
Chapter 8
Using Symbolic Computational
Dynamics as an Aid to Design

Matthew P. Cartmell and Niloufar Motazedi

Abstract The topic of Symbolic Computational Dynamics, as presented here, has
been motivated by the utility of approximate analytical solutions for reduced order
models, and the power of computers to copewith the challenges of both problem scale
and automation. Application has traditionally been limited by the algebra needed for
problems of more than a few coupled coordinates, making such problems excellent
candidates for automation through symbolic computation. But there is a lot of useful
information that is naturally lost when doing this, due to the on-going processes of
algebraic simplification, the different mathematical-physical processes behind the
small parameter, and defining relative strengths of physically based terms. We offer
a novel symbolic computational process that applies a semi-automated asymptotic
method for solution that also retains all information, leading to a first generation
approach to the global visualisation of problems in dynamics.

Keywords Nonlinear dynamics · Perturbation methods · Symbolic computation ·
Design

8.1 Introduction

Research into Symbolic Computational Dynamics (SCD) by Cartmell and Khanin
began in 1997 under this title and owes something of its heritage to earlier work
carried out by others, notably Rand et al., over a period going back to the early nine-
teen eighties, mainly on the computation of perturbation methods for approximate
analytical solutions to reduced order differential equation models. There are several

M. P. Cartmell (B)
Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1
1XJ, UK
e-mail: matthew.cartmell@strath.ac.uk

N. Motazedi
Bombardier Transportation UK Ltd., Litchurch Lane, Derby DE24 8AD, UK
e-mail: motazedi.n@gmail.com

© Springer Nature Switzerland AG 2020
I. Kovacic and S. Lenci (eds.), IUTAM Symposium on Exploiting Nonlinear
Dynamics for Engineering Systems, IUTAM Bookseries 37,
https://doi.org/10.1007/978-3-030-23692-2_8

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23692-2_8&domain=pdf
mailto:matthew.cartmell@strath.ac.uk
mailto:motazedi.n@gmail.com
https://doi.org/10.1007/978-3-030-23692-2_8


82 M. P. Cartmell and N. Motazedi

asymptotic methods that can be very usefully applied to nonlinear dynamics prob-
lems when they are represented in differential equation form, including the method
of Struble, the Lindstedt–Poincaré method, applications of the Volterra series, Har-
monic Balance, the method of multiple scales, and the method of direct separation
of motions, amongst others. So, in general, approximate analytical solutions can
usually be found for reasonably set up reduced-order differential equation models,
given certain conditions and constraints. Such solutions can accurately represent
the dynamics of the problem—within the limitations of the approximations made.
Ease of application of these potentially powerful methods is often limited by the
sheer scale of algebraic manipulation needed for nonlinear problems that involve
more than a few coupled coordinates. On this basis they are excellent candidates
for semi-automation through symbolic computation. The first published research on
the formal use of computers to solve symbolic problems in nonlinear dynamics is
attributable to Rand [1] in 1984 who introduced the MACSYMA language for this
purpose, and then to Rand and Keith who explored normal forms and centre mani-
fold calculations using MACSYMA in 1985 [2], noting that there are several other
significant and relevant publications by Rand et al. from around this time. By 1987
Rand and Armbruster had successfully brought together bifurcation theory, pertur-
bation methods, and computer algebra in a major new book [3]. Rand continued to
add to this pioneering body of work with a further book on computer algebra applied
to nonlinear dynamics in 1994 [4]. Through these seminal works Rand effectively
pioneered, and then firmly established, the formal application of symbolic computa-
tion to the principal mathematical topics that are used right across the general area of
applied dynamics. Recently Professor Rand has issued a comprehensive treatment of
nonlinear vibration in the form of published lecture notes, fromwhich virtually all the
theories and treatments required for nonlinear analysis are usefully and practically
summarised for the practitioner [5].

The long-standing motivation behind the research presented in this paper is
an acknowledgement that certain forms of mathematical information are naturally
lost when analytically solving the nonlinear differential equations that realistically
describe problems encountered in dynamics. This lost information has potential use
because of what it canmean physically. One example of this loss is simply that which
occurs due to the on-going processes of algebraic simplification. Another is due to
the different mathematical-physical reasoning processes that underpin, say, the use
of the small perturbation parameter, as it appears and then re-appears throughout an
analysis. A third is the way in which we define the relative strengths of physically
based terms when they are first introduced into the equations of motion, and the
repercussions of getting this partially, or even completely wrong. So, the objective
in this research has been to create a symbolic computational process that efficiently
applies a semi-automated asymptotic method in a correct, consistent, and adaptable
manner. The process was also intended to provide a facility for the identification and
retention of all the mathematical-physical information generated that could finally
be represented back to the user in an easy-to-interpret visualisation.

The origins of the research specifically reported here go back to a series of lengthy
second order multiple scales analyses undertaken by Cartmell and completed in 1984
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[6]. That work stimulated many informal and independent experiments in the sym-
bolic codification of perturbation schemes, in the intervening period up to 1997. This
led to the award to Cartmell, then based at the University of Edinburgh, of the first
of several research grants from 1997 onwards. New forms of symbolic software in
MathematicaTM emerged from the work done by Cartmell and Khanin under this
funding, enabling both serial and parallel computation [7–10]. The work was trans-
ferred to the University of Glasgow in 1998 with further research funding awarded
from 2000 and this led to the next generation of programs and the burgeoning idea of
‘term-tracking’ [11–13]. Funded research continued up to 2008. The work was then
transferred in 2012 to the University of Sheffield, by which time relatively advanced
symbolic solution codes had been developed by Khanin, Forehand, and Cartmell, all
written in the MathematicaTM language. In addition preliminary research had also
been undertaken by Cartmell and Forehand on understanding the challenges inherent
in the visualisation of the new information generated by this sort of computation.
Motazedi joined the project in 2013 and she subsequently revised and developed
the solver software and created an entirely new term-tracker package initially based
on some of the ideas that had been proposed by Cartmell, Khanin, and Forehand.
Motazedi then went on to devise, build, and test new software for visualisation of
symbolic data [14, 15], again in MathematicaTM. Motazedi also took on the sub-
stantial problem of writing semi-automated symbolic code for the treatment of the
modulation equations that arise naturally within the perturbation method of multiple
scales, and she devised a generic and adaptable computational structure for handling
these important equations systematically in order to complete the solution procedure
[14]. These activities have since led to the identification by the authors of Symbolic
Computational Dynamics (SCD) as a convenient umbrella term for their approach
to this general area of research. The authors make no claim for any wider uptake of
this term in this context, as yet.

The choice ofMathematicaTM as the preferred programming language was strate-
gic and made by Cartmell back in the mid 1990s. The thinking behind this decision
was generally influenced by the very powerful high-level nature of this language,
the fact that it’s always been aimed fundamentally at symbolic programming, and
because of the many specific features of the language that have lent themselves
directly to logical implementations for SCD. The current generation of programs
operate as digital interactive notebooks within the MathematicaTM interface. This
provides an essential level of flexibility for the user so that s/he can apply any
assumption or simplification when it is required. The current generations of code
allow considerable user interaction and customisation of the core solver and term-
tracker, to the extent that differential equations can be added at will, and the internal
solution procedures themselves can be customised easily if necessary. This offers a
great deal of generality and flexibility in use.
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8.2 Symbolic Computational Dynamics

8.2.1 The Process of Symbolic Computational Dynamic
Solution

Theprinciples behindSCDare that the problemshould be representable in differential
equation form and that the equation(s) should lend themselves to asymptotic analysis,
also that the analysis method should be adaptable yet algorithmic enough in structure
to enable a symbolic computer code to be written to do all the mathematics reliably
and accurately yet also adaptively. In addition SCD, as we define it, requires a facility
for identifying, encoding uniquely, and then tracking all the mathematical-physical
operations within the solution procedure so that a record of the whole process can
be generated from which useful visualisations and information can be extracted.
The end result is, for example, a typical perturbation analysis in equation form,
which is supplemented by a graphic that shows the interconnectedness of the stages
within the analysis—in the context of the system variables, operators, constants, and
parameters. A detailed mathematical study has been provided by Motazedi [14] and
in summarised form in [15], and these two references provide the principal sources for
what follows. The utility of the SCD approach depends strongly on the format of the
graphic, and this remains an open topic for research with current ideas summarised
later. The architecture of an SCD solver is given in Fig. 8.1.

The term-tracker module is based on the authors’ Source and Evolution Encoding
Method (SEEM) and the encoding strategy is summarised in Table 8.1.

An example of how this encoding logic is applied in practice is given in
Eqs. (8.1)–(8.5) in which the governing differential equation of motion for a para-
metrically excited pendulum and the associated multiple scales expansions are all
shown in encoded form,

Fig. 8.1 SCD solver architecture [14]
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Table 8.1 SEEM logic summary [14]

Encoding level Description Visualisation

First level Origin of the equation and the perturbation order (i, j)

Second level First level + equation number in which it becomes explicit (i, j, k)

Third level Second level + equation number in which the explicit
form is modified

(i, j, k, l)

Compound-I When two quantities such as e and i subsume, two or more
individual e and i terms

(∗, i)

Compound-II (i, j, k, l)1 expadd
∗(i, j, k, l)2 (∗, klatest )

(i, j, k, l)3 expadd(i, j, k, l)4 (#, klatest )

(i, j, k, l)5 expadd(i, j, k, l)6
(
$, klatest

)

(i, j, k, l)7 expadd(i, j, k, l)8 (£, klatest )

Encoding of
signs

Signs are not normally encoded unless they are created as
the result of an algebraic operation. The divisor is not
encoded as well

(i, j, k, l)

θ̈ + 2εβ θ̇
︸ ︷︷ ︸
(1,1)

+
⎛

⎜
⎝ 1︸︷︷︸

(1,0)

− εqω2

︸ ︷︷ ︸
(1,1)

cos( ω︸︷︷︸
(1,0)

T0)

⎞

⎟
⎠θ + εγ

︸︷︷︸
(1,1)

θ3 = 0 (8.1)

θ(τ, ε) = θ0︸︷︷︸
(2,0)

+ εθ1︸︷︷︸
(2,1)

+O
(
ε2

)
(8.2)

d

dt
= D0︸︷︷︸

(3,0)

+ εD1︸︷︷︸
(3,1)

+O
(
ε2

)
(8.3)

d2

dt2
= D2

0︸︷︷︸
(4,0)

+ 2εD0D1︸ ︷︷ ︸
(4,1)

+O
(
ε2

)
(8.4)

θ3 = θ3
0︸︷︷︸

(2,0,5)

+O(ε). (8.5)

The time domain solution is given by Eq. (8.6), with full SEEM encoding shown,

θ (τ, ε) = a[T1]︸ ︷︷ ︸
(20,0,31)

cos(

⎡

⎢
⎢
⎢
⎣

1
(9,0,31)

−
2︸︷︷︸

(13,0,34)

2︸︷︷︸
(21,0)

⎤

⎥
⎥
⎥
⎦

τ + 1

2︸︷︷︸
(21,0)

⎡

⎢
⎣( 2︸︷︷︸

(13,0)

− 2︸︷︷︸
(9,0)

+ ω︸︷︷︸
(14,0,34)

)τ + ψ
︸︷︷︸
(24,0)

⎤

⎥
⎦)

−
ε︸︷︷︸

(2,1)

ε︸︷︷︸
(1,1,19)

ε︸︷︷︸
(2,1,19)

1

23︸︷︷︸
(20,0)

1

8︸︷︷︸
(19,0)

γ
︸︷︷︸

(1,1,19)

a[T1]3︸ ︷︷ ︸
(20,0)

cos( 3︸︷︷︸
(1,0,10,19)

τ
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+
3︸︷︷︸

(20,0,36)

2︸︷︷︸
(21,0)

⎡

⎢
⎣( 2︸︷︷︸

(13,0)

−2︸︷︷︸
(9,0)

− 2︸︷︷︸
(13,0,34)

ω︸︷︷︸
(14,0,34)

)τ − ψ
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(24,0)

⎤

⎥
⎦)

+
ε︸︷︷︸

(2,1)

ε︸︷︷︸
(1,1,19)

ε︸︷︷︸
(2,1,19)

qω2

︸︷︷︸
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1

2︸︷︷︸
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1
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)
(8.6)

In order to generate Eq. (8.6) an appropriate form of the method of multiple
scales for this problem is run automatically by the solver so that every symbolic and
numerical computation can be picked up and recorded by the term-tracker, running in
parallel, to generate a completely encoded approximate solution in the time domain,
supplemented by the modulation equations from which amplitudes and phases can
be obtained. The time domain solution for a first order multiple scales expansion
with encoding is given in Eq. (8.6). The as-generated encoding data is clearly quite
unwieldy in form but it can still be used to identify the sources of each term, and
to make a connection back to the physical conceptualisation of the problem. The
specific meaning of the encoding information is directly dependent on the solution
procedure and the way that has been introduced mathematically. The complexity
of the SEEM generated encodings invariably increases significantly as the problem
solution develops. The cancellation of parameters with the solution procedure that
would naturally take place in an efficient and elegant algebraic process is deliberately
avoided in SEEM, unless both the quantity and the first two encoding digits are iden-
tical. The small parameters that are introduced at different points early in a multiple
scales perturbation analysis do not necessarily have the same numerical value, and
the encoding reflects this. However the reverse may be true where different instances
of the small parameter end up being encoded differently (because of their historical
treatment) but where in fact these are the same small parameter numerically. SEEM
accommodates all such possibilities in all the necessary contexts. The programming
strategy for a generic SEEM analysis is given in full in [14] and summarised in [15],
and is based on 28 different algorithms which have been created and then coded in
MathematicaTM in order to implement the solver/tracker.
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8.2.2 Visualisation

There are two requirements for an SCD visualiser, these being the need to repre-
sent the complete form of information and also the practical requirement for this
information to be immediately readable, understandable and assimilable. As there is
a fundamental conflict between these requirements a series of pragmatic decisions
ultimately led to the visualisation graph format of Fig. 8.2. This relates directly to
Eqs. (8.1)–(8.5) and shows the user the equations in a layered sequential form together
with the link between Eqs. (8.2) and (8.5), via encoding (2,0,5). The software has
since been configured to allow selective viewing of the analysis with zoom and con-
verge features providing concentrated visualisation of the finest detail, together with
controllable zoom-out for the bigger picture. Automated colour and line thickness
features have been included to differentiate between links based on information flows
based on different perturbation order and systematic definitions of term complexity.
A statistical package has also been devised to provide a strength factor metric visu-
alised in the form of shaded circles of different diameter. This allows comparisons
to be made between the relative importance of terms within the same equation and
also with terms as they relate to other terms in other equations, travelling forwards
or backwards through the analysis. This is shown in Fig. 8.3.

The visualisations of Figs. 8.2 and 8.3 are based on a sequential hierarchy, in
which the analysis proceeds graphically from top right to bottom left, however
Fig. 8.4 shows an example fromone highly promising avenue of research inwhich the
sequential constraint is dropped in favour of an alternative algorithm which presents
the problem three dimensionally and emphasises the interconnectedness as a domi-
nant feature. This visualisation could be more useful than the sequential approach,
when combinedwith the strength factormetric and full three dimensional positioning
and automated rotation about a user specifiable axis. The left hand image in Fig. 8.4
is a plan view of the interconnectedness visualisation showing two distinct regions,
which relate to the two parts of the analysis of a 2 DoF autoparametric oscillator
(physically representing a pair of coupled beams).

Most of the analysis connected with the primary beam is in and around the upper
left area and conversely for the secondary beam in the lower right area. The right hand

Fig. 8.2 Visualisation graph for the first five equations of the parametrically excited pendulum
example (refer to Eqs. (8.1)–(8.5)) [14]
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Fig. 8.3 An implementation of the strength factor metric in the early stages of the parametrically
excited pendulum example [14]

Fig. 8.4 Two images of typical SCD output for a 2 DoF autoparametric oscillator in two different
elevations [14]
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image shows the same graphic when rotated into a side elevation (noting that these
definitions of elevation do not relate in any obvious way to any physical aspects
of the problem, they are simply convenient terms for distinguishing between the
views shown). Closer investigation of the two images reveals a cylindrical structure
emerging for each physical part of the problem.

8.3 Conclusions

This research has taken place over a long period and has led to a series of compu-
tational strategies which can generate user graphics for the dynamics. The rules of
interpretation are evolving and have not been stated here in detail. The work confirms
that the fundamental mathematical model contains a richness of information that is
normally not seen, and if this is converted into an explicit form it can be used to
provide a supplement to the conventional symbolic and/or numerical solution to the
problem. This could offer insights into interrelationships within the mathematical
and physical representations of the system, provided the graphics can be interpreted
meaningfully and quickly. These remaining challenges of user interpretation are
currently under intensive study.
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