
Chapter 7
Targeted Nonlinear Energy Transfer
for Electroacoustic Absorbers

D. Bitar, A. Ture Savadkoohi, C.-H. Lamarque, E. Gourdon and M. Collet

Abstract In order to investigate the effects of coupling a nonlinear electrical shunt
circuit to a loudspeaker terminal, a representative two degrees of freedom (dof) sys-
tem has been considered. It consists of a main system describing the displacement
of the loudspeaker membrane, which is linearly coupled to a Nonlinear Energy Sink
(NES) with a small mass compared to the principal one. An analytical treatment
enabling the analysis of the behaviour of the system around the 1:1 resonance at dif-
ferent time scales is endowed. Thismethodology enables the detection of equilibrium
and singular points, corresponding to periodic and modulated regimes, respectively.
The analytical developments prepare necessary design tools for tuning parameters
of the NES.
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7.1 Introduction

Audible sound is a combination of direct sound flowing from a source and indirect
reflections. In order to improve the quality of sound in a room, the control of noise
reverberations at the propagation and reception paths is essential. Among the various
employed sound absorption technologies, we are interested in the active absorption
approach. For instance, an electrodynamic loudspeaker can be turned into an elec-
troacoustic absorber by connecting a convenient passive electrical shunt circuit to
the transducer terminal. This approach permits to dissipate sound power of incident
waves [1]. The concept of energy pumping from a primary source to a NES was
introduced in several domains of engineering sciences with two main applications
namely passive control and energy harvesting (see for example [2–4]).

Nonlinear systems are well known for their ability to improve the performance
of the control and increasing frequency range of absorption [5]. For this purpose,
a passive nonlinear shunt circuit has been connected to the loudspeaker terminal.
Then, the whole structure can be represented by a two dof system, including the
main linear system describing the displacement of the loudspeaker membrane which
is linearly coupled to an electrical NES.

In order to solve the system analytically, an extended version of complex variables
of Manevitch [6] is introduced, taking into account higher harmonics. It permits a
better prediction of system behaviors, especially during bifurcations. The multiple-
scalemethod [7] is employed enabling to detect the behavior of the system at different
time scales. This approach allows the identification of the system invariant at fast
time scale and equilibrium and singular points at slow times scales [8, 9].

7.2 System Representation

The dynamics of an electroacoustic loudspeaker, shunted with an electrical nonlin-
ear circuit and subjected to an external periodically varying sound pressure can be
described by the following differential system:

{
Mms ẍ(t) + Rms ẋ(t) + C−1

mc x(t) − CBlV̇ (t) = SAm cos (�t),
C(Le + Lc)V̈ (t) + C(Re + Rc)V̇ (t) + kV 3 + Blẋ(t) = 0.

(7.1)

where x and V describe respectively the small displacement of the loudspeaker
membrane and the electric potential in the nonlinear shunt circuit. The dot notation
indicates the derivative with respect to time t i.e. ẋ = dx/dt . Mms , Rms and Cmc

are the mass, the mechanical resistance of the moving bodies and the equivalent
compliance of the enclosed loudspeaker. Bl is the force factor of the transducer with
B representing the magnetic field magnitude and l standing for the length of the
wire in the voice coil. Am is the pressure amplitude, � is the angular frequency and
S stands for the diaphragm surface. Re and Le are respectively the DC resistance
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and the inductance of the voice coil with Blẋ(t) describing the back electromotive
force. Rc, Lc andC are the inductance, resistance, and capacitance of the correspond-
ing nonlinear shunt circuit with k the nonlinear coefficient related to the multiplier
connections.

After introducing the non-dimensional time variable T = ω0t with ω0 =√
1/(MmsCmc) the natural angular frequency, the physical two degree of freedom

system of Eqs. (7.1) can be expressed by the following scaled system

{
ÿ1 + ελẏ1 + y1 − εα ẏ2 = ε f cos (ωT ),

ε
(
ÿ2 + γ ẏ2 + ξy32 + η ẏ1

) = 0.
(7.2)

The dot notation indicates now the derivative with respect to time T . y1 and y2
stand for x and V in the new time domain. The scaled parameters used in Sys. (7.2) are
ε = Le + Lc, RmsCmcω0 = ελ,CBlCmcω0 = εα, SAmCmc = ε f, (Re + Rc)/ω0 =
εγ, k/(Cω2

0) = εξ, ω = �/ω0 and Bl/(Cω0) = εη.

7.3 Analytical Treatment

In order to analyze the dynamical behavior of the system around the 1:1 resonance
by letting ω = 1 + εσ with σ a detuning parameter, Manevitch’s complex variables
[6] can be introduced as

{
ẏ1 + iωy1 = ψ1(T )eiωT

ẏ2 + iωy2 = ψ2(T )eiωT
(7.3)

Before introducing the complex variables (7.3) into the scaled Sys. (7.2), we
choose to investigate on the contribution of harmonics in both variables ẏn + iωyn
with n ∈ {1, 2}. Then, we plot in Fig. 7.1 the modulus of ẏ1 + iωy1 and ẏ2 + iωy2
according to scaled time T for the following parameters: ε = 0.01, η = α = λ = 0.2,
γ = 0.3, ξ = 0.5 and f = 0. The corresponding numerical results obtained by direct
numerical integration of Eqs. (7.2) using a Runge-Kutta schemewith the correspond-
ing initial conditions as y1(0) = y2(0) = ẏ2(0) = 0 and ẏ1(0) = 3.7.

Remarkably, for the first modulus represented in Fig. 7.1a, it can be clearly seen
that the first harmonic is sufficient enough to qualify the energy level of the primary
system. Thus, for the energy amplitude of the NES represented in Fig. 7.1b the
addition of the third harmonic has remarkable effects on its behavior the individual
presence of the first harmonic.

7.3.1 Dynamical Behavior Around 1:1 Resonance

An extended version of Manevitch’s complex variables is introduced in the present
study, taking into account the effect of the first harmonic for the principal system and
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(a) (b)

Fig. 7.1 Time histories of |dy1/dT + iωy1| = N1 and |dy2/dT + iωy2| obtained by the direct
integration of Sys. (7.2) under free oscillations; i.e. f = 0

both first and third harmonics for the NES. In addition, we apply a multiple scales
approach by introducing a fast time scale τ0 and slower ones (τ1, τ2, . . . ) as:

T = τ0, τ1 = ετ0, τ2 = ε2τ0 . . . (7.4)

The new complex variables are introduced as in the following relationship:

{
ẏ1 + iωy1 = ψ1(τ1, τ2, . . . )eiωτ0

ẏ2 + iωy2 = ψ2(τ1, τ2, . . . )eiωτ0 + ψ3(τ1, τ2, . . . )e3iωτ0 (7.5)

After introducing the complex variables presented in Eq. (7.5) into Eqs. (7.2) we
obtain the system below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ψ̇1 − i

(1 − ω2)

2ω
ψ1 + ε

λ

2
ψ1 − ε

α

2
ψ2 − ε

f

2

]
eiωτ0 − ε

α

2
ψ3e

3iωτ0 + c.c. = 0

[
ψ̇2 + i

ω

2
ψ2 + γ

2
ψ2 + η

2
ψ1 − i

3ξ

8ω3

(
ψ2|ψ2|2 − ψ3ψ

∗2
2 + 2ψ2|ψ3|2

)]
eiωτ0

+[
ψ̇3 + i

5ω

2
ψ3 + γ

2
ψ3 − i

ξ

8ω3

(
3ψ3|ψ3|2 − ψ3

2 + 6ψ3|ψ2|2
)]
e3iωτ0

+i
3ξ

8ω3
ψ2ψ

2
3e

7iωτ0 + i
3ξ

8ω3

[
ψ2
2ψ

3
3 − ψ2

3ψ
∗
2

]
e5iωτ0 + c.c. = 0,

(7.6)
where c.c. stands for the complex conjugate of the rest of the arguments. The complex
variables ψn describe the slow modulation of fast vibrations at the frequency ω.

Using the Galerkin technique [9], we keep the first harmonic of the main system
and the first and the third harmonics of the NES and truncate higher ones. In applying
the method, we suppose that ψ1, ψ2, ψ3 are independent of the fast time τ0. Then,
we obtain an averaged system composed of three first order differential equations in
terms of ψ1, ψ2 and ψ3 as:
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ψ̇1 − i
(1 − ω2)

2ω
ψ1 + ε

λ

2
ψ1 − ε

α

2
ψ2 = ε

1

2
f (7.7)

ψ̇2 + i
ω

2
ψ2 + γ

2
ψ2 + η

2
ψ1 − i

3ξ

8ω3

(
ψ2|ψ2|2 − ψ3ψ

∗2
2 + 2ψ2|ψ3|2

) = 0 (7.8)

ψ̇3 + i
5ω

2
ψ3 + γ

2
ψ3 − i

ξ

8ω3

(
3ψ3|ψ3|2 − ψ3

2 + 6ψ3|ψ2|2
) = 0 (7.9)

This methodology enables the detection of the system invariant at the fast time
scale τ0, which allows the detection of the system behaviors at the slower time scales.

7.3.1.1 The System Behavior at τ0 Time Scale

At the order ε0, resonant terms at τ0 time scale in Eq. (7.7) give

∂ψ1

∂τ0
= 0 ⇒ ψ1 = ψ1(τ1, τ2, . . . ) (7.10)

Thenψ1 is constant according to the fast time scale τ0 winch validates our hypothe-
ses during using theGalerkinmethod. However, Eqs. (7.8) and (7.9) can be expressed
as in the following form

⎧⎪⎨
⎪⎩

∂ψ2

∂τ0
+ H1(ψ1,ψ2,ψ3,ψ

∗
2 ,ψ

∗
3) = 0,

∂ψ3

∂τ0
+ H2(ψ2,ψ3,ψ

∗
2 ,ψ

∗
3) = 0,

(7.11)

where H1 and H2 define the ε1 order functions of Eqs. (7.8) and (7.9). System (7.11)
presents an asymptotic equilibrium governed by a manifold called Slow Invariant
Manifold (SIM), which is in fact a geometrical representation of the fixed points of
the system i.e.,

τ0 −→ ∞ ⇒

⎧⎪⎨
⎪⎩

∂ψ2

∂τ0
−→ 0,

∂ψ3

∂τ0
−→ 0.

(7.12)

or we can set

H (δ1, N1, δ2, N2, δ3, N3) = 0 ≡
{

H1(ψ1,ψ2,ψ3,ψ
∗
2 ,ψ

∗
3) = 0,

H2(ψ2,ψ3,ψ
∗
2 ,ψ

∗
3) = 0.

(7.13)

Writing the complex variables in the polar form as ψ j = N jeiδ j with j = 1, 2, 3,
Sys. (7.13) can be expressed and reduced to the following form after separating its
real and imaginary parts:
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h1 = N2
[
γ + 3

4
ξ sin (3δ2 − δ3)N2N3

] + η cos (δ1 − δ2)N1 = 0 (7.14)

h2 = N2
[
1 − 3

4
ξ(N2(N2 + cos (3δ2 − δ3)N3) − 2N 2

3 )
]

+η sin (δ1 − δ2)N1 = 0 (7.15)

h3 = 4γN3 − ξ sin (3δ2 − δ3)N
3
2 = 0 (7.16)

h4 = 4N3
[ − 5 + 3

2
ξN 2

2 + 3

4
ξN 2

3

] − ξ cos (3δ2 − δ3)N
3
2 = 0 (7.17)

Replacing Eqs. (7.16) and (7.17) into Eqs. (7.14) and (7.15) respectively, the SIM
can be expressed as it follows:
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4
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3 )2
]
.

(7.18)
Under free oscillations, we plot in Fig. 7.2 the numerical result obtained by a

direct integration of the scaled Sys. (7.2) compared to the SIM obtained by solving
Sys. (7.18). The classical SIM driven by employing the first harmonics only is rep-
resented in dashed dot line can be obtained after replacing N3 by 0 in Eq. (7.18).
Remarkably, the addition of the third harmonic managed to adjust the gap between
the numerical integration and analytical developments, mainly at the bifurcation.

Fig. 7.2 A comparison
between the classical
(− − −) and modified (∗)
SIM together with the direct
numerical integration
( ) of the scaled
Sys. (7.2) under free
oscillations; i.e. f = 0
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7.3.1.2 The System Behavior at τ1 Time Scale

Treating Eq. (7.7) at the order ε1, we can analytically identify the equilibrium points
and singularities leading to the presence of periodic or quasi-periodic regimes.
Equation (7.7) at ε1 reads:

∂ψ1

∂τ1
= f (ψ1,ψ2) = −(

λ

2
+ iσ)ψ1 + α

2
ψ2 + f

2
(7.19)

Writing Eq. (7.19) into its polar form and separating its real and imaginary parts
we obtain the following system

⎧⎪⎨
⎪⎩
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2
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2
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2
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N1

(α

2
N2 sin (δ2 − δ1) − σN1 − f

2
sin (δ1)

)
.

(7.20)
CombiningEqs. (7.13) and (7.20), the systembehavior at slow time scale τ0 around

its invariant can be studied using following equation
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(7.21)

Equation (7.21) can be arranged to be written in the following form
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Then, equilibrium points of the system, can be obtained by solving the following
system [10] ⎧⎨

⎩
H = 0
f1 = f2 = 0
det (M ) 	= 0.

(7.23)

However, fold singularities are reached when

⎧⎨
⎩

H = 0
f1 = f2 = 0
det (M ) = 0.

(7.24)

7.4 Some Results and Discussion

Let us consider a systemwith f = 0.3 and the detuning parameter σ = 0, Sys. (7.23)
is validated with f1 = f2 = 0, H = 0 and det (M ) 	= 0, which indicates the exis-
tence of an equilibrium point. Figure7.3a shows the modified SIM compared to the
numerical integration of the scaled Sys. (7.2). This later oscillates around the upper
branch of the SIM, then once reaching the stability border, it jumps to follow the
small amplitude level to be finally attracted by an equilibrium point. The existence
of an equilibrium point indicates the existence of a periodic regime, which is verified
in Fig. 7.3b once reaching the permanent regime.

Solving Sys. (7.23) for f = 0.3 and σ = 0, we can deduce the existence of the
equilibrium point (N2, N1) = (0.274, 1.3959). Then, we can deduce that the analyti-
cal predictions are in good agreement with the numerical results depicted in Fig. 7.4,

(a) (b)

Fig. 7.3 a SIM of the system with the numerical integration of the scaled Sys. (7.2) under small
forced oscillations with f = 0.3 and the detuning parameter σ = 0. b Time histories of the velocity
dy1/dT
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(a) (b)

Fig. 7.4 Time histories of both amplitudes |dy1/dT + iωy1| = N1 and |dy2/dT + iωy2| obtained
by the direct integration of Sys. (7.2) under small forced oscillations with f = 0.3 and the detuning
parameter σ = 0

where we plot the histories of N1 = | dy1dT + iωy1| and | dy2dT + iωy2|. In this given
example, the NES is able to control the primary system against periodic external
forces by presenting small amplitudes during periodic regimes.

7.5 Conclusions

In order to reduce noise at the propagation and reception paths, an electroacoustic
loudspeaker has been turned into a passive absorber by coupling to its terminal a
nonlinear electrical shunt circuit. The nonlinear behavior of the systemwas described
by a rescaled two degrees of freedom system, which consists of a linear master
structure under sinusoidal forcing that is linearly coupled to a nonlinear energy sink.
The study was carried out using an extended versionManevitch’s complex variables,
including first and third harmonics. The complex system was treated analytically
using a multiple-scale method, allowing the detection of the system invariant at the
fast time scale. A predictive tool enabling the identification of the dynamical regime
(periodic or modulated regimes) is given for the purpose of passive control of the
main system.
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Lyonnais d’Acoustique”), ANR-10-LABX-60.
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