
Chapter 15
Helmholtz, Duffing
and Helmholtz-Duffing Oscillators:
Exact Steady-State Solutions

Ivana Kovacic and Gianluca Gatti

Abstract This work presents an analytic technique aimed at designing the exter-
nal excitation of linear and nonlinear oscillators so that a prescribed form of their
steady-state response can be achieved. The technique exploits the exact analytic solu-
tions of the oscillator response having quadratic and/or cubic nonlinearities. Both
single-frequency and multi-frequency responses are considered. Examples of possi-
ble applications are provided in terms of virtual experiments.
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15.1 Introduction

Quadratic and cubic geometric nonlinearities appear in a variety of physical and engi-
neering oscillatory systems. Quadratic nonlinearities are referred to as Helmholtz-
type nonlinearities, since it was Helmholtz, who first postulated that the eardrum
behaves as an asymmetric oscillator with a restoring force including a linear and a
quadratic geometric term [1]. Cubic nonlinearities are referred to as Duffing-type
nonlinearities, and are named after Duffing, who investigated pendula with restor-
ing forces containing cubic nonlinearities [2]. Analogously, oscillators that comprise
both quadratic and cubic stiffness nonlinearities are referred to as Helmholtz-Duffing
oscillators.

During the previous decades, many perturbation and non-perturbation techniques
have been developed to obtain the free and forced responses of Helmholtz, Duffing
and Helmholtz-Duffing oscillators. All of these techniques are based on approxima-
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tions [1, 3]. However, recent investigations have considered strategies based on the
exact solutions of the steady-state response of nonlinear oscillators, and the design
of external excitations to generate them. The idea of a specially designed external
excitation to generate a specific form of steady-state response dates back to Hsu [4].
Such an idea has been recently extended to forced one-degree-of-freedom undamped
oscillators with cubic or quadratic nonlinearities [5], purely nonlinear oscillators [6],
multi-degree-of-freedompurely nonlinear chains [7], aswell as to a variety of damped
nonlinear oscillators [8, 9].

This study aims at extending themethodology presented in [9], which is limited to
oscillators containing a symmetric form of stiffness nonlinearity, to oscillators con-
taining quadratic nonlinearities as well, thus leading to asymmetric force-deflection
curves.

15.2 Theoretical Approach

15.2.1 Free Oscillators

The equation of motion of a Helmholtz-Duffing oscillator can be written down as

ẍ + c1x + c2x
2 + c3x

3 = 0, x(0) = A, ẋ(0) = 0, (15.1)

where c1, c2 and c3 are all assumed to be equal or greater than zero. The initial
conditions are selected so that the initial velocity is assumed to be zero.

There is no exact solution for the response of the Helmholtz-Duffing oscillator,
and the approximate solution for its motion contains odd and even harmonics [3].
However, the exact solution for the response of Helmholtz and Duffing oscillators
does exist and is given below.

When c3 = 0, the exact solution for the Helmholtz oscillator includes the square
of the Jacobi elliptic sn function [10] and can be written down as follows

x = A0 + A1sn
2(ωt, k), (15.2)

where

A0 = c1
2c2

k2 + 1 − √
λ√

λ
, A1 = −3c1

2c2

k2√
λ

, ω =
√
c1
2

1

λ
1
4

, λ = k4 − k2 + 1. (15.3)

Note that the Jacobi sn elliptic function has two arguments: the first is a function
of the frequency ω, the second is the elliptic modulus k. For k = 0 the sn function
turns into the sin function. It should be pointed out that the Helmholtz oscillator with
positive coefficients has two equilibria: a center point at the origin and a saddle point
at x = − 3c1

2c2
. The separatrix that passes through the saddle point corresponds to k =
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1 [10]. The phase trajectories that lie inside the separatrix are closed, and indicate the
occurrence of periodic motion. Furthermore, the existence of the constant term in the
solution given by Eq. (15.2) implies that the system oscillates around a non-trivial
value. The frequency content can be determined based on the Fourier expansion [11,
12], where the sn function can be represented as a sum of odd harmonics of the sin
function, as follows

sn(ωt, k) =
∑∞

N=1
SN sin

[
(2N − 1)

π

2K
ωt

]
, (15.4)

where the coefficients SN are given by

SN = 2π

kK

qN−1/2

1 − q2N−1
, (15.5)

K = K (k) is the complete elliptic integral of the first kind [11, 12], and q = q(k) is
the so-called Nome, given by

q = exp

⎛

⎝−
πK

(√
1 − k2

)

K (k)

⎞

⎠. (15.6)

The fact that the sn function appears as a squared function in Eq. (15.2) implies that
the oscillatory response includes an offset and both odd and even harmonics.

When c2 = 0, Eq. (15.1) corresponds to the equation of motion of the Duffing
oscillator, whose exact solution has the form of a Jacobi cn elliptic function

x = Acn(ωt, k), (15.7)

where

ω =
√
c1 + c3A2, k2 = c3A2

2
(
c1 + c3A2

) . (15.8)

For positive coefficients, i.e. for hardening nonlinearity, such oscillator has one equi-
librium, which is a center point at the origin. The frequency content can be deter-
mined from a Fourier expansion, which includes odd harmonics of the cos function
as follows

cn(ωt, k) =
∑∞

N=1
CNcos

[
(2N − 1)

π

2K
ωt

]
, (15.9)

and the coefficients CN are given by

CN = 2π

kK

qN−1/2

1 + q2N−1
. (15.10)
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When c2 = c3 = 0, Eq. (15.1) simplifies to a linear oscillator, having the well-known
solution for motion given by

x = A cos
(√

c1t
)
. (15.11)

15.2.2 Forced Oscillators

Based on the previous discussion, it is possible to determine the exact solution for
the steady-state response of a variety of damped and undamped linear and nonlinear
oscillators governed by the following generalized equation of motion

ẍ + 2ς ẋ + c1x + c2x
2 + c3x

3 = F(xr (t), ẋr (t)). (15.12)

Furthermore, it is possible to design the external excitation of such oscillators to
achieve a desired form for their free response xr (t), as discussed below.

15.2.2.1 Single-Harmonic Response

If it is desirable that the oscillator governed by Eq. (15.12) responds as a free linear
oscillator, i.e. with a single harmonic as in Eq. (15.11), then this can be achieved
with the external force having the following form

F(xr (t), ẋr (t)) = 2ς ẋr (t) + Ex + c2x
2
r (t) + c3x

3
r (t), (15.13)

where E is a constant.
Using Eq. (15.11) as the desired response, the equation of motion can be written

as

ẍ + 2ς ẋ + c1x + c2x
2 + c3x

3 = −2ς A� sin(�t)

+ 1

4

(
2A2c2 + (

4AE + 3A3c3
)
cos(�t) + 2A2c2 cos(2�t) + A3c3 cos(3�t)

)
,

(15.14)

where � = √
c1 − E , and c1 ≥ E .

On the one hand, equating c3 to zero and assuming E = 0, gives the equation of
motion of an externally excited Helmholtz oscillator, whose steady-state response is
harmonic. Such an oscillator is governed by:

ẍ + 2ς ẋ + c1x + c2x
2 = −2ς A

√
c1 sin

(√
c1t

)

+ 1

4

(
2A2c2 + 2A2c2 cos

(
2
√
c1t

))
. (15.15)
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On the other hand, equating c2 to zero in Eq. (15.14) and assuming E = 0, gives the
equation of motion of the externally excited Duffing oscillator, whose steady-state
response is also harmonic. Such an oscillator is governed by:

ẍ + 2ς ẋ + c1x + c3x
3 = −2ς A

√
c1 sin

(√
c1t

)

+ 1

4

(
3A3c3 cos

(√
c1t

) + A3c3 cos
(
3
√
c1t

))
. (15.16)

15.2.2.2 Multi-harmonic Response

The samemethodology can be applied to design an external excitation for a nonlinear
oscillator tomake it respond as any other oscillator. Thus, assuming the external force
in the form

F(xr (t), ẋr (t)) = 2ς ẋr (t) + Bx2r (t) + Dx3r (t), (15.17)

Equation (15.12) becomes

ẍ + c1x + (c2 − B)x2 + (c3 − D)x3 = 0. (15.18)

If c3 = D, then the system response has the form given by Eq. (15.2), where c2 in
Eq. (15.3) is replaced by c2 − B, and c2 > B. Similarly, for c2 = B and c3 > D, the
system response has the form given by Eq. (15.7), and c3 in Eq. (15.8) is replaced
by c3 − D.

15.3 Numerical Simulations

To validate the previous theoretical considerations, virtual experiments [13] are per-
formed on a mechanical model of the system illustrated in Fig. 15.1. The system
consists of one mass m attached to three linear springs of stiffness k, geometrically
arranged to achieve the desired stiffness nonlinearity.

In particular, a vertical linear spring is combined with two lateral linear springs,
which incline as the oscillating mass moves. The static equilibrium position of the
mass from the position where the lateral springs are horizontal is denoted by a, so
that the natural spring length is l0 = √

a2 + b2, where b is labeled in Fig. 15.1. A
linear viscous damper c is introduced for dynamic purposes. The expression of the
static force-deflection curve of the oscillator in Fig. 15.1 is

F = kx + 2k(x + a)

(
1 −

√
a2 + b2

(a + x)2 + b2

)
, (15.19)
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Fig. 15.1 Mechanical
implementation of a
nonlinear oscillator under
consideration

which can be expanded in Taylor series to the third term to give

F ∼ k

(
1 + 2a2

a2 + b2

)
x + 3kab2

(
a2 + b2

)2 x
2 + k

(
b4 − 4a2b2

)
(
a2 + b2

)3 x3. (15.20)

It can be noted from Eq. (15.20) that when a = b/2, the system behaves as the
Helmholtz oscillator, since the cubic stiffness coefficient becomes zero, and when
a = 0 the system behaves as the Duffing oscillator, since the quadratic stiffness
coefficient becomes zero.

Three virtual experiments are then performed on the Helmholtz, Duffing and
Helmholtz-Duffing oscillator, respectively, and they are reported below.

15.3.1 Forced Helmholtz Oscillator

In this case, a representation of the system in its static equilibrium configuration is
shown in Fig. 15.2a. The geometric system parameters are a = 0.1, b = 0.2, k =
100, c = 2, m = 1, so that ς = 1, c1 = 140 and c3 = 480 in Eq. (15.15). The force-
deflection curve given by Eq. (15.19) and its approximation in Eq. (15.20) are plotted
in Fig. 15.2b. It can be seen that the Taylor series expansion is a good approximation
in the displacement range from −0.1 to 0.1. The curve is clearly asymmetric.

The excitation given by Eq. (15.13), with c3 = 0 and E = 0 is applied to the
oscillating mass, and is plotted in Fig. 15.3a with a solid line. The excitation is such
that the displacement amplitude at the steady-state is 0.1. In Fig. 15.3a, a sinusoidal
excitationwith an amplitude equal to the first harmonic of the excitation inEq. (15.13)
is plotted as a dashed line. Figure 15.3b shows the Fourier coefficients of the two
excitations plotted in Fig. 15.3a with a corresponding line style. Clearly, a second
harmonic and an offset are evident from the solid line.

Two virtual experiments are then carried out by exciting the system in Fig. 15.2a
with the two excitations described above. The results are presented in Fig. 15.3c.
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Fig. 15.2 aHelmholtz-like oscillator in its static equilibrium configuration.bCorresponding force-
deflection curve: exact expression from Eq. (15.19) (solid line) and approximate expression from
Eq. (15.20) (dashed line)
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Fig. 15.3 Helmholtz-like oscillator. a Force excitation and b corresponding Fourier coefficients;
c displacement response and d corresponding Fourier coefficients. Force excitation according
to Eq. (15.13) and corresponding response (solid line), harmonic excitation and corresponding
response (dashed line)
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Fig. 15.4 a Duffing-like oscillator in its static equilibrium configuration. b Corresponding force-
deflection curve: exact expression from Eq. (15.19) (solid line) and approximate expression from
Eq. (15.20) (dashed line)

It is noted that simulations run from the static equilibrium condition (i.e. x(t) =
ẋ(t) = 0), and after a transient, both responses reach a steady-state that is fairly har-
monic. However, as noted in Fig. 15.3d, the Fourier coefficients of the displacement
responses in Fig. 15.3c show that the specifically designed excitation in Eq. (15.13)
significantly reduces the presence of the offset and also of the second harmonic in
the response.

15.3.2 Forced Duffing Oscillator

In this case, a representation of system is shown in Fig. 15.4a. The system parameters
are a = 0, b = 0.2, k = 100, c = 2, m = 1, so that ς = 1, c1 = 100 and c3 = 2500
in Eq. (15.16). The force-deflection curve is plotted in Fig. 15.4b and it is now
symmetric. Taylor series approximation holds, as in the previous section.

The force excitation given in Eq. (15.13), with c2 = 0 and E = 0 is plotted in
Fig. 15.5a with a solid line, and a sinusoidal excitation with an amplitude equal to the
first harmonic of the excitation in Eq. (15.13) is plotted as a dashed line. Figure 15.5b
shows the Fourier coefficients of the two excitations plotted in Fig. 15.5a with a
corresponding line style. Clearly, a third harmonic is evident from the solid line.

Two virtual experiments are performed by exciting the system in Fig. 15.4a with
the two excitations described above. The results are presented in Fig. 15.5c. It can
be noted that after a transient, both responses reach a fairly harmonic steady-state.
However, as noted in the close-up of Fig. 15.5d, the Fourier coefficients of the
displacement responses in Fig. 15.5c show that the specifically designed excitation
inEq. (15.13) considerably reduces the presence of the third harmonic in the response.
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Fig. 15.5 Duffing-like oscillator. a Force excitation and b corresponding Fourier coefficients;
c displacement response and d corresponding Fourier coefficients. Force excitation according
to Eq. (15.13) and corresponding response (solid line), harmonic excitation and corresponding
response (dashed line)

15.3.3 Forced Helmholtz-Duffing Oscillator

In this case, a representation of the system is shown in Fig. 15.6a. The system
parameters are a = 0.1, b = 0.2, k = 100, c = 2, m = 1, so that ς = 1, c1 =
111.7647, c2 = 332.1799 and c3 = 1563.2 in Eq. (15.14). The asymmetric force-
deflection curve is plotted in Fig. 15.6b, togetherwith its Taylor series approximation.

The force excitation given by Eq. (15.13), with E = 0, is plotted in Fig. 15.7a with
a solid line, and a sinusoidal excitation with an amplitude equal to the first harmonic
of the excitation in Eq. (15.13) is plotted as a dashed line. Figure 15.7b shows the
Fourier coefficients of the two excitations plotted in Fig. 15.7a. An offset, a second
and a third harmonic are evident from the solid line.

Two virtual experiments are carried out as described earlier. The results are pre-
sented in Fig. 15.7c, where it is noted that both responses reach a steady-state which
is again fairly harmonic. However, as noted in Fig. 15.7d, the Fourier coefficients
of the displacement responses from Fig. 15.7c show that the specifically designed



176 I. Kovacic and G. Gatti

-0.2 -0.1 0 0.1 0.2

Displacement

-40

-20

0

20

40

60

Fo
rc

e

exact
approx.

(a) (b)

Fig. 15.6 aHelmholtz-Duffing-like oscillator in its static equilibrium configuration. bCorrespond-
ing force-deflection curve: exact expression from Eq. (15.19) (solid line) and approximate expres-
sion from Eq. (15.20) (dashed line)
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Fig. 15.7 Helmholtz-Duffing-like oscillator. a Force excitation and b corresponding Fourier coef-
ficients; c displacement response and d corresponding Fourier coefficients. Force excitation accord-
ing to Eq. (15.13) and corresponding response (solid line), harmonic excitation and corresponding
response (dashed line)
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excitation in Eq. (15.13) significantly reduces the presence of the offset and of the
second harmonic in the system response.

15.4 Conclusions

Oscillators with quadratic and/or cubic nonlinearities have been considered in this
paper. An analytic technique has been presented to properly design a specific exter-
nal excitation to make them respond as different desired free oscillators. The case
where the response contains one single harmonic only, and the case where there is
a multi-frequency response, have been considered. Virtual experiments have been
performed on a mechanical assembly of the oscillator, and they have shown that the
proposed technique can significantly reduce the presence of undesired harmonics in
the oscillator response.
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