to OT. Our goal in this section is to construct isogeny-based, post-
quantum oblivious transfer protocols, that are the analog in the SIDH setting
of the group-based OT protocols presented in Sect. 2. We start with our new
protocol (Sect. 2.2), which is somehow simpler to adapt; the Wu–Zhang–Wang
protocol will be treated in Sect. 3.4.

We follow closely the blueprint of the method presented in Sect. 2.2. Instead
of computing only one curve EA and the corresponding isogeny φA : E → EA

as in the SIDH key exchange, Alice now computes two curves EA,0 � E/〈R0〉
and EA,1 � E/〈R1〉, and the corresponding isogenies φA,i : E → EA,i of degree
2n. She transmits Bob the two curves, one for each of her secrets, together
with auxiliary data (as above, the image of a fixed basis 〈P,Q〉 of E[3m]).
Then Bob computes his part, namely, the two curves EB � E/〈RB〉 and
E′

B � EA,k/〈φA,k(RB)〉, where k ∈ {0, 1} still stands for the index of the secret
Bob is interested in, and the corresponding “parallel” isogenies φB : E → EB

and φ′
B : EA,k → E′

B .
In the key exchange protocol, Bob transmitted Alice the curve EB together

with the image by φB of a fixed basis of E[2n]; this allowed Alice to compute
the isogeny φ′

A “parallel” to φA, whose kernel is 〈φB(RA)〉 = 〈φB(U)+aφB(V)〉.
But for the oblivious transfer protocol, we want to proceed the other way round:
Bob sends Alice the curve E′

B , which is 3m-isogenous to EA,0 or EA,1, but Alice
does not know to which one. Similarily to Sect. 2.2, the key point is thus to
“reverse” the map φ′

A,k going from EB to E′
B . In the isogeny setting, what we

are interested in are actually the domain and codomain of the map φ′
A,k, and

our goal becomes to compute the dual isogeny φ̂′
A,k : E′

B → EB .

Dual Isogenies. It is a standard fact about elliptic curves that for any isogeny
φ : E → E′ between two elliptic curves there exists another isogeny φ̂ : E′ → E,
called the dual isogeny of φ, such that φ̂ ◦ φ (resp. φ ◦ φ̂) is the multiplication-
by-deg φ endomorphism of E (resp. E′).

If φ : E → E′ is an isogeny of degree d coprime to the characteristic, given by
a cyclic kernel ker φ = 〈R〉 ⊂ E[d], then the kernel of φ̂ can be easily described.
Let T ∈ E be such that E[d] = 〈R, T 〉. Since ker(φ̂ ◦φ) = E[d] = 〈R, T 〉 and φ is
surjective, it follows that ker φ̂ = φ(E[d]) = 〈φ(R), φ(T)〉 = 〈φ(T)〉. When all the
d-torsion is rational, it is not difficult to find such a complementary generator T
of E[d], after which φ(T) and φ̂ can be computed using Vélu’s formulae.

Simple Oblivious Transfer Protocols Compatible 69

E,P , Q

EB � E/〈P + bQ〉 �
E′

B/〈x1φ
′
B(U1) + y1φ

′
B(V1)〉

EA,1 � E/〈R1〉,
φA,1(P), φA,1(Q), U1, V1

EA,0 � E/〈R0〉,
φA,0(P), φA0(Q), U0, V0

E′
B � EA,1/〈φA,1(P) +

b φA,1(Q)〉
φ′
B(U1), φ′

B(V1)

F0 � E′
B/〈x0φ

′
B(U1) + y0φ

′
B(V1)〉

φ
A
,0

φA
,1

φ
B

φ ′
B

φ̂
′
A
,1

Fig. 4. SIDH-based oblivious transfer, case k = 1

Completing the Oblivi-
ous Transfer. In order to
complete the protocol, Alice
will compute two isogenies:
one which will be “paral-
lel” to φ̂A,k, and the other
a bogus one, arriving at
some unknown curve. As in
De Feo–Jao–Plût construc-
tion, Alice needs extra infor-
mation to compute efficiently
these maps. What she can do
easily is find a generator of
the kernel of the dual isogeny
φ̂A,i : EA,i → EA (for each i ∈
{0, 1}), by taking the image
by φA,i of a generator Ti of
a complement of ker φA,i =
〈Ri〉 in E[2n]. Now she can
compute φ̂′

A,k, even without
knowing k, if she has access
to φ′

B(φA,k(Tk)). But she can-
not give Bob φA,i(Ti): this
discloses ker φ̂A,i, from which
Bob or any eavesdropper can
recover ker φA,i, ruining the
protocol. One way to achieve that, while preventing Bob from gaining useful
information, is to ask him to compute and send Alice the image by φ′

B of a basis
of EA,k[2n]; we will see however in Sect. 4.1 that some care must be taken in
doing so.

More precisely, a basis (U0, V0) of EA,0[2n] is chosen, as well as a basis (U1, V1)
of EA,1[2n], and Bob transmits Alice these bases together with φ′

B(Uk), φ′
B(Vk)

and E′
B . Then Alice writes φA,0(T0) and φA,1(T1) as x0U0+y0V0 and x1U1+y1V1,

and she computes the two curves F0 � E′
B/〈x0φ

′
B(Uk) + y0φ

′
B(Vk)〉 and F1 �

E′
B/〈x1φ

′
B(Uk) + y1φ

′
B(Vk)〉. One of these two curves, Fk, corresponds to the

quotient E′
B/〈φ′

B(Tk)〉, which is isomorphic to the curve EB computed by Bob;
the other one is random. Thus Alice has obtained two values j(F0) and j(F1),
such that one of them, j(Fk) = j(EB), is known to Bob, but Alice does not know
which one. They can be used as key seeds to encrypt Alice’s secrets using a key
derivation function and a symmetric cipher, as in the group-based setting. The
complete construction is illustrated in Fig. 4.

3.3 A First Protocol

We now detail the protocol sketched above for the
(
2
1

)
-oblivious transfer; as in

Sect. 2.5, it can be easily turned into a
(
n
1

)
-OT. Alice has two secrets s0, s1 and

70 V. Vitse

Bob wants to learn one of them, without allowing Alice to know which one; and
Alice does not want Bob to learn both secrets. Let k ∈ {0, 1} be the index of
Bob’s choice.

1. Setup: Alice and Bob agree on security parameters n,m such that 2n ≈ 3m,
a supersingular curve E defined over a finite field Fp2 such that E[2n3m] ⊂
E(Fp2), and points P,Q generating E[3m]. They also agree on a secure sym-
metric encryption protocol Enc and a key derivation function KDF.

2. – Alice chooses two different cyclic random subgroups G0 = 〈R0〉, G1 =
〈R1〉 of E of order 2n. She also finds T0, T1 ∈ E[2n] such that E[2n] =
〈R0, T0〉 = 〈R1, T1〉.

– For each i ∈ {0, 1}, she computes with Vélu’s formulae the curve EA,i �
E/Gi and the corresponding isogeny φA,i : E → EA,i.
She sends Bob EA,i, φA,i(P), φA,i(Q).

3. Bob validates Alice’s values, then chooses a uniformly random b ∈ Z/3m
Z.

– He computes the curve EB � E/〈P + bQ〉 and its j-invariant jB .
– He chooses random generators U0, V0 of EA,0[2n], resp. U1, V1 of EA,1[2n],

such that the Weil pairings w(U0, V0) and w(U1, V1) are equal.
– He computes the curve E′

B � EA,k/〈φA,k(P) + b φA,k(Q)〉 and the corre-
sponding isogeny φ′

B : EA,k → E′
B . He sends Alice U0, V0, U1, V1, E′

B ,
φ′

B(Uk), φ′
B(Vk).

4. Alice validates Bob’s values, then for each i ∈ {0, 1}, she computes
xi, yi ∈ Z/2n

Z such that φA,i(Ti) = xiUi + yiVi. She then com-
putes Fi � E′

B/〈xiφ
′
B(Uk) + yiφ

′
B(Vk)〉. She computes the encryption

Si =Enc(si, KDF(j(Fi))) of the secret si with the key derived from the j-
invariant of Fi. She then sends Bob S0, S1.

5. Bob computes Enc−1(Sk, KDF(jB)).

The correctness of the algorithm follows from the identities

Fk �
(
(E/〈Rk〉)/〈φA,k(P) + b φA,k(Q)〉

)
/〈xkφ′

B(Uk) + ykφ′
B(Vk)〉

�
(
(E/〈Rk〉)/〈φA,k(P + bQ)〉

)
/〈φ′

B(xkUk + ykVk)〉

�
(
(E/〈Rk〉)/〈φA,k(P + bQ)〉

)
/〈φ′

B(φA,k(Tk))〉
� (E/〈Rk, Tk〉)/〈P + bQ〉 � (E/E[2n])/〈P + bQ〉 � E/〈P + bQ〉 � EB .

The associated diagram, presented in Fig. 4 above, is the analog of Fig. 3 (except
that for brevity only the case k = 1 is pictured), with supersingular curves and
isogenies instead of group elements and exponentiation maps.

3.4 The Supersingular Isogeny Version of the Wu–Zhang–Wang
Protocol

The exponentiation-only OT scheme of Wu, Zhang and Wang can also be modi-
fied to work in the supersingular isogeny setting. But this translation raises some
very interesting points about isogeny-based crypto. We recall that in the orig-
inal protocol (Sect. 2.1), Alice’s secrets s0 and s1 are elements of the group G,

Simple Oblivious Transfer Protocols Compatible 71

whereas in the random-OT version, Alice chooses random elements r0, r1 ∈ G.
Thus for its SIDH adaptation, we need to be able to answer one of the following
problems.

– Problem 1: is possible to efficiently encode messages as (isomorphism classes
of) supersingular elliptic curves over a given finite field?

– Problem 2: is it possible to efficiently sample random (isomorphism classes
of) supersingular elliptic curves over a given finite field?

Both questions are not new, but satisfying answers would greatly improve the
state-of-the-art in isogeny-based cryptography. Note that it is possible to effi-
ciently construct supersingular elliptic curves over a finite field, but the resulting
curves are always quite special (usually j = 0 or 1728). The difficulty with both
problems is that supersingular elliptic curves form a very small proportion of all
elliptic curves: over Fp2 , approximately only one curve out of p is supersingular.
Even though testing for supersingularity can be done efficiently, this small pro-
portion means that the strategy of sampling random curves until a supersingular
one is found is prohibitively expensive. Now, a standard solution to the second
problem is to run a random isogeny walk, starting from a known supersingu-
lar curve. Because of the good mixing properties of the supersingular isogeny
graph, only O(ln(p)) steps are needed to reach an almost uniform distribution.
But even if the reached curve is random, the entity running the isogeny walk
always knows the path connecting it to the starting curve; this may be a problem
in some applications.

The first problem is much more difficult and has currently no solution, even
partial. Isogeny walks allow to map messages to supersingular curves, but this
only yields one-way functions. For this reason, we just give below the SIDH
translation of the random-OT version of the Wu–Zhang–Wang protocol.

1. Setup: Alice and Bob agree on security parameters n,m such that 2n ≈ 3m,
and a finite field Fp2 such that 2n3m|p ± 1.

2. – Alice chooses two random supersingular elliptic curves E0 and E1 defined
over Fp2 with cardinality divisible by 22n32m. For each i ∈ {0, 1}, she
chooses a random subgroup 〈Ri〉 ⊂ Ei[2n] of order 2n, as well as Ti such
that 〈Ri, Ti〉 = Ei[2n], and she computes with Vélu’s formulae the curve
EA,i � Ei/〈Ri〉 and the corresponding isogeny φA,i : Ei → EA,i.

– Alice finds points W0 ∈ EA,0 and W1 ∈ EA,1 such that (φA,0(T0),W0) and
(φA,1(T1),W1) are bases of EA,0[2n] and EA,1[2n] respectively, with equal
Weil pairing. Using one random invertible matrix in GL2(Z/2n

Z), she
computes new bases (U0, V0) and (U1, V1) of EA,0[2n] and EA,1[2n] respec-
tively, with equal Weil pairing, and such that φ(T0) = U0 + aV0 and
φ(T1) = U1 + aV1 for a given a ∈ Z/2n

Z. She keeps a secret and sends
Bob EA,0, U0, V0, EA,1, U1, V1.

3. – According to the index k of the secret he is interested in, Bob chooses
a random order 3m subgroup 〈P 〉 ⊂ EA,k[3m], as well as Q such that
〈P,Q〉 = EA,k[3m]. He computes the curve E′

B � EA,k/〈P 〉 and the
corresponding isogeny φ′

B : EA,k → EAB .

72 V. Vitse

– Bob chooses a random basis (P ′, Q′) of E′
B [3m] and computes the coor-

dinates x, y of φ′
B(Q) in this basis. He sends Alice E′

B , φ′
B(Uk), φ′

B(Vk),
P ′, Q′.

4. Alice computes EB � E′
B/〈φ′

B(Uk)+aφ′
B(Vk)〉 and the corresponding isogeny

φ̂′
A,k : E′

B → EB . She sends Bob EB , φ̂′
A,k(P ′), φ̂′

A,k(Q′).
5. For each i ∈ {0, 1}, Alice computes Si =Enc(si, KDF(j(Ei))), the encryption

of the secret si with the key derived from the j-invariant of Ei.
She sends Bob S0, S1.

6. Bob computes E′
k � EB/〈x φ̂′

A,k(P ′)+y φ̂′
A,k(Q′)〉 and Enc−1(Sk, KDF(j(E′

k)).

The correctness of the protocol follows from the identities

E′
k � EB/〈φ̂′

A,k(φ
′
B(Q))〉 � E′

B/〈φ′
B(Tk), φ

′
B(Q)〉

� EA,k/〈P, Tk, Q〉 � (EA,k/EA,k[3
m])/〈Tk〉 � EA,k/〈Tk〉 � Ek.

E0

E1

� EB/〈x φ̂′
A,k(P

′) + y φ̂′
A,k(Q

′)〉

EB � E′
B/〈φ′

B(Uk) + a φ′
B(Vk)〉,

φ̂′
A,k(P

′), φ̂′
A,k(Q

′)

EA,0 � E0/〈R0〉,
U0, V0

EA,1 � E1/〈R1〉,
U1, V1

E′
B � EA,k/〈P 〉,

φ′
B(Uk), φ′

B(Vk), P ′, Q′

φA
,0

φA
,1

φ ′
B

φ̂
′
A
,k

φ̂
B

Fig. 5. SIDH version of the Wu–Zhang–Wang protocol, case k = 1

Compared to
the DH-based pro-
tocol, we see in
Fig. 5 that the
exponentiations
have been replaced
by isogeny com-
putations, and
their inverses by
taking dual iso-
genies. As in the
De Feo–Jao–Plût
protocol and our
previous proposal,
we need informa-
tion on images
of basis points
to ensure com-
mutativity. A dif-
ficulty comes from
the fact that Alice must compute φ̂′

A,k, the dual to the isogeny parallel to φA,k,
without knowing k. For this reason, we need that φA,0(T0) and φA,1(T1), which
generate the kernels of the duals φ̂A,0 and φ̂A,1, have the same coordinates in the
bases (U0, V0) and (U1, V1) respectively. This, and the considerations of Sect. 4.1,
explain the somewhat complicated second item of Step 2.

The most expensive operation in isogeny-based crypto is by far the compu-
tation of large degree isogenies. At first glance, it seems that the above protocol
requires five such operations. However, as explained above, choosing the random
supersingular curves E0 and E1 requires the computations of two additional
large degree isogenies, for a total of seven operations. This is slightly more than
with our first protocol, which only requires six isogeny computations.

Simple Oblivious Transfer Protocols Compatible 73

4 Security Analysis

4.1 Malicious Alice

Contrarily to the group-based setting, our SIDH-based protocols do not provide
perfect secrecy for Bob’s secret bit k. In both protocols, Alice has access to Bob’s
answer E′

B , φ′
B(Uk), φ′

B(Vk), and she knows that E′
B is 3m-isogenous to one of the

curves EA,0, EA,1; recovering Bob’s secret k amounts to finding to which curve
E′

B is isogenous. This is the Decisional Supersingular Isogeny (DSSI) problem of
[12]: given two supersingular elliptic curves defined over Fp2 , determine if they
are 3m-isogenous. A simple cardinality argument shows that it is very unlikely
that E′

B is 3m-isogenous to both EA,0 and EA,1 (there are ≈ p/12 supersingular
curves defined over Fp2 , while the number of 3m-isogenies from E′

B is of the
order of 3m ≤ √

p). So a brute-force approach can, in theory, succeed in finding
k; nevertheless this problem is expected to be computationally intractable.

However Alice has more information than just E′
B : she knows φ′

B(Uk) and
φ′

B(Vk), the images under Bob’s isogeny of the basis points Uk, Vk. In particular,
she can compute the Weil pairings (with respect to the 2n-torsion) of φ′

B(Uk)
with φ′

B(Vk), U0 with V0, and U1 with V1. Because of the property of the Weil
pairing, it holds that

w(φ′
B(Uk), φ′

B(Vk)) = w(Uk, Vk)deg φ′
B = w(Uk, Vk)3

m

.

Thus if w(U0, V0) �= w(U1, V1), Alice can find which one is equal to
w(φ′

B(Uk), φ′
B(Vk)) when put to the 3m-th power, and determine Bob’s secret k.

For this reason, such values of U0, V0 and U1, V1 have been avoided in our
protocols (one cannot simply choose w(Ui, Vi) = 1 since in that case (Ui, Vi) do
not form a basis of EA,i[2n]). In the first protocol of Sect. 3.3, we tasked Bob with
the responsibility of choosing Ui, Vi, see second item of step 3. It is not possible
to do that in the second protocol of Sect. 3.4, because the points φA,0(T0) and
φA,1(T1), which are known only to Alice, must have the same coordinates in
bases (U0, V0) and (U1, V1) respectively. Consequently, Bob must imperatively
check that the points sent by Alice have the same Weil pairing, and are indeed
bases of EA,0[2n], resp. EA,1[2n].

With this extra condition, we see that our protocol requires the following
extension of the DSSI problem to be computationally hard:

Extended decisional supersingular isogeny problem (XDSSI):
Given two supersingular elliptic curves E and E′ defined over Fp2 , together
with points U, V , U ′, V ′ such that 〈U, V 〉 = E[2n], 〈U ′, V ′〉 = E′[2n], and
w(U, V)3

m

= w(U ′, V ′), determine if there exists an isogeny φ : E → E′ of
degree 3m such that φ(U) = U ′ and φ(V) = V ′.

It turns out that in our setting, the computational and decisional problems
CSSI and XDSSI are basically equivalent, see [26]. Consequently, as long as

74 V. Vitse

the CSSI problem remains hard, with suitable parameters our constructions are
secure with respect to Bob’s choice.

As a final note, the above analysis actually holds for an honest-but-curious
Alice. Conceivably, a malicious Alice could transmit Bob a pair of supersingular
elliptic curves and basis points of her choice, that could help her discover Bob’s
secret. More precisely, she could send any pair of curves, although Bob can easily
check that the curves he receives are indeed supersingular, and that (in our first
protocol) the accompanying points form a basis of the 3m-torsion satisfying
w(φA,i(P), φA,i(Q)) = w(P,Q)2

n

. However, it is expected that the (extended)
decisional supersingular isogeny problem is hard for any starting curve E, and
thus a malicious Alice has no advantage over an honest-but-curious one.

4.2 Malicious Bob

Most of what has been said in Sect. 2.4 about the security of the oblivious trans-
fer schemes in the group-based setting can be transposed to the supersingular
isogeny setting; in particular, we can differentiate between the random oracle
model and the IND-CPA property. The difference is in the formulation of the
security assumptions — besides the obvious fact that they have been much less
studied than their group counterparts.

More precisely, under the IND-CPA assumption the security of our first pro-
tocol relies on the hardness of the following problem:

2-inverse decisional supersingular isogeny problem (2-inv-DSSIP):
Let E,E0, E1 be three supersingular elliptic curves defined over Fp2 such
that E0 and E1 are 2n-isogenous to E, and let φ0 : E → E0, φ1 : E → E1

be the corresponding isogenies. Let (P,Q) be a basis of E[3m] and for each
i = 0, 1, let (Ui, Vi) be a basis of Ei[2n] and (xi, yi) be the coordinates in
this basis of a generator of the dual isogeny φ̂i.

Given E,E0, E1 and the points P,Q,U0, V0, U1, V1, φ0(P), φ0(Q), φ1(P),
φ1(Q):
– Bob sends the challenge oracle a supersingular elliptic curve E′ and a

basis (U ′, V ′) of E′[2n];
– the oracle computes the supersingular curves F0 � E′/〈x0U

′ + y0V
′〉,

F1 � E′/〈x1U
′ +y1V

′〉, F ′
0 � E′/〈W0〉 and F ′

1 � E′/〈W1〉 where W0 and
W1 are uniformly random points of E′ of order 2n;

– the oracle chooses randomly, uniformly and independently two bits b0, b1.
Then it outputs two pairs (C0, C

′
0) and (C1, C

′
1) of supersingular curves

such that

(C0, C
′
0) =

{
(F0, F

′
0) if b0 = 0

(F ′
0, F0) if b0 = 1

and (C1, C
′
1) =

{
(F1, F

′
1) if b1 = 0

(F ′
1, F1) if b1 = 1

– Bob must answer whether b0 = b1 or b0 �= b1.

Simple Oblivious Transfer Protocols Compatible 75

The corresponding computational problem (2-inv-CSSIP), relevant in the
random oracle model, is to find three supersingular elliptic curves E′, F0, F1

and a basis (U ′, V ′) of E′[2n] such that F0 � E′/〈x0U
′ + y0V

′〉 and F1 �
E′/〈x1U

′ + y1V
′〉.

If one can solve the CSSI Problem (see Sect. 3.1), i.e. if generators of kerφ0

and ker φ1 can be efficiently computed, then it is easy to obtain values for
x0, y0, x1, y1 and solve the above problem. However, in contrast with the group
setting, there is no obvious reduction to the SSCDH problem; this is because
E,E0, E1 and the associated points do not form a SIDH triple (this would need
one of E0 and E1 to be 3m-isogenous to E instead of 2n-isogenous). There is
also no visible reduction from 2-inv-DSSIP to the SSDDH problem, nor even to
the DSSI problem, and we expect it to be as difficult as 2-inv-CSSIP. Of course,
Theorem 1 can be straightforwardly adapted.

Actually, it seems difficult to solve 2-inv-CSSIP or 2-inv-DSSIP without com-
puting x0, y0, x1, y1, that is, solving the CSSI problem. It would require to find
a curve E′ and points U ′, V ′ such that U ′, resp. V ′, is related to both U0 and
U1, resp. V0 and V1. This is possible for either U0 and V0 or U1 and V1, and
it is precisely how the oblivious transfer protocol works, but we expect this to
be computationally infeasible for both, even on a quantum computer. The only
other way is to cheat and submit points U ′, V ′ that do not form a basis of E′[2n],
thus limiting the possible values of xiU

′ + yiV
′. In our protocol, Alice can easily

detect if Bob does that and abort the communication if necessary; in any case
she should always perform this safety check (step 4) before going any further.

For the supersingular isogeny version of the Wu–Zhang–Wang protocol, we
can see that its security relies on the hardness of the analog of the one-more
exponentiation problem.

One-more isogeny computational problem (1MICP)
Let E0 and E1 be two supersingular elliptic curves defined over Fp2 . Let
(U0, V0), resp. (U1, V1), be a basis of E0[2n], resp. E1[2n]. Finally, let a be a
random element of Z/2n

Z.
– Bob submits a supersingular elliptic curve of his choice E′, together with

a basis (U ′, V ′) of E′[2n] and a basis (P ′, Q′) of E′[3m] to an oracle;
– the oracle outputs E′′ � E′/〈U ′ + aV ′〉, as well as the points

φ′(P ′), φ′(Q′), where φ′ is the isogeny E′ → E′′;
– then Bob must produce E0/〈U0 + aV0〉 and E1/〈U1 + aV1〉.

As with 2-inv-CSSIP, there is a clear reduction from this problem to the CSSI
problem, but no obvious reduction to the SSCDH problem. Interestingly, in this
supersingular isogeny setting the decisional version of this problem is not easy, as
was the case in the group setting (we do not give its full definition, but it follows
the same distinguishability game as 2-inv-DSSIP). Indeed, because of the lack of
a group law, it is difficult for Bob to submit an elliptic curve E′ that is related
to both E0 and E1. Actually, if Bob can find such a curve E′ isogenous both to

76 V. Vitse

E0 and E1, then he can find an isogeny between E0 and E1; but this is supposed
to be a quantum-hard problem. Consequently, and under reasonable hardness
assumptions, the supersingular isogeny version of the Wu–Zhang–Wang protocol
can offer a semantically secure oblivious transfer if coupled with an IND-CPA
encryption scheme; this was not the case for the group-based protocol.

4.3 Security Overview in the CSIDH Setting

The security of our OT protocols in the CSIDH setting against a malicious
receiver relies on the intractability of the corresponding versions of the above
problems. While the decisional and computational forms of the One-more-
isogeny problem seem as secure as in the SIDH setting, this is no longer the
case for the 2-inverse problem.

Indeed, let E be a supersingular curve defined over Fp, [a] an element of the
ideal class group of EndFp

(E), and E′ = [a] ∗ E. If Et and E′t stand for the
quadratic twists of E and E′, it holds that E′t = [a]−1 ∗ Et. While this observa-
tion is used in [8] to speed up computations, it implies that the computational
2-inverse problem can be trivially solved in the CSIDH setting by answering
(Et, ([a] ∗ E)t, ([b] ∗ E)t) to a challenge (E, [a] ∗ E, [b] ∗ E). Thus the new OT
protocol cannot be secure against a malicious receiver. For an honest-but-curious
receiver, however, breaking the protocol amounts to solving the CSIDH version
of the Diffie-Hellman problem, which is still considered hard.

5 Conclusion

We have studied in this article two Diffie–Hellman based oblivious transfer pro-
tocols: a rewriting of the 2003 scheme of Wu, Zhang and Wang, and an entirely
new one. Besides their simplicity, their main advantage is that they give rise to
post-quantum, supersingular isogeny based protocols; they can also be instanti-
ated on fast Kummer surfaces. To the best of our knowledge, these are the only
existing OT protocols with these features.

Our analysis introduces a new definition of semantic security for OT schemes,
as well as several non-standard versions of the (SI)DH problem. We believe these
problems to be intractable in general, and have given arguments in that direction;
but obviously, further investigation by the cryptographic community is needed.

As importantly, we hope to have demonstrated the importance of being
exponentiation-only for discrete-log based schemes. Finding such a simple DLP-
based signature protocol is an open problem; this would provide a practical
signature protocol for isogeny-based cryptography, which is currently lacking.

Acknowledgments. This work has been supported in part by the European Union’s
H2020 Programme under grant agreement number ERC-669891. The author would like
to thank Luca de Feo, Charles Bouillaguet, Damien Vergnaud and Antoine Joux for
their helpful discussions, and anonymous referees for their relevant remarks and for
pointing us the article of Wu, Zhang and Wang.

Simple Oblivious Transfer Protocols Compatible 77

References

1. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

2. Barreto, P., Oliveira, G., Benits, W.: Supersingular isogeny oblivious transfer.
Cryptology ePrint Archive, Report 2018/459 (2018). https://eprint.iacr.org/2018/
459

3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-44750-4 8

4. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

5. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45611-8 17

6. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 8

7. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72540-4 33

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

9. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

10. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 3

11. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

12. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

13. Delpech de Saint Guilhem, C., Orsini, E., Petit, C., Smart, N.P.: Secure oblivi-
ous transfer from semi-commutative masking. Cryptology ePrint Archive, Report
2018/648 (2018). https://eprint.iacr.org/2018/648

14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Advances in cryptology–CRYPTO 1982. Plenum Press, New York (1983)

15. Kazmi, R.A.: Cryptography from post-quantum assumptions. Cryptology ePrint
Archive, Report 2015/376 (2015). https://eprint.iacr.org/2015/376

16. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing–STOC 1988, pp.
20–31. ACM (1988)

17. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp.
448–457. SIAM, ACM (2001)

https://doi.org/10.1007/978-3-540-39927-8_28
https://eprint.iacr.org/2018/459
https://eprint.iacr.org/2018/459
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-319-22174-8_3
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2018/648
https://eprint.iacr.org/2015/376

78 V. Vitse

18. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology
18(1), 1–35 (2005)

19. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

20. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

21. Rabin, M.O.: How to exchange secrets by Oblivious Transfer. Technical report
TR-81. Harvard Aiken Computation Laboratory (1981)

22. Renes, J., Schwabe, P., Smith, B., Batina, L.: µKummer: efficient hyperelliptic
signatures and key exchange on microcontrollers. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 301–320. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 15

23. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

24. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

25. Tani, S.: Claw finding algorithms using quantum walk. Theoret. Comput. Sci.
410(50), 5285–5297 (2009)

26. Urbanik, D., Jao,D.: SoK: the problem landscape of SIDH. In: Proceedings of the
5th ACM on ASIA Public-Key Cryptography Workshop – APKC 2018, pp. 53–60.
ACM, New York (2018)

27. Wu, Q.-H., Zhang, J.-H., Wang, Y.-M.: Practical t-out-n oblivious transfer and
its applications. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 226–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39927-8 21

https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-662-53140-2_15
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-540-39927-8_21
https://doi.org/10.1007/978-3-540-39927-8_21

An IND-CCA-Secure Code-Based
Encryption Scheme Using Rank Metric

Hamad Al Shehhi1, Emanuele Bellini1, Filipe Borba2, Florian Caullery1,
Marc Manzano1, and Victor Mateu1(B)

1 Darkmatter LLC, Abu Dhabi, United Arab Emirates
{hamad.alshehhi,emanuele.bellini,florian.caullery,marcos.manzano,

victor.mateu}@darkmatter.ae
2 Universidade Federal de Santa Catarina, Florianópolis, Brazil

filipeoborba@gmail.com

Abstract. The use of rank instead of Hamming metric has been pro-
posed to address the main drawback of code-based cryptography: large
key sizes. There exist several Key Encapsulation Mechanisms (KEM)
and Public Key Encryption (PKE) schemes using rank metric including
some submissions to the NIST call for standardization of Post-Quantum
Cryptography. In this work, we present an IND-CCA PKE scheme based
on the McEliece adaptation to rank metric proposed by Loidreau at PQC
2017. This IND-CCA PKE scheme based on rank metric does not use
a hybrid construction KEM + symmetric encryption. Instead, we take
advantage of the bigger message space obtained by the different param-
eters chosen in rank metric, being able to exchange multiple keys in
one ciphertext. Our proposal is designed considering some specific prop-
erties of the random error generated during the encryption. We prove
our proposal IND-CCA-secure in the QROM by using a security notion
called disjoint simulatability introduced by Saito et al. in Eurocrypt 2018.
Moreover, we provide security bounds by using the semi-oracles intro-
duced by Ambainis et al.

Keywords: Post Quantum Cryptography ·
Code-based cryptography · Rank metric · IND-CCA · PKE · QROM

1 Introduction

The use of standard public key cryptography algorithms such as RSA and ECDH
has been a model to secure information in the last decades. However, in the past
few years, the threat of a quantum computer breaking the security of all the
standard public key cryptosystems in feasible time has forced the community to
look for quantum resistant cryptographic schemes which can be implemented on
traditional electronic computers. This field of research is called Post-Quantum
Cryptography (PQC) [5]. The NIST call for proposals [21] has increased the
motivation of the research community towards this topic. By the time of writ-
ing, some proposals were withdrawn from the competition as some major flaws
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 79–96, 2019.
https://doi.org/10.1007/978-3-030-23696-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_5

80 H. A. Shehhi et al.

were discovered on their security. Some others had to modify their initial param-
eters to keep meeting the security requirements from NIST. This was caused by
either a misconception on the security of some problems or by new attacks being
presented. These challenges were expected given that the security assumptions
on which these schemes rely are often not as well understood as the previous
standard ones (e.g., discrete logarithm and integer factorization).

In 2017, a proposal from Loidreau [17] and its implementation [1], which is
not part of the NIST competition, was presented. The scheme is a modification
of the McEliece cryptosystem [18] using rank instead of Hamming metric. The
advantage of which relies on the fact that the complexity of decoding with ran-
dom codes in this metric is quadratic compared to the complexity of decoding
in the Hamming metric. Therefore, code-based cryptosystems using rank metric
require smaller key sizes. The first cryptosystem based on this metric was pro-
posed by Gabidulin, Paramonov and Tretjakov (GPT) [12] and it used Gabidulin
codes. It was broken by the Overbeck attack framework [23]. This attack on the
GPT encryption scheme is able to, given a public key G, forge an alternative
Gabidulin code able to decrypt the ciphertexts encrypted using G. To do this, it
exploits the fact that the column scrambler matrix used to compute the public
key in order to hide the structure of the private Gabidulin code is a matrix of
elements over the base field Fq. In Loidreau’s scheme, this matrix is replaced by
another one having coefficients in a random vectorial subset. That adaptation is
enough to prevent Overbeck’s attack framework.

Nowadays, many cryptographic protocols require to use a IND-CCA-secure
cryptosystem in order to protect the privacy of the participants involved in
it. Unfortunately, Loidreau’s original proposal and its implementation [1] do
not offer IND-CCA security, which implies no protection against malleability.
Therefore, it cannot be used in many practical cases. The concept of cipher-
text malleability was first introduced by Dolev et al. [9], and nowadays it is
known that non-malleability against chosen ciphertext attacks is equivalent to
IND-CCA-security. Furthermore, several techniques to turn a IND-CPA-secure
cryptosystem into an IND-CCA-secure one have been presented. One of the most
used solutions to turn an IND-CPA PKE scheme into a IND-CCA KEM is the
Fujisaki-Okamoto transformation [10].

1.1 Our Contribution

In this paper we propose an IND-CCA-secure variant of Loidreau’s rank based
PKE scheme. We present a construction inspired by ideas from recent trans-
formation techniques [10,15,24] used to obtain IND-CCA KEM, or the hybrid
PKE construction using symmetric key. However, in our case the target is a
non-hybrid PKE scheme with a message space large enough to fit more than
just one symmetric key. Our construction takes advantage of the bigger error
space from rank metric and uses it as a random value required for the decryp-
tion validations. As a result, the proposed decryption algorithm does not require
any encryption operation. We prove the IND-CCA security of our proposal in
the QROM with a security proof based on previous works by Nojima et al., [22]

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 81

and Saito, Xagawa and Yamakawa [24] from which we borrow the central notion
of Disjoint Simulatability.

Besides the theoretical description of the PKE scheme, we also prove our
scheme suitable for real world scenarios by presenting new parameters and a
performance comparison with the original implementation of Loidreau’s scheme
given in [1].

1.2 Structure

In the next section we recall some definitions needed to understand Loidreau’s
scheme and our modification such as rank metric and Gabidulin codes or the
security requirements IND-CPA and IND-CCA. After that, we recall the origi-
nal scheme in Sect. 3 and, in Sect. 4, we propose a new IND-CCA-secure PKE
scheme and three parameter sets for different security levels. Section 5 is devoted
to proving our proposal IND-CCA-secure in the QROM. Moreover, the perfor-
mance of new algorithms and a comparison with the original ones and the result-
ing algorithms from applying SXY [24] transformation is provided in Sect. 5.2.
Finally, Sect. 6 is devoted to the conclusions.

2 Preliminaries and Notations

We denote by Fqm the finite field of qm elements and by F
n
qm the vectorial space

of dimension n over the field Fqm . We denote by GLn(Fq) the set of all invertible
square matrices of n rows and n columns with elements in Fq. Besides that, in
the algorithms we use a ←$ B to note that a is a random element from B.

Let e = (e1, . . . , en) ∈ F
n
qm . The rank weight of a vector e is denoted as rk(e),

and is defined as the rank of the matrix

E =

⎛
⎜⎜⎜⎝

e1,1 · · · en,1

e1,2 · · · en,2

...
. . .

...
e1,m · · · en,m

⎞
⎟⎟⎟⎠

where ei,j is the j-th component of ei seen as a vector over Fq. The rank weight
of a vector was introduced by Gabidulin in [11] to propose the error correcting
codes defined below which can correct errors with repeating patterns, regardless
of their Hamming weight.

Definition 1 (Gabidulin codes). Let k < n ≤ m be non-negative integers
and let g = (g1, . . . , gn) ∈ Fqm be linearly independent over Fq. Let [i] = qi such
that x → x[i] is the i-th power of the Frobenius automorphism x → xq. Given
the generator matrix

G =

⎛
⎜⎜⎜⎝

g1 · · · gn

g
[1]
1 · · · g

[1]
n

...
. . .

...
g
[k−1]
1 · · · g

[k−1]
n

⎞
⎟⎟⎟⎠ .

82 H. A. Shehhi et al.

a Gabidulin code is defined as

Gabk,n(g) = {xG | x ∈ F
k
qm}.

Gabidulin Codes are the rank-metric equivalent of Reed Solomon Codes. These
codes can correct errors of rank weight up to �(n − k)/2� in polynomial-time
where k is the code dimension and n the code length [11].

2.1 Decisional Rank Syndrome Decoding (DRSD) Problem

Code-based cryptography using rank metric generally relies on the hardness of
Rank Syndrome Decoding problem (RSD). In our security proof we use the
decisional version of this problem to prove some properties of our proposal. Let
us recall the definition.

Definition 2 (DRSD Problem). Given G a full rank k × n matrix over Fqm ,
x ∈ F

k
qm , and e ∈ F

n
qm . Considering y a random value in F

n
qm , is it feasible to

distinguish (G, xG + e) from (G, y)?

The hardness of the DRSD problem is proven in [13, Apendix B.2]

2.2 Hash Functions

In our constructions, we use two different kinds of hash functions. One is the
classical hash that we use for correctness, and the other is a hash function with
a rather large output which will be obtained by using an eXtended Output
Function (XOF). An XOF is a hash function whose output can be extended to
an arbitrary desired length. A requirement for our XOF and hash function is to
be secure against any quantum computer-aided attack. Fortunately, the SHA-3
and SHAKE as defined in [20] are proved to be secure in such attack scenarios
[8].

2.3 Public-Key Encryption

A public-key encryption scheme PKE = (KGen,Enc,Dec) is defined by three algo-
rithms. The key generation algorithm KGen receives as input a security parame-
ter and outputs a keypair (pk, sk). The encryption algorithm Enc takes as input
a public key pk and a message x from a finite message space M , and outputs
a ciphertext c ∈ C where C is the ciphertext space and c is the encryption of
the message m with the public key pk. The decryption algorithm Dec takes as
input a secret key sk and a ciphertext c ∈ C, and outputs a message x ∈ M or a
rejection symbol ⊥ /∈ M .

Definition 3 (Perfect correctness). A PKE scheme PKE = (KGen,Enc,Dec)
has perfect correctness if for any keypair (pk, sk) generated by KGen and for any
message x ∈ M

Pr[Decsk(c) = x | c ← Encpk(x)] = 1

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 83

2.4 IND-CPA and IND-CCA notions

We finally recall, following [4], the definitions of security notions for indistin-
guishability under chosen plaintext attack (IND-CPA) and indistinguishability
under chosen ciphertext attack (IND-CCA) for PKE schemes.

Definition 4 Let E = (KGen,Enc,Dec) be an encryption scheme. Let A =
(A1,A2) be an adversary, i.e. a pair of probabilistic polynomial time algorithms
responsible, respectively, to generate a pair of messages given the public key and
access to an oracle, and a guess on which of the two messages has been encrypted
given access to the encryption of one of the two messages and to another oracle1.
Let atk ∈ {cpa, cca} and λ ∈ N. For b ∈ {0, 1}, consider the atk indistinguisha-
bility experiment defined by the following steps:

Expind−atk−b
E,A (λ)

1 : (pk, sk) ←$KGen(λ)

2 : (x0, x1, s) ← AO1(.)
1 (pk)

3 : y ← Encpk(xb)

4 : b′ ← AO2(.)
2 (x0, x1, s, y)

5 : return b′

where, if atk = cpa, the oracles functions O1(.) and O2(.) return the empty
string, and if atk = cca, the oracles functions O1(.) = O2(.) = Decsk(.). Then,
the ind − atk advantage of A over the encryption scheme is defined as

Advind−atk
E,A (λ) = Pr

[
Expind−atk−1

E,A (λ) = 1
]

− Pr
[
Expind−atk−0

E,A (λ) = 1
]

.

A PKE scheme is secure against atk attack if Advind−atk
E,A (λ) is a negligible func-

tion of the security parameter λ.

Informally, we consider a PKE scheme to be secure against chosen-ciphertext
attack if a “reasonable” adversary cannot obtain “significant” advantage in dis-
tinguishing the cases b = 0 and b = 1 given access to the oracles, where rea-
sonable reflects its resources usage. Still informally, the main difference between
the two types of attacks consist in which oracle the adversary can access and
when. In the IND-CPA game, the adversary has no access to the decryption ora-
cle. However, in the IND-CCA game, the adversary has access to the decryption
oracle. There exists two notions of IND-CCA security: IND-CCA1 security refers
to the situation when the adversary can access the decryption oracle only before
seeing the challenge ciphertext, while in the IND-CCA2 setting the adversary
can access the decryption oracle even after seeing the challenge ciphertext, with
the obvious constraint that he cannot ask the oracle to decrypt the challenge y.
In this paper, when we refer to IND-CCA security, we mean IND-CCA2.
1 The idea is that A1, once given the public key, is responsible to generate a test

instance composed by two messages of its choice, while A2 receives a challenge
ciphertext generated as a probabilistic function of the test instance, and must output
a guess of which of the two messages has been encrypted.

84 H. A. Shehhi et al.

2.5 Quantum Random Oracle Model (QROM)

It is common to provide security analysis in the Random Oracle Model (ROM).
However, this model has been proven [6] not to be accurate when the attackers
have access to a quantum computer. To deal with this case, a new model was
defined. In this model, an adversary can quantumly query a random oracle.
Therefore, some well-known techniques that were applied on the ROM, such as
adaptive programmability or extractability, cannot be used in the QROM.

In the security proofs presented hereby we are going to use the notion of
semi-classical oracles. This concept was recently introduced in [2] with the idea of
allowing a quantum-accessible oracle to somehow measure the input and output.
With this concept, the authors provided better bounds for some well-known
problems resulting from the One-way to Hide (O2H) lemmas.

3 Loidreau’s Proposal

Loidreau’s scheme chooses a randomly selected vector space of Fm
2 of fixed dimen-

sion to scramble the codes. The idea can be interpreted as replacing the per-
mutation matrix in a McEliece-like cryptosystem by a matrix multiplying the
Hamming weight of the vectors.

Let us recall the original scheme PKELo = (KGen,Enc,Dec) as defined in [17]:

KGen(1λ)

k, n, m, δ, t ← ParamSelect(1λ)

G ← GenGabCode(k, n, m)

S ←$ GLk(F2m)

V ←$ {V ⊂ F2m |dim(V) = δ}
P ←$ GLn(V)

return sk = (G, S, P),

pk = Gpub = SGP −1

Encpk(x)

t ← �(n − k)/(2δ)�
e ←$ {z ∈ F

n
2m |rk(z) = t}

y ← xGpub + e

return y

Decsk(y)

(x, e) ← decodesk(yP)

if (x, e) = ⊥
return ⊥

else

return x

More precisely, in KGen algorithm, given a security parameter 1λ the function
ParamSelect(1λ) provides appropriate values for k, n,m, δ, and t. After that, the
function GenGabCode(k, n,m) randomly generates the generator matrix of a
Gabidulin code as defined in Sect. 2. Then, S, V , and P are generated and the
keypair is computed and returned.

In Dec algorithm, the function decodesk(yP) performs the decoding operation
to recover xS and eP , from which it is easy to obtain (x, e) by using S−1 and
P−1. In the case of a decoding failure this function would return ⊥.

It is worth noticing that matrix P is chosen so that it has all its entries in
a vectorial subspace of dimension δ, then rk(eP) ≤ δrk(e) ≤ ⌊

n−k
2

⌋
(see [17,

Prop. 1]) which is decodable by the Gabidulin code.
The proof of correctness of the cryptosystem is based on the rank multipli-

cation property, the same one used to show that the Low Rank Parity Check
(LRPC) codes decoding procedure works.

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 85

4 Our Proposal

Loidreau’s scheme is One Way Encryption (OWE) as defined in [17]. It has the
property that given a ciphertext it is hard to obtain the plaintext. However,
it does not achieve IND-CPA security (and therefore not IND-CCA security
either) which is a security notion often required on real-world scenarios and also
the weakest security notion required in the NIST call for standardization of PQC
[21].

In this section we propose a new scheme which we will prove IND-CCA-
secure. The main idea is to use the randomly generated error from Loidreau’s
encryption scheme for multiple purposes:

1. As a source of randomness to generate a value to mask the codeword.
2. As the error used to hide the resulting codeword.
3. As a random parameter for a correctness validation during decryption.

Usually, in transformations such as Fujiaki-Okamoto, this validation is done in
the decryption algorithm by re-computing the ciphertext given all the parameters
obtained after decoding. Yet, in our proposal the correctness validation does not
require the re-encryption using the public key.

Our PKE scheme PKEnew = (KGen,Enc′,Dec′) maintains the same key gen-
eration algorithm so it does not add any new parameter. For the remaining two
algorithms we need two additional functions H and H ′. The first one is an XOF
function, and the other is hash function, as introduced in Sect. 2.2. The PKEnew

algorithms are presented below:

KGen(1λ)

k, n, m, δ ← ParamSelect(1λ)

G ← GenGabCode(k, n, m)

S ←$ GLk(F2m)

V ←$ {V ⊂ F2m |dim(V) = δ}
P ←$ GLn(V)

return sk = (G, S, P),

pk = Gpub = SGP −1

Enc′
pk(x)

t ← �(n − k)/(2δ)�
e ←$ {z ∈ F

n
2m |rk(z) = t}

x∗ ← x||H ′(e, x)

y ← (x∗ + H(e))Gpub + e

return y

Dec′
sk(y)

(x′, e′) ← decodesk(yP)

if (x′, e′) = ⊥
return ⊥

else

x||v = x′ + H(e′)

if H ′(e′, x) �= v and

rk(e′) �= t

return ⊥
else

return x

Notice that the confirmation hash (i.e. H ′(e, x)) must be of a size that accom-
modates the desired security level. Otherwise, the security level of the scheme
would be reduced to the security of finding a pre-image in H ′. In practice, this
causes a reduction in the message space because of the padding required. For-
tunately, there exist sets of parameters that allow a bigger message space which
can accommodate this restriction easily.

86 H. A. Shehhi et al.

The security bounds of the scheme are different than the ones presented in the
original proposal [17]. We consider the newly proposed algorithm for solving the
rank syndrome decoding problem from Aragon et al. [3]. However, the complexity
of finding a decoder given a public key remain the same as originally published.

– Decoding a ciphertext in the public code corresponds to the complexity of
solving Bounded Distance binary Rank decoding (BDR) problem which is
NP-hard. In this setting, the decoding complexity for a classical computer in
terms of binary operations is equal to

(n − k)3m32
t(k+1)m

n −m.

However, the amount of operations required for a quantum computer is

(n − k)3m32
1
2 (

t(k+1)m
n −m).

– The complexity of finding a proper decoder given a public key Gpub is

2(δ−1)m−(δ−1)2 .

– The complexity of distinguishing the public code from a random code is lower
bounded by the complexity of recovering a proper decoder from a public key
Gpub.

In [7], it is shown that a polynomial attack can be applied if δ = 2 and
k ≥ n/2. The authors also claim that the attack can probably be applied more
generally when k/n ≥ 1 − 1/δ.

Next, we propose a parameter set to provide three different security levels
taking into consideration the message space and the known attacks to Loidreau’s
scheme [17], including [3] and [7]. In Table 1 the parameter set is presented
as well as the resulting public key size (PK Size) in Kilo-bytes and message
space in bytes. The table also includes the complexity of known attacks to the
cryptosystem for the chosen parameters. These attacks are decoding a ciphertext
in the public code, noted as Dec. Cplx. for traditional electronic computers, or
as Quantum Dec. Cplx. for quantum computers, and finding a proper decoder
given a public key, noted as PK Dec. Cplx.

Table 1. Proposed parameters for our IND-CCA-secure scheme

m n k δ t PK size Message Space Dec. Cplx Quantum Dec. Cplx PK Dec. Cplx

64 58 28 3 5 6.56KB 224B 2129 281 2124

96 62 32 3 5 11.25KB 384B 2194 2116 2188

128 64 28 3 6 15.75KB 448B 2256 2146 2252

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 87

5 Security

IND-CCA security is required for several applications in which the protocol secu-
rity relies on this indistinguishability notion to protect the messages. Numerous
works have proposed mechanisms to go from one construction with weaker secu-
rity to another one meeting IND-CCA. In our security proof we take into consid-
eration the concept of disjoint simulatability introduced in [24, Section 3] which
helps on proving a Deterministic PKE (DPKE) to behave like a pseudorandom
number generator. First, we recall the definition:

Definition 5 (Disjoint Simulatability). Let DM denote an efficiently sam-
pleable distribution on a set M . A DPKE scheme DPKE = (KGen,Enc,Dec),
with plaintext and ciphertext spaces M and C is DM -disjoint simulatable if it
provides the following two properties:

– Statistical Disjointness: there exists a Probabilistic Polynomial Time (PPT)
algorithm S such that:

DisjDPKE,S(λ) := max
(sk,pk)←KGen(1λ)

Pr[c ∈ Encpk(M)|c ← S(pk)]

is negligible.
– Ciphertext Indistinguishability: for any PPT adversary A there exists a PPT

algorithm S such that:

AdvDPKE,DM ,A,S :=

∣∣∣∣∣∣∣

Pr
[
A(pk, c�) → 1

∣∣∣∣
(sk, pk) ← KGen(1λ),m� ← DM ;

c� ← Encpk(m�)

]

−Pr
[
A(pk, c�) → 1|(sk, pk) ← KGen(1λ), c� ← S(pk)

]

∣∣∣∣∣∣∣
is negligible.

Our proposal as defined in Sect. 4 is not a DPKE. The first step required is to
make it deterministic by simply adding the error e as an input to the encryption
algorithm, precisely defining DPKEnew = (KGen,Enc′′,Dec′′) as follows:

KGen(1λ)

k, n, m, δ, t ← ParamSelect(1λ)

G ← GenGabCode(k, n, m)

S ←$ GLk(F2m)

V ←$ {V ⊂ F2m |dim(V) = δ}
P ←$ GLn(V)

return sk = (G, S, P),

pk = Gpub = SGP −1

Enc′′
pk(x, e)

x∗ ← x||H ′(e, x)

y ← (x∗ + H(e))Gpub + e

return y

Dec′′
sk(y)

(x′, e′) ← decodesk(yP)

if (x′, e′) = ⊥
return ⊥

else

x||v = x′ + H(e′)

if H ′(e′, x) �= v and

rk(e′) �= t

return ⊥
else

return (x, e′)

88 H. A. Shehhi et al.

Now we assume the error received as input in the encryption function
is of rank t, and the ParamSelect function chooses as defined before: t =
�(n − k)/(2δ)�.
Theorem 1. The DPKE scheme DPKEnew = (KGen,Enc′′,Dec′′), with mes-
sage space M and ciphertext space C, is DM -disjoint simulatable.

Proof (Theorem 1). From [24, Lemma 3.1], it is sufficient to prove sparseness
and pseudorandomness. The first property is proved by showing the following
value

SparseDPKE := max
(sk,pk)←KGen()

|Encpk(M)|
|C| (1)

to be negligible. In order to show that, lets denote by E the set of vectors of
rank weight less than or equal to t in F

n
2m . Every component ei of a vector e ∈ E

is a vector of a vectorial subspace of V ⊂ F
m
2 of dimension t. The number of

vectorial subspaces of F
m
2 of dimension t is

∏t−1
i=0(2

m − 2i)/(2t − 2i). We now
have 2t choices for each of the n components of e. Thus, we deduce that

|E| = 2tn
t−1∏
i=0

2m − 2i

2t − 2i
.

The code generated by Gpub possesses 2km different codewords. Hence,

|Encpk(M)| = 2km+tn
t−1∏
i=0

2m − 2i

2t − 2i
.

Notice that encryptions with an error of rank less than t are included in this
computation of |Encpk(M)|. These errors are not part of the encrypted ciphertext
space, but it simplifies the computation and gives a sufficient upper bound.
Finally, it is easy to see that |C| = 2nm, therefore

SparseDPKE ≤ 2n(t−m)+km
t−1∏
i=0

2m − 2i

2t − 2i
.

Considering the parameter sets provided in Table 1 we obtain the upper bound
SparseDPKE < 2−1436, which is negligible.

To prove the second part of the claim, pseudorandomness, we need to prove
that we can see a ciphertext as a random value. First, let us exhibit a probability
distribution from which an error e ∈ F

n
2m of a given rank t > 0 can be sampled.

One way to construct such an e is: sample t vectors b1, . . . , bt ∈ F
m
2 uniformly at

random and draw n different sets of coefficients γ1,i, . . . , γt,i ∈ F2, i ∈ {1, . . . , n},
all equally likely to be 0 or 1. Then we define e as

e = (γ1,1b1 + . . . + γt,1bt, . . . , γ1,nb1 + . . . + γ1,nbt).

Note that e is simply given by scalar multiplications and linear combinations
of random variables following the uniform distribution over F

n
2m (for the bis) or

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 89

over {0, 1} (the γi,j). Hence, e can be efficiently sampled by a combination of
those distributions which we will denote by En

t .
From the discussion above, we can observe that, for e ← En

t , rk(e) ≤ t. The
case where rk(e) < t corresponds to the fact that b1, . . . , bt does not form a basis
of the vector space of Ft

2. That is, bi+1 ∈ span(b1, . . . , bi), for some i < t. Then,
the probability of rk(e) < t is bounded above by 1/2m+. . .+2t−1/2m = 2t−1/2m.
That probability is negligible given that m � t, which is the case for the set of
parameters of our scheme (at maximum 2−59).

Now, we can proceed with the following transformation:

– We can replace c = xGpub + e by c = xG′ + e where G′ is a random k × n
matrix over F2m because of the complexity of distinguishing the public code
from a random code makes it unfeasible for a PPT adversary.

– We replace e with a random e′ following the distribution described above.
– Now we can replace c by a random vector assuming the hardness of DRSD.�

Lemma 1. The public-key encryption scheme DPKEnew = (KGen,Enc′′,Dec′′)
with message space M and ciphertext space C has perfect correctness.

Proof. Let us assume

∃c ∈ C | c = Enc′′
pk(x, e) ∧ c = Enc′′

pk(x
′, e′) ∧ (x �= x′ ∨ e �= e′).

We can see c = xcGpub + e where xc = F(x, e) = (x||H ′(e, x)) + H(e). Given
that decoding is a deterministic function where decodesk(c) = (xc, e), then the
values xc and e are fixed for ciphertext c. Therefore, if such c exists, it means
that ∃xc ∈ F

k
2m | xc = F(x, e) ∧ xc = F(x′, e). Given that function F(x, e), as

presented above, have, as leftmost bits, x XORed with H(e), it is not possible
for the output to be the same value when it receives the inputs (x, e) and (x′, e)
unless x = x′. Hence, the claim follows. �

As a last note, in the decryption algorithm we check that rk(e′) equals t
or not, in order to avoid possible decryption failures who might cause reaction
attacks.

5.1 Security Proof

In order to demonstrate our proposal to be IND-CCA-secure we use game-
hopping proof technique. The first step for us is to define GameA

0 (1λ) by
copying the description of the experiment Expind−atk−b

E,A (λ) where atk = cca.
Apart from it, we add the encryption and decryption algorithms from PKEnew,
defined in Sect. 4, which are used by the challenger to respond adversary queries
AEnc′

pk(.)(xb), ADec′
sk(.)

1 (pk), and ADec′
sk(.)

2 (x0, x1, s, y).

90 H. A. Shehhi et al.

GameA
0 (1λ)

(pk, sk) ←$KGen(1λ)

(x0, x1) ← ADec′
sk(.)

1 (pk)

y ← AEnc′
pk(.)(xb)

b′ ← ADec′
sk(.)

2 (x0, x1, y)

return b′

Enc′
pk(x)

e ←$ {z ∈ F
n
2m |rk(z) = t}

x∗ = x||H ′(e, x)

y ← (x∗ + H(e))Gpub + e

Dec′
sk(y)

(x′, e′) ← decodesk(yP)

if (x′, e′) = ⊥
return ⊥

else

x||v = x′ + H(e′)

if H ′(e′, x) �= v and

rk(e′) �= t

return ⊥
else

return x

The transition from GameA
0 to GameA

1 is basically a modification to show
how Enc′ and Dec′ use Enc′′ and Dec′′ from the DPKEnew.

GameA
1 (1λ)

(pk, sk) ←$KGen(1λ)

(x0, x1) ← ADec′
sk(.)

1 (pk)

y ← AEnc′
pk(.)(xb)

b′ ← ADec′
sk(.)

2 (x0, x1, y)

return b′

Enc′
pk(x)

e ←$ {z ∈ F
n
2m |rk(z) = t}

y ← Enc′′
pk(x, e)

Dec′
sk(y)

(x′, e′) ← Dec′′
sk(y)

if (x′, e′) �= ⊥
return x′

else

return ⊥

GameA
1 is the same as GameA

2 except that

GameA
2 (1λ)

(pk, sk) ←$KGen(1λ)

(x0, x1) ← ADec′
sk(.)

1 (pk)

y ← AEnc′
pk(.)(xb)

b′ ← ADec′
sk(.)

2 (x0, x1, y)

return b′

Enc′
pk(x)

e ←$ {z ∈ F
n
2m |rk(z) = t}

y ← Enc′′
pk(x, e)

Dec′
sk(y)

(x′, e′) ← Dec′′
sk(y)

if y = Enc′′
pk(x

′, e′)

return x′

else

return ⊥
The transition from GameA

2 to GameA
3 consists on changing the interaction

from the challenger AEnc′
pk(.)(xb) for a random value in F

n
2m .

GameA
3 (1λ)

(pk, sk) ←$KGen(1λ)

(x0, x1, s) ← ADecsk(.)

1 (pk)

y ←$F
n
2m

b′ ← ADecsk(.)

2 (x0, x1, s, y)

return b′

Encpk(x)

e ←$ {z ∈ F
n
2m |rk(z) = t}

y ← Enc′′
pk(x, e)

Decsk(y)

(x′, e′) ← Dec′′
sk(y)

if y = Enc′′
pk(x

′, e′)

return x′

else

return ⊥

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 91

Lemma 2. The transition from Game0 to Game1 has

Pr[Game0 = 1] = Pr[Game1 = 1]

Proof. The operations in Enc′ algorithm are the same in both games. In the case
of Dec′, it uses the same operations but validates the information more times.
Hence, the probability remains the same. �

Lemma 3. The transition from Game1 to Game2 has

Pr[Game1 = 1] = Pr[Game2 = 1]

Proof. Given that DPKEnew = (KGen,Enc′′,Dec′′) has perfect correctness, as
proved in Lemma 1, checking if (x′, e′) �= ⊥ would have exactly the same result
as checking if y = Enc′′

pk(x
′, e′). Therefore, the probability remains the same. �

Lemma 4. The adversary A would not be able to distinguish if she is playing
in Game2 or in Game3 and

Advgame3
PKEnew,A(λ) = Advgame2

PKEnew,A(λ) + DisjDPKE,S(λ)

Proof. Given that DPKEnew = (KGen,Enc′′,Dec′′) with message space M is
DM -disjoint simulatable as proved in Lemma 1, the encryption algorithm can
be seen as a pseudorandom generator receiving as input x ∈ M and e ∈ E.
Given that |M | ≈ 2(k−2)m and |E| > 2661, the adversary A would not be
able to distinguish if the oracle Enc′

pk(.) retrieves y = Enc′
pk(xb) or y ←$ C.

Therefore, the additional advantage from the previous game is based on the
probability of distinguishing between a valid and an invalid ciphertext which is
DisjDPKE,S(λ). �

If an adversary is not able to distinguish between a random value and the
result of the encryption algorithm, this basically means that regardless of the
cleartext, the adversary does not learn anything from a ciphertext, not even if it
is a proper encryption or not. However, there exist other attacks able to retrieve
information from a code and, in these cases, adversary capabilities define the
advantage to succeed in the IND-CCA experiment.

Theorem 2 (Security in the ROM). Given the PKE scheme DPKEnew, for
any IND-CCA adversary A without quantum capabilities

Pr
[
ExpIND-CCA

PKEnew,A(λ) = 1
] ≈ 1

2
,

where ExpIND-CCA
PKEnew,A(λ) = 1 is the event in which b′ = b.

Proof. As we have already seen, A could not distinguish between ExpIND-CCA
E,A (λ)

and Game3. This means

Pr
[
ExpIND-CCA

PKEnew,A(λ) = 1
]

=
1
2

+ AdvGame3
PKEnew,A(λ)

92 H. A. Shehhi et al.

where
Advgame3

PKEnew,A(λ) = Advgame2
PKEnew,A(λ) + DisjDPKE,S(λ).

Given the security parameters defined in Sect. 4 we have that, for the lowest secu-
rity parameters, the best algorithm to obtain the cleartext without knowledge
of sk has complexity 2124. Therefore

Advgame2
PKEnew,A(λ) = 2−124.

Hence,

Pr
[
ExpIND-CCA

PKEnew,A(λ) = 1
]

=
1
2

+ 2−124 + 2−1436 ≈ 1
2

�

In order to provide proper bounds for a quantum adversary with access to

semi-oracles as defined in [2], we need to recall the lemma for searching in an
unstructured function [2, Lemma 2] based on the original O2H lemma [25] from
Unruh.

Lemma 5 (Search in unstructured function). Let H be a random function,
drawn from a distribution such that Pr[H(x) = 1] ≤ λ for all x. Let B be a q-
query adversary with query depth d. Then

Pr
[
H(x) = 1|b ← BH()

]
≤ 4(d + 2)(q + 1)λ.

The proof of this lemma is in [2, Section 4.1].

Theorem 3 (Security in the QROM). Given the PKE scheme DPKEnew,
for any IND-CCA q-query adversary A with query depth d and access to a quan-
tum oracle

Pr
[
ExpIND-CCA

PKEnew,A(λ) = 1
] ≈ 1

2
,

where ExpIND-CCA
PKEnew,A(λ) = 1 is the event in which b′ = b.

Proof. As in the previous theorem, we first have that by indistinguishability
from A perspective

Pr
[
ExpIND-CCA

PKEnew,A(λ) = 1
]

=
1
2

+ Advgame3
PKEnew,A(λ)

where
AdvGame3

PKEnew,A(λ) = AdvGame2
PKEnew,A(λ) + DisjDPKE,S(λ).

Given that A now have access to a quantum oracle, then her advantage is given
by the hardness of solving the BDR problem. As stated in Sect. 4 the mini-
mum security level would achieve 78bits of security. Moreover, from the previous
Lemma 5 we can also bound the probability of finding x from Enc′′

pk(x, e) because

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 93

the encryption function can be seen as a pseudorandom number generator. So,
given that x0 and x1 are fixed, the adversary would have a bound defined by

Pr
[
Enc′

pk(x0, e) = y | y ← AEnc′()
]

≤ 4(d + 2)(q + 1)2−661.

Notice that, we consider only x0 option and try to find a proper error. If it is
not found, then the plaintext message would be x1. Therefore, we have

AdvGame2
PKEnew,A(λ) ≤ 2−78 + 4(d + 2)(q + 1)2−661.

Hence,

Pr
[
ExpIND-CCA

PKEnew,A(λ) = 1
]

=
1
2

+ 2−78 + 2−1436 + 4(d + 2)(q + 1)2−661 ≈ 1
2

�

5.2 Performance and Comparison

We have implemented our IND-CCA-secure PKE scheme with the parameters
of 128 bits of security. We use SHA-3-256 and SHAKE-128 implementations of
the Open Quantum Safe project [19] for the functions H ′ and H respectively.
All the tests have been run in a Macbook Pro with an Intel Core i7 processor at
2.9 Ghz. In Table 2, we compared the original implementation of [1] with both the
original and the new parameters detailed in Sect. 4. This modification already
provides a 50% increase on the amount of operations per second for encryption
and a 100% for decryption. In the same table we also provide the performance
information on our IND-CCA-secure version using our proposed parameters. We
did not provide information about key generation as the algorithm has not been
modified in our transformation.

Table 2. Performance comparison for 128 bits security against quantum attackers
between original implementation, original implementation with our new parameters,
and our IND-CCA proposal.

[1] [1] New params Our proposal

Encryption 21587 ops/s 30478 ops/s 23619 ops/s

Decryption 1127 ops/s 2207 ops/s 2108 ops/s

Considering the same parameters for 128 bits of quantum security, the
encryption operation is a bit slower than the non-IND-CCA-secure version. As a
consequence, the number of encryptions per second are now reduced around 23%.
This is because the encryption is a really fast operation, therefore, adding the
computation of two hashes has a significant cost given that the rest of operations
are a simple multiplication of two (small) matrices and several XOR operations.

94 H. A. Shehhi et al.

On the other hand, the decryption is only affected by a 5% because the cost of
the decryption operation is largely dominated by the decoding procedure so, the
two hashes do not increase significantly the time taken by the operation.

Next, we would like to stress on the difference between our new scheme
and the ones that could be obtained by using the generic transformation from
OW-CPA to IND-CCA of [15] or from [24]. First, both transformations end up
building an IND-CCA KEM instead of a PKE. These transformations require
two extra hashes during the encapsulation and an additional re-encryption oper-
ation during the decapsulation. In the case of Loidreau’s scheme, it would trans-
late as a total of four extra hashes and a matrix multiplication for each encryp-
tion/decryption. Our scheme does not seem to need this additional matrix multi-
plication. Unfortunately, the available decoding algorithms for Gabidulin do not
allow us to avoid this matrix multiplication. Indeed, the Welsh-Berlekamp [16]
and Gao-like [26]) approaches directly output the message xS during the decryp-
tion procedure while the Berlekamp-Massey-like [14] algorithms outputs the error
multiplied by the masking matrix eP . Hence, in both strategies, we have to com-
pute a matrix multiplication to recover the original error which was added to the
ciphertext during the encryption. Thus, the operations required for decryption
in our scheme ended up having the same cost as in the generic transformations.
However, this could change if a different decoding technique avoids these extra
matrix multiplications.

Taking into consideration that our implementation is thread safe, and that
we do not use the rest of the processors, these 23619 encryptions per second can
easily be multiplied by 6. Therefore, the performance figures presented here make
our scheme usable in practical applications. Moreover, our proposal can be used
as a KEM like most of the proposals for NIST competition, but it can also be
used for other purposes where the larger message space would allow to encrypt
something bigger than just a key for each ciphertext. In fact, the message space
is big enough to embed a few ciphertext from elliptic curve cryptography, and
use our proposed scheme as a protection against quantum attacks. This way,
many keys could be distributed using only one post quantum encryption.

6 Conclusions

We have presented an IND-CCA-secure version of Loidreau’s public key encryp-
tion scheme. This proposal is usable for encrypting large messages as it can
encrypt plaintexts of size 224, 384 or 448 bytes for a corresponding level of
security of 128, 192 and 256 bits. Our proposal presents a overhead of 23% in
the computational cost for encryption when compared to the original Loidreau’s
scheme. Thus, the new cryptosystem is still practical. Moreover, the transfor-
mation in the decryption has a similar cost as other transformations such as
Hofheniz et al. [15] or Saito et al. [24]. Nevertheless, in our case, the cost of
the decryption might be reduced by using an alternative decoding method able
to retrieve both the codeword and error without requiring an additional matrix
multiplication. As it is, the security proof relies on some properties which are

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric 95

specific for the Loidreau’s scheme. Though, it is likely that our transformation
might be adapted or generalized to other post-quantum schemes, even in differ-
ent settings, such as lattices. We leave this generalization as a future work.

References

1. Al Abdouli, A., et al.: Drankula, a McEliece-like rank metric based cryptosystem
implementation. In: Proceedings of the 15th International Joint Conference on
e-Business and Telecommunications, ICETE 2018, vol. 2, SECRYPT, pp. 230–241
(2018)

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. Cryptology ePrint Archive, Report 2018/904 (2018). https://
eprint.iacr.org/2018/904

3. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.: A new algorithm for solving the
rank syndrome decoding problem. In: IEEE International Symposium on Informa-
tion Theory, ISIT, pp. 2421–2425 (2018)

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

5. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography, 1st edn.
Springer, Heidelberg (2008)

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

7. Coggia, D., Couvreur, A.: On the security of a Loidreau’s rank metric code based
encryption scheme. arXiv preprint arXiv:1903.02933 (2019)

8. Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-
quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3 9

9. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
pp. 542–552 (1991)

10. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

11. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm.
(English translation of Problemy Peredachi Informatsii) 21(1), 3–16 (1985)

12. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 41

13. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption
from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 7

https://eprint.iacr.org/2018/904
https://eprint.iacr.org/2018/904
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
http://arxiv.org/abs/1903.02933
https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-46416-6_41
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-319-63697-9_7

96 H. A. Shehhi et al.

14. Gadouleau, M., Yan, Z.: Complexity of decoding Gabidulin codes. In: 42nd Annual
Conference on Information Sciences and Systems. CISS 2008, pp. 1081–1085 (2008)

15. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 12

16. Loidreau, P.: A welch–berlekamp like algorithm for decoding gabidulin codes.
In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg
(2006). https://doi.org/10.1007/11779360 4

17. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 1

18. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report, pp. 114–116, January and February 1978

19. Mosca, M., Stebila, D.: Contributors: Open quantum safe (2017). https://
openquantumsafe.org/

20. NIST: Federal inf. process. stds. (nist fips) - 202 (2015). https://dx.doi.org/10.
6028/NIST.FIPS.202

21. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

22. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)

23. Overbeck, R.: Structural attacks for public-key cryptosystems based on Gabidulin
codes. J. Cryptol. 21(2), 280–301 (2008)

24. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

25. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6),
46:1–46:76 (2015)

26. Wachter-Zeh, A.: Decoding of block and convolutional codes in rankmetric.Ph.D.
thesis, Université Rennes 1 (2013). https://tel.archives-ouvertes.fr/tel-0105674

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/11779360_4
https://doi.org/10.1007/978-3-319-59879-6_1
https://openquantumsafe.org/
https://openquantumsafe.org/
https://dx.doi.org/10.6028/NIST.FIPS.202
https://dx.doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://tel.archives-ouvertes.fr/tel-0105674

Zero-Knowledge

UC-Secure CRS Generation for SNARKs

Behzad Abdolmaleki1, Karim Baghery1, Helger Lipmaa1, Janno Siim1(B),
and Micha�l Zaj ↪ac2

1 University of Tartu, Tartu, Estonia
jannosiim@gmail.com

2 Clearmatics, London, UK

Abstract. Zero-knowledge SNARKs (zk-SNARKs) have recently found
various applications in verifiable computation and blockchain applica-
tions (Zerocash), but unfortunately they rely on a common reference
string (CRS) that has to be generated by a trusted party. A standard
suggestion, pursued by Ben Sasson et al. [IEEE S&P, 2015], is to gener-
ate CRS via a multi-party protocol. We enhance their CRS-generation
protocol to achieve UC-security. This allows to safely compose the CRS-
generation protocol with the zk-SNARK in a black-box manner with
the insurance that the security of the zk-SNARK is not influenced. Dif-
ferently from the previous work, the new CRS-generation protocol also
avoids the random oracle model which is typically not required by zk-
SNARKs themselves. As a case study, we apply the protocol to the state-
of-the-art zk-SNARK by Groth [EUROCRYPT, 2016].

Keywords: CRS model · SNARK · Subversion-security · UC security

1 Introduction

A zero-knowledge argument is a cryptographic protocol between a prover and a
verifier where the objective is to prove the validity of some statement while not
leaking any other information. In particular, such an argument should be sound
(it should be impossible to prove false statements) and zero-knowledge (the only
leaked information should be the validity of the statement). Practical applica-
tions often require a non-interactive zero-knowledge (NIZK) argument where the
prover outputs a single message which can be checked by many different verifiers.

Zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARKs) are particularly efficient instantiations of NIZK, and have thus
found numerous application ranging from verifiable computation [29] to privacy-
preserving cryptocurrencies [5] and privacy-preserving smart contracts [25]. In
most of such zk-SNARKs (see, e.g., [13,15,19,20,26,29]), the verifier’s computa-
tion is dominated by a small number of exponentiations and pairings in a bilinear
group, while the argument consists of a small number of group elements. Impor-
tantly, a zk-SNARK exists for any NP-language.

One drawback in the mentioned pairing-based zk-SNARKs is their reliance
on the strong common reference string (CRS) model. It assumes that in the
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 99–117, 2019.
https://doi.org/10.1007/978-3-030-23696-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_6

100 B. Abdolmaleki et al.

setup phase of the protocol a trusted party publishes a CRS, sampled from some
specialized distribution, while not leaking any side information. Subverting the
setup phase can make it easy to break the security, e.g., leaking a CRS trapdoor
makes it trivial to prove false statements. This raises the obvious question of how
to apply zk-SNARKs in practice without completely relying on a single trusted
party. The issue is further amplified since in all of the mentioned zk-SNARKs,
one has to generate a new CRS each time the relation changes.

Reducing trust on CRS generation is indeed a long-standing open question.
Several different approaches for this are known, but each one has its own prob-
lems. Some recent papers [6,8,9] have proposed efficient CRS-generation multi-
party computation protocols, where only 1 out of Np parties has to be honest,
for a large class of known zk-SNARKs (in fact, most of the efficient pairing-
based zk-SNARKs belong to this class, possibly after the inclusion of a small
number of new elements to their CRSs) for which the CRS can be computed
by a fixed well-defined class CS of circuits. Following [6], we will call this class
of zk-SNARKs CS-SNARKs. However, the CRS-generation protocols of [6,8,9]
have the following two weaknesses:

1. They are not secure in the universal composability (UC) setting [10]. Hence,
they might not be secure while running in parallel with other protocols, as
is often the case in real life scenarios. Moreover, some systems require a UC-
secure NIZK [22,25], but up to now their CRS is still be generated in a
standalone setting. We note that [6,9] do prove some form of simulatability
but not for full UC-security. Protocol of [8] is for one specific zk-SNARK.

2. All use the random oracle model and [8,9] additionally use knowledge assump-
tion. Non-falsifiable assumptions [28] (e.g., knowledge assumptions) and the
random oracle model are controversial (in particular, the random oracle model
is uninstantiable [12,17] and thus can only be thought of as a heuristic),
and it is desirable to avoid them in situations where they are not known
to circumvent impossibility results. Importantly, construction of zk-SNARKs
under falsifiable assumptions is impossible [16] and hence they do rely on non-
falsifiable assumptions but usually not on the random oracle model. Relying
on the random oracle model in the setup phase means that the complete com-
posed system (CRS-generation protocol + zk-SNARK) relies on both random
oracle model and non-falsifiable assumptions. Hence, we end up depending
on two undesirable assumptions rather than one.

Updatable CRS [21] is another recent solution to the problem. Essentially,
this can be viewed as a single round MPC protocol where each party needs to
participate just once in the CRS computation. Current zk-SNARKs in updatable
CRS model [21,27] are still less efficient, than the state-of-the-art non-updatable
counterparts like the zk-SNARK by Groth [20].

As a different approach, in order to minimize the trust of NIZKs in the setup
phase, Bellare et al. [4] defined the notion of subversion-resistance, which guar-
antees that a security property (like soundness) holds even if the CRS generators
are all malicious. As proven in [4], achieving subversion-soundness and (even non-
subversion) zero knowledge at the same time is impossible for NIZK arguments.

UC-Secure CRS Generation for SNARKs 101

On the other hand, one can construct subversion-zero knowledge (Sub-ZK) and
sound NIZK arguments. Abdolmaleki et al. [2] showed how to design efficient
Sub-ZK SNARKs: essentially, a zk-SNARK can be made Sub-ZK by construct-
ing an efficient public CRS-verification algorithm CV that guarantees the well-
formedness of its CRS. In particular, [2] did this for the most efficient known
zk-SNARK by Groth [20] after inserting a small number of new elements to its
CRS. Fuchsbauer [14] proved that Groth’s zk-SNARK (with a slightly different
simulation) is Sub-ZK even without changing its CRS.

Our Contributions. We propose a new UC-secure multi-party CRS-generation
protocol for CS-SNARKs that crucially relies only on falsifiable assumptions and
does not require a random oracle. Conceptually, the new protocol follows sim-
ilar ideas as the protocol of [6], but it does not use any proofs of knowledge.
Instead, we use a discrete logarithm extractable (DL-extractable) UC commit-
ment functionality Fdlmcom that was recently defined by Abdolmaleki et al. [1].
A DL-extractable commitment scheme allows to commit to a field element x and
open to the group element gx. Since Fdlmcom takes x as an input, the committer
must know x and thus x can be extracted by the UC-simulator. As we will show,
this is sufficient to prove UC-security of the new CRS-generation protocol.

In addition, we show that the Sub-ZK SNARK of [2] is a Sub-ZK CS-SNARK
after just adding some more elements to its CRS. We also improve the efficiency
of the rest of the CRS-generation protocol by allowing different circuits for each
group, considering special multiplication-division gates, and removing a num-
ber of NIZK proofs that are used in [6]. Like in the previous CRS-generation
protocols [6,8,9], soundness and zero-knowledge will be guaranteed as long as 1
out of Np parties participating in the CRS generation is honest. If SNARK is
also Sub-ZK [2,14], then zero-knowledge is guaranteed even if all Np parties are
dishonest, given that the prover executes a public CRS verification algorithm.

Since it is impossible to construct UC commitments in the standard
model [11], the new UC-secure CRS-generation protocol necessarily relies on
some trust assumption. The DL-extractable commitment scheme of [1] is secure
in the registered public key (RPK) model1 that is a weaker trust model than
the CRS model. However, we stay agnostic to the concrete implementation of
Fdlmcom, proving the security of the CRS-generation protocol in the Fdlmcom-
hybrid model. Thus, the trust assumption of the CRS-generation protocol is
directly inherited from the trust assumption of the used DL-extractable com-
mitment scheme. Constructing DL-extractable commitment schemes in a weaker
model like the random string model or the multi-string model is an interesting
open question. Note that CRS-s of known efficient CS-SNARKs, with a few
exceptions, contain Ω(n) group elements, where n is the circuit size (e.g., in
the last CRS generation of Zcash [5], n ≈ 2 000 0002). Hence, even a relatively

1 In the RPK model, each party registers his public key with an authority of his
choosing. It is assumed that even authorities of untrusted parties are honest to the
extent that they verify the knowledge (e.g., by using a standalone ZK proof) of the
corresponding secret key.

2 See https://www.zfnd.org/blog/conclusion-of-powers-of-tau/.

https://www.zfnd.org/blog/conclusion-of-powers-of-tau/

102 B. Abdolmaleki et al.

inefficient DL-extractable commitment scheme (that only has to be called once
per CRS trapdoor) will not be the bottleneck in the CRS-generation protocol.

We proceed as follows. First, we describe an ideal functionality Fmcrs, an
explicit multi-party version of the CRS generation functionality. Intuitively (the
real functionality is slightly more complicated), first, Np key-generators Gi send
to Fmcrs their shares of the trapdoors, s.t. the shares of the honest parties are
guaranteed to be uniformly random. Second, Fmcrs combines the shares to create
the trapdoors and the CRS, and then sends the CRS to each Gi.

We propose a protocol Kmcrs that UC-realizes Fmcrs in the Fdlmcom-hybrid
model, i.e., assuming the availability of a UC-secure realization of Fdlmcom. In
Kmcrs, the parties Gi first Fdlmcom-commit to their individual share of each trap-
door. After opening the commitments, Gi compute crs by combining their shares
with a variation of the protocol from [6]. The structure of this part of the protocol
makes it possible to publicly check that it was correctly followed.

Next, we prove that a CS-SNARK that is complete, sound, and Sub-ZK in
the CRS model is also complete, sound, and Sub-ZK in the Fmcrs-hybrid model.
Sub-ZK holds even if all CRS creators were malicious, but for soundness we need
at least one honest party. We then show that the Sub-ZK secure version [2,14] of
the most efficient known zk-SNARK by Groth [20] remains sound and Sub-ZK if
the CRS has been generated by using Kmcrs. The main technical issue here is that
since Groth’s zk-SNARK is not CS-SNARK (see Sect. 3), we need to add some
new elements to its CRS and then reprove its soundness against an adversary
who is given access to the new CRS elements. We note that Bowe et al. [9]
proposed a different modification of Groth’s zk-SNARK together with a CRS-
generation protocol, but under strong assumptions of random beacon model,
random oracle model, and knowledge assumptions. Role of the commitment in
their case is substituted with a random beacon which in particular means that
they do not need to fix parties in the beginning of the protocol.

We constructed a UC-secure CRS-generation protocol Kmcrs in the Fdlmcom-
hybrid model for any CS-SNARK and in particular proved that a small modifi-
cation of Groth’s zk-SNARK is secure when composed with Kmcrs. Moreover, the
resulting CRS-generation protocol is essentially as efficient as the prior protocols
from [6,8,9]. However, (i) we proved the UC-security of the new CRS-generation
protocol, and (ii) the new protocol is falsifiable, i.e., it does not require either
the random oracle model or any knowledge assumption.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the information-
theoretic security parameter, in practice, e.g., λ = 128. All adversaries will be
stateful. For an algorithm A, let im(A) be the image of A, i.e., the set of valid out-
puts of A, let RND(A) denote the random tape of A, and let r ←$ RND(A) denote
sampling of a randomizer r of sufficient length for A’s needs. By y ← A(x; r)
we denote that A, given an input x and a randomizer r, outputs y. We denote
by negl(λ) an arbitrary negligible function, and by poly(λ) an arbitrary poly-
nomial function. A ≈c B means that distributions A and B are computationally

UC-Secure CRS Generation for SNARKs 103

indistinguishable. We write x ←$D if x is sampled according to distribution D

or uniformly in case D is a set. By Supp(D) we denote the set of all elements
in D that have non-zero probability.

Assume that Gi are different parties of a protocol. Following previous work [6],
we will make the following assumptions about the network and the adversary.
It is possible that the new protocols can be implemented in the asynchronous
model but this is out of scope of the current paper.

Synchronicity Assumptions: We assume that the computation can be divided
into clearly divided rounds. As it is well-known, synchronous computation can
be simulated, assuming bounded delays and bounded time-drift. For the sake
of simplicity, we omit formal treatment of UC-secure synchronous execution,
see [23] for relevant background.

Authentication: We assume the existence of an authenticated broadcast between
the parties. In particular, (i) if an honest party broadcasts a message, we assume
that all parties (including, in the UC-setting, the simulator) receive it within
some delay, and (ii) an honest party Gj accepts a message as coming from Gi

only if it was sent by Gi.

Covertness: We assume that an adversary in the multi-party protocols is covert,
i.e., it will not produce outputs that will not pass public verification algorithms.
In the protocols we write that honest parties will abort under such circumstances,
but in the proofs we assume that adversary will not cause abortions.

For pairing-based groups we will use additive notation together with the
bracket notation, i.e., in group Gι, [a]ι = a [1]ι, where [1]ι is a fixed genera-
tor of Gι. A deterministic bilinear group generator Pgen(1λ) returns p = (p,
G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the order of cyclic abelian
groups G1, G2, and GT , and ê : G1 × G2 → GT is an efficient non-degenerate
bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2); this
extends to vectors in a natural way. Occasionally we write [a]ι • [b]3−ι for
ι ∈ {1, 2} and ignore the fact that for ι = 2 it should be written [b]3−ι • [a]ι.
Let [a]� := ([a]1, [a]2). As in [4], we will implicitly assume that p is generated
deterministically from λ; in particular, the choice of p cannot be subverted.

UC Security. We work in the standard universal composability framework of
Canetti [10] with static corruptions of parties. The UC framework defines a
PPT environment machine Z that oversees the execution of a protocol in one
of two worlds. The “ideal world” execution involves “dummy parties” (some of
whom may be corrupted by an ideal adversary/simulator Sim) interacting with
a functionality F . The “real world” execution involves PPT parties (some of
whom may be corrupted by a PPT real world adversary A) interacting only
with each other in some protocol π. We refer to [10] for a detailed description
of the executions, and a definition of the real world ensemble EXECπ,A,Z and
the ideal world ensemble IDEALF,SimA,Z . A protocol π UC-securely computes F
if there exists a PPT Sim such that for every non-uniform PPT Z and PPT A,
{IDEALF,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c {EXECπ,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .

104 B. Abdolmaleki et al.

The importance of this definition is a composition theorem that states that
any protocol that is universally composable is secure when run concurrently with
many other arbitrary protocols; see [10] for discussions and definitions.

CRS Functionality. The CRS model UC functionality FD,f
crs parameterized

by a distribution D and a function f intuitively works as follows. Functionality
samples a trapdoor tc from D, computes crs = f(tc), and stores crs after a confir-
mation from the simulator. Subsequently on each retrieval query (retrieve, sid)
it responds by sending (CRS, sid, crs). For full details see Fig. 1.

Fig. 1. Functionality FD,f
crs

DL-extractable UC Commitment. Abdolmaleki et al. [1] recently proposed
a discrete logarithm extractable (DL-extractable) UC-commitment scheme. Dif-
ferently from the usual UC-commitment, a committer will open the commitment
to [m]1, but the functionality also guarantees that the committer knows x. Hence,
in the UC security proof it is possible to extract the discrete logarithm of [m]1.
Formally, the ideal functionality Fdlmcom takes m as a commitment input (hence
the user must know m), but on open signal only reveals [m]1. See Fig. 2. We
refer to [1] for a known implementation of Fdlmcom in the RPK model.

Fig. 2. Functionality Fdlmcom for ι ∈ {1, 2}

Non-interactive Zero-Knowledge. Let R be a relation generator, such that
R(1λ) returns a polynomial-time decidable binary relation R = {(x,w)}. Here,
x is the statement and w is the witness. We assume that λ is explicitly deducible

UC-Secure CRS Generation for SNARKs 105

from the description of R. The relation generator also outputs auxiliary informa-
tion ξR that will be given to the honest parties and the adversary. As in [2,20],
ξR is the value returned by Pgen(1λ). Because of this, we also give ξR as an
input to the honest parties; if needed, one can include an additional auxiliary
input to the adversary. Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A (subversion-resistant) non-interactive zero-knowledge argument system [2]
Ψ for R consists of six PPT algorithms:

CRS trapdoor generator: Ktc is a PPT algorithm that, given (R, ξR) ∈
im(R(1λ)), outputs a CRS trapdoor tc. Otherwise, it outputs ⊥.

CRS generator: Kcrs is a deterministic algorithm that, given (R, ξR, tc), where
(R, ξR) ∈ im(R(1λ)) and tc ∈ im(Ktc(R, ξR)) \ {⊥}, outputs crs. Otherwise,
it outputs ⊥. We distinguish three parts of crs: crsP (needed by the prover),
crsV (needed by the verifier), and crsCV (needed by CV algorithm).

CRS verifier: CV is a PPT algorithm that, given (R, ξR, crs), returns either 0
(the CRS is ill-formed) or 1 (the CRS is well-formed).

Prover: P is a PPT algorithm that, given (R, ξR, crsP, x,w), where (x,w) ∈ R,
outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, ξR, crsV, x, π), returns either 0
(reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, ξR, crs, tc, x), outputs an
argument π.

We also define the CRS generation algorithm K(R, ξR) that first sets tc ←
Ktc(R, ξR) and then outputs crs ← Kcrs(R, ξR, tc).

Ψ is perfectly complete for R, if for all λ, (R, ξR) ∈ im(R(1λ)), tc ∈
im(Ktc(R, ξR)) \ {⊥}, and (x,w) ∈ R,

Pr [crs ← Kcrs(R, ξR, tc) : V(R, ξR, crsV, x,P(R, ξR, crsP, x,w)) = 1] = 1 .

Ψ is computationally adaptively knowledge-sound for R [20], if for every non-
uniform PPT A, there exists a non-uniform PPT extractor ExtA, s.t. ∀ λ,

Pr

⎡
⎢⎣

(R, ξR) ← R(1λ), (crs, tc) ← K(R, ξR), r ←r RND(A),
(x, π) ← A(R, ξR, crs; r),w ← ExtA(R, ξR, crs; r) :
(x,w) 	∈ R ∧ V(R, ξR, crsV, x, π) = 1

⎤
⎥⎦ ≈λ 0 .

Here, ξR can be seen as a common auxiliary input to A and ExtA that is gener-
ated by using a benign [7] relation generator; we recall that we just think of ξR
as being the description of a secure bilinear group.

Ψ is statistically unbounded ZK for R [18], if for all λ, all (R, ξR) ∈
im(R(1λ)), and all computationally unbounded A, εunb

0 ≈λ εunb
1 , where

εunb
b = Pr[(crs, tc) ← K(R, ξR) : AOb(·,·)(R, ξR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 	∈ R, and otherwise it returns
P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 	∈ R, and oth-
erwise it returns Sim(R, ξR, crs, tc, x). Ψ is perfectly unbounded ZK for R if one
requires that εunb

0 = εunb
1 .

106 B. Abdolmaleki et al.

Ψ is statistically unbounded Sub-ZK for R, if for any non-uniform PPT sub-
verter X there exists a non-uniform PPT ExtX, such that for all λ, (R, ξR) ∈
im(R(1λ)), and computationally unbounded A, εunb

0 ≈λ εunb
1 , where

εunb
b = Pr

[
r ←r RND(X), (crs, ξX) ← X(R, ξR; r), tc ← ExtX(R, ξR; r) :

CV(R, ξR, crs) = 1 ∧ AOb(·,·)(R, ξR, crs, tc, ξX) = 1

]
.

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 	∈ R, and otherwise it returns
P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 	∈ R, and oth-
erwise it returns Sim(R, ξR, crs, tc, x). Ψ is perfectly unbounded Sub-ZK for R if
one requires that εunb

0 = εunb
1 .

Intuitively the previous definition says that an argument is Sub-ZK when
for any untrusted (efficient) CRS generator X, some well-formedness condition
CV(R, ξR, crs) = 1 implies that X knows a trapdoor which would allow him to
simulate the proof. Hence, to protect privacy from malicious CRS generators,
the prover just needs to verify that the CRS satisfies the CV algorithm.

Finally, a non-interactive argument system is succinct if the argument length
is polynomial in λ and the verifier runs in time polynomial in λ + |x|.

3 Multi-party CRS Generation

Recently, [6,8,9] proposed several multi-party CRS-generation protocols for
SNARKs. In particular, [6] proposes a specific class of arithmetic circuits CS,
shows how to evaluate CS-circuits in an MPC manner, and claims that CS-circuits
can be used to compute CRS-s for a broad class of SNARKs, in this paper called
CS-SNARKs. The CRS of each CS-SNARK is an output of some CS-circuit taken
into exponent. The input of such circuit is the CRS trapdoor. In the following,
we review and modify the framework of [6] redefining slightly the class CS and
the CRS-generation protocol.

CS-Circuits. For an arithmetic circuit C over a field F, denote by wires(C) and
gates(C) the set of wires and gates of C (each gate can have more than one output
wire), and by inputs(C), outputs(C) ⊂ wires(C) the set of input and output wires
of C. There can also be wires with hard-coded constant values, but these are not
considered to be part of inputs(C). The size of C is |inputs(C)| + |gates(C)|. For
a wire w we denote the value on the wire by w̄; this notation also extends to
tuples, say, inputs(C) denotes the tuple of values of inputs(C).

For a gate g, output(g) = w is the output wire and the tuple of all input
wires is denoted by inputs(g). Let gw be the gate with w = output(gw). We con-
sider circuits with addition and multiplication-division gates. For an addition
gate (type(g) = add), inputs(g) = (w1, . . . , wf), coeffs(g) = (a0, a1, . . . , af), and
it outputs a value w̄ = a0 +

∑f
j=1 ajw̄j . For a multdiv gate (type(g) = multdiv),

inputs(g) = (w1, w2, w3), L-input(g) = w1 is the left multiplication input,
R-input(g) = w2 is the right multiplication input, D-input(g) = w3 is the division
input, and coeffs(g) = a. The output wire w contains the value w̄ = aw̄1w̄2/w̄3.

UC-Secure CRS Generation for SNARKs 107

Previous works either only considered multiplication gates [6] or separate mul-
tiplication and division gates [9]. Using multdiv gates can, in some cases, reduce
the circuit size compared to separate multiplication and division gates.

Class CS contains F-arithmetic circuits C : Ft → F
h, such that:

(1) For any w ∈ inputs(C), there exists g ∈ gates(C) such that type(g) = multdiv,
inputs(g) = (1, w̄, 1), and coeffs(g) = 1. That is, each trapdoor itself should
be a part of the output of the circuit. Adding those multdiv gates corresponds
to the MPC protocol combining the shares of trapdoor ts of each party to
get [tc]ι.

(2) For any g ∈ gates(C):
(a) output(g) ∈ outputs(C). Hence, each gate output is a CRS element.
(b) If type(g) = multdiv then L-input(g) 	∈ inputs(C), R-input(g),D-input(g) ∈

inputs(C). That is, the left multiplication input can be a constant or an
output of a previous gate, the right multiplication and division inputs
have to be one of the inputs of the circuit. This allows to easily verify
the computation in the MPC. For convenience, we require further that
constant value of L-input(g) can only be 1; from computational point of
view nothing changes since coeffs(g) can be any constant.

(c) If type(g) = add then inputs(g)∩ inputs(C) = ∅. Addition is done locally in
MPC (does not require additional rounds) with the outputs of previous
gates, since outputs correspond to publicly known CRS elements.

The sampling depth depthS of a gate g ∈ gates(C) is defined as follows:

1. depthS(g) = 1 if g is a multdiv gate and L-input(g) is a constant.
2. depthS(g) = max{depthS(g′) : g′ an input of g} for other multdiv gates,
3. depthS(g) = bg + max{depthS(g′) : g′ an input of g} for any add gate, where

(i) bg = 0 iff all the input gates of g are add gates. (ii) bg = 1, otherwise.

Denote depthS(C) := maxg{depthS(g)}. We again defined depthS slightly differ-
ently compared to [6]; our definition emphasizes the fact that addition gates can
be executed locally. Essentially, Np · depthS(gw) will be the number of rounds
that it takes to compute [w̄]ι with our MPC protocol. The multiplicative depth
of a circuit (denoted by depthM(C)) is the maximum number of multiplication
gates from any input to any output. An exemplary CS-circuit is given in Fig. 3.

Multi-party Circuit Evaluation Protocol. We describe the circuit evalua-
tion protocol, similar to the one in [6], that allows to evaluate any CS-circuits
“in the exponent”. We assume there are Np parties Gi, each having published a
share [tsi,s]� ∈ F

∗, for s ∈ [1 .. t]. The goal of the evaluation protocol is to output(
[C1(tc)]1, [C2(tc)]2

)
where C1,C2 are CS-circuits and tc = (

∏
j tsj,1, . . . ,

∏
j tsj,t).

This protocol constructs a well-formed CRS, given that tc is the CRS trapdoor
and [C1(tc)]1, [C2(tc)]2 are respectively all the G1 and G2 elements of the CRS.
In Sect. 4, we combine the circuit evaluation protocol with a UC-secure commit-
ment scheme to obtain a UC-secure CRS-generation protocol. Each step in the
circuit evaluation protocol is publicly verifiable and hence, no trust is needed at
all; except that to get the correct distribution we need to trust one party.

108 B. Abdolmaleki et al.

1 1 1 1

Fig. 3. Example CS circuit with inputs tc1 and tc2

Fig. 4. Algorithms Cmd, Vmd and the protocol Evalmd for ι ∈ {1, 2}.

We make two significant changes to the circuit evaluation protocol compared
to [6]: (i) we do not require that C1 = C2, allowing CRS elements in G1 and G2

to be different, and (ii) instead of multiplication gates we evaluate multdiv gates.
Let us first describe the computation of [w̄]ι for a single gate gw. For an add

gate, given that all input gates have already been computed, that is, [w̄1, . . . , w̄f]ι
are already public, each Gi computes [w̄]ι = a0 +

∑f
j=1 aj [w̄j]ι locally. A multdiv

gate g, with inputs(g) = (b, tcs, tck) and coeffs(g) = a, can be implemented by
the Np-round protocol Evalmd from Fig. 4. Here, each party Gi takes as input [b]ι
(the output of the preceding gate or just [1]ι if there is none), runs Cmd procedure
on tsi,s ∈ F, tsi,k ∈ F (her shares of the trapdoor that are also g’s inputs), and
broadcasts its output. Note that [b]ι corresponds to the left multiplication, tsi,s

to the right multiplication, and tsi,k to the division input of g.
Importantly, since each party Gi published [{tsi,j}t

j=1]�, everybody can
verify that Gi executed Cmd correctly by checking if Vmd([bi]ι, [bi−1]ι, a,
[tsi,s, tsi,k]3−ι) = 1, where [bi]ι is Gi’s output and [bi−1]ι is her input (the out-
put of the party Gi−1). We assume [b0]ι = [1]ι to allow the parties to check
the computations of G1. Just running Evalmd to evaluate each multdiv gate in C
would require ≈ Np · depthM(C) rounds. Next we see that computation can be
parallelized to obtain Np · depthS(C) rounds.

Optimised Multi-party Circuit Evaluation Protocol. Before presenting
the complete (parallelised) circuit evaluation protocol, we provide an illustrative

UC-Secure CRS Generation for SNARKs 109

example of how CS-circuits can be evaluated efficiently using multiple parties.
The idea behind this approach is to allow parties to evaluate the circuit not
gate-by-gate but all the gates of the same sampling depth. We say that gates
are in the same layer if they have the same depthS. Following the definition of
depthS, layers are separated by add gates. That is, two gates, say g1 and g2 are
in different layers if there is an add gate gadd such that g1 (or g2) depends on
gadd’s output, while the other gate does not. In each layer, each gate is computed
using only trapdoor elements and outputs from gates of some preceding layer.
Parties evaluate the layer in a round-robin manner broadcasting intermediate
values which allows other parties to verify the computation.

This is how the optimised protocol and the naive MPC protocol differ. Since
naive protocol evaluates circuit gate-by-gate, one gate’s output can be another’s
input even if both share the same layer. For instance, consider gates g1 and g3
from Fig. 3. There, g1’s output is g3’s input and they are both in the same layer.
Since the output of g1 is computed before g3 is evaluated, it can be used in the
computation. On the other hand, in the optimised version of circuit evaluation
all gates in the same layer are evaluated at the same time, thus g3 is computed
at the same time when g1 is computed.

Example 1. Suppose we have parties G1, G2, G3 that wish to compute crs =
{[tc1]�, [tc2]�, [tc21/tc2]1, [tc21/tc2 + tc2]1}. Let us only focus on the computation
of G1 elements. This is represented by a CS-circuit in Fig. 3 where we have (i)
a multdiv gate g1 with input values (1, tc1, 1), (ii) a multdiv gate g2 with input
values (1, tc2, 1), (iii) a multdiv gate g3 that takes the output of g1 as L-input,
the circuit’s inputs tc1 as R-input, and tc2 as D-input, that is, the input values
of g3 are (tc1, tc1, tc2), and (iv) an add gate gadd that adds outputs of g2 and g3.
The parties respectively publish shares [ts1,1, ts1,2]�, [ts2,1, ts2,2]�, [ts3,1, ts3,2]�.

– In the first round, G1 broadcasts [b1g1
]1 ← [ts1,1]1 for gate g1, [b1g2

]1 ← [ts1,2]1
for gate g2, and [b1g3

]1 ← [ts21,1/ts1,2]1 for gate g3.
– In the second round, G2 broadcasts [b2g1

]1 ← ts2,1 · [b1g1
]1 for gate g1, [b2g2

]1 ←
ts2,2·[b1g2

]1 for gate g2, and [b2g3,1]1 ← ts2,1·[b1g3
]1, [b2g3,2]1 ← (ts2,1/ts2,2)·[b2g3,1]1

for g3 (note that g3 required two computations rather than one).
– In the third round, G3 broadcasts [b3g1

]1 ← ts3,1·[b2g1
]1 for gate g1, [b3g2

]1 ← ts3,2·
[b2g2

]1 for gate g2, and [b3g3,1]1 ← ts3,1 · [b2g3,2]1, [b3g3,2]1 ← (ts3,1/ts3,2) · [b3g3,1]1
for g3. For gadd each party computes [bgadd

]1 ← [b3g2
]1 + [b3g3,2]1.

Finally, if we define tc1 := ts1,1 · ts2,1 · ts3,1 and tc2 := ts1,2 · ts2,2 · ts3,2, then
the outputs of G3 contain [b3g1

]1 = [tc1]1, [b3g2
]1 = [tc2]1, and [b3g3,2]1 = [tc21/tc2]1;

moreover, [bgadd
]1 = [tc2 + tc21/tc2]1. Besides addition, each element is built up

one share multiplication at a time and hence the computation can be verified
with pairings, e.g, the last output [b2g3,2]1 of G2 is correctly computed exactly
when [b2g3,2]1 • [ts2,2]2 = [b2g3,1]1 • [ts2,1]2. ��

Motivated by the example above, we give the full and formal description of
the circuit evaluation protocol. Let Cι ∈ CS, for ι ∈ {1, 2}, and Cι,d ⊆ gates(C)
be a circuit layer that contains all multdiv gates g at sampling depth d. For any

110 B. Abdolmaleki et al.

g ∈ Cι,d let ExtractPath(g,Cι,d) output the longest path (g1, . . . , gq = g) such
that each gj ∈ Cι,d, and, for j < q, output(gj) = L-input(gj+1). Intuitively, this
is the path of gates in Cι,d that following only the left inputs lead up to the gate
g, say, ExtractPath(g3,C1,1) = (g1, g3) for the circuit C in Fig. 3. For simplicity,
we describe a multdiv gate g by a tuple ([b]ι, a, s, k) where [b]ι = [L-input(g)]ι is
the left input value, assumed already to be known by the parties, a = coeffs(g),
R-input(g) = tcs, and D-input(g) = tck.

The parties evaluate multdiv gates of the circuit in order Cι,1,Cι,2, . . . ,Cι,Dι
,

where Dι is the sampling depth of Cι. After each layer Cι,d each party locally
evaluates all the addition gates at depth d + 1. The evaluation of Cι,d proceeds
in a round-robin fashion. First, G1 evaluates Cι,d with her input shares ts1,k

alone. Next, G2 multiplies her shares ts2,k to each output of G1. However, to
make computation verifiable, if G2 is supposed to compute [b1g · ts2,α1 · . . . ts2,αq

]ι,
where [b1g]ι is some output of G1, then it is done one multiplication at a time.
Namely, she outputs [b2g,1]ι = [b1g · ts2,α1]ι, [b2g,2]ι = [b2g,1 · ts2,α2]ι, . . . , [b2g,q]ι =
[b2g,q−1 · ts2,αq

]ι. Each multiplication would correspond to exactly one gate in
ExtractPath(g,Cι,d). The elements [b2g,1, . . . , b

2
g,q−1]ι are used only for verification;

[b2g,q]ι is additionally used by G3 to continue the computation. Each subsequent
party Gi multiplies her shares to the output of Gi−1 in a similar fashion. This
protocol requires only Np · depthS(Cι) rounds.

Let certι = (certι1, . . . , cert
ι
Dι

) be the total transcript (certificate) in Gι cor-
responding to the output of the multi-party evaluation of Cι where certιr is the
transcript in round r. Denote cert := (cert1, cert2). All gates of depth r of Cι are
evaluated by a uniquely fixed party Gi. In what follows, let i = rndplayer(r) be
the index of this party.

The complete description of evaluation and verification of a layer Cι,d is given
in Fig. 5 with function Clayer and Vlayer that have the following interface. First,
for i = rndplayer(r) and for both ι ∈ {1, 2}, in round r to compute [Cι,d(tc)]ι, Gi

computes certιr ← Clayer(Cι,d, ι, i, r, {tsi,k}t
k=1, {certιj}r−1

j=1), given a circuit layer
Cι,d, the shares tsi,k for all t trapdoors of tck, and the transcript {certιj}r−1

j=1

of all previous computation. Second, any party can verify, by using the algo-
rithm Vlayer(Cι,d, ι, i, r, {[tsi,k]3−ι}t

k=1, {certιj}r
j=1), that the computation of the

circuit layer Cι,d in round r has been performed correctly by Gi. In particular,
Gi checks that Vlayer outputs 1 for all rounds since Gi’s previous round before
executing Clayer for her new round. Importantly, executing Vlayer does not assume
the knowledge of any trapdoors.

4 UC-Secure CRS Generation

We propose a functionality Fmcrs for multi-party CRS generation of any CS-
SNARK. Finally, we construct a protocol Kmcrs that UC-realizes Fmcrs in the
Fdlmcom-hybrid model.

New Ideal Functionality. In Fig. 6, we define the new ideal functionality
Fmcrs = Fp,Np,C,D,comb

mcrs for pairing-based (since it outputs elements from Gι)

UC-Secure CRS Generation for SNARKs 111

Fig. 5. Clayer and Vlayer for ι ∈ {1, 2}

multi-party CRS-generation protocol. The CRS is described by a t-input
arithmetic circuits C := (C1,C2) over a field F = Zp such that crs =
([C1(tc)]1, [C2(tc)]2) for tc ←$D, where D is a samplable distribution over Z

t
p.

The trapdoor tc is constructed by combining shares tsi ∈ Supp(D) of each
party Gi by a function comb. For each honest party Gi, the ideal functionality
picks tsi ←$D, whereas for malicious parties we only know tsi ∈ Supp(D). The
function comb should be defined so that if there exists at least one honest party
then tc ← comb(ts1, . . . , tsNp

) is also distributed accordingly to D. In such case
we say that D is comb-friendly. It is true for example when comb is point-wise
multiplication and D is a uniform distribution over (Z∗

p)
t as, e.g., in [6,8,9]. This

guarantees the correct distribution of crs if at least one party is honest.
We believe Fmcrs captures essentially any reasonable pairing-based multi-

party CRS-generation protocol, where the trapdoor is shared between Np parties.
Note that specifying distinct honest and corrupted inputs to the functionality is
common in the UC literature, [3,24]. In Theorem 2, we will establish the relation
between Fcrs and Fmcrs.

New Protocol. We define the new multi-party CRS-generation protocol Kmcrs =
K
p,Np,C,D,comb
mcrs (see Fig. 7) in the Fdlmcom-hybrid model. This allows us to instan-

tiate the protocol with any DL-extractable commitment and, moreover, the
only trust assumption that the protocol needs is the one inherited from the

112 B. Abdolmaleki et al.

Fig. 6. Ideal functionality Fmcrs

commitment scheme, e.g., using construction from [1] gives security in the RPK
model. Given that Dι is the sampling depth of Cι, then R = Np ·max(D1,D2) is
the number of rounds needed to evaluate both circuits in parallel. For the sake
of simplicity, we assume certιr is the empty string for r > Np · Dι.

Kmcrs proceeds in rounds: (i) In round 1, each Gi gets a signal (sc, sid,Gi);
parties commit to their shares of trapdoor tc. (ii) In round 2, each party Gi gets
a signal (mcrsopen, sid); parties open their shares. (iii) In round r ∈ [3 .. R +
2], (mcrscertok, sid,Gi, r) is triggered, where i = rndplayer(r); parties jointly
compute crs from the trapdoor shares; before party Gi performs her computation,
she checks if previous computation were done correctly. (iv) In round R+3, each
party Gi gets the signal (mcrsfinal, sid,Gi) and extracts the crs from cert. The
CRS will be output by Gi only if all the verifications succeeded. The signals
sc, mcrsopen, mcrscertok, and mcrsfinal can be sent either by a controller
server or by the internal clock of Gi. The construction uses a secure broadcast
channel; thus, if a message is broadcast, then all parties are guaranteed to receive
the same message. Note that after Gj obtains (rcpt, lblijk), for i ∈ [1 ..Np], j 	=
i, k ∈ [1 .. t], she broadcasts (mcrsreceipt, lblijk) since rcpt is not broadcast.

Security. To prove UC-security of Kmcrs, we restrict Fmcrs as follows: (i) C =
(C1,C2) such that Cι ∈ CS for ι ∈ {1, 2}. Note that this means that for any
trapdoor element tck ∈ tc, [tck]� ∈ crs. (ii) D is the uniform distribution on
(Z∗

p)
t, (iii) comb(ts1, . . . , tsNp

) := ts1 ◦ . . . ◦ tsNp
, where ◦ denotes point-wise

multiplication, and tsik is Gi’s share of tck.

Theorem 1. Kmcrs UC-realizes Fmcrs in the Fdlmcom-hybrid model with perfect
security against a static adversary. Formally, there exits a PPT simulator SimA

such that for every static (covert) PPT adversary A and for any non-uniform
PPT environment Z, Z cannot distinguish Kmcrs composed with Fdlmcom and A
from Sim composed with Fmcrs. That is, HYBRIDFdlmcom

Kmcrs,A,Z = IDEALFmcrs,SimA,Z .

Proof (Sketch). To prove UC-security, we have to construct an algorithm Sim
that is able to simulate behaviour of honest parties for Z in the ideal world with-
out knowing their real inputs. Since we are in Fdlmcom-hybrid model, Sim simu-
lates Fdlmcom for the malicious parties and hence learns their shares. At first, Sim

UC-Secure CRS Generation for SNARKs 113

Fig. 7. The protocol Kmcrs in the Fdlmcom-hybrid model

picks random shares ts′
ik to simulate all the honest parties. Once the ideal func-

tionality has received (sc, sid,Gi) from all the honest parties and (sc, sid,Gi, tsi)
for all the dishonest parties (forwarded by Sim), then Sim receives (CRS, sid, crs)
from the ideal functionality. Now, Sim fixes one honest party Gh and opens its
commitments to [ts∗

hk]1 ← [tck]1/(
∏

i∈[1 ..Np]\{h} ts′
ik) for [tck]1 ∈ crs and ts′

ik col-
lected through Fdlmcom. Since [tck]1 is uniformly random, then so is [ts∗

hk]1 (the
same distribution as in the real protocol). With a similar strategy Sim simulates
each gate output for Gh such that the final output of the simulated protocol is
crs, matching the output of the ideal functionality.

We discuss challenges of adaptive security and give the full proof of this
theorem in the full version of the paper. ��

5 Secure MPC for NIZKs

Next, we show that Kmcrs can be used to generate the CRS of any CS-SNARK
without harming the completeness, soundness, or (subversion) zero-knowledge

114 B. Abdolmaleki et al.

properties. It could also be used to generate CRS of other primitives which can
be represented by CS-circuits, but it is especially well suited for the intricate
structure of SNARK CRS. Finally, we apply the protocol to the Sub-ZK secure
version [2,14] of the most efficient zk-SNARK by Groth [20].

NIZK in the MCRS Model. Let Ψ be a NIZK argument system secure in
the Fcrs-hybrid model. We show that by instantiating Fcrs with Fmcrs, the NIZK
remains complete, sound, and zero-knowledge, provided that the adversary A
controls up to Np − 1 out of Np parties. Here we require that D is comb-friendly.
See Fig. 8 for the high-level description of MPC protocol for the CRS generation.

Fig. 8. Protocol KFmcrs
crs

Theorem 2. Let D and comb : (Supp(D))Np → Supp(D) be such that D

is comb-friendly. KFmcrs
crs securely realizes FD,f

crs in the Fmcrs-hybrid model given
(covert) A corrupts up to Np − 1 out of Np parties (i.e. CRS generators).

The proof of this theorem is given in the full version of the paper. Next corollary
immediately follows from the universal composition theorem [10].

Corollary 1. Let Ψ be a NIZK argument that is complete, sound, computation-
ally ZK, and computationally Sub-ZK in the FD,f

crs -hybrid model. By instantiating
FD,f

crs with KFmcrs
crs , the following holds:

1. Ψ is complete, sound, and computationally zero-knowledge in the Fmcrs-hybrid
model, given that (covert) A corrupts up to Np − 1 out of Np parties.

2. Ψ is Sub-ZK in the Fmcrs-hybrid model, even if (covert) A corrupts all Np

parties.
3. If D is a uniform distribution over (Z∗

p)
t, comb the point-wise multiplication

and the CRS can be computed by CS-circuits, then properties 1 and 2 hold in
the Fdlmcom-hybrid model since Kmcrs realizes Fmcrs in that setting.

Applying Kmcrs to Groth’s zk-SNARK. Figure 9 contains the description of
the CRS for the Sub-ZK version of Groth’s zk-SNARK Z∗ as was proposed in [2].
We have omitted the element [αβ]T that can be computed from [α]1 and [β]2.
The CRS from [2] differs from the original CRS for Groth’s zk-SNARK [20] by
the entries in crsCV which make the CRS verifiable using a CV algorithm. Here,
�i(X) are Lagrange basis polynomials and �(X) = Xn − 1, uj(X), vj(X), wj(X)

UC-Secure CRS Generation for SNARKs 115

Fig. 9. CRS of Z∗ Sub-ZK SNARK from [2]

are publicly-known circuit-dependent polynomials. Due to the lack of space, we
do not present other algorithms of Z∗.

We recall that to use the algorithm KFmcrs
crs the CRS has to be of the form

crs = ([C1(tc)]1, [C2(tc)]2), where Cι ∈ CS. In Fig. 9, the highlighted entries
cannot be computed from trapdoors by a CS-circuit unless we add crsTV =
([(wj(χ), βuj(χ), αvj(χ))mj=0, χ

n]1, [(�i(χ))ni=1, (χ
k)n−1

k=1]2) to the CRS. To obtain
better efficiency we additionally add [(�i(χ))ni=1]2 to the CRS, although they
can be computed from the existing elements [

(
χk

)n−1

k=1
]2. However, since we are

adding elements to the CRS, we also need to reprove the soundness. We do this
in the full version of the paper.

We give a brief description of the CRS-generation protocol for Z∗ without
explicitly describing the circuits C1 and C2. Without directly saying it, it is
assumed that parties verify all the computations as shown in Fig. 7.

Share Collection Phase. Parties proceed as is in Fig. 7 to produce random and
independent shares [tsi]� = [αi, βi, γi, δi, χi]� for each Gi.

CRS Generation Phase. (i) On layers C1,1,C2,1 parties jointly compute
[α, β, γ, δ]�, [(χk)n−1

k=1]� and [χn]1. (ii) Each Gi locally computes [(�k(χ))nk=1]�,
[(wj(χ), uj(χ))mj=0]1, and [(vj(χ))mj=0]� using [(χk)n−1

k=1]�; and also computes
[�(χ)]1 = [χn]1 − [1]1. (iii) On layer C1,2, from input [�(χ)]1, par-
ties jointly compute [(χk�(χ)/δ)n−2

k=0]1 using n − 1 multdiv gates. More-
over, they compute [(βul(χ), αvl(χ))ml=0]1. (iv) Each party computes locally
[(βul(χ) + αvl(χ) + wl(χ))ml=0]1. (v) On layer C1,3 parties compute jointly
[(βul(χ) + αvl(χ) + wl(χ)/γ)m0

l=0]1 and [(βul(χ) + αvl(χ) + wl(χ)/δ)ml=m0+1]1.
The cost of the CRS generation for Z∗ can be summarised as follows: the

circuits C1 and C2 have both sampling depth 3; the multi-party protocol for
computing the crs takes 3Np + 6 rounds and requires 3m + 3n + 9 multdiv gates.
Note that with separate multiplication and division gates one would need 2m +
3n+8 multiplication gates and m+n division gates which would be less efficient.

Acknowledgement. The authors were supported by the European Union’s Horizon
2020 research and innovation programme under grant agreements No. 653497 (project
PANORAMIX) and No. 780477 (project PRIViLEDGE), and by the Estonian Research
Council grant (PRG49).

116 B. Abdolmaleki et al.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: DL-Extractable UC-
Commitment Schemes. Technical Report 2019/201, IACR (2019). https://eprint.
iacr.org/2019/201

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 1

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

5. Ben-Sasson, E., et al.: Zerocash: Decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

6. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304 (2015)

7. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: 46th ACM STOC, pp. 505–514

8. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602 (2017). http://eprint.iacr.org/2017/602

9. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017). http://eprint.iacr.org/2017/1050

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145

11. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218

13. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

14. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 11

15. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

16. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99–108

17. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm.
In: 44th FOCS, pp. 102–115

https://eprint.iacr.org/2019/201
https://eprint.iacr.org/2019/201
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
http://eprint.iacr.org/2017/602
http://eprint.iacr.org/2017/1050
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

UC-Secure CRS Generation for SNARKs 117

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

19. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

20. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

21. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

22. Juels, A., Kosba, A.E., Shi, E.: The ring of Gyges: investigating the future of
criminal smart contracts. In: ACM CCS 16, pp. 283–295 (2016)

23. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

24. Kidron, D., Lindell, Y.: Impossibility results for universal composability in public-
key models and with fixed inputs. J. Cryptol. 24(3), 517–544 (2011)

25. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858 (2016)

26. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 10

27. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updateable structured reference strings. Cryptology
ePrint Archive, Report 2019/099 (2019). https://eprint.iacr.org/2019/099

28. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

29. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(2013)

https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://eprint.iacr.org/2019/099
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

On the Efficiency of Privacy-Preserving
Smart Contract Systems

Karim Baghery(B)

University of Tartu, Tartu, Estonia
karim.baghery@ut.ee

Abstract. Along with blockchain technology, smart contracts have
found intense interest in lots of practical applications. A smart contract is
a mechanism involving digital assets and some parties, where the parties
deposit assets into the contract and the contract redistributes the assets
among the parties based on provisions of the smart contract and inputs
of the parties. Recently, several smart contract systems are constructed
that use zk-SNARKs to provide privacy-preserving payments and inter-
connections in the contracts (e.g. Hawk [KMS+16] and Gyges [JKS16]).
Efficiency of such systems severely are dominated by efficiency of the
underlying UC-secure zk-SNARK that is achieved using C∅C∅ frame-
work [KZM+15] applied on a non-UC-secure zk-SNARK. In this paper,
we show that recent progresses on zk-SNARKs, allow one to simplify the
structure and also improve the efficiency of both systems with a UC-
secure zk-SNARK that has simpler construction and better efficiency in
comparison with the currently used ones. More precisely, with minimal
changes, we present a variation of Groth and Maller’s zk-SNARK from
Crypto 2017, and show that it achieves UC-security and has better effi-
ciency than the ones that currently are used in Hawk and Gyges. We
believe, new variation can be of independent interest.

Keywords: Privacy-preserving smart contracts · zk-SNARKs ·
UC-security · CRS model

1 Introduction

Eliminating the need for a trusted third party in monetary transactions, con-
sequently enabling direct transactions between individuals is one of the main
achievements in the cryptocurrencies such as Bitcoin. Importantly, it is shown
that the technology behind cryptocurrencies has more potential than what only
is used in direct transactions. Different blockchain-based systems such as smart
contracts [KMS+16,JKS16], distributed cloud storages [WLB14], digital coins
such as Ethereum [Woo14] are some evidence that why blockchain technology
offers much more functionalities than what we can see in Bitcoin. Smart con-
tracts are one of popular applications that along with blockchain technology,
have found intense interest recently. A smart contract is a generic term denot-
ing programs written in Turing-complete cryptocurrency scripting languages,
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 118–136, 2019.
https://doi.org/10.1007/978-3-030-23696-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_7

On the Efficiency of Privacy-Preserving Smart Contract Systems 119

that involves digital assets and some parties. The parties deposit assets into the
contract and the contract redistributes the assets among the parties based on
provisions of the smart contract and inputs of the parties.

Different research have shown that even if payments (e.g. in Bitcoin) or
interconnections (e.g. in smart contracts) are conducted between pseudoran-
dom addresses, but still they lack privacy of end-users. Indeed, this mostly
arises from the nature of technology that a decentralized publicly shared ledger
records list of transactions along with related information (e.g. addresses of par-
ties, transferred values, etc), and long-time monitoring and some data analysis
(e.g. transaction graph analysis) on this ledger usually reveals some informa-
tion about the identity of end-users. To address these concerns and provide
strong privacy for end-users, several alternatives to Bitcoin protocol and smart
contract systems have been proposed; e.g. confidential assets [PBF+18], privacy-
preserving auditing [NVV18], privacy-preserving cryptocurrencies such as Zero-
cash [BCG+14] and Monero [Noe15], privacy-preserving smart contract systems
such as Hawk [KMS+16] and Gyges [JKS16].

Zerocash and Monero are two known anonymous cryptocurrencies that pro-
vide strong privacy for end-users. Each of them uses different cryptographic
tools to guarantee strong privacy. Monero uses ring signatures that allow for
an individual from a group to provide a signature such that it is impossible
to identify which member of that group made the signature. On the other side,
Zerocash uses zero-knowledge Succinct Non-interactive Arguments of Knowledge
(zk-SNARKs [Gro10,Lip12,PHGR13,BCTV13,Gro16,GM17]) to prove the cor-
rectness of all computations inside a direct transaction, without revealing the
source, destination and values of the transferred coins. In a similar technique,
privacy-preserving smart contract system Hawk [KMS+16] and criminal smart
contract system Gyges [JKS16] use universally composable zk-SNARKs to pro-
vide anonymous interconnection and payment in a smart contract.

zk-SNARKs. Among various Non-Interactive Zero-Knowledge (NIZK) argu-
ments, zk-SNARKs are one of the most popular ones in practical systems. This
is happened because of their succinct proofs, and consequently very efficient ver-
ification. A zk-SNARK proof allows one to efficiently verify the veracity of state-
ments without learning extra information about the prover. The proofs can be
verified offline very quickly (in few milliseconds) by possibly many independent
verifiers. This can be very effective in efficiency of large-scale distributed systems.
Efficiency of zk-SNARKs mainly comes from the fact that their construction
relies on non-falsifiable assumptions (e.g. knowledge assumptions [Dam91]) that
allow succinct proofs and non-black-box extraction in security proofs. On the
other hand, a zk-SNARK with non-black-box extraction cannot achieve Univer-
sally Composable Security (UC-security) which is imperative and necessary in
constructing larger cryptographic systems [Can01]. Du to this fact, zk-SNAKRs
cannot be directly adopted in larger systems that should guarantee UC-security.

Privacy-Preserving Smart Contract Systems. Recently, some elegant UC-
based frameworks are presented that allow to construct privacy-preserving smart

120 K. Baghery

contracts, including Hawk [KMS+16] and Gyges [JKS16] for criminal smart
contracts. These systems record zk-SNARK proofs on ledger, instead of public
transactions between pseudonyms, which brings stronger transactional privacy.
Strictly speaking, Hawk is a system that gets a program and compiles it to a cryp-
tographic protocol between the contract correspondents (including users and a
manager) and the blockchain. It consists of two main blocks, where one is respon-
sible for private money transfers and uses a variation of Zerocash [BCG+14],
while the second part handles other contract-defined operations of the system.
Similar to Zerocash, operations such as Mint, that is required in minting a new
coin, and Pour, that enables anonymous transactions, are located in the first
block. On the other side, contract-related operations such as Freeze, Compute
and Finalize, that are three necessary operations defined by Hawk for each smart
contract, are addressed in the second block. More details regard to the men-
tioned operations can be found in [KMS+16]1. To achieve anonymity in the
mentioned operations and payments, Hawk widely uses zk-SNARKs to prove
different statements. As the whole system intended to achieve UC-security, so
they needed to use a UC-secure zk-SNARK in the system. Additionally, since
Zerocash also uses a non-UC-secure zk-SNARK and it is not proved to satisfy
UC-security, so to make it useable in Hawk, they needed a variation of Zerocash
that uses a UC-secure zk-SNARK and also guarantees UC-security. To this aim,
designers of Hawk have used C∅C∅ framework [KZM+15] (a framework to lift
a non-UC-secure sound NIZK to a UC-secure one; C∅C∅ stands for Composable
0-knowledge, Compact 0-knowledge) to lift the non-UC-secure zk-SNARK used
in Zerocash [BCTV13], to a UC-secure zk-SNARK, such that the lifted scheme
can be securely used in composition with the rest of system [Can01]. Then, due
to using a UC-secure zk-SNARK in Zerocash, designer of Hawk modified the
structure of original Zerocash and used the customized version in their system,
which also guarantees UC-security. The lifted UC-secure zk-SNARK frequently
is used in the system and plays an essential role in the efficiency of entire system.

Problem Statement. In the performance evaluation of Hawk [KMS+16]
authors show that the efficiency of their system severely depend on efficiency
of the lifted UC-secure zk-SNARK (which is the case in Gyges [JKS16] as well).
In fact, computational complexity of both systems are dominated with complex-
ity of the underlying UC-secure zk-SNARK. Particularly, Kosba et al. [KMS+16]
emphasize that practical efficiency is a permanent goal of Hawk’s design, so to
get the best, they also propose various optimizations. By considering this, one
may ask, can we improve efficiency of the underlying UC-secure zk-SNARKs
such that the efficiency of complete systems will be improved?

Our Contribution. As the main contribution, we show that one can improve
efficiency of Hawk (and similarly Gyges) smart contract system by improving
the efficiency of underlying UC-secure zk-SNARK. We will see that one can use

1 A tutorial about the system can be found in http://cryptowiki.net/index.php?
title=Privacy preserving smart contracts: Hawk project.

http://cryptowiki.net/index.php?title=Privacy_preserving_smart_contracts:_Hawk_project
http://cryptowiki.net/index.php?title=Privacy_preserving_smart_contracts:_Hawk_project

On the Efficiency of Privacy-Preserving Smart Contract Systems 121

a similar approach used by Kosba et al. (in Hawk [KMS+16]) and Juels et al.
(in Gyges [JKS16]) and construct a UC-secure version of Groth and Maller’s
zk-SNARK [GM17] (refereed as GM zk-SNARK in the rest), that has simpler
construction and better efficiency than the ones that currently are used in the
systems. To do so, we slightly modify the construction of GM zk-SNARK by
enforcing the prover to send encryption of witnesses along with the proof, and
then show that it achieves black-box simulation extractability, equivalently UC-
security, which allows to deploy in both systems to improve their efficiency.

Both Hawk and Gyges have used C∅C∅ framework to lift a variation of Pinoc-
chio zk-SNARK [PHGR13] which is deployed in Zerocash (proposed by Ben Sas-
son et al. [BCTV13]). Later it details we show that, as GM zk-SNARK [GM17]
has better efficiency than the mentioned variation of Pinocchio zk-SNARK, and
as our changes are lighter than the changes that are applied on Ben Sasson et
al.’s zk-SNARK in Hawk [KMS+16] and Gyges [JKS16], so we get a UC-secure
zk-SNARK that has simpler construction and better efficiency than the ones
that currently are deployed in the systems. Indeed, we will see that our changes
are a small part of their changes, which leads to have less overload.

In the modified construction, we do the changes in CRS circuit level and try to
keep the prover and verifier procedure as original one that both are considerably
optimized in the original construction [GM17]. We believe, new constructed UC-
secure zk-SNARK can be of independent interest and it can be deployed in any
large cryptographic system that aims to guarantee UC-security and needs to use
zk-SNARKs. From a different perspective, new construction also can be used as
a commit-and-proof system, as prover can send encryption (sort of commitment)
of witnesses earlier than the proof elements. In such cases, one can consider linear
commitment size and succinct proof size (proof would be 2 elements in G1 and
1 element in G2). We note that in UC-secure zk-SNARKs, the proofs are linear
in witness size but still independent of size of the circuit that encodes language.

Discussion of UC-secure NIZKs. Most of efficient zk-SNARKs only guar-
antee knowledge soundness, meaning that if an adversary can come up with
a valid proof, there exists an extractor that can extract the witness from the
adversary. But in some cases, e.g. in signatures of knowledge SoKs [CL06],
knowledge soundness is not enough, and one needs more security guarantee.
More accurately, most of zk-SNARKs are vulnerable to the malleability attack
which allows an adversary to modify an old proof to a new valid one, that is
not desired in some cases. To address this, the notion of simulation exractability
is defined which ensures that an adversary cannot come up with a new accept-
able proof (or an argument), even if he already has seen arbitrary simulated
proofs, unless he knows the witness. In other words, simulation extractability
implies that if an adversary, who has obtained arbitrary number of simulated
proofs, can generate an acceptable new proof for a statement, there exists an
extractor that can extract the witness. Based on extraction procedure which
is categorized as Black-Box (BB) or non-Black-Box (nBB), there are various
notions of simulation extractibility [Gro06,KZM+15,GM17]. In BB extraction,
there exists a black-box (universal) extractor which can extract the witness from

122 K. Baghery

all adversaries, however in the nBB extraction, for each adversary there exists
a particular extractor that can extract only if it has access to the adversary’s
source code and random coins. It is already observed and proven that a NIZK
system that achieves simulation extractibility with BB extraction, can guarantee
the UC-security [CLOS02,Gro06,GOS06].Therefore, constructing a simulation-
extractable zk-SNARK with BB extraction is equivalent to constructing a UC-
secure zk-SNARK (which the proof will be only circuit succinct). Strictly speak-
ing, in a UC-secure NIZK the simulator of ideal-world should be able to extract
witnesses without getting access to the source code of environment’s algorithm,
which this is guaranteed by BB extraction.

A known technique to achieve a simulation-extractable NIZK with BB extrac-
tion is to enforce the prover to send the encryption of witnesses (with a public
key given in the CRS) along with proof, so that in security proofs the extrac-
tor can use the pair secret key for extraction [Gro06]. Using this technique, the
proof (communication) size will not be succinct anymore, as impossibility result
in [GW11] confirms, but the verification will be efficient yet and the extraction
issue that zk-SNARKs have in the UC framework [Can01] will be solved.

2 Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. Let λ ∈ N be the security parameter, say λ = 128. All adversaries will be
stateful. For an algorithm A, let im(A) be the image of A, i.e., the set of valid out-
puts of A, let RND(A) denote the random tape of A, and let r ←$RND(A) denote
sampling of a randomizer r of sufficient length for A’s needs. By y ← A(x; r)
we mean given an input x and a randomizer r, A outputs y. For algorithms A
and ExtA, we write (y ‖ y′) ← (A‖ExtA)(x; r) as a shorthand for ”y ← A(x; r),
y′ ← ExtA(x; r)”. An arbitrary negligible function is shown with negl(λ). Two
computationally indistinguishable distributions A and B are shown with A ≈c B.

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gμ, [a]μ = a [1]μ, where [1]μ is a fixed generator of Gμ. A
bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p
(a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally, ê :
G1 ×G2 → GT is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) =
[ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

We bellow review Square Arithmetic Programs (SAPs) that defines NP-
complete language specified by a quadratic equation over polynomials [GM17].

Square Arithmetic Program: Any quadratic arithmetic circuit with fan-in 2 gates
over a finite field Zp can be lifted to a SAP instance over the same finite field (e.g.
by considering ab = ((a + b)2 − (a − b)2)/4) [GM17]. A SAP instance contains
Sp = (Zp,m0, {uj , wj}m

j=0). This instance defines the following relation:

RSp
=

⎧
⎨

⎩

(x,w) : x = (A1, . . . , Am0)
� ∧ w = (Am0+1, . . . , Am)�∧

(∑m
j=0 Ajuj(X)

)2

≡ ∑m
j=0 Ajwj(X) (mod �(X))

⎫
⎬

⎭

On the Efficiency of Privacy-Preserving Smart Contract Systems 123

where �(X) :=
∏n

i=1(X−ωi−1) = Xn−1 is the unique degree n monic polynomial
such that �(ωi−1) = 0 for all i ∈ [1 .. n]. Alternatively, (x,w) ∈ RSp

if there exists

a (degree ≤ n−2) polynomial h(X), s.t.
(∑m

j=0 Ajuj(X)
)2

−∑m
j=0 Ajwj(X) =

h(X)�(X).

2.1 Definitions

We use the definitions of NIZK arguments from [Gro06,Gro16,GM17,KZM+15].
Let R be a relation generator, such that R(1λ) returns a polynomial-time decid-
able binary relation R = {(x,w)}. Here, x is the statement and w is the wit-
ness. We assume one can deduce λ from the description of R. The relation
generator also outputs auxiliary information ξR that will be given to the hon-
est parties and the adversary. As in [Gro16,ABLZ17], ξR is the value returned
by BGgen(1λ). Due to this, we also give ξR as an input to the honest parties;
if needed, one can include an additional auxiliary input to the adversary. Let
LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A NIZK argument system Ψ for R consists of tuple of PPT algorithms, s.t.:

CRS generator: K is a PPT algorithm that given (R, ξR), where (R, ξR) ∈
im(R(1λ)) outputs crs = (crsP, crsV) and stores trapdoors of crs as ts. We
distinguish crsP (needed by the prover) from crsV (needed by the verifier).

Prover: P is a PPT algorithm that, given (R, ξR, crsP, x,w), where (x,w) ∈ R,
outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, ξR, crsV, x, π), returns either
0 (reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, ξR, crs, ts, x), outputs an
argument π.

Extractor: Ext is a PPT algorithm that, given (RL, ξRL
, crs, x, π, te) extracts

the w; where te is extraction trapdoor (e.g. a secret key).

We require an argument system Ψ to be complete, computationally
knowledge-sound and statistically ZK, as in the following definitions.

Definition 1 (Perfect Completeness [Gro16]). A non-interactive argument
Ψ is perfectly complete for R, if for all λ, all (R, ξR) ∈ im(R(1λ)), and (x,w) ∈
R,

Pr [crs ← K(R, ξR) : V(R, ξR, crsV, x,P(R, ξR, crsP, x,w)) = 1] = 1 .

Definition 2 (Computational Knowledge-Soundness [Gro16]). A non-
interactive argument Ψ is computationally (adaptively) knowledge-sound for R,
if for every NUPPT A, there exists a NUPPT extractor ExtA, s.t. for all λ,

Pr

⎡

⎢
⎣

(R, ξR) ← R(1λ), (crs ‖ ts) ← K(R, ξR),
r ←r RND(A), ((x, π) ‖w) ← (A‖ExtA)(R, ξR, crs; r) :
(x,w) �∈ R ∧ V(R, ξR, crsV, x, π) = 1

⎤

⎥
⎦ ≈λ 0 .

124 K. Baghery

Here, ξR can be seen as a common auxiliary input to A and ExtA that is gener-
ated by using a benign [BCPR14] relation generator; A knowledge-sound argu-
ment system is called an argument of knowledge.

Definition 3 (Statistically Zero-Knowledge [Gro16]). A non-interactive
argument Ψ is statistically ZK for R, if for all λ, all (R, ξR) ∈ im(R(1λ)),
and for all NUPPT A, εunb

0 ≈λ εunb
1 , where

εb = Pr[(crs ‖ ts) ← K(R, ξR) : AOb(·,·)(R, ξR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R, and otherwise it returns
P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R, and
otherwise it returns Sim(R, ξR, crs, x, ts). Ψ is perfect ZK for R if one requires
that ε0 = ε1.

Intuitively, a non-interactive argument Ψ is zero-knowledge if it does not
leak extra information besides the truth of the statement. Beside the mentioned
properties defined in Definitions 1–3, a zk-SNARK has succinctness property,
meaning that the proof size is poly(λ) and the verifier’s computation is poly(λ)
and the size of instance. In the rest, we recall the definitions of simulation sound-
ness and simulation extractability that are used in construction of UC-secure
zk-SNARKs.
Definition 4 (Simulation Soundness [Gro06]). A non-interactive argument
Ψ is simulation sound for R if for all NUPPT A, and all λ,

Pr

[
(R, ξR) ← R(1λ), (crs ‖ ts) ← K(R, ξR), (x, π) ← AO(.)(R, ξR, crs) :
(x, π) �∈ Q ∧ x �∈ L ∧ V(R, ξR, crsV, x, π) = 1

]

≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O, that returns simulated proofs.

Definition 5 (Non-Black-Box Simulation Extractability [GM17]). A
non-interactive argument Ψ is non-black-box simulation-extractable for R, if
for any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

⎡

⎢
⎣

(R, ξR) ← R(1λ), (crs ‖ ts) ← K(R, ξR),

r ←r RND(A), ((x, π) ‖w) ← (AO(.) ‖ExtA)(R, ξR, crs; r) :
(x, π) �∈ Q ∧ (x,w) �∈ R ∧ V(R, ξR, crsV, x, π) = 1

⎤

⎥
⎦ ≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O that returns simulated proofs. It is worth to mention that non-black-
box simulation extractability implies knowledge soundness (given in Definition 2),
as the earlier is a strong notion of the later which additionally the adversary is
allowed to send query to the proof simulation oracle. Similarly, one can observe
that non-black-box simulation extractability implies simulation soundness (given
in Definition 4) that is discussed in [Gro06] with more details.

On the Efficiency of Privacy-Preserving Smart Contract Systems 125

Definition 6 (Black-Box Simulation Extractability [KZM+15]). A non-
interactive argument Ψ is black-box simulation-extractable for R if there exists
a black-box extractor Ext that for all NUPPT A, and all λ,

Pr

⎡

⎢
⎣

(R, ξR) ← R(1λ), (crs ‖ ts ‖ te) ← K(R, ξR),

(x, π) ← AO(.)(R, ξR, crs),w ← Ext(R, ξR, crs, te, x, π) :
(x, π) �∈ Q ∧ (x,w) �∈ R ∧ V(R, ξR, crsV, x, π) = 1

⎤

⎥
⎦ ≈λ 0 .

Similarly, Q is the set of simulated statement-proof pairs, and te is the extraction
trapdoor. A key note about Definition 6 is that the extraction procedure is black-
box and unlike the non-black-box case, the extractor Ext works for all adversaries.

2.2 C∅C∅ : A Framework for Constructing UC-Secure zk-SNARKs

Kosba et al. [KZM+15] have constructed a framework with several converters
which the most powerful one gets a sound NIZK and lifts to a NIZK that achieves
black-box simulation extractability (defined in Definition 6), or equivalently UC-
security [Gro06]. Here we review construction of the most powerful converter
that is used by both Hawk and Gyges to construct a UC-secure zk-SNARK.

Construction. Given a sound NIZK, to achieve a UC-secure NIZK, C∅C∅
framework applies several changes in all setup, proof generation and verification
procedures of the input NIZK. Initially the framework defines a new language L′

based on the language L in underlying NIZK and some new primitives that are
needed for the transformation. Let (KGene,Ence,Dece) be a set of algorithms for
a semantically secure encryption scheme, (KGens,Sigs,Vfys) be a one-time signa-
ture scheme and (Comc,Vfyc) be a perfectly binding commitment scheme. Given
a language L with the corresponding NP relation RL, define a new language L′

such that ((x, c, μ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL′ iff:

(c = Ence(pke,w; r)) ∧ ((x,w) ∈ RL ∨ (μ = fs0(pks) ∧ ρ = Comc(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family. Now,
a sound NIZK argument system Ψ for R constructed from PPT algorithms
(K,P,V,Sim,Ext) can be lifted to a UC-secure NIZK Ψ ′ with PPT algorithms
(K′,P′,V′,Sim′,Ext′) as follows.

CRS and trapdoor generation K′(RL, ξRL
): Sample (crs ‖ ts) ← K(RL′ ,

ξRL′); (pke, ske) ← KGene(1λ); s0, r0 ←$ {0, 1}λ; ρ := Comc(s0; r0); and out-
put (crs′ ‖ ts′ ‖ te′) := ((crs, pke, ρ) ‖ (s0, r0) ‖ ske).

Prover P′(RL, ξRL
, crs, x,w): Parse crs′ := (crs, pke, ρ); Abort if (x,w) /∈

RL; (pks, sks) ← KGens(1λ); sample z0, z1, z2, r1 ←$ {0, 1}λ; compute
c = Ence(pke,w; r1); generate π ← P(RL′ , ξRL′ , crs, (x, c, z0, pks, pke, ρ),
(r1, z1, w, z2)); sign σ ← Sigs(sks, (x, c, z0, π)); and output π′ := (c, z0,
π, pks, σ).

126 K. Baghery

Verifier V′(RL, ξRL
, crs′, x, π′): Parse crs′ := (crs, pke, ρ) and π′ := (c, μ, π,

pks, σ); Abort if Vfys(pks, (x, c, μ, π), σ) = 0; call V(RL′ , ξRL′ , crs, (x, c, μ, pks,
pke, ρ), π) and abort if it outputs 0.

Simulator Sim′(RL, ξRL
, crs′, ts′, x): Parse crs′ := (crs, pke, ρ) and ts′ := (s0,

r0); (pks, sks) ← KGens(1λ); set μ = fs0(pks); sample z3, r1 ←$ {0, 1}λ;
compute c = Ence(pke, z3; r1); generate π ← P(RL′ , ξRL′ , crs, (x, c, μ, pks,
pke, ρ), (r1, r0, z3, s0)); sign σ ← Sigs(sks, (x, c, μ, π)); and output π′ :=
(c, μ, π, pks, σ).

Extractor Ext′(RL, ξRL
, crs′, te′, x, π′): Parse π′ := (c, μ, π, pks, σ), te′ := ske;

extract w ← Dece(ske, c); output w.

Fig. 1. Structure of GM zk-SNARK [GM17]

On the Efficiency of Privacy-Preserving Smart Contract Systems 127

2.3 Groth and Maller’s zk-SNARK

This section presents the construction of GM zk-SNARK that is presented by
Groth and Maller in [GM17]2. It is the first SAP-based zk-SNARK that achieves
non-black-box simulation extractability, which makes the scheme secure against
the malleability attacks. The structure of GM zk-SNARK is shown in Fig. 1.

3 An Efficient UC-Secure zk-SNARK

We present a variation of GM zk-SNARK [GM17] and show that it
achieves black-box simulation extractability, and equivalently UC-security.
GM zk-SNARK is the only scheme that guarantees non-black-box simula-
tion extractablity which is stronger than knowledge-soundness that is usually
achieved in most of pairing-based zk-SNARKs. We show that due to this strong
security, with minimal changes we can achieve a UC-secure version of GM zk-
SNARK.

Intuition. The goal is to present a UC-secure version of GM zk-SNARK but
efficient than UC-secure zk-SNARKs that are lifted by C∅C∅ framework; espe-
cially more efficient than the ones that are deployed in [KMS+16,JKS16]. To
do so, we slightly modify GM zk-SNARK and enforce prover P to encrypt its
witnesses with a public key given in the CRS and send the ciphertext along with
the proof. In this scenario, in security proof, the secret key of encryption scheme
is given to the Ext which allows to extract witnesses in black-box manner, that
is more realistic indeed. Actually this is an already known technique to achieve
black-box extraction that also is used in C∅C∅ framework. It is undeniable that
sending encryption of witnesses leads to have non-succinct proofs in witness size
but still they are succinct in the size of circuit that encodes the language and it
is simpler and more efficient than the ones that are lifted by C∅C∅ .

3.1 Construction

While modifying we keep internal computation of both prover and verifier as
original one, that considerably are optimized for a SAP relation. Instead we
define a new language L′ based on the language L in GM zk-SNARK that is
embedded with encryption of witness. Strictly speaking, given a language L with
the corresponding NP relation RL, we define the following new language L′ such
that ((x, c, pke), (w, r)) ∈ RL′ iff:

(c = Ence(pke,w; r)) ∧ ((x,w) ∈ RL),

2 We use original construction of GM zk-SNARK that is published in Crypto
2017 [GM17] and implemented in Libsnark library https://github.com/scipr-lab/
libsnark. But one also can use the variation of GM zk-SNARK that recently is pro-
vided in full version of paper.

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

128 K. Baghery

where (KGene,Ence,Dece) is a set of algorithms for a semantically secure encryp-
tion scheme with keys (pke, ske). Accordingly, the modified version of GM zk-
SNARK is given in Fig. 2. It is worth to mention that, due to the particular
structure of new language L′, all verifications will be done inside the circuit, and
interestingly verifier and prover’s internal computations are the same as before,
just prover needs to send encryption of witnesses along with the proof. This
is the key modification in removing nBB extraction (particularly knowledge-
assumption based in zk-SNARKs) and achieving BB extraction.

Fig. 2. GM zk-SNARK with black-box simulation extractability

3.2 Efficiency

In the modified scheme, as the original one, proof is 2 elements in G1 and 1
element in G2, but along with c that is encryption of witnesses. So, proof size is
dominated with size of c that is linear in witness size.

As verifier is untouched, so similar to GM zk-SNARK, the verification pro-
cedure consists of checking that the proof contains 3 appropriate group ele-
ments and checking 2 pairing product equations which in total it needs a multi-
exponentiation G1 to m0 exponents and 5 pairings.

In the setup, in result of our change, the arithmetic circuit will be slightly
extended, but due to minimal changes (a more detailed comparison is provided
in Fig. 3), the extension is less than the case that one uses C∅C∅ framework.

3.3 Security Proof

Theorem 1 (Perfect Completeness). The protocol constructed in Sect. 3, is
a non-interactive argument of knowledge that guarantees perfect completeness.

On the Efficiency of Privacy-Preserving Smart Contract Systems 129

Proof. We emphasizes that in the modified version, the internal computations of
P and V are the same as original one, just they need to perform the computation
for new SAP instance that has slightly larger size (e.g. n = nold + nnew, where
n is number of squaring gates in the new circuit, and nnew is the number of
squaring gates that are added in result of new changes) and prover needs to
output some new elements that are encryption of witnesses and will be used
inside the unchanged verification equations. So by considering this fact, one can
see that the completeness of modified protocol follows the original protocol. ��
Theorem 2 (Computationally Zero-Knowledge). The protocol constructed
in Sect. 3, is a non-interactive argument of knowledge that guarantees computa-
tional zero-knowledge.

Proof. To prove the theorem, we write a series of hybrid experiments that start
from an experiment that encrypts a random value and uses the simulator, and
finally gets to an experiment that uses the procedure of real prover. We show
that all experiments are indistinguishable two-by-two. Before going through the
games, recall that GM zk-SNARK scheme guarantees zero-knowledge and its
simulation procedure is given in Fig. 1. So, consider the following experiment,

EXPzk
1

− Setup: (pke, ske) ← KGene(1
λ); (crs ‖ ts) ← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x,w) : Abort if (x,w) �∈ RL; Sample z, r ← {0, 1}λ; c = Ence(pke, z; r);

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts);

− b ← AO(x,w)(crs′);
return b;fi

EXPzk
2

− Setup: (pke, ske) ← KGene(1
λ); (crs ‖ ts) ← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x,w) : Abort if (x,w) �∈ RL; Sample r ← {0, 1}λ ; c = Ence(pke,w; r) ;

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts);

− b ← AO(x,w)(crs′);
return b;fi

Lemma 1. If the used cryptosystem in the above games is semantically secure,
then for two experiments EXPzk

2 and EXPzk
1 , we have Pr[EXPzk

2] ≈ Pr[EXPzk
1].

Proof. By considering the fact that the cryptosystem Πenc = (KGene,Ence,
Dece) is a semantically secure, so no polynomial-time algorithm can distinguish
an oracle that encrypts randomly chosen value z and uses simulator Sim from
the case that it encrypts witness w and again uses Sim. ��

130 K. Baghery

EXPzk
3

− Setup:(pke, ske) ← KGene(1
λ); (crs ‖ ts) ← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x,w) : Abort if (x,w) �∈ RL; Sample r ← {0, 1}λ; c = Ence(pke,w; r);

π ← P(RL′ , ξRL′ , crs, (x, c, pke), (w, r)) ;

− b ← AO(x,w)(crs′);
return b;fi

Lemma 2. For experiments EXPzk
3 and EXPzk

2 we have Pr[EXPzk
3] ≈ Pr[EXPzk

2].

Proof. As GM zk-SNARK guarantees zero-knowledge, so one can conclude that
the real proof (generated by prover) in experiment EXPzk

3 is indistinguishable
from the the simulated proof (generated by simulator) in experiment EXPzk

2 . ��
This completes the proof of theorem. ��

Theorem 3 (Black-Box Simulation Extractability). Assuming the
encryption scheme is semantically secure and perfectly correct, the modified ver-
sion of GM zk-SNARK in Sect. 3, satisfies black-box simulation extractability.

Proof. Similarly, we go through a sequence of hybrid experiences. The proof
uses a similar approach that is used in C∅C∅ framework and consequently in
Hawk and Gyges, but with considerable simplifications. As the first experiment,
consider the following experiment,

EXPSimExt
1

− Setup:(pke, ske) ← KGene(1
λ); (crs ‖ ts) ← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x) : Sample r, z ← {0, 1}λ; c = Ence(pke, z; r);

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts); output π′ := (c, π)

− (x, π′) ← AO(x)(crs′, ske);

− Parse π′ := (c, π); extract witness w ← Dece(c, ske);
return 1 iff ((x, π′) �∈ Q) ∧ (V(RL′ , ξRL′ , crs, (x, c, pke), π) = 1) ∧ ((x,w) �∈ RL);

where Q shows the set of statment-proof pairs generated by O(x). fi

EXPSimExt
2

− Setup:(pke, ske) ← KGene(1
λ); (crs ‖ ts) ← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x) : Sample r ← {0, 1}λ; c = Ence(pke,w; r) ;

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts); output π′ := (c, π)

− (x, π′) ← AO(x)(crs′, ske);

− Parse π′ := (c, π); extract witness w ← Dece(c, ske);
return 1 iff ((x, π′) �∈ Q) ∧ (V(RL′ , ξRL′ , crs, (x, c, pke), π) = 1) ∧ ((x,w) �∈ RL);

where Q shows the set of statment-proof pairs generated by O(x). fi

On the Efficiency of Privacy-Preserving Smart Contract Systems 131

Lemma 3. If the used cryptosystem in the above games is semantically secure,
then for two experiments EXPSimExt

2 and EXPSimExt
1 we have Pr[EXPSimExt

2] ≈
Pr[EXPSimExt

1].

Proof. By the fact that the used cryptosystem is semantically secure, so no
polynomial-time algorithm can distinguish an oracle that encrypts randomly
chosen value z and uses simulator Sim′ from the one that encrypts true witness
w and again uses simulator Sim′. ��

EXPSimExt
3

− Setup:(pke, ske) ← KGene(1
λ); (crs ‖ ts) ← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x) : Sample r ← {0, 1}λ; c = Ence(pke,w; r);

π ← P(RL′ , ξRL′ , crs, (x, c, pke), (w, r)) ; output π′ := (c, π)

− (x, π′) ← AO(x)(crs′, ske);

− Parse π′ := (c, π); extract witness w ← Dece(c, ske);
return 1 iff ((x, π′) �∈ Q) ∧ (V(RL′ , ξRL′ , crs, (x, c, pke), π) = 1) ∧ ((x,w) �∈ RL);

where Q shows the set of statment-proof pairs generated by O(x). fi

Lemma 4. If the underlying NIZK is simulation sound, then for two experi-
ments EXPSimExt

3 and EXPSimExt
2 we have Pr[EXPSimExt

3] ≈ Pr[EXPSimExt
2].

Proof. We note that if (x, π′) �∈ Q, then the (x, c, π) (from (x, π′)) is a valid mes-
sage pair. By simulation soundness property of GM zk-SNARK, that prevents
mallability attacks, we know that (x, π′) �∈ Q.

On the other hand, since the decrypted w is unique for all valid witnesses, so
due to the soundness of GM zk-SNARK (note that the definition of simulation
soundness implies standard soundness) the probability that some witness is valid
for L′ and (x,w) �∈ RL is negl(λ). ��

We note that in all above experiments, extraction of witnesses is done uni-
versally, independent of adversarial prover’s code, that is a critical issue in con-
structing the UC simulator that extracts witness form the proof sent by environ-
ment and the adversarial prover. So, this results that the modified scheme sat-
isfies black-box simulation extractability. Consequently, following previous result
(shown in [CLOS02,Gro06,GOS06]) that a NIZK argument system with black-
box simulation extractability guarantees UC-security, we conclude that the mod-
ified construction of GM zk-SNARK in Fig. 2 achieves UC-security. ��

4 On the Efficiency of Smart Contract Systems

Hawk and Gyges [KMS+16,JKS16] frequently generate CRS and use a UC-
secure zk-SNARK to prove different statements. In Hawk author discuss that
their system is dominated by efficiency of the underlying UC-secure zk-SNARK
that are achieved from a variation of Pinocchio zk-SNARK [PHGR13] lifted by

132 K. Baghery

C∅C∅ framework (the same is done in Gyges as well). In the rest, we discuss how
UC-secure construction in Sect. 3 can improve efficiency of both smart contract
systems. Our evaluation is focused precisely on Hawk, but as Gyges also have
used C∅C∅ framework, so the same evaluation can be considered for Gyges.

Improving Efficiency of Hawk. We begin evaluation on Hawk by reviewing
the changes that are applied on Ben Sasson et al.’s zk-SNARK (to get UC-
security) before using it in Hawk. As discussed in Sect. 2.2, in order to lift
any NIZK to a UC-secure NIZK, C∅C∅ applies several changes in setup, proof
generation and proof verification of input NIZK. For instance, each time prover
needs to generate a pair of signing/verifying keys for a one-time secure signature
scheme, encrypt the witnesses using a given public-key, and sign the generated
proof using the mentioned one-time signing key. On the other side, verifier needs
to do extra verifications than the NIZK verification.

As we discussed in Sect. 3, to achieve a UC-secure version of GM zk-SNARK,
we added a key generation procedure for a public-key cryptosystem in the setup
phase, and prover only needed to encrypt the witnesses using the public-key in
CRS and then generate a proof for new language as the original zk-SNARK.
We did not add new checking to the verifier side and it is as the non-UC-secure
version.

The modified version of Pinocchio zk-SNARK [BCTV13]
(Proof size: 8 group elements)

TRANSFORMATION WITH COCO

Changes applied on the input zk-SNARK:
On Setup phase

Adds a key generation for a public-key
cryptosystem
Adds a commitment of a trapdoor
Adds a pseudo-random function

On Prover side
Adds encryption of witnesses
Adds a key generation for a one-time secure
signature scheme in each run
Adds signing the generated proof

On Verifier side
Adds verifying signature of proof

A UC-secure version of modified version of Pinocchio
zk-SNARK [KMS+16]

Groth and Maller’s zk-SNARK [GM17]
(Proof size: 3 group elements)

THIS PAPER

Changes applied on the input zk-SNARK:

On Setup phase
Added a key generation for a public-key
cryptosystem

On Prover side
Added encryption of witnesses

On Verifier side

A UC-secure version of Groth and Maller’s zk-SNARK

Fig. 3. The modifications applied by C∅C∅ transformation on the modified version of
Pinocchio zk-SNARK [BCTV13] before using in Hawk system versus our changes on
GM zk-SNARK (shown in Fig. 2) to get a UC-secure version.

Left side of Fig. 3 summarizes the modifications applied (by using C∅C∅) on
a variation of Pinocchio zk-SNARK before using in Hawk; and right side sum-
marizes our changes on GM zk-SNARK to get BB simulation extractability and

On the Efficiency of Privacy-Preserving Smart Contract Systems 133

equivalently UC-security. As both use encrypting of witnesses, it seems having
linear proof size on witness size currently is an undeniable issue to get black-
box extraction. So, except this unavoidable modification, we applied minimal
changes in the structure of GM zk-SNARK to achieve a UC-secure version of it.

Table 1. Comparison of Ben Sasson et al.’s [BCTV13] and GM [GM17] zk-SNARKs
for arithmetic circuit satisfiability with m0 element instance, m wires, n multiplication
gates. Since [GM17] uses squaring gates, so n multiplication gates translate to 2n
squaring gates. Implementations are done on a PC with 3.40 GHz Intel Core i7-4770
CPU, in single-threaded mode, for an R1CS instance with n = 106 constraints and
m = 106 variables, of which m0 = 10 are input variables. G1 and G2: group elements,
E: exponentiations and P : pairings.

CRS Leg., Time Proof Size Prover Comp Verifier Comp Ver. Equ

[BCTV13]

&

in libsnark

6m + n − m0 G1

m G2

7 G1

1 G2

6m + n − m0 E1

m E2

m0 E1

12 P

5

104.8 s 287 bytes 128.6 s 4.2 millisec —

[GM17]

&

in libsnark

m + 4n + 5 G1

2n + 3 G2

2 G1

1 G2

m + 4n − m0 E1

2n E2

m0 E1

5 P

2

100.4 s 127 bytes 116.4 s 2.3 millisec —

Additionally, Table 1 compares efficiency and practical performance of Ben
Sasson et al.’s [BCTV13] and GM [GM17] zk-SNARKs from various perspectives
before applying any changes. Empirical performance reported in libsnark library
for a particular instance3. The experiments are done on a machine equipped with
3.40 GHz Intel Core i7-4770 CPU, in single-threaded mode, using the BN128
curve. Following Pinocchio scheme, Ben Sasson et al.’s zk-SNARK [BCTV13] is
constructed for the QAP relation, while Groth and Maller’s scheme works for
the SAP relation by default. As discussed in [Gro16,GM17], a SAP instance can
be constructed based on a simplification of systems on arithmetic constraints,
such that all multiplication gates are replaced with squaring gates, but with at
most two times gates.

Table 1 shows that GM zk-SNARK outperforms Ben Sasson et al.’s zk-
SNARK in all metrics. Beside faster running times in all algorithms, GM zk-
SNARK has only 2 verification equations, instead of 5 in [BCTV13]. By con-
sidering efficiency report in Table 1, and the fact that our modifications (sum-
marized in Fig. 3) are lighter than what are applied on Ben Sasson et al.’s zk-
SNARK before deploying in Hawk system, one can observe that new UC-secure
zk-SNARK will simplify the system and would be more efficient than the one
that currently is used in Hawk (similarly in Gyges). Indeed our changes are a
small part of their already applied changes, so they will have less overload.

3 Based on reported implementation on https://github.com/scipr-lab/libsnark.

https://github.com/scipr-lab/libsnark

134 K. Baghery

Hawk needs to generate CRS of zk-SNARK for each smart contract and as
the UC-secure zk-SNARK is widely deployed in various operations of the sys-
tem, so substituting current UC-secure zk-SNARK with the new one in Sect. 3,
can simplify the system and improve the efficiency of whole system, specially in
larger scales. Moreover, in the construction of Hawk system, authors applied var-
ious effective optimizations to maximize the efficiency of underlying UC-secure
zk-SNARK (Sec. V in [KMS+16]). The same techniques can work with new
construction. For instance, it is shown that in the Finalize operation of a smart
contract in Hawk, one may use non-UC-secure zk-SNARK, which similarly in
new case one can use non-UC-secure version of GM zk-SNARK that is more
efficient than the one that currently is used (compared in Table 1) and addition-
ally it ensures non-block-box simulation extractability. In another noticeable
optimization, Kosba et al. used some independently optimized primitives in the
lifted UC-secure zk-SNARK, that had considerable effect in the practical effi-
ciency of Hawk. Again, by reminding that our changes are a small part of the
changes applied by C∅C∅ , so a part of their optimized primitives (for encryp-
tion scheme) can be used in this case as well, but the rest can be ignored. Based
on their experiences, such optimizations lead to have a gain of more than 10×
in the arithmetic circuit that is required for Finalize operation. We predict it
should be even more with new scheme.

5 Open Discussions

In Hawk and Gyges [KMS+16,JKS16], authors used the fact that Pinocchio
zk-SNARK and its variation by Ben-Sasson et al. [BCTV13] satisfies knowledge
soundness and consequently soundness, and then used C∅C∅ framework and
lifted a variation of Pinocchio zk-SNARK to a UC-secure one. On the other
hand, knowledge soundness of the mentioned zk-SNARKs are proven under
some knowledge assumptions, that are not clear how to use such assumptions
in the UC framework. We used a similar technique and corollary in our security
proofs. We considered the fact that simulation extracability implies simulation-
soundness [Gro06], because if we can extract a witness from the adversary’s
proof, then the statement must belong the language. So, an interesting future
direction might be reproving the soundness of Pinocchio zk-SNARK [PHGR13]
(or the variation by Ben-Sasson et al. [BCTV13]), or simulation-soundness of GM
zk-SNARK [GM17] under some different non-falsifiable assumptions (different
from knowledge assumptions).

Acknowledgement. The author were supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 780477 (project
PRIViLEDGE), and by the Estonian Research Council grant (PRG49).

On the Efficiency of Privacy-Preserving Smart Contract Systems 135

References

ABLZ17. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III.
LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70700-6 1

BCG+14. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from
bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474.
IEEE Computer Society Press, May 2014

BCPR14. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC,
pp. 505–514. ACM Press, May/June 2014

BCTV13. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
arguments for a von neumann architecture. Cryptology ePrint Archive,
Report 2013/879 (2013). http://eprint.iacr.org/2013/879

Can01. Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

CL06. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 5

CLOS02. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: 34th ACM STOC, pp.
494–503. ACM Press, May 2002

Dam91. Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1 36

GM17. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowl-
edge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 20

GOS06. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge
for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 21

Gro06. Groth, J.: Simulation-sound NIZK proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/
10.1007/11935230 29

Gro10. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 19

Gro16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 11

GW11. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM
STOC, pp. 99–108. ACM Press, June 2011

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
http://eprint.iacr.org/2013/879
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

136 K. Baghery

JKS16. Juels, A., Kosba, A.E., Shi, E.: The ring of gyges: investigating the future
of criminal smart contracts. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.), ACM CCS 16, pp. 283–295. ACM Press,
October 2016

KMS+16. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the
blockchain model of cryptography and privacy-preserving smart contracts.
In: 2016 IEEE Symposium on Security and Privacy, pp. 839–858. IEEE
Computer Society Press, May 2016

KZM+15. Kosba, A.E., et al.: C∅C∅: A Framework for Building Composable Zero-
Knowledge Proofs. Technical Report 2015/1093, IACR, 10 November 2015.
http://eprint.iacr.org/2015/1093. Accessed 9 Apr 2017

Lip12. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28914-9 10

Noe15. Noether, Shen: Ring signature confidential transactions for monero. IACR
Cryptology ePrint Archive 2015:1098 (2015)

NVV18. Narula, N., Vasquez, W., Virza, M.: zkledger: privacy-preserving auditing for
distributed ledgers. In: 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), pp. 65–80 (2018)

PBF+18. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confiden-
tial assets. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 43–63.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 4

PHGR13. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: 2013 IEEE Symposium on Security and Privacy,
pp. 238–252. IEEE Computer Society Press, May 2013

WLB14. Wilkinson, S., Lowry, J., Boshevski, T.: Metadisk a blockchain-based decen-
tralized file storage application. Storj Labs Inc., Technical Report, hal, pp.
1–11 (2014)

Woo14. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

http://eprint.iacr.org/2015/1093
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-662-58820-8_4

Lattice Based Cryptography

Ring Signatures Based
on Middle-Product Learning

with Errors Problems

Dipayan Das1(B), Man Ho Au2, and Zhenfei Zhang3

1 National Institute of Technology, Durgapur, India
dasdipayan.crypto@gmail.com

2 The Hong Kong Polytechnic University, Hung Hom, China
mhaau@polyu.edu.hk

3 Algorand, Boston, USA
zhenfei@algorand.com

Abstract. Lattice-based (linkable) ring signatures are an important
notion to cryptography since it protects signer anonymity against quan-
tum computers. In this paper, we proposed a new lattice-based linkable
ring signature scheme using a variant of Learning with Errors problem
called Middle-Product Learning with Errors (MPLWE). The proposed
scheme follows a framework from [10,12] with the following improve-
ments. Firstly, this scheme relies on a much weaker assumption. Sec-
ondly, our approach relies on a decisional problem, thus, the security
analysis does not require the Forking Lemma which has been a funda-
mental obstacle for provable security under the quantum random oracle
model (QROM).

1 Introduction

The concept of ring signature was initially introduced in [21]. It is a special type
of signature where a signer can sign on behalf of an ad-hoc group (ring) while
keeping himself anonymous. In addition, in a ring signature scheme, there is not
a (centralized, trusted) manager who can reveal the identity of the signer. Each
member is associated with a public key, and the ad-hoc group can be created
spontaneously by collecting member’s public keys.

In practise, it is desirable to have some additional features, where although
the identity of the signer remains anonymous, signatures that are from the same
signer can be identified. This type of ring signature is called linkable ring sig-
natures [22]. This property is rigorous in the construction of cryptocurrencies
to prevent double spending while preserving the anonymity of a spender [23].
The features of linkability and signer anonymity are also advantageous in other

Part of this work was supported by the Innovation and Technology Support Programme
of Innovation and Technology Fund of Hong Kong (Grant No. ITS/356/17). The major-
ity of the work of the first author was done while visiting The Hong Kong Polytechnic
University.

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 139–156, 2019.
https://doi.org/10.1007/978-3-030-23696-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_8

140 D. Das et al.

real-life applications, including, but not limited to, e-cash, e-voting, and ad-hoc
authentication.

Classical cryptography is built on number theoretical problems, which will
be broken by quantum adversaries using Shor’s algorithm [36]. To mitigate the
thread, NIST announced their plan to migrate to post-quantum cryptography
[40]. To date, lattice-based solutions contributed to the majority of candidates
to NIST’s PQC process.

The linkable ring signature schemes are in an identical situation. There has
been a sequence of work which proposes linkable ring signatures based on the tra-
ditional number theoretic problems [22,24–27], where anonymity and/or authen-
ticity will be broken once quantum computer arrives. Recently, some lattice-
based linkable signature schemes have been proposed. In [12], the authors pro-
posed a one-time linkable ring signature based on the module SIS and module
LWE problem. In [10], the authors also presented a one-time linkable ring signa-
ture based on the ring SIS problem. The scheme can be seen as a generalisation
of BLISS [28] which is currently one of the compact lattice signatures known
in the literature. In Raptor [29], a compact one-time linkable ring signature is
proposed which claim to have the first lattice-based solution of linkable ring sig-
nature that is implementable. The main building block of Raptor is a Chameleon
Hash Plus function. Raptor is the generalisation of the lattice-based signature
Falcon [31] submitted to NIST PQC process. It should be noted that the under-
lying hardness assumption of the optimized version for Raptor [29] is NTRU,
unlike module SIS/LWE problem for [12] and ring SIS problem for [10]. In [30] the
authors also proposed a similar signature scheme based on hash-then-one-way
signatures, where the underlying signature also relies on NTRU lattices.

It is worth noting that the above lattice-based solutions are provably secure in
the random oracle model (ROM). The main ingredient for the proofs is the Fork-
ing Lemma [32,33] and its “rewind” method. Proofs using Forking Lemma are
not tight. The loss in tightness is known to be intrinsic [34,35]. Also, the rewind
method does not apply to a quantum random oracle, which has been a major
obstacle to provable security under quantum random oracle model (QROM)
[17,37].

1.1 Our Contribution

We proposed a new lattice-based one-time linkable ring signature parallel
to [10,12]. The construction is based on the middle-product learning with errors
problem (MPLWE) [7], a variant of learning with errors problem [38]. Our app-
roach to obtaining a security proof in the random oracle model can be easily
modified to the ring-LWE or LWE setting. We opt to instantiate our scheme with
MPLWE since the construction is non-trivial, and the MPLWE problem enjoys a
few advantages over the ring-LWE and LWE problem.

– It is more efficient than the LWE problem;
– it is as hard as ring-LWE problem for a broad set of polynomial rings.

Ring Signatures Based on Middle-Product Learning with Errors Problems 141

Concretely, we prove the unforgeability, anonymity, linkability, and non-
slanderability of our scheme based on the MPLWE problem. We introduce new
techniques that bypass the Forking lemma in the context of ring signatures. The
main ingredient of the new proof technique is to use “lossy” public keys (as
defined in [16]) over actual public keys in the proof such that the lossy keys are
computationally indistinguishable from the actual public keys. The hardness of
distinguishing the two keys (lossy and real) comes from the hardness of the deci-
sional MPLWE problem. This technique may have independent research interest
in proving the security of ring signature in the quantum random oracle model.

2 Preliminaries

2.1 Notations

We will use Z
<n[x] to denote the set of all polynomials in Z[x] with degree less

than n. In this paper, we will treat a polynomial and a vector as the same data
type.

For a vector a, ‖a‖∞ := maxi |ai|; a
$← Z

<n[x] is to sample uniformly at
random from Z

<n[x]. For a distribution D, x
$← D is to sample x according to D.

Elements in Zq are represented with integers lying in the interval
[

−(q−1)
2 , (q−1)

2

]

for some odd integer q. Typically, coefficients of elements in Z2t lie in the interval
[−t, t]. Whenever dealing with elements that are in Zq, we always explicitly
assume that all operations in which they are involved end with a modulo q
operation, unless stated otherwise. All logarithms used will have base 2.

For positive integers d, k and a polynomial a ∈ Z
<k[x], Toepd,k(a) is defined

as the matrix in Z of order d × (d + k − 1) such that the i-th row is given by the
coefficients of the polynomial xi−1 · a for i ∈ [1, d].

2.2 The Middle-Product Operation

Definition 1 (Middle-Product). Let d1, d2, d, k be integers such that
d1 + d2 − 1 = d + 2k. The middle-product �d is the mapping

Z
<d1 [x] × Z

<d2 [x] �→ Z
<d[x]

(a, b) → a �d b := �a · b mod xk+d

xk
	

Concretely, the mapping can be realized as follows. For a pair of polynomials
(a, b) ∈ Z

<d1 [x] ×Z
<d2 [x], their product over Z[x] is a polynomial of degree less

than d1 + d2 − 1. Then, the middle-product of size d for a and b is obtained by
firstly setting the coefficients of the monomials with exponent 0, 1, . . . , k −1 and
k + d, k + d + 1, . . . , d + 2k − 1 to 0, and then dividing the remaining by xk.

For simplicity, unless otherwise specified, for the rest of the paper we will use
d1 and d2 to denote the degree of the input polynomials to a middle production
operation, d to denote the degree of the output polynomial, and k = d1+d2−d−1

2 .

142 D. Das et al.

For simplicity, we also assume d1 + d2 − d − 1 is even. This can be achieved by
simply padding the input polynomials with leading 0s.

The middle-product is an additive homomorphism when either of its inputs
is fixed. We have the following lemmas for middle-product.

Lemma 1 (Lemma 3.2 of [7]). Let d, k > 0. Let r ∈ Z
<k+1[x] and a ∈

Z
<k+d[x] and b = r �d a. Then b = Toepd,k+1(r) · a.

Lemma 2 (Lemma 3.3 of [7]). Let d, k, n > 0. For all r ∈ Z
<k+1[x], a ∈

Z
<n[x], s ∈ Z

<n+d+k−1[x] we have r �d (a �d+k s) = (r · a) �d s.

2.3 Middle-Product Learning with Errors Problem

In the literature, learning with errors (LWE) [38] and short integer solution (SIS)
[39] problems are the primary tool to enable lattice-based cryptography. They
enjoy a worst-case/average-case reduction to some hard lattice problems. In prac-
tise, we often resort to their ring variants, known as ring-LWE and ring-SIS prob-
lems, for better efficiency. Those ring variants rely on structured lattices (ideal
lattices); exploiting the structure has been a minor concern for the community
[4–6].

The middle product learning with errors problem (MPLWE) [7] is in a sense
a combination of LWE and ring-LWE: it is more efficient than LWE; meanwhile,
it is hard as long as ring-LWE is hard for a broader set of polynomial rings.1

This allows us to hedge against the threat of relying on a single polynomial ring
that may be potentially broken later.

Informally speaking, the decisional MPLWE problem is to distinguish (arbi-
trary many) samples (ai, bi := ai �d s + ei) ∈ Z

<n
q [x] × Z

<d
q [x], where s

$←
Z

<n+d−1
q [x] and ei

$← χ for some χ over Z
<d
q [x]; from the same number of sam-

ples (a′
i, b

′
i)

$← Z
<n
q [x] × Z

<d
q [x] with non-negligible probability.

In terms of the hardness of this problem, it has been shown in [7] that if ei is
chosen from a rounded Gaussian distribution, then solving the MPLWE problem
is as hard as solving ring-LWE problem for many rings. Meanwhile, if both s
and ei follow a discrete Gaussian distributions, then the MPLWE problem is
also hard, based on the hardness of the “normal” ring-LWE problem for a set of
rings [43]. Note that a normal (ring) LWE problem [11] is a problem where the
secret and errors are sampled from a same distribution.

Let us give the formal definition of the problems.

Definition 2 (MPLWE distribution). Assume χ1, χ2 be two narrow distribu-
tions over Z

<n+d−1
q [x] and Z

<d
q [x] respectively. MPLWEq,n,d,χ1,χ2(s) is the dis-

tribution obtained by firstly sampling ai
$← Z

<n
q [x], ei

$← χ2 and then outputting

(ai, bi = ai �d s + ei) ∈ Z
<n
q [x] × Z

<d
q [x], where s

$← χ1.

1 In this paper, we use ring-LWE to mean polynomial ring-LWE. In literature, ring-
LWE is often used to define LWE over ring of integer instead of polynomial ring.
Nevertheless, for many polynomials these two problems are equivalent. We refer
to [42] for a detailed analysis.

Ring Signatures Based on Middle-Product Learning with Errors Problems 143

In this paper, we instantiate both χ1 and χ2 from uniform distributions of
small norm instead of discrete Gaussian distributions, due to the recent growing
concerns on the side channel resistance of efficient Gaussian samplers [3,8]. We
note that, to date, there isn’t a hardness result on the MPLWE problem with
uniform small secret and errors. However, from the past experience on other LWE
variants, it is very likely this problem is also hard. We leave this to future work
and focus on the fundamental design of the ring signature itself. In addition,
in practice it is common to derive parameters from best-known attacks. We
use BKZ with core quantum sieving model [1,2] to evaluate the security of our
scheme.

Definition 3. The (decisional) MPLWE problem is said to have distinguish-
ing advantage ε, if for any polynomial time distinguisher D the distinguishing
advantage of MPLWEq,n,d,χ1,χ2(s) distribution from the uniform distribution is
less than or equal to ε. That is

| Pr
[D(a, b = a �d s + e ∈ Z

<n
q [x] × Z

<d
q [x]) = 1

]

−Pr
[
D(a, b

$← Z
<n
q [x] × Z

<d
q [x]) = 1

]
| ≤ ε

2.4 One Time Linkable Ring Signatures

The Framework. A one-time linkable ring signature consists of four efficient
algorithms:

– Parameter Generation Algorithm (λ): It takes the security parameter λ
as input, and outputs public parameter P.

– Key Generation Algorithm (P): It takes the public parameter P as input,
and output a pair of keys (pk, sk), where pk is called the public key (or
verification key), and sk is called the secret key (or signing key).

– Signature Generation Algorithm ((μ, ski), L): It takes the message μ to
be signed, secret key ski, and the list L of public keys in the ring as input
such that pki ∈ L, and output a signature σL(μ).

– Signature Verification Algorithm (μ, σL(μ), L): It takes the message μ,
signature σL(μ), and the list L of public keys in the ring as input, and output
either Accept or Reject.

– Signature Linking Algorithm (σL(μ1), σL′(μ2)): It takes two signatures
σL(μ1), σL′(μ2) as input and output either Linked or Unlinked.

The Correctness. The correctness of a one-time linkable ring signature is
two-fold.

– Correctness in Signature Verification Algorithm: The algorithm
should output “accept” when a signature is constructed by a member of the
list L with overwhelming probability.

– Correctness in Signature Linking Algorithm: The algorithm should
output “linked” if the two signatures are from the same signer, regardless of
the rest of the lists.

144 D. Das et al.

2.5 Security of Linkable Ring Signatures

A linkable ring signature is secure if the following security notions hold.

– One-time Unforgeability: It is computationally infeasible for an adversary,
who does not possess secret keys to any public keys in the list L to create a
signature σL(μ) for any chosen message μ that will output “accept” by the
Signature Verification Algorithm.

– Anonymity: It is computationally infeasible for an adversary to guess the
identity of a signature σL(μ) for the message μ with probability non-negligibly
better than a random guess.

– Linkability: It is computationally infeasible for a signer with the same key
pair to create two signatures that will output “unlinked” by the signature
linking algorithm.

– Non-slanderability: It is computationally infeasible for an adversary to cre-
ate a valid signature that outputs “linked” by the signature linking algorithm
for a signature created by an honest signer.

For the game-based definitions of the above security notion, we refer to Sect. 4.3
of [10].

3 The Proposed One-Time Linkable Ring Signature

3.1 Parameter Generation Algorithm

On inputting the security parameter, the Parameter Generation Algorithm out-
puts

– q: a large modulus;
– n, d, k: degree of all defining polynomials;
– κ: defining norm of the Hash function H;
– α, β: defining small norm distribution of secret and error respectively;
– γ, η: Rejection sampling parameter.

The Parameter Generation Algorithm also chooses two cryptographic Hash func-
tion:

– H : Z<n
q [x] × Z

<d+k
q [x] �→ Z

<d+k
q [x]

– H : {0, 1}∗ �→ DH := {c ∈ Z
<k+1
2 [x] and ‖c‖1 ≤ κ}

Looking ahead, we will require H to behave as a random oracle; and H to be
collision resistant. The Parameter Generation Algorithm also generates a pair
of the public parameter (a, h) $← Z

<n
q [x] × Z

<n
q [x]. It is crucial that (a, h) are

sampled uniform from the space to avoid any malicious trapdoors. We remark
that our ring signature does not require a trusted set up or a common reference
string. In our instantiation, (a, h) are chosen randomly. Those parameters can
be obtained from random oracles/hash functions, with a “nothing-up-my-sleeve”
type of seed, for instance, the first 256 bits of π or e, etc. This is a common
practise in the literature.

Ring Signatures Based on Middle-Product Learning with Errors Problems 145

3.2 Key Generation Algorithm

For the π-th user, the algorithm takes as follows:

1. Sample sπ
$← Z

<n+d+k−1
2α [x], eπ

$← Z
<d+k
2β [x], e′

π
$← Z

<d+k
2β [x];

2. Compute bπ = a �d+k sπ + eπ, h̃π = h �d+k sπ + e′
π;

3. Set b′
π = bπ + H(h, h̃π);

4. Output pk = b′
π and sk = (sπ, eπ, e′

π, h̃π).

3.3 Signature Generation Algorithm

To sign a message μ on behave of a list L the signer π does the following:

1. It firstly obtains the public keys b′
i for the rest of users in the list;

2. Compute b′′
i = b′

i − H(h, h̃π) for i ∈ [1, w];
3. Sample y1

$← Z
<n+d−1
2γ [x], y2

$← Z
<d
2η [x], y3

$← Z
<d
2η [x];

4. Compute cπ+1 = H(L, h̃π, μ, a �d y1 + y2, h �d y1 + y3);
5. For i �= π, choose zi

$← Z
<n+d−1
2(γ−κα) [x] , z′

i
$← Z

<d
2(η−κβ)[x], z′′

i
$← Z

<d
2(η−κβ)[x], then

evaluates ci+1 = H(L, h̃π, μ, a �d zi + z′
i − ci �d b′′

i , h �d zi + z′′
i − ci �d h̃π);

6. Compute zπ = cπ �n+d−1 sπ + y1, z′
π = cπ �d eπ + y2, z′′

π = cπ �d e′
π + y3;

7. If ‖zπ‖∞ > γ − κα or ‖z′
π‖∞ > η − κβ or ‖z′′

π‖∞ > η − κβ, go to step 3;
8. Output signature as (c1, {zi, z

′
i, z

′′
i }w

i=1, h̃π).

It is to be noted that for i ∈ [1, w], b′′
i = bi when i = π. In step 6, we don’t

need to perform modulo q operation. The term h̃π is called the tag of the signer
π which is a part of the signature.

Note that step 7 is known as “rejection sampling” in the literature [13,20].
This method is used to seal the transcript leakage and defeat common attacks
such as learning parallelepiped type attacks from [18,19].

3.4 Signature Verification Algorithm

In the Verification algorithm, the verifier has the message μ, the signature
(c1, {zi, z

′
i, z

′′
i }w

i=1, h̃π) the list L of w public keys {b′
i}w

i=1.

1. Compute b′′
i = b′

i − H(h, h̃π) for i ∈ [1, w];
2. Compute ci+1 mod w = H(L, h̃π, μ, a�dzi+z′

i−ci�d b′′
i , h�dzi+z′′

i −ci�d h̃π)
for i ∈ [1, w];

3. Output Accept if
– For i ∈ [1, w], ‖zi‖∞ ≤ γ − κα, ‖z′

i‖∞ ≤ η − κβ, ‖z′′
i ‖∞ ≤ η − κβ;

– c1 = H(L, h̃π, μ, a �d zw + z′
w − cw �d b′′

w, h �d zw + z′′
w − cw �d h̃π);

4. Output Reject otherwise.

146 D. Das et al.

3.5 Signature Linking Algorithm

In the Linking algorithm, it takes two signatures σL(μ), σL′(μ′) and out-
puts “linked” if the signatures outputs verified in the verification algorithm
and generated by the same signer. Given two valid signatures σL(μ) =
(c1, {zi, z

′
i, z

′′
i }w

i=1, h̃) and σ̄L(μ′) = (c̄1, {z̄i, z̄
′
i, z̄

′′
i }w

i=1,
¯̃
h), the algorithm outputs

linked if h̃ = ¯̃
h.

4 Analysis of the Scheme

4.1 Correctness of Signature Generation Algorithm

The Signature generation algorithm is correct if cπ+1 in the signature generation
algorithm is equal to cπ+1 in the signature verification algorithm. That is we have
to show

H(L, h̃π, μ, a �d y1 + y2, h �d y1 + y3) = H(L, h̃π, μ, a �d zπ

+z′
π − cπ �d b′′

π, h �d zπ + z′′
π − cπ �d h̃π)

Observe that,

a �d zπ + z′
π − cπ �d b′′

π = a �d zπ + z′
π − cπ �d bπ

= a �d (cπ �n+d−1 sπ + y1)+
(cπ �d eπ + y2) − cπ �d (a �d+k sπ + eπ)

= (a · cπ) �d sπ + a �d y1 + y2−
(cπ · a) �d sπ [Using Lemma 2]

= a �d y1 + y2

Similarly, h �d zπ + z′′
π − cπ �d h̃π = h �d y1 + y3

4.2 Correctness of Signature Linking Algorithm

The Linking algorithm is correct if the tag generated by the same signer always
gets linked. Note that the tag generated in the key generation algorithm is deter-
ministic and the signer with secrets (sπ, eπ, e′

π) always generates the same tag
h̃π = h �d+k sπ + e′

π.

5 Security Analysis

Before giving the security results, let us first present the following three lemmas
(adapted from [43]), which will be used in the security analysis.

The following lemma will be necessary for the simulation of the random oracle
H in the security analysis of the scheme.

Ring Signatures Based on Middle-Product Learning with Errors Problems 147

Lemma 3. Let q be any large odd integer. Let η be any integer satisfying η <
q−1
2 and d be any integer. For any given w ∈ Z

<d
q [x], we have

Pr
y1,y2

[a �d y1 + y2 = w] ≤ 1
(2η + 1)d

for any polynomial a in Z
<n
q [x].

Proof. Note that

Pr
y1,y2

[a �d y1 + y2 = w] ≤ Pr
y2

[y2 = w − a �d y1] ≤ 1
(2η + 1)d

The last inequality is due to the fact that if we choose y2 from the correct
distribution, the probability that for a fixed w′ := w − a �d y1, the probability
of y2 = w′ is less than 1

(2η+1)d
.

The next lemma shows if we choose (a, b) uniformly at random, then with
negligible probability (a, b) follows MPLWE distribution.

Lemma 4. Let q be any large odd integer. Let α, β, n, d, k are integers satisfying
β < α and α is sufficiently smaller than q−1

2 , d ≤ k < n. If (a, b) $← Z
<n
q [x] ×

Z
<d+k
q [x], the probability that there exists s ∈ Z

<n+d+k−1
2α [x] and e ∈ Z

<d+k
2β [x]

such that b = a �d+k s + e is at-most (2α+1)n+d+k−1(2β+1)d+k

qd+k .

Proof. For a fixed (s, e) ∈ Z
<n+d+k−1
2α [x] × Z

<d+k
2β [x], we have

Pr
a,b

[b = a �d+k s + e] ≤ 1
qd+k

Using Union bound, for all (s, e) ∈ Z
<n+d+k−1
2α [x] × Z

<d+k
2β [x]

Pr
a,b

[b = a �d+k s + e] ≤ (2α + 1)n+d+k−1(2β + 1)d+k

qd+k
.

The following lemma bridges the connection between the adversary’s random
oracle queries and the probability of successfully forging signatures.

Lemma 5. Let q be any large odd integer. Let α, β, n, d, k, δ′, δ′′ are integers
satisfying β < α < δ′′ < δ′ and d ≤ k < n. Let (a, b) $← Z

<n
q [x] × Z

<d+k
q [x] such

that b �= a �d+k s + e for any s ∈ Z
<n+d+k−1
2α [x], e ∈ Z

<d+k
2β [x]. Then for any

w ∈ Z
<d
q [x] and any c

$← DH = {c ∈ Z
<k+1
2 [x] and ‖c‖1 ≤ κ}, probability that

there exists z1 ∈ Z
<n+d−1
2δ′ [x], z2 ∈ Z

<d
2δ′′ [x] such that w = a �d z1 + z2 − c �d b is

at-most 1
|DH | + (4δ′+1)n+d−1(4δ′′+1)d|DH |2

qd .

148 D. Das et al.

Proof. Let us denote S to be the set of all (a, b) ∈ Z
<n
q [x] × Z

<d+k
q [x] such that

there exists at-most one c ∈ DH for which there exists z1 ∈ Z
<n+d−1
2δ′ [x], z2 ∈

Z
<d
2δ′′ [x] satisfying a �d z1 + z2 − c �d b = w. So

Pr
a,b,c

[∃z1 ∈ Z
<n+d−1
2δ′ [x], z2 ∈ Z

<d
2δ′′ [x] s.t a �d z1 + z2 − c �d b = w]

≤ Pr
a,b

[(a, b) ∈ S]
1

|DH | + Pr
a,b

[(a, b) /∈ S]

≤ 1
|DH | + Pr

a,b
[(a, b) /∈ S]

Now (a, b) /∈ S implies there exists (z1, z2, c) and (z′
1, z

′
2, c

′) with c �= c′ such
that

a �d z1 + z2 − c �d b = w

a �d z′
1 + z′

2 − c′ �d b = w

Subtracting the above two equations, we get a �d d1 + d2 − dc �d b = 0 where
d1 = (z1 − z′

1), d2 = (z2 − z′
2), dc = (c − c′).

Since c �= c′, so dc �= 0. For fixed d1, d2, dc, we have dc �d b is uniform in
Z

<d
q [x] for b

$← Z
<d
q [x] (since for dc �= 0, Toep(dc) has full rank d). So we can

write
Pr
a,b

[a �d d1 + d2 − dc �d b = 0] ≤ 1
qd

Thus using the Union bound for all d1, d2, dc we have

Pr
a,b

[(a, b) /∈ S] ≤ (4δ′ + 1)n+d−1(4δ′′ + 1)d|DH |2
qd

5.1 One-Time Unforgeability

The One-time Unforgeability result in the previous ring signatures [10,12,29]
are proved using the Forking lemma. This is the generalisation of the technique
introduced in [13]. But the proof is known to be not tight based on the underlying
hard problems and also lacks the generalisation when the adversary is given
the quantum access to the random oracle. To bridge this gap, we introduce
the generalisation of lossy key technique, which was introduced in the context
of signature scheme on the classical number theoretical problem by Katz and
Wang [14], to prove the hardness of One-time Unforgeability in Ring Signatures.
In lattice-based signature schemes, the technique proposed in [14] has been used
to investigate the unforgeability result in [15–17] which are proved to have a
tight reduction based on the underlying “decisional” problems.

At a high level, we use a sequence of games which are computationally indis-
tinguishable to each other. Then we will show that probability for any polynomial
time adversary’s forgery output is negligible in the modified game.

Ring Signatures Based on Middle-Product Learning with Errors Problems 149

Theorem 1. Assume that the MPLWE problem has a distinguishing advantage
ε. Then for any polynomial time adversary A who makes public key queries
of w users, qh hash queries of H and qs signature queries of his choice (on
the condition that A can not query signature more than once for each user)
to the simulator S, the advantage of winning the unforgeability game is less
than or equal to qs(qs+qh)

(2η+1)d
+ wε + qh(1

|DH | + (4(γ−κα)+1)n+d−1(4(η−κβ)+1)d|DH |2
qd) +

w(2α+1)n+d+k−1(2β+1)d+k

qd+k .

Proof. Game 0: During the forgery, A expects as input the public keys of the w
users as the list L = {b′

i}w
i=1. The simulator S runs the key generation algorithm

and outputs L. The response to the hash and sign queries of A are obtained
by outputting H and signature generation algorithm respectively on the queried
input. A wins the unforgeability game if the advantage of winning this game is
non-negligible.

Game 1: In this game, the S simulates the response to the hash and sign
queries of A as follows:

Hash queries: S answers with c
$← DH for any hash queries to H made

by A. If an input repeats, S has to be consistent and reply with the same hash
values as previously.

Sign queries: Upon receiving μ and signer’s index π ∈ [1, w], S simulates
the signature (c1, {zi, z

′
i, z

′′
i }w

i=1) for π as given below

1. It firstly obtains the public keys b′
i for the rest of users in the list;

2. Compute b′′
i = b′

i − H(h, h̃π) for i ∈ [1, w];
3. Choose cπ+1

$← DH ;
4. For i �= π, choose zi

$← Z
<n+d−1
2(γ−κα) [x], z′

i
$← Z

<d
2(η−κβ)[x], z′′

i
$← Z

<d
2(η−κβ)[x], then

evaluates ci+1 = H(L, h̃π, μ, a �d zi + z′
i − ci �d b′′

i , h �d zi + z′′
i − ci �d h̃π);

5. Choose zπ
$← Z

<n+d−1
2(γ−κα) [x], z′

π
$← Z

<d
2(η−κβ)[x], z′′

π
$← Z

<d
2(η−κβ)[x];

6. Program cπ+1 = H(L, h̃π, μ, a�d zπ + z′
π − cπ �d b′′

π, h�d zπ + z′′
π − cπ �d h̃π);

7. Output signature as (c1, {zi, z
′
i, z

′′
i }w

i=1, h̃π).

The difference between the true signature response and the simulated
response is that in the simulated one cπ+1

$← DH and then programmed
as cπ+1 = H(L, h̃π, μ, a �d zπ + z′

π − cπ �d b′′
π, h �d zπ + z′′

π − cπ �d h̃π) =
H(L, h̃π, μ, a �d zπ + z′

π − cπ �d bπ, h �d zπ + z′′
π − cπ �d h̃π) without checking if

(L, h̃π, μ, a �d zπ + z′
π − cπ �d bπ, h �d zπ + z′′

π − cπ �d h̃π) = (L, h̃π, μ, a �d y1 +
y2, h �d y1 + y3) was already set. So the difference will be in the time collision.
Since the random oracle and signature queries are allowed to query qh and qs

times respectively, so the distinguishing advantage between Game 0 and Game
1 is less than or equal to qs(qs+qh)

(2η+1)d
(by Lemma 3).

Game 2: In this game, S replaces true b1 with a uniformly random b1 and
then set b′

1 = b1 + H(h, h̃1) in L. The rest of the public keys are unchanged.
The distribution of the true b1 with the uniform b1 is computationally indistin-
guishable based on the MPLWE assumption. So the distinguishing advantage of
A between Game 1 and Game 2 is less than or equal to ε.

150 D. Das et al.

Game 3: In this game, S replaces true {b1, b2} with uniformly random
{b1, b2} and then set b′

i = bi + H(h, h̃i) for i ∈ [1, 2]. The rest of the public
keys are unchanged. The distinguishing advantage of A between Game 2 and
Game 3 is less than or equal to ε.

Approaching similarly,
Game w+1: In this game, S replaces all true {b1, b2, . . . , bw} with uniformly

random {b1, b2, . . . , bw} and then set b′
i = bi + H(h, h̃i) for i ∈ [1, w]. The dis-

tinguishing advantage of A between Game w (where only bw is true and the
remaining public keys are uniform) and Game w + 1 is less than or equal to ε.

Now, if possible, let A outputs a forgery (c̄1, {z̄i, z̄
′
i, z̄

′′
i }w

i=1, h̃) on the message
μ̄ that was not queried to the Signing oracle. We also assume that A did make
the hash query on some (L, h̃, μ̄, a �d z̄i + z̄′

i − c̄i �d b′′
i , h �d z̄i + z̄′′

i − c̄i �d h̃).
Since, otherwise, A has only 1

|DH | chance of producing the right c. We will show
that with negligible probability, A can produce such a signature in this case.

Since each bi is uniformly random, the probability that there exists si ∈
Z

<n+d+k−1
2α [x] and ei ∈ Z

<d+k
2β [x] such that bi = a �d+k si + ei is at-most

(2α+1)n+d+k−1(2β+1)d+k

qd+k (by Lemma 4). So we assume that each bi is not of this
form.

Since we already assumed that A during his forgery has queried on some
(L, h̃, μ̄, a �d z̄i + z̄′

i − c̄i �d b′′
i , h �d z̄i + z̄′′

i − c̄i �d h̃), it is sufficient to show
that when c

$← DH , for a fixed p ∈ Z
<d
q [x], p = a �d z + z′ − c �d b′′

i with
z ∈ Z

<n+d−1
2(γ−κα) [x] and z′ ∈ Z

<d
2(η−κβ)[x] is negligible. By Lemma 5, this happens

with probability at-most qh(1
|DH | + (4(γ−κα)+1)n+d−1(4(η−κβ)+1)d|DH |2

qd).
Thus A outputs a signature in this case with probability less than or equal

to qh(1
|DH | + (4(γ−κα)+1)n+d−1(4(η−κβ)+1)d|DH |2

qd) + w(2α+1)n+d+k−1(2β+1)d+k

qd+k .

5.2 Anonymity

In proving the anonymity result, we approach to the method similar to [10].
Though we have approached similar to [10], we could only prove computational
anonymity instead of statistical/unconditional anonymity. The reason is due to
the different underlying hardness assumption. In [10], the authors have used the
SIS instances as the underlying hardness assumption and could prove statisti-
cal/unconditional anonymity based on the Leftover Hash Lemma (LHL)2 which
is not applicable in our case since we have used LWE instances.

We use a sequence of games which are computationally indistinguishable
and different from each other. Then we will show that any polynomial time
adversary’s guess is close to the random guess.

Theorem 2. Assume that the MPLWE problem has a distinguishing advantage
ε. Then for any polynomial time adversary A who makes public key queries of w

2 LHL states that the SIS distribution is statically close to the uniform distribution.
See [13] for a detailed discussion between SIS and LWE distribution.

Ring Signatures Based on Middle-Product Learning with Errors Problems 151

users and qh hash queries of H to the simulator S, the advantage of winning the
anonymity game is less than or equal to 1

w + 2ε + (w − 1)ε + qh
(2η+1)d

+ qhw
(2η+1)d

.

Proof. Game 0: In this game, A is allowed to query the list L = {b′
i}w

i=1 of public
keys of w users and qh hash queries to the random oracle H. The simulator S
runs the key generation algorithm and outputs L which consists of the public
keys of the w users. Then S chooses π

$← [1, w] and outputs signature σL(μ) on
the message μ which is the output of the signature generation algorithm. A wins
the anonymity game if he can guess the signer’s index π, with probability non
negligibly better than 1

w .
Game 1: In this game, S makes some changes on the public key b′

π in
the list L and tag h̃π of π. Instead of choosing the output of the key generation
algorithm, he chooses (bπ, h̃π) $← Z

<d+k
q [x]×Z

<d+k
q [x] and set b′

π = bπ+H(h, h̃π).
The difference between Game 0 and Game 1 is that in the later, bπ and h̃π are
chosen uniformly at random. The distribution of the true (bπ, h̃π) with the new
(bπ, h̃π) are computationally indistinguishable based on the MPLWE assumption.
So the distinguishing advantage between Game 0 and Game 1 is less than or equal
to 2ε.

Game 2: In this game, for each i �= π in L, S replaces the original key genera-
tion algorithm with bi

$← Z
<d+k
q [x] and set b′

i = bi +H(h, h̃i). The distinguishing
advantage between Game 1 and Game 2 is less than or equal to (w − 1)ε.

Game 3: In this game, cπ+1
$← DH in the signature generation algorithm

and then programs the oracle as cπ+1 = H(L, h̃π, μ, a�d zπ + z′
π − cπ �d b′′

π, h�d

zπ + z′′
π − cπ �d h̃π) instead of cπ+1 = H(L, h̃π, μ, a �d y1 + y2, h �d y1 + y3).

The difference between the above two cases is that here S chooses cπ+1
$← DH

without checking whether cπ+1 = H(L, h̃π, μ, a �d y1 + y2, h �d y1 + y3) was
already set. Since qh oracle query is allowed to A, by Lemma 3 the distinguishing
advantage between Game 2 and Game 3 is less than or equal to qh

(2η+1)d
.

Game 4: In this game, the modification is done in (zπ, z′
π, z′′

π). These are
now chosen uniformly at random from Z

<n+d−1
2(γ−κα) [x] × Z

<d
2(η−κβ)[x] × Z

<d
2(η−κβ)[x]

instead of zπ = cπ �n+d−1 sπ + y1, z′
π = cπ �d eπ + y2, z′′

π = cπ �d e′
π + y3 and

applying rejection sampling. Since zπ, z′
π, z′′

π in both the cases follow the same
distribution, the distinguishing advantage between Game 3 and Game 4 is 0.

Game 5: In this game, S changes the index π. Here, instead of choosing the
index π + 1 in signing, S chooses an index l

$← [1, w]. When π is replaced by
some fixed l, it might cause some collisions with previous queries to the random
oracle. Since the adversary A is allowed to make qh queries to the random oracle,
the distinguishing advantage between Game 4 and Game 5 is less than or equal
to qhw

(2η+1)d
, using Lemma 3.

It is to be noted that in Game 5, π is statistically independent. Thus the
advantage of winning Game 5 is 1

w . Thus the advantage of guessing the true
signer (that is π) in Game 0 is less than or equal to

1
w

+ 2ε + (w − 1)ε +
qh

(2η + 1)d
+

qhw

(2η + 1)d
.

152 D. Das et al.

5.3 One-Time Linkability

Theorem 3. If there exists an adversary A, who makes public key queries of
w users and qh hash queries of H, can break the linkability game in the ring
signature, then there exists an algorithm to find a collision for the cryptographic
Hash function H in the same time of A.

Proof. During forgery, A expects the list L of public keys, one secret key and qh

random oracle queries of the random oracle H from the simulator S. S run
the true key generation algorithm and outputs L = {b′

i}w
i=1 and secret key

(sπ, eπ, e′
π, h̃π) corresponding to some index π ∈ [1, w]. For random oracle queries

of A, S outputs c
$← DH . If an input repeats, S has to be consistent and reply

with the same hash values as previously.
Let A output a tag h̃ along with a signature (c1, {zi, z

′
i, z

′′
i }w

i=1) on some
message μ which is “accepted” by the verification algorithm with non-negligible
probability, but “unlinked” by the linking algorithm. That is h̃ �= h̃π, where
h̃π = h �d+k si + e′

i is the original tag of A.
Now, with A’s tag, S computes b′′′

i = b′
i − H(h, h̃) for i ∈ [1, w]. Also with

the original tag, S computes b′′
i = b′

i − H(h, h̃π) for i ∈ [1, w].
Case 1. If for any i, b′′

i = b′′′
i , then S gets a collision on the cryptographic

hash function H such that H(h, h̃) = H(h, h̃π).
Case 2. If for all i ∈ [1, w], b′′

i �= b′′′
i then we will show that A can output

a signature which will be accepted by the verification algorithm with negligible
probability, which contradicts the hypothesis.

Note that for each i, b′′′
i = b′

i − H(h, h̃) is uniformly distributed in Z
<d+k
q [x],

assuming H outputs uniformly random elements in Z
<d+k
q [x]. So using Lemma 4,

for each i probability that there exists (s, e) ∈ Z
<n+d+k−1
2α [x] × Z

<d+k
2β [x] such

that b′′′
i = a �d+k s + e ≤ (2α+1)n+d+k−1(2β+1)d+k

qd+k .

Since during A’s signature output (c1, {zi, z
′
i, z

′′
i }w

i=1, h̃), he has to query the
random oracle H on some (L, h̃, μ, a�d zi + z′

i − ci �d b′′′
i , h�d zi + z′′

i − ci �d h̃).
So it is sufficient to show that when c

$← DH , for a fixed p ∈ Z
<d
q [x], p = a

�dz + z′ − c �d b′′′
i with z ∈ Z

<n+d−1
2(γ−κα) [x] and z′ ∈ Z

<d
2(η−κβ)[x] is neg-

ligible. By Lemma 5, this happens with probability at-most qh(1
|DH | +

(4(γ−κα)+1)n+d−1(4(η−κβ)+1)d|DH |2
qd). Hence the probability of A outputting a sig-

nature which is verified by the verification algorithm is less than or equal to
qh(1

|DH | + (4(γ−κα)+1)n+d−1(4(η−κβ)+1)d|DH |2
qd) + w(2α+1)n+d+k−1(2β+1)d+k

qd+k which is
negligible for sufficiently large q.

5.4 Non-Slanderability

It is known that for any linkable ring signature, if the notion of unforgeability
and linkability holds, then it meets the notion of non-slanderability [10]. So the
winning advantage of any polynomial adversary in the Non-Slanderability game
is negligible based on the advantage of winning the unforgeability game and
one-time linkability game.

Ring Signatures Based on Middle-Product Learning with Errors Problems 153

6 Parameter Selection

The parameters of lattice-based constructions generally rely on a quantity called
“root Hermite factor” [41]. In brief, this signifies the quantity which a lattice
reduction algorithm must accomplish to break the construction. For calculating
the root Hermite factor, we use the approach of [9]. The root Hermite factor
is estimated by the root of the ratio of the Gaussian expected shortest vector
in the kernel lattice and the expected length of the target vector. We set our
parameters in Table 1 so that the root Hermite factor is beyond the scope of the
known lattice reduction algorithms.

Table 1. Parameters of the ring signature

Parameters

q ≈ 240

n 500

d 250

k 250

κ 17

α 100

β 80

γ 220

η 219

Expected number of repetitions to output a signature ≈ 12

Signature size (w = 1) ≈ 19.5 kb

Signature size (w = 5) ≈ 19.8 kb

Signature size (w = 10) ≈ 20.1 kb

Root Hermite factor required to break the key 1.002

The rejection sampling parameters γ, η play a crucial role in the security
of the scheme (and signature size). If these parameters are too small, though
breaking the scheme becomes harder (and signature size decreases), but the
expected number of repetitions to output a potential signature becomes too
large. These parameters are chosen carefully so that both the scheme is hard
and repetition is optimal.

The signature size will mainly depend on the size of
(
{zi, z

′
i, z

′′
i }w

i=1, h̃π

)
.

The approximate signature size is calculated by the sum of bit lengths of
{zi, z

′
i, z

′′
i }w

i=1 and h̃π. Since zi ∈ Z
<n+d−1
γ−κα [x], so we can represent each zi by

(n+d−1) log(2(γ −κα)+1) bits. Similarly, each of z′
i and z′′

i can be represented
by d log(2(η − κβ) + 1) bits. And h̃π can be represented by (d + k) log q bits.
Hence the approximate signature size is equal to w(n + d − 1) log(2(γ − κα) +
1) + 2wd log(2(η − κβ) + 1) + (d + k) log q bits.

154 D. Das et al.

7 Conclusion

We proposed a new (one-time) linkable ring signature based on the assumed
hardness of the decisional MPLWE problems. The construction is simple and
efficient. We want to emphasize that we can easily replace the distributions of
secret and errors from uniform to discrete Gaussian and set parameters that sup-
port the reduction from exponentially many ring-LWE to MPLWE. We choose the
alternative to get better parameter estimates. Thus we do encourage cryptanal-
ysis for our precise parameters because they are somewhat smaller than what is
required for the reduction to go work.

Unlike lattice-based signature schemes, lattice-based ring signature schemes
still lack the right model to prove the security when an adversary has access to
a quantum random oracle. The new security reduction introduced in this paper
is tight which can also motivate to analyse the security of a ring signature in the
quantum random oracle model.

References

1. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Proceedings of USENIX Security Symposium, pp. 327–343 (2016)

3. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

4. Ducas, L., Plançon, M., Wesolowski, B.: On the Shortness of Vectors to be found
by the Ideal-SVP Quantum Algorithm. Cryptology ePrint Archive (2019). https://
eprint.iacr.org/2019/234

5. Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in Ideal Lattices with Pre-
processing. Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/215

6. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

7. Roşca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning with
errors. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
283–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 10

8. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptographic Hardware Embedded Syst. (TCHES) 2018(1), 238–
268 (2018)

9. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Proceedings of CT-RSA, pp. 28–47 (2014)

10. Torres, W.A.A., et al.: Post-quantum one-time linkable ring signature and appli-
cation to ring confidential transactions in blockchain (Lattice RingCT v1.0). In:
Proceedings of ACISP, pp. 558–576 (2018)

https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-662-53140-2_16
https://eprint.iacr.org/2019/234
https://eprint.iacr.org/2019/234
https://eprint.iacr.org/2019/215
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-63697-9_10

Ring Signatures Based on Middle-Product Learning with Errors Problems 155

11. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

12. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp.
303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

13. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

14. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Proceedings of ACM CCS, pp. 155–164 (2003)

15. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö.: TESLA: Tightly-Secure
Efficient Signatures from Standard Lattices. Cryptology ePrint Archive (2015).
https://ia.cr/2015/755

16. Abdalla, M., Fouque, P., Lyubashevsky, V., Tibouchi, M.: Tightly secure signatures
from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016)

17. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

18. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. J. Cryptol. 22(2), 139–160 (2009)

19. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

20. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

21. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

22. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

23. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
24. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and

attestation. In: Deng, R.H., Bao, F., Pang, H.H., Zhou, J. (eds.) ISPEC 2005.
LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31979-5 5

25. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp.
101–115. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716 9

26. Liu, J.K., Au, M.H., Zhou, J.: Linkable ring signature with unconditional
anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/978-3-642-29011-4_43
https://ia.cr/2015/755
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/11774716_9

156 D. Das et al.

27. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

28. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

29. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring signa-
ture. In: Deng, R., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019.
LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21568-2 6

30. Lu, X., Au, M.H., Zhang, Z.: (Linkable) Ring signature from hash-then-one-way
signature. In: Proceedings of IEEE TrustCom (2019)

31. Fouque, P., et al.: Falcon: Fast-Fourier Lattice-based compact Signatures over
NTRU (2018). https://www.di.ens.fr/prest/Publications/falcon.pdf

32. Bellare, M., Neven, G.: Multi-signatures in the plain Public-Key Model and a
general forking lemma. In: Proceedings of ACM CCS, pp. 390–399 (2006)

33. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

34. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

35. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

36. Shor, P.W.: Polynominal time algorithms for discrete logarithms and factoring on
a Quantum computer. In: Proceedings of ANTS, p. 289 (1994)

37. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of ACM STOC, pp. 84–93 (2005)

39. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of ACM STOC, pp. 99–108 (1996)

40. NIST: Post-Quantum Cryptography-Round 1 Submissions. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-1-Submissions

41. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

42. Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 6

43. TBA: A digital signature from Middle-Product Learning with Errors

https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://www.di.ens.fr/ prest/Publications/falcon.pdf
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-319-78381-9_6

Sampling the Integers with Low Relative
Error

Michael Walter(B)

IST Austria, Klosterneuburg, Austria
michael.walter@ist.ac.at

Abstract. Randomness is an essential part of any secure cryptosystem,
but many constructions rely on distributions that are not uniform. This is
particularly true for lattice based cryptosystems, which more often than
not make use of discrete Gaussian distributions over the integers. For
practical purposes it is crucial to evaluate the impact that approxima-
tion errors have on the security of a scheme to provide the best possible
trade-off between security and performance. Recent years have seen sur-
prising results allowing to use relatively low precision while maintaining
high levels of security. A key insight in these results is that sampling
a distribution with low relative error can provide very strong security
guarantees. Since floating point numbers provide guarantees on the rela-
tive approximation error, they seem a suitable tool in this setting, but it
is not obvious which sampling algorithms can actually profit from them.
While previous works have shown that inversion sampling can be adapted
to provide a low relative error (Pöppelmann et al., CHES 2014; Prest,
ASIACRYPT 2017), other works have called into question if this is possi-
ble for other sampling techniques (Zheng et al., Eprint report 2018/309).
In this work, we consider all sampling algorithms that are popular in the
cryptographic setting and analyze the relationship of floating point pre-
cision and the resulting relative error. We show that all of the algorithms
either natively achieve a low relative error or can be adapted to do so.

Keywords: Sampling · Discrete Gaussians ·
Lattice-based cryptography

1 Introduction

A key building block in many lattice based constructions is discrete Gaussian
sampling over the integers. This is the distribution over the integers that is
proportional to the standard continuous Gaussian distribution. Accordingly, it
also has two parameters: a center c and a noise parameter σ. Sampling this

Supported by the European Research Council, ERC consolidator grant (682815 - TOC-
NeT).

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 157–180, 2019.
https://doi.org/10.1007/978-3-030-23696-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_9

158 M. Walter

distribution is one of the more complex operations in many lattice-based schemes
and can be challenging to implement efficiently and securely.1

Recent years have seen increasing interest in implementations of lattice-based
cryptography, which may be attributed to two of its properties. First, lattice
problems are believed to be resistant to attacks involving quantum computers.
While building a large scale computer that would threaten most of the cryp-
tography currently in use is still an open problem, progress in that area has
already led to an enormous effort in the search for post-quantum cryptography
and compelled NIST to initiate the Post Quantum Standardization process2. In
this process NIST is seeking to identify post-quantum secure key exchange/key
encapsulation mechanisms and signature schemes. Not surprisingly, a large share
of the first round submissions can be classified as lattice-based schemes. When
such schemes employ discrete Gaussian sampling, it is usually in a setting where
the parameters of the Gaussian are fixed once and for all, i.e. after initialization
the sampling algorithm does not accept any parameters and generates samples
from one fixed distribution.

A second reason for the rising interest in implementations of lattice-based
cryptography is its versatility. Beginning with the breakthrough result of Gentry
[9] on fully homomorphic encryption, a number of other advanced primitives have
been realized from lattices, like identity based or attribute based encryption.
What sounded like futuristic science fiction 15 years ago, is now making its way
into practical implementations [4,11,12]. When discrete Gaussian sampling is
used in such implementations, it is almost always in the context of trapdoor
sampling [8,10,14]. Here, the parameters of the distribution can change per
query, i.e. for each query the algorithm expects the parameters as input.

The two settings make for different challenges. For examples, the simpler
primitives mentioned first are often expected to run in constrained environments
and to be side-channel resistant, both of which are challenging to achieve for
discrete Gaussian sampling with reasonable performance. On the other hand,
in this context the distribution is fixed, which allows for precomputation and
several time-memory trade-offs. The challenge in the second setting is that the
distribution changes per query, which makes it harder to obtain time-memory
trade-offs to increase performance (although some results are known, e.g. [1,
16]). What the two settings have in common is that the distribution is usually
approximated rather than sampled exactly. However, the corresponding security
proofs usually assume the exact distribution. This naturally leads to the question
how accurately the distribution needs to be approximated in order to maintain
the security level. This is a crucial question since the quality of approximation
has a large impact on the performance of the sampling algorithms. Classically,
the statistical distance was used to evaluate this trade-off between approximation

1 Technically, this distribution has infinite support, but it is folklore that the support
can be truncated to size O(σ) without hurting security, so in this entire work we
consider the truncated version only.

2 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-
Cryptography-Standardization.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Sampling the Integers with Low Relative Error 159

and security level. This lead to the common believe that a statistical distance of
less than 2−k, achievable with k-bit fixed or floating point arithmetic, is required
to maintain a security level of k bits.

Surprisingly, a recent line of research [3,16–19] has shown that sampling a
distribution with a relative error of 2−k can preserve up to 2k bits of security,
or more. For example, a typical theorem in this context can be informally sum-
marized as follows.

Theorem (informal). Let S be a cryptographic primitive with access to a proba-
bility distribution P, and let Q be a probability distribution such that the relative
error between P and Q is bounded by δre(P,Q) ≤ 2−κ/2. If S is κ-bit secure,
then S is still (κ − O(1))-bit secure if P is replaced with Q.

Since floating point numbers with k bits guarantee a relative approximation
error of less than 2−k, this suggests that one can use k-bit floating point numbers
to achieve security levels as large as 2k or more, as demonstrated in [18,19]. In
many settings this can lead to a significant improvement, much larger than a
factor two, over the classical approach of using approximations of about k = λ
bits of precision to achieve λ bits of security. This is because the common IEEE
(extended) double precision standard with its 53 (64, resp.) bits of precision
now allows for meaningful security guarantees. Using arbitrary precision libraries
instead would be orders of magnitude slower than arithmetic with the common
data types, which is often supported in hardware. Previous works, such as [16,18,
19], make use of different measures between distributions, e.g. Rényi divergences
of different orders, and achieve some stronger results under certain conditions
then abovementioned theorem. We point out that the starting point of these
analyses is still the relative error between distributions, which is then used to
prove bounds on other measures. We are not aware of any analysis of this type
that is not based on the relative error.

Due to the guarantees provided by floating point numbers, it is tempting
to assume that simply approximating all probabilities/numbers in your favorite
sampling algorithm using k-bit floating point numbers is sufficient to preserve
2k bits of security. Unfortunately, this is not true in general. For example, [18]
already pointed out that blindly using FP approximations in a sampling algo-
rithm (in this case inversion sampling applied to the discrete Gaussian) can lead
to catastrophic errors. A recent work [23] demonstrated that there are distribu-
tions for which one cannot even find a set of floating point numbers that approx-
imate all the probabilities of the given distribution with small relative error and
sum to 1 (thus representing a probability distribution). The authors claim that
their result implies that sampling with small (in the sense needed for the results
in [3,16–19] to apply) floating point error is impossible using “methods such as
rejection sampling”. On the other hand, this question has been addressed in the
context of inversion (CDT) sampling [18,19]. The proposed algorithms use k-bit
floating point numbers (during the online phase) only and the resulting relative
error of the distribution is only O(n2−k), where n is the number of elements in
the support. The key point here is that at least in the case of inversion sampling,

160 M. Walter

storing all probabilities of a distribution approximating the desired one is not
necessary. This naturally raises the question if this is also the case for other
samplers that are popular in the cryptographic context. This strikes us as a very
important question for practical implementations of schemes like, for example,
some of the ones submitted to the NIST Post Quantum Standardization pro-
cess or the PALISADE project3, due to the large potential improvement. This
is amplified by the fact that the performance of sampling algorithms can vary
widely on different platforms due to different time-memory-randomness trade-
offs they achieve. So different samplers will be more suitable in different settings
and it is useful to investigate, which samplers provide a low relative error and
thus achieve strong security guarantees.

Overview of Samplers. In this work, we will survey several samplers and show
how to adapt them (if necessary) in order to ensure that the relative error does
not significantly outgrow 2−k when working with k-bit floating point numbers.
To the best of our knowledge our survey includes all samplers that are popular
and/or useful in context of discrete Gaussian sampling.

The first and simplest algorithm that has been used for discrete Gaussian
sampling is plain rejection sampling [10]. In this algorithm, a sample from the
support is chosen uniformly at random and accepted with probability propor-
tional to the desired distribution. This algorithm is very simple and generic and
requires little memory, but it is not very suitable for discrete Gaussian sampling
due to a high rejection rate and the requirement to compute irrational probabil-
ities. Nonetheless, we consider it first due to its generality and our observations
will be useful in later sections.

In settings where the distribution is fixed and known in advance, there are
a number of generic algorithms that allow for faster sampling by performing
distribution dependent precomputation and using additional memory. Probably
the most popular one in the context of discrete Gaussian sampling is inversion
(CDT) sampling [18]. Inversion sampling requires to precompute and store the
cumulative distribution table, after which the sampling step becomes a binary
search for a random element in this table. While this is much faster than rejection
sampling, it requires a large amount of memory if the desired distribution has a
large support (i.e. the noise parameter σ is very large).

Less well known in the cryptographic community seems to be the alias
method, but we include it in our survey, because we believe it deserves more atten-
tion. The alias method requires a little more precomputation, but the memory
is roughly the same as for inversion sampling. In contrast to inversion sampling,
the online phase only requires a Bernoulli trial using a bias randomly chosen
from a precomputed set. This has the potential of being even faster and easier
to implement securely (e.g. in constant time) than inversion sampling.

A third algorithm along similar lines is Knuth-Yao sampling [7,20]. It also
requires to precompute the probabilities from the entire support of the distribu-
tion. To generate a sample, it traverses a tree structure, which is based on the

3 https://git.njit.edu/palisade/PALISADE.

https://git.njit.edu/palisade/PALISADE

Sampling the Integers with Low Relative Error 161

binary expansion of these probabilities. This tree structure can either be precom-
puted explicitly, which requires an even larger memory overhead than inversion
or alias sampling, or locally on-the-fly, in which case the memory requirement is
equivalent to that of the previous two methods. However, the latter is also natu-
rally less efficient. Knuth-Yao sampling is often recommended for environments
where randomness is expensive, since it is provably nearly randomness optimal.

The three generic algorithms discussed above all have the advantage that
they avoid any arithmetic with reals during the online phase, which seems to
make them suitable for constraint environments. Unfortunately, they all suffer
from memory requirements that can be prohibitive, especially on constrained
devices. To mitigate this, [5] proposed an algorithm (which we denote by the
BLISS sampler) that provides a different time-memory trade-off. This algorithm
cleverly tailors rejection sampling to the discrete Gaussian to reduce the rejection
rate and breaks the rejection step into a logarithmic number of Bernoulli trials
with precomputed bias. Accordingly, it requires only logarithmic memory and no
rational arithmetic, which makes it much more suitable for constrained devices.

With the exception of the rather slow rejection sampling, all algorithms
described so far only allow to sample from a distribution that is fixed and known
in advance, since they require distribution dependent precomputation. In more
advanced settings, where the distribution is not fixed in advance, one is left with
much fewer options. One of these options is Karney’s algorithm [13]. It resem-
bles the BLISS sampler insofar as it is also a rejection sampler that is tailored
to the discrete Gaussian (albeit in a different way), but it is also able to perform
the rejection step using no precomputation and using only integer arithmetic,
assuming the parameters of the distribution are given as rationals. As such, it
performs well in settings where the parameters of the desired distribution may
vary per query [16].

Contribution. We distinguish between generic samplers that are not specific
to discrete Gaussian sampling and algorithms that are specialized to discrete
Gaussians.

We start with generic samplers and first make a rather simple observation
that shows that rejection sampling does not require any modification and its out-
put distribution will have small relative error if used with floating point numbers.
Results from [16,18] then show that the error in terms of KL divergence is only
the square of the relative error. This directly contradicts the aforementioned
claim made in [23]. We also include a section about inversion sampling and
demonstrate that the solution provided in [18] applies more generally than only
to discrete Gaussians. Then we show that alias sampling can be easily adapted
to achieve small relative error with almost no overhead. In Sect. 2.4, we consider
a specific version of Knuth-Yao sampling and show that there are different ways
to adapt it leading to different trade-offs in output quality versus running time.

We will then move on to the two specialized algorithms. We first address the
BLISS sampler, where we show that above observation w.r.t. rejection sampling
easily implies similar results for the BLISS sampler. Finally, we will consider
Karney’s algorithm, which is originally an exact algorithm, but for implementa-

162 M. Walter

tion purposes it is convenient to consider a floating point version of it, e.g. in the
context of trapdoor sampling. While the observation about rejection sampling is
useful also in this context, Karney’s algorithm requires much more work to con-
vert to a correct floating point algorithm due to some arithmetic that is required
during the online phase. This part contains the bulk of our technical work. We
remark that our floating point version introduces a lot of new conditionals to
guard against numerical errors, which can hurt performance on standard CPUs
significantly due to its detrimental effect on pipelining. To evaluate this effect
and compare our algorithm to a high precision variant, we provide an implemen-
tation of our algorithm. Our experimental results on a standard PC suggest that
at least for such architectures the slow down introduced by the conditionals is
very acceptable compared to the speed up achievable in comparison with a high
precision variant of Karney’s algorithm. However, note that the performance of
samplers depends strongly on the platform characteristics and the final choice
should be made on a case-by-case consideration with a specific target platform
in mind. We will release our implementation to the public.

Applications. The algorithms considered in this work can be used as building
blocks in many kinds of cryptographic primitives. The results shown here on
the relative error can be combined with results from [3,16–19] to prove strong
security (since [17] even for distinguishing primitives like encryption). Further-
more, the approximate samplers as surveyed in this work can be used as a basis
for convolution samplers [16,18]. These were first introduced to mitigate the
large memory overhead of generic sampling techniques [5] and then shown to
also yield a reduction from variable sampling to the fixed setting [16]. Such
constructions ensure low relative error if instantiated with base samplers with
low relative error. In this context, the results on alias sampling, inversion sam-
pling and Knuth-Yao are particularly relevant, as their characteristics are very
desirable for convolution sampling.

Previous Work. In this work we carry out some basic numerical analysis of some
generic discrete sampling algorithms with a focus on the resulting relative error.
Most previous work in the cryptographic context has focused on ensuring small
statistical distances [5,6,21], or only considered the special case of inversion
sampling [18,19]. More specifically, [18] shows that by reordering the probabil-
ities, inversion sampling is able to achieve a bounded relative error at least in
the special case of discrete Gaussians. [19] presents a version of inversion sam-
pling – conditional CDT sampling – that works for any discrete distribution and
achieves similar bounds but is less efficient, since it requires multiple iterations
per sample.

The work of [3] analyzed the BLISS sampler using Rényi divergences, and
specifically the divergence of order infinity is closely related to the relative error
discussed in this work. We will briefly revisit this analysis in Sect. 3.1. Finally,
a very recent work [22] showed that one can perform the rejection step in the
BLISS sampler using polynomial approximations, which allows for much easier
and faster constant-time implementation.

Sampling the Integers with Low Relative Error 163

Preliminaries. In this work we make heavy use of the notation (a±b) for a, b ∈ R.
By this we mean the interval [min(a+b, a−b),max(a+b, a−b)]. We will also do
arithmetic with intervals and write A ◦ B for intervals A,B and ◦ ∈ {+,−, ·, /}.
We define this to be the interval [minα∈A,β∈B(α◦β),maxα∈A,β∈B(α◦β)]. Finally,
we define arithmetic of intervals with reals by viewing any constant c ∈ R as the
interval [c, c].

A k-bit floating point (FP) approximation x̂ of a real x stores the k most
significant bits of x as the mantissa m ∈ Z2k together with a binary exponent
e ∈ Z and a sign s ∈ {−1, 1}. The value of an FP number (s,m, e) is sm2e. This
guarantees that the relative error is bounded by δre(x, x̂) = |x − x̂|/|x| ≤ 2−k,
or, equivalently, that x̂ ∈ (1 ± 2−k)x. For simplicity, we assume that there is
no limit on the size of the exponent, i.e. there are no overflows or underflows.
The standard guarantee provided by most FP systems is that an arithmetic
operation on two FP numbers yields the closest FP number to the true result.
This generally holds for the four basic operations {+,−, ·, /}. Two values that
already contain an approximation error, the operations {·, /} do not increase
the error in the result by much, while the operations {+,−} can have a very
detrimental effect on the approximation error.

We use calligraphic letters to denote distributions. The Bernoulli distribution
with bias p is denoted by Bp. We extend the notion of relative error to any two
distributions P and Q

δre(P,Q) = max
x∈S

δre(P(x),Q(x)) = max
x∈S

|P(x) − Q(x)|
P(x)

,

where S is the support of P.
In this note, we will be interested in samplers that use only FP numbers of

a given precision k (during the online phase) and output a distribution ̂D such
that δre(D, ̂D) ≤ O(2−k). Note that this necessarily implies that ̂D has the same
support as the original distribution D.

2 Generic Samplers

Not surprisingly, the literature on discrete Gaussian sampling borrows heavily
from known generic sampling techniques. In the following we analyze some popu-
lar sampling methods. The results of this section, while technically simple, could
be of interest in other contexts than discrete Gaussian sampling.

2.1 Rejection Sampling

The following lemma describes the basic principle of rejection sampling spe-
cialized to the setting of discrete probability distributions, which we prove for
completeness.

Lemma 1 (Rejection Sampling). Let P be a discrete probability distribution,
called the source distribution, with support SP and f : S �→ R+ a function

164 M. Walter

with domain S ⊂ SP defining the target distribution Q(x) = f(x)∑
x∈S f(x) . Let

M ≥ maxx∈S
f(x)
P(x) . Given a sampler for P it is easy to generate a sample from

Q by repeatedly drawing a sample x ← P and accepting it with probability f(x)
MP(x) ,

until the first sample is accepted.

Proof. Accepting a sample x with probability f(x)
MP(x) is equivalent to generating

a uniform value u ∈ [0,MP(x)] and accepting x if u ≤ f(x). In other words, this
generates a pair (x, u) ∈ S ×R+ s.t. u ≤ MP(x), which is distributed uniformly
random among such pairs. Accepting x only if u ≤ f(x) amounts to a Monte-
Carlo method of producing a pair (x, u) ∈ S × R+ s.t. u ≤ f(x) uniformly at
random and thus the marginal relative probability of x is exactly f(x).
�

A particularly simple case is when P is the uniform distribution and f(x) ≤ 1
for all x ∈ S. Then M can be chosen as |SP |, which means the acceptance
probability is simply f(x) for each x and no further floating point operation is
necessary.

We now observe that rejection sampling naturally allows for FP approxima-
tions.

Lemma 2. Let f, ̂f : S �→ R+ be two functions with domain S and let D, ̂D be
the corresponding distributions obtained by normalization. If δre(f(x), ̂f(x)) ≤ μ

for all x ∈ S, then δre(D, ̂D) ≤ 2μ + O(μ2).

Proof. It is easy to see that
∑

x∈S
̂f(x) ∈ (1 ± μ)

∑

x∈S f(x). So for any x ∈ S
we have

̂D(x) =
̂f(x)

∑

x∈S
̂f(x)

∈ (1 ± μ)f(x)
(1 ± μ)

∑

x∈S f(x)
= (1 ± (2μ + O(μ2)))D(x).

�
Combining the two lemmas easily shows that at least the simple version of

rejection sampling as described above can be safely used with FP approxima-
tions.

Remark 1. An important observation is that approximating the acceptance
probability f(x)

MP(x) with a certain relative error is equivalent to approximating f

with the same relative error. This makes Lemma 2 also applicable to algorithms
that approximate the acceptance probability. I.e., if two rejection samplers use
the same source distribution and only differ by a relative error ≤ μ in the accep-
tance probability for all x, their output distributions will have relative error of
at most 2μ + O(μ2). Implications of this will be discussed in Sect. 3.

2.2 Inversion Sampling

While rejection sampling is very simple and versatile, for many distributions it
can be rather slow in its simple form due to a large rejection rate. If the dis-
tribution is known in advance and has moderately sized support, one can use

Sampling the Integers with Low Relative Error 165

inversion sampling as a way to trade precomputation and memory for faster per-
formance. For a discrete distribution P one computes the cumulative distribution
table (CDT) of the desired distribution and stores it. The CDT consists of n+1
numbers (where n is size of the support) 0 = T [0] < T [1] < · · · < T [n] = 1
such that P(i) = T [i] − T [i − 1] for all i ∈ [n]. When queried for a sam-
ple, a number u ∈ [0, 1) is drawn uniformly at random and the smallest
value i with T [i] ≥ u is output. Clearly, the probability for any output i is
Pr[u ≤ T [i] ∧ u > T [i − 1]] = T [i] − T [i − 1] = P(i). The question that we are
concerned with is whether a bound can put on the relative error of the output
distribution when storing k-bit FP approximations of the values T [i]. In [18] it
was shown that in the special case of discrete Gaussians, the error can grow
arbitrarily when applying inversion sampling in the obvious way, but is bounded
by O(n2−k) when reversing the order of the probabilities. We now demonstrate
that this is in fact a very general technique that works for any finite discrete
distribution.

Lemma 3. Let P be discrete probability distribution of n elements with P(1) ≤
P(2) ≤ · · · ≤ P(n). Let ̂P be the distribution output by an inversion sampler that
approximates the entries in the CDT using k-bit FP numbers. Then δre(P, ̂P) ≤
n2−k+1.

Proof. The inversion sampler stores the values ̂T [i] ∈ (1±μ)T [i], where μ = 2−k.
So

̂P(i)
P(i)

=
̂T [i] − ̂T [i − 1]

P(i)

∈ (1 ± μ)T [i] − (1 ± μ)T [i]
P(i)

=
(1 ± μ)

∑

j≤i P(j) − (1 ± μ)
∑

j<i P(j)
P(i)

= 1 ±
(

μ
∑

j≤i P(j)
P(i)

+
μ

∑

j<i P(j)
P(i)

)

.

Due to the ordering of the probabilities we have P(j) ≤ P(i) for all j ≤ i and
so the result follows.
�

Since inversion sampling as described above is only useful for distributions
with polynomial support, the lemma shows that we can use inversion sampling
for any such discrete distribution and achieve a small relative error by ordering
the elements in the support according to their probabilities.

Application to Bernoulli Sampling. Assume we are given a bias p and want to
sample from the respective Bernoulli distribution, i.e. the distribution over {0, 1}
with p0 = p and p1 = 1− p. The straight forward way of implementing this is to
store p and during the online phase one draws a uniform number u in [0, 1) and
outputs 0 iff u ≤ p. It should be clear that this can be viewed as a special case of

166 M. Walter

inversion sampling with two element, i.e. n = 2. Applying the result from above
shows that we can perform Bernoulli sampling and preserve a relative error of
2−k+2 if we reorder the probabilities. In this special case, this means we store an
approximation of p or 1−p, whichever one is smaller. In fact, a direct calculation
shows that this results in a relative error of at most 2−k.

We also remark that [3] already observed that in the context of Bernoulli
sampling one can assume w.l.o.g. that p ≤ 1

2 and that in this case an FP-
approximation of p results in a small Rényi divergence of order infinity, which is
essentially equivalent to the relative error.

2.3 Alias Method

Another popular method of using precomputation to speed up sampling for a
known distribution is the alias method. Let P be a given probability distribu-
tion with support SP , where |SP | = n. The idea of alias sampling is to reduce
sampling from P to sampling from a Bernoulli sampler randomly chosen from a
carefully crafted set of Bernoulli samplers. To get an intuitive understanding of
the algorithm, picture a set of buckets, one for each element in SP . These buck-
ets have size 1

n and are filled with the probability mass of the corresponding
element. Of course, some buckets are not full, while others are overflowing. In
order to smooth things out, pick a bucket i that is not full, i.e. assume pi < 1

n .
Mark its current filling level and then fill it up by moving probability mass from
some overfull bucket, for example bucket j (where we assume pj > 1

n). The top
of the now exactly full bucket i is labeled with j (so j is i’s alias). Note that
bucket j might now still be overflowing or not be full. Continue this procedure
with a different i′ and j′ until every bucket is filled to exactly 1

n . This is the
offline/precomputation phase. In order to sample from P, we select one of the
buckets uniformly at random. Say we selected bucket i, which has a mark at pi

and alias j. We now draw a number r uniformly at random in [0, 1
n). If r ≤ pi,

we output i, otherwise we output the alias j. This is equivalent to drawing a
Bernoulli sample with bias npi and outputting i if the sample is 1 and j other-
wise. The reason this works is that we did not change the amount of probability
mass corresponding to a value. E.g., in the example of i and j above, assume that
after moving mass from bucket j to bucket i, both buckets happen to be full. (In
particular, this means that j does not have an alias and when selecting bucket
j during sampling, we always output j.) Then the probability of obtaining i as
a sample is exactly 1

nnpi = pi and for j it is 1
n (1 + 1 − npi) = 2

n − pi. Since we
assume bucket j was exactly full after moving 1

n − pi mass to bucket i, we have
pj = 2

n − pi, which shows that alias sampling works correctly here. In summary,
t he alias method works by constructing and storing n Bernoulli samplers Bj in
the offline phase. In the online phase, one of the samplers is selected uniformly
at random, a sample is obtained and depending on the result, one of two values
is output. In our setting we assume that the bias of each sampler is computed
exactly during the offline phase and the Bernoulli sampler is then approximated
as described in Sect. 2.2.

Sampling the Integers with Low Relative Error 167

Lemma 4. The alias method can be implemented using only k-bit FP numbers
during its online phase and guarantee a relative error of 2−k.

Proof. In the following we view the Bernoulli samplers as directly outputting one
of the two values in the table, i.e. let xj , yj ∈ [n] be the two values associated
with the j-th Bernoulli sampler via the alias table and let bj be the bias of that
sampler. Then define

pBj
(i) =

⎧

⎪

⎨

⎪

⎩

bj if i = xj

1 − bj if i = yj

0 otherwise.

The probability that a value i is output by the alias sampler is then pi =
1
n

∑n
j=1 pBj

(i). From Sect. 2.2 we know that we can sample each Bernoulli sam-
pler up to a relative error of μ = 2−k, so the probability of i under the approx-
imate sampler is p̂i ∈ 1

n

∑n
j=1(1 ± μ)pBj

(i) = (1±μ)
n

∑n
j=1 pBj

(i), which shows
that the relative error is at most 2−k.
�

It is noteworthy that alias sampling actually allows to achieve the optimal
bound of 2−k for the relative error using k-bit FP numbers only. This is in
contrast to inversion sampling, where the relative error can be larger by a factor
O(n).

2.4 Knuth-Yao Sampling

Yet another way to spend precomputation and storage in order to speed up sam-
pling from a known distribution is Knuth-Yao sampling. Knuth-Yao sampling
constructs a binary tree, known as the distribution generating tree (DGT), dur-
ing initialization from the given probabilities pi. During the online phase, a
random path from the root is traversed to the end, at which point the label of
the leaf determines the sample that is output. Note that a leaf on level t of the
tree has a probability of 2−t of being sampled. So if for a sample i there are l
leafs, where each is on a distinct level tj , then the probability of outputting i is
exactly

∑l
j 2−tj . The tree is constructed from pi such that for every ’1’ in posi-

tion t in the fixed point binary expansion of pi there is a leaf for i on level t. Then
it is easy to see that the probability of i is exactly pi. The fact that

∑

i pi = 1
ensures that the tree can be easily constructed from the binary representation
of the pi and that there is a label for every leaf.

Knuth-Yao is often praised for its randomness efficiency, which is close to the
entropy of the distribution and thus close to optimal. We point out though that
at least in the context of discrete Gaussians, which have entropy4 ∼ log σ, both
inversion sampling and alias sampling can also be implemented to only require
log n + O(1) = log σ + O(1) random bits.

There are several ways to implement Knuth-Yao:
4 Here, σ is the noise parameter of the discrete Gaussian. See Definition 1.

168 M. Walter

1. Construct the tree structure and traverse it as described above. This incurs a
significant memory overhead, so this version seems only applicable if memory
is not an issue.

2. In order to reduce the memory overhead, one can construct each level of the
tree on-the-fly during the traversal using a table [7]. This table requires less
storage than the tree itself, but still leaves a significant overhead. (In essence,
the table contains a number in [n] for every ‘1’ in the binary expansions of the
pi, which means this table still requires larger storage than the probabilities
itself by a factor O(log n).)

3. Finally, [20] introduced a variant that constructs the tree entirely on-the-fly
only using the probability table. In this case the storage requirement essen-
tially matches the one of inversion sampling and alias sampling.

Floating point numbers can be used to reduce the storage requirement in all
three variants. When using FP approximations p̂i of pi for all i, the difficulty is to
deal with the fact that

∑

i p̂i �= 1. Note that we can easily ensure that
∑

i p̂i ≤ 1
by requiring that p̂i ≤ pi by always rounding down the approximations, which
will increase the relative error by at most a factor 2. In this case, the DGT tree is
not well defined and the result is that the algorithm might not ever encounter a
leaf. However, this case is easily detected since the depth of the tree is bounded
by k − min log p̂i, where k is the precision of the FP numbers. In that case,
one can simply restart the algorithm, which essentially turns this algorithm into
a rejection sampler. We demonstrate this approach in Algorithm 1, where the
subroutine Bit(p = (s,m, e), c) gives access to the c’th bit of the fixed point
representation of the number represented by the k-bit FP number p.

Algorithm 1. Floating point version of Knuth-Yao, adapted from [20]. The list
(pi)i consists of k-bit FP numbers.
SampleKY((pi)i, k)
1 cmax = �− log mini pi� + k
2 d ← 0
3 while true
4 for c = 0 to cmax

5 b ← {0, 1}
6 d ← 2d + 1 − b
7 for r = n down to 0
8 d ← d − bit(pr, c)
9 if d = −1

10 return r

Bit((p = (s, m, e), c)
1 if c < −e − k or c > −e
2 return 0
3 return m[c + e + k]

Theorem 1. Let P be a discrete distribution over a finite set with probabilities
pi. If given k ∈ Z and a list of k-bit FP numbers (p̂i)i such that p̂i ≤ pi and
δre(pi, p̂i) ≤ μ for all i, then the output distribution ̂P of Algorithm 1 satisfies
δre(P, ̂P) ≤ 2μ + (O(μ2)). Furthermore, the expected running time and expected
randomness consumption is (1 + μ)H(P) + O(1).

Sampling the Integers with Low Relative Error 169

Proof. Since Algorithm 1 corresponds to a randomized walk on a truncated DGT
(see [20] for details), the relative probability of each sample i is p̂i. Now the first
part of the theorem follows from Lemma 2.

For the second part notice that Algorithm 1 behaves, up to rejection, exactly
like an exact implementation of Knuth-Yao, which has running time and ran-
domness consumption H(P). The result follows from the fact that the rejection
probability is ≤ μ.
�
Remark 2. If the rejection step is undesirable for some reason, there is another
way to deal with the situation where no leaf is encountered: simply always output
j = arg maxi pi. Note that pj > 1/n and so

p̂j + μ ∈ (1 ± μ)pj + μ ∈
(

1 ±
(

μ +
μ

pj

))

pj ∈ (1 ± (μ + nμ))pj .

This shows that this solution leads to a relative error of ≤ 2nμ.

3 Specialized Algorithms

We now consider two algorithms that are specialized to discrete Gaussians. They
are both based on rejection sampling and differ in the source distribution and
the way the rejection step is carried out to achieve high efficiency. We start by
defining the distribution we are interested in.

Definition 1. We denote by DZ,σ,c the distribution over Z that is proportional
to ρσ,c(x) = exp(− (x−c)2

2σ2). Furthermore, we define the distribution D+
Z,σ,c to be

the distribution proportional to DZ,σ,c restricted to non-negative integers Z≥0.
In either case, if the parameter c is omitted, it is understood to be 0.

Note that sampling DZ,σ is easily reduced to sampling D+
Z,σ: draw a sample

x ← D+
Z,σ and a uniform bit s ← U({0, 1}). If x = s = 0, reject x and try again.

Otherwise, return (−1)s · x. It is folklore that for cryptographic purposes one
can view DZ,σ,c as a [c − tσ, c + tσ] bounded distribution for some constant t
due to its exponential decay in the tails. This follows from known bounds on the
so called smoothing parameter [15] and a simple hybrid argument. Furthermore,
from an algorithmic perspective we can assume w.l.o.g. that c ∈ [0, 1) since
the distribution can easily be shifted by an arbitrary integer. Finally, in all
applications in the cryptographic context that we are aware of one can safely
assume that σ ≥ 1.

3.1 BLISS Sampler

The BLISS sampler was proposed in [5] as a way to achieve another trade-off
between memory requirements and sampling performance for a known distri-
bution. In particular, while plain rejection sampling is very slow, in many set-
tings the memory required to apply any of the generic algorithms described in

170 M. Walter

Sect. 2 is prohibitively large, especially on constraint devices. The BLISS sampler
addresses this issue by only requiring precomputed storage of O(log n) instead
of O(n), while still yielding much better performance than rejection sampling.

The BLISS sampler is a rejection sampler with two main differences to plain
rejection sampling. First, it uses a different source distribution, which is still
easy to sample, but better adapted to the target distribution, which reduces the
rejection rate. Second, a list of logarithmically many precomputed values is used
to perform the rejection step through a set of Bernoulli samples. This has the
advantage that no FP arithmetic has to be performed during sampling.

The algorithm assumes that σ = k · σ2 for σ2 =
√

1/(2 ln 2) and some
k ∈ Z. This is justified since in many settings σ is a parameter of the
scheme and can be chosen accordingly. The source distribution is defined as
k · D+

Z,σ2
+ U({0, . . . , k − 1}), which can be easily sampled if there is an effi-

cient way to sample D+
Z,σ2

. By the choice of σ2 this can be done using inver-
sion sampling, where the CDT is computed on-the-fly. To see this, note that
ρσ2(x) = exp(− x2

2σ2
2
) = exp(−x2 ln 2) = 2−x2

. So
∑j

x=0 ρ(x) =
∑j

x=0 2−x2
which

converges to a constant α < 2 as j → ∞. Furthermore, the entries of the CDT
correspond exactly to the sums

∑j
x=0 2−x2

for j ∈ Z, which exhibits their binary
expansion: the expansion has a one in positions that correspond to squares. Since
(a + 1)2 − a2 = 2a + 1, there are exactly 2a zeros between the a-th one and the
a + 1-st one for a < j. This structure can be exploited by sampling a uni-
formly random number r in [0, 2) one bit at a time (or in chunks) and checking
if r ∈

[

∑j
x=0 ρσ2(x),

∑j+1
x=0 ρσ2(x)

]

for some j. (Note that one can also easily
check if r > α and reject r in that case). See [5] for details.

To sample from D+
Z,kσ2

, a sample from the source distribution is chosen by
sampling x ← D+

Z,σ2
and y ← U({0, . . . , k − 1}), which represent the sample z =

kx+y. This sample is now accepted with probability exp(−y(y+2kx)
2σ2). Correctness

follows from the fact that the probability of outputting a sample z = kx + y is
proportional to

ρσ2(x) exp
(

−y(y + 2kx)
2σ2

)

= exp
(

− x2

2σ2
2

− y(y + 2kx)
2σ2

)

= ρσ(z).

It remains to show how to perform the rejection step without FP arithmetic
and little precomputed memory. For this, recall that an integer sample z ∈
{0, . . . , τσ} that is output by the source distribution, is accepted with probability
exp(− f(z)

2σ2) for some integer f(z) ≤ z2, where As seen above, f(z) is easily
computable from z using only small integer arithmetic and τ can be considered
a constant. The corresponding Bernoulli trial is realized by storing the numbers
ci = exp(− 2i

2σ2) for all i ∈ [�2 log(τσ)�] in memory. Then the Bernoulli trial
is performed by considering the binary representation of f(z) =

∑

i zi2i and
rewriting

exp
(

−f(z)
2σ2

)

= exp
(

−
∑

i zi2i

2σ2

)

=
∏

i

exp
(

−zi2i

2σ2

)

=
∏

i:zi=1

exp
(

− 2i

2σ2

)

.

Sampling the Integers with Low Relative Error 171

This shows that this trial can be carried out by a series of at most l = �2 log(τσ)�
Bernoulli trials with bias of the form ci for some i. It is clear that this works if
storing the numbers ci exactly, but this is clearly impossible in practice. The next
lemma shows that we can approximate the biases ci and achieve small relative
error.

Lemma 5. Let D be the output distribution of the BLISS sampler with biases
ci, and ̂D be the same algorithm with biases ĉi. If δre(ci, ĉi) ≤ μ for all i then
δre(D, ̂D) ≤ 2lμ + O(l2μ2).

Proof. Since ĉi ∈ (1 ± μ)ci, the rejection probability for any x is
∏

i:zi=1

ĉi ∈
∏

i:zi=1

(1 ± μ)ci ∈ (1 ± μ)l
∏

i:zi=1

ci ∈ (1 ± (lμ + O(μ2)))
∏

i:zi=1

ci.

The result follows from Lemma 2 (cf. Remark 1).
�
Lemma 5 shows that the BLISS sampler preserves the relative error up to a

multiplicative loss of ∼ 2l = O(log σ) if using FP numbers to approximate the
biases ci.

Remark 3. The work of [3] analyzed the required precision for the biases of the
BLISS sampler by viewing the cryptosystem as using samples from the respective
Bernoulli samplers, rather than from the discrete Gaussian. This requires fixing
the number of Bernoulli samples a priori, which is possible in security analyses
because one is usually only interested in bounded adversaries and it is reasonable
to charge the adversary resources for obtaining Bernoulli samples. In comparison,
our result is of a statistical nature and thus slightly stronger: the relative error of
the distribution is bounded independently of the number of times the Bernoulli
samplers are invoked, which is unbounded in the worst case. Furthermore, our
approach has the advantage of being simpler and more modular.

3.2 Karney’s Algorithm

Karney’s algorithm is a type of rejection algorithm that efficiently samples from
the discrete Gaussian. (In fact, the work [13] also shows how to sample from the
continuous Gaussian, but we are only interested in discrete distributions here.)
We give a description of Karney’s algorithm in Algorithm2. Sampling from the
non-negative unit discrete Gaussian in Step 2 can be done using only uniform
Bernoulli trials. Similarly, the Bernoulli trial in Step 12 is also done by cleverly
dividing it up into a series of uniform Bernoulli trials. How exactly these two
steps are carried out is not important here.

172 M. Walter

Algorithm 2. Karney’s Algorithm
Karney(σ, c)
1 while true

2 t ← D+
Z,1

3 s ← {−1, 1}
4 j ← {0, . . . , �σ� − 1}
5 i ← �tσ + sc�
6 x̄ ← i − (tσ + sc)
7 x ← x̄+j

σ

8 if x ≥ 1
9 continue // reject

10 if t = 0 and x = 0 and s < 0
11 continue // reject
12 b ← Bp where p = exp(− 1

2
x(2t + x))

13 if b = 1
14 return s(i + j)

Karney presented his algorithm as an exact algorithm using only integer
arithmetic. The algorithm assumes that the parameters are given as rationals.
However, a common use case is to apply this sampler on a regular PC using float-
ing point numbers, for example during trapdoor sampling. In this context the
parameters are given as floating point numbers, not as rationals. While floating
point numbers can be naturally viewed as rationals, doing so in the straight-
forward manner leads to relatively large integers. Inspecting the algorithm, it
is clear that the integers involved can have roughly twice the size of the man-
tissa of the floating point numbers of the input parameters. So if working with
regular double precision floating point numbers (k = 53), the numbers may be
larger than 100 bits, which exceeds the length of integers on most architectures
(a reasonable target could be 64 bits).

A Floating Point Version. We are interested in a floating point version of
Karney’s algorithm. We will assume that the input is given as floating point
numbers and that we only have floating point numbers of the same precision
available. Furthermore, we assume that we have integers available with a specific
bit size. This immediately puts an upper bound on the noise parameter, since
we need to be able to represent samples from a discrete Gaussian that have more
than negligible probability.

We want to bound the relative error achieved by the modified algorithm. We
will show that we can perform all the steps in Karney’s algorithm exactly, even
with low precision numbers, except step 12 as this requires to compute x. Instead,
we will approximate x, which allows to carry out an approximate Bernoulli trial
(in the same way as in Karney’s algorithm). The main observation is that Lemma
2 now applies: this approximation of the bias in the last rejection step only leads
to a small difference in the relative probability for each potential sample s(i+ j)
and thus a small relative error.

Sampling the Integers with Low Relative Error 173

We will require a little background on floating point numbers, in particular
we identify a set of operations on FP numbers with fixed precision that can be
carried out exactly without resorting to FP numbers with higher precision.

Fact 1. Given two k-bit FP numbers a and b we can easily compute

– a ≤ b, a < b, a = b
– (a)%1, the reduction mod1, i.e. separating out the fractional part of a
– 2ta for any t ∈ Z

– �a� and �a�
exactly as k-bit FP numbers.

Lemma 6 (Sterbenz Lemma). Given two k-bit FP numbers a and b with
1
2 ≤ a

b ≤ 2, their difference a − b is also a k-bit FP number.

Corollary 1. Given three positive FP numbers a, b, and c, we can check if
(a + b) ◦ c for any ◦ ∈ {≤,≥, <,>,=}.
Proof. Algorithm 3 performs the check for ≤. Its correctness follows from Ster-
benz lemma. The same approach works for any other comparison operator.
�

Algorithm 3. An exact algorithm to check if a + b ≤ c for given FP numbers
a, b, c

CompareSumFP(a, b, c)
1 if a > c or b > c
2 return false

3 if a > c
2

4 return b ≤ c − a
5 if b > c

2

6 return a ≤ c − b
7 return true

Lemma 7. Given a k-bit FP number a ≥ 1 and an integer t, we can compute
(ta)%1 and �ta� using �log t� operations, assuming integer data types that are
capable of representing �ta�.
Proof. First note that (a)%1 is a (k − 1)-bit fixed point number. Using simple
peasant multiplication with k-bit fixed point arithmetic (e.g. emulated using k-
bit FP arithmetic with fixed exponent) we can compute (ta)%1 and �t(a)%1�.
Finally, compute �ta� = t�a� + �t(a)%1�.
�

We remark that in the case where the available integer type has bit size
larger than the mantissa of the FP numbers plus �log t�, the task in Lemma
7 can be achieved in a much simpler way: multiply t with the mantissa of a,
which allows to directly read off the two desired values. This case is common

174 M. Walter

on standard CPUs, where the FP numbers have 53 bits of precision and the
common integer type has 63 bits. Furthermore, in our setting log t < 4 with
overwhelming probability. On the other hand, if working with 80-bit extended
precision, where FP numbers commonly have a 63-bit mantissa, this is not the
case anymore.

Algorithm 4. Rewrite of Karney’s Algorithm
KarneyRewrite(σ, c)
1 while true

2 t ← D+
Z,1

3 s ← {−1, 1}
4 j ← {0, . . . , �σ� − 1}
5 if CheckRejectA(σ, c, t, s, j)
6 continue // reject
7 if CheckRejectB(σ, c, t, s, j)
8 continue // reject
9 i ← ComputeI(σ, c, t, s)

10 x ← ComputeX(σ, c, t, s, j)
11 b ← Bp

where p = exp(− 1
2
x(2t + x))

12 if b = 1
13 return s(i + j)

ComputeI(σ, c, t, s)
1 return �tσ + sc�

ComputeX(σ, c, t, s, j)
1 i ← ComputeI(σ, c, t, s)

2 return i−(tσ+sc)+j
σ

CheckRejectA(σ, c, t, s, j)
1 x ← ComputeX(σ, c, t, s, j)
2 return x ≥ 1

CheckRejectB(σ, c, t, s, j)
1 x ← ComputeX(σ, c, t, s, j)
2 return (t = 0 and x = 0 and s < 0)

We begin our analysis by rewriting Algorithm 2 using auxiliary procedures
that encapsulate the critical steps (see Algorithm 4). Then we will present alter-
native procedures that can be implemented with FP numbers such that the entire
procedure is guaranteed to yield a small relative error in the output distribution.

In the following, we show how to implement ComputeI, CheckRejectA
and CheckRejectB exactly using FP numbers. Finally, we will introduce a
procedure that approximates x such that the computed bias p has small relative
error. Then the result follows from Lemma 2.

Lemma 8. For any set of inputs (t, s, σ, c) ∈ Z+ × {−1, 1} × R+ × [0, 1)

ComputeIFP(σ, c, t, s) = ComputeI(σ, c, t, s)

where σ and c are given as FP numbers and ComputeIFP(t, s, σ, c) is imple-
mented using FP numbers of the same precision.

Proof. Let a = �tσ� and b = (tσ)%1. Then �tσ + sc� = a + �b + sc�. Since
c ∈ [0, 1), there are only 3 possible values: �tσ + sc� ∈ {a, a + 1, a + 2}. We can
split this up into the cases where s = −1 and s = 1. In the former case, we have

�tσ + sc� =

{

a if b ≤ c

a + 1 otherwise

Sampling the Integers with Low Relative Error 175

In the case s = 1 we have three cases:

�tσ + sc� =

⎧

⎪

⎨

⎪

⎩

a if b = c = 0
a + 1 if b + c ≤ 1
a + 2 otherwise

Recall that the second case can be checked using Corollary 1.
�

Algorithm 5. An exact algorithm to compute i = �tσ + sc� using FP numbers,
where t ∈ Z, s ∈ {−1, 1} and c ∈ [0, 1)
ComputeIFP(σ, c, t, s)
1 i ← �tσ�
2 b ← (tσ)%1

3 if s < 0 and b > c
4 i ← i + 1
5 if s > 0 and (b > 0 or c > 0)
6 if b + c ≤ 1 // cf. Corollary 1
7 i ← i + 1
8 else
9 i ← i + 2

10 return i

Lemma 9. For any set of inputs (t, s, σ, c, j) ∈ Z+×{−1, 1}×R+× [0, 1)×Z+

CheckRejectAFP(σ, c, t, s, j) = CheckRejectA(σ, c, t, s, j)

where σ and c are given as FP numbers and CheckRejectAFP is implemented
using FP numbers of the same precision.

Proof. As in the original algorithm, denote with x̄ = i − �tσ + sc�. Then this
check is equivalent to x̄+ j ≥ σ. If x̄ = 0 this must always be false by the choice
of j so by correctness of IsXbarZero (see below) we can assume x̄ ∈ (0, 1).
Furthermore, the check can only be true if j = �σ�, because c ∈ [0, 1). In this
case this is equivalent to x̄ ≥ (σ)%1. Note that x̄ = 1− (tσ + sc)%1, so this is the
same as

1 ≥ (tσ + sc)%1 + (σ)%1. (1)

We consider the case s > 0. Then we have

(tσ + c)%1 =

{

(tσ)%1 + c − 1 if (tσ)%1 + c ≥ 1
(tσ)%1 + c else

Plugging this into (1)

1 ≥ (tσ + sc)%1 + (σ)%1 =

{

(tσ)%1 + (σ)%1 + c − 1 if (tσ)%1 + c ≥ 1
(tσ)%1 + (σ)%1 + c else

176 M. Walter

Note that we can distinguish the cases using Corollary 1. In each case we can
compute (tσ)%1 + (σ)%1 exactly and invoke Corollary 1, with the left-hand side
being either 2 or 1, respectively.

Next consider the case s < 0. Then (1) is equivalent to 1 ≥ (tσ−c)%1+(σ)%1.
Note that

(tσ − c)%1 =

{

(tσ)%1 − c if (tσ)%1 ≥ c

(tσ)%1 − c + 1 else.

Again we can rewrite

1 ≥ (tσ − c)%1 + (σ)%1 =

{

(tσ)%1 + (σ)%1 − c if (tσ)%1 ≥ c

(tσ)%1 + (σ)%1 − c + 1 else.

Again we can compute (tσ)%1 + (σ)%1 exactly. Note that in the latter case the
1 cancels and we can directly check the inequality. In the former case, we check
if (tσ)%1 + (σ)%1 < 1 in which case the inequality is obviously true. Otherwise,
we subtract 1 from both sides which yields 0 ≥ ((t + 1)σ)%1 − c, which we can
obviously check with c ≥ ((t + 1)σ)%1.
�

It remains to prove correctness of IsXbarZeroFP.

Lemma 10. Algorithm 7 returns true iff tσ + sc is integral.

Proof. The value tσ + sc is integral iff (tσ)%1 + (sc)%1 ∈ {0, 1}. If s < 0, this
simply reduces to (tσ)%1 = c. Otherwise we need to check if (tσ)%1 + c = 1,
which we can do by Corollary 1, or if tσ = c = 0.
�

Performing CheckRejectB exactly is straightforward, since x = 0 iff j = 0
and x̄ = 0. Conditioned on t = 0, the latter is the case iff c = 0 (cf. Algorithm
8).

The above shows that Algorithm 4 behaves identical if we replace ComputeI,
CheckRejectA and CheckRejectB with ComputeIFP, CheckRejectAFP

and CheckRejectBFP, respectively. Clearly, we cannot hope to implement
ComputeX exactly, since the result might not even be a k-bit FP number (where
k is the precision of the parameters). However, it is sufficient to approximate x
well enough in order to maintain a small relative error in the output distribution.
We begin with the observation that it is sufficient to approximate x with a small
absolute or relative error μ. Standard calculations show that in either case the
term exp(− 1

2 x̂(2t + x̂)) will be off by a multiplicative factor ∼ exp(tμ) ≈ 1 + tμ,
which shows that the relative error is only about tμ.

Sampling the Integers with Low Relative Error 177

Algorithm 6. An exact algorithm to
check if x ≥ 1
CheckRejectAFP(σ, c, t, s, j)
1 if j < �σ� or

IsXbarZeroFP(σ, c, t, s)
2 return false

3 b ← (tσ)%1

4 a ← (σ)%1

5 z ← a + b
6 if s > 0
7 if b + c ≥ 1
8 return (z + c ≤ 2)
9 else

10 return (z + c ≤ 1)
11 else
12 if b > c
13 if z ≤ 1
14 return true

15 else
16 return (c ≥ (z)%1)
17 else
18 return (c ≥ z)

Algorithm 7. An exact algorithm to
check if tσ + sc is integral
IsXbarZeroFP(σ, c, t, s)
1 b ← (tσ)%1

2 if s > 0
3 if [(b = 0 and c = 0) or (b + c = 1)]
4 return true

5 if s < 0 and b = c
6 return true

7 return false

Algorithm 8. An exact algorithm
to perform CheckRejectB using FP
numbers
CheckRejectBFP(σ, c, t, s, j)
1 return (c = 0 and t = 0 and j = 0

and s < 0)

The problematic part is computing x̄ = i−(tσ+sc) with low error. Recall that
we can check if x̄ = 0, so assume that x̄ ∈ (0, 1), which means x̄ = 1−(tσ+sc)%1.
While we can compute b = (tσ)%1 and sc exactly, the sum a = b+sc is computed
up to an approximation. Naively extracting the fractional part of a could cause
catastrophic errors if (b+ sc)%1 is very close to 1 and a is rounded to an integer.
In that case, (a)%1 = 0, which is very far from (b+ sc)%1. This would result in a
bad approximation of x̄. To avoid this problem, we forgo the (·)%1 computation
and check explicitly if b + sc < 0 or b + sc ≥ 1 and adjust x̄ accordingly through
appropriate additions and subtractions.

To prove a good approximation for Algorithm 9, we need a technical fact
that can be easily verified using standard calculations.

Fact 2. Let â and b be k-bit FP numbers such that |a − â| ≤ μ. Then
∣

∣

∣

̂â + b − (a + b)
∣

∣

∣ ≤ μ + 2−k(a + b) + 2−kμ � μ + 2−k(a + b).

Lemma 11. For any set of inputs σ, c, t, s, j ∈ R+ × [0, 1)×Z+ ×{−1, 1}×Z+

given as k-bit FP numbers, if Algorithm 9 is implemented with k-bit FP numbers,
then its output value x′ will satisfy at least one of

– |x′ − x| = O(2−k)
– δre(x′, x) = O(2−k).

178 M. Walter

Proof. Multiple applications of Lemma 2 show that x̄, as computed in line 4
to 8 of Algorithm 9, has low absolute error of O(2−k), since all the numbers
involved have small absolute value. We now make a case distinction: first consider
the case j = 0. In that case, x = x̄

σ will have also small absolute error of
O(2−k/σ). On the other hand, if j ≥ 1, x̄ + j will actually have relative error
O(2−k/(x + j)) = O(2−k). Division by σ can increase this by at most a factor
2, which shows that also x has relative error of O(2−k).
�

We are now ready to prove the main theorem of this section.

Theorem. If Algorithm 4 is implemented using Algorithms 5, 6, 8, and 9 with
k-bit numbers and the exponentiation in step 11 is computed with low relative
error, the relative error between its output distribution and the one of Karney’s
algorithm is O(2−k).

Proof. Recall that Algorithm 4 behaves identical to its FP variant up to step
9. Denote the distribution of (s, i, j) that are not rejected up to that point as
source distribution. The probability that such a sample is rejected has relative
error O(2−k) compared to the exact variant by Lemma 11. We can now apply
Lemma 2 (cf. Remark 1) to finish the proof.
�

We note that the rejection step with value exp(− 1
2x(2t + x)) can be either

carried out exactly as in Karney’s original algorithm or using a fast procedure
to approximate exp(·) with small relative error, if it is available.

Algorithm 9. An algorithm to approximately compute x

ComputeXFP(σ, c, t, s, j)
1 if IsXbarZeroFP(σ, c, t, s)
2 return j

σ

3 b ← (tσ)%1

4 x̄ ← 1 − (b + sc)
5 if s < 0 and b < c
6 x̄ ← x̄ − 1
7 if s > 0 and b + c ≥ 1
8 x̄ ← x̄ + 1
9 return x̄+j

σ

3.3 Experimental Results

We implemented our FP version of Karney’s algorithm (which we denote by
KarneyFP in this section) using standard IEEE double precision floating point
numbers and compared it to a public implementation of Karney’s algorithm [2],
where we set the precision to 100 bits, such that the two algorithms offer similar
security guarantees when used in cryptographic primitives. Our implementation
uses the same source of randomness as [2], is also written in C and compiled
with the same parameters. During our experimentation on a standard PC we

Sampling the Integers with Low Relative Error 179

found that KarneyFP is about 20 times faster than the high precision variant in
[2] on typical parameters. We stress though that this is highly platform depen-
dent and caution that this comparison is merely an indication that the relative
performance of KarneyFP can be very good.

We note that [2] also provides an implementation using double precision
FP numbers. While this version cannot guarantee a low relative error and thus
guarantees a much lower level of security (if any), we point out that our imple-
mentation was only roughly 25% slower than the low precision version in [2].
This indicates that on standard PC’s the penalty for the additional conditionals
required to guarantee low relative error is very acceptable. The source code of
our implementation will be made public with the publication of this work.

References

1. Aguilar-Melchor, C., Albrecht, M.R., Ricosset, T.: Sampling from arbitrary cen-
tered discrete Gaussians for lattice-based cryptography. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 3–19. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 1

2. Albrecht, M.R., Walter, M.L.: dgs, Discrete Gaussians over the Integers (2018).
https://bitbucket.org/malb/dgs

3. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: using the Rényi divergence rather than the statistical
distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol.
9452, pp. 3–24. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48797-6 1

4. Cousins, D.B., et al.: Implementing conjunction obfuscation under entropic ring
LWE. In: 2018 IEEE Symposium on Security and Privacy, pp. 354–371. IEEE
Computer Society Press, May 2018

5. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 3

6. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
415–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 26

7. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014)

8. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
I. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 7

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178.
ACM Press, May/June 2009

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM
Symposium on Theory of Computing, pp. 197–206. ACM Press, May 2008

https://doi.org/10.1007/978-3-319-61204-1_1
https://bitbucket.org/malb/dgs
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7

180 M. Walter

11. Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and
evaluation of improved Gaussian sampling for lattice trapdoors. In: Proceedings of
the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy, WAHC 2018, pp. 61–71. ACM, New York (2018)

12. Hallman, R.A., et al.: Building applications with homomorphic encryption. In:
Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 18: 25th Conference
on Computer and Communications Security, pp. 2160–2162. ACM Press, October
2018

13. Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math.
Softw. 42(1), 3:1–3:14 (2016)

14. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

15. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th Annual Symposium on Foundations of Computer Science, pp.
372–381. IEEE Computer Society Press, October 2004

16. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS,
vol. 10402, pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 16

17. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp.
3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

18. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

19. Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi diver-
gence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol.
10624, pp. 347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 13

20. Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: High precision discrete Gaussian
sampling on FPGAs. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 383–401. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43414-7 19

21. Saarinen, M.-J.O.: Gaussian sampling precision in lattice cryptography. Cryptology
ePrint Archive, Report 2015/953 (2015). http://eprint.iacr.org/2015/953

22. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: FAst, compact, and constant-
time discrete Gaussian sampler over integers. Cryptology ePrint Archive, Report
2018/1234 (2018). https://eprint.iacr.org/2018/1234

23. Zheng, Z., Wang, X., Xu, G., Zhao, C.: Error estimation of practical convolution
discrete Gaussian sampling with rejection sampling. Cryptology ePrint Archive,
Report 2018/309 (2018). https://eprint.iacr.org/2018/309

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-319-70694-8_13
https://doi.org/10.1007/978-3-319-70694-8_13
https://doi.org/10.1007/978-3-662-43414-7_19
https://doi.org/10.1007/978-3-662-43414-7_19
http://eprint.iacr.org/2015/953
https://eprint.iacr.org/2018/1234
https://eprint.iacr.org/2018/309

A Refined Analysis of the Cost
for Solving LWE via uSVP

Shi Bai1, Shaun Miller1(B), and Weiqiang Wen2

1 Department of Mathematical Sciences, Florida Atlantic University,
Boca Raton, USA

shih.bai@gmail.com, shaunmiller2014@fau.edu
2 Univ Rennes, CNRS, IRISA, Rennes, France

weiqiang.wen@inria.fr

Abstract. The learning with errors (LWE) problem (STOC’05) intro-
duced by Regev is one of the fundamental problems in lattice-based
cryptography. One standard strategy to solve the LWE problem is to
reduce it to a unique SVP (uSVP) problem via Kannan’s embedding
and then apply a lattice reduction to solve the uSVP problem. There
are two methods for estimating the cost for solving LWE via this strat-
egy: the first method considers the largeness of the gap in the uSVP
problem (Gama-Nguyen, Eurocrypt’08) and the second method (Alkim
et al., USENIX’16) considers the shortness of the projection of the short-
est vector to the Gram-Schmidt vectors. These two estimates have been
investigated by Albrecht et al. (Asiacrypt’16) who present a sound analy-
sis and show that the lattice reduction experiments fit more consistently
with the second estimate. They also observe that in some cases the lattice
reduction even behaves better than the second estimate perhaps due to
the second intersection of the projected vector with the Gram-Schmidt
vectors. In this work, we revisit the work of Alkim et al. and Albrecht et
al. We first report further experiments providing more comparisons and
suggest that the second estimate leads to a more accurate prediction in
practice. We also present empirical evidence confirming the assumptions
used in the second estimate. Furthermore, we examine the gaps in uSVP
derived from the embedded lattice and explain why it is preferable to
use μ = 1 for the embedded lattice. This shows there is a coherent rela-
tion between the second estimate and the gaps in uSVP. Finally, it has
been conjectured by Albrecht et al. that the second intersection will not
happen for large parameters. We will show that this is indeed the case:
there is no second intersection as β → ∞.

Keywords: Lattice-based cryptography · LWE · uSVP ·
Lattice reduction

This work is in part supported through NATO SPS Project G5448 and through
NIST awards 60NANB18D216 and 60NANB18D217, as well as the European Union
PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant
780701).

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 181–205, 2019.
https://doi.org/10.1007/978-3-030-23696-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_10

182 S. Bai et al.

1 Introduction

A lattice is a discrete additive subgroup of R
n. A lattice L of dimension n

(of full-rank) can be described using a basis B consisting of linearly indepen-
dent vectors b1, · · · ,bn ∈ R

n through integral combinations L(B) =
∑n

i=1 Zbi.
Given a lattice basis B as input, one can apply lattice reduction algorithms
such as [20,22,26,29,39,43] to find new bases made of relatively short and more
orthogonal vectors. One quality measurement for a lattice basis B is the so-
called Hermite factor HF(B) = ‖b1‖/(Vol(L(B)))1/n. Lattice reduction algo-
rithms output reduced lattice bases with HF(B) = δn where δ is a function of
the input parameter to the reduction algorithm. The number δ is also known as
the root Hermite factor.

Lattices have attracted considerable interest in recent years as they can be
used to construct cryptographic constructions (so-called lattice-based cryptog-
raphy) which are believed to be quantum-resistant. Two fundamental computa-
tion problems in lattice-based cryptography are the short integer solution prob-
lem (SIS) [1,38] and the learning with errors problem (LWE) [17,37,40,41].
With parameters (m,n, q,B), the SIS problem is defined as follows: sample
A ←↩ U(Zn×m

q) (typically, n ≤ m), the goal is to find non-zero x ∈ Z
m such

that Ax ≡ 0 (mod q) and ‖x‖ ≤ B. Ajtai’s seminal work [1] first established
a worst-to-average connection for lattice-based primitives using the SIS prob-
lem. It then serves as a security foundation for numerous cryptographic primi-
tives, including, among many others, hash functions [1] and signatures [25,35].
The LWE problem is introduced by Regev [40,41] and has been extensively
used as a security foundation, for encryption schemes [25,41], fully homomor-
phic encryption schemes [18], signatures [10,21,25,35] and pseudo-random func-
tions [15], and many others. The search version of the LWE problem with param-
eters (m,n, q, χ) is: sample A ←↩ U(Zm×n

q) (typically n ≤ m), the goal is to find
the vector s ∈ Z

n given samples b where b ≡ As + e (mod q) and e ∈ Z
m
q is

a “short” error vector sampled from the given distribution χ. In this paper, we
focus on χ which is a discrete Gaussian distribution of deviation αq. χ returns
a vector x ∈ Z

m
q with probability proportional to exp(−‖x‖2/(2α2q2)).

Using lattice reduction, a standard method to solve the LWE problem is
to first reduce it to an Unique Shortest Vector Problem (uSVP) via Kan-
nan’s embedding technique [30] and then apply a lattice reduction algorithm
to solve the uSVP problem. For example, we describe the so-called primal lat-
tice attack [2,5,7]. Given the matrix LWE instance (A,b ≡ As + e (mod q)),
we construct the lattice L = {x ∈ Z

m+n+1 | (A | Im | b) · x ≡ 0 mod q}. This is
a lattice of rank d = m + n + 1 and volume qm. It is expected that (s, e,−1) is
the unique shortest vector in the lattice. Thus it boils down to find the shortest
vector in the lattice which can be done by a lattice reduction algorithm. The
goal is to estimate the cost of lattice reduction for solving the uSVP problem
constructed from LWE.

There are two methods for estimating the cost for solving LWE using the
aforementioned LWE-to-uSVP strategy. The first method is proposed by Gama
and Nguyen [23] and further investigated in subsequent works [2,6,28]. The main

A Refined Analysis of the Cost for Solving LWE via uSVP 183

idea is to estimate the gap (between the first and second minima) in the uSVP
lattice. As it is expected that (s, e,−1) is the unique shortest vector in the

lattice, the first minimum λ1 of the uSVP lattice is about
√

‖e‖2 + ‖s‖2. The
second minimum λ2 of the uSVP lattice is estimated from the Gaussian heuristic
on random lattices: the expected first minimum of a lattice L of full rank d
is about

√
d/(2πe)Vol(L)1/d. One assumes that the λ2 of the uSVP lattice is

about the same as the λ1 of a random lattice with the same determinant and
rank. Suppose a lattice reduction algorithm produces a reduced basis of root
Hermite factor δ: for example, if a Block-Korkine-Zolotarev (BKZ) [20,26,42–
44] algorithm of blocksize β is used, the root Hermite factor is about [19]:

δ(β) ≈
(

β

2πe
· (πβ)1/β

) 1
2(β−1)

. (1)

For large β, this is about β1/(2β) which we will use for asymptotic analysis. It
then requires the uSVP gap γ := λ2/λ1 ≥ τ · δd for a successful attack where
τ is an experimental constant depending on the algorithm (and parameters).
Finally, the running-time can be derived from the required δ given the gap γ
which depends on the lattice reduction algorithm used. For the BKZ example,
one can work out the blocksize β required and hence the running-time which is
asymptotically 2O(β) using the core-SVP model [3,7].

A second method is given in the New Hope key exchange paper [7]. Instead
of looking at the gap of the uSVP directly, it considers the evolution of the
Gram-Schmidt coefficients of the unique shortest vector in the BKZ tours. More
precisely, it compares the expected length of the projection of the shortest vector
orthogonally to the first d − β Gram-Schmidt vectors with the length of b∗

d−β+1

estimated using the GSA assumption. The justification is that, if this happens,
the last β Gram-Schmidt coefficients of the shortest vector can be recovered
during the local SVP of the last block.

These two estimates have been investigated extensively by Albrecht et al. in
work [5]. They show that the lattice reduction experiments fits more consistently
with the second estimate. They also present a sound analysis to show that, after
the last β Gram-Schmidt coefficients of the shortest vector is recovered, a further
size reduction is often sufficient to recover the complete secret. Interestingly,
they also observe that in several cases the lattice reduction even behaves better
than the second estimate for certain parameters. It is outlined that this may be
caused by the occurrence of a second intersection of the projected vector with
the Gram-Schmidt vectors.

1.1 Contribution

In this work, we revisit the analysis and experiments on estimating the cost for
solving LWE via the uSVP approach. The experimental results are derived using
the open-source lattice reduction libraries FPLLL and FPYLLL [46,47].

In Sect. 3, we first recall the two estimates from [7,23] and the analysis in [5].
Compared to [5], we expand the comparison of the two estimates with a larger

184 S. Bai et al.

set of LWE parameters (q, n, α). This complements the analysis and comparison
in the Fig. 1 of [5]. Furthermore, we verify the accuracy of the second estimate on
the smaller dimension regime (Subsect. 3.3), where the first estimate could lead
to a smaller blocksize. For the second contribution (Subsect. 3.4), we examine
the projection length of the shortest vector on the reduced bases with different
BKZ blocksize. This confirms that the assumption on the projection length is
valid. Our third contribution (Sect. 4) is a concrete investigation of the uSVP
gap in the embedded lattices with μ = 1 and μ = dist(t,L(B)), given BDD
instance (B, t) as input. It has been a common practice (e.g. [2,7]) to use μ = 1
in the embedded lattice, albeit the reduction of BDD to uSVP [36] works only
with μ = dist(t,L(B)) in theory. We show that the gap in the uSVP instances
on average behaves much better than the worst-case guarantee. Finally, it has
been observed in [5] that in several cases the lattice reduction even behaves
better than the second estimate for some parameters. It is conjectured that the
second intersection will not happen for large parameters. We show in Sect. 5
that this is true: we provide numerical experiments to confirm the impacts of
the second intersection and present an analysis that the position/length of the
second intersection approaches 0 as β → ∞.

2 Preliminaries

In this section, we recall some basic facts on lattices, lattice reduction, and
computational problems based on lattices. We first introduce the notations used
throughout the paper.

Notations. We let lower-case bold letters denote column vectors and upper-
case bold letters denote matrices. For a vector x, we use ‖x‖ to denote its �2-
norm. Similarly, a matrix B = (b1, · · · ,bn) is also presented in a column-wise
way.

2.1 Euclidean Lattices

Let B ∈ R
n×n be a full rank matrix. The lattice L generated by B is defined

as L(B) = {Bx | x ∈ Z
n}, and the matrix B is called a basis of L (or L(B)).

We let B∗ = (b∗
1, · · · ,b∗

n) denote the Gram–Schmidt orthogonalization of B.
The determinant of a lattice L(B) is defined as Vol(L(B)) =

∏
i≤n ‖b∗

i ‖. The
�2-norm of a shortest non-zero vector in a lattice L is denoted by λ1(L) which
is called the minimum of L. This can be extended successively:

Definition 1 (Successive minima). For any lattice L, the i-th minimum
λi(L) is the radius of the smallest ball with center the origin and containing
i linearly independent lattice vectors:

λi(L) = inf{r : dim(span(L ∩ B(0, r))) ≥ i}.

In subsequent sections, we will consider the ratio between λ2 and λ1. Minkowski’s
convex body theorem states that λ1(L) ≤ 2 · v

−1/n
n · Vol(L)1/n where vn is the

A Refined Analysis of the Cost for Solving LWE via uSVP 185

volume of an n-dimensional Euclidean ball of radius 1. The average version of
the Minkowski’s theorem is often known as the Gaussian heuristic: the λ1 of a
random n-dimensional lattice is asymptotically

GH(L) = v−1/n
n · Vol(L)1/n. (2)

For i ≤ n, we let πi(v) denote the orthogonal projection of v onto the linear
subspace (b1, · · · ,bi−1)⊥. For i < j ≤ n, we let B[i,j] denote the local block
(πi(bi), · · · , πi(bj)), and L[i,j] denote the lattice generated by B[i,j].

2.2 Lattice Problems

Two fundamental computation problems in lattice-based cryptography are the
short integer solution problem (SIS) [1,38] and the learning with errors problem
(LWE) [17,37,40,41]. They are defined as follows.

Definition 2 (Search LWEm,n,q,χ). With input parameters n ≥ 1, modulus
q ≥ 2 and distribution χ, the search version of LWEm,n,q,χ problem consists of m
samples of the form (a, b) ∈ Z

n
q ×Zq, with a ←↩ U(Zn

q), b = 〈a, s〉+e (mod q) and
e ←↩ χ. Typically m ≥ n. We say that an algorithm solves the search LWEm

n,q,χ

if it outputs s with probability poly(1/(n log q)) in time poly(n log q).

If the number of samples is not restricted, we denote it as the LWEn,q,χ problem.
In this work, χ is a discrete Gaussian of deviation αq. For convenience, we will
also present the LWE in its the matrix form (A,b) where b ≡ As+ e (mod q).

A dual problem of LWE is the so-called short integer solution problem
(SIS) [1,38]. We will mainly use its inhomogeneous version (ISIS) in this work.

Definition 3 (Search ISISm,n,q,B). Given A uniformly sampled from Z
n×m
q

and a vector b ∈ Z
n, find non-zero x ∈ Z

m such that Ax ≡ b (mod q) and
‖x‖ ≤ B. Typically m ≥ n. If b = 0, it is the SISm,n,q,B problem.

Note that one can view the LWE problem (A,As + e) as an SIS-like problem
by writing A′ · (

s|e) ≡ 0 (mod q) where A′ = (A|I). This also provide an
alternative method for analyzing LWE via the SIS-like problem. The learning
with errors problem (LWE) can be considered as an average version of the BDD
problem:

Definition 4 (Bounded Distance Decoding: BDDα). Let 0 < α < 1
2 .

Given a lattice basis B and a vector t such that dist(t,L(B)) ≤ α ·λ1(B), find a
lattice vector v ∈ L(B) closest to t. We will denote the α as the gap of the BDDα

problem.

A dual problem of BDD is the so-called Unique Shortest Vector Problem (uSVP).

Definition 5 (Unique Shortest Vector Problem: uSVPγ). Let γ ≥ 1.
Given as input a lattice basis B such that λ2(L(B)) ≥ γ · λ1(L(B)), the goal
is to find a non-zero vector v ∈ L(B) of norm λ1(L(B)). We will denote the γ
as the gap of the uSVPγ problem.

186 S. Bai et al.

In some cryptographic applications (e.g., lattice-based signatures [10,21,35]),
it is preferred to use LWE problems where the secret s comes from the same
distribution as the error e. This is known as the normal form LWE. We will
assume this is the case in this work. Notice that there exists a polynomial time
reduction from LWE with secret from arbitrary distribution to LWE in normal
form [8].

2.3 Lattice Reduction

The security of lattice-based cryptography relies on the assumed hardness of
solving the aforementioned geometric problems such as BDD and uSVP on high-
dimensional lattices. The lattice reduction algorithms such as Block-Korkine-
Zolotarev (BKZ) [20,27,42–44] are the most efficient methods for solving such
problems currently known. Lattice reduction aims to compute a basis made
of relatively short vectors from an arbitrary input basis. Quantitatively, one
measure of quality is the so-called Hermite factor HF(B) = ‖b1‖/Vol1/n(L(B)).
Lattice reduction algorithms output reduced lattice bases with HF(B) = δn

where δ is a function of the input parameter to the reduction algorithm. The δ
is also known as the root Hermite factor (RHF).

We review some notions on lattice reduction. A lattice basis B is called size-
reduced, if it satisfies |μi,j | ≤ 1/2 for j < i ≤ n where μi,j = 〈bi,b

∗
j 〉/〈b∗

j ,b
∗
j 〉.

A basis B is HKZ-reduced if it is size-reduced and further satisfies:

‖b∗
i ‖ = λ1(L[i,n]), ∀i ≤ n.

A basis B is BKZ-β reduced for blocksize β ≥ 2 if it is size-reduced and satisfies:

‖b∗
i ‖ = λ1(L[i,min(i+β−1,n)]), ∀i ≤ n.

The work [19] shows that a BKZ-β reduced basis B satisfies ‖b1‖ = δnVol(L(B))
where

δ(β) ≈
(

β

2πe
· (πβ)1/β

) 1
2(β−1)

.

The Schnorr-Euchner BKZ algorithm [42–44] takes as inputs a blocksize β
and a basis B = (b1, · · · ,bn) of a lattice L(B), and outputs a basis which
is approximately BKZ-β-reduced, up to numerical inaccuracies. BKZ starts by
LLL-reducing the input basis, then calls an SVP-solver of dimension β on con-
secutive local blocks B[k,min(k+β−1,n)] for k = 1, · · · , n − 1. This is referred to
as one BKZ tour. Right after the local SVP at index k, if the found vector
λ1(L[k,min(k+β−1,n)]) < ‖b∗

k‖, then BKZ updates the block B[k,min(k+β−1,n)] by
inserting the vector found between indices k − 1 and k and does an LLL reduc-
tion. Otherwise, it moves to the next block. The procedure terminates when
no change occurs at all during a tour. In practice, one prefers to terminate the
BKZ when the changes between tours becomes less significant. This is called the
early-abort BKZ [27]: Hanrot et al. showed that BKZ can be terminated long
before its completion, while still providing bases of good quality.

A Refined Analysis of the Cost for Solving LWE via uSVP 187

It remains to estimate the running-time of BKZ-β given β. In the litera-
ture [3,6,7,20], there are several approaches to estimate the running-time of
BKZ. The main differences come from two aspects: is sieving or enumeration
used for the local SVP? and how many calls to the local SVP oracle are expected?
For convenience, we will use the “core-sieving” model of [3,7]. Essentially it con-
siders a single SVP call of dimension β using sieving, which can be modeled by
a running-time of 2O(β).

Heuristics. Lattice reduction algorithms and their analyses often rely on heuris-
tic assumptions. A common heuristic is the aforementioned Gaussian heuristic
(see Eq. (2)). Let L be an n-dimensional lattice and S a measurable set in the
real span of L. The Gaussian Heuristic states that the number of lattice points
in S, denoted |L ∩ S|, is about vol(S)/Vol(L). In particular, taking S as a cen-
tered n-ball of radius R, the number of lattice points contained in the n-ball
is about Vn(R)/Vol(L). Thus by setting Vn(R) ≈ Vol(L), we see that λ1(L) is
about GH(L) = v

−1/n
n · Vol(L)1/n. Note that this is a factor of 2 smaller than

the rigorous upper bound provided by Minkowski’s theorem.
Another useful heuristic is the so-called Geometric Series Assumption (GSA)

introduced in [45], which states that the Gram-Schmidt norms {‖b∗
i ‖}i≤n of a

BKZ-reduced basis behave as a geometric series, i.e., there is a constant r > 1
such that ‖b∗

i ‖/‖b∗
i+1‖ ≈ r for all i < n.

2.4 Lattice Attack for LWE

In this subsection, we recall several methods that are used to solve the LWE
problem using lattices. In these methods, the main idea is to treat the LWE
problem as a BDD/uSVP problem and then apply a lattice reduction algorithm
to solve the BDD/uSVP problem.

The first method is to view the LWE problem as an ISIS-like problem: given
(A,b ≡ As + e (mod q)) one can form an ISIS-like instance

(A|Im)
(
s
e

)

≡ b (mod q)

where Im is the m × m identity matrix. We can then solve this ISIS instance
using either a BDD solver or uSVP solver via embedding. For example, we may
use the lattice generated by

B =
(
In 0
A qIm

)

.

This is often known as the “primal attack”. Usually matrix A has rank n. The
L(B) is a lattice of rank m + n and has volume qm. We can then solve the BDD
of L(B) with respect to the target point

(
0
b

)
which reveals (s−e). Alternatively,

we can reduce this BDD to uSVP; we will describe this method later.
The second method is to consider the lattice Lq(A) = {y ∈ Z

m : y ≡ Ax
(mod q), ∀x ∈ Z

n}. Note that the lattice Lq(A) contains a point which is close

188 S. Bai et al.

to the target point b within distance ‖e‖. One can hence solve the BDD of
the lattice Lq(A) to the target point b. The lattice Lq(A) has rank m and has
volume qm−n. This is equivalent to the “dual attack” where we multiply the
left-kernel A⊥ of A on both sides of the equation b ≡ As + e (mod q). This
leads to an ISIS-like problem of the form A⊥b ≡ A⊥e (mod q) which we can
solve using a BDD/uSVP solver.

These methods are sometimes equivalent, but not always, depending on the
parameters given. For example, it has been investigated in [5,11] that for the
binary secret LWE case, the first method leads to a better result since it uses
the information about the smallness of s. Furthermore, the allowed samples
in cryptanalytic effort varies depending on the scheme considered. When there
are not sufficiently enough samples, the first method might lead to a better
complexity since it provides more “dimensions” for the lattice.

Reducing BDD to uSVP
We can solve the BDD using Kannan’s embedding technique [30], Babai’s
nearest plane algorithm [9], or Lindner-Peikert’s randomized nearest plane
algorithm [33]. These algorithms have been further investigated by Liu and
Nguyen [34] who show they can be considered as cases of pruned enumeration
algorithms.

For the analysis of this paper we use Kannan’s embedding technique. We
describe it as follows. Given a BDD instance (B, t) where L(B) has rank d and
e is the “shift”, we consider the following basis matrix

B′ =
(
B t
0 1

)

.

This is a lattice of rank d + 1 and volume Vol(L(B)). Observe that

B′
(

x
−1

)

=
(
Bx − t

−1

)

=
(

e
−1

)

.

Hence, the lattice generated by the columns of B′ contains a short vector related
to the potential solution of the BDD problem. Usually the lattice L(B′) derived
from embedding is a uSVP problem of sufficiently large gap, albeit there is no
theoretical proof for this. To solve this problem, we can use the aforementioned
lattice reduction algorithms such as the BKZ algorithm.

In [36], Lyubashevsky and Micciancio provide a reduction, which can reduce
any BDD1/γ instance (B, t) to an uSVPγ/2 instance with basis:

B′ =
(
B t
0 μ

)

∈ Q
n+1,

with μ set to be the distance d = dist(t,L) ≤ λ1(L)/(2γ), where L is the lattice
spanned by B. In more detail, if c denotes a closest vector to t in L then it
is shown that the vector s′ = ((c − t)T,−d)T is a shortest non-zero vector of
lattice L′ of basis B′.

A Refined Analysis of the Cost for Solving LWE via uSVP 189

Later, Bai et al. [13] propose to preprocess the lattice L(B) using Khot’s
sparsification technique [31] before resorting to the Kannan’s embedding: the
component μ is decreased to be O(d/n), and the losing factor in the reduction
is improved from 2 to

√
2.

However, on the practical side [2,5,7], one usually sets μ = 1 in the embed-
ded lattice and assumes there is no losing factor in the reduction. To be more
precise, one assume that the first minimum and the second minimum of the
embedded lattice are ≈ d and λ1(L(B)), respectively. We assume this is true for
the moment, but will have a detailed investigation on this topic in subsequent
sections.

Other Attacks
In this work, we focus on the expected cost of solving LWE by regarding it
as BDD and then reducing it to uSVP. There are other types of algorithms for
solving LWE such as the combinatorial attacks. These algorithms usually require
exponential memory and a large number of LWE samples. We do not consider
these attacks in this work but refer the reader to [4,12,16,32].

3 Revisiting the Cost of Solving uSVP

In this section, we first revisit the two approaches of [7,23] for estimating the
cost of solving uSVP and the analysis in [5]. Then we expand the comparison
in [5] of the two estimates with a larger set of LWE parameters. Furthermore,
we verify the accuracy of the second estimate on the smaller dimension regime,
where the first estimate could lead to a smaller blocksize.

3.1 Two Estimates

Recall that we can view the LWE problem as a BDD problem. For simplicity, we
will use the lattice Lq(A) = {y ∈ Z

m : y ≡ Ax (mod q), ∀x ∈ Z
n} defined in

Subsect. 2.4. The lattice Lq(A) with the target point b defines a BDD instance:
note this is a BDD1/γ instance with γ = λ1(Lq(A))/‖e‖. The lattice Lq(A)
has rank m and volume qm−n. By Gaussian Heuristic, we have λ1(Lq(A)) ≈√

m
2πe q(m−n)/m. On the other hand, the LWE error e has length about

√
mαq.

Thus we obtain a BDD1/γ instance where

γ ≈
min

(
q,

√
m
2πe q(m−n)/m

)

√
mαq

. (3)

For convenience, we assume that q is not too small and hence γ ≈ q−n/m/α.
We first recall the estimate for solving uSVP by Gama and Nguyen [23] (we

will refer to it as the first estimate or the 2008 estimate). First, one assumes
that the above BDD1/γ reduces to uSVPγ , where γ ≈ q−n/m/α. Then Gama
and Nguyen [23] show that the shortest vector in the uSVPγ problem can be
recovered as soon as γ ≥ τ · δm where δ is root Hermite factor of the algorithm
used. Here τ < 1 is an empirical constant determined by experiments: it has

190 S. Bai et al.

been investigated that τ lies in between 0.3 and 0.4 when using the BKZ algo-
rithm [2,5]. For simplicity, we will omit the constant τ in the asymptotic analysis
(but set it to be 0.3 in actual experiments). As noted in Eq. (1), the δ(β) is a
decreasing function of β and therefore we want to maximize δ. The optimal m is
asymptotically 2n log q

log(1/α) which leads to maximum δ ≈ αlog α/(4n log q). The running
time of BKZ-β is 2O(β) using the core-SVP model. In terms of LWE parameters
this is asymptotically

exp

⎛

⎝ct · n log q

log2 α
· log

(
n log q

log2 α

)⎞

⎠ (4)

for some constant ct.
In the New Hope key exchange paper [7], another method for estimating

the cost for solving LWE is given. We will refer to it as the second estimate
or the 2016 estimate. Instead of looking at the gap of the uSVP directly, it
considers the evolution of the Gram-Schmidt coefficients of the unique shortest
vector in the BKZ tours. More precisely, it compares the expected length of
the projected (expected) shortest vector v = (e,−1) with the Gram-Schmidt
lengths estimated by the GSA assumption. The key observation is that partial
information of shortest vector v will be recovered in the last block, when the
orthogonal projection of v to the first d − β Gram-Schmidt vectors is shorter
than the expected b∗

d−β+1 predicated by the GSA assumption. Thus the success
condition for recovering (e,−1) can be formulated as follows.

√
βαq ≤ δ2β−mq(m−n)/m (5)

where δ depends on β. Here we simply take the rank of the lattice to be m ≈ d.
These two estimates have been investigated extensively by Albrecht et al. in

work [5]. They show that the lattice reduction experiments largely follow the
behaviour expected from the second estimate. Furthermore, they also present a
sound analysis to show that, after the last β Gram-Schmidt coefficients of the
shortest vector is recovered, a further size reduction is often sufficient to recover
the complete secret immediately. In fact, this can happen at indices smaller
than the d − β + 1. As noted in [5], they observe an interesting phenomenon
that in several cases the lattice reduction even behaves better than the second
estimate for some parameters: the BKZ algorithm recovers a projection πi(v) at
index following a distribution with a center smaller than d−β +1. It is outlined
in [5] that this may be caused by the occurrence of a second intersection of the
projected vector with the Gram-Schmidt vectors.

3.2 Comparison of Estimates with Various (n, Q, α)

In this subsection, we expand the comparison in [5] on the two estimates with
a larger set of LWE parameters. Note that a numerical comparison of two esti-
mates is already given in the work [5]. Here we expand the range of the LWE
parameters to the single-exponential regime: observe that the comparison in the

A Refined Analysis of the Cost for Solving LWE via uSVP 191

Fig. 1 of [5] fixes q, α and increases n. This compares the two estimates for LWE
parameters in the super-exponential regime because of the estimate in Eq. (4).
Here we assumed that the optimal m in the 2006 estimate is asymptotically the
same as the 2008 estimate. Note that the 2008 estimate (e.g. Eq. (5)) can be
re-formulated as

β1/(2β) ≤
(

q−n/m

α

)1/m

β1/(2m).

This can be compared to the uSVP gap argument in the 2008 estimate [23] where
we have β1/(2β) ≤ (q−n/m/α)1/m instead. We want to minimize the β in Eq. (5).
This is a constraint optimization problem which seems tedious. Instead we find
the optimal m and β numerically. In setting the LWE parameters (n, q, α), we
maintain the relation that

log q/ log2 α · log(n log q/(log2 α)) (6)

being a constant c. Note that this corresponds to the multiplier in front of n in the
Eq. (4). This roughly means the running-time for solving LWE is asymptotically
single-exponential.

We describe the parameters we used in the comparison. We set c = 0.25
and 0.35 respectively. For each c, we take q = n2 and q = n4 (thus four sets of
parameters). Such parameters simulate commonly used conservative parameters
(e.g. q not too large). Then we compute the corresponding α. For each set of
parameters (n, q, α), we find the optimal m that leads to the smallest β using
the 2016 estimate and the 2008 estimate (we set the empirical constant τ = 0.3)
respectively. We denote the smallest blocksize required from the two estimates
as β2008 and β2016. For each set of parameters, we plot the blocksize β required
as an (increasing) function of n; we also plot the normalised blocksize difference
which records (β2008 − β2016)/β2008: this roughly illustrates the “improvement
percentage”. If this value is negative, we simply denote it by 0 but we will further
consider these cases later. We plot the comparison on the four sets of parameters
in Figs. 1, 2, 3, 4, 5, 6, 7 and 8.

Fig. 1. Comparison of blocksize β of two
estimates when c = 0.25 and q = n2.

Fig. 2. Same as left hand side, but
compares the improvement percentage
of the blocksize.

192 S. Bai et al.

Fig. 3. Comparison of blocksize β of two
estimates when c = 0.25 and q = n4.

Fig. 4. Same as left hand side, but
compares the improvement percentage
of the blocksize.

Fig. 5. Comparison of blocksize β of two
estimates when c = 0.35 and q = n2.

Fig. 6. Same as left hand side, but
compares the improvement percentage
of the blocksize.

It can be observed that the impacts of (the difference of) the two methods
increases with the decrement of q. Similarly, the difference of the two methods
increases with the decrement of α. This also confirms the comparison of the two
methods in [5] in the single-exponential region.

3.3 Smaller Dimension

Note that in the small dimension (in terms of LWE n) regime (some of which
might be still relevant to practical schemes), the first estimate leads to a smaller
blocksize. This is due to the empirical constant τ set to be 0.3. There might be a
tendency to use the first estimate as it produces more conservative estimates. We
further confirm the accuracy of the second estimate for these smaller dimensions.
Note that for tiny blocksizes (e.g. β ≤ 30), it has been observed in [14] that the
Gaussian heuristic in local blocks is not accurate in BKZ; nor such blocksize
matter the running-time of BKZ too much. Thus we do not consider these tiny
blocksizes. We choose parameters n, q, α such that the blocksizes are ≥ 40 and

A Refined Analysis of the Cost for Solving LWE via uSVP 193

Fig. 7. Comparison of blocksize β of two
estimates when c = 0.35 and q = n4.

Fig. 8. Same as left hand side, but
compares the improvement percentage
of the blocksize.

compare the two methods in such region. Using the same approach as the last
subsection, we set c = 0.5 and q = n2. Then we find the corresponding α for the
error rate. For each (n, q, α), we find the optimal m that leads to the smallest
β using the 2016 estimate and the 2008 estimate respectively. For the 2008
estimate, we set the empirical constant τ = 0.3: approximately we are comparing
the two estimates in terms of δd ≈ q−n/m/(0.3α) with δm ≈ q−n/m/α

√
β.

In Fig. 9 we can observe, for small LWE dimension n, the first estimate gives a
smaller blocksize due to the empirical constant 0.3. Then we look at the concrete
experiments with LWE parameters n = 110, q = 12101, σ = αq = 7.2 of 100
instances. Using the 2008 estimate, the optimal m = 277 which leads to the
β = 39. Using the 2016 estimate, the optimal m = 294 which leads to the β = 66.
In Fig. 10, the experiments using BKZ of various blocksize as well as different
number of samples are tabulated. It can be seen that the 2016 estimate indeed

Fig. 9. Comparison of blocksize β of two
estimates when c = 0.5 and q = n2 for
small n region.

Fig. 10. Experimental comparison of two
estimate for small n region.

194 S. Bai et al.

provides a more accurate estimate: all BKZ instances using β = 66 succeed with
m = 294 as predicated by the 2016 estimate. We note that many instances even
succeeded with smaller blocksize β = 60. This is perhaps due to the second
intersection phenomenon as observed in [5]. We will look at this phenomenon
later.

3.4 Further Experiments on the Projection Length

The success condition for recovering the shortest vector in Eq. (5) depends mainly
on two heuristics: first, the norm of the Gram-Schmidt vectors in a BKZ reduced
basis follows from the GSA assumption; second, the norm of the projection of
the shortest vector onto the vector space spanned by the last β Gram-Schmidt
vector is about αq

√
β.

In practice, it is known [14,23] that the GSA assumption does not quite
fit the BKZ experiments. However, the GSA assumption is optimistic from an
attacker’s point of view, which leads to a more conservative estimate. Hence
we will assume this is the case. We will look at the second heuristic on the
projection length. Denote the shortest vector to be v. The heuristic on the
project length essentially requires that v, when expanded in terms of Gram-
Schmidt vectors, have similar length on all components. This follows true if
the Heuristic 2 described in work [24] is true: The distribution of the coordi-
nates of the target vector v, when written in the normalized Gram-Schmidt
basis (b∗

1/
∥
∥b∗

1

∥
∥ ,b∗

2/
∥
∥b∗

2

∥
∥ , · · · ,b∗

m/
∥
∥b∗

m

∥
∥) of the input basis, looks like a uni-

formly distributed vector of norm ‖v‖. Observe that the heuristic depends on the
shape of the input basis. For example, when the input basis is strongly reduced,
the shortest vector v may already appear in the basis and hence the heuristic
will not be true.

An experimental study has been presented in Fig. 2 of [5] using 16 LLL
reduced bases. We conduct further experiments on the length of projected short-
est vector on BKZ reduced bases of various blocksizes. We use the same parame-
ters as Fig. 2 of [5]: we generate 200 LWE instances of n = 65, m = 182, q = 521
and σ = 8/

√
2π (the results are averaged over these instances). We reduce the

embedded bases using LLL and BKZ-β for β = 10, 20, 30, 40, 45. Note here we
choose the largest blocksize to be 45 since this prevents the shortest vector from
being recovered with high probability. Similarly, in the reduced bases, we do not
consider those where the shortest vector has already been found. The experimen-
tal results are illustrated in Figs. 11 and 12. It can be seen that the projection
norms of the shortest vector indeed follow a similar shape in all LLL/BKZ-
reduced bases. When the lattice is more reduced, the projected norm seems to
follow more closely to the theoretical estimate except the last few indices. As a
conclusion, it seems even plausible to use the theoretical estimate

√
m − i + 1 αq

except for the last several indices. This might cause a problem for estimating the
γ for the second intersection. We will consider such problem in a later section.

A Refined Analysis of the Cost for Solving LWE via uSVP 195

Fig. 11. Logarithmic norm of the projec-
tion of v on BKZ-β reduced bases for
β = 10, 20, 30, 40, 45.

Fig. 12. Same as left hand side, but
zoomed-in for only LLL and BKZ-
45. Furthermore, theoretical estimate
log2(

√
m − i + 1 αq) is plotted.

4 Gap in uSVP from LWE

In this section, we study the practical behavior of the reduction from the BDD
problem to the uSVP problem. Note that in practice, we usually use the Kan-
nan’s embedding with μ = 1. However, in theory, it is not known that whether
the gap γ of the embedded uSVP lattice in this case is optimal. But this seems
to be the preferable setting in practice. In this section, we aim to understand
the relation between theory and practice (that can also be viewed as worst-case
and average-case), and explain why it is preferable to use μ = 1.

Let the BDD problem arise from LWE be BDD1/γ . We recall the reduc-
tion from BDD1/γ to uSVPγ/2 by Lyubashevsky and Micciancio [36]. Given
the BDD1/γ instance (B, t), the following embedded lattice is constructed

B′ =
(
B t
0 μ

)

∈ Q
n+1,

where μ is set to be the distance d = dist(t,L(B)). Since this is a BDD1/γ

instance, we know that d ≤ λ1(L)/γ. Let c ∈ L(B) denote a closest vector to
the target point t. Lyubashevsky and Micciancio [36] show that the vector s′ =
((c − t)T,−μ)T is a shortest non-zero vector in the lattice L(B′) and other
independent vectors are at least γ times larger than this. The reduction cares
about the worst-case behaviors. In practice, it may be quite possible that all
other independent vectors are more than γ/2 times larger and hence leads to
a uSVP problem with larger gap. In fact, we will show that this is indeed the
case in practice and investigate to what extent it is better than the γ/2-gap.
Note that there is a natural upper-bound for the reduction. Precisely, the gap
in the uSVP problem cannot be larger than

√
2γ/2 since a shortest vector in

the BDD lattice also resides in the embedded lattice and s′ has length
√

2d/2.
On the other hand, in practice, we just take μ = 1 in the embedded lattice.

196 S. Bai et al.

We assume that the vector ((c − t)T,−1)T is a shortest non-zero vector in the
lattice L(B′) and such that there is a sufficiently large gap between all other
independent vectors and this shortest non-zero vector. In the 2008 estimate, this
is equivalently assumed to be that the uSVP problem derived from μ = 1 has a
gap of γ (although this is not supported theoretically in the worst case). In fact,
such γ-gap already implies the reduction has reached its natural upper bound
– note that the shortest vector in the given BDD lattice L(B) is about γ times
larger than d as defined.

In this section, we investigate concretely the gap in the uSVP problem in
experiments. Perhaps surprisingly, we show that the gap in the uSVP instance
are somewhat close to the upper-bound γ in practice, even though this is not
guaranteed in the worst-case. This also explains that why it is preferable to
use μ = 1 in practice. We set up the following experiments to investigate the
gap in the resulted uSVP instance in practice. For each set of parameters, we
generate 100 LWE instances. For each instance, we construct the embedded
lattices in two ways, with μ = 1 and μ = d where d = �‖e‖�. In experiments, we
compute and compare the gaps in the resulted uSVP instances.

Table 1. Experimental comparison on the gap of uSVP derived from two embeddings.

n m q BDD lattice uSVP lattice µ = 1 uSVP lattice µ = ‖e‖
Theory Experiment Theoretical

upper
Experiment Ratio Theoretical

upper
Experiment Ratio

16 32 1031 2.71 2.78 2.78 �2.55 0.92 1.97 �1.96 0.71

16 48 1031 8.40 8.49 8.49 �7.81 0.92 6.00 �5.99 0.71

32 48 8101 1.65 1.68 1.68 �1.58 0.94 1.19 �1.19 0.71

32 64 8101 7.23 7.33 7.33 �6.95 0.94 5.18 �5.16 0.70

We explain the notations in Table 1. For each parameter n,m, q in LWE, we
use error deviation σ = 3.1925 ≈ 8√

2π
. For each LWE/BDD instance, we calcu-

late the theoretical gap in the BDD problem from min
(
q, (Γ(1+m/2)1/m)/

√
π ·

q(m−n)/m
)
/(σ

√
m). Note that we can measure in a better way: since we know the

errors, we use the average norm of the errors in the denominator (instead of the
estimate σ

√
m). This is tabulated in the “Theory” sub-column under “BDD”.

Then we use BKZm to find the λ1(L(B)) and divide that by the norm of error in
LWE. This is recorded in the “Experiment” sub-column under “BDD”. Note
that the experimental values obtained is slightly larger than the theory; this is
perhaps due to the solver only finding the approximate shortest vector in prac-
tice. Then we construct the embedded uSVP lattices with μ = 1 and μ = d,
respectively. The sub-columns “Theoretical upper” under “uSVP lattice”
denote the upper bound of the gap in the uSVP instances one can achieve using
the values in the “Experiment” (not “Theory”) sub-column under “BDD”, for
each type of embedding, respectively. For example, the experiment value 2.78
under n = 16,m = 32, q = 1031 implies that the corresponding uSVP instances

A Refined Analysis of the Cost for Solving LWE via uSVP 197

with μ = ‖e‖ can at most have a gap of 1.97. The sub-column “Experiment”
under “uSVP lattice” gives the experimental values for the gaps between the
norm of a second shortest vector and

∥
∥(eT,−μ)T

∥
∥. Note that here we approx-

imate the norm of a second shortest vector by considering the second shortest
vector in a reduced basis using BKZ of blocksize m. This is not necessarily the
λ2 but hopefully a close approximation. Thus we denote “�” in the table. For
the lattice reduction, we use BKZ in FPLLL until exhaustion with full enumera-
tion for m = 32 and pruned enumeration for other m. The sub-column “Ratio”
under “uSVP lattice” computes the ratio between the uSVP gap and the BDD
gap. That is, it reflects the practical behavior of the reduction from BDD1/x

to uSVPy where the sub-column “Ratio” is computed as y/x. The larger the
ratio, the better (larger gap) the uSVP instance is. All the figures in the table
are averaged over 100 instances.

From a theoretical perspective, it is perhaps surprising to see that the BDD-
uSVP reduction works pretty well in practice with both μ. In particular, with
μ = 1, it seems that BDD1/γ already reduces to uSVP0.9γ in practice. In theory
for such case (μ = 1), it is possible that there exists a lattice point c′ ∈ L(B)
that is closer to k · t for some multiple k, and therefore (c′ − k · t,−k) decreases
the desirable gap. However, experiments in Table 1 seems to imply that such bad
points are rare in practice. Note that such cases can be provably eliminated by
setting a larger μ = ‖e‖ as shown in [36]. Specifically for such μ, it is guaran-
teed that the uSVP gap is γ/2 (from BDD1/γ) in the worst case. Similarly, the
practical/average behavior seems to be much better: with μ = ‖e‖, the BDD1/γ

problem reduces to uSVP0.7γ in practice.
We do not know how to explain such average behavior in theory. It may be

related to the difference on the natural upper-bounds in two embeddings: with
μ = 1, the natural upper-bound of the gap in the uSVP problem is γ. This is
larger than that (e.g. γ/

√
2) derived from the lattice using μ = ‖e‖. Thus it

may be due to a larger upper-bound providing larger “room” for the reduction,
together with annoying “extremely close” lattice points (to multiple of target
vector t) being rare in practice. It may be interesting to further investigate this,
e.g. by trying more μ between 1 and ‖e‖ and observe the impacts to the uSVP
gap. We leave more investigations on this for future work.

So far, we’ve only discussed the gap appeared in the embedded uSVP instance
under different embedding parameters. We further look at the impacts on the
cost estimate under different embedding heights. In the 2008 estimate, it is
assumed that given as input a BDD1/γ problem, one can reduce to a uSVPγ

problem. Then the root Hermite factor δ can be derived from the gap γ and
hence the blocksize & running-time. It is also natural to see that when using
the 2008 estimate, it is preferable to use μ = 1 since it leads to a larger gap in
the uSVP problem. In the 2016 estimate, the gap of the uSVP problem is not
used explicitly. But one can see that the estimate is asymptotically equivalent
to δm ≤ √

β
√

mq(m−n)/m

‖(e|μ)‖ . The fractional part of the equation corresponds to

the gap in the uSVP problem. Note that the difference on the gap using μ = 1

198 S. Bai et al.

and μ = ‖e‖ is at most a scaling factor of
√

2. It seems to be a small factor
however it may affect the concrete security level of schemes with moderate size.

5 Second Intersection

An interesting phenomenon observed in [5] shows that in several cases the lattice
reduction behaves even better than the 2016 estimate for some parameters. First,
the BKZ algorithm recovers a projection πi(v) at index following a distribution
with a center below d − β + 1. After that, a size reduction usually immediately
recovers the full secret. It is outlined in [5] that this may be caused by the occur-
rence of a second intersection of the projected vector with the Gram-Schmidt
vectors. For example, to solve LWE parameter n = 65,m = 182, q = 521 and
αq = 8/

√
2π, it runs BKZ with blocksize β = 56 according to Eq. (5). Since

β = 56 satisfies Eq. (5), a projection of our error should be found at index
d−β +1 = 128, recovering the last 56 coefficients of the error which leads to size
reduction recovering the rest. In experiments the projection is found earlier (at
index ≈ 124.76) and the coefficients of the error are found after one more call to
size reduction. Second, the blocksize required to recover the secret (on average)
is actually smaller than that estimated from Eq. (5). For the LWE parameter
mentioned above, it requires to run BKZ using blocksize 56 according to Eq. (5).
However, as noted in [5], using blocksize 51 is sufficient to recover more than
half of the instances. Some justification has been outlined in Subsect. 4.3 of [5],
mainly on the size reduction at index ≤ d − β + 1. We will provide a refined
analysis of why a smaller blocksize may work.

Fig. 13. Comparison between G-S norms
of BKZ56 under GSA and the expected
length of πi(v).

Fig. 14. Same as LHS, but zoomed-in to
the last several indices. Furthermore, a
BKZ simulator is used to estimate the
log ‖b∗

i ‖.

We first recall the phenomenon in more detail as well as a brief explana-
tion given in [5]. According to Eq. (5), the projection of the shortest vector

A Refined Analysis of the Cost for Solving LWE via uSVP 199

should be recovered at position d − β + 1 when running the BKZ with block-
size β on the uSVP instance over a d-dimensional lattice (recall that in our
description, the d = m + 1). However, it is observed that the existence of
a second intersection on the expected projection length of the shortest vec-
tor and the Gram-Schmidt norms under GSA assumption may speed-up the
recovery of v. For example, Fig. 13 compares the (logarithmic) Gram-Schmidt
norms of BKZ56 reduced basis under GSA assumption and the expected length
of πi(v). Note there are 5 indexes in which ‖πi(v)‖ is smaller than the Gram-
Schmidt norms, thus in this case, we denote κ = 5. In particular, after the
second intersection, the expected length of πi(v) will be less than the ‖b∗

i ‖ for
κ indexes in the end. Hence the projection is likely to be the smallest vector of
the projected lattice L(πd−κ+1(bd−κ+1), · · · , πd−κ+1(bd)) of dimension κ. The
SVP oracle will find this projection and the BKZ algorithm will then insert
it at index d − κ + 1. As a result, bd−κ+1 is updated to be (the lifted vector
of) the projection of the vector v over the last κ Gram-Schmidt vectors. Fur-
ther, it is likely that πd−β−κ+1(v) is the shortest vector of the projected lattice
L(πd−β−κ+1(bd−β−κ+1), · · · , πd−β−κ+1(bd−κ+1)) of size β after which v can be
recovered by a size reduction according to [5]. Therefore, assuming a projec-
tion of our vector πd−κ+1(v) has already been found, an SVP oracle will find
πd−β−κ+1(v) in the lattice L(πd−β−κ+1(bd−β−κ+1), · · · , πd−β−κ+1(bd−κ+1)).

5.1 On Smaller Blocksize

A related interesting phenomenon is that often a smaller blocksize may be
already sufficient to solve the uSVP problem. This has been observed in [5]
where a blocksize of β′ = β −κ is sufficient to recover the secret with high prob-
ability. We give a heuristic justification of this based on the second intersection.
Suppose now β is the smallest blocksize that satisfies Eq. (5) with a nonzero κ
depending on β.

Denote β′ = β − κ. Suppose BKZβ′ is run (instead of BKZβ). For conve-
nience, let δβ denote the value of δ given blocksize β. Let κ′ be the amount of
indices where the projection of v is smaller than the GSA predicated Gram-
Schmidt norm. Due to the second intersection, a projection of v is likely to
be found at index d − κ′ + 1 so after SVP the vector bd−κ′+1 will contain the
last κ′ coefficients of v. Therefore the norm of v, if decomposed in terms of
the Gram-Schmidt vectors bi, will concentrate on the first d − κ′ + 1 compo-
nents. More precisely, ‖v‖2 =

∑d−κ′+1
i=1 c2i

∥
∥b∗

i

∥
∥2 where ci are the coefficients in

the decomposition. Following the same reasoning as in [5], we look at the β′

dimensional lattice L(πd−β′−κ′+1(bd−β′−κ′+1), ..., πd−β′−κ′+1(bd−κ′+1)). If the
projected shortest vector has a smaller norm than the GSA predicated norm of
blocksize β′, then we would be able to recover the last β′ + κ coefficients. The
success condition can be phrased as

√
β′ + κ′αq ≤ δ2β′−d+2κ′

β′ Vol(L)1/d. (7)
Eq. (7) is sometimes satisfied, but not always, depending on the relation between
κ and κ′. It seems plausible to assume that κ′ ≈ κ for the analysis, albeit this

200 S. Bai et al.

may not be true in practice. (This can be seen from experiments the newly found
β′ will not recover as many error vectors as the original β. For example, β′ = 51
in the aforementioned LWE parameters can only recover half of the instances.)
Note that if κ ≈ κ′, the left-hand side of Eq. (7) is the same as

√
βαq and the

right-hand side is larger, hence πd−β′−κ′+1(v) is the shortest vector in the local
lattice. By recovering β′ + κ coefficients of v, a following size reduction will find
the rest with a high probability.

5.2 Experiments on κ

In the experiments to follow, we consider the last projection of our vector v that
was found before it is completely recovered in the next tour by size reduction.
This confirms the existence of κ in practice. With LWE parameters n = 65,m =
182, q = 521 in both parameter sets, we consider two different choices of αq
that produces different κ. The first is αq = 3.192 and requires β = 56 while the
second is αq = 2.469 and requires β = 42. We run 800 instances in total and
take the average for both parameter sets. The distribution of κ found are plotted
in Figs. 15 and 16. The y axis represents the counts over 800 where a projection
of v was found at index d − κ + 1 before the tour it was completely recovered
and the x axis is the value κ. In both cases, we did not consider projections of v
that were found at an index less than or equal to d − β + 1 as this will probably
be where v is recovered by size reduction. The experiment that required β = 56
was allowed to run for at most 20 tours while the experiment requiring β = 42
is allowed 60 tours.

Fig. 15. Blocksize β = 56 required in
Eq. (5) and κ = 5.

Fig. 16. Blocksize β = 42 required in
Eq. (5) and κ = 7.

We notice that the experimental values for κ indeed follow approximately
from the theoretical predicate from Eq. (5). However, we also notice that the
experimental value for κ seems to be slightly less than the predicted value. This
could be due to the inaccuracy of GSA when predicting the length of the last
few projections. It is known that the simulator-based approach [14,23] provides

A Refined Analysis of the Cost for Solving LWE via uSVP 201

a better estimation for the behavior of the lengths ‖b∗
i ‖. We considered the

average simulated ‖b∗
i ‖ over 1000 instances with blocksize 56 and 200 tours. By

comparing the simulator to the expected length of our projection (see Fig. 14),
we see that fewer projections of v are below the simulator after the second
intersection: There are 3 (resp. 5) indexes in which ‖πi(v)‖ is smaller than the
simulator’s (resp. GSA’s) value for ‖b∗

i ‖ (comparing Fig. 15 with Fig. 14).

5.3 Convergence of κ

It has been conjectured [5] that the second intersection will not happen for
cryptographic meaningful parameters. We first show that the position of the
second intersection approaches 0 as β → ∞. We will also provide a numerical
analysis for the index of the second intersection using both GSA assumption
and simulator. We first take the logarithm of both the Gram-Schmidt norm at
index x and the norm of πx(v):

log(πx(‖v‖)) ≈ log(
√

d − x + 1 · αq),
log(‖b∗

x‖) ≈ (x − 1) log(α) + log(‖b1‖)

where α ≈ δ−2 is the constant ratio in GSA. Note that ‖b1‖ ≈ δdVol(L)1/d.
Assuming Eq. (5) is satisfied so that αq ≈ δ2β−dVol(L)1/d/β1/2, the inequality
can be represented as

log(
κ

β
) ≤ −4 log(δ)(−κ + β) (8)

where κ = d − x + 1. If there a nontrivial second intersection, the above relation
has to be true for at least κ = 1. Using δ ≈ v

−1/(β(β−1))
β , one could see that for

large enough blocksize, this relation can not be satisfied and hence the second
intersection will not happen for large blocksize. This shows that the second
intersection approaches 0 as β → ∞. Further, we numerically investigate the
evolution of κ in terms of β using relation (8). Figure 17 considers the values of κ
given by relation (8) for different values of β. Notice that Fig. 17 shows that β =
278 is the smallest blocksize where κ already becomes 0. This suggests there
is no second intersection when β ≥ 278 is needed to satisfy Eq. (5). However,
this could be an over-estimate from the attacker’s point of view since the GSA
assumption is used here.

To get a more accurate estimation of the value κ, we further compare that
with the BKZ simulator. The next figure considered several different parameter
sets (n = 65,m = 182, q = 521) only varying in αq and necessary β (averaged
over α and LWE instances). We simulate 200 tours of BKZ-β using the BKZ
simulator and averaged 1000 instances of each parameter set. Figure 18 shows
that the value of κ derived by comparing the simulated ‖b∗

i ‖ to ‖πi(v)‖ suggests
there is no second intersection for blocksizes larger than 120. One can also see
this produces slightly smaller κ for a given β than the comparison assuming GSA.
This seems reasonable since the GSA assumption is known to be optimistic from

202 S. Bai et al.

Fig. 17. Maximal κ satisfying Eq. (8)
given β.

Fig. 18. Maximal κ satisfying Eq. (8)
given β.

an attacker’s point of view. In conclusion, this further suggests that a second
intersection will only affect the results of running BKZ-β on smaller parameter
sets.

Acknowledgments. We thank the reviewers for their valuable comments and sug-
gestions. The authors would like to acknowledge the use of the services provided by
Research Computing at the Florida Atlantic University.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM Press,
May 1996

2. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12160-4 18

3. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite,
E.W., Virdia, F., Wunderer, T.: Estimate all the LWE, NTRU schemes!. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 19

4. Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching
for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 429–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 25

5. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected
cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 11

6. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-319-70694-8_11

A Refined Analysis of the Cost for Solving LWE via uSVP 203

7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016: 25th USENIX
Security Symposium, pp. 327–343. USENIX Association, August 2016

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

9. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6, 1–13 (1986)

10. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

11. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

12. Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms
for the inhomogeneous short integer solution problem. J. Cryptol. 32(1), 35–83
(2019)

13. Bai, S., Stehlé, D., Wen, W.: Improved reduction from the bounded distance decod-
ing problem to the unique shortest vector problem in lattices. In: Proceedings of
ICALP, pp. 76:1–76:12 (2016)

14. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03326-2 13

15. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

16. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd Annual ACM Symposium on Theory of
Computing, pp. 435–440. ACM Press, May 2000

17. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM Press, June
2013

18. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

19. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. Ph.D. thesis, Université Paris Diderot (2009)

20. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

21. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

22. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3

204 S. Bai et al.

23. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

24. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM
Symposium on Theory of Computing, pp. 197–206. ACM Press, May 2008

26. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159–190. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20901-7 10

27. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

28. Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of solving
LWE. Des. Codes Cryptogr. 86(1), 55–83 (2018)

29. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: 15th Annual ACM Symposium on Theory of Computing, pp. 193–206.
ACM Press, April 1983

30. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

31. Khot, S.: Hardness of approximating the shortest vector problem in high Lp norms.
In: Proceedings of FOCS, pp. 290–297. IEEE Computer Society Press (2003)

32. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. Cryptology ePrint Archive, Report 2015/552
(2015). http://eprint.iacr.org/2015/552

33. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

34. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

35. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

36. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8 34

37. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

38. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th Annual Symposium on Foundations of Computer Science, pp.
372–381. IEEE Computer Society Press, October 2004

39. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Indyk, P. (ed.) 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 276–294. ACM-SIAM, January 2015

https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
http://eprint.iacr.org/2015/552
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/978-3-642-13190-5_1

A Refined Analysis of the Cost for Solving LWE via uSVP 205

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing, pp. 84–93. ACM Press, May 2005

41. Regev, O.: Lattice-based cryptography (invited talk). In: Dwork, C. (ed.) CRYPTO
2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006). https://doi.org/
10.1007/11818175 8

42. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53(2–3), 201–224 (1987)

43. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5 51

44. Schnorr, C.P.: A more efficient algorithm for lattice basis reduction. In: Kott,
L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 359–369. Springer, Heidelberg (1986).
https://doi.org/10.1007/3-540-16761-7 85

45. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

46. The FPLLL development team. fplll, a lattice reduction library (2019). https://
github.com/fplll/fplll

47. The FPYLLL development team. fpylll, a python wrapper for fplll (2019). https://
github.com/fplll/fplll

48. Wang, Y., Aono, Y., Takagi, T.: Hardness evaluation for search LWE problem using
progressive BKZ simulator. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 101(12), 2162–2170 (2018)

https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/3-540-54458-5_51
https://doi.org/10.1007/3-540-16761-7_85
https://doi.org/10.1007/3-540-36494-3_14
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fplll

New Schemes and Analysis

Memory-Efficient High-Speed
Implementation of Kyber on Cortex-M4

Leon Botros(B), Matthias J. Kannwischer(B), and Peter Schwabe(B)

Radboud University, Nijmegen, The Netherlands
l.botros@student.ru.nl, matthias@kannwischer.eu, peter@cryptojedi.org

Abstract. This paper presents an optimized software implementation
of the module-lattice-based key-encapsulation mechanism Kyber for the
ARM Cortex-M4 microcontroller. Kyber is one of the round-2 candi-
dates in the NIST post-quantum project. In the center of our work are
novel optimization techniques for the number-theoretic transform (NTT)
inside Kyber, which make very efficient use of the computational power
offered by the “vector” DSP instructions of the target architecture. We
also present results for the recently updated parameter sets of Kyber
which equally benefit from our optimizations.

As a result of our efforts we present software that is 18% faster than
an earlier implementation of Kyber optimized for the Cortex-M4 by the
Kyber submitters. Our NTT is more than twice as fast as the NTT in
that software. Our software runs at about the same speed as the lat-
est speed-optimized implementation of the other module-lattice based
round-2 NIST PQC candidate Saber. However, for our Kyber software,
this performance is achieved with a much smaller RAM footprint. Kyber
needs less than half of the RAM of what the considerably slower RAM-
optimized version of Saber uses. Our software does not make use of any
secret-dependent branches or memory access and thus offers state-of-the-
art protection against timing attacks.

Keywords: ARM Cortex-M4 · Number-theoretic transform ·
Lattice-based cryptography · Kyber

1 Introduction

In 2016, NIST issued a call for proposals of new post-quantum cryptographic
schemes including digital signatures and key encapsulation schemes (KEM) for
future standardization [26]. In late 2017, 69 different proposals were accepted for
a first round of evaluation. On January 30, 2019, NIST announced the second-
round candidates which include 17 KEMs and 9 signature schemes. The report
accompanying NIST’s decision [1] states that the main criteria of selection were
cryptanalytic attacks and message sizes. Implementation characteristics such as

This work has been supported by the European Commission through the ERC Starting
Grant 805031 (EPOQUE). Date: May 10, 2019.
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 209–228, 2019.
https://doi.org/10.1007/978-3-030-23696-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_11

210 L. Botros et al.

speed, memory consumption, or code size on various platforms was not the main
reason for not selecting any of the schemes to the second round evaluation. How-
ever, NIST stated that “performance will play a larger role in the second round”
which is estimated to last for at least one year. Since only minor tweaks to sub-
mitted schemes are allowed it is likely that, unless there are major cryptanalytic
advances, implementation performance will be a main criterion for schemes being
considered beyond round two.

While many first-round submissions already include an implementation opti-
mized for large Intel processors, most do not come with optimized implementa-
tions for other platforms. Yet, some of the schemes have been optimized for ARM
Cortex-M microcontrollers and also FPGAs. One particularly important target
platform is the ARM Cortex-M4 since a variety of schemes have been optimized
for it and NIST recommended it to submission teams. Implementations of NIST
candidates optimized for the Cortex-M4 are collected in pqm4 [21] which also
provides a testing and benchmarking framework for fair comparison.

7 out of 17 round-two candidates1 for key encapsulation are based on
structured lattices and as such heavily rely on arithmetic in polynomial rings.
Recent work [20] optimized multiplication on Cortex-M4 in the polynomial ring
Z2k [X]/(f(X)) using the decomposition algorithms of Karatsuba [22] and Toom-
Cook [12,32]. Having fast arithmetic in Z2k [X]/(f(X)) allows to speed up the
two second-round candidates Saber and NTRU2.

Even though multiplication in Z2k [X]/(f(X)) can be fast for practical values
of n and k, it comes at a major cost: Toom and Karatsuba require additional
memory to store intermediate results. For the NTRU-HRSS-KEM parameters
n = 701 and k = 13, [20] achieve the fasted multiplication using Toom-4 and 4
layers of Karatsuba, which requires 11 208 bytes of additional stack space. Even
for the smaller polynomials with n = 256 in Saber, the fastest multiplication
routine described in [20] requires 3800 bytes of RAM. In case this memory is not
available, one has to fall back to considerably slower multiplication algorithms.

The situation is very different for Kyber (and also the round-2 NIST candidate
NewHope [2,3]), which are designed to support very efficient multiplication in the
underlying polynomial ring without additional memory. The idea is to use fast
number-theoretic transforms (NTTs), which are even part of the specification of
these two schemes. The use of fast NTT-based multiplication is not new in those
schemes and there exists a large body of work on optimizing this operation on
a variety of platforms. The most recent works on optimizing the NTT on large
Intel and AMD processors are by Seiler [30] and by Lyubashevsky and Seiler [24].
The fastest implementation so far on our target architecture, the ARM Cortex-
M4, is presented by Alkım, Jakubeit, and Schwabe in [4]. Earlier works on the
same architecture include [11] and [27].

Contribution. The main contribution of this paper is to present improved opti-
mization techniques for the NTTs in Kyber. In comparison to the performance
presented in [4], our NTT is more than a factor of 1.8 faster (when applying
1 see https://www.safecrypto.eu/pqclounge/round-2-candidates/.
2 the second round merger of NTRU-HRSS-KEM [19] and NTRUEncrypt [33].

https://www.safecrypto.eu/pqclounge/round-2-candidates/

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 211

the same scaling to accommodate for the different dimension that was also used
in [4]). Most of the techniques we present also apply to the NewHope parame-
ters targeted in [4], but some of the speedup we achieve is specific to the smaller
value of q = 7681 (NewHope uses q = 12289). We also optimize the other
performance-critical routines in Kyber and describe how to reduce RAM usage
in Kyber without significantly sacrificing performance. As a result we present
the software, that at the same time has the smallest RAM footprint across all
NIST PQC KEM candidates that have been optimized for the Cortex-M4, and
has the lowest cycle count for the sum of key generation, encapsulation and
decapsulation.

Kyber v2. While this paper was in submission, the Kyber team published various
round-2 tweaks including the change of q from 7681 to 3329 which requires
changing the NTT. All the optimizations presented in this paper still apply to
Kyber v2. We have updated our software to support the new parameter sets and
present the performance results for both versions.

Availability of Software. We place all the software described in this paper
into the public domain. It is available at https://github.com/mupq/nttm4. The
implementations using the round-2 parameter sets have also been merged into
pqm4 [21].

Organization of this Paper. Section 2 gives the necessary background on the
key encapsulation scheme Kyber and the NTTs used within Kyber. Section 3
presents the speed optimizations we applied to the NTT which yields a signif-
icantly faster implementation of Kyber. Section 4 describes how the fast imple-
mentation of Kyber can be gradually modified to use less stack space with minor
and moderate computational overhead. Finally, Sect. 5 presents the performance
results for our implementations and compares them to previous implementa-
tions of Kyber and other second round candidates in the NIST post-quantum
competition.

2 Preliminaries

In this section we establish notation, briefly recall Kyber and the NTT used
within Kyber, and then proceed to describe our target platform, the ARM
Cortex-M4.

Notation. We refer to polynomials by regular font lower-case letters (a), vectors
of polynomials by bold lower-case letters (a) and matrices of polynomials by bold
upper-case letters (A). For a polynomial a we use â to denote the representation
of a in NTT-domain and similarly â and Â are the results of element-wise appli-
cation of the NTT to the entries of a and A. (Random) bitstrings are referred to
by the lower-case Greek letters ρ, σ, and μ. We abstract away from seed expan-
sion to polynomials following a uniform or centered binomial distribution by just
calling SampleUniform or SampleCBD. Let q be prime and let Zq denote the field
Z/qZ. We define polynomial rings of the form Rq = Zq/(Xn + 1) over this field

https://github.com/mupq/nttm4

212 L. Botros et al.

Algorithm 1. CPA KeyGen (v1)
Output: public key pk = (ρ, t′)
Output: secret key sk = ŝ

1: ρ, σ
$← {0, 1}256 × {0, 1}256

2: Â ∈ Rk×k
q ← SampleUniform(ρ)

3: s, e ∈ Rk
q ← SampleCBD(σ)

4: ŝ ← NTT(s)
5: t ← NTT−1(Â ◦ ŝ) + e
6: return pk = (ρ, Compress(t)), sk = ŝ

Algorithm 2. CPA Encryption (v1)
Input: public key pk = (ρ, t′)
Input: message m ∈ Rq

Input: randomness μ ∈ {0, 1}256

Output: ciphertext (u′, v′)
1: Â ∈ Rk×k

q ← SampleUniform(ρ)
2: r, e1 ∈ Rk

q ← SampleCBD(μ)
3: e2 ∈ Rq ← SampleCBD(μ)
4: r̂ ← NTT(r)
5: u ← NTT−1(ÂT ◦ r̂) + e1
6: t ← Decompress(t′)
7: v ← NTT−1(NTT(t)T ◦ r̂) + e2 + m
8: return (Compress(u), Compress(v))

Algorithm 3. CPA Decryption (v1)
Input: secret key sk = ŝ
Input: compressed ciphertext (u′, v′)
Output: message m ∈ Rq

u ← Decompress(u′)
v ← Decompress(v′)
return m ← v − NTT−1(ŝT ◦ NTT(u))

where n is a power of two. We denote by ◦ the coefficient-wise multiplication
of two polynomials in NTT domain with the natural extension to vectors and
matrices. Similarly, let c ∈ Rq = a ◦ b be the inner product of a ∈ Rk

q and
b ∈ Rk

q .

2.1 Kyber v1

Kyber [6,9], which is part of the Cryptographic Suite for Algebraic Lattices
(CRYSTALS), is built on the hardness of the Module-LWE (MLWE) problem.
Different from Ring-LWE, MLWE uses a matrix of polynomials in Rq as the
public information Â, whereas s and e become vectors of polynomials. For Kyber
Â is a square k×k matrix and s and e are k-dimensional vectors. MLWE therefore
presents a generalization of the Ring-LWE and the standard LWE problem.
While this might have benefits in terms of security [9], it is also an advantage for
implementations: One can change the security level by changing the dimension of
the matrix, i.e., by changing k. Kyber uses the prime q = 7681 = 213 −29 +1 and
Rq = Z7681/(X256 + 1) for all security levels. Since Rq remains the same for all
security levels it is possible to optimize all security levels of Kyber by optimizing
arithmetic in Rq. Kyber specifies three security levels: Kyber-512, Kyber-768, and
Kyber-1024 which use k = 2, 3, 4, respectively. Besides k, the security levels only
differ in the centered binomial distribution of the secret and error polynomials
which is η = 5, 4, 3 respectively.

Kyber uses a two stage-construction to obtain a CCA-secure KEM: First,
build an IND-CPA secure encryption scheme, which is called Kyber.CPA and
then use a variant of the Fujisaki-Okamoto transform [15] to build the CCA-
secure KEM. Algorithms 1, 2, and 3 illustrate key-generation, encryption, and

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 213

decryption of the CPA-secure encryption scheme. For the details of the CCA
transform, we refer the reader to [6, Alg. 7–9] for the pseudocode description.
Since the public matrix A is sampled from a uniform distribution and since
the number-theoretic transform of uniform randomness is again uniformly dis-
tributed, the NTT of A is omitted and Â is instead sampled directly in NTT
domain. However, this is not possible for the secrets and errors, since those need
to be small in normal domain.

Aside from symmetric cryptography used for randomness generation and
hashing (in particular in the CCA transform), the main cost in Kyber is arith-
metic in Rq and even more specifically multiplications. The main cost of these
multiplications are the (forward and inverse) NTT. The number of NTT opera-
tions depends on the parameter k and is 2k, 3k +1, and k +1 for Kyber.CPA key
generation, encryption, and decryption, respectively. Decapsulation of the CCA-
secure KEM includes both Kyber.CPA encryption and Kyber.CPA decryption
and thus requires 4k + 2 NTTs.
The Number Theoretic Transform. The number-theoretic transform is a
Fourier transform in a finite field, i.e., a multi-point evaluation of a polynomial
at powers of a root of unity. In the specific setting of Kyber, the NTT of a
polynomial g =

∑n−1
i=0 giX

i ∈ Rq is defined as

NTT(g) = ĝ =
n−1∑

i=0
ĝiX

i, with

ĝi =
n−1∑

j=0
ψjgjω

ij ,

where ω = 3844 and ψ =
√

ω = 62. The inverse of this operation is given through

NTT−1(ĝ) = g =
n−1∑

i=0
giX

i, with

gi = n−1ψ−i
n−1∑

j=0
ĝjω

−ij .

With these definitions of NTT and NTT−1, the multiplication of two polyno-
mials f, g ∈ Rq can be computed as f · g = NTT−1(NTT(f) ◦ NTT(g)).

The FFT algorithm to compute Fourier transforms with only Θ(n log n) oper-
ations was introduced by Cooley and Tukey in [13]; only several years later it
was pointed out by Goldstine [16] that a similar algorithm had already been
described by Gauss in the early 19th century. For a discussion also see [18]. The
big picture is that the algorithm iterates through log2 n levels, each level per-
forms n/2 so-called butterfly operations, and each butterfly operation performs
a multiplication by a power of ω, one addition, and one subtraction in Zq. The
powers of the root of unity ω are often referred to as the “twiddle factors”.

Note that in NTT and NTT−1, polynomials are transformed inplace and without
any additional temporary storage. This comes at a small price: the coefficients

214 L. Botros et al.

Algorithm 4. CPA KeyGen (v2)
Output: public key pk = (ρ, t̂)
Output: secret key sk = ŝ

1: ρ, σ
$← {0, 1}256 × {0, 1}256

2: Â ∈ Rk×k
q ← SampleUniform(ρ)

3: s, e ∈ Rk
q ← SampleCBD(σ)

4: t̂ ← Â ◦ NTT(s) + NTT(e)
5: return pk = (ρ, t̂), sk = ŝ

Algorithm 5. CPA Encryption (v2)
Input: public key pk = (ρ, t̂)
Input: message m ∈ Rq

Input: randomness μ ∈ {0, 1}256

Output: ciphertext (u′, v′)
1: Â ∈ Rk×k

q ← SampleUniform(ρ)
2: r, e1 ∈ Rk

q ← SampleCBD(μ)
3: e2 ∈ Rq ← SampleCBD(μ)
4: r̂ ← NTT(r)
5: u ← NTT−1(ÂT ◦ r̂) + e1
6: v ← NTT−1(t̂T ◦ r̂) + e2 + m
7: return (Compress(u), Compress(v))

of polynomials in NTT domain are in so-called bit-reversed order. This issue
can either be addressed by permuting coefficients or by implementing separate
algorithms for NTT and NTT−1, one that expects input in bitreversed order and
produces output in normal order and the other one working the other way round.
Kyber follows the second approach, i.e., avoids overhead of extra bitreversal
operations. For a discussion of the different options, see also [28, Sec. 3.2].

2.2 Kyber V2

In the process of writing this paper, the second round of NIST began and the
Kyber team published an updated Kyber specification [7]. We will in the follow-
ing refer to this updated version as Kyber v2.

The main design decision for round 2 of the NIST competition was to remove
the compression of the public key. To compensate for the increased bandwidth
requirement, the Kyber team decided to reduce the value of q from 7681 to
3329, a choice that was enabled by the observation from [24] that also this
value of q supports very fast NTT-based multiplication of polynomials. Another
consequence of the decision to not compress public keys is that public keys
can now be transmitted in NTT domain, which saves an NTT operation in
encryption (and in the re-encryption during decapsulation of the CCA-secure
KEM). Finally, the smaller value of q also requires smaller noise to achieve
the same security level. This is why the parameter η of the centered binomial
distribution changed to η = 2 for all security levels; note that this change is
hidden by our high-level view of SampleCBD. The resulting key-generation and
encryption algorithms are given in Algorithms 4 and 5; decapsulation is the same
as for the round-1 version in this high-level perspective.

From a computational point of view, the most interesting aspect of the
changes is the change of the definition of the NTT. In the round-1 version of
Kyber, q was chosen such that Zq contains 512-th roots of unity. As a con-
sequence, the negacylic NTT of elements of Rq is a vector of 256 degree-zero
polynomials (i.e., scalars). In the round-2 version of Kyber, q is chosen such

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 215

that Zq contains 256-th roots of unity, but not 512-th roots of unity. As a con-
sequence, the NTT of a polynomial f ∈ Rq is a vector of 128 polynomials of
degree at most 1, i.e., with 2 coefficients each. Specifically, [7, Sec. 1.1] defines
the NTT of a polynomial f ∈ Rq as

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X),

where coefficients f̂i are defined as

f̂2i =
127∑

j=0
f2jζ

(2br7(i)+1)j , and

f̂2i+1 =
127∑

j=0
f2j+1ζ(2br7(i)+1)j .

In this definition ζ = 17 is the first primitive 256th root of unity and br7 reverses
the bits in a 7-bit integer.

Note that with this definition of the NTT, the “pointwise” multiplication of
two polynomials denoted by ◦ now consists of performing 128 multiplications of
linear polynomials modulo X2 − ζ2br7(i)+1.

2.3 ARM Cortex-M4
Our target platform is the ARM Cortex-M4, which NIST recommended as
the reference platform for evaluation of post-quantum candidates on microcon-
trollers. It implements the ARMv7E-M instruction set which features 16 general
purpose 32-bit registers of which 14 are usable by the developer; the other two are
used for program counter and stack pointer. Unlike the ARMv7-M, the ARMv7E-M
provides powerful DSP instructions that perform arithmetic operations on two
16-bit halfwords in parallel, which proved to be very beneficial for the other
post-quantum KEMs Saber and NTRU-HRSS-KEM [20,23]. While Kyber does
not benefit from the smlad instruction, we make use of parallel additions and
subtractions using uadd16, usub16, sasx, and ssax. Another feature that we
extensively use throughout our optimization is the barrel-shifter which allows to
shift or rotate one of the arguments in arithmetic instructions without increasing
the cycle count.

Specifically, we use the STM32F4DISCOVERY that is also used by a large
number of previous optimization papers and the benchmarking and testing
framework pqm4 [21]. It comes with 192 KiB of memory, 1 MiB of flash, and
can operate at frequencies of up to 168 MHz. Compared to other ARM plat-
forms like the Cortex-M0, our target platforms can be considered at the higher
end of microcontrollers. The RAM and flash are sufficient to implement and
evaluate almost all of the second round NIST candidates.

3 Optimizing for Speed
In this section we describe the optimizations we apply to speed up the compu-
tation of Kyber on the ARM Cortex-M4. Optimizations targeting the reduction

216 L. Botros et al.

of RAM usage will be presented in Sect. 4. The starting point of our optimiza-
tion efforts is the optimized implementation for the Cortex-M4 by the Kyber
authors [5], which is the same as the C reference implementation except for
a hand-optimized NTT operation and which is included in the pqm4 frame-
work [21].

3.1 Link-Time Optimization

While experimenting with the Kyber implementation from [5], we realized that
its performance is heavily penalized in pqm4 because a number of small functions
(in particular modular reductions) are implemented in different files than where
they are used. Since pqm4 compiles all source files separately to object files,
the compiler cannot inline those functions, which creates a large overhead from
function calls. A simple, but not very elegant solution would be to place all
source code in one large file and this indeed results in a speedup of about 5%.

A similar behaviour can be achieved by adding the link-time optimization
compiler flag -flto, which adds additional information in object files to allow
optimization when those are linked together. Since -flto consistently improves
performance for implementations of Kyber, we use it throughout our experi-
ments.

We contacted the authors of pqm4 [21] to include -flto as a default option.
However, their benchmarks show that not all schemes benefit from -flto. Some
schemes get significantly slower, while others have a up to 60% increase in stack
consumption. Therefore, -flto was not turned on by default in pqm4.

3.2 Speeding up the NTT

In the following we describe our optimization strategy for the NTT, which
includes a careful combination of known techniques with new micro-architecture
specific improvements.

Representation of Polynomials. Polynomials in Rq have 256 coefficients in
Zq, where q is the 13-bit prime 7681 (or 3329 for Kyber v2). Is is natural to rep-
resent polynomials as an array of length 256 of 16-bit integers. Inspired by [30]
and unlike the implementation by the Kyber authors or the optimized NewHope
implementation described in [4], we use an array of signed 16-bit integers to
represent elements of Rq. We will later discuss the effect of this choice on mod-
ular reductions; one immediate advantage of using signed representation is that
during subtractions in Zq we do not have to worry about underflows. Compared
to using unsigned integers we thus trivially save an addition of a multiple of q
before subtractions.

Merging NTT Layers. Similar to, e.g., [17] and [4], we merge several layers
of the NTT transformation, i.e., we load four coefficients into registers at once,
perform four butterfly operations on them, and store them back. This drastically
reduces the number of loads and stores. However, it turns out that merging three
layers of the NTT as proposed in [4] is not optimal, since there are not enough

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 217

Algorithm 6 . Original unsigned
Montgomery reduction [5]; using
Montgomery factor β = 218.

Input: a (32 bit)
Output: reduced a (16 bit)

1: mul t, a, q−1

2: and t, #0x3ffff
3: mla a, t, q, a � a ← a + t · q
4: lsr a, #18

Algorithm 7 . Signed Montgomery
reduction (this work, adapted
from [30]); using Montgomery fac-
tor β = 216.

Input: a (32 bit)
Output: reduced a (16 bit)

1: smulbb t, a, q−1 � t ← (a mod β) · q−1

2: smulbb t, t, q � t ← (t mod β) · q
3: usub16 a, a, t � atop ←

⌊
a

216
⌋

−
⌊

t
216

⌋

registers to fit the constants required in the Montgomery and Barrett reductions
(see below). In [4] this is solved by reloading the constants for each butterfly, but
the cost for these loads is larger than the savings from fewer loads and stores of
coefficients. We instead merge only two layers which allows us to still keep all
constants in registers and still save 50% of load and store operations.

Precomputation of Twiddle Factors. Like most speed-optimized NTT
implementations before, we precompute all powers of ω and store those in flash.
For more efficient modular reduction after multiplication by the twiddle fac-
tors, we follow an approach first introduced in [3] and store twiddle factors in
Montgomery representation [25]. More specifically, our optimizations are largely
inspired by the refined approach described in [30] and we use the same Mont-
gomery factor β = 216. We then reorder the twiddle factors in our table such
that they can be picked up sequentially in the NTT computation; increasing
the pointer to the twiddle factors after each load is free in ARMv7E-M. Since we
need three twiddle factors per two (merged) layers, we pack two of them into
one register, which saves one load operation and one register. The twiddle fac-
tors are only used in multiplications with 16-bit coefficients which allows to use
smulbb and smulbt to multiply by the upper or the lower twiddle factor inside
that register.

Montgomery Reductions. After the multiplication in each butterfly, we need
to reduce the 32-bit product to 16-bit. This is done using a signed Montgomery
reduction tailored to q. It turns out that the signed Montgomery reduction as
proposed in [30] can be implemented in three clock cycles (Algorithm 7) on
the ARM Cortex-M4 and as such is one clock cycle faster than the unsigned
Montgomery reduction in [5] (Algorithm 6).

Unrolling. As usual we fully unroll the outer loop of the NTT iterating over
the NTT levels. Additionally, to save an additional register, we unroll one of the
inner loops as well. Depending on the current level, we unroll the loop with the
least iterations to minimize the code-size increase. While this is also saving a
small number of cycles, the performance gains by having an additional registers
are much more significant.

218 L. Botros et al.

Packing. Since q is well below 16-bits, polynomials are usually stored as int16 t
arrays. Since our target platform is a 32-bit architecture it seems wasteful to
only load one 16-bit coefficient into 32-bit registers. Loading and storing two
coefficients at once saves half of the load and store operations. However, the
available vector instruction in ARMv7E-M are quite limited. For example, there
is no dedicated instruction performing two 16-bit multiplications yielding two
32-bit results. Still some operations can be performed in parallel. Therefore, we
implement “double” butterflies, i.e., butterflies which operate on packed argu-
ments and return a packed result. By doing this, we can for example perform two
additions and subtractions in one clock cycles using uadd16 and usub16. Unfor-
tunately, some operations (e.g., the Barrett reduction) are more than twice as
expensive to implement on packed arguments. Nonetheless, we achieve a speed-
up in every butterfly by using packing.

Instruction Alignment. Since some instructions available in ARMv7E-M are 16-
bit Thumb instructions, it is possible that a single Thumb instruction unaligns
many following 32-bit ARM instructions which results in a vast performance
penalty. Therefore, we make sure our code is as aligned as possible. This can be
done by aligning the start of the function using .align 2 (.align n aligns to
2n bytes) and padding each sole Thumb instruction to 32-bit using the .w suffix.

Recent Improvements Proposed in [24]. Very recent work proposed yet
another more efficient NTT in AVX2 [24] which can also be adapted to Kyber.
The major speed-up that [24] achieved over [30] in the NTT stems form further
optimizing the Montgomery reduction. Lyubashevsky and Seiler save an addi-
tional multiplication by avoiding the multiplication by q−1 and instead multi-
plying each of the precomputed twiddle factors by q−1. This is possible since
each product of a polynomial coefficient ai by a twiddle factor is implemented
through two separate multiplication instructions, one computing the low half and
one computing the high half of the product. Since the low half of the product is
multiplied by q−1 mod β inside the Montgomery reduction, one can precompute
the product of q−1 and the corresponding twiddle factor and use this constant
for the low product. This saves another multiplication instruction in the Mont-
gomery reduction, but requires to store twice as many precomputed twiddles.
Unfortunately, this does not carry over to our Cortex-M4 implementation since
the low and high product are not computed separately, but in a single instruc-
tion. Doing these multiplications separately with different constants would be
possible, but require an additional clock cycle and thus not save anything.

3.3 Optimizing Matrix-Vector Multiplication

Besides the NTT, another fairly expensive operation in Kyber is the matrix-
vector multiplication in line 5 of Algorithm 1 and line 5 of Algorithm 2. We
also optimize this operation in C. Since this optimization depends on the stack-
reduction strategy, we describe it in Sect. 4.

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 219

3.4 Optimized Keccak

As we will see in Subsect. 5.3, even before our optimization of the NTT and
matrix-vector multiplication, most of the cycles of the Kyber computation are
spent in hashing and pseudorandom-number generation, which both boil down
to the Keccak permutation [8]. For all derivatives of Keccak inside Kyber (i.e.,
SHA3-256, SHA3-512, SHAKE-128, and SHAKE-256) we use the highly opti-
mized code from the eXtended Keccak Code Package [14], which is also included
in the pqm4 framework.

3.5 Kyber V2

Various changes in the updated Kyber specification have an impact on perfor-
mance, but all the optimizations presented above still apply with minor modifi-
cations: The smaller q allows to be more lazy with Barrett reductions in the NTT
and NTT−1 which improves performance. Additionally, both the NTT and NTT−1

only require 7 instead of 8 layers of butterfly operations which saves roughly 1/8
of the cycles. However, the multiplication of polynomials in the NTT domain is
no longer a pointwise multiplication and consequently becomes more expensive.
These two changes approximately cancel each other out.

4 Decreasing Stack Usage

In addition to being fast, NTT-based multiplication provides the additional
benefit of being entirely in-place; no additional stack space is needed. This
presents a major advantage compared to for example Z2k [X]/(f(X)), where
the fastest multiplication methods use a combination of Toom-Cook [12,32] and
Karatsuba’s [22] algorithm which comes with a rather large memory footprint.
The existing implementation of the NTT in Kyber were already in-place and the
changes we applied to them did not change this. Therefore, we also optimized the
C-code implementing the remainder of the scheme to use less stack space, mak-
ing this implementation of Kyber particularly suitable for memory constrained
devices. We analyzed which stack space requirements can be eliminated at no or
very little computational cost, i.e., without recomputations.

Changes to Kyber.CCAKEM. Kyber uses a FO-transformation to transform
a CPA-secure PKE into a CCA-secure KEM. The reference implementation of
decapsulation does so by first decrypting the ciphertext and then re-encrypting
the obtained plaintext. This produces a ciphertext which is then compared to
the original. Only if they are equal, the shared secret key is returned. We elim-
inate this additional ciphertext on the stack by inlining the comparison into
CPA encryption in a constant-time manner. This function is only used for re-
encrypting and does not return a ciphertext, but rather a boolean value that
indicates the ciphertexts were equal. The actual re-encrypted ciphertext is com-
puted and compared byte per byte. This not only saves a considerable amount
of stack space, but also slightly improves the speed.

220 L. Botros et al.

Changes to Kyber.CPAPKE. The remaining changes were made in the C code
of Kyber’s CPA key generation (Algorithm 1), encryption (Algorithm 2) and
decryption (Algorithm 3), where we reduced the number of polynomials that
are kept in memory at the same time. In the reference implementation of key
generation and encryption, firstly, the public matrix Â of k × k polynomials
is sampled directly in NTT domain and stored in memory. Then, vectors of
noise polynomials are sampled from a centered binomial distribution. Finally, all
computations are performed. We optimize this by merging the sampling and the
computations, i.e., we sample the required arguments on the fly where possible.

Generating and Multiplying Â. Since a polynomial in Kyber has 256 coef-
ficients each represented by 16 bits, storing one polynomial consumes 512 bytes
of memory. Because the size of the matrix Â grows quadratically with k, its
k2 polynomials account for the majority of Kyber’s stack usage. However, the
matrix Â is only required once for matrix-vector pointwise multiplication and
accumulation (see e.g., line 4 of Algorithm 1). The memory footprint can be
reduced using an approach that reduces the storage requirements of Â to only
the state of the extendable output function for one polynomial of Â at a time,
allowing to generate a small number of coefficients for multiplication.

In this approach, the polynomials of output vectors t and u are serialized
one at a time. The vector operands ŝ and r̂ are used k times in the matrix-
vector multiplication. Therefore, we decided to keep those in memory throughout
the computation. Only maintaining one polynomial of those in memory would
require re-sampling and transforming them to NTT domain k times which would
introduce a significant performance penalty.

For key generation we require k + 1 polynomials, for encryption we require
k + 1 polynomials, and for decryption we only use 3 polynomials regardless of
k, but since decapsulation calls both CPA encryption and decryption, the stack
usage is determined by encryption.

Adding Noise. The noise polynomials e, e1, and e2 are only used once and are
sampled from a centered binomial distribution using an extendable output func-
tion (XOF). We sample the coefficients of those polynomials on-the-fly without
having to store the entire polynomials.

Kyber v2. Our stack optimizations are mostly unaffected by the algorithmic
tweaks made by the Kyber team in round-2. However, in key generation (Algo-
rithm 4), the noise vector e needs to be in NTT domain. Since the NTT trans-
formation requires the entire polynomial e in memory; the on-the-fly sampling is
no longer possible. Therefore, key generation requires an additional polynomial,
i.e., k + 2 in total.

5 Results

For our experiments we use the STM32F4DISCOVERY together with an extended
version of the pqm4 [21] benchmarking framework. Particularly all cycles counts
and stack measurements are those reported by pqm4, i.e., running the schemes

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 221

Table 1. Cycle counts for NTT, NTT−1, and the full polynomial multiplication
(NTT−1(NTT(a) ◦ NTT(b))). We outperform the current speed record by more than a
factor of two for NTT and NTT−1. The parameter changes in Kyber v2 further speed-up
the polynomial multiplication.

Implementation NTT [cycles] NTT−1 [cycles] polymul [cycles]
Kyber v1 [5] 21 855 23 622

This work 9 452 (−56.8%) 10 373 (−56.1%) 32 576
Kyber v2 This work 7 725 9 347 27 873

at a low frequency of 24 MHz to not be impacted by memory wait states due
to a slow memory controller. This allows to compare those numbers to boards
different from the STM32F4DISCOVERY. We extend pqm4 to also report cycles
spent in hashing. Similar as pqm4 we use arm-none-eabi-gcc at version 8.2.03 and
set the optimization option to -O3.

We noticed that pqm4 suffered a serious performance penalty due to how
it is using the 128 KiB memory of STM32F4DISCOVERY. pqm4 down-clocks
the STM32F4DISCOVERY, such that all accesses to RAM should take the same
number of cycles. However, according to [31] the 128 KiB of RAM are divided
into SRAM1 which consists of 112 KiB and SRAM2 consisting of 16 KiB. In
our experiments we noticed that memory accesses to SRAM2 are slower than to
SRAM1, i.e., SRAM2 memory accesses cause wait states even at the low bench-
marking frequency. At the time of writing pqm4 places the stack into SRAM2
which eventually grows into SRAM1. As a consequence of this, reducing mem-
ory consumption leads to the entire scheme fitting in SRAM2 introducing vast
performance penalty. To account for this effect, we consistently place the stack
in SRAM1 for all benchmarks. Consequently, the numbers in the following differ
from this reported in pqm4. For fair comparison we re-benchmarked all implemen-
tations that were integrated pqm4 and indicate which benchmark results from
related work were not performed using this way of benchmarking. We reported
the problem to the authors of pqm4 and it is going to be resolved in a future
version of pqm4.

In this section we present our results for Kyber. We start by benchmarking
the NTT and polynomial multiplication in isolation and then report results for
key generation, encapsulation, and decapsulation for all parameter sets of Kyber.
All numbers reported in this section refer to the CCA-secure Kyber.

5.1 NTT and Polynomial Multiplication

Table 1 presents our new speed records for the computation of the NTT. Our
optimized Kyber v1 NTT and NTT−1 are more than a factor two faster than the

3 We also benchmarked our code using the February 2019 release of arm-none-eabi-gcc
(8.3.0) which produced the same results.

222 L. Botros et al.

speed records [5] Combining NTT and NTT−1 to perform a full polynomial mul-
tiplication in Rq, i.e., computing NTT−1(NTT(a) ◦ NTT(b)) requires 32 576 clock
cycles.

In Kyber v2 only 7 out of 8 layers of the NTT are computed, which reduces
the run-time to roughly 7/8 of the cycles. Computing NTT−1(NTT(a) ◦ NTT(b)) is
considerably (14%) faster even though ◦ becomes more expensive.

The fastest multiplication in Z213/(X256 + 1), which has the same dimension
as Rq, using Toom–Cook [12,32] and Karatsuba [22] reported by Kannwischer–
Rijneveld–Schwabe [20] requires 38 215 clock cycles. We outperform this by 27%.
More importantly, Toom–Cook and Karatsuba multiplication require a signifi-
cant amount of additional memory for intermediate values. For Z213/(X256 + 1),
[20] reports 3 800 bytes of intermediate values which excludes the non-reduced
result polynomial of 1 022 bytes4. Our polynomial multiplication is entirely in
place.

In comparison to the performance presented in [4], our NTT is more than
a factor of 1.8 faster (when applying the same scaling to accommodate for the
different dimension that was also used in [4]). Most of the techniques we present
also apply to the NewHope parameters targeted in [4], but some of the speedup
we achieve is specific to the smaller value of q (NewHope uses q = 12289).

5.2 Kyber.CCA

Table 2 presents the cycle counts for all our implementations in comparison to
the existing speed records [5]. By just turning on -flto, we achieve speedups of
4–7% mainly caused due to in-lining modular reductions. The speed-ups achieved
by applying our speed optimizations are 14–23% and, thus, go far beyond what
the compiler achieves. Our implementation of the round one variants of Kyber
achieve the lowest cycle counts reported.

As a result of the optimizations described in Sect. 4, we were able to reduce
the stack usage of all Kyber variants significantly (see Table 3). Prior to our
optimizations k2 + 3k, k2 + 4k + 3, and 2k + 2 polynomials were used by key
generation, encryption, and decryption respectively. Our optimizations were able
to reduce this to k+1 for all. Therefore, we notice a more considerable reduction
for the higher security levels of Kyber.

Kyber v2. With our optimizations applied to the round two versions of Kyber,
the cycle counts are comparable to round 1 if not faster. Similarly, stack size
reductions are very comparable with the reductions made in round 1. The excep-
tion is the key generation procedure which uses k+2 polynomials instead of k+1
as described in Sect. 4.

4 2n − 1 coefficients of 2 bytes each.

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 223

Table 2. Cycle counts for all three security levels of Kyber compared to [5]. Link time
optimization does benefit Kyber consistently, but our optimizations go far beyond.
Kyber v2 is even faster, mainly due to algorithmic changes.

Scheme Impl. KeyGen Encaps Decaps
Cycles Cycles Cycles

Kyber-512 (v1) [5] 666k 904k 934k
ltoa 637k (−4.3%) 866k (−4.1%) 881k (−5.6%)
This work 575k (−13.7%) 763k (−15.6%) 730k (−21.8%)

Kyber-512 (v2) This work 499k 634k 597k
Kyber-768 (v1) [5] 1 098k 1 384k 1 417k

ltoa 1 048k (−4.6%) 1 325k (−4.3%) 1 339k (−5.5%)
This work 946k (−13.9%) 1 167k (−15.7%) 1 117k (−21.1%)

Kyber-768 (v2) This work 947k 1 113k 1 059k
Kyber-1024 (v1) [5] 1 730k 2 083k 2 134k

ltoa 1 630k (−5.8%) 1 970k (−5.4%) 1 994k (−6.6%)
This work 1 483k (−14.2%) 1 753k (−15.8%) 1 698k (−20.4%)

Kyber-1024 (v2) This work 1 525k 1 732k 1 653k
aOnly adding the compiler flag -flto.

Table 3. Stack usage for all three security levels of Kyber comparing our optimized
implementations to [5]. For our stack-optimized implementation we notice a significant
decrease of stack usage across all variants. The stack use of key generation of version
2 is roughly one polynomial (512 bytes) larger than in version 1. This is due to choice
of Kyber’s authors to represent the public key in the NTT domain.

Scheme Impl. KeyGen Encaps Decaps
Bytes Bytes Bytes

Kyber-512 (v1) [5] 6 448 9 112 9 920
This work 2 632 (−59%) 2 672 (−71%) 2 736 (−72%)

Kyber-512 (v2) This work 3 136 2 720 2 744
Kyber-768 (v1) [5] 10 544 13 720 14 880

This work 3 072 (−71%) 3 120 (−77%) 3 176 (−79%)
Kyber-768 (v2) This work 3 648 3 232 3 248
Kyber-1024 (v1) [5] 15 664 19 352 20 864

This work 3 520 (−78%) 3 568 (−82%) 3 624 (−83%)
Kyber-1024 (v2) This work 4 160 3 752 3 776

224 L. Botros et al.

5.3 Profiling

Table 4 contains the profiling information of our implementations for all param-
eter sets of Kyber v1 and Kyber v2. We observe the following:

Dominance of Hashing. Note that in the original implementation already
54% to 69% of execution time are spent in highly hand-optimized assembly
implementation of the Keccak. This limits the speed-ups to be obtained since
there is nothing or very little to be gained for this large fraction of the execution
time. Our implementations spend the same time in hashing as the previous
implementation, but this accounts for 64% to 81% of the total cycle counts. This
confirms what previous work concluded [20,29]: Post-quantum key encapsulation
schemes are vastly dominated by hashing and having a hardware-accelerated
Keccak permutation would speed-up the majority of schemes significantly. Kyber
v2 spends significantly less time in Keccak which is due to the change of the

Table 4. Profiling of Kyber before and after applying all our optimizations. The run-
time is vastly dominated by hashing. The cycles spent in NTT reduced notably. Only
a small portion of the run-time is still spent in non-optimized code.

Impl. Total Keccak NTT NTT −1

Kyber-512 (v1) [5] K: 666k 453k (68%) 44k (7%) 47k (7%)
E: 904k 596k (66%) 87k (10%) 71k (8%)
D: 934k 506k (54%) 131k (14%) 95k (10%)

This work K: 575k 453k (79%) 19k (3%) 21k (4%)
E: 763k 596k (78%) 38k (5%) 31k (4%)
D: 730k 506k (69%) 57k (8%) 42k (6%)

Kyber-512 (v2) This work K: 499k 354k (71%) 31k (6%) 0 (0%)
E: 634k 472k (74%) 15k (2%) 28k (4%)
D: 597k 381k (64%) 31k (5%) 37k (6%)

Kyber-768 (v1) [5] K: 1 098k 754k (69%) 66k (6%) 71k (6%)
E: 1 384k 922k (67%) 131k (9%) 95k (7%)
D: 1 417k 794k (56%) 197k (14%) 118k (8%)

This work K: 946k 754k (80%) 28k (3%) 31k (3%)
E: 1 167k 922k (79%) 57k (5%) 42k (4%)
D: 1 117k 794k (71%) 85k (8%) 52k (5%)

Kyber-768 (v2) This work K: 947k 680k (72%) 46k (5%) 0 (0%)
E: 1 113k 836k (75%) 23k (2%) 37k (3%)
D: 1 059k 708k (67%) 46k (4%) 47k (4%)

Kyber-1024 (v1) [5] K: 1 730k 1 197k (69%) 87k (5%) 95k (5%)
E: 2 083k 1 403k (67%) 175k (8%) 118k (6%)
D: 2 134k 1 249k (59%) 262k (12%) 142k (7%)

This work K: 1 483k 1 197k (81%) 38k (3%) 42k (3%)
E: 1 753k 1 403k (80%) 76k (4%) 52k (3%)
D: 1 698k 1 249k (74%) 113k (7%) 62k (4%)

Kyber-1024 (v2) This work K: 1 525k 1 112k (73%) 62k (4%) 0 (0%)
E: 1 732k 1 305k (75%) 31k (2%) 47k (3%)
D: 1 653k 1 139k (69%) 62k (4%) 56k (3%)

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 225

Table 5. Performance results of Kyber-768 in comparison to other round two candi-
dates of NISTPQC optimized for the Cortex-M4. Prior to this work the fasted scheme in
terms of encapsulation was NTRU-HRSS-KEM, whereas key generation is (still) fastest
for Saber. The best memory footprints were achieved by R5ND 3PKEb and the mem-
ory optimized variant of Saber. Note that Saber, R5ND 3PKEb, and NTRU-KEM-743
are claiming NIST security level 3, whereas NTRU-HRSS-KEM claims NIST security
level 1.

Scheme Impl. Runtime Stack usage
Cycles Bytes

Kyber-768 (v1) This work K: 946k K: 3 072
E: 1 167k E: 3 120
D: 1 117k D: 3 176

Kyber-768 (v2) This work K: 947k K: 3 648
E: 1 113k E: 3 232
E: 1 059k E: 3 248

Frodo-AES128 [10] K: 41 681k K: 31 116
E: 45 758k E: 51 444
D: 46 720k D: 61 820

Frodo-cSHAKE128 [10] K: 81 300k K: 26 272
E: 86 255k E: 41 472
D: 87 212k D: 51 848

Saber [20]a K: 902k K: 13 248
E: 1 173k E: 15 528
D: 1 217k D: 16 624

[23]b K: 1 165k K: 6 931
E: 1 530k E: 7 019
D: 1 635k D: 8 115

R5ND 3PKEb [29]C K: 1 032k K: 6 796
E: 1 510k E: 8 908
D: 1 913k D: 4 296

NewHope1024CCA [4,21]a,d K: 1 221k K: 11 152
E: 1 902k E: 17 448
D: 1 926k D: 19 648

NTRU-HRSS-KEM [20]a K: 145 986k K: 23 396
E: 406k E: 19 492
D: 827k D: 22 140

NTRU-KEM-743 [20]a K: 5 203k K: 25 320
E: 1 603k E: 23 808
D: 1 884k D: 28 472

a Re-benchmarked in SRAM1 (see beginning of Sect. 5)
b Optimized for stack consumption
c Since R5ND 3PKEb does not report any stack usage, we
report the numbers from https://github.com/mupq/pqm4/
pull/16
d NTT assembly implementation from [4] with reference
implementation in pqm4 [21]

https://github.com/mupq/pqm4/pull/16
https://github.com/mupq/pqm4/pull/16

226 L. Botros et al.

parameters q and η. Both allow for a more efficient sampling routine that uses
less SHAKE output and, thus, less Keccak permutations.

NTT. Prior to our optimizations 10% to 24% were spent in the NTT and NTT−1.
We speed-up those parts of the code by more than a factor of two and, conse-
quently, they only account for 5% to 14% of the cycles in our optimized imple-
mentations.

5.4 Comparison to Other PQC Schemes on Cortex-M4

Compared to other implementations of NIST PQC KEM candidates on the ARM
Cortex-M4 (Table 5), our Kyber implementation has both the smallest memory
footprint and lowest cycle count for the sum of key generation, encapsulation and
decapsulation. Both our stack-optimized implementations of Kyber-768 outper-
form all other implementations by large margins in terms of stack usage. We also
note a performance gap between the fastest implementation of Saber, reported
in [20], and the stack-optimized implementation [23], whereas our implementa-
tions do not suffer any slow-down due to our stack optimizations.

Acknowledgments. The authors would like to thank Pedro Massolino, Joost
Rijneveld, and Ko Stoffelen for their help with obtaining reasonable cycle counts on
the ARM Cortex-M4.

References

1. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryp-
tography standardization process. National Institute of Standards and Technology
Internal Report 8240 (2019). https://doi.org/10.6028/NIST.IR.8240

2. Alkim, E., et al.: NewHope: algorithm specification and supporting documentation.
Submission to the NIST Post-Quantum Cryptography Standardization Project
(2017). https://cryptojedi.org/papers/#newhopenist

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
– a new hope. In: Holz, T., Savage, S. (eds.) Proceedings of the 25th USENIX
Security Symposium. USENIX Association (2016). https://eprint.iacr.org/2015/
1092

4. Alkim, E., Jakubeit, P., Schwabe, P.: NewHope on ARM cortex-M. In: Car-
let, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp.
332–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6 19.
http://cryptojedi.org/papers/#newhopearm

5. Avanzi, R., et al.: ARM Cortex-M4 optimized implementation of Kyber. https://
github.com/pq-crystals/kyber/tree/cm4/cm4. Accessed 07 Mar 2019

6. Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specification and supporting docu-
mentation. Submission to the NIST Post-Quantum Cryptography Standardization
Project (2017). https://pq-crystals.org/kyber

7. Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specification and supporting doc-
umentation (version 2.0). Submission to the NIST Post-Quantum Cryptography
Standardization Project (2019). https://pq-crystals.org/kyber

https://doi.org/10.6028/NIST.IR.8240
https://cryptojedi.org/papers/#newhopenist
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092
https://doi.org/10.1007/978-3-319-49445-6_19
http://cryptojedi.org/papers/#newhopearm
https://github.com/pq-crystals/kyber/tree/cm4/cm4
https://github.com/pq-crystals/kyber/tree/cm4/cm4
https://pq-crystals.org/kyber
https://pq-crystals.org/kyber

Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4 227

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference. Sub-
mission to the NIST SHA-3 competition (round 3) (2011). https://keccak.team/
files/Keccak-reference-3.0.pdf

9. Bos, J.W., et al.: CRYSTALS – kyber: A cca-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
353–367. IEEE (2018). https://eprint.iacr.org/2017/634

10. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Fly, you
fool! Faster Frodo for the ARM Cortex-M4. Cryptology ePrint Archive, Report
2018/1116 (2018). https://eprint.iacr.org/2018/1116

11. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2015, pp. 339–344. EDA Consortium (2015). http://
eprint.iacr.org/2014/725

12. Cook, S.: On the Minimum Computation Time of Functions. Ph.D. thesis, Harvard
University (1966)

13. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calcula-
tion of complex fourier series. Math. Comput. 19(90), 297–301 (1965).
https://www.jstor.org/stable/2003354

14. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: eXtended Keccak
Code Package. https://github.com/XKCP/XKCP. Accessed 07 Mar 2019

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

16. Goldstine, H.H.: A History of Numerical Analysis from the 16th through the 19th
Century. Springer, New York (1977). https://doi.org/10.1007/978-1-4684-9472-3

17. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed
records for lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013.
LNCS, vol. 7932, pp. 67–82. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38616-9 5. Document ID: d67aa537a6de60813845a45505c313,
http://cryptojedi.org/papers/#lattisigns

18. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast
fourier transform. IEEE ASSP Mag. 1(4) (1984). http://www.cis.rit.edu/class/
simg716/Gauss History FFT.pdf

19. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-KEM-HRSS: algo-
rithm specification and supporting documentation. Submission to the NIST Post-
Quantum Cryptography Standardization Project (2017). https://ntru-hrss.org

20. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x]
on Cortex-M4 to speed up NIST PQC candidates (2018). https://eprint.iacr.org/
2018/1018

21. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-
quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/
pqm4. Accessed 07 Mar 2019

22. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Sov. Phys. Dokl. 7, 595–596 (1963). Translated from Doklady Akademii
Nauk SSSR, vol. 145, no. 2, pp. 293–294, July 1962. Scanned version on
http://cr.yp.to/bib/1963/karatsuba.html

23. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM CCA-
secure module lattice-based key encapsulation on ARM. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018(3), 243–266 (2018). https://eprint.iacr.org/2018/682

24. Lyubashevsky, V., Seiler, G.: NTTRU: Truly fast NTRU using NTT. Cryptology
ePrint Archive, Report 2019/040 (2019). https://eprint.iacr.org/2019/040

https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2018/1116
http://eprint.iacr.org/2014/725
http://eprint.iacr.org/2014/725
https://www.jstor.org/stable/2003354
https://github.com/XKCP/XKCP
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-1-4684-9472-3
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-38616-9_5
http://cryptojedi.org/papers/#lattisigns
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
https://ntru-hrss.org
https://eprint.iacr.org/2018/1018
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
http://cr.yp.to/bib/1963/karatsuba.html
https://eprint.iacr.org/2018/682
https://eprint.iacr.org/2019/040

228 L. Botros et al.

25. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985). http://www.ams.org/journals/mcom/1985-44-170/
S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf

26. National Institute for Standards and Technology: Submission requirements
and evaluation criteria for the post-quantum cryptography standardiza-
tion process (2017). https://csrc.nist.gov/csrc/media/projects/post-quantum-
cryptography/documents/call-for-proposals-final-dec-2016.pdf

27. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based
digital signatures on constrained devices. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6. ACM (2014). https://www.sha.rub.de/
media/attachments/files/2014/06/bliss arm.pdf

28. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 19. Extended version,
https://eprint.iacr.org/2015/382

29. Saarinen, M.J.O., Bhattacharya, S., Garcia-Morchon, O., Rietman, R., Tolhuizen,
L., Zhang, Z.: Shorter messages and faster post-quantum encryption with Round5
on Cortex M. Cryptology ePrint Archive, Report 2018/723 (2018). https://eprint.
iacr.org/2018/723

30. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. Cryptology ePrint Archive, Report 2018/039 (2018). https://eprint.iacr.
org/2018/039

31. Reference manual for STM32F405/415, STM32F407/417, STM32F427/437, and
STM32F429/439 advanced ARM-based 32-bit MCUs (2019). https://www.st.com/
resource/en/reference manual/dm00031020.pdf

32. Toom, A.L.: The complexity of a scheme of functional elements realizing the multi-
plication of integers. Sov. Math. Dokl. 3, 714–716 (1963). www.de.ufpe.br/∼toom/
my-articles/engmat/MULT-E.PDF

33. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt: algorithm specifica-
tion and supporting documentation. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://doi.org/10.1007/978-3-319-22174-8_19
https://eprint.iacr.org/2015/382
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://www.st.com/resource/en/reference_manual/dm00031020.pdf
https://www.st.com/resource/en/reference_manual/dm00031020.pdf
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Reducing the Cost of Authenticity with
Leakages: a CIML2-Secure AE Scheme
with One Call to a Strongly Protected

Tweakable Block Cipher

Francesco Berti(B), Olivier Pereira, and François-Xavier Standaert

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
B-1348, Louvain-la-Neuve, Belgium

{francesco.berti,olivier.pereira,fstandae}@uclouvain.be

Abstract. This paper presents CONCRETE (Commit − Encrypt −
Send − the − Key) a new Authenticated Encryption mode that offers
CIML2 security, that is, ciphertext integrity in the presence of nonce
misuse and side-channel leakages in both encryption and decryption.

CONCRETE improves on a recent line of works aiming at leveled imple-
mentations, which mix a strongly protected and energy demanding imple-
mentation of a single component, and other weakly protected and much
cheaper components. Here, these components all implement a tweakable
block cipher TBC.

CONCRETE requires the use of the strongly protected TBC only once
while supporting the leakage of the full state of the weakly protected com-
ponents – it achieves CIML2 security in the so-called unbounded leakage
model.

All previous works need to use the strongly protected implementa-
tion at least twice. As a result, for short messages whose encryption
and decryption energy costs are dominated by the strongly protected
component, we halve the cost of a leakage-resilient implementation.
CONCRETE additionally provides security when unverified plaintexts are
released, and confidentiality in the presence of simulatable leakages in
encryption and decryption.

Keywords: Leakage-resilience · Authenticated encryption ·
Leveled implementation ·
Ciphertext integrity with misuse and leakage (CIML2)

1 Introduction

Authenticated encryption (AE) provides in a single scheme both confidentiality
and authenticity. Nowadays AE is a standard primitive [8,26] (e.g., it is the only
one accepted in TLS 1.3 [23]). Although these schemes are deemed secure in the
black box model (that is, when adversaries have access only to the inputs and

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 229–249, 2019.
https://doi.org/10.1007/978-3-030-23696-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_12

230 F. Berti et al.

outputs), they may not be secure when implemented, because their implementa-
tion secrets leak via side-channels. For example, the computation time, the power
consumption, or the electromagnetic radiation of an implementation may reveal
information about its manipulated secrets [1,27,29–31]. These attacks have a
broad applicability, especially in contexts where cryptographic implementations
can be under adversarial control (e.g., in IoT applications). As a result, various
types of countermeasures have been introduced in the literature.

A first approach is to embed protections directly at the (hardware or soft-
ware) implementation level. Examples include the addition of noise, masking or
hiding: these solutions aim to reduce the information leaked by the implemen-
tation, but they are expensive and depend on technological assumptions, which
may be hard to enforce [30]. For example, compared to an unprotected imple-
mentation, a good masking scheme typically implies factors of overheads ranging
from tenths to hundreds, depending on the desired security level [19].

A complementary approach is to design schemes (typically, modes of opera-
tion) which are inherently more secure against side-channel attacks (for example,
by manipulating the plaintext and the key as little as possible, and by using a
key only a few number of times before changing it) [18]. This general idea, which
we will denote as the leakage-resilient approach, can be instantiated in two main
manners. One option is to rely on underlying primitives (like PRPs, PRFs and
hash functions) that are all protected with the same level of security: we will
denote this option as uniform implementations. Alternatively, one can rely on
the very strong (and therefore expensive) protection of the implementations of
a few blocks (we will call them leak free implementations for simplicity) and
try to minimize their use. Such leveled implementations are expected to bring
significant performance gains for implementations with high physical security
levels as soon as the messages’ length is beyond a few blocks [11,32].

We insist that despite no implementation is perfectly leak free in practice, we
support this concept because (i) we may have reasonable instantiations of close
to leak free components by using very high-order masking [24], (ii) this approach
anyway indicates hardware designers where their efforts should be concentrated
for security against side-channel attacks, and (iii) we may hope for more graceful
degradations in the future, which is an interesting scope for further research.

We note also that although leakage affects the two goals of leakage-resilient
authenticated encryption (LRAE) (i.e., confidentiality and authenticity), this
paper is focused on authenticity (for privacy we reuse previous works [11,32]).
Based on this premise, we aim to achieve CIML2, that is, Ciphertext Integrity
with coin Misuse and Leakage in encryption and decryption, in the unbounded
leakage model.

CIML2, introduced by Berti et al. [13], assumes that the adversary receives
the leakage of every encryption and decryption query he does. Moreover, the
adversary has taken control of the random source used by the AE scheme. In
the unbounded leakage model, everything computed by the scheme is leaked
apart from the key used in the leak free primitive (that is, all inputs and out-
puts of every primitive and all the keys used by non leak free components).

Reducing the Cost of Authenticity with Leakages 231

In particular, this implies that, to have CIML2 in this model, the correct authen-
tication tag cannot be recomputed during decryption, because, otherwise, it
would be leaked [11,13]. As a result, most standard AE modes do not achieve
CIML2 in this model. By now, all modes achieving CIML2 use at least 2 calls to
the leak free primitive per encryption or decryption query [10,13,20]. Therefore,
if cLF is the cost of a call to a leak free primitive which, in our case, is a tweakable
block cipher, cwp is the cost of a call to a weakly protected primitive which, in
our case, is a block cipher with the same block size, the best cost to process
an l-block message is 2cLF + 4lcwp [10] (since all modes uses a hash function, to
do a fair comparison, we suppose that it is always done according to the Hirose
construction, which cost 2 calls per block [22]). Typically, cLF will be within the
range of tens or hundred times cwp. For short messages, this cost is dominated
by the cost of the leak free primitive. Our goal in this paper is to improve results
on this front in order to extend the benefits of leveled implementations to shorter
message lengths. For this purpose, we reduce the number of calls to the leak free
block to one. We also design a mode that allows the Release of Unverified Plain-
texts (RUP), which is a convenient feature for devices with little secure memory
(see for example the discussions in [2,3,5]).

Fig. 1. The scheme CONCRETE Commit − Encrypt − Send − the − Key. We use
red for long term secrets, orange for ephemeral ones and green for outputs. The gray
shadowed primitive, F∗, is the leak free one. The key k0 is randomly picked. It uses the
PSV encryption scheme [32], described in Sect. 3. For decryption, first k0 is recomputed
k0 = F∗,−1

k (h, cl+1), then c0 is recomputed and checked. From k0 decryption proceeds
in the natural way. pA and pB are two n-bit constants, with pA �= pB .

Our Contribution. We provide a new mode of operation which is CIML2-secure
and uses only one leak free call per execution in both encryption and decryption:
CONCRETE (for COmmit-eNCRypt-sEnd-The-kEy), see Fig. 1. The cost for l-
block message is cLF + 4(l + 1)cwp. Thus, compared to [10], we approximately

232 F. Berti et al.

halve the cost when the message is short and the leak free component is much
more expensive than the weakly protected primitive. Previous modes proceed by
deriving an ephemeral key from the long term key and a leak free component, and
use that ephemeral key to encrypt the message. Our main idea is to avoid this key
derivation step and to encrypt the message with a fresh random key k0, obtaining
c1, ..., cl. That key k0 is then encrypted with the long term key, obtaining cl+1

so that it can be recovered by the receiver. To provide authenticity, first we put
a commitment of k0, c0, then, we make cl+1 depend on all c1, ..., cl and c0. Thus,
k0 may be seen as the IV of the mode which is kept secret. The idea to put the
IV secret is already present in [11], while Bellare [6] realises that encrypting the
nonce (an IV which is not picked randomly, but only not repeated) improves the
security of a scheme and prevents some protocol attacks. As the previous modes
achieving CIML2 (for example [13]), the leak free primitive is a strong tweakable
pseudorandom permutation (STPRP), which is inverted during the decryption.
CONCRETE is the first AE scheme achieving CIML2 in the unbounded leakage
model without using a range-oriented preimage-resistant hash function.

In addition, our mode is an AE scheme which is secure even when unverified
plaintexts are released (i.e., it is a RUPAE) and it provides privacy in the presence
of leakage (i.e., CPAL and CCAL [20]).

Related Works. Security definitions in the presence of leakage are given in the
works of Barwell et al. [4] and Guo et al. [20]. Barwell et al. allow their primitives
to leak in a limited manner (precisely, they exclude leakages from the challenge
queries). The definitions of Guo et al. rather allow full leakage (including during
the challenge queries) and nonce-resilience in the sense of Ashur et al. [3]. Guo
et al. also use different leakage models (the unbounded model for authenticity
and, for confidentiality, the simulatable one [33]), which is more amenable to
leveled implementations. Therefore, we follow their definitional framework.

All previous modes achieving CIML2 in the unbounded model uses two calls
to the leak free component: DTE2, EDT [13], FEMALE [20], TEDT [10] and
TETSponge/S1P [21]. The last one is based on TEDT, achieves CIML2, but it
uses a sponge, instead of PSV to encrypt. It is the basis for the NIST submission
Spook [9].

Dobraunig et al. [16] and Bertoni et al. [15] propose two LRAE designs
based on a sponge construction. Although their solutions are interesting and ele-
gant, both lack a detailed analysis of the leakage-resilient properties (the recent
works [17,21] do steps in this direction). Moreover, CIML2 in the unbounded
model seems unachievable with a construction based only on sponges, since it
seems impossible not to recompute the tag during decryption (differently from
what it is done in all CIML2 secure modes).

Finally, Barwell et al. [4] also propose an LRAE mode which supports strong
composability results, but contrary to the previous ones, it is based on an uni-
form implementation, protecting everything in the same way. In practice, their
concrete instances requires evaluating a pairing for each message block.

Reducing the Cost of Authenticity with Leakages 233

Structure of the Paper. We review in Sect. 2, the main definitions and notations
used in the paper. Then, in Sect. 3 we present the specifications for our mode
and the structure of previous constructions. After that, we present the rationale
of the design of CONCRETE. The security statements of CIML2, AE, RUPAE,
CPAL2 and CCAL2 security conclude the paper. Due to space constraints, only
the sketchs of these proofs are provided.

In the extended version [14], the complete proofs can be found with all the
details. Moreover, an extended background, a detailed analysis of previous works
and the extension to associated data can be found.

2 Background

Notations. We use (q1, ..., qd, t)- bounded adversaries, who have access to the
oracles O1, ...,Od, can make at most qi queries to oracle Oi and who runs in
time bounded by t. If O is an oracle, OL is its leaking variant.

Given a string x, we denote with |x| its length. With {0, 1}n we denote the
set of all n bits long strings, with {0, 1}≤n (resp. {0, 1}∗) the set of all at most
n bits long strings (resp. all finite strings) (that is, {0, 1}≤n =

n
∪

i=1
{0, 1}i [resp.

{0, 1}∗ =
∞
∪

i=1
{0, 1}i]). 0n denotes the n zero string.

x
$← X denotes that the element x is picked uniformly at random from the

set X .
Given a probabilistic algorithm Alg, we call the support of Alg(x) the set
supp(Alg(x)) := {y ∈ {0, 1}∗ s.t. Pr[Alg(x) = y] > 0}, that is, the set of the

possible outputs y from an input x.
A value is fresh if it has never appeared before in the history of the game.

2.1 Primitives: Hash Functions, PRFs and STPRPs

A hash function is a mapping H : S ×M′ �−→ B. We suppose that hash functions
are (t, ε)-collision resistant : any t-bounded adversary has a probability at most
ε to produce a collision, that is, given the key s, which is randomly picked,
of the hash function, to output distinct m0,m1 ∈ M′ s.t. Hs(m0) = Hs(m1).
From now on, since the adversary knows the key of the hash functions, we
omit the key s. Thus, for simplicity we refer to the hash function Hs as H. To
simplify cost comparison, we assume that the hash is implemented with the
Hirose construction [22], costing 2 block cipher calls per n-bit message block
processed.

A (q, t, ε)-pseudorandom function (PRF) is a mapping E : K × M �−→ T
s.t. there is no (q, t)-adversary able to distinguish with probability better than
ε whether he is interacting with an Ek(·) oracle, for a random key k, or with a
random function f(·) with the same signature as Ek(·).

A (q, t, ε)- strong tweakable pseudorandom permutation (STPRP) is a map-
ping F : K×T W×M �−→ T s.t. ∀(k, tw) ∈ K×T W, Ftw

k (·) is a permutation and

234 F. Berti et al.

there is no (q, t)-adversary able to distinguish with probability better than ε, if
he is interacting with Fk(·, ·) and F−1

k (·, ·) for a random key k or with a random
tweakable permutation f(·, ·) (that is, for every tw, f(tw, ·) is an independent ran-
dom permuation) and its inverse f−1(·, ·), with the same signature as Fk(·, ·) [28].

2.2 Authenticated Encryption (AE)

For authenticated encryption (AE) schemes we use the syntax introduced in Katz
and Lindell [25] and also used in many works about AE, e.g., [7,26].

Definition 1. An authenticated encryption scheme AE is a triple of algo-
rithms Π = (K,Enc,Dec) s.t. the keyspace K is a nonempty set, the encryp-
tion algorithm Enc is a probabilistic algorithm which takes as input the tuple
(k,m) ∈ K × ME and outputs a string c ← Enck(m). The decryption algorithm
Dec is a deterministic algorithm which takes as input the tuple (k, c) ∈ K × C
and outputs a string m ← Deck(c) which is either a string in ME or the symbol
“⊥‘” (invalid).

We require that the algorithms Enc and Dec are the inverse of each other, ask-
ing the correctness (∀m, k : m = Deck(Enck(m))) and tidiness (if m = Deck(c)
and m 	= ⊥ then c ∈ supp(Enck(m))) property. If m ← Deck(c) with m 	=⊥ we
say that c is valid, otherwise it is invalid.

We suppose that, to be probabilistic, Enc has internally access to a random
source (for example, a (pseudo)random generator).

2.3 Security for Authenticated Encryption

The security guarantee that we expect from AE schemes is the following:

Definition 2. An authenticated encryption AE scheme Π = (K,Enc,Dec) is
(qE , qD, t, ε)-AE secure if the following advantage is bounded by ε:

AdvAEΠ,A :=
∣
∣
∣Pr

[

AEnck(·),Deck(·) ⇒ 1
]

− Pr
[

A$(·),⊥(·) ⇒ 1
]∣
∣
∣ ≤ ε

for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,
the algorithm $(m) answers a random string of length |c| with c ← Enck(m),
and ⊥ (·) is an algorithm which answers always ⊥ (“invalid”). The adversary
A may ask qE encryption queries (to the left oracle) and qD decryption queries
(to the right oracle). If he receives c as an answer of the first oracle, [that is,
c ← Enck(m) (or c ← $(m))], he is not allowed to query the second oracle on
input c.

This property provides both confidentiality and authenticity in the absence of
leakages.

Reducing the Cost of Authenticity with Leakages 235

2.4 Ciphertext Integrity with Misuse and Leakage in Encryption
and Decryption (CIML2)

Berti et al. [13] introduced the notion of ciphertext integrity with misuse and
leakage in encryption and decryption (CIML2). Originally intended for nAE
schemes, we adjust it to the syntax introduced in Definition 1.

A specific point here is that we require protection against corrupted sources
of randomness used by the encryption oracle, hence offering a guarantee of ran-
domness misuse resistance. To this purpose, in the definition below, we suppose
that the adversary has control of the source of randomness used by Enc. In effect,
in the game below, the adversary chooses and provides the randomness to the
encryption oracle, which is now deterministic.

Definition 3. An authenticated encryption (AE) scheme Π = (K,Enc,Dec)
is (qE , qD, t, ε)-ciphertext integrity with misuse and leakage in encryption and
decryption (CIML2)-secure if, for every (qE , qD, t)-bounded adversary controlling
the randomness used in the encryption process by the EncL oracle, we have

Pr
[

AEncL(·),DecL(·) ⇒ c∗ s.t. c∗ is fresh and valid
]

≤ ε

(c∗ fresh means that it was not previously returned by the EncL oracle)

Without leakage, it is mostly irrelevant if the adversary has or not has access
to the decryption oracle [12,25]. This is not the case in the presence of leak-
age [11].

Leakage Model: The Unbounded Model. The definition above has leaking
encryption and decryption oracles. We obviously need to define some limitations
on what those leaking oracles leak.

We use a liberal model of leakages that seeks implementations with two levels
of component protection. Our leakage model then distinguishes between:

– a strongly protected STPRP F∗, of which we make minimal use, and which
we assume to not leak anything about its key, and

– a PRF and a hash function, which we assume to completely leak their internal
state.

Following [11], we call this the unbounded leakage model.

2.5 Security When Unverified Plaintexts Are Released (RUPAE)

For this section, we follow [5] adapting their definitions to our AE syntax.
First, we observe that many decryption algorithms can be split in two: one

part, SDec which decrypts, the other, SVer which verifies the authenticity. This is
called separated syntax and a separated AE-scheme is Π = (K,Enc,SDec,SVer).

Now we can define the RUPAE security definition:

236 F. Berti et al.

Definition 4 ([5]). A separated AE scheme Π = (K,Enc,SDec,SVer) is (qE,
qD, t, ε)-RUPAE secure if for any (qE , qD, t)-adversary A the following advantage

AdvRUPAEΠ,A :=
∣
∣
∣Pr

[

AEnck(·),SDeck(·),SVerk(·) ⇒ 1
]

− Pr
[

A$E(·),$D,⊥(·) ⇒ 1
]∣
∣
∣ ≤ ε

where the key k is picked uniformly at random, the algorithm $E(m) answers
a random string of length |c| with c ← Enck(m), the algorithm $D(c) outputs a
random string of length |m| with m ← SDeck(c) and ⊥ (·) is an algorithm which
answers always ⊥ (“invalid”). The adversary A is granted to qE encryption query
(to the left oracle) and qD decryption query (to the right oracle). If he receives
c as an answer of the first oracle, that is c ← Enck(m) (or c ← $(m)) he is not
allowed to query the second or third oracle on input c.

A more detailed treatment can be found in [14].
Our focus in this paper is on authenticity. In the [14] of this document, we

provide definitions of confidentiality with leakage (CPAL2 and CCAL2).

3 Design Specifications and Previous Solutions

Notations. For the leak free STPRP F∗, the PRF E and the hash function H, we
assume K = M = T W = T = B = {0, 1}n, M′ = {0, 1}∗ and ME = {0, 1}≤Ln.
A n-bit string is a block. Given a message m, we parse it in (m1, ...,ml) with
|m1| = ... = |ml−1| = n and 1 < |ml| ≤ n (we sometimes also call ml a block,
regardless of its length).

The design goals of our proposed mode are as follows:

– AE secure in the black box model,
– CIML2 secure in the unbounded leakage model,
– CPAL and CCAL secure with some hypothesis about the leakage,
– only one call to the leak free component per execution,
– RUPAE (optional).

To reduce the possibility of leakage attacks via DPA (differential power anal-
ysis), the PRF E should not be used with more than two different plaintexts
for any key. There is such an encryption mode, called PSV (see Sect. 3) [32]
and some AE modes [10,11,13,20] (based on PSV which is based on the PRG
proposed by Standaert et al. [33], which uses a PRF E and which is based on
rekeying). The challenge of this PRG-based rekeying process lies in the choice of
the first ephemeral key, on which we may repeatedly leak. Usually, LRAE modes
based on PSV may be divided in three parts, not necessarily in this order:

1 Generation of the first ephemeral key (for us k1), using a call to the leak free
component;

2 Encryption, using PSV starting from k1, using weakly/non protected compo-
nents;

3 Authentication, again using a call to the leak free component.

Reducing the Cost of Authenticity with Leakages 237

Fig. 2. The CIML2-secure scheme EDT [13] divided in the three parts.

Our goal in this paper is essentially to get rid of the leak free component used
in the first part. An example of a construction divided in this three parts, can
be found in Fig. 2.

PSV. [32] creates a (pseudo)random stream of block y1, ..., yl which is XORed
to m1, ...,ml. From an ephemeral key ki, a new key ki+1 = Eki

(pA) and a new
stream block yi = Eki

(pB) are obtained. (pA and pB are two n bit strings with
pA 	= pB)

A detailed analysis of various modes following this design pattern can be
found in [14].

Fig. 3. The PSV encryption algorithm, presented at CCS 2015 by Pereira et al. [32].

238 F. Berti et al.

4 Design Rationale of the Commit-Encrypt-Send-the-
Key(CONCRETE)

We first describe CONCRETE (Fig. 1), then, we explain the ideas behind it.
Finally we discuss some of its features.

CONCRETE (see Fig. 1) can be divided in the following steps:

– Derivation of the first ephemeral key We pick randomly k0 as first
ephemeral key. We use a round of the PRG of Standaert et al. [33] to obtain a
commitment on k0 (called c0) and a fresh key (k1). That is, using the public
constants pA and pB (two n bit strings, with pA 	= pB) we obtain k1 = Ek0(pA)
and c0 = Ek0(pB).

– Encryption From k1 the PSV [32] (see Sect. 3) encryption algorithm is used
to encrypt m, using the constants pA and pB, obtaining c1, ..., cl. We denote
the algorithm in this part enc.

– Sending the key k0 Since k0 is picked uniformly at random, it must be
recomputed by the decryption algorithm Dec from the ciphertext c. Thus, we
send cl+1 = F∗

k(tw, k0). Now, we need to choose tw.
– Authenticity To have it, we use for the tweak tw, the hash of the commit-

ment c0 and the output of the encryption part c1, ..., cl obtaining tw = h =
H(c0‖c1‖...‖cl) and we encrypt k0 obtaining cl+1 = F∗

k(h, k0). The ciphertext
is c := (c0, c1, ..., cl, cl+1).

– Decryption First h = H(c0‖...‖cl), then, k0 is retrieved, with k0 =
F∗,−1

k (h, cl+1) and c̃0 = Ek0(pB) is computed. If c0 = c̃0, the ciphertext is
deemed valid and decryption proceeds in the natural way; otherwise, the
ciphertext is deemed invalid.

The main idea is avoiding to use a leak free component to generate the first
ephemeral key k1, but picking it uniformly at random, see Fig. 4a.

But this imposes to send the ephemeral key k1 with the ciphertext, to allow
the receiver to decrypt.

Next, we have the problem to send k1. To do this we use the STPRP F∗ to
generate cl+1 = F∗

k(tw, k1), because to send k1 there is no other possibility than
to use the master key k, see Fig. 4b. We have to decide what to put as tweak tw.
Since we want to have authenticity, cl+1 must depend on all the other blocks.
This can be done using tw = h′ = H(c1‖...‖cl), see Fig. 4c. Unfortunately this
solution gives no authenticity, since every ciphertext would be valid. It could be
argued that such a scheme would be CCA-secure, since it could be proved that
every decryption query made by an adversary, which is an not answer from a
previous encryption query, would result in a random answer.

Thus, we add, in the ciphertext, a commitment c0 of k1, as c0 = Ek1(pC)
for a certain constant pC (pC must be different from pB [and pA], otherwise,
the first block of plaintext would be leaked, or k2). Thus, h = H(c0‖...‖cl) (see
Fig. 4d). This scheme is CIML2 secure, when we recompute c̃0 and check it.

But in this last scheme, k1 is used three times with three different plaintexts
as key of E. Thus, to avoid this, we pick randomly k0, we compute its commit
c0 = Ek0(pB) and we do a rekeying to obtain k1 = Ek0(pA) (see Fig. 4e).

Reducing the Cost of Authenticity with Leakages 239

Fig. 4. How we designe CONCRETE.

240 F. Berti et al.

CONCRETE has the following features:

– Ciphertext expansion. The ciphertext has an expansion of two blocks, that
is, given c ← Enck(m), |c| = |m| + 2n.

– Cost. The cost of CONCRETE to process l block messages is cF∗ +4(l +1)cE,
with cF∗ and cE the cost, respectively, of one call to F∗ and E.

We note that our constructions could benefit from implementations of the leak-
free component based on randomized countermeasures (such as masking, shuf-
fling) in which case the PRG needed for both could be shared. Yet, this may
not be systematic since the quality of the random numbers used in side-channel
countermeasures may be weaker than for cryptographic keys.

A detailed description of the scheme can be found in [14], with, as well the
extension to associated data.

5 Security Results for CONCRETE: CIML2,
AE and RUPAE

For clarity, in this section and in the following one we do not consider the time
bounds, which can be found in [14].

Notation. Given a ciphertext c = (c0, ..., cl, cl+1) we define the partial ciphertext
as the string (c0, ..., cl), that is, the ciphertext without considering the block cl+1

encrypting the key.

5.1 CIML2 Security

Before proving the CIML2 security for CONCRETE, we define its leakage
functions in the unbounded leakage model. We observe that LE(r,m; k) :=
(k0,m, cl+1), because, from them, all inputs, outputs and keys of the primitives,
can be recomputed apart from the key k of the leak free F∗.

On the other hand, LD(c; k) := k0, because from k0 the adversary is able to
recompute all values used in the decryption apart from k.

Interestingly, when there is randomness misuse (when the adversary provides
k0), there is no useful information in the encryption leakage for CIML2 security.

Theorem 1. Let F∗ be a leak free (qD +qE +1, εSTPRP)-strong tweakable pseudo-
random permutation (STPRP), let E be a (2, εPRF)-pseudorandom function (PRF)
and let H be a εCR-collision resistant hash function. Then, the mode CONCRETE,
which encrypts messages which are at most L-block long, is (qE , qD, ε)-CIML2
secure in the unbounded leakage model with

ε ≤ εSTPRP +
(qE + qD)(qE + qD − 1)

2n+1
+ εCR

+
(qD + 1)(L + 1)(qD + 2qE)

2n+1
+

qD + 1
2n

+ (qD + 1)εPRF.

Reducing the Cost of Authenticity with Leakages 241

Observation on the Bound. We want to discuss some terms of the bound:

– εSTPRP + (qE+qD)(qE+qD−1)
2n+1 because F∗ is a STPRP and not a PRF.

– εCR because, if there is a collision, the mode is trivially broken: given
c0 = Ek0(pB) if there is a collision ((c0, c1, ..., cl), (c0, c′

1, ..., c
′
l) we observe

that cl+1 = c′
l+1 if they both encrypt k0,

– (qD + 1)εPRF, because we do not check k0, but Ek0(pB).1

– (qD+1)(L+1)(qD+2qE)
2n+1 because we need that, in every decryption query, k0 must

have never been used before as ephemeral key; otherwise, c0 would not be
random anymore. It may be improved to (qD+1)(qD+2qE)

2n+1 if E is not used in
PSV, [for example, we may use a different PRF, but this choice would require
one more primitive to be implemented].

Proof (Sketch). In the proof, first, we replace F∗ with a random tweakable
permutation, then, we suppose that all the hash outputs are different (pro-
vided that their inputs are different). For fresh decryption queries, on input
c = (c0, c1, ..., cl, cl+1) we observe the following:

1. If the partial ciphertext (c0, ..., cl) is fresh, then, its hash h is fresh. Thus, k0
is random. Consequently, the probability that c0 = Ek0(pB) is ≤ εPRF.

2. If the partial ciphertext (c0, ..., cl) is not fresh and comes from an encryption
query, then, the couple ((c0, ..., cl), cl+1) must be fresh; otherwise, either the
decryption query is not fresh [not possible by hypothesis] or it is the repetition
of a previous decryption query [so, its validity has already been established].
Thus, k0 = F∗,−1

k (h, cl+1) is still random. Then, again, the probability that
c0 = Ek0(pB) is ≤ εPRF.

To prove that Pr[c0 = Ek0(pB)] is negligible, we use that E is a PRF, thus, we
must assume that k0 is fresh.

The complete proof can be found in [14] as well with the theorem with the
time bounds (Thm. 6).

5.2 AE Security

After having proved the authenticity, we want to prove the confidentiality, which
is based on the security of the PSV encryption scheme. We start studying con-
fidentiality in the blackbox model:

Theorem 2. Let F∗ be a (qD + qE , εSTPRP)-strong tweakable pseudorandom per-
mutation (STPRP), let E be a (2, εPRF)-pseudorandom function (PRF) and let H
be a εCR-collision resistant hash function. Then, the mode CONCRETE, which
encrypts messages which are at most L-block long, is (qE , qD, ε)-AE secure with

ε ≤ εSTPRP + εCR +
qD(L + 1)(qD − 1 + 2qE)

2n+1
+

qD

2n

(qE(L + 1) + qD)εPRF +
qE(L + 1)[qE(L + 1) − 1]

2n+1
+

(qD + qE)(qD + qE − 1)
2n+1

.

1 If we had checked k0 and put it into the ciphertext, i.e., c0 = k0, we would have
obtained a better CIML2 bound, but no AE security.

242 F. Berti et al.

Observation on the Bound. In addition to the bound due to the (qE , qD − 1)-
CIML2 security2 (which is the same as for the ciphertext integrity) we have:

– (qE(L + 1))εPRF + qE(L+1)[qE(L+1)−1]
2n+1 is due to PSV because we want that

every ciphertext block is random,
• in particular, qE(L+1)[qE(L+1)−1]

2n+1 because we need that, in every encryp-
tion query, all keys used by E are different.

Proof (Sketch). First, we note that c0, ..., cl can be seen as (c0, ..., cl) = PSVk0

(0n‖m). After that, we observe that the scheme is ciphertext-integrity secure
(since it is CIML2 secure), then, we observe that all the ciphertext blocks can
be replaced by random ones since either they are obtained via a STPRP with a
different input (cl+1) or via the PSV encryption scheme using a different key k0
per encryption query.

The theorem with the time bounds (Thm. 7), its proof and a discussion of what
happens if PSV is replaced with another scheme can be found in [14].

5.3 The RUPAE Security

Even if unverified plaintexts are released, CONCRETE remains secure:

Theorem 3. Let F∗ be a (Q, εSTPRP)-strong tweakable pseudorandom permu-
tation (STPRP), let E be a (2, εPRF)-pseudorandom function (PRF) and let H
be a εCR-collision resistant hash function. Then, the mode CONCRETE, which
encrypts at most L-block long messages, is (qE , qD, ε)-RUPAE secure with Q =
qE + qD and ε bounded by:

εSTPRP + εCR + Q(L + 1)εPRF +
qD

2n
+

(L + 1)Q[(L + 1)Q − 1]
2n+1

+
qE(qE − 1)

2n+1
.

Observation on the Bound. In addition to bounds due to the previous theorems,
we have

– Q(L + 1)εPRF due to PSV, since, if k1 is random, PSV in decryption outputs
a random string,

– (L+1)Q[(L+1)Q−1]
2n+1 , because we suppose that every ephemeral key used in an

encryption or decryption query is different from all the others,
– εSTPRP + qE(qE−1)

2n+1 because F∗ is a STPRP and not a PRF (a part of the bound
is in the previous term)

Proof (Sketch). We have already proved the CIML2 (thus, the ciphertext
integrity) and the AE security. To prove the RUPAE, it is enough to observe
that, for invalid ciphertexts, the k0 obtained is random. Moreover, from a ran-
dom k0, PSV gives a random decryption.

The theorem with the time bounds (Thm. 8), its proof and a discussion of
what happens if PSV is replaced with another scheme can be found in [14].
2 Observe that in the AE security definition, there is no more the final decryption

query granted in the CIML2 security game.

Reducing the Cost of Authenticity with Leakages 243

6 Confidentiality with Leakage of CONCRETE

First, we introduce the leakage assumption we do on E: simulatability. Then, we
discuss the security with leakage of PSV [32], in particular to what it is reduced
to: the eavesdropper security with leakage (EavLDs) of an idealized single round
variant of PSV called PSVsI . Finally, we prove the CPAL2 and CCAL2 security
of CONCRETE.

6.1 Leakage Model: Simulatability

For confidentiality it is necessary to bound the amount of information leaked by
E, since ci = yi ⊕ mi with yi = Eki

(pB). To do this, we use the simulatability
assumption: that is, let y = Ek(x), it is possible to create a simulator SL, which
has access only to x and y (not to k) and to the leakage function L. This sim-
ulator outputs a simulated leakage S(x, y, k′) for a random k′ which should be
indistinguishable from the real one LE(x; k). This is captured by the following
definition (Table 1):

Table 1. The q-sim experiment of Standaert et al. [33].

Game q-sim(A,PRF, L,S, b) [33, Section 2.1].

The challenger selects two random keys k, k∗ $← K. The
output of the game is a bit b′ computed by AL based on the
challenger responses to a total of at most q adversarial
queries of the following type:
Query Response if b = 0 Response if b = 1
E \ $(x) Ek(x), L(k, x) Ek(x), SL(k∗, x,Ek(x))
and one query of the following type:
Query Response if b = 0 Response if b = 1
Gen-S(z, x) SL(z, x, k) SL(z, x, k∗)

Definition 5 [q-simulatable leakages [33, Def. 1]]. Let E be a PRF whose imple-
mentation has leakage function L. Then E has (qS , tS , qA, tA, εq-sim) q-simulatable
leakages if there is a (qS , tS)-bounded simulator SL such that, for every (qL, t)-
bounded adversary AL, we have

|Pr[q-sim(A,E, L,SL, 1) = 1] − Pr[q-sim(A,E, L,SL, 0) = 1]| ≤ εq-sim.

We observe that A is granted qL queries to the leakage oracle. This queries
are different from the queries done by the challenger. In fact for the queries done
by A, he chooses the key and the plaintext, thus, they are intended to profile the
leakage of the implementation E.

244 F. Berti et al.

Moreover, he has access to a special query, the Gen-S, because, since E is
used in PSV, which is a scheme based on rekeying, the leakage of a previous
round involves also the key used in the following round.

This assumption is useful to reduce the leakage security of the whole PSV
encryption scheme to the leakage security of the encryption of a single block.

6.2 Other Leakage Assumptions

In addition, with respect to the PSV model [32], we need some additional hypoth-
esis on the leakage of E and F∗. We start giving the reason why we need these
additional hypothesis: k0 has an additional source of leakage; cl+1 := F∗

k(h, k0).
Moreover, it is randomly picked and not output by E.

Thus, we need to simulate the leakage also of the STPRP F∗
k(·, ·):

Definition 6. The leak free implementation of the STPRP F∗(·, ·) has (q, qS′ ,
t, tS′)-indistinguishable leakage if for any (q, t) adversary, there exists a
(qS′ , tS′)-simulator such that the leakage LF∗(x, y; k) of the computation z ←
F∗

k(x, y) is indistinguishable from the simulated leakage SLF∗
F∗ (x, y, z, k∗) for a

random key k∗.

This hypothesis is given by the leak free assumption. Anyway, it is reasonable
to believe that the adversary if he were able distinguish them, he would not be
able to use this difference.

Thus, we are able to define the q-sim′ experiment, which models the leakage
of k0:

Definition 7 [q-simulatable leakages’]. Let E be a PRF having leakage function
L and let F∗ be a STPRP having (qS′ , tS′)-indistinguishable leakage (see Defini-
tion 6). Then E has (qL, qS , qS′ , t, tS , tS′ , εq-sim) q-simulatable’ leakage if there is
a (qS , tS)-bounded simulator SL such that, for every (qL, t)-bounded adversary
AL, we have

|Pr[q-sim′(A,E, L,SL, 1) = 1] − Pr[q-sim′(A,E, L,SL, 0) = 1]| ≤ εq-sim.

The q-sim′ experiment is the q-sim with the following two modifications:

– first, the Gen-S query is replaced by the Gen-S ′ query which is answered by
L$(k) if b = 0; otherwise, by L$(k∗).

– second, the adversary is allowed to an additional Key-Send(h) query, which
may be asked after having received the answer to the previous queries. If
b = 0, A receives SLF∗

F∗ (h, k, k+, w); otherwise SLF∗
F∗ (h, k∗, k+, w).

This models well the situation for k0

6.3 The Eavesdropper Security with Leakage (EavLDs) Security of a
Single Round Idealized Version of PSV

Similarly to what was done for PSV [32], we reduce the whole security of the
scheme to the EavLDs security of an ideal version of PSVsI , where the PRF Ekj

i

Reducing the Cost of Authenticity with Leakages 245

and its leakage are replaced with a random function and the simulated leakage,
which encrypts only one block messages (see Table 2).

The EavLDs game (see Table 2) is a game where the adversary chooses two
different one block message and receives the encryption and the leakage of one
of them, and he has to guess what message has been encrypted. (A scheme is
(qL, t, ε)-EavLD secure if the probability a (qL, t)-adversary correctly guesses the
bit b is bounded by 1

2 + ε).

Table 2. The EavLDs experiment and the idealized single block version PSVI . S is a
simulator for the leakage of the PRF E. Note that k1 is given as output for composability
(see [14]).

For PSV the EavLD security (EavLDs for multiple block messages) is given
by the following proposition:

Proposition 1 ([32]). Let E be a (2, εPRF)-PRF, whose implementation has
(qL, qS , ε2-sim)-2-simulatable leakage then, PSV, if it encrypts at most L block
messages, is ε-EavLD-secure with ε ≤ L(εPRF + ε2-sim + εEavLDs).

6.4 CPAL2

Theorem 4. Let F∗ be a leak free (qE + 1, εSTPRP)-STPRP whose implementa-
tion has (qE + 1, qS′)-indistinguishable leakage, let E be a (2, εPRF)-
PRF, whose implementation has (qL, qS , ε2-sim)-2-simulatable leakage and

246 F. Berti et al.

(qL, qS , qS′ , ε2-sim′)-2-simulatable leakage’, let PSVsI be (qL, εEavLDs)-EavLDs-
secure, then, CONCRETE, if it encrypts at most L block messages, is (qE , ε)-
CPAL2-secure with

ε ≤ εSTPRP +
qE

2n
+ ε2-sim′ + (L + 1)εPRF + L(ε2-sim + εEavLDs)

About the bound we can observe:

– L(ε2-sim + εEavLDs + εPRF) is the EavLD-security of PSV [32].

The theorem with the time bounds (Thm. 9) and its proof can be found in [14].

Proof (Sketch). First, we reduce the EavLD security of CONCRETE to the EavLDs
security of PSVsI , using the same argument as Pereira et al. [32] (we have to do
a little tweak in their proof to consider the additional leakage source of c0 and
cl+1).

Then, we replace the STPRP F∗ with a random function, and we replace its
leakage LF∗(·, ·; ·) with the simulated one SLF∗ (·, ·, ·, ·); after that, observing that,
since, k0 is randomly picked, the leakage of other encryption queries do not give
any more information about the challenge query, we reduce the CPAL2 adversary
to an EavLD adversary.

6.5 CCAL2

Moreover, CONCRETE is CCAL2 secure:

Theorem 5. Let F∗ be a leak free (qE +qD+1, εSTPRP)-STPRP whose implemen-
tation has (qE +1, qS′)-indistinguishable leakage, let E be a (2, εPRF)-PRF, whose
implementation has (qL, qS , ε2-sim)-2-simulatable leakage and (qL, qS , qS′ , ε2-sim′)-
2-simulatable leakage’, let H be a εCR-collision resistant hash function, let PSVsI

be (qL, εEavLDs)-EavLD-secure, then, CONCRETE, if encrypts at most L block mes-
sages, is (qE , qD, ε)-CCAL2-secure with

ε ≤ εSTPRP + εCR +
qE + qD

2n
+

qD(L + 1)(qD + 2qE)
2n+1

+

(qD + L + 1)εPRF + ε2-sim′ + L(ε2-sim + εEavLDs)

This bound is the CIML2 bound + the CPAL2 one (εSTPRP is not added twice
because both proof shares the replacement of the STPRP F∗ with a random
tweakable permutation).

Proof (Sketch). We reuse the proof of the CPAL2 security (Thm. 4). We add only
that, due to the CIML2-security in the unbounded model, the adversary can only
ask invalid decryption queries and invalid decryption queries may not give any
information about the challenge query, because the ephemeral k∗

0 picked during
the challenge query is independent from the ephemeral key k0 recomputed during
their decryptions.

The theorem with the time bounds (Thm. 10) and its complete proof can be
found in [14].

Reducing the Cost of Authenticity with Leakages 247

7 Conclusion

With CONCRETEwe have provided the first AE scheme achieving CIML2 in the
unbounded model with the leak free is used only once. It provides also RUPAE
and CPAL2 and CCAL2 [20]. This brings significant performance improvements,
especially for short messages.

The leakage-resilience of this scheme crucially relies on the security of the leak
free component. It would then be an interesting future challenge to investigate
whether a weaker assumption could be made about this component: for instance,
we may wonder whether an assumption of unpredictability could be sufficient.

Acknowledgments. François-Xavier Standaert is a senior research associate of the
Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded
in parts by the European Union (EU) and the Walloon Region through the
FEDER project USERMedia (convention number 501907-379156) and the ERC project
SWORD (convention number 724725).

References

1. Albrecht, M.R., Paterson, K.G.: Lucky Microseconds: A Timing Attack on Ama-
zon’s s2n Implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part I. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 24

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

3. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 1

4. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in
the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 24

5. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: reconciling AE robust-
ness notions. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 94–111.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9 6

6. Bellare, M.: Symmetric ecryption revised. Technical report (2018). https://spotniq.
files.wordpress.com/2018/07/spotniq18-se-revisited.pdf

7. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

8. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-27239-9_6
https://spotniq.files.wordpress.com/2018/07/spotniq18-se-revisited.pdf
https://spotniq.files.wordpress.com/2018/07/spotniq18-se-revisited.pdf
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/3-540-44448-3_41

248 F. Berti et al.

9. Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G.,
Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.-X., Wiemer,
F.: Spook: sponge-based leakage-resilient authenticated encryption with a masked
tweakable block cipher (2019). https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/Spook-spec.pdf

10. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: TEDT, a leakage-
resilient AEAD mode for high (physical) security applications. Cryptology ePrint
Archive, Report 2019/137 (2019)

11. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Ciphertext integrity
with misuse and leakage: definition and efficient constructions with symmetric
primitives. In: AsiaCCS 2018, pp. 37–50 (2018)

12. Berti, F., Pereira, O., Peters, T.: Reconsidering generic composition: the tag-then-
encrypt case. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS,
vol. 11356, pp. 70–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05378-9 4

13. Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Transactions on Symmetric
Cryptology 2017(3), pp. 271–293 (2017)

14. Berti, F., Pereira, O., Standaert, F.-X.: Reducing the cost of authenticity with leak-
ages: a CIML2-secure AE scheme with one call to a strongly protected tweakable
block cipher. Cryptology ePrint Archive, Report 2019/451 (2019).https://eprint.
iacr.org/2019/451

15. Bertoni, G., Daemen, J., Peters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2. Technical report (2016)

16. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP -
towards side-channel secure authenticated encryption. Transactions on Symmetric
Cryptology 2017(1), pp. 80–105 (2017)

17. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. IACR
Cryptology ePrint Archive 2019, p. 225 (2019)

18. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp.
293–302 (2008)

19. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–
597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 20

20. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient authenti-
cated encryption with misuse in the leveled leakage setting: Definitions, separation
results, and constructions. Cryptology ePrint Archive, Report 2018/484 (2018)

21. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards lightweight side-channel
security and the leakage-resilience of the duplex sponge (2019)

22. Hirose, S.: Some plausible constructions of double-block-length hash functions. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg
(2006). https://doi.org/10.1007/11799313 14

23. IETF: The transport layer security (TLS) protocol version 1.3 draft-ietf-tls-tls13-
28. Technical report (2018). https://tools.ietf.org/html/draft-ietf-tls-tls13-28

24. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 30

25. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Spook-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Spook-spec.pdf
https://doi.org/10.1007/978-3-030-05378-9_4
https://doi.org/10.1007/978-3-030-05378-9_4
https://eprint.iacr.org/2019/451
https://eprint.iacr.org/2019/451
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/11799313_14
https://tools.ietf.org/html/draft-ietf-tls-tls13-28
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30

Reducing the Cost of Authenticity with Leakages 249

26. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

27. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

28. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

29. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 31

30. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston, MA
(2007). https://doi.org/10.1007/978-0-387-38162-6

31. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

32. Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: ACM CCS 2015, pp. 96–
108 (2015)

33. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 19

https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-642-40041-4_19

An Improvement of Correlation Analysis
for Vectorial Boolean Functions

Youssef Harmouch1(B), Rachid El Kouch1, and Hussain Ben-Azza2

1 Department of Mathematics, Computing and Networks,
National Institute of Posts and Telecommunications, Rabat, Morocco

{harmouch,elkouch}@inpt.ac.ma
2 Moulay Ismail University, ENSAM-Meknès, Meknes, Morocco

hbenazza@yahoo.com

Abstract. This paper investigates the correlation of n-bit to m-bit vec-
torial Boolean functions denoted by F . At Crypto 2000, Zhang and Chan
showed that the maximum of linear approximations for F with Boolean
functions g have a higher bias than those based on the usual correlation
attack. The correlation for this linear approximation has been named the
maximum correlation and has been shown to be a useful tool for correla-
tion attack resistance. In this work, we deal with two issues. Firstly, we
show that combining F with any g does not always increase the bias as
stated by several works. To justify such results, we demonstrate the exact
correlation link between F , g and the combination of F by g. Secondly,
we provide the exact condition in which the correlation coefficients for
this approximation are maximum.

Keywords: Correlation attack · Vectorial boolean function · Bias ·
Maximum correlator · Stream cipher

1 Introduction

This work focuses on n to m bit vectorial Boolean functions often called S-boxes
and denoted by F : Fn

2 → F
m
2 . For instance, stream cipher based on LFSR “linear

feedback shift registers” uses F as a nonlinear filter or as a nonlinear combiner
[16] because these functions offer a high throughput compared to Boolean func-
tions, i.e. instead of having one binary information, we have a vector of m bits.
Namely, if a correlation attack for F has a probability close to 1/2, the attacker
can retrieve secret LFSR bits when enough keystream bits are known.

At Crypto 2000, Zhang and Chan [17] improved correlation attacks by defin-
ing a new term called the maximum correlation that considers the linear approx-
imation based on a Boolean function g : Fm

2 → F2 to F (x) instead of a linear
combination of F (x), i.e. instead of studying F (x) we study the composition
of g and F , that is, g ◦ F (x) = g

(
F (x)

)
. This new concept offers a choice of

2n+2m of linear approximations instead of 2n+m in the usual approach, which
increase the chances of selecting a linear approximation with a higher bias,
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 250–269, 2019.
https://doi.org/10.1007/978-3-030-23696-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_13

An Improvement of Correlation Analysis for Vectorial Boolean Functions 251

i.e. where probability Pr
(
g◦F (x) = a·x

)
is further away from 1/2. The Boolean

function g that gives the maximum bias for g ◦ F to all g : Fm
2 → F2 is called

the maximum correlator.
In general, it is difficult to determine this maximum correlator since there

are 22
m

functions in F
m
2 . Moreover, a number of researchers claim that the use

of any g for F (except when g is a constant function) has a greater correlation
coefficients than that of F alone. This statement is built on several experimental
results.

In this work, we show that g◦F with any Boolean function g does not always
give a higher correlation coefficient than F , i.e. any g does not increase the bias
for F . In order to understand such results, we determine the condition on g that
leads to increase the bias for F . This condition presents a very interesting result
because now we reduced the number of g by removing all the Boolean functions g,
which does not increase the bias. Therefore, the probability of selecting a Boolean
function g that increases the bias for F is now much higher. Furthermore, in this
work, we prove the exact condition in which the maximum correlator can be
found.

The rest of the paper is organized as follows. Section 2 presents the prelimi-
naries, while Sect. 3 presents the related work. In Sect. 4 we show the motivation
and the aim of this work. In Sect. 5, we prove the link between F , g and g ◦F in
order to determine the condition for which the bias increases when composing F
by g. In Sect. 6, we further analyze the proved theorems in this work. Section 7
concerns a discussion about the maximum correlator, while Sect. 8 concludes the
paper.

2 Preliminaries and Notations

Let F2 denote the finite field with two elements, Fn
2 denote the F2-vector space

of dimension n, ‘+’denote the addition in F
n
2 and let x · y denote the scalar

product of vectors x and y defined as x · y =
∑n

i=1 xi × yi. A Boolean function
is a map from F

n
2 to F2. A vectorial Boolean function F : Fn

2 → F
m
2 is a map

from F
n
2 to F

m
2 i.e.F (x) = (f1(x), f2(x), . . . , fm(x)) where the Boolean functions

(f1, . . . , fm) are called the coordinate functions of F and x =(x1, . . . , xn) ∈ F
n
2 .

We denote the set of (n,m) vectorial Boolean functions or Fn
2 → F

m
2 by Bn,m.

In the case of Boolean functions (m = 1) we write Bn instead of Bn,1. Moreover,
we denote by B∗

n the set of non-constant Boolean functions.
The Hamming weight of a vector x is the number of ‘1’in x. The Hamming

weight wt(f) of a function f is the number of vectors x ∈ F
n
2 such that f(x) = 1.

A function f ∈ Bn is said to be balanced if wt(f) = wt(f ⊕ 1) = 2n−1, i.e. all
the output values have exactly the same number of occurrence.

The correlation coefficient of two Boolean functions f and g, denoted by
c(f, g), is defined in terms of probabilities Pr as follows [17]:

c(f, g) = Pr
(
f(x) = g(x)

)
− Pr

(
f(x) �= g(x)

)
. (1)

252 Y. Harmouch et al.

The correlation coefficient of a Boolean function f and the set of all Boolean
affine functions is of special interest in the analysis and design of f because
it is linked to the correlation attacks used against stream cipher, and to the
nonlinearity, hence to the linear cryptanalysis for block cipher. The correlation
coefficient of f to the nearest affine Boolean function �a : Fn

2 → F2, �a(x) = a · x
describes the statistical dependency between f and �a with a ∈ F

n
2 and it is

defined as [7]:

cf (a) = c(f, �a) =
#{x ∈ F

n
2 |f(x) = �a(x)} − #{x ∈ F

n
2 |f(x) �= �a(x)}

2n
. (2)

As for the Hamming distance d(f, �a) between f and the set of affine functions
�a, it is related to the correlation coefficient by [15]:

c(f, �a) = 1 − 2−n+1d(f, �a). (3)

In order to perform a correlation attack on the stream cipher, we try to find an
approximation of a linear combination of output bits by a linear combination
of input bits i.e. maxa∈F

n
2

Pr(f = �a). The minor correlation if found, indicates
that all linear approximations have small bias [2]:

εf =
∣
∣
∣
∣max
a∈F

n
2

Pr(f = �a) − 1
2

∣
∣
∣
∣ =

maxa∈F
n
2

|c(f, �a)|
2

=
1
2

max
a∈F

n
2

|cf (a)|. (4)

A useful tool for studying cf (a) is the Walsh transform Wf : Fn
2 → Z [1]:

Wf (a) =
∑

x∈F
n
2

(−1)�a(x)+f(x) =
∑

x∈F
n
2

(−1)a·x+f(x). (5)

The value Wf (a) is called the Walsh coefficient of f at point a and the multiset
composed of all Walsh coefficients of f is called the Walsh spectrum of f . The
Walsh spectrum of f corresponds to the biases of all approximations of f by a
linear function. This quantity, especially its maximum, plays an important role
in linear cryptanalysis [2] and correlation attack.

The correlation cf of a Boolean function f can also be expressed through the
Walsh Transform as [12]:

cf (a) = c(f, �a) =
Wf (a)

2n
. (6)

In case of an S-box F ∈ Bn,m, the Walsh transform is taken over all linear masks
in the output of F , hence

WF (a, b) =
∑

x∈F
n
2

(−1)a·x+b·F (x). (7)

Thus the correlation of F ∈ Bn,m is expressed by

cF (a, b) = c(b · F, �a) =
WF (a, b)

2n
, (8)

An Improvement of Correlation Analysis for Vectorial Boolean Functions 253

while the bias is given by

εF =
∣
∣
∣
∣ max
a∈F

n
2 ,b∈F

m
2 −{0}

Pr(b · F = �a) − 1
2

∣
∣
∣
∣ =

1
2

max
a∈F

n
2 ,b∈F

m
2 −{0}

|cF (a, b)|. (9)

3 Related Work

At Crypto 2000, Zhang and Chan [17] observed that instead of taking linear com-
bination of the output bit functions b · F (x) with b ∈ F

m
2 , we can compose F (x)

with a Boolean function g ∈ B∗
m and consider the probability Pr

[
a·x = g◦F (x)

]
,

because, the approximation of b·F (x) is a particular case of the approximation of
g ◦F (x) and since F (x) corresponds to the output which is known, then g ◦F (x)
is also known. It is easier to get a better linear approximation for Pr

[
g ◦F = �a

]

further away from 1/2 than Pr
[
b · F = �a

]
. Therefore g ◦ F (x) = �a(x) is a

linear approximation that can be used in correlation attacks with the bias of
such approximation is equal to:

εg◦F =
∣
∣
∣
∣max
a∈F

n
2

Pr
(
g ◦ F = �a

)
− 1

2

∣
∣
∣
∣ =

1
2

max
a∈F

n
2

∣
∣
∣c
(
g ◦ F, �a

)∣∣
∣. (10)

In this work [17], Zhang and Chan define a new correlation value named the
maximum correlation by max

g∈B∗
m

cg◦F (a) = max
g∈B∗

m

c(g ◦ F, �a) and then they proved

the following theorem:

Theorem 1. (Theorem 4. in [17]). Let F be a function in Bn,m and g be a
function in Bm. For any a ∈ F

n
2 we have:

max
g∈B∗

m

cg◦F (a) ≤ 2m/2 max
b∈F

m
2

∣
∣
∣cF (a, b)

∣
∣
∣. (11)

This maximum correlation was later used by Carlet and Prouff in [6] to
define a new nonlinearity term called the unrestricted nonlinearity which was
soon further developed to a new term called the generalized nonlinearity [4].
The terms mentioned encompass today’s correlation study for the Boolean and
vectorial Boolean functions.

Further studies were developed during time to correlation analysis for
Boolean function such as [11] who improved the lower bound for the unre-
stricted and generalized nonlinearity. Several researchers studied the correlation
to improve and/or to evolve the correlation immunity for Boolean functions such
as [13], while many of them analyze Boolean function nonlinearity. It must be
mentioned that the linearity, the nonlinearity, the linear cryptanalysis and the
correlation attacks are all correlated, which means that improving one of them
directly affects others.

However, until now and to the best of our knowledge, no work had been
done before to complete the work of Zhang and Chan. All the works cited use
or approximate the methods of Zhang and Chan from different perspectives.

254 Y. Harmouch et al.

Since we believe that Zhang and Chan approximation is the key to improve the
correlation study for Boolean functions, this work attempts to complete, with
proofs and experiments, the maximum correlation by linking the correlation of
F , g and g ◦ F .

4 Aim and Motivation

Several works such as [4,5] state that “linear approximations based on composing
the vector output with any Boolean functions have higher bias than those based
on the usual correlation attack”. In this work, we present a counterexample of
some balanced S-boxes such as Γ1,Γ2 ∈ B8,8 with a Boolean function g ∈ B∗

8 ,
and we show that combining the output of these S-boxes with g do not increase
the bias but it actually decreases it. The method describing how Γ1 and Γ2 are
constructed is not mentioned in this work. Γ1 and Γ2 are illustrated in Appendix-
A while g is given by ∀x ∈ F

8
2, x = (x1, x2, x3, x4, x5, x6, x7, x8):

g(x) = x1x2 + x3x4 + x5x6 + x7x8 + x1x2x3x4 + x5x6x7x8.

The logic circuit of g is presented in Fig. 1.
Table 1 shows that εF > εg◦F for Ed Dawson S-box example, Γ1, Γ2 and

the 8 × 8 S-box used in the stream cipher Turing. This result contradicts the
statement that εF ≤ εg◦F for any g ∈ B∗

8 . Table 1 gives a clear evidence that “it
is not always true that composing F by any g increases the bias”.

This result is quite interesting because now we are certain that the set of all
the Boolean functions g ∈ B∗

m is combined of two subsets: the first subset does
not decreases the bias and the second subset decreases the bias. Therefore, the
search for the maximum correlation as defined by Zhang and Chan max

g∈B∗
m

c
(
g ◦

F, �a

)
will be now much faster because the search is going now to focus on the

Fig. 1. The logic circuit of the
boolean function g used to app-
roach F .

Table 1. εF and εg◦F calculated for multiple 8 ×
8 S-boxes. The column on the right indicates the
value of the input mask a for which the correlation
cg◦F is maximal. If there is more than one value of
a, we use a semicolon to separate the values.

S-box εF εg◦F a in Hex

AES 0,0625 0,1015 F4

GA2 [9] 0,0703 0,1016 1E

Kazymyrov [10] 0,0938 0,1016 ED

Ed Dawson [8] 0,1015 0,0937 6E;F4

Γ1 0,1328 0,0859 64

Γ2 0,1406 0,0896 42;4B;7F

Turing [14] 0,1328 0,0859 71;74;E9

An Improvement of Correlation Analysis for Vectorial Boolean Functions 255

first subset only i.e. the complexity time to find the maximum correlator will be
less than 22

m − 2.
In order to determine the first subset, we develop the walsh transformation

for g ◦F to get the condition for F and g for which εF ≤ εg◦F (see the following
section).

5 The Correlation Link Between F , g and g ◦ F

Here we present a Theorem giving the correlation link of g ◦ F to both F and g.

Theorem 2. Let F be any balanced function in Bn,m and let g bet any function
in B∗

m. The correlation cF (a, b) for F , cg(b) for g and cg◦F (a) for g ◦ F satisfy
∀a ∈ F

n
2 − {0} and ∀b ∈ F

m
2 − {0}:

1
2

(
cF (a, b) + cg(b)

)2
− 1 ≤ cg◦F (a) ≤ 1 − 1

2

(
cF (a, b) − cg(b)

)2
. (12)

In order to prove Theorem 2, Lemmas 1, 2 and 3 will be used.

Remark 1. If a = 0 in equation (12), then it does not involve the input x and if
b = 0, then the linear combination of F (x) is missing in cF (a, b), therefore, these
two cases are not useful for correlation attack.

Lemma 1. For any functions F ∈ Bn,m, g ∈ B∗
m and for any a ∈ F

n
2 and

b ∈ F
m
2 , we have:

Wg◦F (a) =
∑

x∈F
n
2

(−1)a·x+b·F (x)(−1)b·F (x)+g
(
F (x)
)
. (13)

Proof. According to (5), it is clear that

Wg◦F (a) =
∑

x∈F
n
2

(−1)a·x+b·F (x)(−1)b·F (x)+g
(
F (x)
)
(−1)−2b·F (x).

To any F (x) ∈ F
m
2 and b ∈ F

m
2 we have (−1)−2b·F (x) = 1, thus

Wg◦F (a) =
∑

x∈F
n
2

(−1)a·x+b·F (x)(−1)b·F (x)+g
(
F (x)
)
.

Lemma 2. For any balanced F ∈ Bn,m and for any g ∈ B∗
m, and for any a ∈ F

n
2

and b ∈ F
m
2 , we have:

1
2n+1

(
WF (a, b) + 2n−mWg(b)

)2

− 2n ≤ Wg◦F (a). (14)

256 Y. Harmouch et al.

Proof. Let AF : Fn
2 × F

m
2 × F

n
2 → Z and Ag : Fm

2 × F
m
2 → Z be

{
AF (a, b, x) = (−1)a·x+b·F (x),

Ag

(
b, F (x)

)
= (−1)b·F (x)+g

(
F (x)
)
.

Based on the remarkable identity-Square of an addition, we know that
∀ui, vi ∈ Z,

∑

i

uivi =
1
2

[
∑

i

(ui + vi)2 −
∑

i

u2
i −
∑

i

v2
i

]

.

According to Lemma 1, we have

Wg◦F (a) =
∑

x∈F
n
2

AF (a, b, x) × Ag

(
b, F (x)

)

=
1
2

⎡

⎣
∑

x∈F
n
2

(
AF (a, b, x) + Ag

(
b, F (x)

))2

−
∑

x∈F
n
2

AF (a, b, x)2 −
∑

x∈F
n
2

Ag

(
b, F (x)

)2
⎤

⎦ .

It is easy to see that

∑

x∈F
n
2

AF (a, b, x)2 =
∑

x∈F
n
2

Ag

(
b, F (x)

)2
=
∑

x∈F
n
2

1 = 2n,

hence

Wg◦F (a) =
1
2

∑

x∈F
n
2

(
AF (a, b, x) + Ag

(
b, F (x)

))2

−2n.

According the Cauchy-Schwarz inequality
(

n∑

i=1

ui

)2

=

(

1 ×
n∑

i=1

ui

)2

≤
(

n∑

i=1

12
)

×
(

n∑

i=1

u2
i

)

= n ×
(

n∑

i=1

u2
i

)

,

we can write

1
2n

⎛

⎝
∑

x∈F
n
2

(
AF (a, b, x) + Ag

(
b, F (x)

))
⎞

⎠

2

≤
∑

x∈F
n
2

(
AF (a, b, x)+Ag

(
b, F (x)

))2

.

By multiplying both sides of the inequality by 1/2 and subtracting 2n, we get

1
2n+1

(∑
x∈F

n
2

AF (a, b, x) +
∑

x∈F
n
2

Ag

(
b, F (x)

))2
− 2n ≤ 1

2
∑

x∈F
n
2

(
AF (a, b, x) + Ag

(
b, F (x)

))2

−2n.

Notice that the right side of the above inequality is Wg◦F (a). Thanks to the
balancedness of F we have

∑

x∈F
n
2

Ag

(
b, F (x)

)
= 2n−m

∑

z∈F
m
2

Ag(b, z),

An Improvement of Correlation Analysis for Vectorial Boolean Functions 257

with z = F (x) is a variable over F
m
2 . Thus

1
2n+1

⎛

⎝
∑

x∈F
n
2

AF (a, b, x) + 2n−m
∑

z∈F
m
2

Ag(b, z)

⎞

⎠

2

− 2n ≤ Wg◦F (a).

Notice that
∑

x∈F
n
2

AF (a, b, x) and
∑

Z∈F
m
2

Ag(b, z) are the Walsh transform for
F and the Walsh transform for g respectively. Therefore

1
2n+1

(
WF (a, b) + 2n−mWg(b)

)2
− 2n ≤ Wg◦F (a).

Lemma 3. For any balanced F ∈ Bn,m and g ∈ B∗
m, and for any a ∈ F

n
2 and

b ∈ F
m
2 , we have:

Wg◦F (a) ≤ 2n − 1
2n+1

(
WF (a, b) − 2n−mWg(b)

)2

. (15)

Proof. This inequality can be easily found following the same steps in the pre-
vious proof of Lemma 2 with the use of the remarkable identity-Square of a
subtraction ∀ui, vi ∈ Z

∑

i

uivi = −1
2

[
∑

i

(ui − vi)2 −
∑

i

u2
i −
∑

i

v2
i

]

.

Lemma 2 and 3 reveal that the Walsh transform of approximating F by g is
linked to a simple addition or subtraction of the Walsh transform for F and the
Walsh transform for g.

The Proof of Theorem 2 is easily obtained by multiplying the two sides of
Lemma 2 and 3 by 2−n and with the use of (6) and (8). Since Theorem 2 is valid
for any b ∈ F

m
2 , the quantity cg◦F (a) is tightly bounded by :

1
2

max
b

(
cF (a, b) + cg(b)

)2
− 1 ≤ cg◦F (a) ≤ 1 − 1

2
max

b

(
cF (a, b) − cg(b)

)2
. (16)

The inequalities in (16) can become equalities by considering the case where
F and g are affine.

Example 1. Let x ∈ F
8
2, x = (x1, x2, x3, x4, x5, x6, x7, x8) with xi ∈ F2 and

b ∈ F
8
2. For F ∈ B8,8 and g ∈ B∗

8 such that F (x) = x + e (e ∈ F
8
2) and

g(x) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8. For a given a ∈ F
8
2 (a = 28 − 1),

we have :

1
2 maxb

(
cF (255, b) + cg(b)

)2
− 1 = cg◦F (255) = 1 − 1

2 maxb

(
cF (255, b) − cg(b)

)2
= ±1.

258 Y. Harmouch et al.

6 The Correlation Analysis

Theorem 2 provides a useful formula for determining the subset that maximizes
the bias. We denote such subset by B+

m(F) (B+
m(F) ⊂ B∗

m). Theorem 2 helps also
to determine the probability of finding a function g that maximizes the bias for
F and determines where the maximum correlation for g ◦ F is reached.

Definition 1. The set of F -linearizer functions is defined by :

g is an F -linearizer ⇔ {g ∈ B∗
m| εF ≤ εg◦F }.

Theorem 3. Let F be any balanced function in Bn,m. If g is an F -linearizer,
then for any b ∈ F

m
2 − {0}, the correlations cF and cg satisfy :

∣
∣cg(b)

∣
∣ ≤ min

{

1,

∣
∣
∣
∣2

√(1
2

− εF

)
− min

a∈F
n
2 −{0}

∣
∣cF (a, b)

∣
∣
∣
∣
∣
∣

}

. (17)

Proof. Theorem 2 gives:

−
(

1 − 1
2

(
cF (a, b) + cg(b)

)2)
≤ cg◦F (a) ≤ 1 − 1

2

(
cF (a, b) − cg(b)

)2
.

That is to say:

0 ≤ ∣∣cg◦F (a)
∣
∣ ≤ max

{
1 − 1

2

(
cF (a, b) − cg(b)

)2
, 1 − 1

2

(
cF (a, b) + cg(b)

)2}
.

The function g is an F -linearizer, therefore max
a,b

∣
∣cF (a, b)

∣
∣ ≤ max

a

∣
∣cg◦F (a)

∣
∣, hence

max
a,b

∣
∣cF (a, b)

∣
∣ ≤ max

a
max

{
1 − 1

2

(
cF (a, b) − cg(b)

)2
, 1 − 1

2

(
cF (a, b) + cg(b)

)2}

≤ max max
a

{
1 − 1

2

(
cF (a, b) − cg(b)

)2
, 1 − 1

2

(
cF (a, b) + cg(b)

)2}

≤ max
{

1 − 1
2

min
a

(
cF (a, b) − cg(b)

)2
, 1 − 1

2
min

a

(
cF (a, b) + cg(b)

)2}
.

This inequality gives, according to the above maximum,

min
a

∣
∣
∣cF (a, b) ± cg(b)

∣
∣
∣ ≤
√

2
(

1 − max
a,b

∣
∣cF (a, b)

∣
∣
)

,

with ± denotes either + or −. Besides, it is easy to see that
⎧
⎪⎨

⎪⎩

mina

∣
∣cF (a, b)

∣
∣− ∣∣cg(b)

∣
∣ ≤ mina

∣
∣cF (a, b) − cg(b)

∣
∣, (∗)

mina

∣
∣cF (a, b) + cg(b)

∣
∣ = mina

∣
∣cF (a, b)

∣
∣+
∣
∣cg(b)

∣
∣, if cF (a, b) × cg(b) ≥ 0 (∗∗)

mina

∣
∣cF (a, b) + cg(b)

∣
∣ = mina

∣
∣
∣
∣
∣cF (a, b)

∣
∣− ∣∣cg(b)

∣
∣
∣
∣
∣ ≥ mina

∣
∣cF (a, b)

∣
∣− ∣∣cg(b)

∣
∣. if cF (a, b) × cg(b) < 0 (∗)

An Improvement of Correlation Analysis for Vectorial Boolean Functions 259

As a result, (*) gives

min
a

∣
∣cF (a, b)

∣
∣−
√

2
(
1 − max

a,b

∣
∣cF (a, b)

∣
∣
)

≤ ∣∣cg(b)
∣
∣,

while (**) gives

∣
∣cg(b)

∣
∣ ≤
√

2
(
1 − max

a,b

∣
∣cF (a, b)

∣
∣
)

− min
a

∣
∣cF (a, b)

∣
∣.

Thus we deduce that

∣
∣cg(b)

∣
∣ ≤
∣
∣
∣
∣

√
2
(
1 − max

a,b

∣
∣cF (a, b)

∣
∣
)

− min
a

∣
∣cF (a, b)

∣
∣
∣
∣
∣
∣.

Example 2. Let F ∈ Bn,m be any balanced function. Theorem 3 says that if g is
an F -linearizer then :

1. In case of F is a perfect nonlinear function PN (n ≥ 2m), the equation (17)
gives

max
b∈F

m
2 −{0}

∣
∣
∣Wg(b)

∣
∣
∣ ≤ 2m−n/2

[
2(n+1)/2

√
1 − 2−n/2 − 1

]
. (18)

It is easy to see that the following inequality holds for n > 4

2n/2 ≤ [2(n+1)/2
√

1 − 2−n/2 − 1
]
.

Therefore the upper bound in (18) is always minimized by 2m, and since the
maximum that can have a Walsh coefficient for any Boolean function g is 2m,
we deduce that

max
b∈F

m
2

∣
∣
∣WPN-linearizer(b)

∣
∣
∣ ≤ 2m,

which means that all the Boolean functions g ∈ B∗
m are an PN-linearizer. If

2 < n ≤ 4 then
max
b∈F

m
2

∣
∣
∣WPN-linearizer(b)

∣
∣
∣ ≤ 2m−0,352.

2. In case of F is an affine function, the Eq. (17) gives

max
b∈F

m
2 −{0}

∣
∣
∣Wg(b)

∣
∣
∣ ≤ 2m−n max

b∈F
m
2 −{0}

min
a∈F

n
2 −{0}

|WF (a, b)|.

In general for n ≥ m, the quantity in (19) is small, which implies that only
few Boolean functions can be affine-linearizer.

2m−n max
b∈F

m
2 −{0}

min
a∈F

n
2 −{0}

|WF (a, b)|. (19)

As it is well known that if g ◦ F and F are linear, then g is linear. Therefore
we deduce that only affine functions can be affine-linearizer.

260 Y. Harmouch et al.

The aim of these two examples is to show that the number of F -linearizers
decreases when the linearity of F increases. This can be justified by studying
the Hamming distance of g. In terms of Hamming distance, Theorem 3 shows
that if g is an F -linearizer, then the minimum of Hamming distance between g
and the set of all affine functions satisfy (for a ∈ F

n
2 , b ∈ F

m
2):

min
b

d(g, �b) ≥ 2m − 2m−n
(
max
a,b

d(b · F, �a) + 2n/2
√

min
a,b

d(b · F, �a)
)
. (20)

Let us denote the quantity
(

max
a,b

d(b · F, �a) + 2n/2
√

mina,b d(b · F, �a)
)

by αF .

Then (20) can be written as :

2m − 2m−nαF ≤ min
b

d(g, �b) ≤ 2m, with αF ≥ 0. (21)

The quantity αF is a positive variable describing the linearity of F , i.e., the
increase of αF implies a decrease in the linearity of F and vice versa. It is easy
to see from (21) that the range for min

b
d(g, �b) increases as αF increases, which

means that the number of F -linearizers increases as the linearity of F decreases.
This explains the results obtained in the two previous examples.

By using Theorems 2 and 3, we can determine according to the linearity of
any balanced function F , the approximate number of F -linearizers denoted by
#B+

m(F) and the range for the F -linearizers bias denoted by
. This will decrease
the search time of the maximum correlator defined by Zhang and Chan since
#B+

m(F) < 22
m − 2. Table 2 illustrates, based on εF , the approximated number

of #B+
m(F) and Prg that denotes the probability of finding an F -linearizer.

Table 2. The number of F -linearizer denoted by #B+
m(F), the bias-range for F -

linearizers denoted by � and the probability Prg of finding a boolean function g ∈ B∗
m

that is an F -linearizer.

εF � Prg #B+
m(F)

0 0,5 0,8325 0,8325×(22m − 2)

0,05 0,5 0,7275 0,7275×(22m − 2)

0,1 0,5 0,6125 0,6125×(22m − 2)

0,15 0,4416 0,4921 0,4921×(22m − 2)

0,2 0,3477 0,3805 0,3805×(22m − 2)

0,25 0,25 0,2806 0,2806×(22m − 2)

0,3 0,1472 0,1935 0,1935×(22m − 2)

0,35 0,0372 0,1201 0,1201×(22m − 2)

0,4 0,08377 0,0615 0,0615×(22m − 2)

0,45 0,22639 0,0199 0,0199×(22m − 2)

0,5 0 0 0

An Improvement of Correlation Analysis for Vectorial Boolean Functions 261

Note 1. The computing of Prg is explained in Appendix-B.

Theorem 4. Let F be any balanced function in Bn,m with a ∈ F
n
2 − {0} and

b ∈ F
m
2 − {0} are the input mask and the output mask, respectively. Let h ∈ B∗

m

be the maximum correlator for F to �a = a · x. Then

max
g∈B∗

m,a

∣
∣cg◦F (a)

∣
∣ = max

a

∣
∣ch◦F (a)

∣
∣ ≤ 1 − γ

2
. (22)

Moreover, the bias for this maximum correlator satisfies

εh ≤ εF +
√

γ/2, (23)

with γ ∈ R
+ is given by

γ = min
(
min

a
max

b

(
cF (a, b) − ch(b)

)2
,min

a
max

b

(
cF (a, b) + ch(b)

)2)
.

Proof. Theorem 2 gives

maxa

∣
∣cg◦F (a)

∣
∣ ≤ max

{
1 − 1

2 mina maxb

(
cF (a, b) − cg(b)

)2
, 1 − 1

2 mina maxb

(
cF (a, b) + cg(b)

)2}
.

Let h ∈ B∗
m be the Boolean function that reaches the maximum for max

a

∣
∣cg◦F (a)

∣
∣

over g, i.e. h is the maximum correlator (max
g,a

∣
∣cg◦F (a)

∣
∣ = max

a

∣
∣ch◦F (a)

∣
∣). Hence

maxa

∣
∣ch◦F (a)

∣
∣ ≤ max

{
1 − 1

2 mina maxb

(
cF (a, b) − ch(b)

)2
, 1 − 1

2 mina maxb

(
cF (a, b) + ch(b)

)2}
.

Furthermore, let δb ∈ R
+ and θb ∈ R

+ be two variables that present the mini-
mum over a ∈ F

n
2 for

(
cF (a, b)−ch(b)

)2 and
(
cF (a, b)+ch(b)

)2 respectively. Also,
let γ ∈ R

+ be the minimum between max
b

δb and max
b

θb

(
γ = min{max

b
δb,max

b
θb}
)
.

We have

min
a

(
cF (a, b) − ch(b)

)2 = δb =⇒ min
a

max
b

(
cF (a, b) − ch(b)

)2 = max
b

δb.

min
a

(
cF (a, b) + ch(b)

)2 = θb =⇒ min
a

max
b

(
cF (a, b) + ch(b)

)2 = max
b

θb.

Therefore
max
g,a

∣
∣cg◦F (a)

∣
∣ = max

a

∣
∣ch◦F (a)

∣
∣ ≤ 1 − γ

2
.

Besides, we have
√

δb = min
a

∣
∣ch(b) − cF (a, b)

∣
∣ ≥ ∣∣ch(b)

∣
∣− max

a

∣
∣cF (a, b)

∣
∣. (24)

√
θb = mina

∣
∣ch(b) + cF (a, b)

∣
∣ = mina

∣
∣ch(b) − (−cF (a, b))

∣
∣

≥ ∣∣ch(b)
∣
∣− maxa

∣
∣−cF (a, b)

∣
∣

≥ ∣∣ch(b)
∣
∣− maxa

∣
∣cF (a, b)

∣
∣.

(25)

262 Y. Harmouch et al.

From (24) we have

max
b

∣
∣ch(b)

∣
∣ ≤ max

a,b

∣
∣cF (a, b)

∣
∣+ max

b

√
δb.

From (25) we have

max
b

∣
∣ch(b)

∣
∣ ≤ max

a,b

∣
∣cF (a, b)

∣
∣+ max

b

√
θb.

Hence

max
b

∣
∣ch(b)

∣
∣ ≤ max

a,b

∣
∣cF (a, b)

∣
∣+ min

{
max

b

√
δb,max

b

√
θb

}
= max

a,b

∣
∣cF (a, b)

∣
∣+

√
γ.

Thus
εh ≤ εF +

√
γ/2.

Corollary 1. Let F be any balanced function in Bn,m and let h ∈ B∗
m be the

maximum correlator for F to �a = a · x with (a �= 0). Then

εh◦F ≤ 1
2

− (εh − εF)2. (26)

Proof. Equation (23) gives

(εh − εF)2 ≤ γ/4,

hence (22) can be written as

maxa

∣
∣ch◦F (a)

∣
∣

2
= εh◦F ≤ 1

2
− γ

4
≤ 1

2
− (εh − εF)2.

Corollary 1 shows that the correlation for g ◦ F is maximal only when the
bias of g is equal to the bias of F . During crypto 2000, Zhang and Chan gave
the algebraic equation to determine the maximum correlator. In this work, we
have succeeded in showing that the maximum correlator is the one where γ is
the smallest, that is, the one closest to zero. So, the maximum correlator is the
Boolean function with the bias closest to that of F .

7 A Discussion About the Maximum Correlator

The approximation of F by g does increase the bias in some cases which was
illustrated in this work. However, even by determining the number of Boolean
function in B+

m(F), the number of test required to find the maximum correlator
is high. For instance, if g ∈ B∗

4 and F ∈ B4,4 with εF = 0.2 the approximate
number of Boolean function in B+

4 (F) is 21476. By increasing m linearly, the
approximate number of Boolean function in B+

m(F) increases exponentially.
During their work, Zhang and Chan gave a method for calculating the max-

imum correlator. Here we recall the Theorem as defined by Zhang and Chan to
compute the maximum correlator.

An Improvement of Correlation Analysis for Vectorial Boolean Functions 263

Theorem 5. (Theorem 1. in [17]). Let F be a function in Bn,m and let X
be a uniformly distributed variable over F

n
2 . For a ∈ F

n
2 and z ∈ F

m
2 , let ea(z)

denote the conditional probability difference between a · X = 1 and a · X = 0
under the condition F (X) = z, namely:

ea(z) = Pr(a · X = 1|F (X) = z) − Pr(a · X = 0|F (X) = z). (27)

Then
max
g∈B∗

m

cg◦F (a) = Σz∈F
m
2

∣
∣ea(z)

∣
∣Pr(F (X) = z). (28)

Moreover, the function g(z) = sgn(ea(z)) is the maximum correlator of F to �a

where

sgn(x) =

⎧
⎨

⎩

1, x > 0,
0 or 1, x = 0,
0, x < 0.

Now, let us begin the analysis of Theorem 5. When F is a permutation, (27)
can be written as :

ea(z) = Pr(a · F−1(z) = 1|F (X) = z) − Pr(a · F−1(z) = 0|F (X) = z),

or better :
ea(z) = Pr(a · F−1(z) = 1) − Pr(a · F−1(z) = 0).

F is a bijective function, hence the output of the conditional probability differ-
ence ea(z) has only two values {1,-1}. This means that g can be written as:

g(z) = a · F−1(z). (29)

Since
∣
∣ea(z)| = 1 to any z and a, (28) gives

max
g∈B∗

m

cg◦F (a) = Σz∈F
m
2

Pr(F (X) = z) = 1.

Our Theorem 4 showed that max
a,g

∣
∣cg◦F (a)

∣
∣ ≤ 1−γ/2, while Theorem 5 shows that

max
a,g

cg◦F (a) = 1 which means that γ = 0 when F is a permutation. Moreover, it

is known that bijective functions (n = m) and their inverse have the same bias
[3], hence the bias for the maximum correlator in (29) is the same as F . This
result is consistent with Corollary 1 (the bias for maximum correlator is equal
to εF because εh◦F = 1/2). As a result, Theorems 4, 5 and Corollary 1 show
that the permutation function is weak in front of Zhang and Chan attack.

In case of F ∈ Bn,m is a surjective function, the conditional probability
difference may have a null output i.e. ea(z) = 0. Therefore g(z) will be equal
either to 0 or 1, because the condition for sgn(0) is not clearly fixed. If n and m
are big, then ea(z) = 0 will occur many times. It is true that the choice of 0 or
1 does not affect the construction of the maximum correlator of F to �a as the
conditional probability is balanced,

ea(z) = 0 ⇔ Pr(a · X = 1|X = F−1(z)) = Pr(a · X = 0|X = F−1(z)),

264 Y. Harmouch et al.

but when F is studied to all �a (the maximum is over a ∈ F
n
2 − {0}), then the

choice becomes relevant because it plays an important role in εg.
Let assume that the function F ∈ Bn,m is a surjective balanced function and

ea(z) = 0 occur many/few times. As a result, (28) can be written as

max
g∈B∗

m

cg◦F (a) = 2m−nΣz∈F
m
2

∣
∣ea(z)

∣
∣, (30)

because Pr(F (X) = z) = 2m−n. Since ea(z) = 0 occurs, then (30) gives

max
g∈B∗

m

cg◦F (a) < 1. (31)

Therefore
max
g∈B∗

m

εg◦F �= 1/2. (32)

That is, according to (26)

Δ = min
g∈B∗

m

(εg − εF), (33)

with Δ ∈ R is a non-zero variable (Δ �= 0). Therefore, the maximum correlator
is only the function that has a bias close to εF by Δ (close in the sense of
greater or smaller than εF by Δ). Based on an experimental calculation (see
the example below), the choice of the sign function changes εg, especially when
the constructed functions g are quite different. For instance and by randomly
placing 1 and 0 when ea(z) = 0, we got several functions g that have a different
bias, hence the difficulty to figure out the good maximum correlator.

By increasing the number of ea(z) = 0, our work will help to determine the
exact maximum correlator, since it is proved in this paper that the bias for the
maximum correlator is the closest to εF .

Example 3. Let x and z be a random variable over F
8
2 and F

4
2 respectively. We

have x = (x1, x2, x3, x4, x5, x6, x7, x8) with xi ∈ F2 and z = (z1, z2, z3, z4) with
zi ∈ F2. Let us define the surjective balanced function F ∈ B8,4 as F (x) =

z = H
(
AES(x)

)
with AES(x) is the output of AES S-box for the input x and

H ∈ B8,4 is a surjective balanced function given by :

H(x) = (x2, x3, x4, x1) + (x8, x5, x6, x7) = (x2 + x8, x3 + x5, x4 + x6, x1 + x7).

In the Table 3, we show according to each input mask a ∈ F
8
2 − {0}, the

number of times that the conditional probability difference ea(Z), defined in
Theorem 5, is zero. For instance, for a = 0xFC we have ea(z) is null seven
times, i.e. seven variable z from F

4
2 gave ea(z) = 0, which yields to 27 possible

maximum correlators for F to �0xFC = (0xFC) ·x. For the function F defined in
this example (F has the same nonlinearity as AES which is 112), the method of
Zhang and Chan gives many Boolean functions g ∈ B∗

4 (to all a ∈ F
8
2−{0}). Based

on experimental calculations after randomly placing 0 and 1 when ea(Z) = 0, the
Boolean functions g constructed showed a different εg. If we change the function
F : Fn

2 → F
m
2 (especially when the number n increases), the obtained number of

maximum correlators can be increased even more, which makes our Corollary 1
very useful, since it allows us to determine with certainty the correct maximum
correlator max

a,g∈B∗
m

cg◦F (a) (it is the one that has the closest bias to that of F).

An Improvement of Correlation Analysis for Vectorial Boolean Functions 265

Table 3. The count of ea(z) = 0 to each a ∈ F
8
2 − {0}(a in Hex format).

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - 2 3 4 4 1 2 2 1 4 4 2 2 3 6 6

1 2 4 3 2 4 1 1 2 4 2 6 5 4 7 3 3

2 1 4 1 4 3 5 6 5 2 4 2 2 4 3 2 1

3 3 2 3 3 4 2 2 5 5 5 3 2 4 4 4 6

4 1 3 3 2 5 4 1 4 1 3 3 3 5 4 2 5

5 3 7 5 3 1 3 3 3 3 3 1 3 2 2 2 2

6 1 1 1 1 1 4 3 3 7 1 2 4 3 1 3 4

7 4 2 5 3 4 2 3 3 4 6 3 3 1 3 4 4

8 3 5 7 4 2 1 4 5 3 2 3 2 2 3 3 2

9 0 4 3 3 2 2 4 3 1 4 0 3 0 3 3 5

A 4 4 3 2 4 6 4 3 5 5 1 4 5 2 4 3

B 1 4 3 3 4 2 3 3 5 2 5 1 3 4 2 4

C 4 3 2 6 5 3 5 4 4 3 4 1 6 4 3 3

D 2 5 5 5 4 3 3 2 3 0 5 1 1 3 2 2

E 2 2 1 0 3 5 3 3 4 2 2 4 0 3 1 3

F 6 3 3 5 2 1 3 6 5 4 5 6 7 2 5 2

8 Conclusion

The current paper analyzed Zhang and Chan method (combining F by g) to
maximize the bias. In this work, we showed that the statement “for any g, the
bias for g ◦ F is bigger than the bias of F” is not correct. Moreover, our proofs
showed that the maximum correlator that is the function g that reaches the
maximum bias for g ◦ F has the closest bias to that of F . In addition, the anal-
ysis of the maximum correlator presented by Zhang and Chan showed that the
computing method coincide with our results when F is a permutation. When
F is a surjective function, the method of constructing the maximum correla-
tor can generate several functions. Our experience has shown that the functions
obtained by the proposed method can have different bias. Accordingly, our work
will help to determine the exact maximum correlator by removing all the com-
puted functions g which have a bias far from εF .

A Appendix-A

See Tables 4 and 5

• Γ1

266 Y. Harmouch et al.

Table 4. Hexadecimal Representation for Γ1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 6B 72 36 BD BB AD 1F CC FB 52 89 B4 DF EF 63 08

1 70 80 56 A0 1C 48 9B A9 1B C0 32 A3 B1 03 28 58

2 C3 14 8B DE 5E 82 88 EE 33 59 27 78 9C B2 77 30

3 E4 16 4C 86 AE A7 AB E1 F0 B9 8C 17 F3 E9 99 F1

4 A6 EC 25 D7 CE A8 35 AF DB 2D AA D5 DA 2B 7B D4

5 3E E8 53 6E 7F D3 F6 29 38 40 8E 3B D9 BF 57 C5

6 55 04 A1 01 96 A2 4D 66 5A CB 49 94 FF 07 46 1E

7 CF AC 09 98 B3 A5 75 06 0E 3A 05 1A 91 CA 12 20

8 B5 E6 24 54 44 6C A4 19 43 65 23 8F DC FA 69 92

9 6D 71 90 74 0C D8 D1 DD F7 93 9E C7 D2 0F 61 60

A B0 ED 2C 2F C6 13 81 EB BA 18 4F 34 F2 F8 7C 4E

B 73 8D F5 F9 6A F4 51 8A 9F E3 64 D6 E7 CD E2 50

C 9A 4A 11 4B 5B BE FC C2 76 BC FD 0D 7D 0B 83 02

D 3D 79 E0 7E D0 FE E5 37 21 5D 95 97 6F 22 5C 5F

E 00 3F 2A B7 15 85 9D EA 1D 39 C1 2E B8 31 62 87

F 42 47 B6 68 41 C4 26 7A 84 C8 C9 0A 3C 45 10 67

• Γ2

Table 5. Hexadecimal Representation for Γ2

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 4F F0 16 B8 11 62 D4 EC 89 33 41 4E C7 40 A8 93

1 67 34 82 D6 7B 69 94 0A AF D1 21 E7 A0 3E EF F3

2 8C FE F7 6C 1B 90 BC 70 39 07 C8 C0 D0 84 BD 17

3 68 5D A9 87 0E 5C F5 FB 77 10 AA 47 0D 6D 53 65

4 61 27 02 3C 25 66 C9 79 DF F6 B4 A6 5F BA 9D 2B

5 97 1C 9E 72 A1 06 D3 3B 74 83 DC C5 9A 7D AB AD

6 55 7F 49 78 43 C1 2D 1A A7 60 3A E8 D5 1E E0 73

7 F4 EB BB 8A 05 6A E2 63 92 00 80 BF F1 4C 9C 9F

8 75 6B 35 A3 9B 4A 3F 5A 7A 38 85 CE 6E B5 D9 DD

9 96 B0 A2 EE 24 D8 AC 15 B6 DA C6 E9 4D 64 2C 5B

A D2 98 FC 51 57 C3 8E 7C 30 B9 0B 42 88 8D 13 59

B 6F 4B 20 DB F9 D7 DE 37 14 91 E6 EA 45 23 52 09

C C2 3D 44 26 04 03 99 56 2E 46 32 B1 CF 36 E3 ED

D FF 31 01 E5 AE 29 B2 86 B3 FD 0F 76 BE B7 54 A4

E 28 1D 1F 5E 0C C4 E4 A5 22 71 E1 CD 8F CC 58 FA

F 2F 50 8B 19 2A 95 81 F8 CB 12 48 08 CA 7E F2 18

An Improvement of Correlation Analysis for Vectorial Boolean Functions 267

B Appendix-B

As Theorem 2 is linked to max
b

(cF (a, b)±cg(b))2, we fix max
b

cF (a, b) and we vary

cg(b). The y-axis indicates cg◦F (a) and the x-axis indicates max
b

cg(b). By com-

puting the white area surface (|εF | ≤ |εg◦F |), the probability Prg is determined
as the ratio of white area surface over the rectangle area surface (Fig. 2).

C
g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= -1

(a) ϕ = −1 or ϕ = 1
C

g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= -0.8

(b) ϕ = −0.8

C
g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= -0.6

(c) ϕ = −06
C

g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= -0.4

(d) ϕ = −0.4

C
g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= -0.2

(e) ϕ = −0.2
C

g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= 0

(f) ϕ = 0

C
g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= 0.2

(g) ϕ = 0.2
C

g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= 0.4

(h) ϕ = 0.4

C
g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= 0.6

(i) ϕ = 0.6
C

g

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
go

F

-1

-0.5

0

0.5

1
C

F
= 0.8

(j) ϕ = 0.8

Fig. 2. Computing Prg methods where ϕ denotes the fixed max
b

cF (a, b), i.e.

max
b

(cF (a, b) ± cg(b))
2 = max

b
(ϕ ± cg(b))

2

268 Y. Harmouch et al.

References

1. Braeken, A.: Cryptographic properties of boolean functions and S-boxes. Ph.D.
thesis, phd thesis-2006 (2006)

2. Canteaut, A., Naya-Plasencia, M.: Correlation attacks on combination generators.
Crypt. Commun. 4(3–4), 147–171 (2012)

3. Carlet, C.: Boolean methods and models, ch. boolean functions for cryptography
and error correcting codes (2009)

4. Carlet, Claude, Khoo, Khoongming, Lim, Chu-Wee, Loe, Chuan-Wen: Generalized
correlation analysis of vectorial boolean functions. In: Biryukov, Alex (ed.) FSE
2007. LNCS, vol. 4593, pp. 382–398. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74619-5 24

5. Carlet, C., Khoo, K., Lim, C.W., Loe, C.W.: On an improved correlation analysis
of stream ciphers using multi-output boolean functions and the related generalized
notion of nonlinearity. Adv. Math. Commun. 2(2), 201 (2008)

6. Carlet, Claude, Prouff, Emmanuel: On a new notion of nonlinearity relevant to
multi-output pseudo-random generators. In: Matsui, Mitsuru, Zuccherato, Robert
J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 291–305. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24654-1 21

7. Daemen, Joan, Govaerts, René, Vandewalle, Joos: Correlation matrices. In: Pre-
neel, Bart (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60590-8 21

8. Fuller, J., Millan, W., Dawson, E.: Multi-objective optimisation of bijective s-boxes.
New Gener. Comput. 23(3), 201–218 (2005)

9. Ivanov, G., Nikolov, N., Nikova, S.: Reversed genetic algorithms for generation
of bijective s-boxes with good cryptographic properties. Crypt. Commun. 8(2),
247–276 (2016)

10. Kazymyrov, O., Kazymyrova, V., Oliynykov, R.: A method for generation of high-
nonlinear s-boxes based on gradient descent. IACR Cryptology ePrint Arch. 2013,
578 (2013)

11. Khoo, K., Lim, C.W., Gong, G.: Highly nonlinear balanced s-boxes with improved
bound on unrestricted and generalized nonlinearity. Appl. Algebra Eng., Commun.
Comput. 19(4), 323–338 (2008)

12. Nyberg, Kaisa: S-boxes and round functions with controllable linearity and differ-
ential uniformity. In: Preneel, Bart (ed.) FSE 1994. LNCS, vol. 1008, pp. 111–130.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8 9

13. Picek, S., Carlet, C., Jakobovic, D., Miller, J.F., Batina, L.: Correlation immunity
of boolean functions: an evolutionary algorithms perspective. In: Proceedings of
the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1095–
1102. ACM (2015)

14. Rose, Gregory G., Hawkes, Philip: Turing: a fast stream cipher. In: Johansson,
Thomas (ed.) FSE 2003. LNCS, vol. 2887, pp. 290–306. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39887-5 22

15. Rueppel, R.A.: Stream ciphers, in\contemporary cryptology: the science of infor-
mation integrity. Simmons, G.J. (ed.) (1991)

https://doi.org/10.1007/978-3-540-74619-5_24
https://doi.org/10.1007/978-3-540-74619-5_24
https://doi.org/10.1007/978-3-540-24654-1_21
https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1007/3-540-60590-8_9
https://doi.org/10.1007/978-3-540-39887-5_22

An Improvement of Correlation Analysis for Vectorial Boolean Functions 269

16. Tarannikov, Yuriy, Korolev, Peter, Botev, Anton: Autocorrelation coefficients and
correlation immunity of boolean functions. In: Boyd, Colin (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 460–479. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45682-1 27

17. Zhang, Muxiang, Chan, Agnes: Maximum correlation analysis of nonlinear s-boxes
in stream ciphers. In: Bellare, Mihir (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
501–514. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 31

https://doi.org/10.1007/3-540-45682-1_27
https://doi.org/10.1007/3-540-45682-1_27
https://doi.org/10.1007/3-540-44598-6_31

Block Ciphers

On MILP-Based Automatic Search
for Differential Trails Through Modular

Additions with Application to Bel-T

Muhammad ElSheikh, Ahmed Abdelkhalek, and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

youssef@ciise.concordia.ca

Abstract. Using modular addition as a source of nonlinearity is fre-
quently used in many symmetric-key structures such as ARX and Lai–
Massey schemes. At FSE’16, Fu et al. proposed a Mixed Integer Linear
Programming (MILP)-based method to handle the propagation of differ-
ential trails through modular additions assuming that the two inputs to
the modular addition and the consecutive rounds are independent. How-
ever, this assumption does not necessarily hold. In this paper, we study
the propagation of the XOR difference through the modular addition at
the bit level and show the effect of the carry bit. Then, we propose a more
accurate MILP model to describe the differential propagation through
the modular addition taking into account the dependency between the
consecutive modular additions. The proposed MILP model is utilized to
launch a differential attack against Bel-T-256, which is a member of the
Bel-T block cipher family that has been adopted recently as a national
standard of the Republic of Belarus. In particular, we employ the con-
cept of partial Differential Distribution Table to model the 8-bit S-Box
of Bel-T using a MILP approach in order to automate finding a differen-
tial characteristic of the cipher. Then, we present a 4 1

7
-round (out of 8)

differential attack which utilizes a 3-round differential characteristic that
holds with probability 2−111. The data, time and memory complexities
of the attack are 2114 chosen plaintexts, 2237.14 4 1

7
-round encryptions,

and 2224 128-bit blocks, respectively.

Keywords: Differential cryptanalysis · MILP · Modular addition ·
ARX · Bel-T

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [4], is one
of the most powerful attacks that are used to evaluate the security of symmetric-
key primitives. For an n-bit primitive, the crucial step of the differential attack
is to find a distinguisher (ΔP → ΔC) where an XOR difference of two plaintexts
(ΔP) gives, after some rounds, another XOR difference (ΔC) with probability
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 273–296, 2019.
https://doi.org/10.1007/978-3-030-23696-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_14

274 M. ElSheikh et al.

higher than 2−n, independent of the secret key. Using this distinguisher, a key
recovery attack can be performed by appending (prepending) some rounds after
(before) the distinguisher and guessing the round keys.

Different optimization techniques such as Mixed Integer Linear Program-
ming (MILP) attracted the attention of many cryptanalysis researchers. The first
attempt to utilize MILP technique in symmetric-key cryptanalysis was developed
by Mouha et al. [17] in which they applied a MILP technique to prove security
bounds against both differential and linear cryptanalysis. Later, Cui et al. [6] pro-
posed a MILP model for both impossible differential and zero-correlation attacks.
Sasaki and Todo [19] developed a new search tool for impossible differential using
MILP. Recently, Xiang et al. [25] defined systematic rules for constructing inte-
gral distinguishers using MILP. Then, Sun et al. complemented this work by
handling ARX-based ciphers (modulo operations) [21] and ciphers with non-bit-
permutation linear layer [22]. One of the downsides of these MILP models was
the inability to efficiently describe the Difference Distribution Table (DDT) of
large (8-bit) S-boxes which was tackled by Abdelkhalek et al. [2]. Regarding
ARX-based block ciphers, Fu et al. [10] represented the conditions developed
by Lipmaa and Moriai [15] (hereafter referred to as Lipmaa’s conditions) by a
set of MILP constraints in order to automate the search for the best differential
trail through the modular addition. In this representation, the authors assume
that the two inputs to modular addition and the consecutive component of the
cipher’s round function are independent. However, this assumption is very often
not satisfied, especially with round functions that have two or more consecutive
modular operations, see [24]. In the same context, Leurent [14] provides a tool
based on finite state machines to automate the search for differential character-
istics through the modular addition considering the constraints due to several
consecutive bits of the modular addition inputs. However, the complexity of this
analysis is linear in the number of states, and the number of states can be expo-
nential in the size of the system, which according to the authors, makes this
approach suitable only to study systems with a limited number of states.

In this work, we revisit the conditions stated by Lipmaa and Moriai [15] to
verify the possibility of an XOR difference of two inputs of addition modulo 2n

to produce a specific XOR difference at the output. In particular, we deduce the
conditions on the bits of the inputs and the output of addition modulo 2n that
have to be satisfied in order to propagate an XOR difference of the inputs to
a particular XOR difference at the output. Using these conditions, we describe
some examples showing that using Lipmaa’s conditions with the independence
assumption between the consecutive components of a block cipher is not enough
to ensure the validity of the derived differential characteristic. To address this
problem, we propose a new MILP model considering the dependency between
two or more successive modular additions.

To illustrate the effectiveness of our approach, we apply our method to attack
the block cipher Bel-T, which is a family of block ciphers that has been approved
as the national standard of the Republic of Belarus [1], formerly known by its
Russian name Belorussia. The Bel-T family includes three block ciphers, denoted

On MILP-Based Automatic Search for Differential Trails 275

as Bel-T-k, all of them have the same block size of 128 bits and a variable key
length (k) of 128, 192 or 256 bits. The designers of Bel-T combined a Lai-
Massey scheme [12] with a Feistel network [9] to build a complex round function
with 7 S-box layers per round. The round function is iterated 8 times to con-
struct the whole cipher. Concretely, we employ our MILP approach beside a
Hamming weight-based partial DDT to search for a differential distinguisher
for Bel-T. Then, we mount a 4 1

7 -round differential attack on round-reduced
Bel-T-256 which, up to our knowledge, is the best published attack against this
cipher in the single-key setting. Moreover, we show that the Bel-T block cipher
is not a Markov cipher [13] i.e., the validity of the differential characteristic
depends on the used secret key. In this context, we also provide a systematic
method to define the set of keys that can be attacked using our differential
characteristic.

Few cryptanalysis results on Bel-T block ciphers have been published includ-
ing fault-based attacks [11] and the related-key differential attack on round-
reduced Bel-T-256 [3]. Recently, ElSheikh et al. [8] presented two integral attacks
on (32

7 and 36
7)-round reduced Bel-T-256 in the single-key setting. It should be

noted that in the related-key differential attack presented in [3], the modular
addition is modeled using the method proposed by Fu et al. [10] with the inde-
pendency assumption. We verified the distinguisher presented in [3] and found it
to be invalid as it involves two modular additions that share the same input and
have conflicting condition. Table 1 contrasts our attack with the integral attacks
in [8].

The rest of this paper is organized as follows. In Sect. 2, we briefly revisit the
XOR differential characteristic of modular addition. The developed MILP-based
method, which is used to search for the differential characteristic, is explained
in Sect. 3. In Sect. 4, we describe how we apply the new MILP model to find a
differential distinguisher for Bel-T. Then, the details of our attack are presented
in Sect. 5. Finally, the paper is concluded in Sect. 6.

Table 1. Attack results on Bel-T-256

Model Attack #Rounds Data Time Memory Reference

Single Key Integral 3 2
7

213 2199.33 - [8]

3 6
7

233 2254.61 - [8]

Differential 4 1
7

2114 2237.14 2224 Sect. 5

2 XOR-Differential Characteristics of Modular Addition

Definition 1. Let α, β and γ be fixed n-bit XOR differences. The XOR-
differential probability (DP) of addition modulo 2n (xdp+) is the probability with
which α and β propagate to γ through the modular addition operation, computed
over all pairs of n-bit inputs (x,y):

xdp+(α, β → γ) = 2−2n × #{(x, y) : ((x ⊕ α) � (y ⊕ β)) ⊕ (x � y) = γ}.

276 M. ElSheikh et al.

Lipmaa and Moriai [15] stated the following two conditions that have to be
satisfied in order for the XOR input differences (α, β) to propagate to an output
difference (γ) through the addition modulo 2n:

1. The bit-wise XOR of the least significant bit of the inputs and output differ-
ences must be 0, i.e., α0 ⊕ β0 ⊕ γ0 = 0 which is equivalent to γ0 = α0 ⊕ β0.

2. If the three bits αi, βi, and γi are equal, then the XOR of the subsequent bits
αi+1, βi+1, and γi+1 must equal these bits as well, i.e., αi+1 ⊕ βi+1 ⊕ γi+1 =
αi = βi = γi for 0 ≤ i ≤ n − 2.

If these two conditions above are satisfied, then the probability of the differential
characteristic (xdp+) can be calculated as:

xdp+(α, β → γ) = 2− ∑n−2
i=0 ¬eq(αi,βi,γi)

where ¬eq is 0 when (αi, βi, γi) are the same, and 1 otherwise. By using these
conditions, we can determine if a differential characteristic (α, β → γ) is a valid
one or not. For example, the characteristic (α, β → γ) = (0001, 0001 → 0001) is
impossible because it breaks the first condition.

In the remaining of this section, we show our interpretation of these two
conditions by deriving the relationship between the input and output differences
at the bit level.

Let x = (xn−1, xn−2, . . . , x1, x0)1, y = (yn−1, yn−2, . . . , y1, y0), and z =
(zn−1, zn−2, . . . , z1, z0) be n-bit vectors where z = x� y. Then, zi can be itera-
tively expressed as follows:

z0 = x0 ⊕ y0 ⊕ c0, c0 = 0, (1)
zi+1 = xi+1 ⊕ yi+1 ⊕ ci+1, ci+1 = xiyi ⊕ xici ⊕ yici ∀i = 0, 1, . . . , n − 2. (2)

It is obvious that the Lipmaa’s conditions are based on Eqs. (1) and (2).
Consider that we have two pairs (x,x∗) and (y,y∗) such that Δx = x ⊕ x∗,
and Δy = y ⊕ y∗. The relation between the XOR input differences Δx,Δy
and the XOR output difference Δz = z ⊕ z∗ can be derived as follows:
Let Δx = (δxn−1, δxn−2, . . . , δx1, δx0), Δy = (δyn−1, δyn−2, . . . , δy1, δy0), and
Δz = (δzn−1, δzn−2, . . . , δz1, δz0) be the XOR difference where δxi = xi ⊕ x∗

i ,
δyi = yi ⊕y∗

i , and δzi = zi ⊕z∗
i , respectively. The Lipmaa’s first condition comes

from Eq. (1) in which δz0 = δx0 ⊕ δy0 ⊕ δc0, but δc0 = 0 as c0 = c∗
0 = 0. There-

fore, for (Δx,Δy → Δz) to be a possible differential characteristic, the relation
(δz0 = δx0 ⊕ δy0) must be satisfied.

For given input and output differences at two successive bits ((δxi, δyi, δzi)
and (δxi+1, δyi+1, δzi+1)), we can use Eq. (2) to calculate the XOR difference at
the carry bit δci+1 using the following two equations:

δci+1 = ci+1 ⊕ c∗
i+1

= xiyi ⊕ xici ⊕ yici ⊕ x∗
i y

∗
i ⊕ x∗

i c
∗
i ⊕ y∗

i c∗
i , (3)

δci+1 = δzi+1 ⊕ δxi+1 ⊕ δyi+1 (4)

1 We use little-endian representation where x0 is the least significant bit.

On MILP-Based Automatic Search for Differential Trails 277

To have a valid differential characteristic, the value of δci+1 evaluated from these
two equations must be consistent. For example, if we have δxi = δyi = δzi = 0,
this implies that δci = 0, i.e., if x∗

i = xi, y∗
i = yi, z∗

i = zi then c∗
i = ci. Therefore,

from equation (3), δci+1 = 0. Consequently, δzi+1 ⊕δxi+1 ⊕δyi+1 = 0 must hold
with probability 1.

As another example, let us consider the following XOR differences: δxi =
δyi = 0, and δzi = 1, this implies that δci = 1, i.e., if x∗

i = xi, y∗
i = yi and

z∗
i = z̄i then c∗

i = c̄i where z̄i, c̄i are the bit-wise NOT of zi, ci, respectively. As
a result, the value of δci+1 from Eq. (3) will depend on the relation between xi

and yi as follows: δci+1 = xi ⊕ yi. If δci+1 is 0, then the condition xi = yi must
be satisfied. In this case, from Eq. (2), the output bit zi will equal to ci and the
carry bit ci+1 will be equal to xi.

By iterating over all possible values of δxi, δyi, δzi and δci+1, we can drive the
conditions on the bits xi, yi, zi, ci and ci+1 to have a valid differential character-
istic. We summarize these conditions in Table 2, in which the condition column
is divided into three sub-columns: the first one is the direct condition similar to
the one we derived in the previous examples. The second and third sub-columns
are the values of zi and ci+1 in case the direct condition, the first sub-column,
is satisfied.

It should be noted that Lipmaa’s second condition is specified by the first
two rows and last two rows of Table 2, i.e., if δxi, δyi and δzi are equal, then
δci+1 = δzi+1 ⊕ δxi+1 ⊕ δyi+1 has to equal them.

Fig. 1. Examples of incompatible conditions

2.1 Examples of Incompatible Conditions

In this section, we show some examples in which using Lipmaa’s conditions with
the independency assumption between the consecutive components of the block
cipher is not enough to ensure the validity of the differential characteristic.

Example 1. Consider the two cascaded modular operations shown in Fig. 1(I)
and the following XOR differences:

Δa = 00000001 g = a � b e = g � d

Δb = 00000000 Δg = 00001111 Δd = 00000000 Δe = 00001101

278 M. ElSheikh et al.

Table 2. Relation between δxi, δyi, δzi and δci+1

δzi δyi δxi δci δci+1 Condition

0 0 0 0 0 No condition

0 0 0 0 1 Invalid

0 0 1 1 0 xi = c̄i zi = ȳi ci+1 = yi = z̄i

0 0 1 1 1 xi = ci zi = yi ci+1 = xi = ci

0 1 0 1 0 yi = c̄i zi = x̄i ci+1 = xi = z̄i

0 1 0 1 1 yi = ci zi = xi ci+1 = yi = ci

0 1 1 0 0 xi = ȳi zi = c̄i ci+1 = ci = z̄i

0 1 1 0 1 xi = yi zi = ci ci+1 = xi = yi

1 0 0 1 0 xi = yi zi = ci ci+1 = xi = yi

1 0 0 1 1 xi = ȳi zi = c̄i ci+1 = ci = z̄i

1 0 1 0 0 yi = ci zi = xi ci+1 = yi = ci

1 0 1 0 1 yi = c̄i zi = x̄i ci+1 = xi = z̄i

1 1 0 0 0 xi = ci zi = yi ci+1 = xi = ci

1 1 0 0 1 xi = c̄i zi = ȳi ci+1 = yi = z̄i

1 1 1 1 0 Invalid

1 1 1 1 1 No condition

When looking at each modular addition operation individually, each one sat-
isfies the Lipmaa’s conditions and holds with probability 2−4. Assuming indepen-
dency, the whole differential characteristic should hold with probability 2−8, how-
ever, it is actually an impossible characteristic. To explain, using Table 2, we can
show that if the characteristic holds for the first operation, g = (gn−1, · · · , g1, g0)
will have a specific pattern (g1 = g0) due to the carry effect. On the other hand,
the characteristic will hold for the second modular addition if g has a specific
pattern (g1 = ḡ0), also due to the carry effect.

To further explain this carry effect, consider for the first operation the differ-
ences of the first three bits (δg0, δb0, δa0) = (1, 0, 1), (δg1, δb1, δa1) = (1, 0, 0) and
(δg2, δb2, δa2) = (1, 0, 0). We access Table 2 twice with (δzi, δyi, δxi, δci, δci+1)
= (δg0, δb0, δa0, δc0, δc1) = (1,0,1,0,1) where the carry δc0 = δg0⊕δb0⊕δa0 and
the carry δc1 = δg1⊕δb1⊕δa1, and with (δzi, δyi, δxi, δci, δci+1) = (δg1, δb1, δa1,
δc1, δc2) = (1,0,0,1,1) where the carry δc2 = δg2⊕δb2⊕δa2. From the first access,
we get the following condition:

b0 = c̄0 ⇒ g0 = ā0 and c1 = a0 = ḡ0 (5)

And from the second access, we get the condition:

a1 = b̄1 ⇒ g1 = c̄1 and c2 = c1 = ḡ1 (6)

From Eq. (5), if the characteristic is valid for the first bit, the carry bit c1 will
equal to ḡ0. Also, if the characteristic is valid for the second bit, the same carry

On MILP-Based Automatic Search for Differential Trails 279

bit c1 will have a relation with g1 as determined by equation (6). By combining
these two relations, we prove that the output g has the pattern (g1 = g0).

Using the same methodology, we can also prove that the characteristic will
hold for the second operation if the input g has the pattern (g1 = ḡ0) which
contradicts with the output of the first operation. All these patterns have also
been verified experimentally.

Example 2. Let us consider another ordering of two modular operations as
shown in Fig. 1(II) and the following XOR differences:

Δa = 00001111 g = a � b e = a � d

Δb = 00000001 Δg = 00010000 Δd = 00000001 Δe = 00000000

Again, the two operations individually satisfy the Lipmaa’s conditions.
However, the first operation requires the input a to be in a specific pattern
(a0 = a1 = a2 = a3) and the second operation requires the input a to be in
another contradicting pattern (a0 = a1 = a2 = ā3).

3 New MILP Model for Differential Characteristics of
Modular Addition

Fu et al. [10] represent Lipmaa’s conditions by a set of MILP constraints in order
to automate the search for the best differential trail through the modular addi-
tion. As explained in the previous section, Lipmaa’s conditions are not enough
to ensure the validity of the derived differential characteristic especially when
the block cipher structure has two or more consecutive modular additions. We
propose a more accurate MILP model to automate the search for differential
characteristics through modular additions taking into account the dependency
between two consecutive modular additions that put more constraints on the
values of input and output bits.

In order to represent the relation between two consecutive bits i and i − 1
on a variable x, we define a new variable called x⊕

i = xi ⊕ xi−1 which can take
a value of {0, 1, ?}; it is set to 0 if the condition xi = xi−1 is required and set to
1 if the condition xi = x̄i−1 is required. Also, x⊕

i can be kept undetermined (?)
which means it can be 0 or 1 if there is no restriction on the relation between xi

and xi−1.

Evaluation of (z⊕
i , y⊕

i , x⊕
i) for a Modular Addition. The relation between

the bits xi and xi−1, for the input x in a modular addition comes through the
carry bit ci. Therefore the variable x⊕

i can be evaluated as:

x⊕
i = (xi ⊕ ci) ⊕ (ci ⊕ xi−1)

where xi ⊕ ci and ci ⊕ xi−1 can take a value of {0, 1, ?} like x⊕
i and the bit-wise

XOR of ? with any value equals to ?. Based on Table 2, the values of (xi⊕ci) and

280 M. ElSheikh et al.

(ci ⊕ xi−1) reflect the situation where there are conditions that should be satis-
fied to get the XOR differences (δzi, δyi, δxi, δci+1) and (δzi−1, δyi−1, δxi−1, δci),
respectively. Thus, the values of (z⊕

i , y⊕
i , x⊕

i) will be determined based on the
XOR differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1). We develop Algorithm
1 to determine these values. The input of our proposed algorithm is a general-
purpose data structure dictionary D which is obtained by reformatting the valid
rows in Table 2 where the relations between the current bits (z, y, x) with the cur-
rent carry bit c and the subsequent carry bit c+1 are derived from the condition
column in Table 2 and indexed by the value of the XOR difference of these bits,
see Table 3. The output of Algorithm 1 is the truth table T of (z⊕

i , y⊕
i , x⊕

i) as a
function of the possible XOR differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1).
Out of 27 = 128 values of these bits, there are only 98 values that can be used
as possible differences. Table 4 shows part of the derived truth table T.

MILP Constraints for Modular Addition. To automate the process of the
search for the differential characteristic using MILP technique, we have to trans-
form the truth table T into a set of linear constraints. To this end, we represent
the rows of T combined with the value of ¬eq(δzi, δyi, δxi) as a set of points
in 11-dimensional binary vector space by substituting ? with all possible values
e.g., the row (0010010??1) associated with ¬eq(0, 0, 1) = 1 will be described
by 4 binary vectors: (00100100011, 00100100111, 00100101011, 00100101111).
After this step, we have 640 binary vectors which have a convex hull. We use
the inequality generator() function in Sage2 to obtain the H-Representation
which is a set of linear inequalities that describe the vectors of this convex hull.
We can use this set of inequalities as MILP constraints to present the possi-
ble XOR differences in two successive bits (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi) and
the carry of the third bits (δci+1) combined with the conditions on the value
of these bits represented as (z⊕

i , y⊕
i , x⊕

i). In our case, the number of generated
inequalities is 313, which is very large to be handled by any MILP optimizer.
Therefore, we employ the Greedy algorithm proposed by Sun et al. in [23] to
reduce this set to only 24 inequalities. In order to link the current bit with the
following bits, we encoded Eq. (4), which is a bit-wise XOR of three inputs and
one output, by 8 linear inequalities utilizing the truth table of the bit-wise XOR
and inequality generator() function in Sage. In this manner, we have repre-
sented the relation between three successive bits using 24 + 8 = 32 inequalities
and this representation is repeated for i = 1, 2, . . . , n − 2. In order to complete
the MILP modeling for the modular addition, we describe the condition on the
first bit (i = 0) δz0 ⊕δy0 ⊕δx0 = 0 associated with ¬eq(δz0, δy0, δx0) by 4 linear
inequalities. Accordingly, we can represent the difference propagation through
the addition modulo 2n taking into account the relation between the value of
two successive bits using 32 × (n − 2) + 4 inequalities. The objective function of
the MILP optimizer would minimize

∑n−2
i=0 ¬eq(δzi, δyi, δxi), which denotes the

log2 probability of the underlying characteristic.

2 http://www.sagemath.org/.

http://www.sagemath.org/

On MILP-Based Automatic Search for Differential Trails 281

Algorithm 1. Truth table generator
Input : The Dictionary D.
Output: The truth table T of (z⊕

i , y⊕
i , x⊕

i) as a function of the possible XOR
differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1)

begin
T = ∅
for 27 possible values of (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1) do

δci−1 ← δzi−1 ⊕ δyi−1 ⊕ δxi−1

δci ← δzi ⊕ δyi ⊕ δxi

if (δzi−1, δyi−1, δxi−1, δci−1, δci) in D.keys AND (δzi, δyi, δxi, δci, δci+1)
in D.keys then

RCarry1 ← D[(δzi, δyi, δxi, δci, δci+1)][0]
RCarry2 ← D[(δzi−1, δyi−1, δxi−1, δci−1, δci)][1]
(z⊕

i , y⊕
i , x⊕

i) ← RCarry1 ⊕ RCarry2
T ← T ∪ {(δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1, z

⊕
i , y⊕

i , x⊕
i)}

end

end
return T

end

4 Application on Bel-T

4.1 Bel-T Specification

Since the official Bel-T specification is available only in Russian, we rely on the
English version of the specification that is provided by Jovanovic and Polian,
who presented fault-based attacks on the Bel-T block cipher family [11]. Bel-T
has a 128-bit block size and a variable key length of 128, 192 or 256 bits. The
128-bit plaintext P is split into 4 32-bit words, i.e., P = A0

0||B0
0 ||C0

0 ||D0
0. The

round function of Bel-T consists of 7 S-box layers in which a 32-bit mapping
function (Gr) is combined with one or two modulo operations as illustrated in
Fig. 2. Then, this round function is repeated 8 times for all versions of Bel-T. The
function Gr (G-box) maps a 32-bit word w = w1||w2||w3||w4, with wi ∈ {0, 1}8,
as follows: Gr(w) = (H(w1)||H(w2)||H(w3)||H(w4)) ≪ r. Here, H is an 8-bit
S-box and ≪ r denotes left shift rotation by r positions (r ∈ {5, 13, 21}). The
specification of the 8-bit S-box can be found in [11].

Key Schedule. In all versions of Bel-T, the 128-bit plaintext block P is
encrypted using a 256-bit encryption key denoted as K1|| . . . ||K8, where Ki is a
32-bit word for 1 ≤ i ≤ 8. The encryption key is distributed among the round
keys as shown in Table 5. The encryption key is extracted from the master key
as follows:

– Bel-T-256: the encryption key is identical to the master key.
– Bel-T-192: the master key is formatted as K1|| . . . ||K6 and K7,K8 are set to

K7 := K1 ⊕ K2 ⊕ K3 and K8 := K4 ⊕ K5 ⊕ K6.

282 M. ElSheikh et al.

– Bel-T-128: the master key is formatted as K1|| . . . ||K4 and K5,K6,K7,K8

are set to K5 := K1, K6 := K2, K7 := K3 and K8 := K4.

Table 3. The dictionary D.

D.keys D[∗][0] D[∗][1]
δz δy δx δc δc+1 c⊕(z,y,x) c+1⊕(z,y,x)

0 0 0 0 0 (?, ?, ?) (?, ?, ?)

0 0 1 1 0 (?, ?, 1) (1, 0, ?)

0 0 1 1 1 (?, ?, 0) (?, ?, 0)

0 1 0 1 0 (?, 1, ?) (1, ?, 0)

0 1 0 1 1 (?, 0, ?) (?, 0, ?)

0 1 1 0 0 (1, ?, ?) (1, ?, ?)

0 1 1 0 1 (0, ?, ?) (?, 0, 0)

1 0 0 1 0 (0, ?, ?) (?, 0, 0)

1 0 0 1 1 (1, ?, ?) (1, ?, ?)

1 0 1 0 0 (?, 0, ?) (?, 0, ?)

1 0 1 0 1 (?, 1, ?) (1, ?, 0)

1 1 0 0 0 (?, ?, 0) (?, ?, 0)

1 1 0 0 1 (?, ?, 1) (1, 0, ?)

1 1 1 1 1 (?, ?, ?) (?, ?, ?)

Table 4. Part of the truth table T.

δzi−1 δyi−1 δxi−1 δzi δyi δxi δci+1 z⊕
i y⊕

i x⊕
i

...

0 0 1 0 0 1 0 ? ? 1

0 0 1 0 0 1 1 ? ? 0

0 0 1 0 1 1 0 0 ? ?

0 0 1 0 1 1 1 1 ? ?

0 0 1 1 0 1 0 ? 0 ?

0 0 1 1 0 1 1 ? 1 ?

0 1 0 0 1 0 0 ? 1 ?

0 1 0 0 1 0 1 ? 0 ?

0 1 0 0 1 1 0 0 ? ?

0 1 0 0 1 1 1 1 ? ?

0 1 0 1 1 0 0 ? ? 0

0 1 0 1 1 0 1 ? ? 1

0 1 1 0 0 1 0 ? ? 1

0 1 1 0 0 1 1 ? ? 0

0 1 1 0 1 0 0 ? 1 ?

0 1 1 0 1 0 1 ? 0 ?

0 1 1 0 1 1 0 0 ? ?

...

4.2 MILP-Based Search for Differential Characteristic of Bel-T

To search for differential characteristics in a block cipher using MILP, the differ-
ence propagation through its components is described using a set of linear con-
straints. In Bel-T, this means generating a set of linear inequalities to describe
how an XOR difference would propagate through a bit-wise XOR, an addi-
tion/subtraction modulo 232, and an 8-bit S-box. As the difference propagates
with probability through the non-linear components, its associated probability
is incorporated in the corresponding linear inequalities. The objective function
of the MILP model would be to maximize this probability, which we do by
minimizing the negative of the base-2 logarithm of this probability.

Bit-Wise XOR. If δxi, δyi and δzi represent the bit-level differences, then the
difference propagation through the bit-wise XOR operation δxi ⊕ δyi = δzi can
be represented by 5 linear inequalities [23]. Using the truth table of the XOR
operation, these can be further reduced to the following 4 linear inequalities:

δxi+δyi−δzi ≥ 0, δxi−δyi+δzi ≥ 0, −δxi+δyi+δzi ≥ 0, −δxi−δyi−δzi ≥ −2.

On MILP-Based Automatic Search for Differential Trails 283

Fig. 2. Bel-T round function. ⊕, �, � denote bit-wise XOR, arithmetic addition and
subtraction modulo 232 respectively, and (i)32 denotes the round number represented
as 32-bit word.

Table 5. Encryption Key schedule of Bel-T, where i and K7i+j denote the round
number and the round key, respectively.

i K7i+1 K7i+2 K7i+3 K7i+4 K7i+5 K7i+6 K7i+7

0 K1 K2 K3 K4 K5 K6 K7

1 K8 K1 K2 K3 K4 K5 K6

2 K7 K8 K1 K2 K3 K4 K5

3 K6 K7 K8 K1 K2 K3 K4

4 K5 K6 K7 K8 K1 K2 K3

5 K4 K5 K6 K7 K8 K1 K2

6 K3 K4 K5 K6 K7 K8 K1

7 K2 K3 K4 K5 K6 K7 K8

Modular Addition and Subtraction. We use the new MILP model described
in Sect. 3 to propagate the input differences (Δx,Δy) to an output difference
(Δz) through the addition modulo 232 such that x � y = z using 32×(32−2)+
4 = 964 inequalities. Since the subtraction modulo 2n, x � y = z is equivalent
to x = y � z, the difference propagation through modular subtraction can be
described in a similar way as that used to describe modular addition.

284 M. ElSheikh et al.

Modular Addition with a Secret Key. The Bel-T round function encom-
passes a modular addition with a secret key which has zero difference in a single-
key differential attack. This operation can then be expressed as x � k = z and
the differential characteristic as (Δx, 0) → Δz. Therefore, the difference prop-
agation through this operation can be described in a similar way as that used
to describe modular addition by inserting 32 more constraints to explicitly set
Δy = 0. The number of required constraints will be 964 + 32 = 996. Indeed, we
can improve this description by decreasing the number of MILP constraints to
roughly half as follows. We repeat the steps described in Sect. 3 using the rows
of the truth table T that have δyi−1 = δyi = 0 and also δyi+1 = 0. Consequently,
the number of MILP constraints decreases to (13 + 4)(32 − 2) + 2 = 512.

8-Bit S-Box. Using the Sage inequality generator() function to model the
DDT of an 8-bit S-box is computationally infeasible. Therefore, the use of MILP
to search for differential characteristics was restricted to block ciphers that do
not include 8-bit S-boxes. Abdelkhalek et al. [2] have put forward an approach
to model the DDT of an 8-bit S-box efficiently. First, the DDT is split into
several tables corresponding to unique probability values. After assigning binary
variables to each unique probability value, these binary variables are represented
as Boolean functions in the input and output difference bits, i.e., each Boolean
function is 1 when the input difference is propagated to the output difference
with the corresponding probability value, and 0 otherwise. Next, the Quine-
McCluskey algorithm [16,18] was used to transform the Boolean functions to
their reduced Product of Sum (PoS) which can then be described by a set of linear
inequalities. To describe the deterministic propagation of the zero-difference,
an additional binary variable was used as a sort of flag, i.e., when it is 0, the
S-box is inactive and therefore both the input and output differences are set to
0. When it is 1, the S-box is active and one probability value along with input
difference and corresponding output difference are chosen. As in ARX block
ciphers, the probability of the differential characteristic gets lower when more
bits are active, we decided to follow the approach in [3] in which we do not use the
high probability entries in the DDT, but rather the entries with low Hamming
weight in the input and output differences. Throughout our experiments, we have
limited the Hamming weight of the input and output difference not to exceed 3.
However, the partial DDT was still too large to be handled directly using the
inequality generator() function and hence we augmented our approach with
the approach proposed by Abdelkhalek et al. for handling the DDT of large
S-boxes to describe the partial DDT using linear inequalities. Based on our
implementation, 1, 660 linear inequalities are needed to describe this Hamming
weight-based partial DDT.

Lai-Massey Scheme. Since the Lai-Massey scheme is invertible, the following
constraints are added to our model to enforce the output of the Lai-Massey
scheme (Bi

4, C
i
2) to be non-zero when its input (Bi

1, C
i
1) is non-zero, see Fig. 2.

On MILP-Based Automatic Search for Differential Trails 285

n−1∑

j=0

Bi
1,j +

n−1∑

j=0

Ci
1,j + LMi ≥ 1,

n−1∑

j=0

Bi
4,j +

n−1∑

j=0

Ci
2,j + 2n × LMi ≤ 2n,

n−1∑

j=0

Bi
1,j +

n−1∑

j=0

Ci
1,j + 2n × LMi ≤ 2n,

n−1∑

j=0

Bi
4,j +

n−1∑

j=0

Ci
2,j + LMi ≥ 1.

In these constraints, LMi is a dummy binary variable. If the input difference
is zero, the first equation enforces LMi to be 1 which enforces the output differ-
ence to be zero in the second equation. If the input difference is non-zero, the
third equation enforces LMi to be 0 which enforces the output difference to be
non-zero in the fourth equation.

4.3 3-round Differential Characteristic

Using the above derived MILP model of the different components of the Bel-T,
we are able to build a model of the whole round of Bel-T using 55, 641 linear
inequalities and 2, 647 binary variables. Then, we used the Gurobi3 optimizer on
a server of two Xeon Processors E5-2697 (2 × 12 = 24 cores in total) with 125
GB RAM to search for a differential characteristic of Bel-T. Consequently, we
found a 2-round differential characteristic with probability 2−54 after about 4.5
hours. We use this characteristic as an initial solution for the optimizer in order
to extend the characteristic to 3 rounds. After running the search process for 36
days, we were not able to find a 3-round differential characteristic better than
the one that holds with probability 2−111. The 3-round differential characteristic
we use in our attack is shown in Fig. 3 in which 0 denotes a 32-bit difference of
all zeros, ei, ei−j and ei,j,k,··· denote 32-bit difference of all 0’s and 1 at bit i,
bits i to j, and bits i, j, k, · · · , respectively.

4.4 Validity of the Differential Characteristic

In this section, we show that Bel-T block cipher is not a Markov cipher and
the differential characteristic depends on the used secret key. Consequently, we
propose a systematic way to obtain the ratio of the keys that can be attacked
using our distinguisher.

Recall that a Markov cipher [13] is an iterated block cipher in which the
probability of the difference e.g., the XOR difference through the individual
operations of the round function is independent of the corresponding plaintext
values of its input, if the round keys applied to each round are independent
3 http://www.gurobi.com/.

http://www.gurobi.com/

286 M. ElSheikh et al.

Fig. 3. 3-round differential characteristic of Bel-T with probability 2−111. 0 denotes a
32-bit difference of all zeros, ei, ei−j and ei,j,k denote a 32-bit difference of 0’s and 1
at bit i, bits i to j, and bits i, j, and k, respectively

On MILP-Based Automatic Search for Differential Trails 287

and chosen in a uniformly random manner. In the case of Bel-T, the secret
key is mixed via modular addition operations, therefore the XOR difference
propagation through these operations is probabilistic and depends on the used
key. Additionally, the hypothesis of independent round keys does not hold due
to the simple key schedule of Bel-T. Moreover, there are many two or more
successive modular additions, which are not independent as shown in Sect. 2.
For these reasons, we can conclude that Bel-T is not a Markov cipher.

Since the secret key is mixed via modular addition operations, Bel-T is not
a key-alternating cipher [7] and the probability of the XOR difference of these
modular operations may drop to zero due to the used key [5] and we therefore
cannot use our distinguisher in this case. In the remaining of this section, we
obtain the ratio of the keys (valid keys) which we can use the distinguisher with.
We define the S-box layer to include the modular addition with a key followed
by the G-box mapping (Gr). We consider a 32-bit key as an invalid key when
the probability of the XOR difference through its S-box layer drops to zero
independent of the other input of the modular addition.

Let us consider, e.g., the S-box layer of K2 in round 0 (see Fig. 3) in which
the key K2 has a specific value k, Z = X � k and W = G21(Z) where ΔX =
ΔZ = 0x00001000, Δk = 0x00000000 and ΔW = 0x00000008. Therefore, we
are looking for the values of k that cannot give the output difference ΔW for
any value of X.

For each value of k, we can exhaustively search over all possible values of the
pair (X, X ⊕ ΔX) to check if there is a value of X that leads to the output dif-
ference ΔW . If there is no such value, we consider k as invalid. The complexity
of search for all possible values of K2 will be roughly O(264) which is computa-
tionally hard because we will repeat this search for all modular additions with
keys.

Alternatively, we can obtain from Table 2 that the condition k12 = c12, where
k12 and c12 are the bit number 12 of the key and the carry respectively, is the
only constraint that has to be checked to verify whether the key k is an invalid
key or not. Also from the DDT of the G-box, the second byte of Z (bits from
Z8 to Z15) in hexadecimal has to be one of {0x02, 0x12, 0x4C, 0x5C} to satisfy
the output difference ΔW . Accordingly, the following constraints have to be
satisfied:

k12 = c12, Z8 = 0, Z13 = 0, Z15 = 0, Z̄9 = Z10 = Z11 = Z14.

For each value of k, there is a value X that gives Z8 = 0 with probability 1
because there are no conditions on k nor Z from bit 0 to 7. Given this fact
and by using Eqs. (1) and (2), we can prove that the carry bits c9 = c10 =
c11 = c12 = 0 if the key bits k8 = 1 and k9 = k10 = k11 = 0 independently
of the corresponding bits of X. Therefore, if the key bit k12 = 1, the condition
k12 = c12 will be impossible. As a result, if the key k has the pattern k8 = k12 = 1
and k9 = k10 = k11 = 0, it will be an invalid key irrespective of the value X
due to the contradiction between the two constraints Z8 = 0 and k12 = c12. We
can manually search for such patterns but this process is very difficult, time-
consuming, and error-prone.

288 M. ElSheikh et al.

Observation 1. Consider a modular addition z = x� y where the bit zi has a
specific value. Then, the carry bit cj (for j > i) depends on the input bits from
i to j − 1 and is independent of the input bits from 0 to i − 1.

The dependency between a carry bit cj and the input bits from 0 to j − 1 is due
to the carry chain (see Eq. 2). If we know that the output bit zi has a specific
value, we can evaluate the carry bit ci as ci = zi ⊕xi ⊕yi instead of evaluating it
using the value of xi−1, yi−1 and ci−1. Thus, the carry chain and dependency are
broken. Back to our example, given that Z8 = 0, the carry bit c12 will depend on
the bits from 8 to 11 of the inputs X and k based on the observation. Therefore,
considering the key k as an invalid will depend on its bits from 8 to 12. In general,
given a key k, if we exhaustively search over all possible values of the pair (X,
X ⊕ ΔX) and there is no value X that can lead to the difference ΔW , then
the byte of the key containing the conditional bits is the reason for invalidating
ΔW . We therefore can repeat the search for all possible value of these bytes.
Consequently, the exhaustive search complexity in our example will be reduced
roughly to O(240) which is feasible.

The above approach can be generalized to determine the set of the byte values
K leading to invalid keys as shown in Procedure (Obtain Invalid Key Set).

Table 6 summarizes the ratio of valid keys of each key Ki that has conditions
in our distinguisher. It should be noted that the key K2 is used in two rounds
but the bytes that have the conditions are in different positions. Accordingly,
the total ratio of the valid keys can be evaluated as the multiplication of all
ratios of the valid keys which will be 2−3.8 corresponding to 2252.2 keys. In
order to validate this result, we have experimentally verified the differential
characteristic. In particular, we have opted the first four S-box layers of the
differential characteristic of probability 2−24 (see Fig. 3) and have found that
the experimental probability matches on average the theoretical one for 4426 of
10000 randomly generated keys. Comparing with Table 6, this ratio is very close
to the ratio of the valid keys for this part of the distinguisher.

5 Differential Attack on 41
7
-Round Reduced Bel-T-256

In this section, we present a differential attack on 41
7 -round reduced Bel-T-256 by

appending one round and one S-box layer on the above derived differential distin-
guisher as illustrated in Fig. 4. Our differential characteristic ends at A3

0, B
3
0 , C

3
0

and D3
0 with values e11,20,23,25,28,31, e25,31, e5 and e11,29,31, respectively. There-

fore, by propagating the differences at A3
0 and D3

0 through the S-box layers, we
obtain the corresponding 32-bit difference at B3

1 and C3
1 . Table 7 summarizes

the difference in Binary at some points that we will use during the attack. Our
attack has two phases: pre-computation phase and an online phase.

5.1 Pre-computation Phase

In this phase, we create 4 hash tables (H1,H2,H3,H4) corresponding to the
S-box layers shown in Fig. 4 as follows:

On MILP-Based Automatic Search for Differential Trails 289

Procedure Obtain Invalid Key Set
Input : ΔX, ΔW
Output: K
begin

K = ∅
Determine PosOfBytes and NBytes which are the position and the number
of bytes that have XOR difference in ΔX

for 28×NBytes possible values of Bytes do
Generate k randomly such that the concatenation of the bytes in the
position PosOfBytes has the value Bytes

invalid = True
for 232 possible values of X do

if G(X � k) ⊕ G((X ⊕ ΔX) � k) = ΔW then
invalid = False
break

end

end
if invalid then

K ← K ∪ {Bytes}
end

end
return K

end

Table 6. Ratio of valid keys

Round Key Ratio of valid keys

0 K1 136/256

K2 216/256

K6 129/256

2 K2 216/256

K3 144/256

K4 228/256

K5 192/256

Table 7. The difference at the points used in the
attack

Point label The difference in Binary

A3
0 10010010 10010000 00001000 00000000

B3
0 10000010 00000000 00000000 00000000

C3
0 00000000 00000000 00000000 00100000

D3
0 10100000 00000000 00001000 00000000

B3
1 ???00000 000????? ???????? ????????

C3
1 ???????? ???????? ???00000 000?????

H1: For all 25×32=160 possible values of x,Δx, y,Δy and K2, we obtain the
corresponding values of z and Δz such that z = y � G13(x � K2). If the value
of Δz is equal to the difference at D3

0, we store the values of K2 and z in the
hash table H1 indexed by the values of x,Δx, y and Δy. The probability that
the value of Δz is equal to the difference at D3

0 is equal to 2−32. Therefore, Table
H1 has on average 2160 × 2−32 = 2128 entries. As a result, we have, on average,
2128

24×32 = 1 value for K2 per row.
H2: For the value of Δx equal to the difference at D3

0 and all 224 possible
value of Δy in form of the difference at C3

1 combined with all 23×32=96 possible
values of x, y and K7, we obtain the corresponding values of z and Δz such

290 M. ElSheikh et al.

that z = y ⊕ G21(x � K7). Then, we store the value of K7 in the hash table H2

indexed by the values of x, y and Δy, if the value of Δz is equal to the difference
at C3

0 which has a probability equal to 2−24. Therefore, Table H2 has on average
296+24 × 2−24 = 296 entries. Thus, we have, on average, 296

22×32+24 = 28 value for
K7 per row.
H3: For all 224 possible value of Δx in form of the difference at B3

1 combined
with all 24×32=128 possible values of x, y,Δy and K8, we obtain the corresponding
values of z and Δz such that z = y � G13(x � K8). If the value of Δz is in the
form of the difference at A3

0, we store the values of K8 and z in the hash table
H3 indexed by the values of x,Δx, y and Δy. The probability that the value of
Δz is in the form of the difference at A3

0 is equal to 2−32. Therefore, Table H3

has on average 2128+24 × 2−32 = 2120 entries. As a result, we have, on average,
2120

23×32+24 = 1 values for K8 per row.
H4: Initialize a hash table of 23×32+24=120 rows with binary value 0. Then, for
the value of Δx equal to the difference at A3

0 and all 224 possible values of Δy
in the form of the difference at B3

1 combined with all 23×32=96 possible values
of x, y, and K6, we obtain the corresponding values of z and Δz such that
z = y ⊕ G5(x � K6). If the value of Δz is equal to the difference at B3

0 , we store
a binary value 1 in the hash table H4 indexed by the values of x, y,Δy and K6.
Here, the binary values 1 and 0 denote a valid entry and an invalid entry. The
probability of finding a valid entry in H4, equivalent to the probability that the
value Δz is equal to the difference at B3

0 , is equal to 2−24. Consequently, we
have one valid entry for every 224 accesses to H4.

Table 8 summarizes the time and memory complexities of the pre-
computation phase. It should be noted that the memory required by the tables
H1 and H4 can be slightly reduced to 2128.51 and 2119.01 32-bit words respec-
tively, if we store only the valid candidates of K2 and K6 based on the ratio of
the valid keys form Table 6.

5.2 Online Phase

In this phase, we collect a set of plaintext/ciphertext pairs. Then, we utilize the
pre-computation tables and key guessing to obtain right candidate keys and then
recover the correct master key.

Table 8. The time and memory complexities of the pre-computation phase

Table Time (S-box layer Encryption) Memory (32-bit word)

H1 2160 2160 × 2−32 × 2 = 2129

H2 2120 2120 × 2−24 × 1 = 296

H3 2152 2152 × 2−32 × 2 = 2121

H4 2120 2120a

a For simplicity, we store the binary values 0 and 1 as 32-bit words.

On MILP-Based Automatic Search for Differential Trails 291

Data Collection. We select a set of 2m 128-bit plaintexts that can take any
arbitrary values then we compute another set of 2m plaintexts by XORing each
plaintext in the first set with the input of the differential distinguisher (i.e.,
A0

0||B0
0 ||C0

0 ||D0
0). After that, we query the encryption oracle and compute the

corresponding ciphertext difference. Here, we use 2m+1 plaintexts to generate
2m plaintext/ciphertext pairs satisfying the input difference of our differential
distinguisher (the value of m will be determined below).

Fig. 4. 4 1
7
-Round Attack on Bel-T-256

Key Recovery. We first prepare 27×32 = 2224 counters corresponding to the
2224 keys involved in the analysis. After that, for each ciphertext pair in 2m pairs
obtained in the data collection phase, we apply the following procedure:

1. Guess K4 and partially decrypt the ciphertext to get the value and the dif-
ference at C3

2 . The average number of keys suggested by a pair after this step
is 232.

292 M. ElSheikh et al.

2. Access the hash table H1 to get, on average, 1 value of K2 and D3
0.

3. Guess K6 and partially decrypt the ciphertext to get the value and the dif-
ference at A3

3. The average number of keys suggested by a pair after this step
will increase to 264.

4. Guess K3 and partially decrypt the ciphertext combined with the value and
the difference from the previous step to get the value and the difference at
B3

4 . The average number of keys suggested by a pair after this step is 296.
5. Recall that B3

1 = B3
4 � G21(B3

1 � C3
1 � K1) ⊕ (3)32 and C3

1 = C3
2 � G21(B3

1 �
C3

1 � K1) ⊕ (3)32. Hence B3
1 � C3

1 = B3
4 � C3

2 . Therefore, by guessing K1, we
can deduce G21(B3

1 �C3
1 �K1) = G21(B3

4 �C3
2 �K1) and then use the values

obtained in steps 1 and 4 to compute the value and the difference at B3
1 and

C3
1 and discard the key if the differences are not in the required form. This

step filters out the suggested keys by 216. Thus, the average number of keys
suggested by a pair after this step is 2112.

6. Use the values and the differences form steps 3 and 5 to access the hash table
H3 and get, on average, 1 values of K8 and A3

0.
7. Access the hash table H4 using the previously guessed value of K6 in step 3

and the values and the differences from steps 5 and 7 to check if it is a valid
entry or not. This step will filter out the suggested keys by 224. Thus, the
average number of keys suggested by a pair after this filtration will be 288.

8. Use the value from step 2 combined with the value and the difference from
step 5 to access the hash table H2 and get, on average, 28 value of K7. Conse-
quently, the average number of keys suggested by a pair after this procedure
will be increased to 296. Thus, we increment the corresponding 296 counters.

After repeating the above procedure for 2m pairs, we select the key corre-
sponding to the highest counter as a 224-bit right key. After that, we recover
the 256-bit master key by testing the 224-bit right key along with the remaining
232 values for K5 using 2 plaintext/ciphertext pairs.

Table 9. Key recovery process of the attack on 4 1
7
-round Bel-T-256

Step # of suggested
keys by a pair

Time complexity

32-bit word memory Access S-box layer Encryption

1 232 - 2m × 232 × 2 = 2m+33

2 232 × 1 = 232 2m × 232 × 2 = 2m+33 -

3 232 × 232 = 264 - 2m × 264 × 2 = 2m+65

4 264 × 232 = 296 - 2m × 296 × 2 = 2m+97

5 296 × 232 × 2−16 = 2112 - 2m × 2128 × 2 = 2m+129

6 2112 × 1 = 2112 2m × 2112 × 2 = 2m+113 -

7 2112 × 2−24 = 288 2m × 2112 × 1 = 2m+112 -

8 288 × 28 = 296 2m × 296 × 1 = 2m+96 -

On MILP-Based Automatic Search for Differential Trails 293

Table 9 summarizes the above steps, whereas the second column presents the
average number of keys suggested by a pair after each step. The third and fourth
columns present the time complexity of each step in form of memory accesses
and single S-box layer encryption in terms of m.

5.3 Attack Complexity and Success Probability

In this section, we present the complexity analysis of our attack in order to
determine the required number of chosen plaintexts and the memory required
to launch this attack. Also, we compute the success probability of the attack.
Finally, we calculate its time complexity to compare our attack against the
exhaustive search attack.

Data Complexity. For the differential attack to succeed with a high proba-
bility, we have to determine an appropriate value for the number of required
plaintext/ciphertext pairs. To do so, we utilize the concept of signal-to-noise
ratio (S/N) [4], which is calculated using the following formula:

S/N =
2k × p

α × β

where k is the number of key bits involved in the analysis, p is the probability of
the differential characteristic, α is the number of guessed keys by a pair, and β is
the ratio of the pairs that are not discarded. In our analysis, k = 224, p = 2−111,
α = 296 from Table 9, and β = 1. Therefore, we have S/N = 2224×2−111

296×1 = 217.
Due to this high S/N , we can use the recommendation of Biham and Shamir [4]
that 3–4 right pairs are sufficient enough to mount a successful differential attack.
Therefore, we select the number of plaintext/ciphertext pairs (2m) equal to 4 ×
p−1 = 2113. Consequently, the data complexity will be 2114 chosen plaintexts.

According to [20] and due to the high S/N , the success probability of the
attack (Ps) can be calculated as Ps ≈ Φ(

√
p × 2m) where Φ is the cumulative

distribution function of the standard normal distribution. Therefore, our differ-
ential attack will succeed with probability Ps ≈ 0.9772.

Time Complexity. During the attack procedure, we make 32-bit word memory
accesses in some steps and partially decrypt single S-box layers in other steps.
Each S-box layer can be considered as a 32-bit big S-box with one or two modulo
operations. Therefore, the time of single S-box layer will be slightly higher than
the time of 32-bit word memory access. For simplicity, we assume that the time
of 32-bit word memory access is the same as the time of a single S-box layer
lookup which is roughly equal to 1

7 of the time of one round encryption.
From Table 8, the time complexity of the pre-computation phase is domi-

nated by the time required to construct the hash table H1 which is equal to
1
7 × 1

4 1
7

× 2160 ≈ 2155.14 4 1
7 -round encryptions. Similarly, from Table 9, the domi-

nant part of the time complexity in the online phase comes from steps 5 which is

294 M. ElSheikh et al.

1
7 × 1

4 1
7

× (2m+129) = 2m+124.14 4 1
7 -round encryptions. Therefore, the total time

complexity of the online phase will be 2113+124.14 + 2 × 232 = 2237.14 4 1
7 -round

encryptions.

Memory Complexity. The memory complexity of the pre-computation phase
can be determined from Table 8 in which we need 2129 +296 +2121 +2120 ≈ 2129

32-bit word = 2127 128-bit blocks of memory. During the online phase, we have
prepared 2224 counters corresponding to 2224 keys involved in the analysis. Since
the upper limit of each counter depends on the number of plaintext/ciphertext
pairs (2m = 2113), we can declare each counter as an unsigned 128-bit integer
variable. Consequently, we need 2224 128-bit blocks of memory in total.

6 Conclusion

In this paper, we studied the propagation of the XOR difference through mod-
ular addition. We showed that the independency assumption between two or
more consecutive modular addition operations does not necessarily hold, and we
constructed a more accurate MILP model for the differential trail through the
modular addition taking into account the dependency between the consecutive
modular additions. Then, we utilized the developed MILP model to automate
the search process for the differential characteristics for Bel-T cipher. Up to the
authors’ knowledge, this is the best published theoretical attack against Bel-T-
256 in the single-key setting.

References

1. Preliminary State Standard of Republic of Belarus (STBP 34.101.312011) (2011).
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf

2. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.: MILP modeling for
(large) s-boxes to optimize probability of differential characteristics. IACR Trans.
Symmetric Cryptology 2017(4), 99–129 (2017)

3. Abdelkhalek, A., Tolba, M., Youssef, A.M.: Related-key differential attack on
round-reduced Bel-T-256. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 101(5), 859–862 (2018)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9314-6

5. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04852-9 12

6. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations. Cryptology ePrint
Archive, Report 2016/689 (2016). https://eprint.iacr.org/2016/689

7. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptology JMC 1(3), 221–242 (2007)

http://apmi.bsu.by/assets/files/std/belt-spec27.pdf
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-3-319-04852-9_12
https://eprint.iacr.org/2016/689

On MILP-Based Automatic Search for Differential Trails 295

8. ElSheikh, M., Tolba, M., Youssef, A.M.: Integral Attacks on Round-Reduced Bel-
T-256. In: Cid, C., Jacobson Jr., M. (eds.) Selected Areas in Cryptography - SAC
2018. LNCS, vol. 11349, pp. 73–91. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10970-7 4

9. Feistel, H., Notz, W.A., Smith, J.L.: Some cryptographic techniques for machine-
to-machine data communications. Proc. IEEE 63(11), 1545–1554 (1975)

10. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 14

11. Jovanovic, P., Polian, I.: Fault-based attacks on the Bel-T block cipher family.
In: Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition, pp. 601–604. EDA Consortium (2015)

12. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damg̊ard,
I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46877-3 35

13. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 2

14. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34961-4 15

15. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X 28

16. McCluskey Jr., E.J.: Minimization of boolean functions. Bell Syst. Tech. J. 35(6),
1417–1444 (1956)

17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

18. Quine, W.V.O.: A way to simplify truth functions. Am. Math. Monthly 62(9),
627–631 (1955). http://www.jstor.org/stable/2307285

19. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 7

20. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptology 21(1), 131–147 (2008)

21. Sun, L., Wang, W., Liu, R., Wang, M.: MILP-aided bit-based division property
for ARX-based block cipher. Cryptology ePrint Archive, Report 2016/1101 (2016).
https://eprint.iacr.org/2016/1101

22. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. Cryptology ePrint Archive, Report
2016/811 (2016). https://eprint.iacr.org/2016/811

23. Sun, S., et al.: Towards Finding the Best Characteristics of Some Bit-oriented Block
Ciphers and Automatic Enumeration of (Related-key) Differential and Linear
Characteristics with Predefined Properties (2014). https://eprint.iacr.org/2014/
747

https://doi.org/10.1007/978-3-030-10970-7_4
https://doi.org/10.1007/978-3-030-10970-7_4
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/3-540-46877-3_35
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
http://www.jstor.org/stable/2307285
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://eprint.iacr.org/2016/1101
https://eprint.iacr.org/2016/811
https://eprint.iacr.org/2014/747
https://eprint.iacr.org/2014/747

296 M. ElSheikh et al.

24. Wang, G., Keller, N., Dunkelman, O.: The delicate issues of addition with respect
to XOR differences. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 212–231. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 14

25. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

https://doi.org/10.1007/978-3-540-77360-3_14
https://doi.org/10.1007/978-3-540-77360-3_14
https://doi.org/10.1007/978-3-662-53887-6_24

Practical Attacks on Reduced-Round AES

Navid Ghaedi Bardeh1(B) and Sondre Rønjom1,2

1 Department of Informatics, University of Bergen, Bergen, Norway
{navid.bardeh,sondre.ronjom}@uib.no

2 Nasjonal sikkerhetsmyndighet, Oslo, Norway

Abstract. In this paper we investigate the security of 5-round AES
against two different attacks in an adaptive setting. We present a practi-
cal key-recovery attack on 5-round AES with a secret s-box that requires
232 adaptively chosen ciphertexts, which is as far as we know a new
record. In addition, we present a new and practical key-independent dis-
tinguisher for 5-round AES which requires 227.2 adaptively chosen cipher-
texts. While the data complexity of this distinguisher is in the same range
as the current best 5-round distinguisher [14], it exploits new structural
properties of 5-round AES.

Keywords: AES · Zero-difference · Secret-key distinguisher ·
Differential · Secret s-box

1 Introduction

Block ciphers are typically designed by iterating an efficiently computable round
function many times in the hope that the resulting composition behaves like a
randomly drawn permutation. The designer is typically constrained by various
practical criterion, e.g. security target, implementation boundaries, and special-
ized applications, that might lead the designer to introduce symmetries and
structures in the round function as a compromise between efficiency and secu-
rity. In the compromise, a round function is iterated enough times to make sure
that any symmetries and structural properties that might exist in the round
function vanish. Thus, a round function is typically designed to increasingly de-
correlate with structure and symmetries after several rounds. Low data- and
computational-complexity distinguishers and key-recovery attacks on round-
reduced block ciphers have recently gained renewed interest in the literature.
There are several reasons for this. In one direction cryptanalysis of block ciphers
has focused on maximizing the number of rounds that can be broken with-
out exhausting the full codebook and key space. This often leads to attacks
marginally close to that of pure brute-force. These are attacks that typically
have been improved over time based on many years of cryptanalysis. The most
successful attacks often become de-facto standard methods of cryptanalysis for
a particular block cipher and might discourage anyone from pursuing new direc-
tions in cryptanalysis that do not reach the same number of rounds. This in itself

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 297–310, 2019.
https://doi.org/10.1007/978-3-030-23696-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_15

298 N. G. Bardeh and S. Rønjom

might hinder new breakthroughs, thus it can be important to investigate new
promising ideas that might not have reached its full potential yet. New meth-
ods of cryptanalysis that break or distinguish fewer rounds faster but with lower
complexity than established cryptanalysis is therefore interesting in this process.
Many constructions employ reduced round AES as part of their design. On the
other hand, reduced versions of AES have nice and well-studied properties that
can be favorable as components of larger designs (see for instance Simpira [13]).

The security of Rijndael-type block cipher [5] designs is believed to be a
well-studied topic and has been in the focus of a large group of cryptanalysts
during the last 20 years (see e.g. [1–4,6–9,12,14]). Several distinguisher attacks
exists against reduced-round of AES. The aim of a distinguisher attack is to
distinguish the cipher from a sufficiently generic permutation i.e. the aim is to
find some properties of the cipher that allows to set up a test for an unusual
event with sufficiently different probability of happening in comparison to ran-
dom (e.g. finding certain collision-events in a set of ciphertexts when restricted
to structured sets of plaintexts). At Crypto 2016, Sun et al. [15] presented the
very first 5-round key-dependent distinguisher for AES. They extend a 4-round
integral property to 5-rounds by exploiting properties of the AES MixColumn
matrix. Although their distinguisher requires the whole codebook, it spawned
a series of new fundamental results for AES. It was later improved to 298.2

chosen plaintexts with 2107 computations by extending a 4-round impossible
differential property to a 5-round property. Then, at Eurocrypt 2017, Grassi
et al. [12] proposed the first 5-round key-independent chosen plaintext distin-
guisher which requires 232 chosen plaintexts with a computational cost of 236.6

look-ups into memory of size 236 bytes. They showed that by encrypting cosets
of certain subspaces of the plaintext space the number of times the difference
of ciphertext pairs lie in a particular subspace of the state space always is a
multiple of 8. Later, at Asiacrypt 2017, Rønjom et al. [14] presented new fun-
damental properties for Rijndael-type block cipher designs leading to new types
of 3- to 6-round key-independent distinguishers for AES that beats all previous
records. They showed that zero-differences of encrypted plaintext (or decrypted
ciphertext) pairs are left invariant by encrypting new pairs formed by exchang-
ing ciphertext/plaintext-dependent values between already observed pairs. Using
this property they present the first 6-round distinguisher which requires 2122.83

adaptively chosen ciphertexts and which has computational cost of 2121.83 XORs.
Note that their result is in the adaptive setting where the adversary can actively
query the encryption and decryption function depending on observed values,
while the previous distinguishers are in the chosen plaintext or ciphertext
setting.

The security of AES with a secret s-box has been investigated in several
papers. In this case, when the choice of s-box is made uniformly at random from
all 8-bit s-boxes, the size of the secret information increases from 128− and 256-
bit keys to 1812− and 1940-bits of secret key material. In FSE 2015, Tiessen
et al. [16] proposed the first 5-round key recovery attack on AES with a secret
s-box based on integral cryptanalysis, which requires 240 chosen plaintexts with a

Practical Attacks on Reduced-Round AES 299

computational cost of 238.7 encryptions. In their attack, they first derive an affine
equivalent s-box before they recover the secret key. Then at FSE 2016, Grassi
et al. [11] proposed a key recovery attack which exploits a particular property of
the AES MixColumn matrix. They then combine this with impossible differential
cryptanalysis to derive the secret key. Their attack requires 2102 chosen plaintexts
with 2100.4 computations. It was later improved to 253.25 chosen plaintexts and
252.6 computations in [10] by using a similar approach, but instead of using
impossible differential cryptanalysis, they apply multiple-n cryptanalysis.

1.1 Our Contribution

So far, various 5-round key recovery attacks on AES with a secret s-box have been
presented based on integral, impossible differential and multiple-n cryptanalysis.
In this paper, we raise the question whether it is possible to set up a 5-round
key recovery attack on AES with a secret s-box based on recently developed
attack techniques called zero-difference cryptanalysis. In this paper we present an
efficient key-recovery attack on 5-round AES with a secret s-box based on zero-
difference cryptanalysis that requires 232 adaptively chosen ciphertexts and that
has computational complexity consisting of 231 XORs. We also present a new
key-independent distinguisher for 5-round AES which requires 227.2 adaptively
chosen ciphertexts and which has computational complexity consisting of 226.2

XORs. The latter distinguisher exploits new structural properties in 5-round
AES.

1.2 Overview of this Paper and Main Results

In Sect. 2 we briefly recall some results and notation that we use in the rest of
this paper. In Sect. 3, we describe a new 5-round distinguisher for AES. Then in
Sect. 4 we present a new key-recovery attack for AES with a secret s-box. The
current best secret key distinguishers for 5-round AES and best key-recovery
attacks for 5-round AES-128 with a secret s-box are presented in Tables 1 and
2. We adopt that data complexity is measured in a minimum number of cho-
sen plaintexts/ciphertexts CP/CC or adaptively chosen plaintexts/ciphertexts
ACP/ACC. Time complexity is measured in equivalent number of AES encryp-
tions (E), memory access (M) and/or XOR operations (XOR).

Table 1. Secret-key distinguishers for 5-round AES

Property Rounds Data Cost Key-independent Ref.

Multiple-8 5 232 CP 236.6 M � [12]

Zero difference 5 227.2 ACC 226.2XOR � Sect. 3

Zero difference 5 226.8 ACC 225.8 XOR � [14]

300 N. G. Bardeh and S. Rønjom

Table 2. Comparison of key-recovery on 5-round AES with a secret s-box

Attack Rounds Data Computation Memory Ref.

Imp. diff 5 276.37 CP 274.09 E 28 [10]

Multiple of n 5 253.25 CP 252.6 E 216 [10]

Integral 5 240 CP 238.7 E 240 [16]

Zero difference 5 229.19CP + 232 ACC 231 XOR small3 Sect. 4

Fig. 1. Description of one AES round

2 Preliminaries

2.1 A Short Description of AES

The AES internal state is typically represented as a 4 by 4 matrix over the finite
field F28 . The state is sometimes also represented as a vector of length 4 over
F
4
28 typically formed by concatenating the columns of the matrix state from left

to right. This is the view typically taken in SuperBox cryptanalysis. One full
round of AES consists of SubBytes (SB), ShiftRows (SR), MixColumns (MC)
and AddKey (AK), R = AK ◦MC ◦SR ◦SB (depicted in Fig. 1). The SB-layer
applies a fixed 8-bit to 8-bit s-box independently to each byte of the state, the
SR-layer cyclically shift the i-th row by i positions, while the MC-layer applies
a fixed linear transformation to each column. The key addition simply XORs a
secret round-dependent value to the state. Also, Rn(x) means n rounds of AES.
We omit the last MC ◦SR operations to simplify the presentation of our attacks
(our attacks work as well in the case in which the final linear layer is omitted).

2.2 Subspace Trail on AES

In [11], Grassi et al. present subspace trail cryptanalysis on AES. They define
two different subspaces related to AES. If we let {e0,0, ..., e3,3} form the unit
vectors of F4×4

28 , we have the following.

Definition 1. (Diagonal spaces) The diagonal spaces Di are defined as

Di =< e0,i, e1,i+1, e2,i+2, e3,i+3 >

Practical Attacks on Reduced-Round AES 301

where i + j is computed modulo 4. For instance, the diagonal space D0 corre-
sponds to the symbolic matrix:

D0 =
{

⎡
⎢⎢⎣

x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

⎤
⎥⎥⎦

∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 2. (Column spaces) The column spaces Ci are defined as

Ci =< e0,i, e1,i, e2,i, e3,i > .

For instance, the columns space C0 corresponds to the symbolic matrix

C0 =
{

⎡
⎢⎢⎣

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

⎤
⎥⎥⎦

∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 3. Let I ⊆ {0, 1, 2, 3}. Let DI and CI be defined as

DI =
⊕
i∈I

Di, CI =
⊕
i∈I

Ci.

The dimension of the subspaces DI and CI are both 4 · |I|. The following
theorem describes the deterministic mapping between these two subspaces.

Theorem 1. [11] For I ⊂ {0, 1, 2, 3} and for each a ∈ D⊥
I (orthogonal comple-

ment of DI), there exists one and only one b ∈ C⊥
I (orthogonal complement of

CI) such that:

R(DI ⊕ a) = CI ⊕ b.

Lemma 1. [11] For all x, y ∈ F
4×4
28 and for all I ⊆ {0, 1, 2, 3}, it follows that

Pr(R(x) ⊕ R(y) ∈ CI |x ⊕ y ∈ DI) = 1.

In the other word, we can deduce that for each c ∈ C⊥
I , there exists exactly one

d ∈ D⊥
I such that

R−1(CI ⊕ c) = DI ⊕ d

and in general

Pr(R−1(x) ⊕ R−1(y) ∈ DI |x ⊕ y ∈ CI) = 1.

Lemma 2. [11] For any CI and DJ , we have that

Pr(x ∈ (CI ∩ DJ)|x ∈ CI) = (2−8)4·|I|−|I|·|J|

Pr(x ∈ (CJ ∩ DI)|x ∈ DI) = (2−8)4·|I|−|I|·|J|.

302 N. G. Bardeh and S. Rønjom

This means that if two elements belong to the same coset of DI (respectively
CI), then they also belong to the same coset of CJ (respectively DJ) with
probability (2−8)4·|I|−|I|·|J|. More precisely, when we encrypt two plaintexts from
the same coset of DI for one round, then they belong to the same coset of CI ∩DJ

with probability (2−8)4·|I|−|I|·|J|. We use this lemma to compute most of the
probabilities in our attacks.

2.3 Zero-Difference for 4-Round AES

In [14], Rønjom et al. present zero-difference cryptanalysis against generic Sub-
stitution Permutation Networks (SPNs). In the following, we recall the basic
zero-difference properties for 4-rounds of AES.

Definition 4. [14] For a vector v ∈ F
4
2 and a pair of states α, β ∈ F

4×4
28 define

a new state
ρv(α, β) = (αivi ⊕ βi(vi ⊕ 1) | 0 ≤ i < n).

where αi and βi are ith columns of α and β

The new pair (α′, β′) = (ρv(α, β), ρv(β, α)) is formed by exchanging individual
words between α and β according to the binary coefficients of v.

Zero-difference cryptanalysis exploits a fundamental property of the SLS
construction (S is a non-linear layer and L is a linear transformation) which is
encapsulated in the following theorem originally presented in [14].

Theorem 2. [14] Let α, β ∈ F
4×4
28 and α′ = ρv(α, β), β′ = ρv(β, α) then

ν(S ◦ L ◦ S(α) ⊕ S ◦ L ◦ S(β)) = ν(S ◦ L ◦ S(α′) ⊕ S ◦ L ◦ S(β′))

where ν(x) denotes the indicator vector which is 1 if the word i of x is zero and
0 otherwise.

Due to the symmetry of SLS, we get exactly the same result in the decryption
direction. Note that the SLS construction essentially corresponds to 4 full rounds
of AES. In [14], the authors fix plaintexts with fixed zero diagonals and decrypt
the exchanged ciphertext pairs to a new plaintext pair which with probability 1
have exactly the same zero diagonals.

We can represent Theorem 2 in terms of subspace cryptanalysis. Consider
two plaintexts in the same coset of a diagonal space DI , p0, p1 ∈ DI + a. Then
let c0 = R4(p0), c1 = R4(p1), p′0 = R−4(ρv(c0, c1))) and p′1 = R−4(ρv(c1, c0))).
Then with probability one, we also have that p′0 ⊕p′1 ∈ DI (different coset than
DI +a). In the next two sections, we present two practical different attacks based
on this 4-round property. We have practically verified the attacks on full-scale
AES in C/C++1.

1 https://github.com/Kryptoraphy/practical-attacks.

https://github.com/Kryptoraphy/practical-attacks

Practical Attacks on Reduced-Round AES 303

3 5-Round Key-Independent Distinguisher

In this section we extend the 4-round distinguisher mentioned in the previous
section to a 5-round distinguisher by adding one round at beginning. We encrypt
a plaintext set and expect that some of them follow the 4-round property after
one round encryption. Thus, we present a new 5-round key-independent distin-
guisher which requires 227.2 adaptively chosen ciphertexts. The idea for setting
up a 5-round distinguisher is as follows. We pick a plaintext set P from a coset
of a diagonal space D0, P ⊂ D0 + a, and encrypt them. Then from the set of all
possible ciphertext pairs we form 7 new ciphertext pairs by exchanging mixed
values between the original pairs. Then we decrypt the set of these newly gener-
ated ciphertext pairs and expect to observe one such pair belonging to the same
coset of DL with |L| = 3.

We know that each coset of DI is mapped into a coset of CI with probability
one, and diagonal and column spaces always have an intersection with a certain
probability (Lemma 2). So, when we encrypt the plaintexts set P , one of following
cases may happen after one round encryption.

R R R R SB

R R R R SB

Fig. 2. 5-round truncated differential characteristic used in case 1

First case. After one round encryption, then according to Lemma 2, with prob-
ability 4 · 2−24 (a single byte can be active in 4 different positions in a column)
we have that

R(pi) ⊕ R(pj) ∈ DK ∩ C0

where |K| = 1. If we swap word(s) between the ciphertexts and decrypt them,
we have, according to the 4-round property mentioned in Sect. 2.3, that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK

and

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ∩ CL

where |L| = 3 with probability 4 · 2−8 (there are 4 possible choices for choosing
L). It means that after one more round of decryption, according to Theorem 1,
the two new plaintexts, p′i and p′j , are in same coset of a diagonal space DL

304 N. G. Bardeh and S. Rønjom

where |L| = 3. Thus, it happens with a probability 4 ·2−24 ·4 ·2−8. The truncated
differential characteristic used in this case is depicted in Fig. 2.

Second case. In this case, R(pi)⊕R(pj) differ in only two bytes with probability
6 · 2−16. In other words:

R(pi)⊕ R(pj) ∈ DK ∩ C0

where |K| = 2. Then, according to the 4-round property, we have that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ,

and with probability 4 · 2−16 we have that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ∩ CL

so R−5(ρv(ci, cj))⊕R−5(ρv(cj , ci)) is zero in a diagonal with probability 6 ·2−16 ·
4·2−16. Figure 3 depicts the truncated differential characteristic used in this case.

R R R R SB

R R R R SB

Fig. 3. 5-round truncated differential characteristic used in case 2

R R R R SB

R R R R SB

Fig. 4. 5-round truncated differential characteristic used in case 3

Third case. There is also a case that R(pi) ⊕ R(pj) is zero in all bytes except
three bytes, which happens with probability 4 · 2−8. It means that

R(pi) ⊕ R(pj) ∈ DK ∩ C0

Practical Attacks on Reduced-Round AES 305

where |K| = 3. Thus, this pair follows the 4-round property

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ,

and with probability 4 · 2−24, we also have that

R−4(ρv(ci, cj)) ⊕ R−4(ρv(cj , ci)) ∈ DK ∩ CL.

Then after one more round of decryption, it follows that p′i ⊕ p′j ∈ DL where
|L| = 3. In total, we expect this event happens with probability 4 · 2−8 · 4 · 2−24.
In Fig. 4, the truncated differential characteristic used in this case is depicted.

In total, the probability that there is a plaintext pair such that p′i ⊕p′j ∈ CL

is 16 · 2−24 · 2−8 + 24 · 2−16 · 2−16 + 16 · 2−8 · 2−24 = 2−26.19. In order to set up
a distinguisher, we encrypt 212.2 plaintexts from a coset of D0. We generate all
223.4 possible ciphertext pairs and for each pair we generate all 7 possible new
ciphertext pairs by swapping words between them. Then we decrypt all 7 · 223.4
ciphertext pairs and expect that there is at least one plaintext pair such that
p′0 ⊕ p′1 ∈ DL with |L| = 3. At random, the probability that two plaintexts
belong to the same coset of DL is 2−30. For AES, the probability of having a
plaintext pair with our desired difference pattern is 1 − (1 − 2−26.2)2

26.2
= 0.63

after decrypting 226.2 ciphertext pairs, while for a random permutation, this
probability is 1 − (1 − 2−30)2

26.2
= 0.07. Thus, the probability of success is

0.58. So, we can distinguish 5-round AES from a random permutation using
212.2 chosen plaintext and 2 · 226.2 = 227.2 adaptively chosen ciphertext. The
algorithm for this distinguisher is presented in Algorithm 1.

The data complexity of this distinguisher is in the same range as the data
complexity of the best 5-round adaptive distinguisher presented in [14]. Both
distinguishers extend on the 4-round distinguisher mentioned in Sect. 2.3 to a
5-round distinguisher by adding a round at the begining. In the distinguisher
presented in [14], the aim is to find plaintext pairs such that all of them have
a certain property (a certain zero-byte set). To achieve this, attacker needs to
generate new pairs of plaintexts and ciphertexts adaptively from the original
pairs. To set up our distinguisher, we just need to generate new ciphertext pairs
adaptively. Our distinguisher exploits another structural properties over 5-round.

4 Key Recovery Attack on 5-Round AES with a Single
Secret S-Box

In this section we present a new key-recovery attack on 5-round AES with a
secret s-box. The idea is to turn the 4-round distinguisher mentioned in Sect. 2.3
to a key recovery attack by adding a round at beginning using a property of the
MixColumn operation in AES. The MixColumns matrix M in AES is defined
by

M =

⎡
⎢⎢⎣

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 1

⎤
⎥⎥⎦ .

306 N. G. Bardeh and S. Rønjom

Algorithm 1. 5-round key-independent distinguisher
Input: Set P contains 212.2 plaintext pi where bytes in first diagonal takes a

random values and others are constant
Output: 1 for an AES, -1 otherwise.
for i from 0 to 212.2 do

ci ← enck(p
i)

end
for i from 0 to 212.2 do

for j from i + 1 to 212.2 − 1 do
for r from 1 to 7 do

c′i ← ρvr (ci, cj), c′j ← ρvr (cj , ci)
p′i ← deck(c

′i), p′j ← deck(c
′j)

if p′i ⊕ p′j ∈ DL where |L| = 3 then
return 1

end

end

end

end

We pick two pairs of plaintexts p0 and p1 where the first diagonal is given by
SR−1(p00) = SR−1(0, i, j, 0) and SR−1(p10) = SR−1(z, z + i, z + j, 0) and where
z is a random non-zero element of F28 . Let k0 = (k0,0, k1,1, k2,2, k3,3) denote the
key-bytes XORed with the first diagonal of the plaintext. Then the difference
between the first column after one encryption of the two plaintexts becomes

αΔx0 ⊕ (α + 1)Δx1 ⊕ Δx2 = y0

Δx0 ⊕ αΔx1 ⊕ (α + 1)Δx2 = y1

Δx0 ⊕ Δx1 ⊕ αΔx2 = y2

(α + 1)Δx0 ⊕ Δx1 ⊕ Δx2 = y3.

where Δx0 = s(k0,0) ⊕ s(z ⊕ k0,0), Δx1 = s(k1,1 ⊕ z ⊕ i) ⊕ s(k1,1 ⊕ i), Δx2 =
s(k2,2 ⊕ z ⊕ j)⊕ s(k2,2 ⊕ j) and where s(x) is the AES-sbox. Since the plaintexts
are equal in the last byte, this part cancels out in the difference. In particular, if
we look at the first two equations, it is not hard to see that they are zero when
Δx0 = Δx1 = Δx2,

s(k0,0) ⊕ s(z ⊕ k0,0) = s(k1,1 ⊕ z ⊕ i)⊕ s(k1,1⊕ i) = s(k2,2 ⊕ z ⊕ j) ⊕ s(k2,2 ⊕ j)

This happens when i ∈ {k0,0⊕k1,1, z⊕k0,0⊕k1,1} and j ∈ {k0,0⊕k2,2, z⊕k0,0⊕
k2,2}. Thus, if we let i and j run through all values of F28 , we are guaranteed
that there are at least four values for which the first two equations are zero.

We prepare a set P of plaintext pairs as follows. For each i and j, we
generate a pair of plaintexts p0 and p1 where the first diagonal of p0 is
SR−1(p00) = SR−1(0, i, j, 0) while the first diagonal in the second text is
SR−1(p10) = SR−1(z, z ⊕ i, z ⊕ j, 0). We then encrypt this pair five rounds
to a pair of ciphertexts c0 and c1. We then pick all 7 new ciphertext pairs

Practical Attacks on Reduced-Round AES 307

c′0, c′1 = (ρv(c0, c1), ρv(c1, c0)) and return the corresponding plaintexts p′0 and
p′1. Now we know that there are 28 pairs in the set such that

R−4(ρv(c0, c1)) ⊕ R−4(ρv(c1, c0)) ∈ DK

where |K| = 2, since for each of the pair satisfy R(p0) ⊕ R(p1) ∈ DK . Thus,
according to Lemma 2, with probability 4 · 2−16 we have that

R−4(ρv(c0, c1)) ⊕ R−4(ρv(c1, c0)) ∈ DK ∩ CL

where |L| = 3. This means that p′0 ⊕ p′1 ∈ DL. Thus, for this pair, we can
deduce the values of i and j which corresponds to k0,0 ⊕k1,1 (z ⊕k0,0 ⊕k1,1) and
k0,0 ⊕ k2,2 (z ⊕ k0,0 ⊕ k2,2) respectively. The truncated differential characteristic
used in the attack is depicted in Fig. 5. Since there are 28 right pairs in the set
P, the probability that there is a new plaintext pair such that p′0 ⊕ p′1 ∈ CL

is 1 − (1 − 2−14)28 = 2−9.19. Then we need to encrypt 29.19 sets P (by picking
different constants for the last three diagonals). Thus, to find two bytes of the key,
the attacker needs 2 ·29.19 ·216 = 226.19 chosen plaintexts and 2·7 ·29.19 ·216 = 229

adaptively chosen ciphertexts. Then the attacker can repeat the attack for other
diagonals (two times for each diagonal) and guess one byte of the key for each
diagonal. In total the attacker needs 229.19 chosen plaintexts and 232 adaptively
chosen ciphertexts to form an attack with success rate of 0.63. The algorithm
for this key recovery attack is presented in Algorithm 2.

Algorithm 2. Key recovery attack on 5-round AES with a single secret
s-box

Input: 29.12 different sets P where each contains 216 plaintext pairs
Output: Candidates for k0,0 ⊕ k1,1 (1 ⊕ k0,0 ⊕ k1,1) and k0,0 ⊕ k2,2

(1 ⊕ k0,0 ⊕ k2,2)
for c from 0 to 29.12 do

for i from 0 to 28 do
for j from 0 to 28 do

p0
0 ← (0, i, j, 0), p1

0 ← (1, 1 ⊕ i, 1 ⊕ j, 0)
p0
l = p1

l = Random − value for l = 1, 2, 3
c0 ← enck(p

0), c1 ← enck(p
1)

for r from 1 to 7 do
c′0 ← ρvr (c0, c1), c′1 ← ρvr (c1, c0)
p′0 ← deck(c

′0), p′1 ← deck(c
′1)

if p′0 ⊕ p′1 ∈ DL where |L| = 3 then
(i, j) is a candidate for two bytes of key.

end

end

end

end

end

308 N. G. Bardeh and S. Rønjom

R R R R SB

R R R R SB

Fig. 5. 5-round truncated differential characteristic used in key recovery attack AES

The key-recovery attacks on 5-round AES with a secret s-box presented in [10]
are based on impossible and multiple-n cryptanalysis, while our attack is based
on zero-difference cryptanalysis. Since our attack exploits a probability one 4-
round property, it requires less texts than others which exploit probabilistic
4-round properties. Also, the best 5-round key recovery attacks in adaptive set-
ting [14] and non-adaptive setting [1] require 211.3 adaptively chosen ciphertexts
and 222 chosen plaintext respectively (with a known s-box), so compared to our
attack, and despite the increased size of the secret information, the required data
is increased, at most, by a factor of 221.

5 Conclusion

In this paper we have introduced a new 5-round key-independent distinguisher
which requires 212.2 chosen plaintexts and 227.2 adaptively chosen ciphertexts.
In addition, we present a new key recovery attack against 5-round AES with
a secret s-box based on zero-difference cryptanalysis. The attack requires 229.19

chosen plaintexts and 232 adaptively chosen ciphertexts. Both attacks mentioned
in this paper are practical and have been verified experimentally on a standard
laptop.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions. This Research was supported by the Norwegian Research Council.

References

1. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities.
In: Advances in Cryptology - CRYPTO 2018–38th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, 19–23 August 2018, Proceedings, Part
II, pp. 185–212 (2018). https://doi.org/10.1007/978-3-319-96881-0 7

https://doi.org/10.1007/978-3-319-96881-0_7

Practical Attacks on Reduced-Round AES 309

2. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, 6–10 December 2009, Proceedings, pp. 1–18 (2009). https://doi.org/
10.1007/978-3-642-10366-7 1

3. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack on
the full AES-256. In: Advances in Cryptology - CRYPTO 2009, 29th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2009,
Proceedings, pp. 231–249 (2009). https://doi.org/10.1007/978-3-642-03356-8 14

4. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Trans. Inf. Theor. 58(11), 7002–7017
(2012). https://doi.org/10.1109/TIT.2012.2207880

5. Daemen, J., Rijmen, V.: The block cipher rijndael. In: Smart Card Research and
Applications, This International Conference, CARDIS 1998, Louvain-la-Neuve,
Belgium, 14–16 September 1998, Proceedings, pp. 277–284 (1998). https://doi.
org/10.1007/10721064 26

6. Derbez, P., Fouque, P., Jean, J.: Improved key recovery attacks on reduced-round
AES in the single-key setting. In: Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, 26–30 May 2013, Proceedings, pp. 371–387
(2013). https://doi.org/10.1007/978-3-642-38348-9 23

7. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Advances in Cryptology - ASIACRYPT 2010–16th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Singapore, 5–9 December 2010, Proceedings, pp. 158–176 (2010).
https://doi.org/10.1007/978-3-642-17373-8 10

8. Ferguson, N., et al.: Improved cryptanalysis of rijndael. In: Fast Software Encryp-
tion, 7th International Workshop, FSE 2000, New York, NY, USA, 10–12 April
2000, Proceedings, pp. 213–230 (2000). https://doi.org/10.1007/3-540-44706-7 15

9. Gilbert, H., Minier, M.: A collision attack on 7 rounds of rijndael. In: AES Candi-
date Conference, pp. 230–241 (2000)

10. Grassi, L.: Mixcolumns properties and attacks on (round-reduced) AES with a
single secret s-box. In: Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, 16–20 April 2018,
Proceedings, pp. 243–263 (2018). https://doi.org/10.1007/978-3-319-76953-0 13

11. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its
applications to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016).
10.13154/tosc.v2016.i2.192-225

12. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of 5-
round AES. In: Advances in Cryptology - EUROCRYPT 2017–36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, 30 April - 4 May 2017, Proceedings, Part II, pp. 289–317 (2017).
https://doi.org/10.1007/978-3-319-56614-6 10

13. Gueron, S., Mouha, N.: Simpira v2: A family of efficient permutations using the
AES round function. In: Advances in Cryptology - ASIACRYPT 2016–22nd Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, 4–8 December 2016, Proceedings, Part I, pp. 95–125
(2016). https://doi.org/10.1007/978-3-662-53887-6 4

https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1109/TIT.2012.2207880
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-319-76953-0_13
https://doi.org/10.13154/tosc.v2016.i2.192-225
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-662-53887-6_4

310 N. G. Bardeh and S. Rønjom

14. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Advances
in Cryptology - ASIACRYPT 2017–23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China, 3–7
December 2017, Proceedings, Part I, pp. 217–243 (2017). https://doi.org/10.1007/
978-3-319-70694-8 8

15. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on aes-like SPN ciphers.
In: Advances in Cryptology - CRYPTO 2016–36th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, 14–18 August 2016, Proceedings, Part I,
pp. 605–624 (2016). https://doi.org/10.1007/978-3-662-53018-4 22

16. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with
a secret s-box. In: Fast Software Encryption - 22nd International Workshop, FSE
2015, Istanbul, Turkey, 8–11 March 2015, Revised Selected Papers, pp. 175–189
(2015). https://doi.org/10.1007/978-3-662-48116-5 9

https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-662-53018-4_22
https://doi.org/10.1007/978-3-662-48116-5_9

Six Shades of AES

Fatih Balli(B) and Subhadeep Banik

LASEC, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{fatih.balli,subhadeep.banik}@epfl.ch

Abstract. Recently there have been various attempts to construct light
weight implementations of the AES-128 encryption and combined encryp-
tion/ decryption circuits [2,13]. However no known lightweight circuit
exists for AES-192 and AES-256, the variants of AES that use longer
keys. Investing in lightweight implementations of these ciphers is impor-
tant as we enter the post quantum era in which security is, by a rule of
the thumb, scaled down to the square-root of the size of the keyspace.
In this paper, we propose a single circuit that is able to offer functionali-
ties of both encryption and decryption for AES-128/192/256. Our circuit
operates on an 8-bit datapath and occupies around 3672 GE of area in
silicon. We outline the challenges that presented themselves while per-
forming the combinatorial optimization of circuit area and the methods
we used to solve them.

1 Introduction

In the past few years, lightweight cryptography has become a popular research
discipline. A number of lightweight block ciphers have been proposed over the
years. Among them Clefia [17] and Present [6] are well-studied with respect
to their security and implementation. Both ciphers have been standardized in
ISO/IEC 29192 “Lightweight Cryptography”. Very recently the Simon and Speck
family of block ciphers [5] was proposed by the NSA with the goal of reducing
hardware area. While the above ciphers have mostly targeted optimization of
hardware area, there have been other block ciphers aimed at optimizing other
lightweight design metrics. For instance, the block cipher Prince [7] was designed
for low latency applications like memory encryption. Another example is Midori
[4] which was designed to optimize energy consumption. However, AES still
remains the de-facto encryption standard worldwide for a number of sectors like
banking and e-commerce. It is a part of several internet protocols like HTTPS,
FTPS, SFTP, WebDAVS, OFTP, and AS2.

There have been several lightweight implementations of AES proposed in
literature. In [16], the authors propose a 32-bit serial architecture with optimized
tower field implementation of the S-box and a combinatorial optimization of the
Mix Columns circuit. The size of this implementation was around 5400 GE (gate
equivalents, i.e. are occupied by an equivalent number of 2-input NAND gates).
The “Grain of Sand” implementation [12] by Feldhofer et al. constructs an 8-bit
serialized architecture with circuit size of around 3400 GE but a latency of over
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 311–329, 2019.
https://doi.org/10.1007/978-3-030-23696-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_16

312 F. Balli and S. Banik

1000 cycles for both encryption and decryption. The implementation by Moradi
et al. [15] with size equal to 2400 GE and encryption latency of 226 cycles is one
of the smallest known architectures for AES. In [14], the authors report an 8-bit
serial implementation that takes 1947/2090 GE for the encryption/decryption
circuits respectively. This implementation makes use of intermediate register files
that can be synthesized in the ASIC flow using memory compilers.

Very recently two further serial architectures have been proposed for AES-
128. The first, named Atomic AES [2], which was followed up by Atomic AES
v2.0. [3] uses the basic architecture of [15] along with a few tweaks to achieve
encryption and decryption functionalities in the same circuit. The circuit takes
around 2060 GE of area. [13] takes the design one step further, but proposing
the first bit serial architecture for AES in less than 1600 GE. However since the
architecture advances data one bit every clock cycle, it is around 8 times slower
than byte serial architectures.

1.1 Motivation and Challenges

One important thing to note is that the all papers [2,3,13,15] assume that the
key and data are input to the circuit arranged in a row-major fashion, i.e. bytes
of each individual rows are input to the circuit together. This is slightly odd as
AES specifications explicitly recommend column-major ordering and hence
implementing AES in the proper columnwise ordering of bytes is an important
challenge.

Secondly, there have surprisingly been no attempts made to implement AES-
192 and AES-256 in a lightweight fashion. These are the variants of AES that
use longer keys. Investing in lightweight implementations of these ciphers is
important as we enter the post quantum era in which security is, by a rule of
the thumb, scaled down to the square-root of the size of the keyspace, due to
Grover’s algorithm. Lightweight implementation of AES-192 and AES-256 is of
added importance as AES-256 is a core component of a number of candidates in
the NIST Post-quantum project for standardization of a quantum-secure public
key cryptosystem [1]. NIST targets three level of security in this standardization:
Level 1/3/5 respectively equivalent to AES-128/192/256 bit security. Out of 17
second round post quantum KEM candidate constructions, 9 candidates employ
AES in their construction: 8 of these use AES-256 in counter mode, making it a
preferred choice for generating pseudorandomness. Few candidates also propose
3 designs for 3 different security levels, therefore using all AES-128/192/256
instances at the same time. For signatures schemes, 2 out of 9 schemes make use
of AES-256.

However designing serial implementations of AES-192 and AES-256 is slightly
challenging due to reasons as outlined follows. One of the main reasons it is com-
paratively easy to implement AES-128 in a serial fashion is that the round func-
tion and key update operations are synchronized, which is to say that after every
round, the state and the current key are updated. Thus every round involves exe-
cuting the same operations on the state (except the last round MixColumns) and
key registers which can be iterated 10 times to get the encryption/decryption

Six Shades of AES 313

functionality. This is however not the case with either AES-192 or AES-256.
Since AES-192 uses a 192 bit key but only a 128 bit state, it requires only 8 full
key update operations, to produce sufficient key material for the 12 rounds rec-
ommended by the designers. In fact, in AES-192 state and key operations become
synchronized after 3 round functions and 2 key update operations. AES-256 uses
a 256 bit key and requires only 7 full key updates for 14 executions of the round
function. The key update operation of this cipher is also slightly different as
each key update requires S-box operation to be applied on 2 columns of the
current key instead of 1 in both AES-128 and AES-192. This asymmetry in the
round and key schedule operations make serial implementation of AES-192 and
AES-256 slightly more difficult.

A final challenge is implementing the functionalities of encryption and
decryption on the same circuit. Various modes of operations like CBC [11] and
E�MD [10], that use block ciphers as the underlying primitive, require access to
both its encryption and decryption functionalities. Thus it is useful to have an
implementation that achieves both functionalities of a block cipher with minimal
overhead.

1.2 Contribution and Organization

In this paper we present an 8-bit serial architecture that performs all encryption
and decryption operations of three instances AES-128, AES-192, AES-256. The
circuit thus supports six functionalities. We remove the requirement that bytes
be ordered in row-first fashion, and construct our circuit so that it can support
inputs when they are arranged in a column first fashion. The circuit occupies
area of around 3672 GE when synthesized with the standard cell library of the
STM 90 nm CMOS logic process.

The paper is organized in the following manner. Section 2 gives some back-
ground on AES and some necessary definitions required to read the paper.
Section 3 describes the architecture and functioning of our circuit in detail and
we describe explicitly how we overcome some of the challenges presented in
Sect. 1.1. Section 4 tabulates all implementation results and compares synthesis
results for various standard cell libraries.

2 Background and Preliminaries

2.1 Encryption/Decryption Overview

Let r denote the number of rounds in the encryption/decryption function, n
denote the number of key expansion rounds, � denote the byte size of the key for
a given AES instance. Note that, r, n, � = (10, 10, 16), (12, 8, 24), and (14, 7, 32)
for AES-128, AES-192, and AES-256 respectively.

The encryption algorithm consists of multiple calls to AddRoundKey(·, ·),
SubBytes(·), ShiftRows(·) and MixColumns(·) layers where each input denoted
with ‘·’, as well as each output, is a 4 × 4 byte matrix. AddRoundKey takes the

314 F. Balli and S. Banik

state information St and the round key Ki and returns the byte-wise XOR
of them. With SubBytes, each byte is substituted according to AES S-box.
ShiftRows rotates the i-th row by i position to the left (for i = 0, 1, 2, 3). During
MixColumns, each column [s4i, s4i+1, s4i+2, s4i+3]T of input sequence s is multi-
plied with a fixed 4×4 byte matrix M , where byte values are treated as elements
of GF(28). An important property of M is M4 = I, where I denotes the identity
matrix. We skip further details of these four layers, and refer the reader to [9].

Even though the block size in all 6 instances of AES is exactly 4×4 bytes and
thereby matches exactly with the input and output of the aforementioned layers,
the same cannot be said for the key. Namely, in AES-192, the key is arranged
in a 4 × 6 byte matrix and in AES-256 it is arranged in a 4 × 8 byte matrix.
As a consequence, the iterations of the key expansion algorithm, whose task is
to generate fresh 4 × 4 bytes of round key for each AddRoundKey operation,
desynchronize with the round operations performed on the state and it leads to
a great deal of complexity in our design. We briefly remind the details of the key
expansion algorithm below.

2.2 Key Expansion

Let S denote the AES S-box. Let RC1, . . . ,RC10 denote a sequence of round con-
stant bytes1. The key expansion generates a sequence of key bytes k0, . . . , k16r+15

given the bytes k0, . . . , k�−1 as input. At each iteration of key expansion, � bytes
of fresh key is produced by XORing the original matrix with an additional offset.
For instance, with AES-128, the very first round of key expansion generates key
bytes k16, . . . , k31 from k0, . . . , k15 according to:

⎡
⎢⎢⎣

k16, k20, k24, k28
k17, k21, k25, k29
k18, k22, k26, k30
k19, k23, k27, k31

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣

k0, k4, k8, k12
k1, k5, k9, k13
k2, k6, k10, k14
k3, k7, k11, k15

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣
S(k13) ⊕ RC1, k16, k20, k24

S(k14), k17, k21, k25
S(k15), k18, k22, k26
S(k12), k19, k23, k27

⎤
⎥⎥⎦

Similarly, with AES-192, the very first round of key expansion is:
⎡
⎢⎢⎣

k24, k28, k32, k36, k40, k44
k25, k29, k33, k37, k41, k45
k26, k30, k34, k38, k42, k46
k27, k31, k35, k39, k43, k47

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣

k0, k4, k8, k12, k16, k20
k1, k5, k9, k13, k17, k21
k2, k6, k10, k14, k18, k22
k3, k7, k11, k15, k19, k23

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣
S(k21) ⊕ RC1, k24, k28, k32, k36, k40

S(k22), k25, k29, k33, k37, k41
S(k23), k26, k30, k34, k38, k42
S(k20), k27, k31, k35, k39, k43

⎤
⎥⎥⎦

However, AES-256 contains a slight tweak (denoted with blue):
⎡
⎢⎢⎣

k32, k36, k40, k44, k48, k52, k56, k60
k33, k37, k41, k45, k49, k53, k57, k61
k34, k38, k42, k46, k50, k54, k58, k62
k35, k39, k43, k47, k51, k55, k59, k63

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣

k0, . . . , k28
k1, . . . , k29
k2, . . . , k30
k3, . . . , k31

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣
S(k29) ⊕ RC1, k32, k36, k40, S(k44), k48, k52, k56

S(k30), k33, k37, k41, S(k45), k49, k53, k57
S(k31), k34, k38, k42, S(k46), k50, k54, k58
S(k28), k35, k39, k43, S(k47), k51, k55, k59

⎤
⎥⎥⎦

The same operation is repeated for 10, 8, 7 times for AES-128/192/256 respec-
tively. Later, regardless of the instance and the initial key size, the subsequence
k16i, . . . , k16i+15 will act as the round key Ki for the i-th round. A key expansion
round can be seen as a proper combination of the following unit operations, each
of which processes one byte per clock cycle.
1 Since at most 10 elements of this sequence is used, we consider it as a lookup table.

Six Shades of AES 315

– ke0 (key expand 0) takes the byte from the second row and the last col-
umn of the current key, applies S-box, and XORs with the round constant
RCj . The result is added to the key byte in the first row and column e.g.
k16 ← k0 ⊕ S(k13) ⊕ RC1 is computed in AES-128. Each key expansion round
contains exactly one ke0 operation.

– ke1 (key expand 1) takes the byte (from the next row) from last column
and applies S-box, and XORs with the next key byte in the first column,
e.g. k17 ← k1 ⊕ S(k14) is computed in AES-128. Each key expansion round
contains exactly three ke1 operations.

– ke2 (key expand 2) takes the byte from the last column and the same row,
applies S-box, and XORs with the original value, e.g. k48 ← k16 ⊕ S(k44) is
computed in AES-256. This operations is specific to AES-256 and is used
exactly four times for each round of key expansion.

– kxor (key xor) XORs the current key byte with the (�−4)th previous keybyte,
e.g. k20 ← k4 ⊕ k16. Each key expansion round contains 12, 20, 24 kxor
operations in AES-128, AES-192, AES-256 respectively.

The combination ke0, ke1, k1, ke1 performed for 4 consecutive clock cycles
helps complete the first stage of the key expansion in which the last column of the
current key is rotated, passed through the AES S-box, added to a round constant
and thereafter added to the 1st column of the key. For AES-128 a keysched-
ule round consists of the following sequence of operations ke0, ke13, kxor12,
where opi denotes i successive executions of the operation op. For AES-192 the
sequence is ke0, ke13, kxor20 and for AES-256 the sequence is ke0, ke13, kxor12,
ke24, kxor12. As already mentioned, the key expansion round and the encryp-
tion/decryption rounds are perfectly synchronized in AES-128, however the same
cannot be said for AES-192 and AES-256. This was one of the primary challenges
we had to overcome when designing a circuit that can perform all six instances
together.

3 One Circuit to Rule Them All

3.1 Input, Output Formats

Our AES architecture is a sequential (clocked) one with 8-bit datapath. 8-bit
KeyIn for key, 8-bit DataIn for the plaintext (resp. ciphertext) data, 3-bit selector
Ins to choose among six instances (AES-128/192/256 encryption/decryption), a
reset signal Rst and a clock signal Clk are wired as input. Its output consists
of a 8-bit DataOut for the result (for the computed ciphertext or plaintext)
and a ready signal Rdy indicating the completion of the operation. Loading the
input values takes upto 16, 24, 32 cycles for AES-128/192/256 respectively, and
the reception of the output takes 16 cycles; whereas the encryption/decryption
operation takes on the order of few hundreds cycles.

We denote the data (i.e. the input plaintext/ciphertext) as a byte sequence
d0, . . . , d15. We denote the original key with k0, . . . , k�−1 where � is 16, 24, 32 for
AES-128/192/256 respectively. Lastly, we denote the last � bytes of round keys

316 F. Balli and S. Banik

used in AddRoundKey with k′
0, . . . , k

′
�−1. Namely, these are the byte sequences

k160, . . . , k175 in AES-128; k184, . . . , k207 in AES-192; and k208, . . . , k239 in AES-
256.

Loading Cycles. In AES-128, the key and the data has the same size, therefore
loading the both can be synchronized, i.e. ki (resp. k′

i) and di are loaded at the
same clock cycle for encryption (resp. decryption). However, in AES-192/256,
the key is larger than the data, therefore we should clarify which bytes of the
key and the data are loaded at which cycles. For encryption, the data and the
first 16 bytes of key are loaded during the first 16 cycles. The remaining bytes of
the key, i.e. k16, . . . , k�−1, are loaded in the following 8 (resp. 16) cycles in AES-
192 (resp. AES-256). For decryption, first �−16 bytes of the last used round key
bytes (the sequence k′

0, . . . , k
′
�−17) are loaded. Namely, first 8 (resp. 16) cycles are

used to load k′
0, . . . , k

′
7 (resp. k′

0, . . . , k
′
15) in AES-192 (resp. AES-256). Then, the

following 16 cycles are used to load k′
�−16, . . . k

′
�−1 and d0, . . . , d15 simultaneously.

Input Format. For encryption, the key k0, . . . , k�−1 and the data d0, . . . , d15
are loaded. For decryption, the key byte sequence (see Sect. 2.2) k′

0, . . . , k
′
�−1 is

loaded instead of the original key k0, . . . , k�−1.

Result Cycles. The result data sequence c0, . . . , c15 (ciphertext for encryption
or plaintext for decryption) is observed at DataOut in the correct order. The
signal Rdy is also set to ‘1’ during the 16 cycles this result is available.

3.2 Components

– Enabled byte flip flop (henceforth referred as EFF) is a byte storage unit that
preserves its output during many cycles when enable signal is unset, i.e. its
value is frozen. When enable signal is set, its value (and thereby output) is
updated with the first rising edge of the clock signal. They are denoted with
shadowed white squares in Fig. 1, and used in the key pipeline.

– Enabled byte scan flip flop (henceforth referred as SEFF) is an EFF combined
with a multiplexer. Two separate bytes are wired as input, and its next value
is assigned to either one of them based on an additional selection signal. Its
value is updated on the next rising edge, if the enable signal is set. If enable
signal is unset, its value is preserved. They are denoted with grayed and
shadowed squares in Fig. 1, and used mostly in the state pipeline.

– Control Logic is a finite-state machine which activates with the release of the
reset signal Rst, and computes either one of the six AES instances based on
Ins signal. It controls all flip flop enable signals, scan flip flop selectors, mux
selectors, mask AND selectors, S-box direction signal and Rdy.

– Mix Column takes 4-byte column [s4i, s4i+1, s4i+2, s4i+3]T as input and com-
putes M × [s4i, s4i+1, s4i+2, s4i+3]T over GF(28), where M denotes the AES
mixcolumn matrix [9]. Since M4 = I where I is the identity matrix, we can
use the same circuit to do InvMixColumns by performing MixColumns three
times. It outputs the 4-byte result.

Six Shades of AES 317

– We use the Canright S-box architecture [8] that performs both the S-box/S-
box-inverse operation and has a very low hardware footprint. S-box S, as
well as its inverse S−1. The direction of the operation is determined with an
additional selection signal.

– RC lookup table contains ten round constant bytes used in all three instances.
A 4-bit counter is also attached to choose the correct value from the table.

In order to minimize number of gates, we limit our design to a single two-
directional S-box (shared between SubBytes and KeyExpand), a single mix column
circuit (used for both MixColumns and InvMixColumns) and a series of EFF and
SEFF as two pipelines: one for the state and another for the key. Since the keysize
in AES-256 is 32-bytes, the key pipeline contains 32 byte flip flops.

3.3 High Level Description of the Design

Our design is fully described in Fig. 1. Below, we refer to EFF/SEFF directly
though their two-digit addresses: for EFF/SEFF in the key pipeline we use 00,
and for SEFF in the state pipeline we employ the italic font 00.

State Pipeline. 16 SEFF are arranged in a upward-moving serial fashion, where
a byte value enters into the pipeline from 33, moves in the upwards direction to
30, then moves to 23, etc. and finally reaches to 00 in 16 clock cycles during
normal operation. This is done via vertical connections in the pipeline which
permit loading the state information in one-byte-per-clock fashion into the bus
for executing AddRoundKey and SubBytes operations simultaneously in 16 cycles.
Moreover, alternative lateral connections (e.g. from 30 to 00) allow each column
to be loaded into Mix Column circuit for MixColumns operation in 4 cycles. The
same lateral connections in the left direction allows us to do ShiftRows operation,
by carefully enabling and disabling rows in harmony in 3 cycles. With the help
of muxes connected to 30, 31, 32, 33, we can choose between ShiftRows and
MixColumns operations. Notice that the control logic determines the direction of
the flow by the select signals and whether or not some EFF/SEFFs are frozen by
enable signals. Partially or fully freezing is useful for ShiftRows or when another
operation is stalling the key pipeline.

Key Pipeline. It consists of 31 EFF and 1 SEFF to store the 32 byte key in
AES-256. The connections of the pipeline are tweaked through muxes 5, 6 in such
a way that:

– During AES-128 operations, from 20 to 53 are bypassed (disabled) and the
output of 60 is wired to 13 through mux 5. Therefore the key pipeline effec-
tively shrinks to 16 byte flip flops.

– During AES-192 operations, from 40 to 53 are bypassed (disabled) and the
output of 60 is wired to 33 through mux 6. The output of 20 is wired to 13
through mux 5. The key pipeline shrinks to 24 flip flops.

– During AES-256 operations, no EFF in the key pipeline is disabled and 40 is
wired to 33 through mux 6 and 20 is wired to 13 through mux 5.

318 F. Balli and S. Banik

In order to work in harmony with the state pipeline, the task of the key pipeline
is to provide the particular byte of key to the bus, so that AddRoundKey can be
performed correctly with the byte coming from the state. This key byte from
the pipeline can be fetched from 00, 20 or 40 based on the selection signal of
mux 10, whereas the pipeline supports rotation through connections 00 → 73
through mux 12. As before, enable signals are configured by the control logic
and can freeze the pipeline when another operation is stalling the state pipeline.

Main Bus. Consists of two muxes 10, 7 to choose the source of key and data
bytes to be loaded into the bus. The crucial component in the bus is the S-
box, whose input and output is complemented with two byte XOR gates. The
XOR gate before S-box is useful for encryption, as the key addition precedes
the S-box, and the XOR gate after S-box is useful for decryption. The choice of
S-box/S-box-inverse functionality and the select signals of muxes are configured
by the control logic.

Key Expansion Logic. The most challenging part of our design by far is the
computation of proper round key for AddRoundKey operation for 6 different
instances on the same circuit. For this reason, a combination of XOR/AND
gates is connected to the key pipeline to execute KeyExpand on-the fly (while
the pipeline is moving to perform another operation). The gates highlighted
with lightgray background in Fig. 1 connected to 00, 10 (positioned above key
pipeline) enables key expansion for the encryption and decryption, and the gates
connected to 13, 23, 33, 63, 73 (positioned below the key pipeline) enable key
expansion during decryption.

3.4 Elementary Operations of Layers

In order to simplify the explanation of how our circuit operates, we conceptually
divide the control of the circuit into various operations. We also explain their
connection to four different layers (plus KeyExpand). Some of the operations
described below are computed on completely independent parts of the circuit,
hence they can be performed simultaneously by our hardware. We will squeeze
them into same cycles as much as possible. Each of the following instructions sets
particular control bits for given cycle to perform its corresponding operation. If
an operation does not explicitly mandate how a certain SEFF/EFF should behave,
then it is frozen by setting the enable signal to ‘0’. As before, 00 refers to the
top-left EFF of the key pipeline and 00 refers to the top-left SEFF in the state
pipeline.

add Both the key and the state pipelines are fully active, and two bytes from
each are loaded into the bus. The state byte is fetched from 00 of the state
pipeline. On the other hand, the key byte can be fetched either from 00, 20
or 60 of the key pipeline (note that key bytes are fetched from 20 and 60
during AES-192 decryption). Exception to this is the initialization where the
key and the data are being loaded to the circuit: then, two bytes must come
from DataIn and KeyIn but not from the pipelines. If the chosen functionality

Six Shades of AES 319

SB
O
X

K
ey
00

IS
B
O
X

K
ey
In

D
at
aI
n

D
at
aO

ut

8

Se
lA
dd

0

00
10

20
30

01
11

21
31

02
12

22
32

03
13

23
33

00
10

20
30

01
11

21
31

02
12

22
32

03
13

23
33

40
50

60
70

41
51

61
71

42
52

62
72

43
53

63
73

32

32

8

R
C

Se
lR
C

MIXCOLUMN

K
E
Y
0

D
A
T
A
0

K
ey
71

K
ey
70

St
00

St
00

K
ey
71

SB
O
ut

Se
l1

K
ey
70

K
ey
60

K
ey
20

K
ey
60

K
ey
00

0 1 2 3

5

Se
l3

K
ey
60

6

Se
l2

K
ey
60

K
ey
70

Se
l6

Se
l7

4

10

K
ey
20

K
ey
10

Se
lA
dd

1

K
ey
00

7
8

1 1

12

8

ke
0,

ke
1,

ke
2,

kx
or

,
ik
xo

r

ik
xo

r

32

Fig. 1. Circuit diagram for the 6AES architecture

320 F. Balli and S. Banik

of the circuit indicated by Ins signal is encryption, the two bytes on the bus
are first XORed, and then passed through S-box (therefore AddRoundKey and
SubBytes are done concurrently). Otherwise (if Ins indicates decryption), the
state byte is passed through S-box-inverse, and then the addition is done
(therefore InvSubBytes and AddRoundKey are done concurrently). In either
case, the computed byte is stored to 33 of the state pipeline. Meanwhile, the
key pipeline rotates itself by connecting 00 to 73. Exception to this is again
initialization, during which 73 receives its next value from the bus.

sbox Muxes 11, 8 and S-box selection signal are configured accordingly so that
S-box can be computed.

isbox Muxes 11, 8 and S-box selection signal are configured accordingly so that
S-box-inverse can be computed. Both sbox and isbox are performed simulta-
neously with add during encryption/decryption operations respectively.

srow0 Rotates rows 1, 2, 3 of the state pipeline to left by one. The control logic
uses selection signal of scan flip flops to change the direction in the pipeline,
and freezes the unused state flip flops.

srow1 As before, but rotates rows 1, 2 of the state pipeline to left by one.
srow2 As before, but rotates rows 3 of the state pipeline to left by one. Notice

that consecutive srow0, srow1, srow2 operations (3 cycles) correspond to one
ShiftRows.

isrow0 As before, but rotates row 1 of the state pipeline to left by one.
isrow1 As before, but rotates rows 1, 2 of the state pipeline to left by one. Notice

that consecutive isrow0, isrow1, srow0 operations (3 cycles) correspond to one
InvShiftRows.

mixcol Muxes 0, 1, 2, 3 are configured to load the input from Mix Column circuit.
Again, the selection signal of all state flip flops are configured by the control
logic so that the pipeline moves in the left direction.

ke0 Performs the key expand operation as explained in Sect. 2.2. During ke0, all
flip flops of the key pipeline except columns 0 and 7 are frozen. Columns 0
and 7 rotate in the upwards direction. The state pipeline is also frozen.

ke1 The only difference from ke0 is that SelRC is set to 0, so that RC is removed
from the computation, 03 is loaded with S(71) ⊕ 00.

0ke2 Similar to ke0, but the input byte of S-box is not rotated, 03 is loaded with
S(70) ⊕ 00.

kxor For key xor operation of the key expansion algorithm, the input select bits
of 03 and the mux 4 are configured to store 10 ⊕ 00 instead of barely 10 for
the next cycle.

ikxor For the inverse of key xor operation used in decryption we use the same
trick employed in [2] in which the last row of byte flip-flops in the key register
is controlled with additional and gates. The corresponding circuitry is shown
in a gray background in Fig. 1. Sel1,Sel2,Sel3,Sel6,Sel7 are the corresponding
signals that are configured such that key XOR is done, e.g. 13 ← 10⊕20, only
at selected clock cycles during decryption. Similar to kxor, the key pipeline
must be fully active, and state pipeline is frozen.

load Mux 10 is configured such that the key is loaded from the input to the
pipeline (necessary for AES-192, AES-256). The key pipeline is fully active,
and the state pipeline is frozen.

Six Shades of AES 321

rot The key is rotated in the pipeline, where the exiting byte 00 is fed back into
73. The key pipeline is fully active.

rxor Pseudonym for combination of rot and kxor. Therefore the key is updated
on the pipeline with key xor operation, as it rotates.

In the following two subsections, we will separate encryption/decryption
round functions performed on the state, completely from key expansion. Encryp-
tion and decryption round function operations are straightforward to implement
with the design given in Fig. 1 and remains quite similar through six different
instances. However, the key expansion becomes a major challenge and due to its
instance-specific nature, requires significant effort.

3.5 Generic Encryption/Decryption Overview

First, for the sake of argument, suppose that the key pipeline always contains the
necessary round key Ki at round i, with which AddRoundKey is being done. Then
we can readily convert the encryption algorithm into a sequence of operations.
AddRoundKey and SubBytes can be done simultaneously through add and sbox
operations in 16 cycles. Then for ShiftRows, it suffices to run srow0, srow1, srow2
subsequently in 3 cycles. Then, in 4 cycles of mixcol, we complete MixColumns.
This sequence corresponds to one round of operation in the encryption algo-
rithm, and can be repeated as many times as necessary, as long as the key
pipeline handles the key expansion and provides the correctly aligned key bytes
during AddRoundKey. The same line of reasoning also applies to decryption,
where InvSubBytes and AddRoundKey can be done with isbox and add simulta-
neously in 16 cycles, InvShiftRows can be done with isrow0, isrow1, srow0 in 3
cycles; and InvMixColumns can be done in 12 cycles of mixcol (as explained before
InvMixColumns is 3 repetitions of MixColumns).

Therefore, what remains is to continuously refresh the key in the pipeline, by
removing dirty key bytes (i.e. already used with AddRoundKey), and replacing
with fresh bytes (not yet used) of key. By refreshing we mean computing the next
round key in encryption, and previous round key in decryption (since decryption
starts with the last � key bytes of the last round and computes the round keys
in the reverse direction). In the following section we describe how key bytes are
managed in the key pipeline, and how its operations are interleaved with the
four layers of encryption and decryption.

3.6 Key Expansion Details

AES-128 Encryption: The detailed chronology of operations is given in Fig. 2.
During the first 16 cycles, muxes 7, 10 are configured such that the key and
the data are loaded to the bus through inputs DataIn, KeyIn, instead of the
pipelines. At the same time, AddRoundKey and SubBytes operations are done
simultaneously, where the computed state is loaded into the state pipeline, and
the key is loaded into 00–13, 60–73.

322 F. Balli and S. Banik

Fig. 2. The chronology of operations in AES-128 encryption (on top) and AES-128
decryption (below). The numbers in the boxes indicate the number of cycles over
which the operation is executed.

A round takes 23 cycles to complete. At the beginning of the round, all the
keys in the pipeline are dirty. Therefore, we use the first 4 cycles to refresh the
key bytes in column 0 with running ke0, ke1, ke1, ke1 sequentially. ShiftRows and
MixColumns are also performed in parallel, since they have no effect on the key
pipeline. At the end of 7 cycles (after ke0, ke13 and waiting for 3 cycles), the key
pipeline still contains 12 dirty key bytes contained in 10–13, 60–73. These bytes
are refreshed in 12 cycles with kxor as the pipeline moves, as they are loaded
into 03. Therefore, it is merged with add and sbox, which takes 16 cycles. At the
end of a round, all bytes in the key pipeline are again dirty. In the final round,
MixColumns is skipped, and the ciphertext is available during the very last 16
cycles.

AES-128 Decryption: We remind that for decryption, KeyIn loads the very
last 16 bytes of key used with the last AddRoundKey, but not the original key
used for encryption. The rounds can be seen as the symmetrically opposite ver-
sions of encryption.

A round takes 31 cycles to complete. At the beginning, all bytes in the key
pipeline are fresh. At the end of 12 cycles, the key pipeline contains only 4 fresh
bytes. Then, ikxor is enabled through 13, 63, 73 (by setting Sel13, Sel63, Sel73
to ‘1’) for 4 cycles. Therefore at cycle 16, the key pipeline contains exactly 12
bytes of fresh key contained in 10–13, 60–73. The remaining dirty key column is
refreshed by ke0, ke1, ke1, ke1 operations are in the next 4 cycles. Therefore, at
the end of the round, all bytes in the key pipeline are fresh. As before, the output
of decryption, i.e. the plaintext becomes available during the last 16 cycles.

AES-192 Encryption: The detailed chronology of operations is given in Fig. 3.
Performing the key expansion in AES-192 becomes quite challenging given the
fact that each key expansion round generates 24 bytes of new round key, whereas
only 16 of them are used for each encryption round. This leads to misalignment
and desynchronization issues between the state pipeline and the key pipeline.

Six Shades of AES 323

Fig. 3. The chronology of operations in AES-192 encryption (on top) and AES-192
decryption (below). The numbers in the boxes indicate the number of cycles over
which the operation is executed.

We overcome them by interrupting AddRoundKey and SubBytes operations
and running key expansion algorithm in the middle. This leads to three different
types of rounds: (1) first type of round has no fresh key byte in the pipeline at
the beginning and has to run a key expansion round algorithm before addition,
(2) the second type of round has 4 leftover fresh bytes in 00–03 and 4 dirty bytes
in 10–13 that can be refreshed with kxor as the pipeline moves. This means
that AddRoundKey and SubBytes have to run for 8 cycles, then pause for key
expansion, and later resume for 8 more cycles (3) third type of round has 4 fresh
bytes in 00–03, and 12 dirty bytes in 10–33 that can be refreshed with kxor as
the pipeline moves.

During the first 16 cycles, AddRoundKey and SubBytes is simultaneously per-
formed as before. The next 8 cycles are used to load the rest of the key into the
key pipeline. Then, in order to align the key properly, the key pipeline is rotated
for 16 cycles with rot. Thereby, at the end, 8 fresh bytes are located at 00–13,
and the dirty bytes are at 20–33, 60–73.

During round 1, we have to interrupt AddRoundKey and SubBytes after 8
cycles, at which point all the bytes in the key pipeline are dirty. The 4 bytes of
key that requires to be updated by key expand 0 and key expand 1 operations
are located at 00–03, therefore we run ke0, ke1, ke1, ke1 in the following four
cycles. The remaining 20 dirty key bytes are refreshed as they are loaded into

324 F. Balli and S. Banik

03, by running kxor alongside add and sbox operations, and it overflows into
the next round. Of this 8 are done in the current encryption round and 12 are
deferred to the next round. Note that since 8 AddRoundKey operations are done
simultaneously, at the end of this round the number of fresh bytes in the key
pipeline is 4 + 8 − 8 = 4.

At the beginning of rounds 2, 5, 8, 11 (which are type (3) rounds) the pipeline
contains only 4 bytes of fresh key, but the following 12 dirty bytes can be
refreshed with kxor. Therefore, to align correctly, one should run kxor during
the first 12 cycles of AddRoundKey and SubBytes. At the end of this round, all
fresh bytes are therefore used up.

At the beginning of rounds 3, 6, 9 (which are type (1) rounds); the key in
the pipeline is completely dirty and the first column requires key expansion 0
and key expansion 1 operations. Therefore ke0, ke1, ke1, ke1 are run in the first 4
cycles. The following 20 bytes of key can be easily refreshed with kxor alongside
add and sbox. Of this 16 is executed in the current round and 4 are deferred to
the next round.

At the beginning of rounds 4, 7, 10 (which are type (2) rounds) there are 4
bytes of fresh keys followed by 4 bytes of dirty keys that can be refreshed with
kxor in the key pipeline. However, the following column of key requires the key
expand 0 and key expand 1 operations, so add and sbox is interrupted as before
for key expansion. The remaining 8 bytes of addition continues after 4 cycles
of ke0, ke1, ke1, ke1. The ciphertext is available in DataOut during the last 16
cycles.
AES-192 Decryption: A second obstacle that arises during the decryption is
that fresh bytes in the key pipeline are not necessarily always start from 00.
Recall that for decryption, the last 24 bytes of used round keys are loaded ini-
tially, therefore we have to run the key expansion algorithm in the reverse order.
Therefore, we have to start refreshing key columns starting with the highest
index, i.e. whichever column of key was used last in the encryption should be
removed first. At the same time, due to flow direction of the pipeline, the lowest
indexed key column occupies 00–03, whereas during various stages of opera-
tion the key columns to be used in key addition are located at 20–23 or 60–63.
Our solution is to connect pipeline exits Key20, Key60 to mux 10, so that even
if the next fresh key byte is misaligned in the key pipeline, we can continue
AddRoundKey, InvSubBytes operations without requiring additional cycles for
rotation. This irregular exit of key bytes from the pipeline is only necessary for
AES-192 decryption.

Since the last 24 bytes of round key is loaded into the circuit (k184 to k207),
8 cycles are used for loading the first 8 bytes of this key. Then the following
16 cycles are used for add. During the last four cycles of add, ikxor is also per-
formed through 33, 63, 73 (but not 03, 13, 23). Therefore, at cycle 24, the key
pipeline contains 20 fresh bytes (8 unused from the initial load and 12 from ikxor),
where the 4 dirty bytes are stored in 20–23 and they can only be refreshed with
ke0, ke1, ke1, ke1. Therefore, we will wait until this key moves into 00–03.

At the beginning of rounds 1, 4, 7, 10; the key pipeline contains 20 fresh
bytes. However the next 8 fresh bytes to be used for add are located at 60–73,

Six Shades of AES 325

whereas the remaining 8 bytes required for add are located at 00–13. Therefore
we fetch the next byte key into the bus from Key60, and at the same time rotate
the pipeline by connecting 00 → 73. After 8 cycles, we interrupt isbox and add
because the dirty column of key that requires the key expand 0/1 operations to
update now reaches 00–03, so we can perform ke0, ke1, ke1, ke1. After refresh-
ing this column of keys in 4 cycles, we resume fetching key bytes from 60 for
AddRoundKey and InvSubBytes. Concurrently, at the last 4 cycles, we do ikxor
with 03, 13, 23, 33 to obtain 16 fresh bytes for the next round. All the 24 bytes
in the pipeline after this are completely fresh.

At the beginning of rounds 2, 5, 8, 11; the key pipeline is completely fresh.
However the next 16 bytes of key to be used with add are located at 20–33 and 60–
73. Therefore, key bytes are fetched from Key20 into the pipeline, and the pipeline
is rotated as before. During the last 4 cycles of add, ikxor is performed over 13.
After the 16 add cycles, the bytes of key that require update by key expand 0/1
arrive at 00–03, and therefore ke0, ke1, ke1, ke1 is executed to generate 4 fresh
bytes. At the end, the key pipeline contains 16 fresh key bytes in 00–33.

At the beginning of rounds 3, 6, 9; the key pipeline contains 16 fresh bytes
starting from 00, and they are aligned with the state pipeline for add. In order
to arrange future key bytes, we still perform ikxor on 33, 63 for the first 4 cycles,
and 33, 63, 73 for the last 4 cycles. At the end, the key pipeline contains 4 dirty
bytes located at 20–23.

AES-256 Encryption: The detailed chronology of operations is given in Fig. 4.
AES-256 remains simpler to achieve than AES-192, because each key expansion
round produces enough keys for two AddRoundKey operations. During the first
16 cycles, add, sbox is performed. We spend other 16 cycles to load the rest of
the key. Then the key expansion is performed with ke0, ke1, ke1, ke1, and key is
rotated for 16 cycles to move the fresh key bytes to 00–33. During the first 12
cycles of this period, we also enable kxor (named rxor for convenience) so that
old keys are refreshed as they rotate through the pipeline.

At the beginning of round 1, the key pipeline is completely fresh, therefore
there are sufficient bytes of keys for round 2 as well. Therefore, no key expansion
operation is done during the first two rounds.

At the beginning of rounds 3, 5, 7, 9, 11, 13; the key pipeline is completely
dirty, and the bytes at 00–03 require 4 cycles of ke2. Then at the first 12 cycles
of add, kxor is also enabled so that the following 12 dirty bytes can be refreshed.

The rounds 4, 6, 8, 10,12 work exactly same, except the special key column
requires ke0, ke1, ke1, ke1 rather than 4 cycles of ke2. The ciphertext is available
in the last 16 rounds of the final round.

AES-256 Decryption: Since the last 32 used bytes of key are loaded into the
circuit, we use first 16 cycles to load the first half of this key. The next 16 cycles
receives the data and the second half of the key at the same time, therefore
performs the add operation.

326 F. Balli and S. Banik

Fig. 4. The cycle arrangement of AES-256 encryption (on top) and AES-128 decryp-
tion (below). The numbers in the boxes indicate the number of cycles over which the
operation is executed.

At the beginning of rounds 1, 3, 5, 7, 9, 11, 13; the first 16 bytes of the
key pipeline are fresh and the rest is dirty. At the last 4 cycles of add, ikxor is
performed through 13, 23, 33 so that 12 bytes are refreshed. The following 4
bytes are also refreshed with ke0, ke1, ke1, ke1.

The rounds 2, 4, 6, 8, 10, 12 work exactly same except the key column
requiring update by key expand 2 is refreshed with 4 cycles of ke2 instead of
ke0, ke1, ke1, ke1. The plaintext is available in the last 16 rounds of the final
round.

4 Performance Evaluation and Conclusion

In order to perform a fair performance evaluation, we implemented the circuit
using VHDL. Thereafter the following design flow was adhered to for all the
circuits: a functional verification at the RTL level was first done using Mentor
Graphics Modelism software. The designs were synthesized using the standard
cell libraries of the CMOS logic processes listed in Table 1, with the Synopsys
Design Compiler, with the compiler being specifically instructed to optimize
the circuit for area. A timing simulation was done on the synthesized netlist
to confirm the correctness of the design, by comparing the output of the tim-
ing simulation with known test vectors. The switching activity of each gate of

Six Shades of AES 327

Table 1. Performance comparison of 6AES architecture (E: Encryption, D: Decryp-
tion). Power is reported at a clock frequency of 10 MHz. TPmax denotes the maximum
throughput achievable on the circuit.

Library Area Power Variant Latency Energy TPmax Variant Latency Energy TPmax

(GE) (μW) (cycles) (nJ) (Mbps) (cycles) (nJ) (Mbps)

STM 90nm 3672 189.5 AES-128E 243 4.605 75.8 AES-128D 315 5.969 58.5

AES-192E 322 6.102 57.2 AES-192D 400 7.580 46.0

AES-256E 371 7.030 49.6 AES-256D 454 8.603 40.6

TSMC 90 nm 4760 95.4 AES-128E 243 2.318 71.8 AES-128D 315 3.005 55.4

AES-192E 322 3.072 54.2 AES-192D 400 3.816 43.7

AES-256E 371 3.539 47.1 AES-256D 454 4.331 38.5

UMC 90nm 5009 192.9 AES-128E 243 4.687 101.3 AES-128D 315 6.076 78.1

AES-192E 322 6.211 76.4 AES-192D 400 7.716 61.5

AES-256E 371 7.157 66.3 AES-256D 454 8.758 54.2

TSMC 180 nm 4680 1209.9 AES-128E 243 29.400 71.5 AES-128D 315 38.112 55.1

AES-192E 322 38.959 53.9 AES-192D 400 48.396 43.4

AES-256E 371 44.887 46.8 AES-256D 454 54.929 38.2

Fig. 5. Area requirements of the individual components

the circuit was collected while running post-synthesis simulation. The average
power was obtained using Synopsys Power Compiler, using the back annotated
switching activity.

We outline some of the essential lightweight metrics of the 6AES architecture
in Table 1. In Fig. 5, we present a component-wise breakdown of the circuit size
when synthesized with the STM 90 nm logic process. A significant area is required
for generating the control signals, as accommodating 6 different functionalities
in a single circuit requires more fine-grained control over specific circuit com-
ponents. This is because both the structure (wrt sequence of operations) and
duration (wrt number of clock cycles) of a single round shows a wide range of
variations as the size of the key changes. To the best of our knowledge, this is
the first work that aims to minimize the size of the circuit while implementing
all the 3 versions of the AES circuit. The circuit offers flexibility to designers
who want to move to higher levels of security in the near future, and imple-
ment modes of operation that would require simultaneous access to block cipher
encryption/decryption circuits.

328 F. Balli and S. Banik

Acknowledgments. Subhadeep Banik is supported by the Ambizione Grant
PZ00P2 179921, awarded by the Swiss National Science Foundation (SNSF).

References

1. NIST Post-Quantum Cryptography Project. Available at https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography

2. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: a compact implementa-
tion of the aes encryption/decryption core. In: Dunkelman, O., Sanadhya, S.K.
(eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 173–190. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49890-4 10

3. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. In IACR eprint archive.
Available at https://eprint.iacr.org/2016/1005.pdf

4. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck families of lightweight block ciphers. In IACR eprint Archive.
Available at https://eprint.iacr.org/2013/404.pdf

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

7. Borghoff, J., et al.: PRINCE - a low-latency block cipher for pervasive computing
applications - extended abstract. In Asiacrypt 2012, LNCS, vol. 7658, pp. 208–225
(2012)

8. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 32

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer-Verlag, Berlin (2002)

10. Datta, N., Nandi, M.: ELmD v1.0. Submission to the Caesar compedition. Avail-
able at https://competitions.cr.yp.to/round1/elmdv10.pdf

11. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. NIST Spe-
cial Publication 800–38A. Available at http://csrc.nist.gov/publications/nistpubs/
800-38a/sp800-38a.pdf

12. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEEE Proc. Inf. Secur. 152(1), 13–20 (2005)

13. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique for
bit-serial implementations of spn-based primitives. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 687–707. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 33

14. Mathew, S., et al.: 340 mV-1.1V, 289 Gbps/W, 2090-gate nanoAES hardware accel-
erator with area-optimized encrypt/decrypt GF(24)2 polynomials in 22 nm tri-gate
CMOS. IEEE J. Solid-State Circ. 50, 1048–1058 (2015)

15. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/978-3-319-49890-4_10
https://eprint.iacr.org/2016/1005.pdf
https://doi.org/10.1007/978-3-662-48800-3_17
https://eprint.iacr.org/2013/404.pdf
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://competitions.cr.yp.to/round1/elmdv10.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-642-20465-4_6

Six Shades of AES 329

16. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45682-1 15

17. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Block-
cipher CLEFIA(Extended Abstract). In FSE 2007, LNCS, vol. 4593, pp. 181–195
(2007)

https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/3-540-45682-1_15

Side-Channel Attacks and
Countermeasures

Revisiting Location Privacy from a
Side-Channel Analysis Viewpoint

Clément Massart(B) and François-Xavier Standaert

ICTEAM - Crypto Group, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium

clement.massart@uclouvain.be

Abstract. Inspired by the literature on side-channel attacks against
cryptographic implementations, we describe a framework for the anal-
ysis of location privacy. It allows us to revisit (continuous) re-
identification attacks with a combination of information theoretic and
security metrics. Our results highlight conceptual differences between
re-identification attacks exploiting leakages that are internal or external
to a pseudonymised database. They put forward the amount of data to
collect in order to estimate a predictive model as an important – yet
less discussed – dimension of privacy assessments. They finally leverage
recent results on the security evaluations/certification of cryptographic
implementations to connect information theoretic and security metrics,
and to formally bound the risk of re-identification with external leakages.

1 Introduction

Location privacy has become an important concern with the advent of pervasive
computing: we refer to [2] for one of the first studies motivating this active line of
research. In this paper, we are interested in the quantification of location privacy
in a setting where an adversary can access a database with location information
about different users, together with their pseudonyms. We focus in particular on
the risks of re-identification attacks, where an adversary tries to exploit leakages
(i.e., the location data of some individuals supposedly in the pseudonymized
database) to re-identify users. Such re-identification attacks are continuous (i.e.,
it is possible for the adversary to accumulate leakages for the same user). In this
context, our starting observation is that leakages can be internal (i.e., part of
the data collected in the database) or external (i.e., fresh observations).

Our first contribution is a consolidating one. We revisit re-identification
attacks with a combination of information theoretic and security metrics, as
usually considered in the evaluation of leaking cryptographic implementations
against side-channel attacks [20]. We put forward that re-identification attacks
with internal leakages can be captured with information theoretic metrics simi-
lar to Diaz et al.’s anonymity degree [7], and that re-identification attacks with
external leakages can be captured with security metrics (similar to Maouche et
al.’s re-identification rate [15]). We consolidate these results by connecting both
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 333–351, 2019.
https://doi.org/10.1007/978-3-030-23696-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_17

334 C. Massart and F.-X. Standaert

types of metrics thanks to established results in the worst-case evaluation of
cryptographic implementations [8], which prove that the success rate of a worst-
case side-channel attack is (under some assumptions) proportional to the mutual
information between its target key and the leakages it exploits.

We then show that this consolidating effort can lead to both new observa-
tions/refined intuitions and technical advances in the analysis of location privacy.

A first novel observation is that the database size has opposite effects on
attacks using internal and external leakages: attacks with internal (resp., exter-
nal) leakages become more challenging (resp., easier) when the database grows.

A second novel observation is that most existing location privacy metrics
tailored for the evaluation of external leakages quantify (to some extent) the
success of an attack given a statistical model for the collected data. We argue that
the convergence of the model is also interesting to analyze since it determines
the amount of data needed to infer something about a user’s behavior.

Based on these observations, we conclude that evaluating the risks of re-
identifications with external leakages is in general more challenging since they
increase when collecting more data (or merging databases). In this respect, our
third and most important contribution is to show that such risks can be formally
bounded. For this purpose, we leverage a recent result in the leakage certification
of cryptographic implementations [3], which shows that our information theoretic
metrics evaluated with internal leakages are (in expectation) an upper bound of
these metrics evaluated with external observations. As a result, we can bound
the risk of re-identification attacks with external leakages independent of the
database size (with the bound becoming tight as this size increases).

In the extended version of this work, we show that localization attacks where
an adversary tries to predict the position of a user (as in [19]) can be captured
in a similar framework, and critically depends on the time dimension of the
observations which determines the adversary’s efforts to intercept a user.

2 Definitions and Framework

In this section, we specify the location data that we aim to analyze and the
estimation tools used to characterize statistical distributions.

Data Specification. The location data we consider is based on spatial coordi-
nates: longitude x and latitude y (possibly with a time component t). In general,
we will consider two types of observations. First, “independent observations”
where every triple (x, y, t) is analyzed independently.1 These could for example
correspond to the location data of a mobile phone application (where consecu-
tive observations are distant in space and time), as pictured in Fig. 1 (left). We
will next refer to this data as “positions” and denote them as p = (x, y, t).
Second, correlated observations for which the joint analysis is expected to lead to

1 The word “independent” does not refer to the fact that these observations are truly
independent, but only to the fact that such observations are exploited assuming it.

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 335

La
tit

ud
e

Longitude x

y

10 km

La
tit

ud
e

Longitude x

y

100 m

Fig. 1. Left: positions for two users. Right: route for a single user.

improved characterization. It could for example correspond to the GPS data of a
jogger (where consecutive observations are close in space and time), as pictured
in Fig. 1 (right). We will denote them as “routes” in the following.

More formally, we first define a set of n users:

U = {u1, u2, . . . , un}.

Assuming that some location data has been collected for each of the users, we
denote the jth route of user i as:

rij = {p1
ij ,p

2
ij , . . . ,p

k
ij , . . . ,p

Nij
p

ij },

with N ij
p the number of positions in the route, and denote the number of routes

collected for a user i as N i
r . Note that independent observations can be considered

as single-position routes. In the latter case, the number of routes collected per
user equals the number of positions collected per user, next denoted as N i

p .
The collection of location data is then formalized as follows. We first assume

that the routes are sampled from an unknown statistical distribution that reflects
the true users’ behavior. This true distribution can be continuous, in which
case we denote its Probability Density Function (PDF) as f(r|u), or discrete, in
which case we denote its Probability Mass Function (PMF) as g(r|u). Next, the
sampling process giving rise to a set of N i

r routes for user i is written as:

Si
Ni

r←− f(r|ui) or Si
Ni

r←− g(r|ui),

for the continuous and discrete cases, respectively.
Eventually, even if routes can be sampled from a continuous distribution,

their storage is generally discrete. Besides, it is usually convenient for exploita-
tion purposes (or necessary for privacy purposes) to further truncate the data.
We reflect this process with a discretization function. Ignoring the time com-
ponent for simplicity, it decomposes the location space into Δ (=δ1 × δ2) cells,
illustrated in Fig. 2 (left) and denoted as D1 : R → {0, 1}Δ, with R the set of all
possible routes. In the basic setup of this section, it is computed by assigning a
one to each cell where at least one observation of the route falls.

336 C. Massart and F.-X. Standaert

xd

yd

1 2 3 4

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fr
eq

ue
nc

y

Cells

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 2. Left: discretization of a route with D1 & Δ = 16. Right: D1-discretized route d.

Based on this discretization function, we represent a discretized route as in
Fig. 2 (right), which we define as d = D1(r). For conciseness, we only consider
the case where the true (unknown) user distribution is continuous and then
discretized. Directly discrete user distributions can be formalized identically.

Types of Estimations. Given a set of N i
r discretized routes Di obtained for

a user i denoted as: Di
Ni

r←− D1(f(r|ui)), the evaluation of our metrics will be
based on the estimation of a model for the true (unknown) distribution. We will
consider two types of modeling phases. The first one, next denoted as the direct
(DI) estimation process, uses all the samples in the set Di and is written as:

f̃(d|ui)
di←− Di or g̃(d|ui)

di←− Di,

for continuous and discrete models. In the following, we will always refer to
“DI-estimated” models with the tilde notation. Note that independent of the
nature of the true distribution (i.e., continuous or discrete), it is always possible
to model it as continuous and discrete. In the second type of modeling, next
denoted as the (k-fold) cross–validated (CV) estimation process, the set Di is
first split into k non-overlapping sets D(j)

i with 1 ≤ j ≤ k. We then define k

model building sets B(j)
i = Di \D(j)

i and the corresponding test sets T (j)
i = D(j)

i

so that we write the model estimation for all (j)’s as:
{
f̂
(1:k)

(d|ui), T (1:k)
i

}
cv←− Di,

or: {
ĝ(1:k)(d|ui), T (1:k)

i

} cv←− Di,

where the hat notation is for “CV-estimated” models. As usual in statistics, the
difference between these estimations is that direct estimation may suffer from
overfitting (i.e., the characterization of features that are specific to the collected
data Di rather than the distribution f(r|ui)), which cross-validation aims to
limit. In this work, we will need both types of estimation in order to capture
both internal and external leakages (details are given in Sect. 3).

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 337

Estimation Tools. For both types of estimation, we then need to define how
the models are built. In the basic setup of this section, we will exploit two
(discrete) estimation tools: an exhaustive one and a simplifying one.

The exhaustive model, denoted as g̃ex(d|ui) for the discrete and direct estimation
case (the variant with cross–validation is referred to with the hat notation): it
corresponds to a histogram with 2Δ bins corresponding to all the routes. Note
that despite the support of this model grows exponentially in Δ, its memory
complexity (and the time needed to evaluate it) is bounded by the amount of
collected data (i.e., we only need to store routes with non-zero probabilities).

The 1st-order independent model, denoted as g̃1(d|ui) for the discrete and direct
estimation case (the variant with cross–validation is denoted with the hat nota-
tion): it corresponds to the independent estimation of g̃1(d(c)|ui) for the Δ cells,
with d(c) a cell of the discretized route d. More precisely, for each cell c, this
model is computed as follows:

g̃1(d(c)|ui) =
1

N i
r

∑
d′∈Di

d′(c).

In the case of the exhaustive model, the probability of a user ui given a discretized
route d is directly obtained thanks to Bayes’ formula, assuming a uniform dis-
tribution for the users. For example, in the DI estimation case it yields:

P̃rex[ui|d] =
g̃ex(d|ui)∑n

j=1 g̃ex(d|uj)
·

In the 1st-order independent case, it is derived similarly by first computing the
1st-order likelihood as follows:

q̃1(d|ui) =
∏
c∈d

g̃1
(
d(c)|ui

)
·
∏
c/∈d

(
1 − g̃1

(
d(c)|ui

)) ,

where c ∈ d denotes the cells that are part of the route d and c /∈ d the ones
that are not. The probability P̃r1[ui|d] is derived thanks to Bayes as:

P̃r1[ui|d] =
q̃1(d|ui)∑n

j=1 q̃1(d|uj)
·

In this case, the probability of a route is estimated by assuming the independence
of the observations in each cell, which is obtained by multiplying the probabili-
ties of all the cells in the route. Summarizing, we so far defined models estimated
directly and with cross–validation, that correspond to an exhaustive characteri-
zation of the routes, or are based on a 1st-order independence assumption. Other
options could be considered. For example, Gambs et al. used a modeling based
on Markov chains which could also be analyzed with the following tools [13].

In the extended version of this work, we detail how this 1st-order indepen-
dent model can be generalized to an oth-order independent model which can

338 C. Massart and F.-X. Standaert

capture higher-order correlations in the distribution by first “extending” the
data towards higher-orders and then using estimation tools similar to the ones
described in this section. In this respect, we note that an oth-order independent
model is not equivalent to the exhaustive model since the knowledge of a sta-
tistical distribution is not equivalent to the knowledge of its moments. So while
increasing o can be used to characterize higher-order dependencies of the user’s
behavior, it cannot lead to an optimal model.

3 Threat Models and Metrics

Our threat model is depicted in Fig. 3 and formalized as follows.
First, as in Sect. 2, we have a number of users (i.e., Alice, Bob, Carol,

David, . . . on the figure). For each of them, a number of routes have been
collected and stored in a database under different pseudonyms. Pseudonyms
are user IDs reorganized according to a secret permutation. Other data may
be collected (e.g., performance data for sport applications, preferences for cul-
tural applications, . . .). Second, we mostly (yet, as will be clear next, not only)
consider an open data scenario where the collected data is anonymized thanks to
pseudonyms, and then made public, e.g., to facilitate the investigations of social
scientists. Third, we assume that the adversary can have access to two types of
leakages. The first one is an “internal leakage”. That is, the adversary learns that
some route(s) in the database correspond(s) to a user. This typically happens by
spying on a user while data is collected. The second one is an “external leakage”.
That is, the adversary learns that some fresh route(s) correspond(s) to a user.
This typically happens by spying on a user after data has been collected.

Concretely, there are two important quantities that impact privacy in this
threat model. First, the size of the anonymized database, which we will denote
with a number of routes collected per user N i

r (as in Sect. 2). Second, the number
of leakages obtained per user, that we will next denote as M i

r . In general, we
expect that the number of leakages collected is significantly smaller than the size
of the anonymized database.

Based on this setup, the goal of the adversary is to re-identify the users
thanks to their leakages, which may for example allow him to gain access to other
sensitive data. This can be achieved both with internal and external leakages.
Yet, the meaning of successful re-identification with these two types of leakages
is quite different. In the latter case (i.e., with external leakages), it implies that
the collected data is representative of the true users’ distributions. That is,
external leakages can only be linked to the collected data of their originating
user if this data can be used to predict fresh routes to some extent. By contrast
re-identification with internal leakages does not imply anything regarding the
representativity of the collected data. That is, since the leakages come from the
database, they are guaranteed to be linkable to their originating user (possibly
with other users if they are found in the observations of multiple users).

In statistical terms, these two types of leakages therefore directly correspond
to our two types of estimations. Internal leakages can be captured with the

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 339

F
ig
.
3
.
R

e-
id

en
ti

fi
ca

ti
o
n

a
tt

a
ck

th
re

a
t

m
o
d
el

.

340 C. Massart and F.-X. Standaert

direct estimation process (with overfitting). External leakages can be captured
with the cross-validated one (which prevents overfitting and therefore can be
used to assess how predictive the model is against fresh routes).

Eventually, and as illustrated on the figure, given a set of leakages for a user,
the adversary outputs an ordered list of most likely pseudonyms. We then say
that the attack is a level-1 (resp., level-2, . . .) success if the first element of this
list is the correct pseudonym (resp., the correct pseudonym is among the first
two elements of the list, . . .). Unless mentioned otherwise, we assume level-1
successes in the next experimental sections.

Re-Identification Metrics. One important feature of our threat model is that
it corresponds to a continuous attack. That is, it is possible for the adversary to
obtain multiple leakages corresponding to the same target user and to combine
these leakages. As already mentioned, the attack will therefore depend on two
main quantities: the amount of collected data N i

r and the number of leakages
M i

r . Therefore, a first natural metric would be to compute the success rate of
the re-identification attack over randomly generated leakages. For each user ui,
this corresponds to a probability of level-l success SRi

l(N
i
r ,M

i
r). Note that it is

natural to consider the probability of success over randomly generated leakages
in our setting since (i) the leakage generation process is typically not under
adversarial control, and (ii) what we want to measure is the number of leakages
leading to a high success rate. One can also consider the average success rate
(over all the users), which we denote as SRl(Nr ,Mr).

A limitation of the previous metric is that it is intensive to estimate, since it
requires building 3-dimensional “evaluation plots” with the amount of collected
data N i

r as X axis, the number of leakages M i
r as Y axis and the success rate as Z

axis. As a result, and inspired by results in side-channel analysis, we will consider
easier-to-estimate information theoretic metrics based on the mutual information
between the target random variable U corresponding to the users and a random
variable D corresponding to (discretized) routes. As shown in [8], in case the
observations can be viewed as “noisy leakages”, computing this metric in function
of the amount of collected data is an excellent predictor of the attack data
complexity (i.e., the number of leakages needed to reach a given success rate).
It allows simplifying the evaluations to 2-dimensional plots, with the amount of
collected data as X axis & the information theoretic metric as Y axis.

In this respect, the final difficulty to compute the metrics relates to the fact
that in practice, neither the evaluator of a database nor the adversary trying to
exploit it know the true users’s distributions from which the data originates (i.e.,
the PDFs f(r|ui) or the PMFs g(r|ui) defined in Sect. 2). The only thing that
can be analyzed and exploited is the sampled data Di. As already mentioned,
this is where the two types of (internal and external ones) leakages considered
and the two types of estimations described in Sect. 2 come into play and allow
defining metrics that can capture these two contexts.

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 341

Internal Leakages Evaluation. In this setting, we use the direct estimation
process of Sect. 2 to obtain discrete models g̃(d|ui) and the probabilities P̃r[ui|d]
and compute the Hypothetical Information (HI):

H̃I(U ;D) = H[U] +
∑
ui∈U

Pr[ui] ·
∑
d∈D

g̃(d|ui) · log2 P̃r[ui|d],

where we use the short notation Pr[X = x] := Pr[x] and we assume uniform users(
i.e., H[U] = log2(n)

)
. As discussed in [9], the HI corresponds to the amount

of information that would be extracted from the observations of (hypothetical)
users behaving exactly according to the models g̃(d|ui). The higher the HI, the
more different are the model distributions of the users and the easier the re-
identification attack will be. Intuitively, the word hypothetical is used to make
explicit that we do not know the true users’ distributions. Concretely, it corre-
sponds to the context of internal leakages since in this case, the collected data
exactly defines the PDFs and PMFs that the adversary exploits. Note that when
considering internal leakages, the adversary has no incentive to exploit a simpli-
fied model (since this model is guaranteed to be correct by definition). Hence,
in the following, we will only consider the HI with exhaustive model.

External Leakages Evaluation. In this setting, the situation significantly dif-
fers since in order to be successful, the adversary has to build from the collected
data a model that can be used to predict fresh routes. In order to capture this
goal, we will therefore use the cross–validation estimation process of Sect. 2.
Indeed, it typically reflects situations where a part of the observations are used
to build a model that is then tested with another part of the observations (which
actually corresponds to the leakages in an actual attack).

Importantly, successful attacks in this setting require that the true distribu-
tions are stationary to some extent (i.e., that f(d|ui) or g(d|ui) do not vary too
much over time), so we need a metric that captures this requirement. For this
purpose, we compute the Perceived Information (PI) as described next. First,
we use the cross–validated estimation process in order to generate the models
and test samples as in Sect. 2:

{
ĝ(1:k)(d|ui), T (1:k)

i

}
cv←− Di,

where any model ĝ(j)(d|ui) can be used to define probabilities P̂r
(j)

[ui|d]. We
next evaluate the models by using the test samples and deriving the estimates:

P̂I
(j)

(U ;D) = H[U] +
∑
ui∈U

Pr[ui] (1)

·
∑

d′∈T (j)
i

1

|T (j)
i |

· log2 P̂r
(j)

[ui|d′].

The latter equation actually corresponds to an estimation by sampling, where
we assign a probability 1

|T (j)
i | to each test sample which (by definition) directly

342 C. Massart and F.-X. Standaert

originates from the true user distribution. The k outputs of this process (for a
k–fold cross–validation) are finally averaged in order to obtain a more precise
estimate P̂I(U ;D). As discussed in [10], the PI corresponds to the amount of
information that is extracted from the observations of actual users, by using
models that are potentially biased by estimation and assumption errors. The PI
is related to the success rate of an adversary using the same models. Intuitively,
a positive PI means that the collected data reflects the differences between the
true users’ distributions to some extent. Incidentally, it also means that the
user’s distributions have been somewhat stationary during the data collection.
The more positive the PI, the more successful are re-identification attacks with
external leakages. By contrast, a negative PI means that the collected data is
not sufficiently reflective of the true user’s distribution (i.e., the models built
from the collected data are not sufficiently predictive, due to insufficient data,
wrong assumptions or strong model drift). Eventually, the PI converges towards
Shannon’s standard definition of Mutual Information (MI) if the models ĝ(d|ui)
are perfect (i.e., if they are equal to the true g(d|ui)).

Note that when considering external leakages, the adversary has incentives
to exploit simplified models (such as a 1st-order independent model). Indeed,
the PI is a tradeoff between estimation and assumption errors, i.e., between
the speed of convergence and the asymptotic informativeness of a model. This
tradeoff will be discussed in the experimental sections.

Remark. As the amount of collected data increases, it reflects more and more the
true users’ distributions. Hence, if both the HI and the PI metrics are estimated
with the same model family and based on data discretized with the same func-
tion (and Δ), they both converge towards the same value. In case an exhaustive
model is used, they additionally converge towards the true mutual informa-
tion MI(U ;D). Based on this intuition, it was demonstrated in [3] that the HI
is (in expectation) an upper bound of the MI and PI.

Besides, we note that the HI and PI metrics are averages over the users. Yet,
it can happen that the success rate of the re-identification attacks highly vary in
function of the users. The latter is easily analyzed by computing those metrics
for fixed users, i.e., by evaluating H̃I(U = u;D) or P̂I(U = u;D).

Links to Other Metrics. We now discuss the links between the HI and PI
metrics and related metrics introduced in the privacy literature.

k-Anonymity and Related Metrics. The re-identification threat model with
internal leakages (where the collected data is available to the adversary) shares
similarities with the problem of privacy-preserving data publishing for which
various metrics have been introduced, some of them surveyed in [12]. In this
setting, the k-anonymity is among the simplest (and most popular) solutions [17].
Informally, k-anonymity guarantees that a leakage does not allow to (strictly)
distinguish (i.e., with probability one) a user from at least k − 1 other users. As
discussed in [14], this may not be enough to prevent all types of linking attacks.
A typical example is the case where all the users that remain indistinguishable

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 343

have the same “sensitive data” that the linking attack aims to recover (i.e.,
referred to as “other data” in Fig. 3). In other words, a lack of diversity in
the sensitive data may allow the adversary to deduce private information for a
database that ensures k-anonymity. The main limitation of the k-anonymity and
refinements such as the l-diversity in our context is that they only consider the
strict indistinguishability of the users, and ignore the possibility that the list of
users for which a leakage is possible may have different conditional probabilities.
The latter possibility is particularly relevant in a continuous attack setting (since
these probabilities may be combined in maximum likelihood attacks).

Other Information Theoretic Metrics. In order to mitigate the previous
limitation, a usual solution is to consider information theoretic metrics, for
example such as the anonymity degree introduced by Diaz et al. [7] or varia-
tions thereof [18]. The anonymity degree can be viewed as similar to the HI
metric, since it is also computed from a model built thanks to a direct estima-
tion process. The only differences are that (i) the anonymity degree considers the
normalized conditional entropy rather than the mutual information for the HI
(hence its link with the success rate is less direct), and (ii) as already mentioned,
the HI metric makes explicit that it is based on a hypothetical model.

Location Privacy Metrics. By contrast, neither the k-anonymity nor the
anonymity degree can be used to evaluate re-identification attacks with external
leakages. This was argued in a paper by Shokri et al. [19] (yet, for a different
attack goal than re-identification, namely the localization attacks that we dis-
cuss in the extended version of this work). The authors identified three types
of metrics (namely the uncertainty, accuracy and correctness) and argued that
correctness is the appropriate way to quantify attacks aiming at predicting new
events. Informally, the correctness is correlated to the probability of error of an
adversary trying to predict fresh positions. In our re-identification context, it
therefore captures a similar intuition as the success rate of an attack exploiting
external leakages, the data complexity of which being itself correlated with the
PI metric. The accuracy then measures the convergence of the model estimate
and can be analyzed based on the convergence of the PI metric (thanks to esti-
mation plots or confidence intervals). We will argue next that it is also relevant
to the evaluation of re-identification attacks with external leakages. Eventually,
the uncertainty corresponds to the HI metric and is indeed irrelevant to ana-
lyze attacks using external leakages. Even closer to our framework, the attacks
described in [15] consider re-identification with external leakages quantified with
a re-identification rate (which is directly equivalent to our success rate).

Unicity. In yet another line of papers, de Montjoye et al. introduced the concept
of unicity, which captures re-identification attacks based on location data [5,6].
Their analysis uses a direct estimation process and is therefore linked to the
HI. Informally, assuming independent leakages so that each observation reduces
H[U] by H̃I(U ;D), unicity corresponds to a case where the number of leakages
is such that users have no entropy left.

344 C. Massart and F.-X. Standaert

Differential Privacy. Eventually, we mention that preventing re-identification
attacks could be achieved thanks to differential privacy [11], yet in a different
setting. Namely, in differential privacy, one aims to guarantee that a few queries
made to a database do not reveal private information. In our setting, we rather
make this database fully available to the adversary and allow multiple leakages.
As will be clear in the experimental sections, obtaining privacy in this setting
is extremely challenging (if possible at all). Our quantitative tools can therefore
be viewed as a motivation for differential privacy (or similar frameworks aiming
at restricting the adversary’s power in a relevant manner). See for example the
discussion about geo-indistinguishability in [1,16].

4 Experimental Validation and Discussion

The following experiments are based on 4 different data sets (all of them dis-
cretized thanks to the D1 process). Our first data set is a simulated one where
the space is discretized into Δ = 128 cells and we generated 1000 routes for 5
users according to chosen distributions. The experiments additionally consider a
more discretized process with only Δ = 16 cells. This setting is only used in order
to put forward the general intuitions of the metrics (since it allows generating
sufficient number of observations from stable distributions so that all metrics
perfectly converge). Our second data set comes from Brightkite, an application
enabling to share visited places with friends. It provides global coordinates that
we reduce in two steps [4]. First we only consider the San Francisco Area. Sec-
ond, we discretize the space into Δ = 16 cells. It then remained 302 users with
at least 50 single-position routes.2 Our third data set is based on jogging records
obtained with smart watches. We followed 7 users with at least 100 routes, dis-
cretized in respectively 16, 32 and 121 cells.3 Eventually, our last data set comes
from the BikeShare stations (also in the San Francisco area), publicly available
for a contest about data visualization.4 We consider 27 groups of users (since the
database has been anonymized by grouping users according to their ZIP code)
and Δ = 33 cells which correspond to different BikeShare stations.

We start by evaluating the simulated data set to put forward general intu-
itions that can be extracted from our framework and metrics. We then analyze
the different real-life data sets and discuss their interpretation.

General Metric Intuitions. The metrics estimated from our simulated data
set are given in Fig. 4. The left plot reports information theoretic metrics in
function of the number of collected routes per user N . The right plot reports
the success rate in function of the number of (external) leakages obtained by the
adversary M , for various N values. They lead to the next observations.

Starting with the IT metrics, a first noticeable fact is that the HI decreases
with N while the PI increases with N . This is theoretically expected in both
2 https://snap.stanford.edu/data/loc-brightkite.html (4/2008 - 10/2010).
3 This data set is not publicly available (1/2010 - 2/2016).
4 https://www.fordgobike.com/system-data (8/2013 - 8/2016).

https://snap.stanford.edu/data/loc-brightkite.html
https://www.fordgobike.com/system-data

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 345

IT
 m

et
ric

s

Number of collected routes per user (N)

H[U]= 2.32

−2

−1

0

1

2

9 49 99 199249 499 999

HI~ , exh. , 128 cells

PI^ , exh. , 16 cells

PI^ , exh. , 128 cells

Su
cc

es
s

ra
te

Number of leakages per user (M)

1

1 41 81 121 161

N = 9

N = 39

N = 199

N = 999

Fig. 4. Simulated data. Left: IT metrics. Right: success rate of attacks with external
leakages (with the collected routes discretized in Δ = 128 cells).

cases. For the HI, the reduction intuitively depends on the number of collisions
in a data set (just as would be observed with the k-anonymity metric). As a
result, larger numbers of routes per user N imply more risks of collisions for our
data set (where some routes are possible for all users). For the PI, it reflects the
fact that by increasing N , one builds more accurate models, with less estimation
errors, saturating when N is sufficient to perfectly estimate the model.

A second observation (specific to the PI and the evaluation of external leak-
ages) is that the level of discretization brings a tradeoff between the speed of
convergence of the model and the informativeness of the (fully characterized)
model. For example, the model estimated with 16 cells converges faster (and
is more rapidly informative) than the one with 128 cells, but less informative
for N = 999. The latter suggests that the speed of convergence of a model is a
relevant evaluation metric since it determines the amount of observations that a
malicious adversary would require to build a database that is sufficient to infer
something about a user. This could for example be useful in a (non open data)
scenario where routes are maliciously collected.

Eventually, a third observation is that since we only consider exhaustive
models in this simulated setting, the HI and the PI with 128 cells converge
towards the same value (equal to the MI), as expected [3].

An Open Source Tool in R language allowing the generation of HI/PI plots
to confirm these intuitions is available in complement to this work.

As for the success rate plots, we first observe that the number of leakages
M required to reach high success rates is proportional to the value of the PI for
the corresponding N value, as theoretically predicted in [8]. This makes it an
interesting alternative to the success rate since it is typically easier to sample, as
reflected by the less smooth success rate curves when M increases (since there
are less sets of M traces based on which we can estimate the success rate).
Also, the PI plots allow easy comparisons between two models (e.g., the ones
with 16 and 128 cells) in order to determine the number of collected traces such
that one becomes more informative than the other, which happens when their
respective PI curves intersect. Besides, we also note that the number of leakages

346 C. Massart and F.-X. Standaert

M required to reach a high success rate is usually lower than the number of
routes that must be collected to build an informative model. That is, building
a model enabling statistical inference attacks with external leakages is more
difficult than mounting the attack once a well estimated model is known.

Brightkite Data Set. We use this second data set to illustrate the more chal-
lenging nature of real observations from the privacy viewpoint. The latter can be
confirmed from the IT metrics estimations in Fig. 5, and the large gap existing
between the HI computed from the raw data (from which no positive PI could be
extracted) and the HI and PI computed after discretization. It reflects the gen-
eral fact that location privacy rarely comes for free (i.e., without sanitization).
For example, the high HI value for the raw data suggests that re-identification
with internal leakages is trivial (i.e., successful after a couple of raw leakages).
Since this value bounds the PI for a larger database, it means that with the
amount of collected data, we can only bound the risks of re-identification with
external leakages very conservatively with the raw HI value. We also notice that
by discretizing the data we can reduce the HI while enabling the estimation of
predictive models, as witnessed by the PI curve that converges to positive values.
The latter values (> 1

10) suggest that a handful of external leakages is sufficient
for re-identification. Indeed, a simple bound for the re-identification complexity
is given by c

PI [8].5 Stronger discretizations (e.g., with 16 cells) show a faster
convergence of the PI at the cost of a reduction of its asymptotic value (i.e., a
speed of convergence vs. informativeness tradeoff).

IT
 m

et
ric

s

Number of collected observations per user (N)

H[U]= 8.24

−8

−6

−4

−2

0

2

4

6

8

5 10 15 20 25 30 35 40 45

fo= 0. 063

HI~ exh. , raw data

HI~ exh. , 100 cells

PI^ exh. , 100 cells Pe
rc

en
ta

ge
 o

f m
od

ifi
ed

 p
ro

ba
bi

lit
ie

s

Number of collected observations per user (N)

1

5 10 15 20 25 30 35 40 45

PI^ exh. , 16 cells

PI^ exh. , 100 cells

Fig. 5. Left: Brightkite data, IT analysis. Right: outliers correction

Another observation of interest is that in the case of real data, it frequently
happens that the modeling phase is made more difficult due to outliers (i.e.,
user’s observations that only happen rarely, possibly once). Those can lead to
prohibitively low probabilities (e.g., zero probabilities that make the estimation

5 With c a small constant depending on H[U] and the target success rate (e.g., c = H[U]
is a usual heuristic that corresponds to a success rate of approximately 80%).

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 347

of the PI impossible). We deal with these outliers by “correcting” the observa-
tions for which the probability is lower than 1

N and setting them to this minimum
value, while also counting the fraction of corrected probabilities. This fraction
fo is always given for the final value of our PI estimates in the figures (e.g.,
fo = 0.063 in the left part of Fig. 5). As illustrated the right part of the figure,
it generally decreases with the size of the profiling set.

Jogging Data Set. We use this third data set and the results in (the left part
of) Fig. 6 to illustrate a case where a simplified modeling exploiting an indepen-
dence assumption does not allow a better model convergence. The figure clearly
shows that the PI extracted by using an exhaustive model (with sufficiently dis-
cretized routes) is significantly higher than the PI extracted by using a 1st-order
independent model. It corresponds to the intuition that in the case of jogging
data (e.g., the ones in right part of Fig. 1), the consecutive observations of a
route are highly correlated and therefore an independence assumption during
the modeling is unlikely to bring any significant gain.

IT
 m

et
ric

s

Number of collected routes per user (N)

H[U]= 2.81

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

11 22 33 44 55 66 77 88 99

fo= 0. 024

fo= 0. 201

HI~ exh. , 121 cells

PI^ exh. , 121 cells

PI^ 1st−order, 121 cells

IT
 m

et
ric

s

Number of collected routes per user (N)

H[U]= 2.81

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

11 22 33 44 55 66 77 88 99

PI^ exh. , 16 cells

PI^ exh. , 16 cells, user 1

: :

PI^ exh. , 16 cells, user 7

Fig. 6. Jogging data. Left: IT analysis. Right: IT analysis per user.

Another observation of interest in this context is that the routes of the joggers
we analyzed are (on average) very discriminating, both with respect to internal
leakages (with an HI value stuck to H[U]) and external leakages (with a PI value
close to H[U]

4). We further use this context to put forward the differences that can
occur in the characterization of the models for different users, as illustrated in the
right part of Fig. 6. The latter recalls that the HI and PI are average metrics and
are handy to have a quick “privacy overview” of a data set. However, a rigorous
analysis of the leakages’ informativeness has to be performed at the user level. For
example, the aforementioned connection between information theoretic metrics
and the success rate only holds per user [8].

BikeShare Data Set. We finally use this fourth data set to illustrate a case
where a simplified modeling exploiting an independence assumption is needed

348 C. Massart and F.-X. Standaert

for re-identification with external leakages, and to discuss the addition of the
time component of the observation’s in our reasoning.

Starting with the modeling issue, we first provide some additional intuition
about the BikeShare data set based on Fig. 8 (given in Appendix A). It represents
the daily usage of different bike stations by different users with different ZIP
codes (i.e., 100% means the station is used everyday by the user). More precisely,
it corresponds to the daily usage of sets of users living in the same area, which
have been grouped in order to preserve their anonymity. We will denote these
sets as users for simplicity. One can clearly see that depending on the area a
user lives in, his most used BikeShare stations vary significantly.

IT
 m

et
ric

s

Number of collected routes per user (N)

H[U]= 4.75

0

46 92 138 184 230 276 322 368 414

fo= 0. 097

fo= 0. 018

HI~ exh.

PI^ exh.

PI^ 1st−order

IT
 m

et
ric

s

Number of collected observations per user (N)

H[U]= 4.75

−4

−3

−2

−1

0

1

2

3

4

123 246 369 492 615 738 861 984 1107

fo= 0. 002

fo= 0. 047
fo= 0. 146

PI^ 1st−order

PI^ 1st−order + AM, PM

PI^ 1st−order + days

HI~ 1st−order

HI~ 1st−order + AM, PM

HI~ 1st−order + days

Fig. 7. BikeShare data. Left: IT analysis. Right: IT analysis with time component.

We performed the same IT analysis as in the previous sections and report it
in Fig. 7. This time, and in contrast with the jogging case study, the 1st-order
independence assumption is needed to build a predictive model allowing re-
identification with external leakages. This result can be explained by considering
the nature of the data represented in Fig. 8. Namely, contrary to the case of the
jogging data where the consecutive observations in a route are very correlated,
the use of BikeShare can be interleaved with other public or private transports,
hence creating a good level of independence between the observations in a route.
Based on this conclusion, our following analyzes of the BikeShare data set will
systematically split all the routes into several independent observations. Note
that contrary to the case of jogging data, the definition of a route is more difficult
in the BikeShare context. In Fig. 7 we arbitrarily defined it as the consecutive
observations of one day.

This analysis leads to important conclusions from a risk assessment view-
point. Indeed, it highlights that the possibility to mount re-identification attacks
exploiting external leakages against the privacy of some users in a database does
not only depend on the amount of data collected but also on the assumptions
that an adversary can make about them. In this respect, the possibility to bound
this risk thanks to the HI estimated with an exhaustive model is a useful tool
for privacy assessments. As already observed, for many real-world data sets, this
bound is unlikely to be tight due to a lack of data (since for an infinite amount of

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 349

data, it is proven to be tight). For example, in the simple case of Fig. 7, we tested
a 1st-order independent model which leads to a better PI than the exhaustive
model, but still falls far away from the HI bound. This gap captures the risk
that some non-obvious assumption about the data set (or simply more data in
case a malicious database owner is hiding a part of the collected data) would
significantly improve the model informativeness and/or convergence: combined
with the previous experimental observation that building a model is usually more
data consuming than exploiting it, it implies that the risks of statistical inference
attacks are in general hard to bound tightly, unless some specific mechanisms
prevent the unrestricted use of the data.

Including the Time Component. We conclude the paper by showing that the
time component of location observations can be used to further improve the
attacks with external leakages. This fact is illustrated by the information the-
oretic analysis in the right part of Fig. 7 where the PI is estimated with and
without time component, considering two granularities: AM/PM (in which case
the total number of bins of the independent model is doubled) and daily (in
which case this total number of bins is multiplied by seven).

Two preliminary remarks resulting from the figure are: (i) that the value of
the PI without time component in the left part of Fig. 7 is reduced compared to
the one in the right plot. The latter derives from the fact that we now estimate
PI(U ;P) (since, as mentioned earlier, we split all the routes in independent
observations) rather than PI(U ;D), and routes contain several positions: roughly,
the average number of observations per route can be approximated by the ratio
between the two PI values on these figures; and (ii) that the maximum size of
the profiling set decreases when considering the time component (since we now
need a sufficient amount of observations for all time values).

The figure highlights the significant gain of information that is obtained by
characterizing the time component of the users’ observations, hence revealing
that their biking habits differ depending on the days and time of the days. It
also confirms the aforementioned fact that the HI bound becomes tighter when
a large database with more observations is available.6

Acknowledgments. François-Xavier Standaert is a Senior Research Associate of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in
parts by the ERC project SWORD (Consolidator Grant 724725).

6 Note that the bound is here given for 1st-order independent models, as shown in the
left part of the figure, the bound for the exshaustive models is stuck at H[U].

350 C. Massart and F.-X. Standaert

A Additional Figure

Fig. 8. Daily usage of BikeShare stations for three users (ZIP codes).

References

1. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Sadeghi,
A.-R., Gligor, V.D., Yung, M. (eds.), ACM SIGSAC, pp. 901–914. ACM (2013)

2. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Comput. 2(1), 46–55 (2003)

Revisiting Location Privacy from a Side-Channel Analysis Viewpoint 351

3. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.-X.:
Leakage certification revisited: Bounding model errors in side-channel security eval-
uations. IACR Cryptology ePrint Archive 2019:132 (2019)

4. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Apté, C., Ghosh, J., Smyth, P. (eds.) ACM
SIGKDD, pp. 1082–1090. ACM (2011)

5. de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.: Unique in the crowd:
the privacy bounds of human mobility. Nat. Sci. Rep. 3(1376), 5 (2013)

6. de Montjoye, Y.-A., Radaelli, L., Singh, V.K., Pentland, A.S.: Unique in the shop-
ping mall: on the reidentifiability of credit card metadata. Science 347(6221), 536–
539 (2015)

7. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 5

8. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

9. Durvaux, F., Standaert, F.-X., Pozo, S.M.D.: Towards easy leakage certification:
extended version. J. Cryptographic Engineering 7(2), 129–147 (2017)

10. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 26

11. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

12. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 1–53 (2010)

13. Gambs, S., Killijian, M.-O., del Prado Cortez, M.N.: Next place prediction using
mobility markov chains. In: Proceedings of the First Workshop on Measurement,
Privacy, and Mobility, MPM 2012, pp. 3:1–3:6 (2012)

14. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. TKDD 1(1), 3 (2007)

15. Maouche, M., Ben Mokhtar, S., Bouchenak, S.: Ap-attack: a novel re-identification
attack on mobility datasets. In: Kaafar, D., Zhou, G. (eds.) MobiQuitous. ACM
(2017)

16. Oya, S., Troncoso, C., Pérez-González, F.: Is geo-indistinguishability what you are
looking for? In: Thuraisingham, B.M., Lee, A.J. (eds.) Proceedings of the 2017 on
Workshop on Privacy in the Electronic Society, pp. 137–140. ACM (2017)

17. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information (abstract). In: Mendelzon, A.O., Paredaens, J. (eds.) ACM SIGACT-
SIGMOD-SIGART, p. 188. ACM Press (1998)

18. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 4

19. Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: IEEE s&p.
pp. 247–262. IEEE Computer Society (2011)

20. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

https://doi.org/10.1007/3-540-36467-6_5
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/3-540-36467-6_4
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26

Side Channel Analysis of SPARX-64/128:
Cryptanalysis and Countermeasures

Sumesh Manjunath Ramesh1,2,3(B) and Hoda AlKhzaimi1,2,3

1 Center for Cyber Security, New York University Abu Dhabi, Abu Dhabi, UAE
{r.sumesh.manjunath,hoda.alkhzaimi}@nyu.edu

2 Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
3 Tandon School of Engineering, New York University, New York, USA

Abstract. SPARX family of lightweight block cipher was introduced in
Asiacrypt 2016. The family consists of three variants (a) SPARX-64/128,
(b) SPARX-128/128 and (c) SPARX-128/256. In this work, first, we pro-
pose a technique to perform Correlation Power Analysis (CPA) on the
SPARX-64/128 cipher. Our technique uses a combination of first-order,
second-order and modulo addition CPA methods. Using our proposed
technique we extract 128 key bits of SPARX-64/128 cipher with low com-
plexities in general; key guess complexity of 212 and 65000 ≈ 216 power
traces. We initially propose a countermeasure of SPARX-64/128 block
cipher against side-channel attacks in terms of power analysis, a thresh-
old implementation based on a serialized design of SPARX-64/128 core.
The serialized design of SPARX-64/128 core is implemented in hard-
ware and occupies 60 slices in FPGA. As a countermeasure, this serial-
ized implementation is extended to propose a provably secure threshold
implementation of SPARX-64/128 core (TI-SPARX). The TI-SPARX
core occupies 131 slices in FPGA and runs at 144 MHz thus, giving a
throughput of 9 Mbps. To the best of our knowledge, this is the first side
channel attack and countermeasure result on SPARX-64/128 cipher.

Keywords: Side channel analysis · Lightweight cryptography ·
SPARX · Correlation Power Analysis · Threshold implementation

1 Introduction

Cryptographic primitives such as stream ciphers, block ciphers and hash func-
tions are essential building blocks for various security applications and protocols
such as SSL, TLS, etc. In the past years, the focus on lightweight designs in
the community has been increasing in order to build efficient and secure cryp-
tographic primitives that can be utilized in extreme restricted physical envi-
ronments such as embedded systems, Internet of Things devices, sensors, RFID
tags, energy harvesting devices, and many others.

The designed primitives have been initiated to exhibit optimal criteria for
specific metrics as in optimized performance, lower power/energy consump-
tion, reduced area size, increased throughput, and security, among many others.
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 352–369, 2019.
https://doi.org/10.1007/978-3-030-23696-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_18

Side Channel Analysis of SPARX-64/128 and Countermeasure 353

PRESENT and CLEFIA are lightweight block ciphers proposed as ISO standard
for lightweight applications [1]. SIMON and SPECK block ciphers are proposed
by the NSA [7]. SPARX [13] is a lightweight block cipher which comes with
security bound against differential and linear characteristics. These are a The-
few block ciphers introduced specifically for lightweight applications both in
hardware as well as software. Many of these ciphers are based on Substitution-
Permutation Network, Feistel Network or Addition-Rotation-Xor (ARX) design
methodology.

Every proposed design of cryptographic primitives is associated with certain
security rationale and needs a thorough analysis against proposed security mar-
gins. Normally, this is achieved through classical statistical and non-statistical
cryptanalysis techniques, as well as physical hardware cryptanalysis techniques
embodied in side-channel analysis approaches. The primitives which are resistant
to valid cryptanalysis techniques are highly recommended. In some cases, even if
such primitives are resistant to classical cryptanalysis techniques, and they come
with a strong provable security model, they might be vulnerable to certain Side
Channel Analysis (SCA) approaches. These approaches facilitate the extraction
of secret information from the measured leakage data. Power leakage analysis
[19], Fault analysis [14], Electro-Magnetic leakage analysis [24], Acoustic leakage
analysis [11] and Timing analysis [23] are a few examples on the exploitation of
leakage information to get the secret key. Therefore, SCA is equally important
because (a) Cryptographic Primitives ultimately gets implemented in hardware
and/or software, and (b) Hardware/Software may exhibit a physical leakage of
information about the internal processing values with the secret key while exe-
cuting a cryptographic primitive.

Masking is one of the techniques proposed to prevent Side Channel Attack
[17,21]. Many variants of masking schemes were proposed to reduce leakage infor-
mation. Threshold Implementation [26] is a claimed provably secure approach
to protect the implementation of ciphers from side channels. This is based on
secret sharing and multi-party computation techniques.

Related Work: In [12], authors retrieved 64-bit key of SIMON-32/64 block
cipher using differential power analysis, thus making it vulnerable in hardware
applications. In [3], authors proposed a Threshold implementation for SIMON
and gave a side channel secure implementation of SIMON which can be used
in hardware. Similarly, unprotected Present block cipher is vulnerable to Corre-
lation Power analysis [5,20] protects the cipher against first-order side-channel
attacks. In [10], the authors gave a secure Speck core and the methodology to
secure ARX based ciphers.

Contribution: Our contribution in this research is that we analyze SPARX-
64/128 block cipher against power leakage. First-Order Correlation Power Anal-
ysis (CPA) and Second-Order CPA techniques are combined to recover the com-
plete secret key of SPARX-64/128 using 212 key guesses and 65000 ≈216 power
traces. We implement an area optimized hardware design of SPARX–64/128 and
compare with round-based design, for performance based on area, speed, and
throughput. Finally, we propose a secure threshold implementation of SPARX-
64/128 as a countermeasure for the proposed side channel attacks.

354 S. M. Ramesh and H. AlKhzaimi

Organization: The document is organized into seven main sections. The back-
ground information on power analysis, threshold implementation and SPARX
family algorithm are given in Sect. 2. Correlation Power Analysis (CPA) tech-
nique to recover all 128 bit key of round-based SPARX-64/128 cipher is given in
Sect. 3. After the attack description, SPARX-64/128 serialized implementation
is proposed in Sect. 4. Based on this serialized design, we propose as a threshold
implementation in Sect. 5. The CPA attack details and results and the analysis of
threshold implementation results are exhibited in Sect. 6. Finally, the conclusion
of the analysis is presented in Sect. 7.

2 Background

In this section, we introduce the SPARX Family of Block Cipher along with
the basic understanding of First-Order and Second-Order Correlation Power
Analysis. In addition to that, CPA technique on n-bit addition modulo 2n is
explained. Finally, Threshold Implementation and its properties are described.

2.1 Preliminaries to Power Analysis (CPA)

A brief introduction to First-Order and Second-Order Correlation Power Anal-
ysis (CPA) and CPA for n-bit modulo addition 2n is given in this section. We
assume the power model for our attack to be Hamming Distance model.

Pearson Correlation Coefficient and CPA. Pearson Correlation Coefficient
(PCC) gives the measure of linear relationship (correlation) between two data
sets. This is used in CPA to retrieve the secret key. The power traces of N
encryption forms one data set and the hamming distance between one round
function with a given hypothesis key for the same N plaintexts form another data
set. The PCC is calculated for each hypothesis key. Say, for n-bit hypothesis key
has total 2n keys. The highest PCC among all hypothesis keys is the potential
candidate secret key.

First-Order CPA. In 1999, Kocher et al. [19] introduced simple and differential
power analysis. In these methods mostly single bit of secret key is retrieved and
the experiment needs to be repeated for more bits. In [16], Correlation Power
Analysis method uses Pearson Correlation Coefficient to retrieved more bits at
a time. Usually, either first round or last round of the cipher is considered to
extract the corresponding round key.

Let us consider a toy block cipher A which takes 16-bit plaintext, X, and
16-bit secret key, K, and output 16-bit ciphertext, Y . The encryption function
using AES S-Box [18] is mentioned below.

X = X0‖X1, K = K0‖K1,

S0 = X0 ⊕ K0, S1 = X1 ⊕ K1,

Y0 = sbox(S0), Y1 = sbox(S1),
Y = Y0‖Y1.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

Side Channel Analysis of SPARX-64/128 and Countermeasure 355

First, power traces of N random plaintext encryption function is captured. Next,
retrieve 8-bit K0 of secret key and then the remaining 8-bit, K1 of secret key K
using CPA method. As in Eq. 1, X0 is known plaintext and K0 is unknown 8-bit
of secret key. The total possible value for K0 is 256. Therefore, by taking each
possible value for K0, say hypothesis key, evaluate only a part of the encryption
function on the same N plaintexts and calculate the hamming distance between
X0 and Y0. Now, find the correlation coefficient (PCC) between the power trace
and calculated hamming distance for each hypothesis key. The candidate key for
K0 is the hypothesis key with maximum PCC value. The key guess complexity
is 28. The same process is repeated for K1. Therefore with 29 key guess com-
plexity 16-bit secret key is retrieved whereas the brute force takes 216 key guess
complexity.

Second-Order CPA. One way to resist first-order CPA attack is by using
random mask with the input [17,21]. This countermeasure can be thwarted,
when the attacker is able to correlate between the points (sample) in a power
trace for random mask generation and usage of mask with the input. The attacker
can retrieve secret key as described in [15,27], but it requires a large number of
traces to be successful.

CPA on Addition Modulo 2n. Unlike in the first-order CPA method, where
K0 and K1 can be retrieved independently, the CPA on addition modulo 2n

function dependents on carry bit from previous bit addition. Hence, the secret
bits must be extracted in certain order only. Therefore, first Least Significant
Byte (8-bit) is retrieved and then second Least Significant Byte is retrieved till
Most Significant Byte, using correlation method.

2.2 Threshold Implementation

Threshold Implementation (TI) [26] is a provably secure countermeasure to side
channel attacks. TI uses secret sharing techniques on the input such as plaintext
and secret key. It is assumed that the attacker will not be able to measure
leakage information of all share at the same time, thus making it a good counter
measure against side channel. In TI, the number of shares (n) for each variable is
based on number of variables (s) (i.e n ≥ s+ 1) [26]. For secure implementation
of linear transformation, each share must be processed independently, whereas
for non-linear transformation it is complex. For non-linear transformation, three
properties must be satisfied for a secure Threshold Implementation. First: Non-
Completeness, which makes each sub function independent of at least one share
of all inputs, thus the attacker cannot see the complete output of the function.
Second: Correctness, which provides the correct result once the output of each
sub-function is combined together, thereby the output is not modified. Third:
the Balance property, which says that the if the input shares are uniformly
distributed then the output shares are also uniformly distributed. This is to
ensure that there is no leakage because of the differences in the distribution
between input and output shares. In [9], the authors showed TI methods to

356 S. M. Ramesh and H. AlKhzaimi

counter higher order side channel attacks. Threshold Implementation is a popular
countermeasure used to protect many ciphers including TI-AES [8], TI-Simon
[3,4], TI-Speck [10] and TI-Present [5].

2.3 Description of SPARX

In 2016, Daniel et al. proposed a SPARX family of ciphers, which is based on
Long Trail Strategy method, to bound the cipher against differential and linear
characteristics [13]. The SPARX has three variants based on block and key size:
SPARX-64/128, SPARX-128/128 and SPARX-128/256. Each block in SPARX-
n/k consist of w = n/32 words of 32 bits and key is divided into v = k/32
words.

The encryption algorithm consist of ns steps. Each step consist of ra round
function and one linear-mix layer. In each round, there are two operations (1)
Round Key addition, (2) Addition Box (A-Box) operation, which consist of Addi-
tion Rotation and Xor operations. The parameters for each variant of SPARX
is given in Table 1.

Table 1. Parameters of SPARX-64/128

Parameters SPARX-64/128 SPARX-128/128 SPARX-128/256

State word (w) 2 4 4

Key word (v) 4 4 8

Steps (ns) 8 8 10

Rounds/Step (ra) 3 4 4

Total rounds 24 32 40

The Round function for all variant of SPARX is same, whereas the linear-mix
layer between SPARX-64/128 and other two variants are different. Similarly, step
structure between SPARX-64/128 and other two variants are different. Finally,
key scheduling algorithm is different for all the three variants.

Hereafter, SPARX-64/128 and SPARX are used interchangeably and it refers
to SPARX-64/128 variant unless otherwise specified. SPARX block size is 64
bit and key size is 128 bit. The state at step s and round r is represented as
X0

r,s‖X1
r,s‖X2

r,s‖X3
r,s, where size of Xi

r,s is 16-bit. The initial state is loaded with
plaintext and represented as X0

0,0‖X1
0,0‖X2

0,0‖X3
0,0. After one round function the

state is X0
1,0‖X1

1,0‖X2
1,0‖X3

1,0. At the end of one step (i.e.) after linear-mix layer,
the state is X0

0,1‖X1
0,1‖X2

0,1‖X3
0,1. The ith round key is K0,i

L ‖K0,i
R , K1,i

L ‖K1,i
R ,

K2,i
L ‖K2,i

R , K3,i
L ‖K3,i

R , where Kj,i
L ,Kj,i

R , (0 ≤ j ≤ 3) are 16-bit each. The 128-bit
master key is K0,0

L ‖K0,0
R , K1,0

L ‖K1,0
R , K2,0

L ‖K2,0
R , K3,0

L ‖K3,0
R .

In 2017, Abdelkhalek et al. in [2], proposed an impossible differential distin-
guisher for 13 round to attack 16 round of SPARX-64/128. Recently in 2018,
Ankele et al. in [25], proposed a chosen ciphertext differential attacks on 16 round

Side Channel Analysis of SPARX-64/128 and Countermeasure 357

Step Structure

A−Box

A−Box

A−Box

A−Box

A−Box

A−Box

0

1

A−Box 1

Key Schedule − First Round

0 1

<<< 8

>>> 7

<<< 2

A−Box

Round Function

X3
1,0

K
1,1
R

X3
2,0

K
2,1
R

X3
0,0

X3
0,1

X1
1,0X0

1,0

X1
2,0X0

2,0

K
2,0
L

X1
0,0X0

0,0

K
0,0
L

X2
1,0

K
1,1
L

X2
2,0

X2
0,0

K
0,1
L

L2

X1
0,1X0

0,1 X2
0,1

K
0,0
R

K
1,0
R

K
1,0
L

K
2,1
L

K
2,0
R

K
0,1
R

K
2,0
L

K
2,0
R

K
1,0
L K

1,0
R

K
3,0
RK

3,0
L

K
0,0
R

K
0,0
L

K
2,1
L

K
2,1
R

K
1,1
L K

1,1
R

K
3,1
RK

3,1
L

K
0,1
R

K
0,1
L

L2

X
i+1
r+1,s

Xi
r,s

Xi
r+1,s

Xi+1
r,s

K
k,j
L

K
k,j
R

Fig. 1. One step of SPARX-64/128, One round function with A-Box, Linear Mix Layer
and one round of Key scheduling algorithm

of SPARX-64/128. Until now there has been no work on side channel analysis
of SPARX block cipher.

3 CPA on SPARX-64/128: Full Key Recovery

The first-order and second-order CPA attack described in Sect. 2.1 is combined
to retrieve secret key bits used in a round function. Thereby, complete 128-bit
key bits are extracted using the secret key bits from 4 round functions and key
scheduling algorithm which is explained in detail below.

3.1 Attack on SPARX Round Function

Let us assume that one input to the round function X0
r,s‖X1

r,s is known, another
input K0,i

L ‖K0,i
R is unknown. SPARX round function after key addition and

A-Box operation it output X0
r+1,s‖X1

r+1,s. The first round function is shown in
Fig. 2.

It is noteworthy that, only first order CPA techniques cannot be used to
retrieve either K0,i

L or K0,i
R because each act as mask to other in the opera-

tion. In contrast, by using second-order CPA technique, X0
1,0 is removed from

X1
1,0, thereby revealing K0,i

R , 16-bit secret by hypothesis keys. Here instead of

358 S. M. Ramesh and H. AlKhzaimi

>>> 7

<<< 2

A−Box

X1
1,0

X1
0,0

K
0,0
L

X0
0,0

X0
1,0

K
0,0
R

Fig. 2. SPARX-64/128 first round function. A round function consist of round sub-key
XOR and A Box operation

retrieving all 16 bits at a time, eight least significant bits are extracted first and
then fixing that eight least significant bits, the remaining eight significant bits
are retrieved, thereby all 16-bits of secret key K0,i

R are retrieved in 29 key guess
complexity.

Once K0,i
R secret key is retrieved, it is fixed to that value and then first-order

CPA for addition modulo 216 technique is applied to retrieve 16-bit K0,i
L secret

key. This takes 29 key guess complexity. Thereby, 32-bit secret key K0,i
L ‖K0,i

R

used in the first round function is extracted in 210 key guess complexity.

Extract 16-bit Secret Key K0,i
R : The following operations occur different time

instance.

– At T1: X0
r+1,s =

(
X0

r,s ⊕ K0,i
L

)

7
+

(
X1

r,s ⊕ K0,i
R

)
mod 216,

– At T2: X1
r+1,s = X0

r+1,s ⊕
(
X1

r,s ⊕ K0,i
R

)

−2
.

For second-order DPA attack, power measurement at two time instance is sub-
tracted to get modified power measurement of a trace.

As in Eq. (2), X1
r,s is known and using first-order CPA technique, K0,i

R is
extracted. To reduce the key guess complexity, first, eight least significant bits
(lsb) is targeted. Hence, total hypothesis keys are 28 = 256. The round func-
tion is simulated with these hypothesis keys keeping the eight most significant
bits (msb) to zero. The hamming distance between output from the simulated
hypothesis key and input is correlated with P (t = T1) − P (t = T2) from power
traces. The hypothesis key which gives maximum correlation coefficient is the
correct 8-bit lsb of K0,i

R . Fixing the 8 lsb and repeating the simulation for 8 msb
position. In this way, K0,i

R is extracted with 28 +28 = 29 hypothesis key guesses.

Side Channel Analysis of SPARX-64/128 and Countermeasure 359

P (t = T1) − P (t = T2) ≈ HD
(
X0

r+1,s

) − HD
(
X1

r+1,s

)
,

≈ HW
(
X0

r+1,s ⊕ X1
r+1,s

)
,

≈ HW

(

X0
r+1,s ⊕

(

X0
r+1,s ⊕

(
X1

r,s ⊕ K0,i
R

)

−2

))

,

≈ HW
(
X0

r+1,s ⊕ X0
r+1,s ⊕ X1

r,s ⊕ K0,i
R

)
,

≈ HW
(
X1

r,s ⊕ K0,i
R

)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Extract 16-bit secret key K0,i
L : 16-bit K0,i

R is fixed to the above extracted
value. X0

r,s and X1
r,s is also known. Therefore, the modular addition is given in

Eq. (3)

P (t = T1) ≈ HD
(
X0

r+1,s, X
0
r,s

)
,

≈ HD
(((

X0
r,s ⊕ K0,i

L

)

7
+

(
X1

r,s ⊕ K0,i
R

))
mod 216, X0

r,s

)
,

≈ HD
((

(known ⊕ K0,i
L)7 + (known ⊕ known)

)
mod 216, known

)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3)

As per the Eq. (3), only K0,i
L is unknown. Therefore, using CPA technique on

Addition Modulo 2n, we extract K0,i
L . Thus, K0,i

L is extracted with 28 + 28 = 29

hypothesis key guesses from Modular addition CPA technique.

Total Key Guess Complexity: To guess the correct value for K0,i
R sub-key,

29 key guesses are required and for K0,i
L sub-key, 29 key guesses are required.

Therefore the total number of key guess complexity for one round function is
210, whereas the brute force for the same is 232.

3.2 Full Key Recovery on SPARX-64/128

The technique to retrieve 32-bit secret key from a round function and one
round key scheduling algorithm are used to extract complete 128-bit master key.
First, key scheduling algorithm is explained with few observations. The 128-bit
master key is K0,0

L ‖K0,0
R ‖ K1,0

L ‖K1,0
R ‖ K2,0

L ‖K2,0
R ‖ K3,0

L ‖K3,0
R . After one round

of key scheduling algorithm the second round key is K0,1
L ‖K0,1

R ‖ K1,1
L ‖K1,1

R ‖
K2,1

L ‖K2,1
R ‖ K3,1

L ‖K3,1
R as shown in Fig. 1.

Observation 1. K0,1
L of second round key is same as K3,0

L of first round key.

K3,0
L = K0,1

L

Observation 2. The relationship between K0,1
R of second round key and K3,0

R

of first round key is
K3,0

R =
(
K0,1

R − 1
)
mod 216

360 S. M. Ramesh and H. AlKhzaimi

Let’s explain the full key recovery. The plaintext is loaded into the state X0
0,0‖

X1
0,0‖ X2

0,0‖ X3
0,0 and the first round key is K0,0

L ‖K0,0
R ‖ K1,0

L ‖K1,0
R ‖ K2,0

L ‖K2,0
R ‖

K3,0
L ‖K3,0

R .
For the first round function, the inputs are X0

0,0‖X1
0,0 and K0,0

L ‖K0,0
R and after

key addition and A-Box operation the output is X0
1,0‖X1

1,0. By our proposed CPA
technique as explained in Sect. 3.1, 32-bit secret key, K0,0

L ‖K0,0
R , is extracted.

Since, key and the plaintext known, the output of first round function, X0
1,0‖X1

1,0,
is also known.

A−Box

A−Box

A−Box

A−Box

A−Box

A−Box

0

1

X3
1,0

K
1,1
R

X3
2,0

K
2,1
R

X3
0,0

X3
0,1

X1
1,0X0

1,0

X1
2,0X0

2,0

K
2,0
L

X1
0,0X0

0,0

K
0,0
L

X2
1,0

K
1,1
L

X2
2,0

X2
0,0

K
0,1
L

L2

X1
0,1X0

0,1 X2
0,1

K
0,0
R

K
1,0
R

K
1,0
L

K
2,1
L

K
2,0
R

K
0,1
R

Fig. 3. SPARX-64/128 one step function. The four round functions used to retrieve
128-bit secret key is highlighted

For second round function, one input, X0
1,0‖X1

1,0, is known and the key input
K1,0

L ‖K1,0
R is unknown. Using the similar technique, K1,0

L ‖K1,0
R is extracted,

thereby the output of second round function, X0
2,0‖X1

2,0 is known. By following
the same way, K2,0

L ‖K2,0
R secret key is extracted. So far, 96-bits of secret key is

extracted which are K0,0
L ‖K0,0

R , K1,0
L ‖K1,0

R , K2,0
L ‖K2,0

R . Now 32-bit, K3,0
L ‖K3,0

R ,
secret key is not used in any of the round functions.

Let us retrieve 32-bit K0,1
L ‖K0,1

R second round key. As shown in Fig. 3, the
input to the right side round function is 32-bit of plaintext, X2

0,0‖X3
0,0 which

is known and using our proposed technique, K0,1
L ‖K0,1

R , 32-bit second round
key is extracted. Now, using Observation 1 and 2, K3,0

L ‖K3,0
R is retrieved from

K0,1
L ‖K0,1

R . Therefore, all 128-bit secret key is retrieved.

Side Channel Analysis of SPARX-64/128 and Countermeasure 361

Complexity: For extracting 32-bit secret key from one round function is 210. To
retrieve complete 128-bit secret key, we need to retrieve 32-bit secret key from
four round functions, therefore the total time complexity is 210+210+210+210 =
212 key guesses.

4 SPARX Hardware Implementation

The SPARX algorithm is a lightweight block cipher and its potential uses will be
in embedded devices, IoT devices where optimized hardware implementation of
the cipher is important. Optimization means with respect to area, throughput
and speed are required based on the applications. In this work, we optimize
the area and propose as serialized implementation of SPARX core. The round
function of SPARX is similar to the round function of SPECK with the difference
in the key XOR operation, therefore our proposed serialized implementation is
inspired from [10].

The block size for SPARX-64/128 is 64-bit. The SPARX algorithm have
round function which takes only 32-bit inputs whereas linear-mix layer needs
64-bit input to process. First, serialized implementation of round function will
be explained and then implementation of linear-mix layer and finally, complete
step structure of SPARX is optimized.

4.1 Serialized Round Function

The round function of SPARX comprises key addition and A-Box operations.
The input to the round function is 32-bit state and 32-bits of round key. The
32-bit state is split into two 16-bit data and stored in X and Y registers. The
main operations are XOR, cyclic shift and modulo addition. XOR operation is
linear and implemented bit-wise. Splitting the registers eliminates the need for
implementing cyclic shift operations. Modulo addition of 16-bit input is imple-
mented as 16 serialized one-bit full adder by storing the carry from previous
one-bit addition. This takes less area in the hardware. Since the new values are
stored in the same registers, there are two feedback functions: One for the X
register and another for Y register as shown in Fig. 4.

C

1514

14 15

7
06

15 0 13

K K

X
X Y

Fig. 4. Serialized implementation of round function of SPARX-64/128

The X register in the left is split into two parts such as X[6:0] and X[15:7],
thereby exposing eighth bit position of X register to the left feedback function

362 S. M. Ramesh and H. AlKhzaimi

and the first bit position of Y register is sent to the left feedback function. In the
feedback function, corresponding key bits are XORed with eighth and first bit
positions of X and Y registers, respectively. After key XOR, one-bit full addition
is performed. The new carry is stored and the left feedback function output the
sum. For the first seven clock cycles in each round, the output of left feedback
function is fed into X[6:0] part of register as new value and at the same time the
old values in X[6:0] are feed into X[15:7] so that it can be processed in the left
feedback function. After seven clock cycles, the sum is directly fed into X[15:7]
part of register, thereby exposing 8th bit of new value in X register for next
round as shown in Fig. 4.

The values in Y register are processed twice, one in left feedback function
and another in right feedback function. Hence, we need to duplicate values in Y
register. Since the right feedback function consist of two cyclic shift operation
and XOR operation, duplicate of two bits is sufficient instead of all 16 bits
of Y register. One copy stores the old values for right feedback function and
another copy stores new values for next round. Hence, the Y register is split
into Y [13:0] and Y [14:15] and two copies of Y [14:15] is maintained. The right
feedback function performs XOR between output of left feedback function and
fourteenth bit in Y register. The output is fed back into fifteenth bit position
of Y register as new value for next round. After sixteen clock cycles, one round
function is completed. At this instance, one copy of Y [14:15] register has old
values and another copy has new value. The register having new value is valid
and the register having old value is invalid for next round function. So the valid
register is used for next round and invalid register is used to store new values
from the new round. Thus, the role of each registers are reverse at the start of
each round. One round function takes sixteen clock cycles.

4.2 Serialized Linear-Mix Layer

Linear-mix layer of SPARX-64/128 takes 64-bit input and after mixing it gives
64-bit output as shown in the Fig. 1. The linear-mix layer is implemented in
two steps. In first step, the output of the linear function is processed without
the cyclic shift operation. In second step, cyclic left shift of output by 32 bits
is implemented. The 64-bit input state are stored in four 16-bit registers such
as XL, YL, XR and YR. XL and YL registers stores the state values on the left
branch and XR and YR stores the state values on the right branch as shown in
the Fig. 5.

Linear-mix layer, is implemented as two linear functions (i.e.) left linear func-
tion and right linear function. The left linear function takes 32-bit data from XL

and YL registers and performs XOR and then cyclic shift operations. The right
linear function takes the output of left linear function and 32-bit data in XR

and YR registers as input and performs XOR operation.
In the left linear function, cyclic shift is implemented by directly exposing

eighth bit position of XL and YL registers, respectively, such as XL[7:0], XL[15:8],
YL[7:0] and YL[15:8]. The eighth bit of XL and YL registers are XORed and the
value is again XORed with first bit of XL and YL separately (i.e. two XOR)

Side Channel Analysis of SPARX-64/128 and Countermeasure 363

and these two bits, say, bx, by, are the output of left linear function. Meanwhile,
eighth bit of XL is fed back into seventh bit position of XL and at same time
zeroth bit XL is feed into fifteenth bit position of XL. The similar feedback
operations are performed for YL as well.

15 8

15 8
7 0

0 15

0 15

7 0
XL

YL
YL

XR

YR

XL

bx

by

Fig. 5. Serialized implementation of linear mix layer of SPARX-64/128

In the right linear function, the output bit, bx of left linear function is XORed
with first bit of XR. The XORed bit value is feedback into fifteenth bit position
of XR. Similarly, the output bit, by of left linear function is XORed with first bit
position of YR and the XORed bit value is feedback into fifteenth bit position
of YR. After sixteen clock cycles, the values in XL, YL, XR and YR registers are
new values.

Now the rotation step is implemented. The values in XL and XR registers are
swapped. Similarly, the values in YL and YR registers are also swapped. The swap
values are taken from zeroth bit position and feed into fifteenth bit position.

Since XL and YL registers are split to expose eighth bit position, while feeding
new value at fifteenth position, eighth bit is fed into seventh bit position as shown
in Fig. 5. The rotation step takes sixteen clock cycles to complete. Therefore the
linear mix layer takes 32 clock cycles to complete.

4.3 Serialized SPARX

In Sects. 4.1 and 4.2, serialized implementation of round function and linear mix
layer are proposed independently. Now, we combine both the design to implement
one step structure of SPARX-64/128. Four 16-bit registers such as XL, YL, XR

and YR are loaded with 64 bit plaintext sequentially. XL and XR registers are
split into three, to expose required bits for round and linear mix layer functions.
In the same way, YL and YR registers are split into three and corresponding bits
are duplicated as shown in Fig. 6.

Appropriate registers are selected for the round functions. For three rounds
in a step, first XL and YL registers are selected and executed with first round
key bits, and once it is done, XR and YR registers are now selected and again
three rounds are executed with second round key bits. Finally, linear-mix layer
is executed on all four registers simultaneously as shown in Fig. 6.

364 S. M. Ramesh and H. AlKhzaimi

C

1514

1514

06

KK

138707815

14 15
C

14 15
6 0

15 8 7

K K

0 7 8 13

XL
XL YL YL

XR
XR

YR YR

Fig. 6. Serialized implementation of SPARX-64/128 with round function and linear
mix layer

5 Threshold Implementation of SPARX

The Threshold Implementation proposed in this work inspires TI implementation
of Speck proposed in [10], because the round function in the SPARX is similar to
the round function of SPECK expect the key addition operation. This similarity
allows us to utilize the TI of Speck with little modification.

For a secure threshold implementation, Correctness, Non-Completeness and
Balance properties needs to be satisfied. There are two variables: plaintext and
secret key. Therefore, minimum three shares are required for TI for the reason
as given in [26]. So, plaintext P is split as P1, P2, and P3 shares, similarly key
K into K1, K2, and K3 shares. These shares are generated as shown in Eq. 4.

P1
$←− {0, 1}64;P2

$←− {0, 1}64;P3 = P ⊕ P1 ⊕ P2

K1
$←− {0, 1}64;K2

$←− {0, 1}64;K3 = K ⊕ K1 ⊕ K2

(4)

The shares generated are random and the correctness is verified as given in Eq. 4.
SPARX round function consist of XOR, cyclic shift and modulo addition oper-
ations; and linear-mix layer consist of XOR and cyclic shift operations. Since,
XOR and cyclic operation are linear operations, they operate on each share inde-
pendently without exposing other shares. Therefore, non-completeness property
is achieved on these operations. Modulo addition is the only non linear opera-
tion in round function. It is implemented using 1-bit full adder. The threshold
implementation for 1-bit addition used in this work is inspired from [28].

At each clock cycle, one bit of two inputs are added. Therefore, for a given
two n-bit inputs, starting from least significant bit to the most significant bit of
two inputs, each bit are added using one-bit adder circuit, hence n clock cycles
are required to complete the addition. Therefore, at ith clock cycle, ith bit is
added, where i ∈ {0, 1, . . . 15}.

Let us explain how TI is achieved in one-bit full adder. One-bit full adder
takes two input bits and input carry bit from previous bit addition and output
sum bit and output carry bit. For 16-bit addition, the input bits comes from
two 16-bit data, let us say a and b, where ai, bj represents ith, jth bit of a and

Side Channel Analysis of SPARX-64/128 and Countermeasure 365

b, respectively. The carry bit is denoted as c, where least significant bit of c is
zero (c1 = 0). In threshold implementation, a and b are split into three shares
and their corresponding carry bit also contains three shares as shown below.

ai = ai,1 ⊕ ai,2 ⊕ ai,3

bi = bi,1 ⊕ bi,2 ⊕ bi,3

ci = ci,1 ⊕ ci,2 ⊕ ci,3

(5)

Now, the three shares of sum bit si and output carry bit ci+1 is given below

si,1 = ai,1 ⊕ bi,1 ⊕ ci,1

si,2 = ai,2 ⊕ bi,2 ⊕ ci,2

si,3 = ai,3 ⊕ bi,3 ⊕ ci,3

(6)

ci+1,1 = (ai,2 · bi,2) ⊕ (ai,2 · bi,3) ⊕ (ai,3 · bi,2)
(ai,2 · ci,2) ⊕ (ai,2 · ci,3) ⊕ (ai,3 · ci,2)
(bi,2 · ci,2) ⊕ (bi,2 · ci,3) ⊕ (bi,3 · ci,2)

ci+1,2 = (ai,3 · bi,3) ⊕ (ai,3 · bi,1) ⊕ (ai,1 · bi,3)
(ai,3 · ci,3) ⊕ (ai,3 · ci,1) ⊕ (ai,1 · ci,3)
(bi,3 · ci,3) ⊕ (bi,3 · ci,1) ⊕ (bi,1 · ci,3)

ci+1,3 = (ai,1 · bi,1) ⊕ (ai,1 · bi,2) ⊕ (ai,2 · bi,1)
(ai,1 · ci,1) ⊕ (ai,1 · ci,2) ⊕ (ai,2 · ci,1)
(bi,1 · ci,1) ⊕ (bi,1 · ci,2) ⊕ (bi,2 · ci,1)

(7)

By XORing each shares, gives the correctness property. As given in Eqs. 6 and 7,
each share of sum and carry is independent of at least one share of each input,
thus non-completeness property is also satisfied. As given in [28], the sum and
carry shares are uniformly distributed. Thus, all three properties of threshold
implementation are satisfied.

6 Results

We performed CPA attack on SPARX-64/128 using SAKURA-G board and also
proposed a provably secure threshold implementation of SPARX in Spartan 3.

6.1 Full Key Recovery Results

We implemented SPARX-64/128 cipher in SAKURA-G FPGA board and cap-
tured the power traces using Tektronix MSO5204B oscilloscope. SAKURA-G
board consist of two Spartan-6 FPGA where one is controller FPGA and another
is the main FPGA. SPARX design is implemented in main FPGA. The board
is connected with a laptop to send plaintext for encryption and receive the cor-
responding ciphertext. At the same time, an oscilloscope is connected with the

366 S. M. Ramesh and H. AlKhzaimi

board to sample the power consumption during the encryption process. These
sampled power measurements are called power traces and it is stored in the PC
via the oscilloscope. Once the power traces are collected, our proposed technique
is applied and full 128-bit secret key is recovered. To recover 128-bit secret key,
65000 ≈ 216 power traces are used and the number of key guess complexity is
212. Due to the limitation of the space, the PCC of all hypothesis keys for the
K0,0

L only is shown in Fig. 7. The actual key used to encrypt 65000 random plain-
texts is 0x0001 0x0203 0x0405 0x0607 0x0809 0x0A0B 0x0C0D 0x0E0F . The
key used in first round function is 0x0001 0x0203. K0,0

L = 0x0001 is extracted
successfully, as the PCC for hypothesis keys 0x00 and 0x01 in MSB and LSB
position are maximum, respectively as shown in Fig. 7.

Fig. 7. PCC of all 256 hypothesis keys for LSB and MSB of K0,0
L

6.2 FPGA Implementation of SPARX-64/128

We implemented the SPARX design as given in Sects. 4 and 5 in Verilog on Xil-
inx Spartan 3 FPGA using Xilinx ISE 14.7. The serialized implementation of
SPARX requires 32 Flip-Flops and 114 LUTs occupying 60 slices and the maxi-
mum speed achieved is 173 MHz. For TI-SPARX 64/128, the addition circuit of
serialized implementation is modified and three individual serialized circuit for
each share are required. The TI-SPARX 64/128 requires 69 Flip-Flops and 231
LUTs occupying 131 slices and it runs at 144 MHz. SPARX round based design
is used in the side channel attack and is also used for comparison. Round based
means one step structure of SPARX (three rounds and one linear-mix layer)
runs in one clock cycle. Serialized SPARX occupies the least area of all three
implementation and the round based occupies the most because round based
need large area to implement one step in one clock cycle. The TI-SPARX which
is based on serialized implementation occupies lesser area compared to round
based, whereas it needs more area than serialized to preserve three properties of
threshold implementation. The results are given in Table 2.

Serialized implementation of SPARX is compared with Speck 128/128, Simon
128/128 and PRESENT lightweight ciphers as they are NSA and ISO standard
lightweight block ciphers, respectively. SPARX occupies almost 50% less area
compared to PRESENT at the expense of lower throughput by 17.59 Mbps.

Side Channel Analysis of SPARX-64/128 and Countermeasure 367

Table 2. Resource utilization of different implementations of SPARX 64/128. Flip-
flops are used as registers, LUT for logic and shift registers. Slice contains certain
number of LUTs, flip-flops and multiplexers

Implementation Flip-Flops LUTs Slices Speed (MHz) Throughput (Mbps)

Round based SPARX 2671 4299 2370 204 22.9

Serialized SPARX 32 114 60 173 10.81

TI-SPARX 69 231 131 144 9

At the same time, SPARX has almost three times higher throughput than Simon
128/128 but 1.7 times the area requirement of Simon 128/128. This is expected
because Simon is proposed mainly for hardware. SPARX occupies almost 1.4
times the area required for Speck 128/128. The increase in the area is due to extra
linear layer design in SPARX which is not present in Speck 128/128 (Table 3).

Table 3. Comparison of SPARX-64/128 with other ciphers on area and throughput

Cipher Slices Throughput (Mbps) FPGA

TI-SPARX 64/128 131 9 xc3s50

TI Speck 128/128 [10] 99 9.68 xc3s50

TI Simon 128/128 [3] 87 3.0 xc3s50

SPARX-64/128 60 10.81 xc3s50

Speck 128/128 [10] 43 10.05 xc3s50

Simon 128/128 [6] 36 3.6 xc3s50

PRESENT [22] 117 28.4 xc3s50-5

7 Conclusion and Future Work

Although, SPARX design has a provable security bounds against differential
and linear cryptanalysis, there is still a margin of analysis to be performed
when it comes to side channel cryptanalysis. In this research, we successfully
demonstrated that SPARX-64/128 cipher is vulnerable to first order and second
order power side channel analysis. We are able to recover full 128-bit secret key
of SPARX-64/28 implemented in SAKURA-G board using 212 key guess and
65000 ≈216 power traces. The attack mentioned for SPARX-64/128 worked for
two other variants SPARX-128/128 and SPARX-128/256. As a countermeasure
to secure SPARX-64/128, we proposed Threshold Implementation to improve the
security of the initial SPARX core. First, a serialized implementation of SPARX
is given. Then, a first-order side-channel-resilient threshold implementation for
SPARX-64/128 is proposed using the previously given serialized implementation.
As shown in Sect. 5, Non-Completeness, Correctness and Balance properties are

368 S. M. Ramesh and H. AlKhzaimi

preserved in the proposed secure TI design to indicate resiliency to side channel
analysis. This provides a slower, yet a provably secure version of SPARX. For
the future work, we will investigate a generalized model that would extend the
threshold implementation to other variants of SPARX cipher. This model would
be used to study the complexity analysis and the effectively of using threshold
implementations on different lightweight design methodologies.

Acknowledgement. This work is supported by Center of Cyber Security Abu Dhabi
in NYUAD. The authors would like to acknowledge the support of Dr. K. K. Soundra
Pandian and Mohammed Nabeel Thari Moopan.

References

1. https://www.iso.org/standard/56552.html
2. Abdelkhalek, A., Tolba, M., Youssef, A.M.: Impossible differential attack on

reduced round SPARX-64/128. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT
2017. LNCS, vol. 10239, pp. 135–146. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57339-7 8

3. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent Simon: a threshold implementa-
tion under 100 slices. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2015, Washington, DC, USA, pp. 1–6 (2015)

4. Shahverdi, A., Taha, M., Eisenbarth, T.: Lightweight side channel resistance:
threshold implementations of SIMON. IEEE Trans. Comput. 66(4), 661–671 (2017)

5. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011)

6. Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: break area records of block
ciphers on FPGAs. Embed. Syst. Lett. 6(2), 37–40 (2014)

7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

8. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06734-6 17

9. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

10. Chen, C., İnci, M.S., Taha, M., Eisenbarth, T.: SpecTre: a tiny side-channel resis-
tant speck core for FPGAs. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016.
LNCS, vol. 10146, pp. 73–88. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-54669-8 5

11. Genkin, D., Shamir, A., Tromer, E.: Acoustic cryptanalysis. J. Cryptol. 30(2),
392–443 (2017)

12. Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.): SPACE 2014. LNCS, vol.
8804. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7

13. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 18

https://www.iso.org/standard/56552.html
https://doi.org/10.1007/978-3-319-57339-7_8
https://doi.org/10.1007/978-3-319-57339-7_8
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-319-54669-8_5
https://doi.org/10.1007/978-3-319-54669-8_5
https://doi.org/10.1007/978-3-319-12060-7
https://doi.org/10.1007/978-3-662-53887-6_18

Side Channel Analysis of SPARX-64/128 and Countermeasure 369

14. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

15. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006).
https://doi.org/10.1007/11605805 13

16. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

17. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

20. Lo, O., Buchanan, W.J., Carson, D.: Correlation power analysis on the PRESENT
block cipher on an embedded device. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security, ARES 2018. ACM (2018)

21. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS,
vol. 1978, pp. 150–164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44706-7 11

22. Yalla, P., Kaps, J.-P.: Lightweight cryptography for FPGAs. In: 2009 International
Conference on Reconfigurable Computing and FPGAs, Cancun, Quintana Roo,
Mexico, ReConFig 2009 (2009)

23. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

24. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

25. Ankele, R., List, E.: Differential cryptanalysis of round-reduced Sparx-64/128. In:
Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 459–475.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 24

26. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

27. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

28. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking.
In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015.
LNCS, vol. 9092, pp. 559–578. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7 27

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/11605805_13
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-319-93387-0_24
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/978-3-319-28166-7_27
https://doi.org/10.1007/978-3-319-28166-7_27

Analysis of Two Countermeasures
Against the Signal Leakage Attack

Ke Wang1,2(B) and Haodong Jiang1,3

1 TCA Laboratory, State Key Laboratory of Computer Science,
Institute of Software Chinese Academy of Sciences, Beijing, China

wangke@tca.iscas.ac.cn, hdjiang13@gmail.com
2 University of Chinese Academy of Sciences, Beijing, China

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China

Abstract. In 2017, a practical attack, referred to as signal leakage
attack, against reconciliation-based RLWE key exchange protocols was
proposed. In particular, this attack can recover a long-term private key
if a key pair is reused.

Directly motivated by this attack, recently, Ding et al. proposed two
countermeasures against the attack. One is the RLWE key exchange
protocol with reusable keys (KERK), which is included in the Ding Key
Exchange, a NIST submission; the other is the practical randomized
RLWE key exchange (PRKE) (TOC’18). Meanwhile, there exits another
key reuse attack on RLWE key exchange (ACISP’18 and Africacrypt’18),
which is called key mismatch attack.

In this paper, we find that KERK and PRKE are vulnerable to key
mismatch attack. In particular, we propose a simpler key mismatch
attack and apply it to KERK and PRKE, respectively. In fact, key mis-
match attack shares the same idea with the signal leakage attack, which
is one of the communicators chooses a RLWE sample with special struc-
ture as his/her public key. In order to resist key mismatch attack, we
extend KERK and give an improved one, where any party can construct
a new “public key” of the other party. And we also extend PRKE by
increasing randomization further. Finally, by comparison, we get that
the improved PRKE is more practical.

Keywords: RLWE · Key exchange · Post-quantum · Key reuse ·
Key mismatch · Active attacks · Countermeasures

1 Introduction

Key exchange is an important cryptography primitive. It allows two or more
parties to agree on the same key, which is used in symmetric ciphers to encrypt
and decrypt traffic data. Since the groundbreaking work of Diffie-Hellman key
exchange [1], various key exchange protocols following this idea have been
designed, implemented and deployed in real-world applications.
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 370–388, 2019.
https://doi.org/10.1007/978-3-030-23696-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_19

Analysis of Two Countermeasures Against the Signal Leakage Attack 371

In 1994, Shor proposed a quantum algorithm in [2], which can break most
current public key cryptosystems based on integer factoring problem, discrete
logarithm problem etc. Cryptographic algorithms designed based on these hard
problems are no longer secure when large quantum computers are implemented.
Fortunately, there are several approaches that can defeat such attacks, including
lattice-based, multivariate-based, hash-based, code-based, and others. In partic-
ular, lattice-based cryptography is regarded as a very promising one because
construction based on lattice problems are extremely hard to solve, even against
quantum computers. It also enjoys strong provable security and very high effi-
ciency. An important line of lattice-based cryptography is constructions based
on the Ring-Learning with Error (RLWE) problem [4].

RLWE key exchange protocol was introduced in 2012 (denoted as DING12)
[5], which gave RLWE variant of Diffie-Hellman key exchange. Following the
idea of this work, various RLWE key exchange protocols have been designed and
implemented, including [6–9,11,12]. One common approach to achieve RLWE
key exchange is error reconciliation. In particular, DING12, PKT14 [6], NewHope
[9] and HILA5 [26] belong to reconciliation-based RLWE key exchange protocol.

Recently, a practical attack, referred to as signal leakage attack, against
reconciliation-based RLWE key exchange protocols was proposed [13]. This
attack could recover a long-term private key if a key pair is reused. It is known
that in the real world, key reuse is commonly adopted in applications like the SSH
and TLS protocol to improve performance. In TLS v1.2, the resumption mode
allows key reuse, and this reduces online computations significantly. Another
instance of key reuse appears in the Internet Key Exchange (IKE). Currently
with classical DH, some implementations of IKE do reuse the keys for improved
computational efficiency and latency. If RLWE key exchange protocols that are
vulnerable to key reuse attack are adopted in TLS and IKE with reused keys,
the security of communication is compromised.

Directly motivated by this attack, Ding et al. constructed two countermea-
sures against the attack. One is called the RLWE key exchange protocol with
reusable keys (KERK), which was proposed in the Ding Key Exchange, a NIST
submission [3]. However, there are few descriptions of KERK in the submission.
The other is the practical randomized RLWE key exchange (PRKE) [15]. It
extends DING12 and incorporates an additional ephemeral public error term into
key exchange materials so that the practical signal leakage attack does not work.

In addition, Ding et al. [19] proposed a new attack on DING12 using key mis-
match, and Bernstein et al. [18] demonstrated a key-recovery attack on HILA5
using an active attack on reused keys. These two attacks both follow the method
in [17] and we call such attacks key mismatch attack. However, there are some
differences between [18] and [19]. The attack in [18] can adopt the method in
[17] directly while the attack in [19] can’t. The reason is that the method in [17]
only works on the RLWE key exchange that derives the shared secret from the
most significant bits of the approximately equal keys computed by both parties.
Therefore, in [19], Ding et al. make some modifications to make the attack work
on DING12, but the modified attack is relatively complex.

372 K. Wang and H. Jiang

In fact, key mismatch attack shares the same idea with the signal leakage
attack. Specifically, in key mismatch attack, Alice is an honest participant who
reuses her secret key sA and her public key pA = asA + eA, Bob is an active
adversary who initiates many connections with Alice and tries to learn sA; while
in the signal leakage attack, Bob is an honest participant who reuses his secret
key sB and his public key pB = asB + eB , Alice is an active adversary who
constructs her public key pA as to learn information about sB .

1.1 Related Work

In 2015, Kirkwood et al. from National Security Agency(NSA) revealed an issue
in reconciliation-based key exchange protocols [16]. They suggested that if a
public and private key pairs is reused, current reconciliation-based LWE and
RLWE key exchange protocols may suffer from an attack that can reveal a
private key with multiple key exchange executions.

In 2016, Fluhrer [17] gave cryptanalysis on RLWE key exchange protocols.
This work gave the basic structure of the attack and showed that RLWE key
exchange can be broken when a key pair is reused. In 2017, Ding et al. [13]
presented a signal leakage attack. In 2017, Bernstein et al. [18] demonstrated a
key-recovery attack on HILA5 using an active attack on reused keys.

In December 2017, Ding et al. [3] submitted their post-quantum cryptosys-
tem, Ding Key Exchange, to NIST, which is based on DING12. In their scheme,
KERK was included, which can achieve secure key reuse. In 2018, Ding et al.
[19] described a new attack on DING12’s one pass case without relying on the
signal function output but using only the information of whether the final key
of both parties agree. In 2018, Gao et al. [15] constructed a new randomized
RLWE key exchange protocol against the signal leakage attack. In particular,
they incorporated an additional ephemeral public error term into key exchange
materials.

Recently, D’Anvers et al. [28] investigated the impact of decryption failures
on the chosen-ciphertext security of (Ring/Module)-Learning With Errors and
(Ring/Module)-Learning with Rounding based primitives. In particular, they
introduced a technique to increase the failure rate of these schemes and examined
the amount of information that an adversary can derive from failing ciphertexts.
Bauer et al. [30] studied the security of NewHope when an active adversary
accesses a key establishment and is given access to an key mismatch oracle. This
attack model turns out to be relevant in key reuse situations.

1.2 Our Contributions

In this work, our contributions are as follows:

– First, we find that two countermeasures, KERK and PRKE, are vulnerable to
key mismatch attack. In particular, we extend the method in [17], propose a
simpler key mismatch attack and apply it to KERK and PRKE, respectively.

Analysis of Two Countermeasures Against the Signal Leakage Attack 373

– Next, we find that key mismatch attack shares the same idea with the signal
leakage attack. In order to resist key mismatch attack, we extend KERK and
PRKE and develop improved KERK and PRKE. Finally, by comparison, we
get that the improved PRKE is more practical.

– In addition, we further elaborate on KERK and explain why it can resist the
signal leakage attack.

1.3 Organization

In Sect. 2, we introduce some notations, background on RLWE and the error
reconciliation mechanism from DING12. In Sect. 3, we revisit the signal leakage
attack on DING12 and its two countermeasures: KERK and PRKE. In Sect. 4,
we revisit key mismatch attack, propose a simpler key mismatch attack and
apply it to KERK and PRKE. In Sect. 5, we develop two measures to deal with
key mismatch attack and they are extensions of KERK and PRKE, respectively.
In addition, some discussions and comparison are also included in Sect. 5. In
Sect. 6, we make a conclusion.

2 Preliminaries

Notation. Let n be an integer and a power of 2. Define f(x) = xn + 1
and consider the ring R := Z[x]/〈f(x)〉. For the prime integer q, we define
Rq = R/qR ∼= Zq[x]/〈f(x)〉 analogously, where the ring of polynomials over Z

(respectively Zq = Z/qZ) we denote by Z[x] (respectively Zq[x])). For any poly-
nomial p ∈ R (or Rq), let p[i] denote the i-th coefficient of p. In particular, there
is a map between a polynomial c0 + c1x + c2x

2 + ... + cn−1x
n−1 and a vector

(c0, c1, c2, ..., cn−1).

Discrete Gaussian Distribution. For any positive real σ ∈ R, and vector c ∈
R

n, the continuous Gaussian distribution over Rn with standard deviation σ cen-
tered at c is defined by the probability function ρσ,c(x) = (1√

2πσ2)nexp(−‖x−c‖2

2σ2).
For integer vectors c ∈ Z

n, let ρσ,c(Zn) =
∑

x∈Zn ρσ,c(x). Then, we define the
discrete Gaussian distribution over Z

n as DZn,σ,c(x) = ρσ,c(x)
ρσ,c(Zn) , where x ∈ Z

n.
The subscripts σ and c are taken to be 1 and 0 (respectively) when omitted.
In particular, we will use a bound of the norm of the Gaussian distribution as
follows.

Lemma 1. ([29]). For any σ ≥ ω(
√

log n), then we have

Pr[||x|| > σ
√

n|x ←− DZn,σ] ≤ 2−n. (1)

374 K. Wang and H. Jiang

Ring Learning with Errors(RLWE). A Lattice L(b1, ..., bn) = {∑n
i=1 xi

bi|xi ∈ Z} is formed by integer linear combinations of n linearly independent
vectors b1, ..., bn ∈ R

n called the Lattice Basis. In 1996, Ajtai’s seminal result
[21] heralded the use of lattices for constructing cryptographic systems, with the
security based on hardness of problems such as the Shortest Vector Problem
(SVP) and Closest Vector Problem (CVP). The Learning with Errors (LWE)
problem introduced by Oded Regev in 2005 [4] is a generalization of the parity-
learning problem. The reduction from solving hard problems in lattices in the
worst case to solving LWE in the average case provides strong security guarantees
for LWE based cryptosystems, yet it is not efficient enough for practical appli-
cations due to its large key sizes of O(n2). Ring-Learning with Errors(RLWE)
is the version of LWE in the ring setting, that overcomes the efficiency disad-
vantages of LWE. The search version of RLWE is to find a secret s in Rq given
(a, as + e) for polynomial number of samples, where a is sampled uniform from
Rq and e is sampled according to the error distribution DZn,σ. An equivalent
problem of the search version is the decision version which is commonly used for
security proof of cryptographic algorithms based on RLWE. Let As,DZn,σ

denote
the distribution of the pair (a, as + e), where a, s is sampled uniformly from Rq

and e is sampled according to the error distribution DZn,σ. The decision version
of the RLWE problem is to distinguish As,DZn,σ

from the uniform distribution
on Rq ×Rq with polynomial number of samples. The normal form [22,23] of the
RLWE problem is by modifying the definition above by choosing s from the error
distribution DZn,σ rather than uniformly. It has been proven that the ring-LWE
assumption still holds even with this variant [4,24].

Reconciliation-Based Key Exchange. It is an approach to construct a pas-
sively secure lattice-based Key Exchange scheme [11]. In particular, we take
DING12 (Table 1) as an example. In the protocol, Alice and Bob each compute
a noisy version of the shared secret. In order to agree on a common value, one

Table 1. DING12

Analysis of Two Countermeasures Against the Signal Leakage Attack 375

party additionally sends a signal of his value so that both parties can recover
the exact key from their respective noisy versions.

The Error Reconciliation Mechanism from DING12. The error reconcil-
iation mechanism in DING12 mainly consists of a signal function and a robust
extractor.

Signal Function. For the Key Exchange from RLWE presented in [5], the
signal function is required for the two parties in the key exchange to derive a
final shared secret. The signal function is usually sent by the responding party
to the initiator of the key exchange, which gives additional information about
whether the responder’s key computed lies in a specific region.

For prime q > 2, hint functions σ0(x), σ1(x) from Zq to {0, 1} are defined as:

σ0(x) =
{

0, x ∈ [−
 q
4�,
 q

4�]
1, otherwise

σ1(x) =
{

0, x ∈ [−
 q
4� + 1,
 q

4� + 1]
1, otherwise

Signal function Cha() is defined as: For any y ∈ Zq, Cha(y) = σb(y), where

b
$←− {0, 1}.

Robust Extractor. Informally, a robust extractor enables two parties to extract
an identical information from two close elements with some additional hint. The
robust extractor is defined as:

Mod2(x,w) = (x + w · q − 1
2

mod q)mod 2.

3 Revisit the Signal Leakage Attack on DING12 and Its
Countermeasures

3.1 The Signal Leakage Attack on DING12

In this section, we briefly recall the signal leakage attack [13] on DING12
(Table 2). In the attack, honest communicator Bob reuses key pair (sB , pB),
active adversary Alice (boxed out in Table 2) tries to recover Bob’s private key
sB within multiple queries by choosing pA with special structure.

In the attack, malicious Alice chooses pA = k, then, at the Bob side,

w = Cha(kB) = Cha(pAsB + 2e′
B) = Cha(ksB + 2e′

B), (2)

In particular,

w[i] = Cha(kB [i]) = Cha(pAsB [i] + 2e′
B [i]) = Cha(ksB [i] + 2e′

B [i]), (3)

where k loops from 0 to q − 1 in every communication and is used to reveal the
value of sB [i].

376 K. Wang and H. Jiang

Table 2. Signal leakage attack on DING12

According to the definition of signal function Cha, signal value w[i] flips when
ksB [i] + 2e′

B [i] enters or exits inner region [−q/4, q/4]. Error 2e′
B [i] is relatively

small and can be ignored. When k loops from 0 to q − 1, signal value w[i] flips
exactly 2sB [i] times. Therefore, by communicating with Bob with k looping from
0 to q − 1, Alice can get the value of sB [i] based on the number of times that
signal w[i] changes.

3.2 Two Countermeasures Against the Signal Leakage Attack

Next, we revisit two countermeasures against the signal leakage attack. The first
one is KERK, which is based on the authentication protocol proposed in [27],
where they firstly designed a zero knowledge-based authentication protocol. The
other is PRKE, which mixes more randomization [15].

Table 3. KERK

Analysis of Two Countermeasures Against the Signal Leakage Attack 377

KERK. As shown in Table 3, KERK can resist the signal leakage attack effec-
tively. In particular, if malicious Alice chooses pA = k, then, at the Bob side,

w = Cha(kB) = Cha(pAsB + 2e′′
B)

= Cha((a · Samp(H(pA)) + 2e′
B + pA)sB + 2e′′

B)
= Cha((a · Samp(H(k)) + 2e′

B + k)sB + 2e′′
B), (4)

where H is a hash function, Samp() is a function which generates polynomial
in Rq using output of H according to distribution DZn,σ, and e′

B is chosen by
Bob according to distribution DZn,σ. Although Alice can manipulate k, she can’t
control the value of a ·Samp(H(k))+2e′

B . Therefore, by looping k from 0 to q−1,
Alice can’t get the value of sB [i] based on the number of times that signal w[i]
changes.

Table 4. Regular mode

PRKE. As shown in Tables 4 and 5, PRKE has two modes: regular mode
and key reuse mode, which share the same structure. Regular mode is designed
for common key exchange between two parties without reused keys. Key reuse
mode is designed for both parties wanting to reuse a key pair and it is directly
derived from the regular mode. The main motivation for key reuse is for better
performance because generating the key pair is somewhat expensive.

The key exchange in key reuse mode can prevent malicious Alice from
implementing the signal leakage attack. In particular, if malicious Alice chooses
pA = k, then, at the Bob side,

w = Cha(kB) = Cha((pAsB + 2ep) · ep + 2e′
B)

= Cha((ksB + 2ep) · ep + 2e′
B)

= Cha(ksBep + 2e2p + 2e′
B), (5)

378 K. Wang and H. Jiang

Table 5. Key reuse mode

Alice Bob
Reused public key: pA = asA + 2eA Reused public key: pB = asB + 2eB

Reused private key: sA Reused private key: sB

Session ID−−−−−−−−−−−−→
kB = (pAsB + 2ep) · ep + 2eB

where ep, eB ←− DZn,σ

w = Cha(kB) ∈ {0, 1}n

w, ep←−−−−−−−−−−−−
kA = (pBsA + 2ep) · ep + 2eA σB = Mod2(kB , w) ∈ {0, 1}n

where eA ←− DZn,σ skB = SHA2 − 256(σB)
σA = Mod2(kA, w) ∈ {0, 1}n

skA = SHA2 − 256(σA)

where ep is chosen by Bob to mix more randomization. By looping k from 0 to
q − 1, Alice can’t get the value of sB [i] based on the number of times that signal
w[i] changes. In fact, the approach of mixing more randomization is a common
and practical solution, for example, using public random one-time initialization
vector (IV) in encryption, nonce in various cryptography protocols, long and
random salt in password-based key derivation function.

4 Key Mismatch Attack on KERK and the PRKE in
Key Reuse Mode

Different from the signal leakage attack, key mismatch attack considers the scene
where Alice is an honest participant who reuses her public key, Bob is an active
adversary who initiates many connections with Alice and tries to learn corre-
sponding private key. The countermeasures above can resist the signal leakage
attack effectively, but they are vulnerable to key mismatch attack.

4.1 Revisit Key Mismatch Attack

In [17], Fluhrer analyzed RLWE key exchange with key reused, where Alice
reuses the same public key and Bob uses a fresh public key each time. Each time
after Alice and Bob have performed the key exchange protocol, Alice will derive
her shared secret and Bob can be able to generate one guess of Alice’s shared
secret. Then Bob verifies his guess by communicating with Alice. In RLWE key
exchange, shared secret is usually used to generate symmetric keys that Alice
and Bob would use to communicate. Bob can generate his symmetric keys based
on his guess; if Alice is able to decrypt (and respond) based on those keys, then
(with high probability) Bob’s guess was correct; if Alice rejects, then Bob’s guess
was not correct.

Analysis of Two Countermeasures Against the Signal Leakage Attack 379

In particular, Fluhrer gave a attack, where adversary Bob chooses a public
key with special structure each time and Alice’s shared secret will leak the infor-
mation about Alice’s private key. However, the attack has limitations. It only
works on the RLWE key exchange that derives the shared secret from the most
significant bits of the approximately equal keys computed by both parties, and
does not work on DING12 that uses the least significant bits to derive a shared
secret.

Therefore, Ding et al. [19] proposed a specific attack on DING12. However,
compared with [17], the attack in [19] is relatively complex. In [19], when Bob
chooses public key, he needs to determine j satisfying sA[j] = 1 and he uses a
method of hypothesis and verification. In particular, Bob first assumes sA[0] = 1,
then recover sA to verify the hypothesis. If fails, Bob assumes sA[1] = 1 and like
this until j is found. As sA is sampled from the error distribution with standard
deviation σ, determining one coefficient of sA needs at most tσ connections,
where t is a constant. Thus, the attack complexity to recover sA is tnσ ≈ O(nσ).
Therefore, the complexity depends on the position of j. If sA[0] = 1, then the
complexity is O(nσ); if sA[n − 1] = 1, then the complexity is O(n2σ).

Next, we extend the method in [17] such that it can work on the RLWE
key exchange that uses the least significant bits to derive a shared secret. In
particular, the attack is simper and the complexity is O(nσ). Next, we apply it
to KERK and PRKE, respectively.

4.2 Key Mismatch Attack on KERK

Main Idea. In the attack, Alice is an honest participant who reuses her public
key, Bob is an active adversary who initiates many connections with Alice. In
every connection, Bob uses a fresh public key and tries to learn Alice’s private
key.

Table 6. Key mismatch attack on KERK

Alice Bob

Public key: pA = asA + 2eA ∈ Rq Public key: pB = j(kasB + eB) ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−→
Sample eB , eB ←− DZn,σ

Samp(H(pA))←− DZn,σ

pA = a· Samp(H(pA)) + 2eB + pA

Sample eA ←− DZn,σ kB = jkpAsB + 2eB

Samp(H(pA))←− DZn,σ w = Cha(kB) ∈ {0, 1}n

pB , w←−−−−−−−
kA = pB · (sA + Samp(H(pA))) + 2eA skB = Mod2(kB , w) ∈ {0, 1}n

skA = Mod2(kA, w) ∈ {0, 1}n

380 K. Wang and H. Jiang

As shown on in Table 6, Bob and his malicious operations are boxed out. For
convenience, we denote (sA + Samp(H(pA))) by sA. In order to recover sA, Bob
needs to recover sA first. when recovers sA[i], i ∈ [0, n − 1], Bob construct pB

with special structure and modifies w[0] so as to the value of skA[0] can reveal
the value of sA[i].

Meanwhile, the correctness of the protocol, skA = skB , make sure that Bob
can compute the value skA, except for index 0. In order to identify the value
of skA[0], Bob can guess a skA[0] = 0 and communicate with Alice to see if his
guess is correct. If he guesses correctly, then skA[0] = 0, otherwise, skA[0] = 1.

Attack Details. When recovers sA[i], i ∈ [0, n − 1], malicious Bob chooses
pB = j(kasB + eB), where

– sB satisfies that (asBsA)[0] = 11

– eB satisfies that (eBsA)[0] = sA[i]2.
– j and k are small integers, which vary in every connection and are used to

reveal the information of value sA[i].

In this way, at the Alice side, kA = pBsA, which results in

kA[0] = (pBsA)[0]
= j((kasBsA)[0] + (eBsA)[0])
= j(k + sA[i]). (6)

Next, Bob performs the protocol honestly, except that he deliberately flips bit
w[0] to be 1, thus, at the Alice side,

skA[0] = Mod2(kA[0], w[0])

= kA[0] + w[0] · q − 1
2

mod q mod 2

= j(k + sA[i]) +
q − 1

2
mod q mod 2. (7)

Notice that, for the same k, if skA[0] = 0 for different j′s, then k+sA[i] = 0 mod q
with overwhelming probability3. Thus, the k value reveals the value of sA[i].

1 [17] proposed an off-line method to search for sB and here we adopt the same method.
in particular, Bob can do this by searching for values sB such that (sBpA)[0] is a
small value, where sB consists of at most three coefficients are [1, −1] and the rest
0. As sBpA = sB(asA + 2eA + 2e′

B) = asBsA + 2sB(eA + e′
B) where eA and e′

B are
known to be small, such a sB has a nontrivial probability of meeting the criteria.
What’s more, pA is Alice’s public key, this computation can be done off-line. In fact,
(asBsA)[0] = −1 also works and we just consider the case (asBsA)[0] = 1.

2 Specifically, he can choose eB = xn−i, namely, eB [t] = 0 for all t = 0, ..., n−1 except
t = n − i and eB [n − i] = 1.

3 Since the addition of q−1
2

to a positive value will changes its parity by the represen-
tation of Zq to be {− q−1

2
... q−1

2
}.

Analysis of Two Countermeasures Against the Signal Leakage Attack 381

Meanwhile, as Bob performs the protocol mostly honestly, Bob can compute
the value skA, except for index 0, for which he flips the signal bit. Bob can guess
a skA[0] = 0 and communicate with Alice to see if his guess is correct. If he
guesses correctly, then skA[0] = 0, otherwise, skA[0] = 1.

Correctness of the Protocol and Choice of j and k. The correctness of
the protocol can guarantee that if Bob performs the protocol mostly honestly, he
can compute the value skA, except for index 0. The correctness of the protocol
mainly depends on the difference between kB and kA: |kA −kB |. If the difference
|kA − kB | is small enough, then skA = skB with overwhelming probability. In
particular, Bob chooses kB = jkpAsB + 2e′′

B , and

kA − kB = pBsA + 2e′
A − (jkpAsB + 2e′′

B)
= jkasBsA + jeBsA + 2e′

A − jkasAsB − 2jk(eA + e′
B)sB − 2e′′

B

= jeBsA + 2e′
A − 2jkeAsB − 2jke′

BsB − 2e′′
B . (8)

As sA = (sA + Samp(H(pA))), where Samp() is a function which generates poly-
nomial in Rq using output of H according to distribution DZn,σ, from Lemma 1,
we have that

|jeBsA + 2e′
A − 2jkeAsB − 2jke′

BsB − 2e′
B | ≤ 12|jk| · (σ

√
n) · (σ

√
n) ≤ 12|jk|σ2n.

If skA = skB with overwhelming probability when |kA − kB | ≤ θ, then j and
k need to satisfy that |jk| ≤ θ

12σ2n . According to [15], the error reconciliation
mechanism in DING12 can tolerance error θ = q

4 −2, then |jk| ≤ q−8
48σ2n . As sA[i]

and Samp(H(pA))[i] are sampled form the error distribution with the standard
deviation σ, then sA[i] satisfies a error distribution with the standard deviation
2σ and sA[i] ∈ [−6σ, 6σ] with about probability 99.7%. Therefore, we can first
choose a k such that |k| ≤ 6σ, then choose a j such that |jk| ≤ q−8

48σ2n .
Generally, when kA = pBsA + 2e′

A, the number of connections required to
recover sA[i] increases, due to the complexity involved in eliminating the effect
of the noise 2e′

A. Similarly, we adopt the strategy in [19], which is to run the
attack on the same coefficient sA[i] multiple times4 and look at the distribution5

of k.

Analysis of the Complexity. Bob can adopt the technology in [17] to choose
sB and eB , which can be done off-line. Therefore, the complexity of the attack
is to query sA[i] for each i. As sA[i] is sampled from the error distribution with
standard deviation 2σ, determining a coefficient value sA[i] needs at most tσ
queries, where t is a constant. Thus, the attack complexity to recover sA is
tnσ ≈ O(nσ).
4 The number of times is chosen to derive a reasonable number of samples for analyzing

the distribution of sA[i] with a certain confidence level. For a confidence level of 95%,
the number of samples is estimated to be 1000 with margin of error 3%.

5 Since e′
A[i] is sampled from an error distribution (Discrete Gaussian) centered at 0,

the obtained value of sA[i] with perturbation will be centered at sA[i].

382 K. Wang and H. Jiang

4.3 Key Mismatch Attack on the PRKE in Key Reuse Mode

Using the same idea, the attack also works on the PRKE in Key Reuse Mode. As
shown in Table 7, Alice is an honest party and active adversary Bob constructs
pB , w, and ep so as to recover the private key sA of Alice.

Table 7. Key mismatch attack on the PRKE in key reuse mode

Alice Bob
Reused public key: pA = asA + 2eA Reused public key: pB = asB + 2eB

Reused private key: sA Reused private key: sB

Session ID−−−−−−−−−−−−→
kB = (pAsB + 2ep) · ep + 2eB

where ep , eB ←− DZn,σ

w = Cha(kB) ∈ {0, 1}n

w, ep←−−−−−−−−−−−−
kA = (pBsA + 2ep) · ep + 2eA σB = Mod2(kB , w) ∈ {0, 1}n

where eA ←− DZn,σ skB = SHA2 − 256(σB)
σA = Mod2(kA, w) ∈ {0, 1}n

skA = SHA2 − 256(σA)

In order to recover coefficient sA[i], i ∈ [0, n − 1], Bob chooses small integer
pair (c, k), pB = 2c and ep = kxic, flips bit w[2i] to be 0, then, at the Alice side,
kA = (pBsA + 2ep) · ep will result in

kA = (pBsA + 2ep) · ep = (2csA + 2kxic) · kxic

= (sA + kxi) · 2kxic2

= [(
n−1∑

j=0,j �=i

sA[j]xj) + (sA[i] + k)xi] · 2kxic2. (9)

In particular,

kA[2i] = (sA[i] + k) · 2kc2, (10)

Next, Bob performs the protocol honestly, except that he deliberately flips bit
w[2i] to be 1, thus, at the Alice side,

σA[2i] = Mod2(kA[2i], w[2i]) = (kA[2i] + w[2i] · q − 1
2

mod q)mod 2

= (((sA[i] + k) · 2kc2)+ w[2i] · q − 1
2

mod q)mod 2

= (((sA[i] + k) · 2kc2) +
q − 1

2
mod q)mod 2. (11)

Notice that, for the same k, if σA[2i] = 0 for different c’s, then sA[i] + k =
0 mod q with overwhelming probability6. Thus, k reveals the value of sA[i].
6 Since the addition of q−1

2
to a positive value will changes its parity by the represen-

tation of Zq to be {− q−1
2

... q−1
2

}.

Analysis of Two Countermeasures Against the Signal Leakage Attack 383

Meanwhile, as Bob performs the protocol mostly honestly, Bob can compute
the value σA, except for index 2i, for which he flips the signal bit. Bob can guess
σA[2i] = 0 and communicate with Alice to see if his guess is correct. If he guesses
correctly, then σA[2i] = 0, otherwise, σA[2i] = 1.

5 Countermeasures Against Key Mismatch Attack

In fact, the idea behind the signal attack and key mismatch attack is the same,
which is one of the communicators for key exchange can manipulate his/her
public key or ciphertext so that he/she can obtain the private key of the other.
Therefore, the countermeasures against the signal leakage will also work on key
mismatch attack.

5.1 An Improved KERK

In the signal leakage attack, Alice chooses a RLWE sample with special structure
as her public key. As a countermeasure, Bob constructs a new “public key” of
Alice in KERK. In this section, we develop an improved KERK (Table 8) where
Alice also constructs a new “public key” of Bob, which can further resist key
mismatch attack.

Table 8. Improved KERK

Alice Bob
Public key: pA = asA + 2eA ∈ Rq Public key: pB = asB + 2eB ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−→
Sample eB , eB ←− DZn,σ

Samp(H(pA)), Samp(H(pB))←− DZn,σ

sB = sB + Samp(H(pB))
Sample eA, eA ←− DZn,σ pA = a· Samp(H(pA)) + 2eB + pA

Samp(H(pA)), Samp(H(pB))←− DZn,σ kB = pA · sB + 2eB

sA = sA + Samp(H(pA)) w = Cha(kB) ∈ {0, 1}n

pB , w←−−−−−−−
pB = a· Samp(H(pB)) + 2eA + pB skB = Mod2(kB , w) ∈ {0, 1}n

kA = pB · sA + 2eA

skA = Mod2(kA, w) ∈ {0, 1}n

Similar to the original KERK, after receiving Bob’s public key pB , Alice
computes a new “public key”

pB ←− a · Samp(H(pB)) + 2e′
A + pB = a · Samp(H(pB)) + 2e′

A + asB + 2eB

= a · (Samp(H(pB)) + sB) + 2e′
A + 2eB ,

384 K. Wang and H. Jiang

where a is public parameter, H is a hash function, Samp() is a function which
generates polynomial in Rp using output of H according to distribution DZnσ,
and e′

A is chosen by Alice according to distribution DZnσ.
The new “public key” pB consists of “secret” sB = Samp(H(pB)) + sB and

“error” 2e′
A + 2eB . Although Bob can control sB and eB , Samp(H(pB)) and e′

A

are out of control, which can deal with the case where malicious Bob chooses a
bad pB . Next, Alice operates pB instead of pB , sA instead of sA. At the side of
Bob, Bob operates pA instead of pA, sB instead of sB.

What’s more, these operations above hardly affect the correctness of the
protocol. In particular,

kB = pA · sB + 2e′′
B

= a · (Samp(H(pA)) + sA)sB + (2e′
B + 2eA)sB + 2e′′

B

= a · sA · sB + (2e′
B + 2eA)sB + 2e′′

B , (12)

kA = pB · sA + 2e′′
A

= a · (Samp(H(pB)) + sB)sA + (2e′
A + 2eB)sA + 2e′′

A

= a · sB · sA + (2e′
A + 2eB)sA + 2e′′

A, (13)

kB − kA = (2e′
B + 2eA)sB + 2e′′

B − (2e′
A + 2eB)sA − 2e′′

A

= (2e′
B + 2eA)(Samp(H(pB)) + sB) + 2e′′

B

− (2e′
A + 2eB)(Samp(H(pA)) + sA) − 2e′′

A

where e′
B , eA, e′

A, eB , Samp(H(pA)),Samp(H(pB)), sB , sA, e′′
A, e′′

B ←− DZn,σ.
From Lemma 1, we have that

|kB − kA| ≤ 20 · (σ
√

n) · (σ
√

n) ≤ 20σ2n. (14)

Therefore, if the error reconciliation mechanism in protocol can handle the
case where |kB − kA| ≤ 20σ2n, then skA matches skB with overwhelming prob-
ability.

5.2 An Improved PRKE in Key Reuse Mode

Recalling the attack in Sect. 4.3, the key to the attack is that Bob can obtain
information about sA by manipulating pB and ep. Therefore, in order to resist
the attack, Alice should hide as much information about sA as possible. In
particular, we extend the PRKE in key reuse mode such that Alice also chooses
e′
p according to distribution DZnσ and sends it with Session ID to Bob (Table 9).

Then Bob computes kB = (pAsB + 2ep + 2e′
p) · ep · e′

p + 2e′
B and Alice computes

kA = (pBsA + 2ep + 2e′
p) · ep · e′

p + 2e′
A. Although Bob can control pB and ep, he

can’t control e′
p, which brings more randomness to the calculation of kA, thus it

effectively resists key mismatch attack.

Analysis of Two Countermeasures Against the Signal Leakage Attack 385

Table 9. Improved PRKE in key reuse mode

Alice Bob
Reused public key: pA = asA + 2eA Reused public key: pB = asB + 2eB

Reused private key: sA Reused private key: sB

ep ←− DZn,σ

Session ID, ep−−−−−−−−−−−→
kB = (pAsB + 2ep + 2ep) · ep · ep + 2eB

where ep, eB ←− DZn,σ

w = Cha(kB) ∈ {0, 1}n

w, ep←−−−−−−−−−−−−
kA = (pBsA + 2ep + 2ep) · ep · ep + 2eA σB = Mod2(kB , w) ∈ {0, 1}n

where eA ←− DZn,σ skB = SHA2 − 256(σB)
σA = Mod2(kA, w) ∈ {0, 1}n

skA = SHA2 − 256(σA)

5.3 Discussion

As mentioned in introduction, key exchange becomes efficient when we are able
to reuse the public keys. However, DING12 with key reuse becomes vulnerable.
Therefore, corresponding countermeasures are proposed. In other words, the
proposed countermeasures are important only when they are more efficient than
DING12 without key reuse.

Table 10. Major time-consuming operation for various schemes

DING12 KERK PRKEa IKERKb IPRKEc

Gaussian sampling 6 9 3 12 4

NTT 4 6 1 10 2

Inverse NTT 2 2 2 2 2

Polynomial multiplication 4 5 4 6 6
athe PRKE in key reuse mode
bthe improved KERK
cthe improved PRKE in key reuse mode

As shown in Table 10, we compare major time-consuming operations. In
DING12, both Alice and Bob have to perform 3 Gaussian sampling, 2 NTT,
1 Inverse NTT, and 2 polynomial multiplication. In the improved PRKE in key
reuse mode, both Alice and Bob have to perform 2 Gaussian sampling, 1 NTT,
1 Inverse NTT, and 3 polynomial multiplication. Thus, the improved PRKE in
key reuse mode is a little efficient than DING12 and it is practical.

As for the improved KERK, the major time-consuming operations are sig-
nificantly more than that in DING12. Thus, the improved KERK is less efficient
than DING12 and it is not practical. However, it doesn’t change the commu-
nication between Alice and Bob, while the improved PRKE in key reuse mode
does due to the introduction of ep and e′

p.

386 K. Wang and H. Jiang

In addition, compared with DING12, the improved KERK doesn’t change
the communication between Alice and Bob. Therefore, the security analysis of
DING12 also works for the improved KERK. In [15], Gao et al. analysed the
security of PRKE in Sect. 4.3 and the method can also be applied to the improved
PRKE.

6 Conclusion

In this work, we have proposed a simpler key mismatch attack and apply it to
KERK and PRKE, respectively. In response to key mismatch attack, we improve
KERK such that Alice also constructs a new “public key” of Bob and develop
an improved KERK. As s result, the improved KERK can both resist the signal
leakage and key mismatch attack. In addition, the PRKE in key reuse mode
can also be extended to resist key mismatch attack and we develop an improved
PRKE, which is more practical.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (No. 2017YFB0802000), the National Natural Science
Foundation of China (No. U1536205, 61802376).

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Proceedings of 35th Annual Symposium on Foundations of Computer
Science 1994, pp. 124–134. IEEE (1994)

3. National Institute of Standards and Technology: Round 1 Submissions (2017).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

4. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

5. Ding, J., Xie, X., Lin, X.: A Simple Provably Secure Key Exchange Scheme Based
on the Learning with Errors Problem. IACR Cryptology EPrint Archive, Report
2012/688 (2012)

6. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

7. Bos, J.W., Costello, C., Naehrig, M., et al.: Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on
Security and Privacy (SP) 2015, pp. 553–570. IEEE (2015)

8. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46803-6 24

9. Alkim, E., Ducas, L., Pöppelmann, T., et al.: Post-quantum key exchange-a new
hope. In: USENIX Security Symposium 2016 (2016)

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/978-3-662-46803-6_24

Analysis of Two Countermeasures Against the Signal Leakage Attack 387

10. Bos, J., Costello, C., Ducas, L., et al.: Frodo: take off the ring! practical, quantum-
secure key exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 1006–1018. ACM (2016)

11. Alkim, E., Ducas, L., Pöppelmann, T., et al.: NewHope without reconciliation.
IACR Cryptology ePrint Archive Report 2016/1157 (2016)

12. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on rlwe for the post-quantum world. In:
Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52153-4 11

13. Ding, J., Alsayigh, S., Saraswathy, R.V., et al.: Leakage of signal function with
reused keys in RLWE key exchange. In: 2017 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2017)

14. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. (2018)
15. Gao, X., Ding, J., Li, L., et al.: Practical randomized RLWE-based key exchange

against signal leakage attack. IEEE Trans. Comput. 1, 1–1 (2018)
16. Kirkwood, D., Lackey, B.C., McVey, J., et al.: Failure is not an option: standard-

ization issues for post-quantum key agreement. In: Talk at NIST Workshop on
Cybersecurity in a Post-Quantum World, vol. 2 (2015). http://www.nist.gov/itl/
csd/ct/post-quantum-crypto-workshop-2015.cfm

17. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive Report 2016/85 (2016)

18. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

19. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 27

20. Gao, X., Ding, J., Liu, J., Li, L.: Post-quantum secure remote password protocol
from RLWE problem. In: Chen, X., Lin, D., Yung, M. (eds.) Inscrypt 2017. LNCS,
vol. 10726, pp. 99–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75160-3 8

21. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

22. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
13 (2014)

23. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

24. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

25. Gao, X., Ding, J., Li, L., et al.: Efficient Implementation of Password-Based
Authenticated Key Exchange from RLWE and Post-Quantum TLS. Cryptology
ePrint Archive, Report 2017/1192 (2017). http://eprint.iacr.org/2017/1192

https://doi.org/10.1007/978-3-319-52153-4_11
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-75160-3_8
https://doi.org/10.1007/978-3-319-75160-3_8
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-03356-8_35
http://eprint.iacr.org/2017/1192

388 K. Wang and H. Jiang

26. Saarinen, M.-J.O.: HILA5: on reliability, reconciliation, and error correction for
ring-LWE encryption. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 192–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 10

27. Ding, J., Saraswathy, R.V., Alsayigh, S., et al.: How to validate the secret of a
Ring Learning with Errors (RLWE) key. IACR Cryptology ePrint Archive, Report
2018/81 (2018)

28. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption
failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1089 (2018). https://eprint.iacr.org/2018/1089

29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

30. Bauer, A, Gilbert, H., Renault, G., Rossi, M.: Assessment of the Key-Reuse
Resilience of NewHope. Cryptology ePrint Archive, Report 2019/075 (2019).
https://eprint.iacr.org/2019/075

https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-3-319-72565-9_10
https://eprint.iacr.org/2018/1089
https://eprint.iacr.org/2019/075

Signatures

Handling Vinegar Variables to Shorten
Rainbow Key Pairs

Gustavo Zambonin(B), Matheus S. P. Bittencourt, and Ricardo Custódio

Departamento de Informática e Estat́ıstica,
Universidade Federal de Santa Catarina,

Florianópolis 88040-900, Brazil
gustavo.zambonin@posgrad.ufsc.br, matheus.spb@grad.ufsc.br,

ricardo.custodio@ufsc.br

Abstract. Multivariate quadratic equations are the basis of one of the
main mathematical techniques for the creation of digital signatures that
are quantum-resistant. In these schemes, the creation and verification
of signatures is highly efficient. However, key sizes are quite impracti-
cal and orders of magnitude greater than conventional schemes. One of
the best-known signature schemes built upon multivariate equations is
called Rainbow, which is based on the Oil-Vinegar principle. We observe
that the reuse of vinegar variables in the signature generation step of
the Rainbow scheme leads to a shorter representation of its central map,
and thus, of the entire private key. We analyse the security implica-
tions of this strategy and present a modification to the Rainbow scheme,
enabling a private key size reduction of up to 85% with secure param-
eters. Additionally, this framework can be applied on top of already
existing schemes that shorten either private or public keys, spawning
derivatives that reduce the total key pair size by a factor of 3.5.

Keywords: Multivariate cryptography · Digital signatures · Rainbow

1 Introduction

Secure exchange of messages is nowadays treated as a requirement in digital
systems, instead of a privilege. It is often mandatory that data is not altered
in transit, that its sender is uniquely identifiable and that it cannot deny hav-
ing sent the message. These notions, known as integrity, authenticity and non-
repudiation, are achieved through the use of cryptographic foundations known
as digital signatures. Data protected with such a method is adequate to prevent
forgery and ensure confidentiality, according to Goldreich [13].

Conventional digital signature schemes are predominantly bound to one
of two mathematical problems, namely integer factorisation and discrete log-
arithm. The most common examples are the RSA and ECDSA signature
schemes [12], respectively. Nonetheless, in the wake of possible quantum adver-
saries, these problems are provably solvable in polynomial time, due to Shor’s
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 391–408, 2019.
https://doi.org/10.1007/978-3-030-23696-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_20

392 G. Zambonin et al.

algorithm [26]. Ergo, the design of quantum-resistant, or post-quantum digi-
tal signature schemes, is indispensable to preserve secure communications in a
scenario with quantum computers.

The creation of post-quantum digital signatures can be achieved through
several approaches, one of which is based on systems of multivariate quadratic
equations. Due to this fact, it is named multivariate cryptography, and schemes
derived from this mathematical foundation are based on problems not known to
be more efficiently solved by quantum computers [2]. Moreover, their signature
generation and verification procedures are extremely efficient [7], since most
computations rely only on simple finite field arithmetic.

It is known that multivariate cryptography hosts distinct schemes with sev-
eral combinations of security parameters, signature and key pair lengths, as
summarised by the authors of [8]. A balanced choice lies in the Rainbow signa-
ture scheme [9], itself a generalisation of the classic Unbalanced Oil and Vinegar
(UOV) scheme [16]. It is a popular scheme, with several improvements featured
in the literature, and multiple hardware implementations, e.g. [5,27,34]. Further-
more, it is currently featured in the second round of the standardisation process
organised by the National Institute of Standards and Technology (NIST) [1].

One major drawback of multivariate cryptography, including Rainbow, is
the size of private and public keys. While conventional signature schemes have
key sizes that are a few bytes long, schemes based on multivariate equations
feature keys that are dozens of kilobytes long. Hence, it is desired to reduce these
by means of novel mathematical strategies, without decreasing the security of
the scheme. Various strategies are applied to shorten keys, such as generating
systems of equations represented by sparse matrices, or elements produced by
cyclic recurrences. However, the security implications of such modifications are
often obscure and possibly harmful.

Our Contributions. We present a general framework that can be applied to
any Rainbow-like signature scheme, with the final intent of reducing private
key sizes. It manipulates vinegar variables that are originally chosen randomly
to successfully invert the central map. These variables are now locked into the
private key, thus reducing the degree of all monomials that feature such variables,
lowering the total number of field elements used to represent it by up to a factor of
6.25. To sustain our proposal, we analyse the relation between signatures and the
choice of vinegar variables, security implications of this strategy and experiment
on known Rainbow variants. To the best of our knowledge, Rainbow variants
proposed in the literature allow the reduction of private or public keys, but not
both simultaneously. We show that our proposal allows for a shorter private
key without preventing modifications to the public key. Thus, by making use of
known proposals to reduce public keys, we create the first Rainbow variants that
reduce the total size of the key pair.

Notation. We will use the following symbols throughout this work. The symbol
$←− is read as “chosen randomly from”, and ≈ε means that two numbers are

Handling Vinegar Variables to Shorten Rainbow Key Pairs 393

equal within a precision of ε. A finite field F with order q and elements as vectors
of length n is represented as Fn

q , with q and n omitted for brevity if appropriate.
The cardinality of a set S is given by |S|. This notation may also be used as
the absolute value of an integer, if applicable. The usual function composition is
given by the symbol ◦, and the inverse of a function f is given by f−1. The usual
standard deviation and mean functions for a set of elements S are respectively
given by σ(S) and μ(S).

Organisation. The next sections are organised as follows. Section 2 succinctly
describes the theoretical background needed to assimilate our proposal, with a
definition of the Rainbow signature scheme in Subsect. 2.1 and a review of works
that already reduce keys for this scheme in Subsect. 2.2. Section 3 presents the
rationale for our proposal and a formal description, alongside a security analysis.
Section 4 shows the impact of our proposal when applied to the original Rainbow
and variants. Finally, Sect. 5 offers our final considerations.

2 Preliminaries

2.1 Original Rainbow Signature Scheme

We will present below a description of the Rainbow signature scheme, a gener-
alised version of the UOV scheme that reduces the length of keys and signatures.
It consists of several “oil and vinegar” layers, that are combined to create a “rain-
bow”. Consider a finite field Fq and u, n ∈ N where u ≤ n. Choose a sequence
of integers v1, . . . , vu such that 0 = v0 < v1 < · · · < vu < vu+1 = n. Take the
usual set V = {1, . . . , n} and define the vinegar variables as Vl = {1, . . . , vl} for
all l ∈ {1, . . . , u}. Observe that vl = |Vl| and V1 ⊂ · · · ⊂ Vu = V . Oil variables
are given by Ol = {vl + 1, . . . , vl+1}. Note that ol = |Ol| and Ol = Vl+1 − Vl.
Let m = n− v1. Now, we define vector spaces spanned by quadratic Oil-Vinegar
polynomials of the form

Pl =
∑

i,j∈Vl

αij · xi · xj +
∑

i∈Vl,j∈Ol

βij · xi · xj +
∑

i∈Vl∪Ol

γi · xi + δ. (1)

Key Generation. The central map of Rainbow is defined as F : Fn −→ F
m,

with the following construction: for each layer l, Fl = (F 1
l , . . . , F ol

l) $←− Pl, and
F = (F1, . . . , Fl). Since each sequence of vinegar variables in a layer contains
all variables from the previous layer, this allows for the inversion of this map.
Further, let S : Fm −→ F

m and T : Fn −→ F
n be two affine invertible maps,

used as the trapdoor to this construction. Let P : Fn −→ F
m as P = S ◦ F ◦ T .

Coefficients αij , βij , γi, δ ∈ F are chosen randomly. The private key is the triple
(S,F , T) and the public key is the map P.

394 G. Zambonin et al.

Signature Generation. To sign a message M , consider a cryptographic hash
function H : {0, 1}∗ −→ F

m, and obtain the message digest d = H(M). The
signature will be the set of variables which yield the solution to the equation
P(x1, . . . , xn) = d. Compute x = S−1(d). To generate y = F−1(x), every layer
must be inverted recursively. Start by randomly choosing values for x1, . . . , xv1

and inserting them into the first layer. This will bring forth a system of o1 linear
equations in xv1+1, . . . , xv2 . It can be solved with an algorithm such as Gaussian
elimination. If the system does not have a solution, new vinegar variables have
to be chosen. These solutions can then be substituted into the next layer, which
will create a system of o2 linear equations, that can be solved analogously. This
procedure is repeated until all layers are solved. Finally, we compute σ = T −1(y).

Signature Verification. To verify a signature, compute d′ = P(σ). If d = d′,
then the signature is valid, and invalid otherwise.

Finally, denote an instance of the scheme by Rainbow (Fq, v1, o1, . . . , ou).
Note that when u = 1, we get the UOV scheme. Measured in field elements, the
size of a private key is

|KPr| = m2 + m + n2 + n +
u∑

k=1

ok ·
(

vk · (vk + 1)
2

+ vk · ok + vk+1 + 1
)

, (2)

whereas the size of a public key is

|KPu| = m · (n + 1) · (n + 2)
2

. (3)

Further details on the construction of Rainbow may be found on [7, Section 3.3].

2.2 Related Works

Schemes based on multivariate cryptography with modifications that enable the
reduction of private key sizes have been suggested even before Rainbow was
created. Tame transformation schemes, such as the ones listed by Wolf and
Preneel in [29], feature sparseness in their maps, a common strategy used to
shorten private keys. However, these schemes were either broken, as summarised
by the authors in [10], or in the case of Enhanced TTS, new parameters were
suggested, and it was subsequently found to be a special case of Rainbow [28].

Additionally, there have been several published variations of Rainbow with the
same goal, making use of distinct approaches. A scheme called Lite-Rainbow-0 [25]
makes use of a small pseudorandom number generator (PRNG) seed to replace the
private key entirely. This shortens the private key by a factor of approximately
99.8%, but greatly increases the cost for signature generation. NC-Rainbow was
proposed in [31] with a novel strategy based in non-commutative rings to reduce
a private key by up to 75%. However, it was shown by independent researchers to
be insecure [14,28]. Other variants called MB-Rainbow [30] and NT-Rainbow [33]
employ sparseness of maps to reduce the number of terms in the private key by
up to 40%.

Handling Vinegar Variables to Shorten Rainbow Key Pairs 395

The authors merged MB- and NC-Rainbow into a single scheme called MNT-
Rainbow [32], shortening private keys by up to 76%. Nevertheless, the original
schemes were deemed insecure and new parameters were suggested in [18]. It
also proposes a new scheme called Circulant Rainbow, which reduces the private
key by up to 45% due to the concept of rotating relations. Yet, it was broken
shortly after [15].

It is also relevant to cite the approach by the authors of [21], which is, to
the best of our knowledge, the main method for public key reduction with-
out compromises to the signature size. It is summarised in several publications
[20,22,24]. However, these cannot be combined with the private key improve-
ments previously cited. Furthermore, it appears that the introduction of struc-
tures in the private key is highly threatening to the overall security of a Rainbow
scheme. We will subsequently present a novel approach to these issues.

3 Our Proposal

We will describe our improvement to Rainbow-like signature schemes below, as
well as supporting research on its soundness. Subsections 3.1 and 3.2 give a
formal description of our modifications. In Subsect. 3.3, we look into the proba-
bility of matrices with elements in finite fields being invertible. In Subsect. 3.4,
we present a statistical analysis of the structure of signatures created by our
method, and finish with a security overview in Subsect. 3.5.

3.1 Modification to the Original Scheme

Our approach consists of modifications to the key and signature generation steps
of Rainbow-like signature schemes. We propose to reuse the first set of vinegar
variables for several signatures and replace these only when necessary, i.e. situ-
ations where the central map cannot be inverted and creating a signature would
fail. By locking such variables and substituting them on the central map F early
in the key generation algorithm, we create a F ′ linear in v1, thus reducing stor-
age requirements. This approach does not modify the underlying structure of
the private key, but rather of the central map preimages.

To induce lower storage requirements for key pairs of Rainbow-like schemes,
we explore constructions given in the literature and suggest general alterations
to use our proposal. As per Subsect. 2.2, most variants that shorten private keys
are structural in nature, that is, the key space is limited by some heuristic with
the intent of producing a compact private key. Moreover, the main approach to
reduce public keys [19] prevents alterations to the private key, since it indirectly
generates F from a partial public key through linear relations between the maps.

This division of improvements is blurred by our proposal. We present general
methods based on different techniques that shorten private keys in all Rainbow-
like schemes. We collectively denote these by Rainbow-η and use the same
definitions as in Subsect. 2.1, further denoting the vinegar variables for the first
layer as Ṽ1 = (x1, . . . , xv1).

396 G. Zambonin et al.

Rainbow-η1 Key Generation. We use the fact that a PRNG has the ability
to regenerate the same sequence of numbers given a seed. The choice of such a
generator is outside the scope of our work, and we assume that a cryptograph-
ically secure PRNG is chosen. This approach is similar to Lite-Rainbow-0, but
it is not as costly, since the private key does not need to be regenerated before
every signature generation. It is best suited to environments in which an efficient
generator is previously supplied.

We bound the creation of the key pair to a seed S. We are not aware of any
Rainbow variants that disallow this practice. Thus, S, F and T , as well as the
public key P = S◦F ◦T are generated through the target scheme key generation
algorithm, seeded by S. We set Ṽ1

$←− F, and substitute these into F , giving F ′.
According to Subsect. 3.3, in the rare case that a failure occurs in the central
map inversion algorithm, we use S to regenerate F , choose other values for Ṽ1

and create a different F ′. The private key of Rainbow-η1 is (S,S,F ′, T) and the
public key is P.

Rainbow-η2 Key Generation. This approach is based on the fact that a
private key owner is able to recover the original F through the possession of
all other private maps and the public key. We make use of the linear relations
given by the authors of [21] and applied in the definition of the well-known
CyclicRainbow scheme. A short explanation is given below, with the full rationale
available in [19, Chapter 7].

Consider the public key P = S ◦ F ◦ T and let Q = F ◦ T . Denote Q̃ as
a matrix containing only coefficients of the quadratic monomials from Q, and
define F̃ and P̃ similarly. Further let T̃ be the matrix representation of T , with
its coefficients tij , i, j ∈ {1, . . . , n}, and define S̃ analogously. By fixing tij , the
composition of P actually represents a linear relation between coefficients qk

ij , f
k
ij

of the monomial xi · xj in the k-th component of, respectively, Q and F , with
the form

qk
ij =

n∑

r=1

n∑

s=r

αrs
ij · fk

rs, αrs
ij =

{
tri · tsi if i = j,

tri · tsj + trj · tsi otherwise,

k ∈ {v1 + 1, . . . , n}.

(4)

This can be simplified, since F does not allow quadratic monomials with only
oil variables, and results in

qk
ij =

vl∑

r=1

vl+1∑

s=r

αrs
ij · fk

rs, k ∈ Ol, l ∈ {1, . . . , u}. (5)

A square matrix of order n2+n
2 is created to further streamline the previous

equations. Given a particular monomial ordering, let A = (αrs
ij) such that

i, j, r, s ∈ {1, . . . , n}, where i ≤ j and r ≤ s denote row and column indices,
respectively. Thus, we have that P̃ = S̃ · Q̃ and Q̃ = F̃ · AT. We note that the
performance of this method is lower than that of Rainbow-η1. However, it is a
general technique that works on all Rainbow-like schemes.

Handling Vinegar Variables to Shorten Rainbow Key Pairs 397

Observe that the central map may not feature any linear or constant terms,
due to the use of the above relations. This does not lower the overall security of
the scheme, due to the fact that they are not multiplied with quadratic terms.
With this implication in mind, the usual key generation algorithm for the target
scheme is employed, yielding (S,F , T) and P at a marginally faster rate. Substi-

tute the sequence Ṽ1
$←− F into F , giving F ′. By the relations above, one is able

to reconstruct F with no additional mechanisms if the central map inversion
algorithm fails. The private key of Rainbow-η2 is (S,F ′, T) and the public key
is P.

Signature Generation. A digest d = H(M) from a message M is signed with
a similar procedure. Compute x = S−1(d), and attempt to generate y = F ′−1(x)
by inverting every layer recursively. The first layer already has Ṽ1 set, and the
remaining linear system needs only to be solved by providing appropriate values
of d. It will generate a new set of vinegar variables, that can be used on the next
layer, until all layers are solved. If any of the transitory systems are not solvable,
a new Ṽ1 is chosen and F ′ regenerated, according to one of the methods given
above. We finish by computing σ = T −1(y).

Signature Verification. This step does not change. If d = P(σ), then the
signature is valid, and invalid otherwise.

By making the first layer linear and substituting the remaining variables, the
size of the private key is now

|Kη
Pr| = m2 + m + n2 + n + |Ṽ1|

+
u∑

k=1

ok ·
(

(vk − v1)(vk − v1 + 1)
2

+ (vk − v1) · ok + (vk+1 − v1) + 1
)

,

(6)

plus the additional size of S if the Rainbow-η1 method is used. One needs to store
Ṽ1, since it is part of the central map preimage, used on further map applications.
The public key size does not change.

3.2 Application to the EF-CMA Variant

The Rainbow submission to the NIST standardisation process [6] presents a
scheme description that diverges from the original works. The authors introduce
modifications that provide security against the existential forgery under chosen-
message attack (EF-CMA) model, whereas the original scheme only offers secu-
rity against universal forgery. These changes are built upon the introduction of
a random salt. We will briefly describe this approach, with the intent of prevent-
ing the recalculation of F ′ in the case that Ṽ1 is not suitable. Let us denote this
method as Rainbow-η3.

398 G. Zambonin et al.

Key Generation. Consider w ∈ N as the length of the aforementioned salt.
Generate private and public keys as per Subsect. 3.1. The private key for this
scheme is (S,F ′, T , w), with the addition of S in the case of Rainbow-η1. The
public key is (P, w).

Signature Generation. Let r
$←− {0, 1}w. The digest value is calculated as

d = H(H(M) || r), where M is the message. The value x = S−1(d) is obtained
as usual. In the rare case that the y = F ′−1(x) preimage calculation does not
succeed, new variables in Ṽ1 are chosen. However, the addition of a random salt
to the original message digest alters d completely, due to the cryptographic hash
function application. Thus, it is only necessary to generate a new r and restart
the signature generation process, such that Ṽ1, and consequently F ′, are not
modified. Alternatively, if the preimage is generated successfully, we finish by
letting z = T −1(y) and σ = (z, r).

Signature Verification. Recalculate the digest value d. If d = P(z), the
signature is valid, and invalid otherwise.

The size of the private and public keys increase in exactly one element due
to the addition of w. Real implementations of Rainbow-η3 are tested on Sect. 4.

3.3 Invertibility of F
Recall that, to create a Rainbow signature, the central map F needs to be
inverted. Random guessing of vinegar variables is done in order to create a
solvable linear system. It is also known that the central map is expressed as
multivariate systems of equations, which can be themselves interpreted as mul-
tidimensional matrices of coefficients. Observe that, to describe these in a clearer
way, a given monomial ordering is used such that only usual matrices are needed.
With this in mind, we first derive the probability that a random matrix with
elements in F is invertible.

Assume a square matrix M of order n such that mij ∈ Fq, i, j ∈ {1, . . . , n}.
For M to be invertible, it must be composed entirely of vectors, i.e. its rows
mi ∈ F

n, that are linearly independent. The zero vector (0, . . . , 0) ∈ F
n is

linearly dependent of all other vectors. Thus, m1 	= (0, . . . , 0), with all other
qn − 1 possible vectors eligible. m2 must not feature any of the q multiples of
m1, and qn−q vectors remain. Without loss of generality, mk 	= c1v1+c2v2+· · ·+
ck−1vk−1, ck ∈ F, and qn − qk−1 vectors can be selected. Then, the probability
that all vectors chosen are linearly independent is

Π (q ,n) =
n∏

k=1

qn − qk−1

q−n

=
n∏

k=1

1 − q−k.

(7)

Handling Vinegar Variables to Shorten Rainbow Key Pairs 399

In the context of Rainbow, the number of layers directly influences Π (q, n),
since it dictates how many linear systems have to be solved. In other words,
all square matrices of size vi, i ∈ {1, . . . , u} need to be invertible to achieve a
preimage under F . Thus, the probability

Π (q, n, u) =
u∏

i=1

vi+1∏

k=1

1 − q−k (8)

more accurately represents the upper bound for these chances. In the literature,
the usual number of layers for a Rainbow instance is two, and we will denote this
common case as Π (q, n, 2) = Π̃ (q, n). Note that Π (q, n, 1) = Π (q, n). Hence,
schemes with more layers have a slightly lower probability of success in the
signature generation preimage step.

Fig. 1. Probability of obtaining an invertible matrix, populated with field elements
where q ∈ {2, . . . 256} and q is a prime power, given the quantity of layers of Rainbow.

Parameters for Rainbow are selected according to a number of restrictions,
imposed by attacks that may harm the security of the scheme. Furthermore, note
that the central map can be represented as square matrices of order n. Hence,
we choose n ∈ {56, . . . , 90} from [19, Tables 6.4, 6.8, 6.13] and calculate the
probability that a random matrix is invertible in finite fields of typical orders. For
instance, Π (16, 90) ≈ 93.3594% and Π (256, 56) ≈ 99.6078%. Figure 1 depicts the
lowest probabilities computed for the appropriate range. To simulate layering,
we set vi = i ·
n

u� and approximate to n when needed.
It is also useful to calculate limn→∞ Π (q, n) to observe changes in the prob-

ability with the growth of m. Note that this is very similar to the Euler function
φ(q). Ergo, we can use one of Euler’s identities to redefine the above limit as

Π (q) =
∞∑

k=−∞
(−1)k

q
−3·k2+k

2 (9)

400 G. Zambonin et al.

and obtain a fast approximation of the probability when n tends to infinity.
We use the SageMath language arbitrary precision real numbers to obtain these
values and find out that, when n ≥ 56, Π (q) ≈10−18 Π (q, n) and Π̃ (q) ≈10−8

Π̃ (q, n). Thus, Fig. 1 also accurately reflects the behaviour of Π (q), i.e., current
values of n already reach effective upper bounds for this probability.

If we consider that the two-dimensional coefficient matrix of F has an effec-
tive size of n2+n

2 due to the aforementioned monomial ordering strategy, we note
that the inversion event happens almost surely. This evidence shows that com-
puting a preimage in order to sign a message happens at the first try with high
probability in a wide range of Rainbow configurations. Therefore, the cost of
a central map reconfiguration, in the case that chosen vinegar variables do not
lead to an invertible central map, is amortised by the overwhelming probability
that a signature is successfully generated.

3.4 Similarity of Multiple Signatures

Vinegar variables chosen to invert the central map are an integral part of the
preimage y = F−1(x). For instance, in the case u = 2, these make roughly a
third of the output, considering common parameters for Rainbow. Further, recall
that there are approximately qv possibilities for y. Our proposal eliminates this
choice by locking vinegar variables into the private key. Hence, it is essential
to know if such variables create patterns in which private information may leak
through a multi-target attack. We use the SageMath PRNG, which implements
a front-end to the /dev/urandom Linux kernel space generator.

Recall that a message digest d is signed instead of the entire document.
Evidently, a secure cryptographic hash function shall produce an output that
appears to be random. The application x = S−1(d) does not affect this
behaviour, since the map is also random. Hence, we need not simulate this cal-
culation in this analysis. According to Subsect. 3.3, the inversion y = F−1(x)
creates a valid preimage with overwhelming probability, where the first v1 ele-
ments of any y will be the same.

We observe the distribution of field elements in vectors after the final function
application, that is, z = T −1(y). Let Z ′

t = (z1, . . . , zt)
$←− F

n, t ∈ N be a t-uple
of “signatures”. We build the sequence Zt = (z11 , z

2
1 , . . . , z

n
1 , z12 , . . . , z

n−1
t , zn

t).
When part of the vector y is fixed, we will instead denote these by Z̃ ′

t and Z̃t.
Our hypothesis is that Zt and Z̃t will behave similarly to observations sampled
from the discrete uniform distribution U{0, q − 1}. It is known that its standard
deviation, where r values are observed in an equally likely manner, is equal to√

r2−1
12 . For a finite field F, we set r = q and obtain the desired value. It is

expected that

lim
t→∞ σ(Z̃t) =

√
q2 − 1

12
, (10)

suggesting that greater values of n and t approximate faster to the theorised
standard deviation.

Handling Vinegar Variables to Shorten Rainbow Key Pairs 401

Fig. 2. Difference of standard deviations when t ∈ {1, . . . , 1024}, and q ∈ {2, . . . , 256}
with q as a prime power.

Let us denote the absolute difference between standard deviations for a value
t as dt

σ = |σ(Zt)−σ(Z̃t)|. Figure 2 shows the amplitude of such values for various
values of q and t. We note that the largest values of dt

σ occur for finite fields
of higher orders and lower t. For instance, given the finite field F

42
223, we have

d1σ ≈ 8.25, and for a slightly higher t, we obtain a much lower value d11σ ≈ 0.24.
This behaviour is also observed within absolute differences of means, defined
analogously as dt

μ. The field F
42
191 gives the values d1μ ≈ 5.31 and, comparatively,

d9μ ≈ 1.14.
The comparison of expected and obtained standard deviations and means in

our experiments, gives positive results and confirms the law of large numbers.
Still, it is interesting to look at the diffusion of values within Z̃t and infer that it
does not simply simulate the mean and standard deviation for a known discrete
uniform. We count the amount of values for each class k ∈ {0, . . . , q − 1} and
refer to them by Zt,k and Z̃t,k. By the central limit theorem, these counts should
be normally distributed.

Figure 3 shows the cumulative distribution function (CDF) plot and the Q-Q
(quantile-quantile) plot for such samples. The expected CDF, as well as examples
for Zt and Z̃t, show that all values are fairly distributed, with small variations
due to the random generation of field elements. However, we note that this is due
to the low number of classes, i.e. the order of the finite field, and experimentally
confirm that such discrepancies are largely reduced with q = 210. This is further
confirmed by the Q-Q plot created with rankits, where the points are sufficiently
close to the y = x expected line.

Our argument indicates that, even if part of the preimage created by the
central map is fixed, the remaining affine map application disrupts this pattern
with high efficacy. Hence, an attacker with possession of multiple signatures
created by our method would not be more capable of forging a new signature or
deducing private information.

402 G. Zambonin et al.

Fig. 3. Distribution of counts of elements in Zt and ˜Zt such that t = 216 for F
90
256.

3.5 Security Analysis

A variety of attacks currently thwart the security of Rainbow-like signature
schemes if parameters are not chosen carefully. We will briefly state each of
those, along with their estimated complexities [23], and argue that our methods
do not facilitate such attacks.

Direct Attack. An attacker with possession of a digest d and the public key P
tries to solve P(x) = d. This is done by fixing some of the variables and apply-
ing an algorithm built upon the theory of Gröbner basis, such as the Hybrid
approach [3]. While it is hard to pinpoint the exact running time of such meth-
ods, the authors give an estimation of its asymptotic complexity in Eq. 5 of the
aforementioned work.

UOV Attack. The multi-layer approach of Rainbow does not hinder attacks
that also work on the UOV signature scheme. This attack was originally cre-
ated by Kipnis and Shamir [17] to break the Balanced Oil-Vinegar scheme.
The objective of this attack is to obtain an equivalent private key by means
of finding the preimage of a specific oil subspace under the map T . The com-
plexity of the generalised attack for unbalanced schemes [16] is o4u ·qn−1−2·ou field
multiplications.

MinRank Attack. All systems of polynomials in the public key P may be
individually represented as matrices. This attack consists in finding linear com-
binations of these, such that they have a lesser rank than v2, in the case of Rain-
bow. This allows an attacker to isolate the central map polynomials from the
first layer of Rainbow, and analogously recover the remaining layers with a much
lower effort. In the context of Rainbow [4], its complexity is qv1+1 ·m · (n2

2 − m2

6)
field multiplications.

Handling Vinegar Variables to Shorten Rainbow Key Pairs 403

HighRank Attack. In a similar way to MinRank, linear combinations of public
key matrices are used to find the variables which appear the lowest number of
times in the central map. This is used to identify the last Rainbow layer, and
obtain the previous layers similarly. The complexity of the improved attack [11]
is qou · n3

6 field multiplications.

Rainbow-Band-Separation Attack. An extension of the UOV-
Reconciliation attack by the same authors [11] that targets Rainbow, with the
intent of producing an equivalent private key. It explores the fact that the cen-
tral map matrix representation is composed of zeroes on its lower right corner.
These yield quadratic equations which, if solved, lead to an alternative private
key. The complexity of this attack is given by the hardness of solving a large
system of equations, as seen above, is hard to estimate.

Side-Channel Attacks. It may be observed that none of the proposed Rain-
bow variants, as well as the original scheme, present constant time signature
generation algorithms. Particularly, in Rainbow-η2, a considerable amount of
computation is added to the signature algorithm when one of the systems is
not solvable. In a chosen message attack, one may observe the time spent on
multiple signature generation steps and easily check if the linear systems are
solvable, thus obtaining information about the central map. Although there are
no known attacks that make use of this technique, it is possible that there may
exist information leaks when applying our methods to Rainbow-like schemes.

We do not discard the possibility that specialised attacks exist, particularly
ones that take in account multiple signatures, due to our fixing of vinegar vari-
ables. However, we have seen in Subsect. 3.4 that signatures generated by our
method are comparably random with respect to conventional Rainbow signa-
tures. Furthermore, we note that most attacks look for special structures within
the private key. While our methods indeed modify the private key representa-
tion, it is still present in its entirety on the public key composition, which is
the only information available to malicious entities that can be possibly used to
forge signatures. We thus suggest that the right choice of parameters is made
whenever our methods are applied, e.g. according to [23], to protect the scheme
instance against these attacks.

4 Enhancement of Existing Schemes

Our method does not depend on special structures inserted on the private key.
Consequently, it can be applied to all known Rainbow-like schemes. We experi-
ment with several sets of parameters and observe the reduction of private keys.
It is known that there are various limitations for the choice of parameters that
lead to secure instances of Rainbow [23]. We implement several known guidelines
and confirm that our proposal does indeed work for a large range of parame-
ters. However, we only show results for known secure parameter sets to prevent
accidental endorsement of untested, and possibly insecure, instances.

404 G. Zambonin et al.

Table 1. Reduction of Rainbow key sizes, in bytes, for various instances of the scheme.

Instance Parameters n m |KPr| |Kη
Pr| Difference

I-a (F16, 32, 32, 32) 96 64 100208 33152 −66.92%

I-b (F31, 36, 28, 28) 92 56 114308 31676 −72.29%

I-c (F256, 40, 24, 24) 88 48 143384 33024 −76.97%

III-b (F31, 64, 32, 48) 144 80 409463 87628 −78.60%

III-c (F256, 68, 36, 36) 140 72 537780 99656 −81.47%

IV-a (F16, 56, 48, 48) 152 96 376140 103336 −72.53%

V-c (F256, 92, 48, 48) 188 96 1274316 218984 −82.82%

VI-a (F16, 76, 64, 64) 204 128 892078 233044 −73.88%

VI-b (F31, 84, 56, 56) 196 112 1016868 217244 −78.64%

P-080 (F256, 17, 17, 9) 43 26 19208 5914 −69.21%

P-100 (F256, 26, 22, 21) 69 43 75440 23193 −69.26%

P-128 (F256, 36, 28, 15) 79 43 103704 22110 −78.68%

P-192 (F256, 63, 46, 22) 131 68 440638 71773 −83.71%

P-256 (F256, 85, 63, 30) 178 93 1086971 164721 −84.85%

We show results for the application of our method in Table 1, considering the
following Rainbow instances. Conservative choices were made by the Rainbow
submission authors [6] to fit security categories as requested by NIST. We apply
our method to these recent proposals, and additionally choose parameters from
Petzoldt [19, Table 6.12] for further comparison. The latter are named P-
, where

 is the security level in bits. Indeed, the choice of v1 remarkably affects the
results. Moreover, a minimal value of ou is also known to further reduce the
private key size. Indeed, we suggest that v1 ≥ ou as much as possible to maximise
the results of our method. However, we remark that one must set sufficient
parameters for oi such that the scheme still resists direct and UOV attacks.

The case of Rainbow variants is slightly more convoluted. Schemes claim
optimisations of the private key often through the inclusion of inner structuring.
To measure the impact of our method within the context of these schemes, it is
imperative to understand such structures. For instance, it may be the case that
a method introduces sparseness related to specific vinegar variables. Thus, the
reduction would not be equally distributed over the private key elements and,
as such, our method would have its efficiency reduced.

To the best of our knowledge, the schemes presented in Subsect. 2.2 feature
changes that target the whole private key evenly. Hence, our method would yield
similar results to those in Table 1 if this assumption is true. However, it is also
the case that some variants were subsequently broken or new parameters were
suggested. We will thus consider only schemes that reduce the public key size,
i.e. CyclicRainbow [22] and RainbowLRS2 [19, Section 9.2].

Handling Vinegar Variables to Shorten Rainbow Key Pairs 405

Table 2. Total reduction of Rainbow key pairs, in bytes, for variants of the scheme.

Instance Parameters Variant |KPr| |Kη
Pr| |KPu| Difference

P-080 (F256, 17, 13, 13) Classic 19546 6524 25740 −28.76%

Cyclic 10618 −62.15%

LRS2 9789 −63.98%

P-100 (F256, 26, 16, 17) Classic 46131 12474 60390 −31.60%

Cyclic 22246 −67.41%

LRS2 20662 −68.89%

P-128 (F256, 36, 21, 22) Classic 105006 24924 139320 −32.78%

Cyclic 48411 −69.98%

LRS2 45547 −71.16%

We compare the total key pair sizes |KPr| + |KPu| when our method is used
alongside Rainbow variants that reduce the public key size. Table 2 shows the
quantity of field elements for sets of parameters from Petzoldt [19, Table 9.8]. We
calculate |KPu| for the variants according to Eqs. 9.2 and 9.4 of the same work,
and as per its Remark 9.1, note that q = 16 and q = 31 are not considered due
to a security restriction of RainbowLRS2. We obtain positive results, with key
pair size reductions of up to factors of 3 and no security harm to the resulting
scheme.

The use of CyclicRainbow or RainbowLRS2 with the Rainbow-η2 method
is recommended. These variants are based on the linear relations described in
Subsect. 3.1, and resulting implementations may be effortlessly modified to use
our proposal. Moreover, in the case that higher parameters are needed, e.g.
a security level of 256 bits, we note that the key pair will be reduced more
aggressively. Thus, our results reflect changes over a wide variety of platforms
and possible Rainbow deployments that benefit from lower storage requirements.

We also briefly discuss the effect of these changes on the signature generation
step overall performance. In the case of Rainbow-η1, it does not vary greatly
due to the fast regeneration of the central map elements from a given PRNG
and S. On the other hand, Rainbow-η2 uses elaborate techniques to reconstruct
the central map if vinegar variables are not suitable. This process is not without
cost, and it may negatively affect the average signature generation time. Still, by
making use of Rainbow-η3, these computations are entirely avoided by choosing
a new salt instead of new vinegar variables, reducing the inherent overhead.

5 Conclusion

Throughout this work, we have proposed general methods to lower private key
sizes that can be applied to all known Rainbow variants. We suggest fixing
the first sequence of vinegar variables and reuse it on the creation of signa-
tures, reducing the static central map storage requirements, and thus obtaining

406 G. Zambonin et al.

a smaller private key. Our security analysis shows that this modification creates
orderly signatures and does not harm the target scheme. Furthermore, we have
also addressed the problem in which no scheme could reduce both keys in the
key pair, by applying our proposal to known variants that reduce the public key
size. We obtain gains of up to 85% on the private key size and 71% on the total
key pair size.

We propose some topics to extend this work. Evidently, it is crucial for the
security of our proposal that multiple signatures do not leak information for
the chosen vinegar variables. Thus, we point out that further security analysis
on multi-target and side-channel attacks is desirable. We also observe that our
methods directly affect the signature generation performance, since the first layer
computations are moved to the key generation step. As such, we suggest that
measurements are made considering the average time for signature generation,
in the case that the private key has to be recomputed due to a new choice of
vinegar variables.

Acknowledgements. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. Addi-
tionally, we thank the anonymous referees for their suggestions.

References

1. Alagic, G., et al.: Status Report on the First Round of the NIST Post-Quantum
Cryptography Standardization Process. Internal Report 8240, National Institute of
Standards and Technology (NIST), January 2019. https://doi.org/10.6028/NIST.
IR.8240

2. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography, 1st edn.
Springer, Heidelberg (2008)

3. Bettale, L., Faugére, J.C., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: Proceedings of the 37th Interna-
tional Symposium on Symbolic and Algebraic Computation, pp. 67–74, July 2012.
https://doi.org/10.1145/2442829.2442843

4. Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006). https://doi.
org/10.1007/11832072 23

5. Czypek, W.: Implementing Multivariate Quadratic Public Key Signature Schemes
on Embedded Devices. Master’s thesis, Ruhr-Universität Bochum, April 2012

6. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow - Algorithm
Specification and Documentation. Round 1 Submission, NIST Post-Quantum
Cryptography Standardisation Process, December 2017

7. Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptosystems, 1st edn.
Springer, Boston (2006). https://doi.org/10.1007/978-0-387-36946-4

8. Ding, J., Petzoldt, A.: Current state of multivariate cryptography. IEEE Secur.
Priv. 15(4), 28–36 (2017). https://doi.org/10.1109/MSP.2017.3151328

9. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.1145/2442829.2442843
https://doi.org/10.1007/11832072_23
https://doi.org/10.1007/11832072_23
https://doi.org/10.1007/978-0-387-36946-4
https://doi.org/10.1109/MSP.2017.3151328
https://doi.org/10.1007/11496137_12

Handling Vinegar Variables to Shorten Rainbow Key Pairs 407

10. Ding, J., Schmidt, D., Yin, Z.: Cryptanalysis of the new TTS scheme in CHES
2004. Int. J. Inf. Secur. 5(4), 231–240 (2006). https://doi.org/10.1007/s10207-006-
0003-9

11. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0 15

12. von zur Gathen, J.: CryptoSchool, 1st edn. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48425-8

13. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, 1st
edn. Cambridge University Press (2004)

14. Hashimoto, Y.: Cryptanalysis of the quaternion rainbow. In: Sakiyama, K., Terada,
M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 244–257. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41383-4 16

15. Hashimoto, Y.: On the security of Circulant UOV/Rainbow. Cryptology ePrint
Archive, Report 2018/847, October 2018. https://eprint.iacr.org/2018/947

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

17. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

18. Peng, Z., Tang, S.: Circulant rainbow: a new rainbow variant with shorter private
key and faster signature generation. IEEE Access 5, 11877–11886 (2017). https://
doi.org/10.1109/ACCESS.2017.2717279

19. Petzoldt, A.: Selecting and Reducing Key Sizes for Multivariate Cryptography.
Ph.D. thesis, Technische Universität Darmstadt, July 2013

20. Petzoldt, A., Bulygin, S.: Linear recurring sequences for the UOV key genera-
tion revisited. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 441–455. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37682-5 31

21. Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate signature scheme with a
partially cyclic public key. In: Faugëre, J.C., Cid, C. (eds.) International Conference
on Symbolic Computation and Cryptography, pp. 229–235, June 2010

22. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signa-
ture scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 4

23. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow
signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp.
218–240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-
2 16

24. Petzoldt, A., Bulygin, S., Buchmann, J.: Linear recurring sequences for the UOV
key generation. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 335–350. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 21

25. Shim, K.-A., Park, C.-M., Baek, Y.-J.: Lite-Rainbow: lightweight signature schemes
based on multivariate quadratic equations and their secure implementations. In:
Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 45–63.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6 3

https://doi.org/10.1007/s10207-006-0003-9
https://doi.org/10.1007/s10207-006-0003-9
https://doi.org/10.1007/978-3-540-68914-0_15
https://doi.org/10.1007/978-3-662-48425-8
https://doi.org/10.1007/978-3-662-48425-8
https://doi.org/10.1007/978-3-642-41383-4_16
https://eprint.iacr.org/2018/947
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1109/ACCESS.2017.2717279
https://doi.org/10.1109/ACCESS.2017.2717279
https://doi.org/10.1007/978-3-642-37682-5_31
https://doi.org/10.1007/978-3-642-37682-5_31
https://doi.org/10.1007/978-3-642-17401-8_4
https://doi.org/10.1007/978-3-642-12929-2_16
https://doi.org/10.1007/978-3-642-12929-2_16
https://doi.org/10.1007/978-3-642-19379-8_21
https://doi.org/10.1007/978-3-642-19379-8_21
https://doi.org/10.1007/978-3-319-26617-6_3

408 G. Zambonin et al.

26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

27. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementa-
tion of rainbow signature on FPGAs. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS,
vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25405-5 15

28. Thomae, E., Wolf, C.: Cryptanalysis of enhanced TTS, STS and all its vari-
ants, or: why cross-terms are important. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 188–202. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31410-0 12

29. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of
Multivariate Quadratic equations. Cryptology ePrint Archive, Report 2005/077,
March 2005. https://eprint.iacr.org/2005/077

30. Yasuda, T., Ding, J., Takagi, T., Sakurai, K.: A variant of rainbow with shorter
secret key and faster signature generation. In: Chen, K., Xie, Q., Qiu, W., Xu,
S., Zhao, Y. (eds.) ACM Workshop on Asia Public-Key Cryptography, pp. 57–62,
May 2013. https://doi.org/10.1145/2484389.2484401

31. Yasuda, T., Sakurai, K., Takagi, T.: Reducing the key size of rainbow using non-
commutative rings. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp.
68–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 5

32. Yasuda, T., Takagi, T., Sakurai, K.: Efficient variant of Rainbow using sparse
secret keys. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 5(3),
3–13 (2014)

33. Yasuda, T., Takagi, T., Sakurai, K.: Efficient variant of rainbow without triangular
matrix representation. In: Mahendra, M.S., Neuhold, E.J., Tjoa, M.A., You, I.
(eds.) Information and Communication Technology. LNCS, vol. 8407, pp. 532–541.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55032-4 55

34. Yi, H., Tang, S.: Very small FPGA processor for multivariate signatures. Comput.
J. 59(7), 1091–1101 (2016). https://doi.org/10.1093/comjnl/bxw008

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/978-3-642-25405-5_15
https://doi.org/10.1007/978-3-642-25405-5_15
https://doi.org/10.1007/978-3-642-31410-0_12
https://eprint.iacr.org/2005/077
https://doi.org/10.1145/2484389.2484401
https://doi.org/10.1007/978-3-642-27954-6_5
https://doi.org/10.1007/978-3-642-55032-4_55
https://doi.org/10.1093/comjnl/bxw008

Further Lower Bounds
for Structure-Preserving Signatures

in Asymmetric Bilinear Groups

Essam Ghadafi(B)

University of the West of England, Bristol, UK
essam.ghadafi@uwe.ac.uk

Abstract. Structure-Preserving Signatures (SPSs) are a useful tool for
the design of modular cryptographic protocols. Recent series of works
have shown that by limiting the message space of those schemes to the
set of Diffie-Hellman (DH) pairs, it is possible to circumvent the known
lower bounds in the Type-3 bilinear group setting thus obtaining the
shortest signatures consisting of only 2 elements from the shorter source
group. It has been shown that such a variant yields efficiency gains for
some cryptographic constructions, including attribute-based signatures
and direct anonymous attestation. Only the cases of signing a single DH
pair or a DH pair and a vector from Zp have been considered. Signing
a vector of group elements is required for various applications of SPSs,
especially if the aim is to forgo relying on heuristic assumptions.

An open question is whether such an improved lower bound also
applies to signing a vector of � > 1 messages. We answer this ques-
tion negatively for schemes existentially unforgeable under an adaptive
chosen-message attack (EUF-CMA) whereas we answer it positively for
schemes existentially unforgeable under a random-message attack (EUF-
RMA) and those which are existentially unforgeable under a combined
chosen-random-message attack (EUF-CMA-RMA). The latter notion is
a leeway between the two former notions where it allows the adversary to
adaptively choose part of the message to be signed whereas the remain-
ing part of the message is chosen uniformly at random by the signer.

Another open question is whether strongly existentially unforgeable
under an adaptive chosen-message attack (sEUF-CMA) schemes with 2-
element signatures exist. We answer this question negatively, proving it
is impossible to construct sEUF-CMA schemes with 2-element signatures
even if the signature consists of elements from both source groups. On the
other hand, we prove that sEUF-RMA and sEUF-CMA-RMA schemes
with 2-element (unilateral) signatures are possible by giving construc-
tions for those notions.

Among other things, our findings show a gap between random-
message/combined chosen-random-message security and chosen-message
security in this setting.

Keywords: Digital signatures · Bilinear groups · Structure-preserving

c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 409–428, 2019.
https://doi.org/10.1007/978-3-030-23696-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_21

410 E. Ghadafi

1 Introduction

Structure-Preserving Signatures (SPSs) [4] are signature schemes over bilinear
groups where the messages, the verification key and the signatures consist of
only group elements from either/both source groups. Verification of signatures
in those schemes only involves evaluating Pairing-Product Equations (PPEs)
and checking group memberships. Such properties make them compatible with
widely used constructs such as ElGamal encryption [22] and Groth-Sahai proofs
[37]. Hence, they are an ideal building block for designing cryptographic proto-
cols not relying on heuristic assumptions such as random oracles [25]. They have
numerous applications which include group signatures, e.g [4,41], blind signa-
tures, e.g. [4,27], attribute-based signatures, e.g. [24], tightly secure encryption,
e.g. [3,38], malleable signatures, e.g. [12], anonymous credentials, e.g. [18,26],
network coding, e.g. [12], oblivious transfer, e.g. [34], direct anonymous attesta-
tion, e.g. [15,31], and e-cash, e.g. [13].

Related Work. The notion was coined by Abe et al. [4] but earlier construc-
tions conforming to the definition were given by [34,35]. The notion has been
extensively studied. Constructions in the Type-3 setting (cf. Sect. 2.1) include
[4,5,7,20,30,32,33,36]. Abe et al. [5] proved that signatures of schemes over
Type-3 bilinear groups must contain at least 3 elements, which must include
elements from both source groups, and require at least 2 PPEs for verification.
This ruled out the existence of schemes with unilateral signatures, i.e. where all
signature’s components are from one of the source groups. Constructions rely-
ing on non-interactive assumptions were given by [2,3,9,17,19,29,39–41]. Abe
et al. [6] proved that it is impossible to base the security of an optimal Type-3
scheme (i.e. with 3-element signatures) on non-interactive intractability assump-
tions. This in essence means that schemes based on non-interactive assumptions
cannot be as efficient as their counterparts relying on interactive assumptions or
those proven secure directly in the generic group model [44,45]. More recently,
Abe et al. [1] proved lower bounds for schemes signing bilateral messages and
based on non-interactive intractability assumptions.

Ghadafi [31] gave a randomizable scheme which can only sign a single Diffie-
Hellman pair (cf. Sect. 2.1) yielding 3-element unilateral signatures and requiring
the evaluation of 2 PPEs, excluding the cost for checking the well-formedness of
the message, to verify signatures. More recently, Ghadafi [32] gave constructions
for a single Diffie-Hellman pair yielding signatures consisting of only 2 elements
from the shorter source group and requiring besides checking the well-formedness
of the message, the evaluation of a single PPE for verification. He argued that
restricting the message space to the set of Diffie-Hellman pairs does not restrict
applicability of the schemes and used direct anonymous attestation [16], which
is a protocol deployed in practice, and attribute-based signatures [42] as an
example. Even though [32] gave a partially structure-preserving scheme which
can sign a vector of field elements along the single Diffie-Hellman pair, it was
left as an open problem to investigate the case of structure-preserving signatures

Further Lower Bounds for Structure-Preserving Signatures 411

for a vector of group elements. More recently, Ghadafi [33] gave EUF-CMA
constructions for a vector of DH pairs with 2-element bilateral signatures.

Constructions in the Type-2 setting (where an efficiently computable uni-
directional homomorphism between the source groups exists) were given in
[1,8,14,20].

Fully structure-preserving schemes where even the secret key consists of only
group elements from the source groups were recently given by [10,36,47].

Motivation and Contribution. Many applications of SPSs require signing a
vector of group elements. For instance, consider the case when certifying the pub-
lic keys of encryption or signature schemes. This is, for instance, required for con-
structing various variants of anonymous signatures, including group signatures
[21], attribute-based signatures [42], proxy signatures [43], k-times anonymous
authentication [46], and direct anonymous attestation [16]. This is particularly
important when the aim is to dispense with relying on random oracles as in such
cases one cannot use standard signature schemes which hinder the structure of
the message, e.g. by hashing or requiring knowledge of their discrete logarithm.
Therefore, the design of efficient SPS schemes for a vector of messages would
have implications for various applications.

SPS schemes on Diffie-Hellman pairs have rendered themselves as a tool
to get around the known lower bounds for SPS schemes thus improving effi-
ciency without being too restrictive as they suffice for many applications of SPS
schemes. Examples of where SPS schemes on Diffie-Hellman pairs provide bet-
ter efficiency than optimal SPS schemes on unilateral messages include [23,32].
Also, as argued by [32], optimal SPS schemes on Diffie-Hellman pairs outperform
some widely used non-structure-preserving schemes in terms of efficiency.

Note that the size of the elements of one of the source groups is twice as
large as that of those from the other source group and hence having schemes
with 2-element unilateral signatures from the shorter source group is desirable. A
first intriguing open question is whether EUF-CMA SPS schemes for a vector of
group elements with 2-element unilateral signatures are possible. We answer this
question negatively by proving the impossibility of the existence of such schemes.
However, we show that EUF-RMA and EUF-CMA-RMA (cf. Sect. 2.2) schemes
are possible. The latter is a leeway between EUF-RMA and EUF-CMA where it
allows the adversary to adaptively choose some part of the message whereas the
remaining part of the message is chosen uniformly at random by the signer. While
EUF-RMA and EUF-CMA-RMA are both weaker notions than EUF-CMA since
unlike the latter, they restrict part of the message to being chosen uniformly at
random, we envisage that EUF-CMA-RMA may suffice to replace EUF-CMA
for some applications. Consider, for instance, κ-times anonymous authentication
schemes [43], where an authority provides users with κ credentials which allow
them to anonymously authenticate themselves κ times. The underlying idea for
some of the existing constructions is that the credential is a signature by the
authority on the user’s public key/ID along with a random element chosen by the
authority. EUF-CMA-RMA signature schemes may suffice to replace EUF-CMA
schemes for such applications.

412 E. Ghadafi

Another open question is whether strongly existentially unforgeable schemes
under an adaptive chosen-message attack (sEUF-CMA) with 2-element (whether
unilateral or bilateral) signatures exist. Strong unforgeability is essential for var-
ious applications, e.g. [11]. Optimal Type-3 sEUF-CMA schemes for unilateral
messages, e.g. [7,20,36], have a lower bound of 3-element bilateral signatures,
thus, investigating whether the improved lower bound that exploits a special
structure of the message also applies to strong unforgeability would have implica-
tions for various applications of SPS schemes. We prove that sEUF-CMA schemes
with 2-element signatures are not possible. This holds even if the signature is
bilateral. On the other hand, we show that sEUF-RMA and sEUF-CMA-RMA
schemes with 2-element (unilateral) signatures exist by giving constructions.

Our results highlight a gap between random-message/combined chosen-
random-message security and chosen-message security in this setting.

Paper Organization. We provide some preliminary definitions in Sect. 2. In
Sect. 3 we prove the impossibility of the existence of EUF-CMA schemes for
a vector of � > 1 messages with 2-element unilateral signatures. In Sect. 4 we
prove the impossibility of the existence of sEUF-CMA schemes with 2-element
signatures regardless of whether the signatures are unilateral or bilateral. Finally,
in Sect. 5 we construct a sEUF-CMA-RMA scheme for a vector of messages with
2-element unilateral signatures.

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. We use [k] to denote the set {1, . . . , k}.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are
groups of a prime order p, and G and H̃ generate G and H, respectively. The
function e is a non-degenerate bilinear map e : G × H −→ T. We refer to G

and H as the source groups whereas we refer to T as the target group. We use
multiplicative notation for all the groups. For clarity we will accent elements of H
with .̃ We let G× := G\{1G} and H

× := H\{1H}. We limit our attention to the
efficient Type-3 setting [28], where G �= H and there is no efficiently computable
homomorphism between the source groups in either direction. We assume there
is an algorithm BG that on input a security parameter κ, outputs a description
of bilinear groups.

Further Lower Bounds for Structure-Preserving Signatures 413

The message space of the schemes we consider is the set of elements of the
subgroup ̂GH of G × H defined as the image of the map ψ : x �−→ (Gx, H̃x) for
x ∈ Zp. One can efficiently test whether (M, Ñ) ∈ ̂GH by checking

e(M, H̃) = e(G, Ñ) ·
Such pairs were called Diffie-Hellman (DH) pairs in [4]. We stress that we do not
require that the signer knows the discrete logarithm of the message pair. In fact,
in all of our proofs/constructions we assume a signer which does not know/does
not exploit knowledge of such an exponent.

2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P): On input P, this outputs a pair of signing/verification keys (sk, vk).
Sign(sk,m): On input the secret signing key sk and a message m ∈ M, this

outputs a signature σ on m.
Verify(vk,m, σ): On input the verification key vk, a message m ∈ M and a

signature σ, this outputs 0/1 indicating the invalidity/validity of σ on m.

Definition 1 (Correctness). A signature scheme DS over a bilinear group
generator BG is (perfectly) correct if for all κ ∈ N:

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P);m ← M;σ ← Sign(sk,m)

: Verify(vk,m, σ) = 1

]

= 1.

A signature scheme is said to be existentially unforgeable if it is hard to
forge a signature on a new message that has not been signed before where the
adversary may see signatures on other messages before outputting her forgery.
We distinguish between adaptive chosen-message (EUF-CMA), random-message
(EUF-RMA) and combined chosen-random-message (EUF-CMA-RMA) variants
of existential unforgeability as defined below.

Definition 2 (EUF-CMA). A signature scheme DS over a bilinear group
generator BG is Existentially Unforgeable under an adaptive Chosen-Message
Attack if for all κ ∈ N for all PPT adversaries A, the following is negligible (in
κ):

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗,m∗) ← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]

,

where QSign is the set {mi}q
i=1 of messages queried to Sign.

Strong Existential Unforgeability under an adaptive Chosen-Message Attack
(sEUF-CMA) is defined similarly and requires that the adversary cannot even
output a new signature on a message that was queried to the sign oracle.

414 E. Ghadafi

Definition 3 (EUF-RMA). A signature scheme DS over a bilinear group gen-
erator BG is Existentially Unforgeable under a Random-Message Attack if for
all κ ∈ N for all PPT adversaries A, the following is negligible (in κ):

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗,m∗) ← ASign(sk)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]

,

where Sign uniformly samples a message m from M and returns m and a sig-
nature σ on it, and QSign is the set {mi}q

i=1 of messages returned by Sign.

Strong Existential Unforgeability under a Random-Message Attack (sEUF-
RMA) is defined similarly and requires that the adversary cannot even output
a new signature on a message that was chosen by Sign.

The following variant lies in between the two previous notions where it allows
the adversary to adaptively choose some part of the message whereas the remain-
ing part of the message is chosen uniformly at random by the sign oracle.

Definition 4 (EUF-CMA-RMA). A signature scheme DS over a bilinear
group generator BG for a message space M = MC × MR is Existentially
Unforgeable under a combined Chosen-Random-Message Attack if for all κ ∈ N

for all PPT adversaries A, the following is negligible (in κ):

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗,m∗,m′∗) ← ASign(sk,·)(P, vk)

: Verify(vk, (m∗,m′∗), σ∗) = 1 ∧ (m∗,m′∗) /∈ QSign

]

,

where when queried on a message mi ∈ MC, Sign uniformly samples a message
m′

i from MR and returns m′
i and a signature σ on (mi,m

′
i), and QSign is the set

{(mi,m
′
i)}q

i=1 containing pairs on which signatures have been generated by Sign.

Strong Existential Unforgeability under a combined Chosen-Random-Message
Attack (sEUF-CMA-RMA) requires that the adversary cannot even output a
new signature on a message pair on which she has obtained a signature from
Sign.

2.3 Structure-Preserving Signatures

Structure-preserving signatures [4] are signature schemes defined over bilinear
groups where the messages, the verification key and signatures are all group
elements from either or both source groups, and verifying signatures only involves
deciding group membership and evaluating PPEs of the form of Eq. (1).

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are public constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map e, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

Further Lower Bounds for Structure-Preserving Signatures 415

3 Impossibility of Generic-Signer EUF-CMA SPS
Schemes for a Vector of � > 1 Messages with
2-Element Unilateral Signatures

In this section we prove that generic-signer EUF-CMA SPS schemes for a vector
of � > 1 messages with 2-element unilateral signatures cannot exist. We start by
proving the following theorem which is a generalization of Lemma1 from [8] for
SPS schemes for unilateral messages.

Theorem 1. A generic-signer EUF-RMA SPS scheme for a vector of � ≥ 1
DH pairs must have for any message vector superpolynomially many potential
signatures.

Proof. Since the signer is generic, the signature σ = (R, S̃) ∈ G
n × H

ñ

on the message vector
(

(Mi, M̃i)
)�

i=1
is computed via entry-wise exponen-

tiation as σ = (R, S̃) := (Gα
∏�

i=1 M
α ′

i
i , H̃β

∏�
i=1 M̃

β ′
i)

i for some vectors
(α,α′

1, . . . ,α
′
�,β,β′

1, . . . ,β
′
�) ∈ Z

(�+1)n
p ×Z

(�+1)ñ
p . Let’s assume for contradiction

that there is a scheme which has a polynomial number of potential signatures.
This means there is a polynomial set {(αi,α

′
i,1, . . . ,α

′
i,�,βi,β

′
i,1, . . . ,β

′
i,�)}poly(κ)i=1

for some polynomial ploy corresponding to the list of potential signatures.
Now given signatures σ1 = (R1, S̃1) and σ2 = (R2, S̃2) on random DH
message vectors (M1,M̃1) and (M2,M̃2), respectively, we have with prob-
ability 1

poly(κ)2 that those signatures were constructed using the same vec-
tor

(

αi,α
′
i,1, . . . ,α

′
i,�,βi,β

′
i,1, . . . ,β

′
i,�

)

for some i ∈ [ploy(κ)]. Thus, we have

σ∗ = (R∗, S̃
∗
) = (R1−γ

1 Rγ
2 , S̃

1−γ

1 S̃
γ

2) is a valid forgery on the message vec-
tor

(

M1−γ
1 Mγ

2 ,M̃
1−γ

1 M̃
γ

2

)

for any γ ← Z
×
p . This means such a scheme is not

EUF-RMA secure against an adversary which makes 2 (non-adaptive) signing
queries. 	

We now proceed to proving the impossibility of the existence of generic-
signer EUF-CMA (against q > 1 sign queries) SPS schemes for a vector of � > 1
messages with 2-element unilateral signatures. We prove that such schemes even
for the simpler case where � = 2 cannot exist.

Theorem 2. There is no generic-signer EUF-CMA (against q > 1 sign queries)
SPS schemes for a vector of 2 DH pairs with 2-element unilateral signatures.

Proof. We start by proving the following lemma regarding the number of verifi-
cation equations required for schemes with 2-element signatures.

Lemma 1. One verification equation (excluding the cost for verifying the well-
formedness of the messages) is sufficient for a generic-signer SPS scheme with
2-element signatures.

416 E. Ghadafi

Proof. Assume a scheme has 2 verification equations. Both equations must pose
non-trivial constraint on the signature components as otherwise we can reduce
them to a single equation. Since each verification equation must involve at least
1 signature component, we have 3 cases:

• Both equations involve both signature components: This means we have 2
quadratic/linear equations in the discrete logarithm of the signature compo-
nents. Such an equation system have at most 4 distinct solutions implying
that there are at most 4 potential signatures for the message vector which
contradicts the proof of Theorem 1.

• One equation involves both signature components whereas the other equa-
tion involves only one signature component: This means one equation is
quadratic/linear involving both signature components, whereas the remain-
ing equation is linear in one of the signature components. By substituting the
value of the signature component in the linear equation into the other equa-
tion we end up with one verification equation that is sufficient for verifying
the signature.

• Each verification equation involves a single signature component: Since the
other constants (the verification key, the public parameters (if any) and the
messages) are fixed, we have that each verification equation is a linear equa-
tion in one of the signature components, i.e. each equation is a linear equation
in one unknown. Thus, there is exactly 1 potential signature for the message
vector which contradicts the proof of Theorem 1. 	

Now let’s assume WLOG that the signature is of the form σ = (S1, S2) ∈ G
2,

whereas the verification key is of the form (X, Ỹ) ∈ G
n × H

n′
. The proof for

the case where σ = (S̃1, S̃2) ∈ H
2 is similar.

A generic signer computes the signature as Si := G
αi(x ,y)
α′

i
(x ,y) M

βi,1(x ,y)

β′
i,1(x ,y)

1 M

βi,2(x ,y)

β′
i,2(x ,y)

2

for some multivariate polynomials αi, α
′
i, βi,1, β

′
i,1, βi,2, β

′
i,2 ∈ Zp[x,y] for i ∈

{1, 2}. Note that none of those polynomials has a term in m1 or m2, i.e. they are
independent of the messages. Thus, it is infeasible for a generic signer to compute
a non-trivial signature component where its discrete logarithm si contains a
message mi (for any i ∈ {1, 2}) in a term in the denominator. This means that we
must have that the verification equation does not contain the pairings e(Si, M̃j)
for all j ∈ [2] and some i ∈ [2], i.e. either S1 or S2 is independent of the messages
as otherwise this would mean that mi appears in the denominator of one of
the signature components. Let’s assume WLOG that S1 is independent of the
messages, i.e. the verification equation does not contain the pairings e(S1, M̃i) for
i = 1, 2. This means the scheme has a verification equation of the following form:

e(S1,

n′
∏

i=1

Ỹ ai
i)

2
∏

i=1

e(
n

∏

j=1

X
ci,j

j , M̃i)
2

∏

i=1

e(Mi,

n′
∏

j=1

Ỹ
ei,j

j

2
∏

j=1

M̃
ui,j

j)

e(S2,

n′
∏

i=1

Ỹ bi
i

2
∏

i=1

M̃di
i) =

n
∏

i=1

n′
∏

j=1

e(Xi, Ỹj)ti,j (2)

Further Lower Bounds for Structure-Preserving Signatures 417

A generic signer cannot produce a signature component whose discrete loga-
rithm has a term with any of the monomials: m2

1, m1m2, or m2
2. Thus, WLOG

we can also assume that the verification equation does not contain a pairing of
the form e(Mi, M̃j) for all i, j ∈ [2], i.e. ui,j = 0 for all i, j ∈ [2]. This means the
verification equation is of the following form:

e(S1,

n′
∏

i=1

Ỹ ai
i)

2
∏

i=1

e(
n

∏

j=1

X
ci,j

j , M̃i)
2

∏

i=1

e(Mi,

n′
∏

j=1

Ỹ
ei,j

j)

e(S2,

n′
∏

i=1

Ỹ bi
i

2
∏

i=1

M̃di
i) =

n
∏

i=1

n′
∏

j=1

e(Xi, Ỹj)ti,j (3)

Lemma 2 below proves that a scheme with a verification equation of the form
of Eq. (3) is not secure against an adversary which makes 2 chosen-message sign
queries, whereas Lemma 3 proves that even if we consider schemes with a veri-
fication equation of the form of Eq. (2) such schemes are not EUF-CMA secure
against an adversary that makes 3 chosen-message sign queries, which concludes
the proof of the theorem.

Lemma 2. A SPS scheme for a vector of 2 DH pairs with a verification equation
of the form of Eq. (3) is not EUF-CMA against 2 (non-adaptive) chosen-message
sign queries.

Proof. We have 2 cases as follows:

• Case d2 �= 0: Choose any 2 distinct messages (M1,1, M̃1,1), (M∗
1 , M̃∗

1) and set

(M1,2, M̃1,2) := (M1,1, M̃1,1)
−d1
d2 , (M2,1, M̃2,1) := (M∗

1

1
γ M

γ−1
γ

1,1 , M̃∗
1

1
γ M̃

γ−1
γ

1,1)

and (M2,2, M̃2,2) := (M∗
1

−d1
d2γ M

d1(1−γ)
d2γ

1,1 , M̃∗
1

−d1
d2γ M̃

d1(1−γ)
d2γ

1,1).
After getting signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on the mes-
sages ((M1,1, M̃1,1), (M1,2, M̃1,2)) and ((M2,1, M̃2,1), (M2,2, M̃2,2)), respec-
tively, we can compute a forgery σ∗ = (S∗

1 , S∗
2) := (S1−γ

1,1 Sγ
2,1, S

1−γ
1,2 Sγ

2,2) on

the message ((M∗
1 , M̃∗

1), (M∗
2 , M̃∗

2) := (M∗
1 , M̃∗

1)
−d1
d2). This is a valid signature

and we have that ((M∗
1 , M̃∗

1), (M∗
2 , M̃∗

2)) �= ((M1,1, M̃1,1), (M1,2, M̃1,2)) and
((M∗

1 , M̃∗
1), (M∗

2 , M̃∗
2)) �= ((M2,1, M̃2,1), (M2,2, M̃2,2)) for any γ ∈ Z

×
p \ {1}.

• Case d2 = 0: Choose random distinct messages (M1,2, M̃1,2), (M2,2, M̃2,2)
and (M∗

1 , M̃∗
1) and set (M∗

2 , M̃∗
2) := (M1−γ

1,2 Mγ
2,2, M̃

1−γ
1,2 M̃γ

2,2). Query the sign
oracle on ((M∗

1 , M̃∗
1), (M1,2, M̃1,2)) and ((M∗

1 , M̃∗
1), (M2,2, M̃2,2)) to get signa-

tures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2), respectively. We have that σ∗ =
(S∗

1 , S∗
2) := (S1−γ

1,1 Sγ
2,1, S

1−γ
1,2 Sγ

2,2) is a valid forgery on ((M∗
1 , M̃∗

1), (M∗
2 , M̃∗

2))
for any γ ← Z

×
p . We have that ((M∗

1 , M̃∗
1), (M∗

2 , M̃∗
2)) /∈ {((M∗

1 , M̃∗
1),

(M1,2, M̃1,2)), ((M∗
1 , M̃∗

1), (M2,2, M̃2,2))}.

This concludes the proof. 	

418 E. Ghadafi

Lemma 3. A SPS scheme for a vector of 2 DH pairs with a verification equation
of the form of Eq. (2) is not EUF-CMA against 3 (non-adaptive) chosen-message
sign queries.

Proof. We have 2 cases as follows:

• Case d2 �= 0: Choose any distinct messages: (M∗
1 , M̃∗

1), (M∗
2 , M̃∗

2) and
(M3,1, M̃3,1). Set:

(M1,1, M̃1,1) := (M∗
1

γ−1
2γ M

γ+1
2γ

3,1 , M̃∗
1

γ−1
2γ M̃

γ+1
2γ

3,1)

(M1,2, M̃1,2) := (M∗
1

d1(γ+1)
2d2γ M

−d1(γ+1)
2d2γ

3,1 M∗
2 , M̃∗

1

d1(γ+1)
2d2γ M̃

−d1(γ+1)
2d2γ

3,1 M̃∗
2)

(M2,1, M̃2,1) := (M∗
1

γ+1
2γ M

γ−1
2γ

3,1 , M̃∗
1

γ+1
2γ M̃

γ−1
2γ

3,1)

(M2,2, M̃2,2) := (M∗
1

d1(γ−1)
2d2γ M

d1(1−γ)
2d2γ

3,1 M∗
2 , M̃∗

1

d1(γ−1)
2d2γ M̃

d1(1−γ)
2d2γ

3,1 M̃∗
2)

(M3,2, M̃3,2) := (M∗
1

d1
d2 M

−d1
d2

3,1 M∗
2 , M̃∗

1

d1
d2 M̃

−d1
d2

3,1 M̃∗
2)

Now query the sign oracle on the messages ((M1,1, M̃1,1), (M1,2, M̃1,2)),
((M2,1, M̃2,1), (M2,2, M̃2,2)) and ((M3,1, M̃3,1), (M3,2, M̃3,2)), to get the sig-
natures σ1 = (S1,1, S1,2), σ2 = (S2,1, S2,2) and σ3 = (S3,1, S3,2), respectively.
We can now compute a forgery σ∗ = (S∗

1 , S∗
2) := (S−γ

1,1Sγ
2,1S3,1, S

−γ
1,2Sγ

2,2S3,2)
on the message ((M∗

1 , M̃∗
1), (M∗

2 , M̃∗
2)). This is a valid signature and we have

that ((M∗
1 , M̃∗

1), (M∗
2 , M̃∗

2)) /∈ {((M1,1, M̃1,1), (M1,2, M̃1,2)), ((M2,1, M̃2,1),
(M2,2, M̃2,2)), ((M3,1, M̃3,1), (M3,2, M̃3,2))} for any γ ∈ Z

×
p \ {−1, 1}.

• Case d2 = 0: Choose any distinct messages: (M∗
1 , M̃∗

1), (M2,2, M̃2,2) and
(M3,2, M̃3,2). Set

(M1,1, M̃1,1) = (M2,1, M̃2,1) = (M3,1, M̃3,1) := (M∗
1 , M̃∗

1)

(M∗
2 , M̃∗

2) := (M
γ+1
2

2,2 M
1−γ
2

3,2 , M̃
γ+1
2

2,2 M̃
1−γ
2

3,2)

(M1,2, M̃1,2) := (M
1−γ
2

2,2 M
γ+1
2

3,2 , M̃
1−γ
2

2,2 M̃
γ+1
2

3,2)

Now query the sign oracle on the messages ((M1,1, M̃1,1), (M1,2, M̃1,2)),
((M2,1, M̃2,1), (M2,2, M̃2,2)) and ((M3,1, M̃3,1), (M3,2, M̃3,2)), to get the sig-
natures σ1 = (S1,1, S1,2), σ2 = (S2,1, S2,2) and σ3 = (S3,1, S3,2), respectively.
We can now compute a forgery σ∗ = (S∗

1 , S∗
2) := (S1,1S

γ
2,1S

−γ
3,1 , S1,2S

γ
2,2S

−γ
3,2)

on the message ((M∗
1 , M̃∗

1), (M∗
2 , M̃∗

2)). This is a valid signature and we have
that ((M∗

1 , M̃∗
1), (M∗

2 , M̃∗
2)) /∈ {((M1,1, M̃1,1), (M1,2, M̃1,2)), ((M2,1, M̃2,1),

(M2,2, M̃2,2)), ((M3,1, M̃3,1), (M3,2, M̃3,2))} for any γ ∈ Z
×
p \ {−1, 1}.

This concludes the proof. 	

The following corollary follows from Theorem 2.

Corollary 1. There is no generic-signer EUF-CMA SPS scheme for a vector
of � > 1 DH pairs with 2-element unilateral signatures.

Further Lower Bounds for Structure-Preserving Signatures 419

4 Impossibility of sEUF-CMA (Against q > 1 Sign
Queries) SPS Schemes with 2-Element Signatures

In this section we prove the impossibility of the existence of sEUF-CMA SPS
schemes with 2-element (unilateral/bilateral) signatures. However, in Sect. 5 we
show that sEUF-RMA and sEUF-CMA-RMA with 2-element (unilateral) signa-
tures are possible by giving concrete constructions.

Theorem 3. There is no generic-signer sEUF-CMA (against q > 1 sign
queries) SPS scheme with 2-element signatures.

Proof. Lemma 1 proved that 1 PPE is sufficient for verifying 2-element signa-
tures. The following 2 lemmata complete the proof, where the first deals with the
case of bilateral signatures whereas the second deals with unilateral signatures.

Lemma 4. There is no generic-signer sEUF-CMA (against q > 1 sign queries)
SPS scheme with 2-element bilateral signatures.

Proof. Let’s WLOG assume that the signature is of the form σ = (S1, S̃2) ∈
G × H, whereas the verification key (including any public parameters) is of the
form (X, Ỹ) ∈ G

n ×H
n′

. The case where the signature is transposed is similar.

A generic signer computes the signature as S1 := M
α1(x ,y)
α′
1(x ,y) G

β1(x ,y)
β′
1(x ,y) and S̃2 :=

M̃
α2(x ,y)
α′
2(x ,y) H̃

β2(x ,y)
β′
2(x ,y) for some polynomials α1, α

′
1, β1, β

′
1, α2, α

′
2, β2, β

′
2 ∈ Zp[x,y].

Note that none of those polynomials has a term in m. Without knowledge of
the discrete logarithm of the message m, it is infeasible for a generic signer
to compute a non-trivial signature component where its discrete logarithm si

contains the message m in a term in the denominator. Thus, we must have
that either e(S1, M̃) or e(M, S̃2) does not feature in the verification equation.
WLOG let’s assume that e(S1, M̃) does not appear in the verification equation.
The proof for the other case where e(M, S̃2) does not appear in the verification
equation is similar.

Such a scheme would have a verification equation of the following form:

e(S1,
n′
∏

i=1

Ỹ ci
i S̃d

2)e(
n

∏

i=1

Xbi
i , M̃)e(M,

n′
∏

i=1

Ỹ ei
i S̃f

2 M̃k)

e(
n

∏

i=1

Xai
i , S̃2) =

n
∏

i=1

n′
∏

j=1

e(Xi, Ỹj)ti,j (4)

We have 3 cases as follows:

• Case for some i ∈ [n′], ci �= 0: After getting a signature σ = (S1, S̃2) on a
(random) message (M,M̃), fix any i ∈ [n′] where ci �= 0, we can compute a
new signature σ∗ = (S∗

1 , S̃∗
2) on the random message (M,M̃) as follows:

S∗
1 := M

−γf
ci+γd S

ci
ci+γd

1

n
∏

j=1

X
−ajγ

ci+γd

j S̃∗
2 := S̃

ci+γd

ci
2 Y γ

i

∏

j �=i

Yj
cjγ

ci

420 E. Ghadafi

The new signature is a valid forgery and we have σ∗ �= σ for any γ ∈ Z
×
p .

• Case ci = 0 for all i ∈ [n′] but d �= 0: After getting a signature σ = (S1, S̃2) on
a (random) message (M,M̃), we can compute a new signature σ∗ = (S∗

1 , S̃∗
2)

on the random message (M,M̃) as follows:

S∗
1 := M

f−γf
γd S

1
γ

1

n
∏

i=1

X
ai−aiγ

γd

i S̃∗
2 := S̃γ

2

The new signature is a valid forgery and σ∗ �= σ for any γ ∈ Z
×
p \ {1}.

• Case ci = 0 for all i ∈ [n′] and d = 0: This means the verification equation
does not involve the component S1 and hence the signature consists of only 1
element and the equation is linear in s2 (the discrete logarithm of S̃2). This
means for any message there is exactly 1 potential signature which contradicts
Theorem 1.

This concludes the proof. 	

Lemma 5. There is no generic-signer sEUF-CMA (against q > 1 sign queries)
SPS scheme with 2-element unilateral signatures.1

Proof. WLOG let’s count any public parameters (if any) as part of the verifica-
tion key vk. Such a scheme would have signatures of the form σ = (S1, S2) ∈ G

2,
a verification key of the form (X,Y) ∈ G

n ×H
n′

, and a verification equation of
the following form:

2
∏

i=1

e(Si,

n′
∏

j=1

Ỹ
ci,j

j M̃di)e(
n

∏

i=1

Xai
i , M̃)e(M,

n′
∏

i=1

Ỹ bi
i M̃f) =

n
∏

i=1

n′
∏

j=1

e(Xi, Ỹj)ti,j (5)

Theorem 1 proved that for a scheme to be EUF-RMA secure (against q > 1
sign queries), it must have superpolynomially many potential signatures. After
obtaining any 2 distinct signatures σ = (S1, S2) and σ′ = (S′

1, S
′
2) on any message

(M,M̃), we have that σ∗ = (S∗
1 , S∗

2) := (Sγ
1 S′1−γ

1 , Sγ
2 S′1−γ

2) is with overwhelming
probability a new valid signature on (M,M̃) for any γ ∈ Z

×
p \ {1}. 	

This concludes the proof. 	

5 sEUF-CMA-RMA Scheme for Diffie-Hellman Vectors

Here we construct a sEUF-CMA-RMA scheme with 2-element unilateral signa-
tures for the message space M = MC ×MR where MC = ̂GH and MR = ̂GH

η

for any η ≥ 1. This also implies the existence of sEUF-RMA schemes with
2-element unilateral signatures.

Given the description of Type-3 bilinear groups P output by BG(1κ), the
scheme is as follows:
1 Our result is stronger than that of [32] since we consider a bilateral verification key.

Further Lower Bounds for Structure-Preserving Signatures 421

• KeyGen(P): Select u,w1, w2, x, y1, . . . , yη ← Zp. Set X := Gx, Yi := Gyi

for all i ∈ [η], U := Gu, W̃1 := H̃w1 and W̃2 := H̃w2 . Set sk :=
(w1, w2, u, x, y1, . . . , yη) and vk := (W̃1, W̃2, U,X, Y1, . . . , Yη

) ∈ H
2 × G

2+η.
• Sign(sk, (M,M̃), ((M ′

1, M̃
′
1), . . . , (M

′
η, M̃ ′

η))): To sign ((M,M̃), ((M ′
1, M̃

′
1),

. . . , (M ′
η, M̃ ′

η))) ∈ ̂GH
1+η

, select r ← Zp and set R := Gr, and S := (Mr+x

η
∏

i=1

M ′
i
r+yiRw1U)

1
w2 . Return σ := (R,S) ∈ G

2.

• Verify
(

vk,
(

(M,M̃),
(

(M ′
1, M̃

′
1), . . . , (M

′
η, M̃ ′

η)
))

, σ = (R,S)
)

: Return 1 only

if R,S ∈ G, (M,M̃) ∈ ̂GH, for all i ∈ [η] : (M ′
i , M̃

′
i) ∈ ̂GH, and

e(S, W̃2) = e(R, M̃

η
∏

i=1

M̃ ′
iW̃1)e(X, M̃)

η
∏

i=1

e(Yi, M̃
′
i)e(U, H̃),

otherwise, return 0.

Remark 1. We can set Y1 = G which reduces the size of the verification key by
one group element.

Security of the Scheme. Correctness of the scheme follows by inspection and
is straightforward to verify. We now prove the following theorem.

Theorem 4. The scheme is sEUF-CMA-RMA secure in the generic group
model.

Proof. We show that no linear combinations representing Laurent polynomials
(of degrees ranging from −1 to 2 after q sign queries) in the discrete logarithms of
the group elements the adversary sees correspond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are
H̃, W̃1, W̃2 which correspond to the discrete logarithms 1, w1, w2, respectively,
whereas the only elements in G the adversary sees are G, X,Y1, . . . , Yη

, U which
correspond to the discrete logarithms 1, x, y1, . . . , yη , u, respectively.

Note that the only elements of H the q sign queries return are the uniformly
random parts of the message {M̃ ′

i,j} for i ∈ [q] and j ∈ [η]. Thus, at the i-th sign

query on the message (Mi, Ñi) ∈ ̂GH, mi and ni the discrete logarithms of Mi

and Ñi, respectively, can only be linear combinations of the discrete logarithms
of the elements in G and H, respectively, the adversary sees up to that point of
time. Thus, we have

mi = am
i
+ bmi

u + cmi
x +

η
∑

k=1

dmi,k
y

k
+

i−1
∑

�=1

η
∑

k=1

emi,�,k
m′

�,k +
i−1
∑

j=1

fmi,j
rj

+
i−1
∑

j=1

gmi,j

(

mj(rj + x) +
η
∑

k=1

m′
j,k

(rj + yk) + rjw1 + u

w2

)

422 E. Ghadafi

ni = an
i
+ bni

w1 + cni
w2 +

i−1
∑

�=1

η
∑

k=1

dni,�,k
m′

�,k

Since for all i ∈ [q], we must have that (Mi, Ñi) ∈ ̂GH, i.e. mi = ni, we must
have that am

i
= an

i
, bm

i
= bn

i
= cm

i
= cn

i
= 0, dmi,k

= 0 for all k ∈ [η],
fmi,j

= gmi,j
= 0 for all j ∈ [i − 1], and dni,�,k

= emi,�,k
for all � ∈ [i − 1] and

k ∈ [η]. Thus, we have

mi = ni = am
i
+

i−1
∑

�=1

η
∑

k=1

emi,�,k
m′

�,k

If the message is well-formed, then at the i-th sign query, the adversary will
receive a signature of the form σi = (ri, si), where si is of the following form:

si =
mi(ri + x) +

η
∑

j=1

m′
i,j

(ri + yj) + riw1 + u

w2

At the end of the game (after at most q sign queries), we must have

m∗ = n∗ = am +
q

∑

�=1

η
∑

k=1

em�,k
m′

�,k

m′∗
j = n′∗

j = am′
j
+

q
∑

�=1

η
∑

k=1

em′
j,�,k

m′
�,k for all j ∈ [η]

Similarly, since the adversary can only construct her forgery as linear combina-
tions of the Laurent polynomials she sees in the game, we have at the end of the
game that r∗ and s∗ must be linear combinations of the Laurent polynomials in
G. Thus, we have:

r∗ = ar + bru + crx +
η

∑

i=1

dri
y

i
+

q
∑

i=1

η
∑

j=1

eri,j
m′

i,j +
q

∑

i=1

fri
ri

+
q

∑

i=1

gri

(

mi(ri + x) +
η
∑

j=1

m′
i,j

(ri + yj) + riw1 + u

w2

)

s∗ = as + bsu + csx +
η

∑

i=1

dsi
yi +

q
∑

i=1

η
∑

j=1

esi,j
m′

i,j +
q

∑

i=1

fsi
ri

+
q

∑

i=1

gsi

(

mi(ri + x) +
η
∑

j=1

m′
i,j

(ri + yj) + riw1 + u

w2

)

Further Lower Bounds for Structure-Preserving Signatures 423

Since by the verification equation we must have that:

s∗w2 = r∗(m∗ +
η

∑

j=1

m′∗
j

+ w1) + m∗x +
η

∑

j=1

m′∗
j

yj + u

Thus, we must have that:

asw2 + bsuw2 + csxw2 +
η

∑

i=1

dsi
yiw2 +

q
∑

i=1

η
∑

j=1

esi,j
m′

i,jw2 +
q

∑

i=1

fsi
riw2

+
q

∑

i=1

gsi

(

mi(ri + x) +
η

∑

j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
(

ar + bru + crx +
η

∑

i=1

dri
yi +

q
∑

i=1

η
∑

j=1

eri,j
m′

i,j +
q

∑

i=1

fri
ri

+
q

∑

i=1

gri

(

mi(ri + x) +
η
∑

j=1

m′
i,j

(ri + yj) + riw1 + u

w2

))

(

m∗ +
η

∑

i=1

m′
i
∗ + w1

)

+ m∗x +
η

∑

i=1

m′
i
∗
yi + u

There is no term of the form uw1
w2

on the LHS, so we must have that for all i ∈ [q]
that gri

= 0. Also, for all i ∈ [η], there are no terms of the form xw1, yiw1, uw1

or w1 on the LHS so we must have that cr = 0, dri
= 0 for all i ∈ [η], br = 0

and ar = 0. Thus, we have:

asw2 + bsuw2 + csxw2 +
η

∑

i=1

dsi
yiw2 +

q
∑

i=1

η
∑

j=1

esi,j
m′

i,jw2 +
q

∑

i=1

fsi
riw2

+
q

∑

i=1

gsi

(

mi(ri + x) +
η

∑

j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
(

q
∑

i=1

η
∑

j=1

eri,j
m′

i,j +
q

∑

i=1

fri
ri

)(

m∗ +
η

∑

i=1

m′
i
∗ + w1

)

+ m∗x +
η

∑

i=1

m′
i
∗
yi + u

There are no terms on the RHS with any of the monomials w2, uw2, xw2, yiw2

for any i ∈ [η], riw2 for any i ∈ [q], or m′
i,jw2 for any i ∈ [q] and j ∈ [η]. Thus,

we must have that as = 0, bs = 0, cs = 0, dsi
= 0 for all i ∈ [η], fsi

= 0 for all
i ∈ [q] , and for all i ∈ [q] and all j ∈ [η] that esi,j

= 0. Thus, we have:

q
∑

i=1

gsi

(

mi(ri + x) +
n

∑

j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
(

q
∑

i=1

η
∑

j=1

eri,j
m′

i,j +
q

∑

i=1

fri
ri

)(

m∗ +
η

∑

i=1

m′
i
∗ + w1

)

+ m∗x +
η

∑

i=1

m′
i
∗
yi + u

424 E. Ghadafi

There are no terms of the form m′
i,jw1 for any i ∈ [q] and any j ∈ [η] on the

LHS. Thus, we must have that eri,j
= 0 for all i ∈ [q] and all j ∈ [η] and hence

we must have that:
q

∑

i=1

gsi

(

mi(ri + x) +
η

∑

j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
q

∑

i=1

fri
rim

∗ +
q

∑

i=1

fri
ri

η
∑

i=1

m′
i
∗ +

q
∑

i=1

fri
riw1 + m∗x +

η
∑

i=1

m′
i
∗
yi + u

By the term u we have that
q
∑

i=1

gsi
= 1 and we must have that there is at least

one value of gsi
�= 0. Also, by the term riw1 we have that gsi

= fri
for all i ∈ [q].

Note that m′
i,j

for all i ∈ [q] and all j ∈ [η] on the LHS are all chosen uniformly
at random by the sign oracle. Also, there is no term on the LHS containing the
monomial m

i,j
rk for any k �= i. Thus, we cannot have for any i, j ∈ [q] where

i �= j that fri
�= 0 and frj

�= 0. This means we must have for some i ∈ [q] that:

gsi
mi(ri + x) + gsi

η
∑

j=1

m′
i,j

(ri + yj) + gsi
riw1 + gsi

u

= fri
rim

∗ + fri
ri

η
∑

i=1

m′
i
∗ + fri

riw1 + m∗x +
η

∑

i=1

m′
i
∗
yi + u

Since we must have that
q
∑

i=1

gsi
= 1 and for all i ∈ [q] that gsi

= fri
, we must

have:

mi(ri + x) +
η

∑

j=1

m′
i,j

(ri + yj) + riw1 + u

= rim
∗ + ri

η
∑

i=1

m′
i
∗ + riw1 + m∗x +

η
∑

i=1

m′
i
∗
yi + u

By the monomial x, we must have that m∗ = mi, whereas by the monomial yj

we must have that m′
i,j

= m′
j
∗ for all j ∈ [η]. The above also means we have

r∗ = ri and s∗ = si. This means (r∗, s∗) is not a valid forgery.

Remark 2. The proof holds even if we have that y1 = 1 which means we can
reduce the size of the verification key by eliminating 1 group element.

This concludes the proof. 	

References

1. Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structure-
preserving signatures for bilateral messages. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 3–22. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98113-0 1

https://doi.org/10.1007/978-3-319-98113-0_1
https://doi.org/10.1007/978-3-319-98113-0_1

Further Lower Bounds for Structure-Preserving Signatures 425

2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

3. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

4. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

5. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

6. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 34

7. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8 29

8. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 390–407. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 22

9. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 19

10. Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving
signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 2

11. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 6

12. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

13. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable
E-cash. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 5

14. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 16

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-662-44371-2_22
https://doi.org/10.1007/978-3-662-44371-2_22
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-662-46803-6_2
https://doi.org/10.1007/978-3-662-46803-6_2
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_16

426 E. Ghadafi

15. Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and
DAA in the standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38980-1 33

16. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS
2004, pp. 132–145. ACM (2004)

17. Camenisch, J., Dubovitskaya, M., Haralambiev, K.: Efficient structure-preserving
signature scheme from standard assumptions. In: Visconti, I., De Prisco, R. (eds.)
SCN 2012. LNCS, vol. 7485, pp. 76–94. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32928-9 5

18. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 11

19. Chase, M., Kohlweiss, M.: A new hash-and-sign approach and structure-preserving
signatures from DLIN. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 131–148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32928-9 8

20. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revis-
ited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
286–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 13

21. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

23. El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled link-
ability without random Oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 161–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71045-7 9

24. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 17

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 14

27. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

28. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(2008), 3113–3121 (2008)

29. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 8

https://doi.org/10.1007/978-3-642-38980-1_33
https://doi.org/10.1007/978-3-642-32928-9_5
https://doi.org/10.1007/978-3-642-32928-9_5
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-642-32928-9_8
https://doi.org/10.1007/978-3-642-32928-9_8
https://doi.org/10.1007/978-3-662-48797-6_13
https://doi.org/10.1007/978-3-662-48797-6_13
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-04852-9_17
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8

Further Lower Bounds for Structure-Preserving Signatures 427

30. Ghadafi, E.: Formalizing group blind signatures and practical constructions with-
out random oracles. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol.
7959, pp. 330–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39059-3 23

31. Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA
2016. LNCS, vol. 9610, pp. 305–321. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29485-8 18

32. Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-
III lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS
2017. LNCS, vol. 10493, pp. 43–61. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66399-9 3

33. Ghadafi, E.: How low can you go? Short structure-preserving signatures for diffie-
hellman vectors. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 185–204.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7 10

34. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 12

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

36. Groth, J.: Efficient fully structure-preserving signatures for large messages. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 239–259.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 11

37. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

38. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

39. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilin-
ear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 7

40. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 14

41. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

42. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

43. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing oper-
ation. In: ACM CCS 1996, pp. 48–57. ACM (1996)

44. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

45. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/978-3-642-39059-3_23
https://doi.org/10.1007/978-3-642-39059-3_23
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-66399-9_3
https://doi.org/10.1007/978-3-319-66399-9_3
https://doi.org/10.1007/978-3-319-71045-7_10
https://doi.org/10.1007/978-3-540-89255-7_12
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-69053-0_18

428 E. Ghadafi

46. Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

47. Wang, Y., Zhang, Z., Matsuda, T., Hanaoka, G., Tanaka, K.: How to obtain fully
structure-preserving (automorphic) signatures from structure-preserving ones. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 465–495.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 16

https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.1007/978-3-662-53890-6_16

A New Approach to Modelling
Centralised Reputation Systems

Lydia Garms(B) and Elizabeth A. Quaglia

Information Security Group, Royal Holloway University of London, Egham, UK
{Lydia.Garms.2015,Elizabeth.Quaglia}@rhul.ac.uk

Abstract. A reputation system assigns a user or item a reputation value
which can be used to evaluate trustworthiness. Blömer, Juhnke and Kolb
in 2015, and Kaafarani, Katsumata and Solomon in 2018, gave formal
models for centralised reputation systems, which rely on a central server
and are widely used by service providers such as AirBnB, Uber and
Amazon. In these models, reputation values are given to items, instead
of users. We advocate a need for shift in how reputation systems are
modelled, whereby reputation values are given to users, instead of items,
and each user has unlinkable items that other users can give feedback on,
contributing to their reputation value. This setting is not captured by
the previous models, and we argue it captures more realistically the func-
tionality and security requirements of a reputation system. We provide
definitions for this new model, and give a construction from standard
primitives, proving it satisfies these security requirements. We show that
there is a low efficiency cost for this new functionality.

1 Introduction

Reputation has always played a fundamental role in how we exchange products
and services. While traditionally we have been used to trusting the reputation of
established brands or companies, we are now facing a new challenge in the online
world: determining the trustworthiness of a wide variety of possible exchanges.
Whether we are selecting a restaurant, buying a product or getting a taxi, we
are increasingly relying on scores and ratings to make our choice. For example,
on Amazon, which in 2015 had over 2 million third party sellers worldwide [1],
each seller is given a rating out of 5. Also Uber, with over 40 million monthly
active users [2], allows drivers and passengers to rate each other.

A reputation system formalises this process of rating a user or service by
associating with them a value representing their trustworthiness. A reputation
is then built as the value gets updated over time, as a consequence of user
interactions and service exchanges. Obviously, to form a reputation value for a
specific user or service, their behaviour across interactions needs to be linked, but
this may have privacy implications. For instance, a user could be deanonymised
by linking all their interactions together in a profiling attack.

Given this, a cryptographic treatment of reputation systems has been con-
sidered necessary, and several models have been proposed in the literature so
c© Springer Nature Switzerland AG 2019
J. Buchmann et al. (Eds.): AFRICACRYPT 2019, LNCS 11627, pp. 429–447, 2019.
https://doi.org/10.1007/978-3-030-23696-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23696-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-23696-0_22

430 L. Garms and E. A. Quaglia

far [3,8,18]. Reputation Systems can be generally categorised into distributed
or centralised systems. Distributed systems [23] have no central server and use
local reputation values, i.e., reputation values created by users on other users.
For example, a user may generate a reputation value based on feedback from
querying other users, and their own interactions. This means a user does not
have a unique reputation value, but many other users hold their own reputa-
tion value for them. For example privacy preserving decentralised reputation
systems [25] are designed to maintain anonymity when answering queries from
other nodes.

Centralised systems, on the other hand, have a central server that man-
ages the network, performing tasks such as controlling communication between
users, receiving feedback and evaluating reputation values. In this paper, we
will focus on centralised systems since the reputation systems used by most ser-
vice providers such as Airbnb, Uber and Amazon are of this type. A variety of
centralised reputation system models and instantiations have been proposed in
the literature, as we shall see in Sect. 2. While their applications and the used
techniques vary greatly amongst them, all of the models have in common that
reputations are assigned to each item or service, the object of the reputation,
rather than each user, the provider of the service. To understand the limitations
of this, let us consider the case of online shopping: in such a scenario, existing
reputation systems would typically allocate a reputation to each product sold
(item), and not to each seller (user), based on all their sold products.

In this paper, we advocate the need for a shift in how reputation systems
are modelled, and we propose a new model for reputation systems in which a
reputation value is given to each user, based on all their user behaviour or items.
This is crucial in ensuring that a user’s previous behaviour will contribute to
their current reputation, instead of having separate reputations for each service
provided. Clearly, if items belonging to a user could be linked together, the
model which has been used so far could be transformed into our new one, by
collating the reviews for each item belonging to a user to form a reputation value.
However, if the user wishes to make their items unlinkable for privacy reasons,
then this becomes more challenging.

1.1 Motivation and Contribution

Our contribution is to propose a new model for reputation systems so that
reputation values are given to users instead of items, whilst guaranteeing that
the user’s behaviour is unlinkable, and that the central server does not have to
be involved during every transaction. This means that users can have multiple
unlinkable items, whilst a reputation value still reflects their entire behaviour.
Therefore users can have the benefits of privacy, whilst still being held account-
able for the previous behaviour.

A car pooling app is an example of the reputation systems we are modelling.
A user may not want their trips (or items) to be linked together, as their move-
ments could be tracked. However, a user’s reputation should be based on their
previous trips, so others can judge their reliability. In this context, reputations

A New Approach to Modelling Centralised Reputation Systems 431

based on each journey are not useful, as they cannot be used for future journeys.
This is why it is important to give reputation values to users instead of items.

The first challenge when developing such reputation systems, is to provide
a mechanism for generating reputation values, whilst ensuring items cannot be
linked by user. We model this with a ReceiveFB algorithm run by the Central
Server (CS), the central server, which takes feedback, and links it to other feed-
back on items with the same author, updating their reputation. We define the
security requirement, Unlinkability of User Behaviour, which defines the unlinka-
bility of items by the same user achievable while reputations can still be updated
using ReceiveFB. Our approach as described so far gives rise to a possible attack
in which a user produces a valid item which will not contribute to this user’s
reputation, or will even unfairly affect another user ReceiveFB. We introduce the
Traceability security requirement to mitigate against this attack. These security
requirements are reminiscent of those for group signature schemes in [4].

The second challenge is to determine the reputation of a specific user, whose
items are unlinkable. A naive solution could be for the user to simply attach their
reputation to an item, but the user could lie about their reputation. To avoid this,
we introduce the PostItem algorithm, with which the user posts their item, and
proves they were given a reputation at a particular time, using a token generated
by the CS. We further introduce the security requirement of Unforgeability of
Reputation to ensure the user cannot lie about their reputation.

Finally, the standard security requirements of a centralised reputation sys-
tem [8,18], namely Anonymity of Feedback, Soundness of Reputation and Non–
frameability, still need to hold, and we adapt these naturally to our new model.

A reputation system satisfying our security requirements can be built using
two standard primitives: Group Signature Schemes [16] for posting items, under
the condition that they can be modified so that users can prove their reputation
at a particular time with a token generated by the CS, and Direct Anonymous
Attestation (DAA) [12] for sending feedback. In this paper we present a con-
crete construction using a modified version of the group signature scheme given
in [17], which ensures the Unlinkability of User Behaviour, Traceability and
Unforgeability of Reputation requirements described above. Our modification
to [17], similarly to in [24], allows users to prove their reputation at a particular
time. Our construction also makes use of the DAA scheme given in [15], which
ensures anonymity of feedback, whilst multiple feedback on the same item can be
detected, ensuring Soundness of Reputation. This is due to the user controlled
linkability property of the DAA scheme, where only signatures with the same
basenames can be linked, and we use this by setting the basename to be the
item feedback is given on.

2 Related Work

While there exists an abundant literature on centralised reputation systems
[3,7,19,24,26,28] the most relevant work to this paper are [8] and [18], due
to their focus on formal models of reputation systems.

432 L. Garms and E. A. Quaglia

The model proposed in [8] is inspired by the security model for dynamic group
signatures [6], and the authors provide an extra linkability feature to detect users
giving multiple feedback on the same subject. In [18], the security requirements
for this model are improved by giving more power to the adversary, (for example,
in the public linkability security requirement the key issuer is no longer assumed
to be honest), and introducing the requirement that an adversary cannot give
feedback that will link to another user, invalidating their feedback. In [18] the
model is also made fully dynamic [11], ie users can join or leave the scheme at
any time, and a lattice-based instantiation satisfying this model is provided. To
reduce complexity, our model is in the static setting, however the model and
constuction could be converted to the dynamic case using [6], and due to the
dynamic setting of our building blocks.

Crucially, in both [8] and [18] reputations are assigned to each item, the
subject of feedback, not each user. By contrast, we propose a new model for
reputation systems in which a reputation value is given to each user, based on
all their user behaviour or items. This ensures a user’s reputation reflects their
entire past behaviour and so ensures they are accountable for their previous
actions, modelling more accurately how such systems truly operate.

3 Defining a Reputation System

We define a reputation system, Π, as consisting of the following probabilis-
tic polynomial time algorithms: Setup, AllocateReputation, PostItem, CheckItem,
SendFB, VerifyFB, LinkFB, ReceiveFB. We illustrate our model in Fig. 1.

Fig. 1. Diagram modelling how entities interact in a centralised reputation system.

SendFB, VerifyFB, and LinkFB are equivalent to the Sign, Verify, Link algo-
rithms in [8] and [18]. The additional algorithms, which we introduce in this
paper, represent the key features of our new approach.

A New Approach to Modelling Centralised Reputation Systems 433

The entities involved are a set of users U and a Central Server (CS). The
Central Server has two secret keys, isk and osk. The issuing secret key isk is
necessary for allowing users to join the system and allocating them tokens to
prove their reputation, whereas the opening secret key, osk, is necessary for
forming reputations from feedback. For simplicity we give the CS both secret
keys, but to reduce the power of one entity the role of the CS could be distributed.

The CS begins by running Setup. Users post items1, which are the subject
of feedback, while proving their reputation at a certain time using PostItem.
After a request from a user, the CS runs AllocateReputation, which outputs
tokens to allow a user to prove their current reputation at a specific time in
PostItem. And other users verify that an item is a valid output of PostItem by
running CheckItem. This ensures the item was authored by an enrolled user,
the reputation alongside the item is correct for the given time, and the CS can
use feedback on the item to form reputations. SendFB is run by a user when
giving feedback on an item, and its output is sent to the CS. ReceiveFB is run
by the Central Server when receiving the output of SendFB from a user. The
CS updates their stored feedback and reputations, based on this. VerifyFB and
LinkFB are used by ReceiveFB to check the feedback is valid and that there is no
feedback by the same user on this item, otherwise ReceiveFB will abort.

In the car pooling example, whenever a driver wishes to update their repu-
tation, they request the CS run AllocateReputation to obtain a token for their
reputation. They are incentivised to do this by the fact the reputation is dis-
played alongside the time it was allocated. When they wish to give a ride, they
use their most recent token to post an item with PostItem, which can be verified
by passengers with CheckItem. The passenger can then pay using some anony-
mous payment system. After the ride, their passenger can then give feedback on
this item to the CS using SendFB. The CS uses ReceiveFB to update their lists
of feedback, and reputations for each user, if the feedback is valid.

Before describing in detail our new model, we provide, for ease of reading,
an overview of our notation.

R: The set of all possible reputation values.
r̂: The initial reputation of every user at the system’s setup.
U : The set of all users in the scheme.
Aggr: A function that takes as input the new feedback fb, the user who’s rep-

utation is being updated i, the list of feedback already received F , and the
most recent reputation r, and outputs the new reputation r′.

r: For the user i ∈ U , r[i] is the user i’s reputation held by the CS.
L: A list of feedback that will contain entries in the form of a 6-tuple

((I, r, t, Ω), fb, Φ), where (fb, Φ) is feedback/proof pair, given on item I with
reputation r, and time t, with the proof Ω. L is used by the CS to keep
track of all feedback given, so that multiple feedback on the same item can
be detected in ReceiveFB.

1 A simple example of an item could be a product being sold.

434 L. Garms and E. A. Quaglia

F : A list of feedback that will contain entries of the form (i, fb) where fb is
feedback given to user i. F is used by the CS to keep track of all feedback
given on user i to form reputations in ReceiveFB.

ID: A list of identities for all users, this list will allow the CS to store information
on users whilst running AllocateReputation for use in ReceiveFB.

We next formally define a centralised reputation system Π, consisting of the
following probabilistic polynomial time algorithms: Setup, AllocateReputation,
PostItem, CheckItem, SendFB, VerifyFB, LinkFB, ReceiveFB.

– Setup(k,R, r̂,U ,Aggr) takes as input: a security parameter k, a set R of rep-
utation values, r̂ ∈ R, the initial reputation, a set of users U , and the aggre-
gation algorithm Aggr. The CS computes a public key gpk, the issuing secret
key isk, which is used to issue new user secret keys, and in AllocateReputa-
tion, and the opening secret key osk, which is used in ReceiveFB to trace the
author of an item to form reputations. The CS computes a secret key for each
user, usk = {usk[i] : i ∈ U}, and r, the reputation for all users held by the
CS, where ∀i ∈ U , r[i] = r̂. The CS creates empty lists L,F , ID which are
described above. It outputs (gpk, isk, osk,usk, r,L,F , ID).

– AllocateReputation(gpk, isk, i,usk[i], t, r[i], ID) takes as input the public key
gpk, the issuing secret key isk, user i’s secret key usk[i], the current time t,
the current reputation of user i held by the CS r[i], and the list of identities
for users ID. It updates the list of identities ID, and outputs (ω, r[i], ID),
where ω allows user i to prove they have reputation r[i].

– PostItem(gpk, I,usk[i], r, t, ω) takes as input the public key gpk, an item I,
user i’s secret key usk[i], the last reputation r, time t and token ω received
from the CS (r is not necessarily the reputation r[i] held by the CS). It
outputs Ω, which proves the author is enrolled and has reputation r at time
t, and is used in ReceiveFB to form a reputation for i.

– CheckItem(gpk, I, r, t, Ω) takes as input the public key gpk, an item I, a rep-
utation r, a time t and Ω. It outputs 1 if Ω is a valid output of PostItem,
given (I, r, t), and 0 otherwise.

– SendFB(gpk,usk[i], (I, r, t, Ω), fb) takes as input the public key gpk, user i’s
secret key usk[i], the subject of their feedback, (I, r, t, Ω), and the feedback
fb. It outputs Φ which is sent to the CS, to prove the author of Φ is enrolled,
and also for the detection of multiple feedback.

– VerifyFB(gpk, (I, r, t, Ω), fb, Φ) takes as input the public key gpk, an item
(I, r, t, Ω), and feedback/proof pair on this item (fb, Φ). It outputs 1 if Φ is
a valid output of SendFB, and 0 otherwise.

– LinkFB(gpk, (I, r, t, Ω), fb0, Φ0, fb1, Φ1) takes as input the public key gpk,
an item (I, r, t, Ω), and two feedback/proof pairs on this item, (fb0, Φ0),
(fb1, Φ1). It outputs 1 if Φ0 and Φ1 were generated by the same user with the
same input of (I, r, t, Ω), and 0 otherwise.

– ReceiveFB(gpk, osk, ((I, r, t, Ω), fb, Φ), r,L,F , ID) takes as input the public
key gpk, the opening secret key osk, a feedback/proof pair (fb, Φ) on item
(I, r, t, Ω), the current reputations r held by the CS, the lists of feedback so

A New Approach to Modelling Centralised Reputation Systems 435

far L and F , and the list of user identities ID. If Φ is not valid, or the LinkFB
algorithm finds multiple feedbacks in L then it outputs ⊥. Otherwise, it uses
the aggregation algorithm Aggr, and the list F , to update r, L and F to take
into account the new feedback. It outputs (r,L,F).

4 Security Requirements

As discussed earlier, we consider reputation systems satisfying the following
requirements: Correctness, Unforgeability of Reputation, Traceability, Unlinka-
bility of User Behaviour, Soundness of Reputation, Anonymity of Feedback, and
Non–frameability. We begin with an informal discussion explaining the necessity
for our security requirements and then follow up with formal definitions for the
three security requirements original to this work.

We propose Unforgeability of Reputation, a new requirement that ensures a
user cannot prove that they have a reputation for a certain time, which differs
from the one they were allocated by the CS in AllocateReputation. This is nec-
essary because when an item is unlinkable, the author’s reputation cannot be
determined. Therefore the reputation must be included alongside the item. This
requirement ensures that the sender has not lied about their reputation.

Here we introduce Unlinkability of User Behaviour, which formalises our
definition of unlinkable user behaviour, given that ReceiveFB can still form rep-
utations, as well as Traceability, which ensures that all items generated by an
adversary can be traced back to them when computing their reputation. This
is necessary because, due to the Unlinkability of User Behaviour requirement,
an attacker could attempt to subvert ReceiveFB. These requirements are remi-
niscent of the Full-Anonymity and Full-Traceability requirements [4] for group
signature schemes, and have been adapted for reputation systems.

Soundness of Reputation ensures an adversary cannot give multiple feedback
on the same item, undermining the integrity of reputation values. Anonymity
of Feedback ensures that feedback cannot be traced to the user’s identity and
is unlinkable. We have adapted these two requirements from [8] to fit our
notation2. Non–frameability, adapted from [18], ensures that an adversary can-
not forge feedback that links to another user’s feedback, so this feedback is
unfairly disregarded. The Traceability requirement from [18] is not carried over,
as we believe opening of feedback would add unnecessary complexity to the
model.

We highlight that the issuing secret key is used by the Central Server for
joining users to the scheme, and therefore for the Traceability and Soundness
of Reputation requirements the adversary cannot corrupt the isk as otherwise
they could cheat by creating unregistered users. The opening secret key is used
by the Central Server to trace items, so that reputations can be updated with
new feedback. Therefore in the Unlinkability of User Behaviour requirement the

2 Soundness of Reputation is comparable to Public Linkability and Anonymity of
Feedback is comparable to Anonymity.

436 L. Garms and E. A. Quaglia

adversary cannot corrupt the osk as otherwise they could trace signatures. This
means the CS could be split into two separate entities with different secret keys.

In Fig. 2, we provide the oracles used in our security requirements: USK,
POSTITEM, SENDFB, RECEIVEFB and ALLOCATEREP. USK allows the adversary to
obtain users’ secret keys. POSTITEM allows the adversary to obtain valid items
of a user, without their secret key. SENDFB allows the adversary to obtain valid
feedbacks of a user, without their secret key, storing outputs in the sets Gi, for
use in the Non–frameability requirement. RECEIVEFB allows the adversary to dis-
cover the output of ReceiveFB, without the opening secret key, osk. ALLOCATEREP
allows the adversary to obtain outputs of the AllocateReputation algorithm, with-
out the issuing secret key, isk.

Fig. 2. Oracles used in our security requirements

We next formally define our requirements. The full correctness conditions
as well Soundness of Reputation Values, Anonymity of Feedback, and Non-
Frameability are given in the full version [20] of this paper due to their sim-
ilarities to existing work.

Correctness: There are five conditions for correctness. Condition 1 ensures that
if AllocateReputation and PostItem are computed honestly then CheckItem will
output 1. Condition 2 ensures that if SendFB is computed honestly then VerifyFB
will output 1. Condition 3 ensures the LinkFB algorithm will output 1, with input
valid outputs of SendFB on the same item of (I, r, t, Ω), using the same user
secret key. Condition 4 ensures if an item and feedback were generated honestly
in PostItem and SendFB, then ReceiveFB updates r,L,F correctly. Condition
5 ensures that ReceiveFB fails, if the feedback input is not valid according to
VerifyFB, or links to other feedback in L according to LinkFB.

We first present our new security requirements, which are necessary as rep-
utation values are assigned to users instead of their individual unlinkable items.

Unforgeability of Reputation: A user can only prove that they have reputa-
tion r at time t, if this was allocated to them by the CS in AllocateReputation.

A New Approach to Modelling Centralised Reputation Systems 437

Fig. 3. Experiments capturing our Unlinkability of User Behaviour, Traceability and
Unforgeability of Reputation security requirements

In the context of car pooling, this security requirement means that a driver
cannot lie about their reputation when requesting a passenger.

In our security game in Fig. 3, the adversary is given the opening secret key
osk, the list of user identities ID, the USK, POSTITEM, ALLOCATEREP oracles, but
not isk, as they could run AllocateReputation. The adversary wins if they output

438 L. Garms and E. A. Quaglia

a valid item, for reputation r, time t, tracing to a corrupted user i in ReceiveFB,
without querying (i, r, t) to the ALLOCATEREP oracle, or it does not trace to any
user.

A reputation system Π satisfies Unforgeability of Reputation if for all polyno-
mial time adversaries A, all sets R and U such that |R| and |U| are polynomially
bounded in k, all r̂ ∈ R, all Aggr functions, there exists a negligible function in
k, negl, such that: Pr[Expunforge−rep

A,Π (k,R, r̂,U ,Aggr) = 1] ≤ negl.

Traceability of Users: This security requirement ensures that any valid item
an adversary produces will contribute towards their own reputation in ReceiveFB.
This also guarantees unforgeability. In the context of car pooling, this security
requirement means that feedback on a driver’s rides will always affect their own
reputation and not another’s.

In our security game in Fig. 3, the adversary is given the opening secret
key osk, the list of user identities ID, the USK oracle to corrupt users, and
the POSTITEM, SENDFB, ALLOCATEREP oracles for uncorrupted user, but not isk,
because they could cheat by generating the secret key of a new user. They must
output a valid item and feedback, and r,L,F , such that the feedback does not
link to any in L. If ReceiveFB fails, does not correctly update r,L,F , or updates
the reputation of a non corrupted user, then the adversary wins.

A reputation system Π satisfies Traceability if for all polynomial time adver-
saries A, all sets R and U such that |R| and |U| are polynomially bounded in
k, all r̂ ∈ R, all Aggr functions, there exists a negligible funtion in k, negl, such
that: Pr[Exptrace

A,Π (k,R, r̂,U ,Aggr) = 1] ≤ negl.

Unlinkability of User Behaviour: This requirement ensures other users can-
not link together the items authored by a particular user, while the CS can link
items to form reputation values based on a user’s entire behaviour. In the con-
text of car pooling, this security requirement means that all rides a driver/user
undertakes are unlinkable, so their movements cannot be tracked.

In our security game, given in Fig. 3, the adversary is given all user secret
keys, the issuing secret key isk, r, L, F , and ID, but not the opening secret
key osk, because otherwise they could run ReceiveFB, and then check which
user’s reputation changes. They are given the RECEIVEFB oracle, but its use
is restricted so that the challenge signature cannot be queried, to avoid the
attack above. This attack would not be practical in the real world, as reputations
will be updated at intervals so that multiple users’ reputations will change at
once. Future work could consider specific Aggr algorithms that would allow this
security requirement to be strengthened. In our work, to ensure our model is
generic, we define security for all possible Aggr functions.

The adversary chooses an item I, a reputation r and a time t, an updated
list of identities ID, and two users i0, i1, they are then given Ω and must decide
whether it was authored by i0 or i1.

A reputation system Π satisfies Unlinkability of User Behaviour if for all
polynomial time adversaries A, all sets R and U such that |R| and |U| are
polynomially bounded in k, and all r̂ ∈ R, all Aggr functions, there exists a

A New Approach to Modelling Centralised Reputation Systems 439

negligible funtion in k, negl, such that: Pr[Expanon−ub
A,Π (k,R, r̂,U ,Aggr) = 1] −

1/2 ≤ negl.
We now give an overview of the existing security requirements.

Soundness of Reputation Values: Users who are not enrolled should not be
able to give feedback. Reputation values should be based on only one piece of
feedback per item per user. In the context of car pooling, this security require-
ment would mitigate against an attack where a passenger repeatedly gives feed-
back on one ride, unfairly negatively influencing the driver’s reputation.

In the security game, adapted from [8], given in the full version [20], the
adversary is able to corrupt users with the USK oracle, and is given the opening
secret key osk, but not the issuing key isk, as they could use this to cheat by
generating a secret key for a new user. They can use the SENDFB, ALLOCATEREP
and POSTITEM oracles for uncorrupted users. The adversary outputs a list of
feedback on the same item. They win if they can output more valid unlinkable
feedback than the number of corrupted users, without using the SENDFB oracle.

Anonymity of Feedback: Anonymity of Feedback captures the anonymity
of feedback senders against the Central Server, and up to all but two col-
luding users. Unfortunately it is not possible for a reputation system to have
anonymity against all colluding users, whilst still satisfying Soundness of Reputa-
tion. This is because an adversary could discover whether a user i authored some
feedback ((I, r, t, Ω), fb, Φ) by running Φ′ ← SendFB(gpk,usk[i], (I, r, t, Ω),
fb′), then running LinkFB(gpk, (I, r, t, Ω), fb, Φ, fb′, Φ′). If this outputs 1, then
((I, r, t, Ω), fb, Φ) must be authored by i. In the context of car pooling, this secu-
rity requirement means that provided passengers never give multiple feedback
on the same ride, their feedback will be unlinkable.

In the security game, adapted from [8], and given in the full version [20],
the adversary is given isk, osk, and must choose two users i0 and i1, an item
(I, r, t, Ω), and feedback fb. They then must decide which of these users authored
the Φ returned to them. The adversary can corrupt users with USK, and use
SENDFB, POSTITEM and ALLOCATEREP for uncorrupted users. We do not allow the
adversary to query i0 or i1 to the USK oracle, or to query SENDFB with either i0
or i1 and (I, r, t, Ω), so that they cannot perform the above attack.

Non–frameability: This requirement, adapted from [18], ensures that an adver-
sary, who has corrupted the Central Server and all users, cannot forge feedback
that links to feedback of another user, meaning ReceiveFB detects multiple feed-
back by this user, and unfairly outputs ⊥. In the context of car pooling, this
security requirement means that a passenger cannot feedback on their own ride,
linking to the driver involved, invalidating any feedback they give.

In the security game, given in the full version [20], the adversary is given
isk, osk and can corrupt users using the USK oracle, and use the POSTITEM,
SENDFB, ALLOCATEREP oracles for uncorrupted users. To win, they must output
valid feedback not output by the SENDFB oracle, which links to feedback output
by the SENDFB oracle, authored by an uncorrupted user.

440 L. Garms and E. A. Quaglia

5 A Centralised Reputation System with Unlinkable
User Behaviour

We now give a construction for Π, a reputation system as defined in Sect. 3, sat-
isfying the security requirements we defined in Sect. 4. Our construction makes
use of two existing primitives: a Group Signature scheme [16], and Direct Anony-
mous Attestation (DAA) [12].

More specifically, we modify the group signature scheme XS [17], in XS*,
similarly to what was done in [19,24], for posting items in PostItem, CheckItem,
and AllocateReputation. The XS scheme satisfies Unlinkability of User Behaviour,
whilst still allowing reputations to be formed in ReceiveFB, using the opening
key ensuring Traceability. Furthermore our modification allows a user to prove
they were allocated a reputation at a certain time by AllocateReputation.

We then adopt the DAA scheme in [15] for the feedback component of the
reputation system in SendFB, VerifyFB, LinkFB. This perfectly fits our require-
ments, because of the user controlled linkability of the DAA scheme. Signatures
are signed with respect to a basename, and are linkable only when they have
the same author and basename. Therefore in the context of reputation systems,
by setting the basename to be the subject of the feedback, multiple feedback on
the same item can be detected, whilst still ensuring Anonymity of Feedback.

5.1 Binding Reputation to the XS Group Signature Scheme

Group Signatures [16] prove a user is a member of a group without revealing
their identity, except to those with an opening key. Security requirements were
defined for static groups [4], partially dynamic groups [6], and fully dynamic
groups [11]. The XS scheme [17] satisfies the security requirements for partially
dynamic groups [6], of Anonymity, Traceability and Non-Frameability, under the
q-SDH [9] assumption and in the random oracle model [5].

q-Strong Diffie Hellman Assumption (q-SDH). There are two versions of the
q-Strong Diffie Hellman Assumption. The first version, given by Boneh and
Boyen in [9], is defined in a type-1 or type-2 pairing setting. We use their second
version of that definition that supports type-3 pairings and was stated in the
journal version of their paper [10].

Given (g1, g
χ
1 , g

(χ)2

1 , ..., g
(χ)q

1 , g2, g
χ
2) such that g1 ∈ G1, g2 ∈ G2, output

(g
1

χ+x

1 , x) ∈ G1 × Zp\{−χ}.
We present XS*, a modification of the XS scheme [17], to allow users to

prove their reputation in PostItem. In this modification, we introduce an addi-
tional algorithm XSUpdate*, used in AllocateReputation, which outputs a token
allowing a user to update their secret key, depending on their reputation r at
time t. PostItem uses XSSign* to sign as in the original group signature scheme,
but with this updated secret key as input. CheckItem uses XSVerify*, which is
modified so that it takes (r, t) as input, and only outputs 1 if the secret key used
to generate this signature has been updated correctly with (r, t).

A New Approach to Modelling Centralised Reputation Systems 441

The XS* signature scheme consists of the algorithms given in Fig. 4, and the
group public parameters gpp1 chosen as follows. Let G1,G2,G3 be multiplicative
cyclic groups with large prime order p, with |p| = k, and with generators G1

and G2 respectively. Let t̂ : G1 × G2 → G3, be a bilinear map. The q-SDH
assumption must hold in (G1,G2). Select two hash functions: H1 : {0, 1}∗ → G1

and H2 : {0, 1}∗ → Z
∗
p. The group public parameters for XS* are: gpp1 =

(G1,G2,G3, p, t̂, G1, G2,H1,H2).

5.2 Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) [12] allows users to prove they are mem-
bers of a group. There is no opening key but there is user controlled linkability,
as defined at the beginning of this section. In DAA, a signer consists of two
separate entities: a trusted TPM and a host with higher computational power.
A DAA scheme is secure if it is indistinguishable from the ideal functionality,
given in [13]. The CDL scheme [15], is proved secure, assuming the LSRW [22],
Discrete Logarithm (DL), and DDH assumptions. We use the CDL DAA scheme

Fig. 4. The algorithms of XS*, our modification to [17]

442 L. Garms and E. A. Quaglia

Fig. 5. The algorithms of CDL [15]

in particular, because as shown in Table 1 of [14], it has the lowest estimated
running time for signing out of the schemes proved secure under the more recent
models. We prioritise efficiency of signing over verification, because in reputation
systems verification is performed by a server with more computational power.

The CDL scheme, with the TPM and host merged, consists of the algorithms
in Fig. 5, and the group public parameters gpp2. Let G1,G2,G3 be multiplicative
cyclic groups with large prime order p, with |p| = k, and with generators G1 and
G2. Let t̂ : G1 × G2 → G3, be a bilinear map. The DDH and DL problem must
be hard in G1, and the bilinear LRSW [22] problem must be hard in (G1,G2).
Select two hash functions: H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Z

∗
p. The group

public parameters for CDL are: gpp2 = (G1,G2,G3, p, t̂, G1, G2,H1,H2).

5.3 Our Construction

In Fig. 6 we give our construction for a reputation system Π, as defined in Sect. 3,
derived from the XS* scheme and the CDL scheme. We prove in the full paper
that this satisfies the security requirements from Sect. 4.

6 Evaluation of Our Construction

We first analyse the security of our construction, and then evaluate the efficiency.
We prove Theorems 1–6 and correctness in the full version of this paper [20].

In the proof of Theorem 1, we show that if an adversary A can break the
Unforgeability of Reputation experiment for our construction then we can build

A New Approach to Modelling Centralised Reputation Systems 443

Fig. 6. Our reputation system, Π

an adversary A′ that breaks the q-SDH assumption. A′ uses the q-SDH instance
input to simulate gpk, osk,usk for A so that they are identically distributed to in
the experiment, but γ in the isk is also the secret value in the problem instance.
A′ also simulates responses the AllocateRep oracle to A using the problem
instance and by programming the random oracle. A′ then uses the signature
(I, r, t, Σ) output by A to output a valid solution to the q-SDH problem.

Theorem 1 (Unforgeability of Reputation). Assuming the random oracle
model, and the q-SDH assumption, our reputation system Π satisfies Unforge-
ability of Reputation.

The proofs of the following Theorems 2 and 3, are similar to the proofs of
Traceability/Non-Frameability and Anonymity for the XS scheme [17]. We have
adapted these proofs due to the modification in XS*, and as our model is static
(users do not join or leave after the scheme begins). The proofs of Theorems 4,
5 and 6 are similar to the simulation based proof of security of CDL [15]. It is
clear due to the similarity of the security requirements for DAA schemes [15] and
the security requirements of Soundness of Reputation, Anonymity of Feedback
and Non-Frameability, that a reputation system that uses the CDL scheme will
satisfy these requirements.

Theorem 2 (Traceability). Assuming the random oracle model, and the joc
q-SDH assumption, our reputation system Π satisfies Traceability.

444 L. Garms and E. A. Quaglia

Theorem 3 (Unlinkability of User Behaviour). Assuming the random ora-
cle model, and the q-sdh assumption, our reputation system Π satisfies Unlink-
ability of User Behaviour.

Theorem 4 (Soundness of Reputation). Assuming the bilinear LRSW prob-
lem is hard in (G1,G2), and the random oracle model, our reputation system Π
satisfies Soundness of Reputation.

Theorem 5 (Anonymity of Feedback). Assuming the DDH assumption in
G1, and the random oracle model, our reputation system Π satisfies Anonymity
of Feedback.

Theorem 6 (Non–frameability). Assuming the DL assumption in G1, and
the random oracle model, our reputation system Π satisfies Non–frameability.

6.1 Efficiency

Computational Cost. We focus on PostItem, CheckItem, and SendFB, because
these are performed by users with less computational power. We note that
ReceiveFeedback only needs to check all feedback for the same item, to ensure
Soundness of Reputation, not all feedback. SendFB requires 7 exponentiations
in G1, and 2 hash computations which is a low computational cost.

There is an extra cost, compared to [8,18], required to achieve Unlinkability
of user behaviour, in PostItem and CheckItem. We note that in [8,18] whenever a
user posts an item they must receive a new secret key from the managing author-
ity, which is not required by our reputation system. Assuming pre–computation,
PostItem requires 8 exponentiations in G1, 3 exponentiations in G3, and 1 hash
computation. CheckItem requires 2 computations of t̂, 10 exponentiations in G1,
2 exponentiations in G2, 2 exponentiations in G3, 2 hash computations.

Communication Overhead. Using updated parameters for curves that give
128 bit security [27] and point compression, the XS* signature Ω has length 432
bytes and the CDL signature Φ has length 336 bytes. Therefore the communica-
tion overhead when sending feedback with our construction is 768 bytes, com-
pared to 624 bytes in [8] using the same curves. This is a relatively small increase
given the additional security of Unlinkability for user behaviour achieved. Our
communication overhead compares well to [18] where signatures have length
O(k log(n)), as shown in [21], compared to our signatures of length O(k).

6.2 Conventional Attacks on Reputation Systems

There are several attacks outside the scope of this work such as: On-Off
attacks, where adversaries behave honestly/dishonestly alternatively, White-
washing attacks, where adversaries leave and rejoin to shed a bad reputation,
Sybil attacks, where users give dishonest feedback, and Self Rating attacks, where
adversaries positively rate a large number of their own items.

A New Approach to Modelling Centralised Reputation Systems 445

Sybil attacks are partly mitigated by the Soundness of Reputation require-
ment. A solution for Whitewashing and Sybil attacks could be to make joining
a scheme expensive. Self Rating attacks could be mitigated by making all users
give the feedback “*” on their own items that could be used to link to self rat-
ings, or be punished by the CS. The Central Server can also punish authors of
items that do not represent a valid transaction.

7 Conclusion

We have introduced and formally defined a new security model for centralised
reputation systems, where user behaviour is and unlinkable. This represents a
shift from previous models which aims at more accurately capturing the real-
world requirements of reputation systems, used by many on a daily basis.

We have provided a concrete construction which satisfies the new security
requirements with a low additional efficiency cost. As a next step, we are consid-
ering the extension of our model to allow for dynamic join of users, similarly to
[6], as well as a concrete implementation of the system to be used, for instance,
by a car-pooling app.

References

1. Amazon’s third-party sellers ship record-breaking 2 billion items in 2014, but
merchant numbers stay flat. https://techcrunch.com/2015/01/05/amazon-third-
party-sellers-2014/. Accessed 1 Apr 2019

2. Travis kalanick says uber has 40 million monthly active riders. https://
techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-
active-riders/. Accessed 1 Apr 2019

3. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol.
5134, pp. 202–218. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-70630-4 13

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, 3–5 November 1993, pp.
62–73. ACM Press, Fairfax (1993)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

7. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 400–407. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14577-3 35

8. Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly linkable reputation
systems. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 478–
488. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 29

https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/
https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/978-3-540-70630-4_13
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-642-14577-3_35
https://doi.org/10.1007/978-3-642-14577-3_35
https://doi.org/10.1007/978-3-662-47854-7_29

446 L. Garms and E. A. Quaglia

9. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

10. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

11. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

12. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, 25–29 October 2004, pp.
132–145. ACM Press, Washington (2004)

13. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One
TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation.
In: 2017 IEEE Symposium on Security and Privacy, SP, pp. 901–920. IEEE (2017)

14. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 10

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

17. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006). https://doi.org/10.1007/11958239 13

18. Kaafarani, A.E., Katsumata, S., Solomon, R.: Anonymous reputation systems
achieving full dynamicity from lattices. In: Twenty-Second International Confer-
ence on Financial Cryptography and Data Security (forthcoming)

19. Garms, L., Martin, K., Ng, S.-L.: Reputation schemes for pervasive social net-
works with anonymity. In: Proceedings of the fifteenth International Conference
on Privacy, Security and Trust (PST 2017), IEEE (2017)

20. Garms, L., Quaglia, E.A.: A new approach to modelling centralised reputation
systems. Cryptology ePrint Archive, Report 2019/453 (2019). https://eprint.iacr.
org/2019/453

21. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

22. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46513-8 14

23. Mármol, F.G., Pérez, G.M.: Security threats scenarios in trust and reputation
models for distributed systems. Comput. Secur. 28(7), 545–556 (2009)

24. Ng, S.-L., Martin, K., Chen, L., Li, Q.: Private reputation retrieval in public - a
privacy-aware announcement scheme for vanets. IET Inf. Secur. (2016). https://
doi.org/10.1049/iet-ifs.2014.0316

https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/11958239_13
https://eprint.iacr.org/2019/453
https://eprint.iacr.org/2019/453
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1049/iet-ifs.2014.0316
https://doi.org/10.1049/iet-ifs.2014.0316

A New Approach to Modelling Centralised Reputation Systems 447

25. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized addi-
tive reputation systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust
2004. LNCS, vol. 2995, pp. 108–119. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24747-0 9

26. Petrlic, R., Lutters, S., Sorge, C.: Privacy-preserving reputation management. In:
Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
2014, pp. 1712–1718. ACM, New York (2014)

27. Scott, M.: Pairing implementation revisited. Cryptology ePrint Archive, Report
2019/077 (2019). https://eprint.iacr.org/2019/077

28. Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: AnonRep: towards
tracking-resistant anonymous reputation. In: 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2016), pp. 583–596. USENIX
Association (2016)

https://doi.org/10.1007/978-3-540-24747-0_9
https://doi.org/10.1007/978-3-540-24747-0_9
https://eprint.iacr.org/2019/077

Author Index

Abdelkhalek, Ahmed 273
Abdolmaleki, Behzad 99
AlKhzaimi, Hoda 352
Appelbaum, Jacob 3
Au, Man Ho 139

Baghery, Karim 99, 118
Bai, Shi 181
Balli, Fatih 311
Banik, Subhadeep 311
Bardeh, Navid Ghaedi 297
Bellini, Emanuele 79
Ben-Azza, Hussain 250
Berti, Francesco 229
Borba, Filipe 79
Botros, Leon 209
Budroni, Alessandro 41

Canard, Sébastien 21
Caullery, Florian 79
Custódio, Ricardo 391

Das, Dipayan 139

El Kouch, Rachid 250
ElSheikh, Muhammad 273

Ferreira, Loïc 21

Garms, Lydia 429
Ghadafi, Essam 409

Harmouch, Youssef 250

Jiang, Haodong 370

Kannwischer, Matthias J. 209

Lipmaa, Helger 99

Manzano, Marc 79
Martindale, Chloe 3
Massart, Clément 333
Mateu, Victor 79
Miller, Shaun 181

Pereira, Olivier 229

Quaglia, Elizabeth A. 429

Ramesh, Sumesh Manjunath 352
Rønjom, Sondre 297

S. P. Bittencourt, Matheus 391
Schwabe, Peter 209
Shehhi, Hamad Al 79
Siim, Janno 99
Standaert, François-Xavier 229, 333

Tenti, Andrea 41

Vitse, Vanessa 56

Walter, Michael 157
Wang, Ke 370
Wen, Weiqiang 181
Wu, Peter 3

Youssef, Amr M. 273

Zając, Michał 99
Zambonin, Gustavo 391
Zhang, Zhenfei 139

	Preface
	Organization
	Abstracts of Invited Talks
	So How Hard Is Solving Hard Lattice Problems Anyway?
	Scaling Blockchains with Off-Chain Protocols
	Contents
	Protocols
	Tiny WireGuard Tweak
	1 Introduction
	2 Realistic Adversary Concerns
	3 WireGuard Overview
	3.1 WireGuard Implementations
	3.2 WireGuard as a Tunneling Protocol
	3.3 WireGuard's Cryptographic Handshake
	3.4 Handshake Details

	4 Traffic Analysis
	4.1 Example WireGuard Protocol Run
	4.2 Packet Formats

	5 Security and Privacy Issues
	5.1 Identity Hiding Weakening
	5.2 Quantum Attack
	5.3 A Brief Comment on Extra Security Options

	6 Blinding Flows Against Mass Surveillance
	6.1 Modified Protocol Costs
	6.2 Alternative Designs and Future Work

	7 Conclusions
	References

	Extended 3-Party ACCE and Application to LoRaWAN 1.1
	1 Introduction
	2 LoRaWAN 1.1
	2.1 Overview of the Protocol
	2.2 Cryptographic Flaws in LoRaWAN 1.1
	2.3 The Need for a Suitable Security Model

	3 Extended 3-ACCE Model
	3.1 Execution Environment
	3.2 Security Definitions
	3.3 Building 3-ACCE from 2-ACCE

	4 3-ACCE Security with LoRaWAN 1.1
	4.1 2-Party Protocol P in LoRaWAN 1.1 is 2-ACCE Secure
	4.2 Meeting 3-ACCE Security

	5 Conclusion
	References

	Post-quantum Cryptography
	The Mersenne Low Hamming Combination Search Problem Can Be Reduced to an ILP Problem
	1 Introduction
	1.1 Our Contribution/Outline

	2 Preliminaries
	2.1 Previous Attacks
	2.2 The Beunardeau et al. Attack on MLHCombSP
	2.3 Integer Linear Programming

	3 ILP Reduction
	3.1 Cyclic Shifts
	3.2 Portion of F
	3.3 Merging

	4 A New Family of Weak Keys
	5 Conclusions and Future Work
	References

	Simple Oblivious Transfer Protocols Compatible with Supersingular Isogenies
	1 Introduction
	2 Simple Diffie–Hellman Based Oblivious Transfer Protocols
	2.1 The Oblivious Transfer Protocol of Wu, Zhang and Wang
	2.2 A New, Simple DH-Based Oblivious Transfer Protocol
	2.3 Security Against a Malicious Sender
	2.4 Semantic Security Against a Malicious Receiver
	2.5 Comparison Between the Two Schemes

	3 SIDH-based Oblivious Transfer
	3.1 Background on (C)SIDH
	3.2 Basic Outline
	3.3 A First Protocol
	3.4 The Supersingular Isogeny Version of the Wu–Zhang–Wang Protocol

	4 Security Analysis
	4.1 Malicious Alice
	4.2 Malicious Bob
	4.3 Security Overview in the CSIDH Setting

	5 Conclusion
	References

	An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric
	1 Introduction
	1.1 Our Contribution
	1.2 Structure

	2 Preliminaries and Notations
	2.1 Decisional Rank Syndrome Decoding (DRSD) Problem
	2.2 Hash Functions
	2.3 Public-Key Encryption
	2.4 INDCPA and INDCCA notions
	2.5 Quantum Random Oracle Model (QROM)

	3 Loidreau's Proposal
	4 Our Proposal
	5 Security
	5.1 Security Proof
	5.2 Performance and Comparison

	6 Conclusions
	References

	Zero-Knowledge
	UC-Secure CRS Generation for SNARKs
	1 Introduction
	2 Preliminaries
	3 Multi-party CRS Generation
	4 UC-Secure CRS Generation
	5 Secure MPC for NIZKs
	References

	On the Efficiency of Privacy-Preserving Smart Contract Systems
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 CC : A Framework for Constructing UC-Secure zk-SNARKs
	2.3 Groth and Maller's zk-SNARK

	3 An Efficient UC-Secure zk-SNARK
	3.1 Construction
	3.2 Efficiency
	3.3 Security Proof

	4 On the Efficiency of Smart Contract Systems
	5 Open Discussions
	References

	Lattice Based Cryptography
	Ring Signatures Based on Middle-Product Learning with Errors Problems
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notations
	2.2 The Middle-Product Operation
	2.3 Middle-Product Learning with Errors Problem
	2.4 One Time Linkable Ring Signatures
	2.5 Security of Linkable Ring Signatures

	3 The Proposed One-Time Linkable Ring Signature
	3.1 Parameter Generation Algorithm
	3.2 Key Generation Algorithm
	3.3 Signature Generation Algorithm
	3.4 Signature Verification Algorithm
	3.5 Signature Linking Algorithm

	4 Analysis of the Scheme
	4.1 Correctness of Signature Generation Algorithm
	4.2 Correctness of Signature Linking Algorithm

	5 Security Analysis
	5.1 One-Time Unforgeability
	5.2 Anonymity
	5.3 One-Time Linkability
	5.4 Non-Slanderability

	6 Parameter Selection
	7 Conclusion
	References

	Sampling the Integers with Low Relative Error
	1 Introduction
	2 Generic Samplers
	2.1 Rejection Sampling
	2.2 Inversion Sampling
	2.3 Alias Method
	2.4 Knuth-Yao Sampling

	3 Specialized Algorithms
	3.1 BLISS Sampler
	3.2 Karney's Algorithm
	3.3 Experimental Results

	References

	A Refined Analysis of the Cost for Solving LWE via uSVP
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Euclidean Lattices
	2.2 Lattice Problems
	2.3 Lattice Reduction
	2.4 Lattice Attack for LWE

	3 Revisiting the Cost of Solving uSVP
	3.1 Two Estimates
	3.2 Comparison of Estimates with Various (n, Q,)
	3.3 Smaller Dimension
	3.4 Further Experiments on the Projection Length

	4 Gap in uSVP from LWE
	5 Second Intersection
	5.1 On Smaller Blocksize
	5.2 Experiments on
	5.3 Convergence of

	References

	New Schemes and Analysis
	Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4
	1 Introduction
	2 Preliminaries
	2.1 Kyber v1
	2.2 Kyber V2
	2.3 ARM Cortex-M4

	3 Optimizing for Speed
	3.1 Link-Time Optimization
	3.2 Speeding up the NTT
	3.3 Optimizing Matrix-Vector Multiplication
	3.4 Optimized Keccak
	3.5 Kyber V2

	4 Decreasing Stack Usage
	5 Results
	5.1 NTT and Polynomial Multiplication
	5.2 Kyber.CCA
	5.3 Profiling
	5.4 Comparison to Other PQC Schemes on Cortex-M4

	References

	Reducing the Cost of Authenticity with Leakages: a CIML2-Secure AE Scheme with One Call to a Strongly Protected Tweakable Block Cipher
	1 Introduction
	2 Background
	2.1 Primitives: Hash Functions, PRFs and STPRPs
	2.2 Authenticated Encryption (AE)
	2.3 Security for Authenticated Encryption
	2.4 Ciphertext Integrity with Misuse and Leakage in Encryption and Decryption (CIML2)
	2.5 Security When Unverified Plaintexts Are Released (RUPAE)

	3 Design Specifications and Previous Solutions
	4 Design Rationale of the Commit-Encrypt-Send-the-Key(CONCRETE)
	5 Security Results for CONCRETE: CIML2, AE and RUPAE
	5.1 CIML2 Security
	5.2 AE Security
	5.3 The RUPAE Security

	6 Confidentiality with Leakage of CONCRETE
	6.1 Leakage Model: Simulatability
	6.2 Other Leakage Assumptions
	6.3 The Eavesdropper Security with Leakage (EavLDs) Security of a Single Round Idealized Version of PSV
	6.4 CPAL2
	6.5 CCAL2

	7 Conclusion
	References

	An Improvement of Correlation Analysis for Vectorial Boolean Functions
	1 Introduction
	2 Preliminaries and Notations
	3 Related Work
	4 Aim and Motivation
	5 The Correlation Link Between F, g and gF
	6 The Correlation Analysis
	7 A Discussion About the Maximum Correlator
	8 Conclusion
	A Appendix-A
	B Appendix-B
	References

	Block Ciphers
	On MILP-Based Automatic Search for Differential Trails Through Modular Additions with Application to Bel-T
	1 Introduction
	2 XOR-Differential Characteristics of Modular Addition
	2.1 Examples of Incompatible Conditions

	3 New MILP Model for Differential Characteristics of Modular Addition
	4 Application on Bel-T
	4.1 Bel-T Specification
	4.2 MILP-Based Search for Differential Characteristic of Bel-T
	4.3 3-round Differential Characteristic
	4.4 Validity of the Differential Characteristic

	5 Differential Attack on 417-Round Reduced Bel-T-256
	5.1 Pre-computation Phase
	5.2 Online Phase
	5.3 Attack Complexity and Success Probability

	6 Conclusion
	References

	Practical Attacks on Reduced-Round AES
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of this Paper and Main Results

	2 Preliminaries
	2.1 A Short Description of AES
	2.2 Subspace Trail on AES
	2.3 Zero-Difference for 4-Round AES

	3 5-Round Key-Independent Distinguisher
	4 Key Recovery Attack on 5-Round AES with a Single Secret S-Box
	5 Conclusion
	References

	Six Shades of AES
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Contribution and Organization

	2 Background and Preliminaries
	2.1 Encryption/Decryption Overview
	2.2 Key Expansion

	3 One Circuit to Rule Them All
	3.1 Input, Output Formats
	3.2 Components
	3.3 High Level Description of the Design
	3.4 Elementary Operations of Layers
	3.5 Generic Encryption/Decryption Overview
	3.6 Key Expansion Details

	4 Performance Evaluation and Conclusion
	References

	Side-Channel Attacks and Countermeasures
	Revisiting Location Privacy from a Side-Channel Analysis Viewpoint
	1 Introduction
	2 Definitions and Framework
	3 Threat Models and Metrics
	4 Experimental Validation and Discussion
	A Additional Figure
	References

	Side Channel Analysis of SPARX-64/128: Cryptanalysis and Countermeasures
	1 Introduction
	2 Background
	2.1 Preliminaries to Power Analysis (CPA)
	2.2 Threshold Implementation
	2.3 Description of SPARX

	3 CPA on SPARX-64/128: Full Key Recovery
	3.1 Attack on SPARX Round Function
	3.2 Full Key Recovery on SPARX-64/128

	4 SPARX Hardware Implementation
	4.1 Serialized Round Function
	4.2 Serialized Linear-Mix Layer
	4.3 Serialized SPARX

	5 Threshold Implementation of SPARX
	6 Results
	6.1 Full Key Recovery Results
	6.2 FPGA Implementation of SPARX-64/128

	7 Conclusion and Future Work
	References

	Analysis of Two Countermeasures Against the Signal Leakage Attack
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Organization

	2 Preliminaries
	3 Revisit the Signal Leakage Attack on DING12 and Its Countermeasures
	3.1 The Signal Leakage Attack on DING12
	3.2 Two Countermeasures Against the Signal Leakage Attack

	4 Key Mismatch Attack on KERK and the PRKE in Key Reuse Mode
	4.1 Revisit Key Mismatch Attack
	4.2 Key Mismatch Attack on KERK
	4.3 Key Mismatch Attack on the PRKE in Key Reuse Mode

	5 Countermeasures Against Key Mismatch Attack
	5.1 An Improved KERK
	5.2 An Improved PRKE in Key Reuse Mode
	5.3 Discussion

	6 Conclusion
	References

	Signatures
	Handling Vinegar Variables to Shorten Rainbow Key Pairs
	1 Introduction
	2 Preliminaries
	2.1 Original Rainbow Signature Scheme
	2.2 Related Works

	3 Our Proposal
	3.1 Modification to the Original Scheme
	3.2 Application to the EF-CMA Variant
	3.3 Invertibility of F
	3.4 Similarity of Multiple Signatures
	3.5 Security Analysis

	4 Enhancement of Existing Schemes
	5 Conclusion
	References

	Further Lower Bounds for Structure-Preserving Signatures in Asymmetric Bilinear Groups
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Digital Signatures
	2.3 Structure-Preserving Signatures

	3 Impossibility of Generic-Signer EUF-CMA SPS Schemes for a Vector of >1 Messages with 2-Element Unilateral Signatures
	4 Impossibility of sEUF-CMA (Against q>1 Sign Queries) SPS Schemes with 2-Element Signatures
	5 sEUF-CMA-RMA Scheme for Diffie-Hellman Vectors
	References

	A New Approach to Modelling Centralised Reputation Systems
	1 Introduction
	1.1 Motivation and Contribution

	2 Related Work
	3 Defining a Reputation System
	4 Security Requirements
	5 A Centralised Reputation System with Unlinkable User Behaviour
	5.1 Binding Reputation to the XS Group Signature Scheme
	5.2 Direct Anonymous Attestation
	5.3 Our Construction

	6 Evaluation of Our Construction
	6.1 Efficiency
	6.2 Conventional Attacks on Reputation Systems

	7 Conclusion
	References

	Author Index

