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Preface

ENOLIDES 2018 is the IUTAM (International Union of Theoretical and Applied
Mechanics) Symposium entitled ‘Exploiting Nonlinear Dynamics for Engineering
Systems’, which was held in Novi Sad, Serbia, 15–19 July 2018.

The Symposium brought together academics, researchers and practitioners
dealing with dynamical systems and associated applications in science and engi-
neering with a common goal: to review recent achievements and improved
knowledge in areas where the performance of dynamical systems can be potentially
enhanced due to the effects of nonlinearity or optimized through certain nonlinear
interaction/behaviour.

The motivation was related to the fact that the Nonlinear Dynamics of today is
experiencing a profound shift of paradigm since recent investigations rely on a
different strategy, which brings good effects of nonlinear phenomena to the fore-
front. This strategy has a positive impact on different fields in science and engi-
neering such as vibration isolation, energy harvesting, micro/nano-electro-
mechanical systems, etc. The ENOLIDES Symposium was, therefore, devoted to
demonstrating the benefits and unlocking the potential of exploiting nonlinear
dynamical behaviour in these, but also in other fields of science and engineering.

The collection of papers included in this publication are associated with some of
Tribute lectures or regular/shorter presentations given at ENOLIDES 2018. We do
hope that they will be of interest for specialists in the field but also for a wider
spectrum of researchers and practitioners. We would like to thank members of the
Scientific Committee for their help over the past year or so in helping to shape the
Symposium and their invaluable assistance in the paper review process, together
with a number of other reviewers. Lastly, we would like to thank all authors for
supporting the Symposium and contributing to this publication—we do hope that
their papers will draw the attention of a great number of readers.

Novi Sad, Serbia Ivana Kovacic
Ancona, Italy Stefano Lenci

Co-Chairs of ENOLIDES 2018

v



Contents

1 Tribute to Ali H. Nayfeh (1933–2017) . . . . . . . . . . . . . . . . . . . . . . . 1
Giuseppe Rega

2 Henri Poincaré (1854–1912) Engineer, Mathematician,
Physicist and Philosopher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Ferdinand Verhulst

3 Basins of Attraction for Higher-Dimensional Nonlinear
Dynamical Systems: Preliminary Results on the Case Study
of a Sympodial Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Nemanja Andonovski, Stefano Lenci and Ivana Kovacic

4 Dynamic Morphing of Actuated Elastic Membranes . . . . . . . . . . . . 37
Andrea Arena, Flavio Massimi and Walter Lacarbonara

5 Nonlinear Dynamics as a Tool in Selection of Working Conditions
for Radial Ball Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Ivana D. Atanasovska, Dejan B. Momcilovic, Radivoje M. Mitrovic,
Natasa D. Soldat and Nikola Nesic

6 On a Geometrically Exact Beam Model and Its Finite Element
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Enrico Babilio and Stefano Lenci

7 Targeted Nonlinear Energy Transfer for Electroacoustic
Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
D. Bitar, A. Ture Savadkoohi, C.-H. Lamarque, E. Gourdon
and M. Collet

8 Using Symbolic Computational Dynamics as an Aid to Design . . . . 81
Matthew P. Cartmell and Niloufar Motazedi

9 Theorem and Observation About the Nature of Perpetual Points
in Conservative Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . 91
Fotios Georgiades

vii



10 Energy Flow Considerations in Nonlinear Systems on the Basis
of Interesting Experiments with Three Paradigmatic Physical
Systems in Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Ioannis T. Georgiou

11 Energy Harvesting in a Duffing Oscillator with Modulated Delay
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Zakaria Ghouli, Mustapha Hamdi and Mohamed Belhaq

12 Rotary Speed Modulation to Improve the Stability of Steady
Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Sunit K. Gupta and Pankaj Wahi

13 Comparative Analysis of NES and TMD Performance
via High-Dimensional Invariant Manifolds . . . . . . . . . . . . . . . . . . . 143
Giuseppe Habib and Francesco Romeo

14 Nonlinear Dynamics of a Planar Hinged-Simply Supported Beam
with One End Spring: Higher Order Resonances . . . . . . . . . . . . . . 155
Lukasz Kloda, Stefano Lenci and Jerzy Warminski

15 Helmholtz, Duffing and Helmholtz-Duffing Oscillators:
Exact Steady-State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Ivana Kovacic and Gianluca Gatti

16 Tree-like Structures as Hierarchical Coupled Oscillators . . . . . . . . 179
Ivana Kovacic, Miodrag Zukovic and Dragi Radomirovic

17 Energy Transport and Localization in Weakly Dissipative
Resonant Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Agnessa Kovaleva

18 Asynchronous Modes of Beams on Elastic Media Subjected
to Varying Normal Force: Continuous and Discrete Models . . . . . . 203
Carlos E. N. Mazzilli and Eduardo A. R. Ribeiro

19 Modelling and Analysis of Bifurcation Dynamics of Two Coupled
Pendulums with a Magnetic Forcing . . . . . . . . . . . . . . . . . . . . . . . . 213
Krystian Polczyński, Adam Wijata, Grzegorz Wasilewski,
Grzegorz Kudra and Jan Awrejcewicz

20 Dynamics of a System of Two Coupled MEMS Oscillators . . . . . . . 225
Richard H. Rand, Alan T. Zehnder, B. Shayak and Aditya Bhaskar

21 A Multimodal Nonlinear Tuned Vibration Absorber . . . . . . . . . . . 235
Ghislain Raze and Gaetan Kerschen

22 Unveiling Transient to Steady Effects in Reduced Order Models
of Thermomechanical Plates via Global Dynamics . . . . . . . . . . . . . 249
Valeria Settimi, Giuseppe Rega and Eduardo Saetta

viii Contents



23 Non-linear Free Vibrations of a Hanging Cable
with Small Sag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Guilherme Jorge Vernizzi, Guilherme Rosa Franzini
and Celso Pupo Pesce

24 Analytical and FEM Modelling of the Behaviour of Pile
in Dynamic Load Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Vladimir Zivaljevic, Dusan Kovacevic and Zvonko Rakaric

25 Harnessing Geometric Nonlinearity to Design Tunable
Twist-Coupled Locally Resonant Metastructure . . . . . . . . . . . . . . . 281
Yitian Wang, Rui Zhu, Xiaoning Liu and Gengkai Hu

26 Vibrations of Rotating Thin-Walled Composite Beams
with Nonlinear Piezoelectric Layers . . . . . . . . . . . . . . . . . . . . . . . . 291
Jerzy Warminski and Jaroslaw Latalski

27 Nonlinear Analysis of Hunting Motion by Focusing
on Non-selfadjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Weiyan Wei and Hiroshi Yabuno

Contents ix



Chapter 1
Tribute to Ali H. Nayfeh (1933–2017)

Giuseppe Rega

Abstract Ali H. Nayfeh has been the most influential scholar and scientist of the
contemporary era of nonlinear dynamics in mechanics and engineering. Upon sum-
marizing his publications and achievements, due to space restriction attention is only
paid to his successful activity as a books’ author, discussing specific/novel aspects
and highlighting some common underlying methodological features.

Keywords Ali Nayfeh · Perturbation methods · Nonlinear oscillations · Structural
mechanics

1.1 Introduction

In the last 40 years, Ali H. Nayfeh has been the most influential, worldwide
recognized, scholar and scientist in the area of nonlinear dynamics applied to
mechanics and engineering. He embodied a rare mixture of scientific training
and expertise/interests. Indeed, upon starting as a fluid dynamicist and an applied
mathematician (60s and early 70s), he turned into a combined applied math-
ematician, dynamicist and physicist (70s and 80s) and then a comprehensive
dynamicist, with resumed and enhanced attention to structural mechanics (90s and
the new millennium). He worked in many scientific areas, dealing with perturbation
techniques, nonlinear oscillations, aerodynamics, flight mechanics, acoustics, ship
motion, hydrodynamic stability, nonlinear waves, structural dynamics, experimental
dynamics, linear and nonlinear control, micromechanics, and providing outstanding
contributions. During four decades he was also a brilliant educator for thousands of
student, and wrote a meaningful number of important books.

Due to lack of space, it is impossible to dwell here on all aspects of Nayfeh’s
scientific activity, thus choosing to solely focus on his contributions as a scholar and

G. Rega (B)
Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via A.
Gramsci 53, 00197 Rome, Italy
e-mail: giuseppe.rega@uniroma1.it
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2 G. Rega

a successful books’ author, while leaving to a more extended paper [16] a general
discussion on his many original contributions as a scientist.

Upon summarizing his life, publications and achievements [2, 4, 18] in Sect. 1.2,
Nayfeh’s books are comprehensively discussed in Sect. 1.3, by analyzing specific
features and novel aspects of a number of them, and by highlighting some under-
lying common methodological features. Section 1.4 provides a summary portrait
of Ali Nayfeh as an outstanding scholar and scientist in nonlinear dynamics, at the
crossroad between applied mathematics and engineering.

1.2 Life, Publications, Achievements: A Short Summary

AliH.Nayfehwas bornonDecember 21, 1933 inShuwaikah, Palestine, to an illiterate
and poor family which, nonetheless, highly encouraged him to acquire education
and maximum possible knowledge. Owed to the harsh conditions in his country and
lack of higher-education institutes, Ali worked as a teacher of mathematics in small
villages and towns for ten years. At the age of 26 he won a scholarship to study
in the USA, and in only 5 years moved from a 1 year junior college up to getting
Bachelor’s Degree in engineering science (1962), Master of Science (1963), and
Ph.D. in Aeronautics and Astronautics (1964) at Stanford University.

For six years (1964–1970) he worked in the aerospace industry, upon which
he was appointed at Virginia Tech as a Professor (1971) and then as a University
Distinguished Professor (1976). Nayfeh:

• Wrote: (i) 10 books in perturbation methods and nonlinear dynamics, several of
themwith thousands of citations, considered as themost valuable and fundamental
references in their fields, translated into Russian, Chinese, and German, and used
as textbooks in top schools; (ii) nearly 480 papers in refereed journals.

• Was the Founder and Editor of two fundamental journals, Nonlinear Dynamics
and Journal of Vibration and Control.

• Advised 69 Ph.D. students: many of them became prominent scholars, department
chairs and deans in top ranked institutes all over the world.

• Established the highly successful series of 13 Conferences on Nonlinear Vibra-
tions, Stability, and Dynamics of Structures at Virginia Tech (1986–2010).

• Received honorary doctorates from Politechnika Szczecinska, Poland, Technical
University of Munich, Germany, and Marine Technical University of St. Peters-
burg, Russia, along with an incredible number of Awards, including:

1995 AIAA Pendray Aerospace Literature, “for seminal contributions to perturba-
tion methods, nonlinear dynamics, acoustics, and boundary-layer transition.”

1996 ASME Den Hartog, “for lifetime contributions to the teaching and practice
of vibration engineering.”

2005 ASME Lyapunov (first recipient), “for lifelong contributions to the field of
nonlinear dynamics.”
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2008 ASME Thomas Caughey (first recipient), “for significant contributions to the
field of nonlinear dynamics through practice, research, teaching, and out-
standing leadership.”

2014 Benjamin Franklin Medal in Mechanical Engineering, “for developing novel
methods tomodel complex engineering systems in structural dynamics, acous-
tics, fluid mechanics, and electromechanical systems.”

Ali always aimed at contributing to the development of science in the ArabWorld.
He established the college of engineering at King Abdel Aziz University in Jeddah,
Saudi Arabia (1976), and an engineering college in Jordan where he served as Dean
and Vice-president for engineering affairs for four years (1980). He also helped
establishing a new graduate and internationally reputable program in mechanics in
Tunisia (2002).

Upon retiring from Virginia Tech, he volunteered at the University of Jordan,
under the condition of working without pay, helping scientists and researchers, and
providing advice and consultations; he even established and funded a modern school
in his birth village of Palestine, to offer the best education and produce a new gen-
eration of brilliant scientists.

Quoting from [18]: “Anyonewho hasmetDr.Nayfeh knowswell his inexhaustible
energy and deep desire for knowledge; and more importantly, his passion to share
and spread his knowledge with others. …He was a brilliant scientist, a distinguished
teacher, an inspiring motivator, a great community leader, and an amazing and lovely
human. He will be truly and deeply missed.”

1.3 Nayfeh’s Books

Nayfeh wrote several books, generally clearly distinct from each other and of high
impact. They are summarized in Fig. 1.1, by grouping them in three main areas, with
well-identified and coherent features.

The first group is concerned with analytical methods, and includes all books on
asymptotic techniques, with special emphasis on the method of multiple time scales
(MMS) which was Nayfeh’s most originally addressed theme within the realm of
applied mathematics. Within this overall context, the transition can be recognized
from a theoretically-oriented approach [6] to a more introductory treatment of math-
ematical aspects [7], with also clear educational purposes [8], up to a modern popu-
larization of theMMS [12] taking advantage of symbolic algebra, as well as the inde-
pendent treatment of a method [9] playing an important role in nonlinear dynamics.

Books in the second group are more physically-oriented, and also more varied.
Indeed, they range from the effective use of asymptotic techniques for the analysis of
weakly nonlinear archetypal oscillators [13], to the presentation of computational and
geometrical concepts, techniques and tools of the modern theory of dynamical sys-
tems also allowing to deal with strongly nonlinear and complex phenomena [11], up
to the analysis of the involved interaction phenomena, regular or non-regular, which
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ANALYTICAL METHODS
NONLINEAR PHYSICAL 

ASPECTS
STRUCTURAL 
MECHANICS

1970-79

Perturbation Methods (1973)

Nonlinear Oscillations
(1979) with D.T. Mook

1980-89

Introduction to Perturbation 
Techniques (1980)

Problems in Perturbations
(1985)

1990-99

Method of Normal Forms
(1993)

Perturbation Methods with 
Mathematica, Maple 
(1999) with C.M. Chin 

Applied Nonlinear Dynamics
Analytical, Computational and 
Experimental Methods
(1995)  with B. Balachandran

2000-09

Nonlinear Interactions
Analytical, Computational and 
Experimental Methods
(2000)

Linear and Nonlinear
Structural Mechanics (2004)
with P.F. Pai

Fig. 1.1 Ali Nayfeh’s books

characterize the nonlinear dynamics of multi-mode models reliably representative of
actual engineering systems [10].

The third group consists of a book [14]which, pushing forward the interest towards
distributed parameter systems already apparent in [10], deals more generally with
structural mechanics issues in terms of modelling, dynamic analyses, and exemplary
phenomenological aspects.

In the following, the main features and novel aspects of some of these books with
respect to their publication time are discussed, by citing a few author’s sentences
from the corresponding prefaces (as per the writer’s choice) and by summarizing a
few characterizing aspects.

1.3.1 Specific and Novel Features

Although being certainly linked with each other, Nayfeh’s two fundamental books
on perturbation methods were driven by a different perspective.

• PerturbationMethods (1973). “The different techniques are described using exam-
ples which start with model simple ordinary equations that can be solved exactly
and progress toward complex partial differential equations”,with “examples drawn
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from different branches of physics and engineering”, and “the different techniques
described as formal procedureswithout any attempt at justifying them rigorously.”

• Introduction to Perturbation Techniques (1980). In contrast with the former book,
where “coincise and advanced material” is dealt with, this second one presents the
same material “in elementary way.” Indeed, “as a result of teaching perturbation
methods for eight years to first-year and advanced graduate students at Virginia
Polytechnic Institute and State University, I have selected a limited number of
techniques and amplified their description considerably. Also I have attempted to
answer the questions most frequently raised by my students. … A new chapter is
devoted to the determination of the adjoints of homogeneous linear equations and
the solvability conditions of linear inhomogeneous problems.”

However, Nayfeh’s research activity onmathematical aspects of ordinary differential
equations was always paralleled by a deep interest towards physical aspects of the
nonlinear oscillations described by those equations.

Nonlinear Oscillations (1979) was the comprehensive outcome of intense and
extended applications of the multiple scale technique to obtain the solution of both
archetypal oscillators (representing discrete systems, or simplified reduced models
of continuous systems) and some multidegree-of-freedom models.

In the preface, referring to a comprehensive list of books on the same topic and
generally with a similar title, it is stated that “the previously published books empha-
sized, and some exclusively treated, systems having a single degree of freedom”,
whereas “the primary purpose of this book is to fill this void.” Specifically, Chap.
1 (Introduction) “attempts to abstract the entire book” and provides an useful and
comprehensive overview of the addressed topics (according to a criterion later on
adopted successfully in the introduction of other books), describing “only the phys-
ical phenomena, leaving all the algebra to the subsequent chapters.”

Seven chapters are devoted to Single-Degree-of-Freedom Systems (conserva-
tive, nonconservative, forced); Parametrically excited systems; Systems having finite
degrees of freedom, with the treatment of internal resonance; Continuous systems
(beams, string, plates); and Traveling waves. In particular, Chap. 7 “concentrates on
the physical mechanisms and effects, restricting the attention to uniform systemswith
simple boundary conditions whose linear natural modes can be obtained analytically;
then using the method of multiple scales to solve the equations describing the tem-
poral functions”; Chap. 8 refers to “simple physical examples to explain nonlinear
dispersive and nondispersive waves.”

Nonlinear Oscillations (1979) was translated in many languages, and became a
fundamental classroom textbook inmany academic institutions, summing up to 9402
citations (as of April 28, 2019, according to Google Scholar).

Between the 80s and the 90s, a substantial enlargement of research perspectives in
nonlinear dynamics occurred within the community of applied mechanicians, with
the attention being increasingly paid to strongly nonlinear dynamic phenomena.
Nearly in parallel with such developments, the role played by experimental (physical)
techniques for a reliable and exhaustive characterization of the dynamics of (mostly)
multi/infinite-dimensional systems became fully apparent.

https://doi.org/10.1007/978-3-030-23692-2_1
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Although not providing specific foundational contributions to the development of
these novel topics, Nayfeh swiftly grasped the importance of properly complement-
ing the treatment of nonlinear oscillations via classical perturbation methods with
the intensive use of advanced geometrical and computational techniques from the
dynamical system theory also allowing to deal with strongly nonlinear and complex
dynamics, along with the need to validate theoretical/numerical outcomes through
experimental approaches.

Applied Nonlinear Dynamics (1995) testifies to Nayfeh’s great capability to grasp
recent advancements and scientific trends, and timely make them available to people
involved with research, and to practicing engineers working on challenging problems
in applied mechanics.

Upon worthily summarizing the overall book contents in the introduction, seven
chapters are dedicated to Equilibrium Solutions, Periodic Solutions, Quasiperiodic
Solutions, Chaos, Numerical Methods, Tools to Analyze Motions, and Control.
Specifically, quoting from ca.wiley.com website:

• “Analytical approaches based on perturbationmethods and dynamical systems the-
ory are presented and illustrated through applications to a wide range of nonlinear
systems.”

• “Geometrical concepts, such as Poincaré maps, are treated at length, with a thor-
ough discussion of stability and local and global bifurcation analyses for sys-
tems of differential equations and algebraic equations conducted with the aid of
examples and illustrations. Continuation methods for fixed points and periodic
solutions, and homotopy methods for determining fixed points, are detailed. Bifur-
cations of fixed points, limit cycles, tori, and chaos are discussed.”

• Chaos is explored, with many routes treated at length, by also describing methods
for “controlling bifurcations and chaos.”

• “Numericalmethods and tools (Poincaré sections, Fourier spectra, autocorrelation
functions, Lyapunov exponents, dimension calculations)” for the analysis and
characterization of motion in both the analytical and experimental context are
presented.

Consistent with the awareness of being substantially a (though smart) user of
techniques developed by others andwith thewillingness to provide an understandable
framework to effectively implement them in applications, “proofs are not provided
but references that provide them are included, some chapters (2, 3) are not written
within a mathematically rigorous framework” [11], and many examples are used to
explain the different concepts.

The last two books mark a progressive shift (or, indeed, an extension) of Nayfeh’s
interests (already present in his earlier activity) towards applied dynamics problems
in structural and mechanical engineering.

Nonlinear Interactions (2000) is built on the awareness that “an understanding of
dynamic characteristics of a structural system is essential for its design and control.”

(a) A variety of nonlinear interactions based on (2:1, 1:1, 3:1) autoparametric and
combination resonances are addressed.

http://ca.wiley.com
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(b) Another type of experimentally observed interaction between a directly excited
high-frequency mode and a low-frequency mode, accompanied by a slow mod-
ulation of amplitude and phase of the former, is discussed. It is a mechanism
of great practical importance, through which energy from high-frequency low-
amplitude sources (such as rotating machineries, waves, propeller blades pass-
ing the rudder) can be transferred to large-amplitude low-frequency modes of
supporting structures and foundations, resulting in their possible harmful oscil-
lations, or may entail decrease of vibration of a main system and increase of its
fatigue life to the expense of a sacrificial subsystem.

Upon the introduction, seven chapters include treatment of (5) Systems with
widely spaced modes, (6) Multiple internal resonances, and (7) Nonlinear normal
modes. Among meaningfully addressed topics, the following ones are mentioned.

• Multidegree-of-freedom systems, with a marked interest to distributed parameter
(structural) systems besides discrete (mechanical) ones.

• Modulation equations: equilibrium solutions; stability and bifurcation analysis;
dynamic solutions. This delineates a number of issues to be sequentially faced for
a comprehensive nonlinear dynamic analysis of a generic system, according to a
scheme later on adopted in hundreds of papers by other authors.

• Confronting direct versus discretization approach in asymptotics.
• Control strategies based on internal resonances and ensuing phenomena (e.g.,
saturation in 2:1 resonance).

• Importance of higher-order approximations.
• Comparingmethods to obtain nonlinear normal modes for discrete and continuous
systems (direct multiple scales, method of normal form, real- versus complex-
valued invariant manifold approach).

Overall, the book is indeed a mine of information about the richness and variety
of nonlinear phenomena, along with the theory behind them, and a valuable blend of
author’s expertise on classical perturbationmethods and nonlinear oscillations theo-
ry—revisited through symbolic algebra—with knowledge and tools from dynamical
system theory and experimental nonlinear dynamics.

Twenty years after the publication of [13], the book can be considered as its
continuation and update, and turns out to be “more in the genuine author’s attitude
of mind than some other of his recent books” [15].

Linear and Nonlinear Structural Mechanics (2004) dwells on how the “nonlinear
modeling and dynamic analysis of structures becomes a complex but important step
in advancing the design and optimization of modern structural systems (with special
attention to composites)” and aims “to close the gap between the practicing engi-
neer and the applied mathematician in the modeling and analysis of geometrically
nonlinear structures.”

• “Mathematically consistent and systematic derivations of comprehensive and
refined structural theories” of strings, cables, beams, plates and shells, both exact
and approximate, are presented, also including laminates, integration with piezo-
electric materials, thermoelasticity, and microbeams/plates.
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• “Physical meaning of linear and nonlinear structural mechanics” is detailed.
• “Ready-to-use governing equations and boundary conditions” are provided, “rang-
ing from simple linear to complex nonlinear.”

• Exemplary nonlinear structural analyses of refined and/or reduced order models
are summarized.

• Some main treatments and outcomes of linear/nonlinear dynamics for beams,
plates and shells are obtained, referring to refined and/or reduced order models.

1.3.2 Some Characterizing Methodological Aspects

Some main methodological aspects common to all Nayfeh’s books are highlighted
and illustrated with examples in the following. His overall production exhibits four
basic characteristics.

1. Topics are addressed and presented based on an incremental/additive (and overall
inductive) perspective, via a series of case histories.

2. Specific outcomes (about analytical techniques, different methods and/or sys-
tems) are embedded into a unified, comprehensive, and comparative framework.

3. Concepts are illustrated with numerous examples and many exercises aimed to
reinforce and assess progress in understanding.

4. Extended and updated bibliographies are provided.

The incremental/additive perspective can be recognized in the contents of anyone
of Nayfeh’s books. Figure 1.2 shows two examples [13] concerned with the forced
oscillations of systems with a single or finite number of degrees of freedom. Con-
sidering “simple systems that exhibit the essential ideas, instead of treating general
systems for which the algebra is involved” produces lists of case studies of progres-
sively increased difficulty. Basic nonlinearities (cubic, or quadratic and cubic) and
self-sustained oscillations are addressed in the first example, considering different
resonant (primary, subharmonic, superharmonic, combination, simultaneous) or non-
resonant excitations. In turn, the second example refers to diverse physical systems
and deals with various cases of resonance between excitation and system natural fre-
quencies for those having quadratic nonlinearities. The adopted scheme is certainly
repetitive. Yet, while being somehow encyclopedic, the underlying comprehensive
perspective allows to easily point out differences and peculiarities of distinct nonlin-
ear aspects of both the analytical treatment and the considered systems/excitations.
This results in a meaningful amount of information about the richness and variety of
nonlinear phenomena, and the theory behind them.

A similar example (Fig. 1.3) is taken from [9],where the general idea of themethod
of normal forms to “use a ‘local’ (i.e., near-identity) coordinate transformation to
‘simplify’ the equations describing the dynamics of the system under consideration”
is applied to parametrically excited systems.

Two more incremental/additive examples (Fig. 1.4) refer to topics addressed by
Nayfeh later on in the more engineering oriented stage of his activity, and also high-
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4. Forced Oscillations of Systems Having a Single Degree
of Freedom 
4.1. Systems with Cubic Nonlinearities

4.1.1. Primary Resonances, Ω ω0
4.1.2. Nonresonant Hard Excitations
4.1.3. Superharmonic Resonances, Ω 1/3 ω0
4.1.4. Subharmonic Resonances, Ω 3ω0
4.1.5. Combination Resonances for Two-Term 

Excitations
4.1.6. Simultaneous Resonances: The Case in Which

ω0 3ω1 and ω0 1/3 Ω2

4.2. Systems with Quadratic and Cubic Nonlinearities
4.2.1. Primary Resonances
4.2.2. Superharmonic Resonances
4.2.3. Subharmonic Resonances
4.2.4. Combination Resonances

4.3. Systems with Self-Sustained Oscillations
4.3.1. Primary Resonances
4.3.2. Nonresonant Excitations
4.3.3. Superharmonic Resonances
4.3.4. Subharmonic Resonances
4.3.5. Combination Resonances

6. Systems Having Finite Degrees of Freedom 

6.1. Examples
6.1.1. The Spherical Pendulum
6.1.2. The Spring Pendulum
6.1.3. A Restricted Ship Motion
6.1.4. Self-sustaining Oscillators
6.1.5. The Stability of the Triangular Points in 

the Restricted Problem of Three Bodies

6.5. Forced Oscillations of Systems Having 
Quadratic Nonlinearities

6.5.1. The Case of Ω Near ω2
6.5.2. The Case of Ω Near ω1
6.5.3. The Case of Nonresonant Excitations
6.5.4. The Case of 2Ω Near ω1
6.5.5. The Case of Ω Near ω1 + ω2

Fig. 1.2 Incremental/additive approach in the contents of [13]

5. Parametrically Excited Systems  

5.1. The Mathieu Equa on

5.1.1. Fundamental Parametric Resonance 
5.1.2. Principal  Parametric Resonance

5.2. Mul -Degree-of-Freedom Systems 
5.2.1. The Case of Ω Near ω2 + ω1 

5.2.2. The Case of Ω Near ω2 - ω1

5.2.3. The Case of Ω Near ω2 + ω1 and ω3 - ω2

5.2.4. The Case of Ω Near 2ω3  and ω2 + ω1

5.3. Linear Systems Having Repeated Frequencies 
5.3.1. The Case of Ω Near 2ω1

5.3.2. The Case of Ω Near ω3 + ω1

5.3.3. The Case of Ω Near ω3 - ω1

5.3.4. The Case of Ω Near ω1

5.4. Gyroscopic Systems
5.4.1. The Case of Ω Near 2ω1 

5.4.2. The Case of Ω Near ω2 - ω1

5.5. A Nonlinear Single-Degree-of-Freedom System
5.5.1. The Case of Ω Away from 2ω
5.5.2. The Case of Ω Near 2ω

Fig. 1.3 Incremental/additive approach in the contents of [9]

light the inductive character of his approach: the same form of modulation equations
is recognized for systems belonging to a certain group of symmetry [10], andmethods
of linear/nonlinear structural mechanics can be readily extended to different and/or
more complex structures [14].

Overall, as explicitly declared in the prefaces of all Nayfeh’s books (starting
with the more theoretical one [6]), the material is not presented “within a math-
ematically rigorous framework.” This originated criticisms from more dynamical
system-oriented (and generally more rigorous) scientists. But this characterizing



10 G. Rega

Nonlinear Interactions (2000):

. 2:1, 1:1, or 3:1 Internal Resonances: primary resonance, principal parametric resonance (of 
first mode, of second mode), fundamental parametric resonance 
Combination Resonances: parametric, external, internal; of the additive or difference type 

. Nonlinear Normal Modes: a symmetric 2-dof system; an asymmetric 2-dof system; cubic and 
quintic nonlinearities; quadratic and cubic nonlinearities; multi-dof systems; systems with 
internal resonances; continuous systems

Inductive: for systems with 1:1 internal resonance:
“the modulation equations have the same form for all systems with O2 symmetry, irrespective 

of their physical origin and/or the source of the nonlinearity”  

Linear and Nonlinear Structural Mechanics (2004): 

. Plates: linear classical; linear shear-deformable; nonlinear classical; general nonlinear 
classical; nonlinear shear-deformable; nonlinear layerwise shear-deformable

Incremental/Inductive:
“as a result, the reader can readily extend the methods to formulate and analyze different 

and/or more complex structures”

Fig. 1.4 Incremental/inductive approach in [10, 14]

feature of Nayfeh’s scientific personality ensued from his being basically a scholar
in engineering sciences capable of exploiting a strongly founded knowledge of fun-
damentals of applied mathematics to understand the nonlinear behavior of involved
mechanical/structural systems; this being the actual main focus of his research inter-
ests. The inductive approach adopted by Nayfeh in his presentations of scientific
material was likely brought to its extreme consequences. Yet, it was somehow in
line with the perspective adopted by most of the earlier scientists active in nonlinear
dynamics (including mathematicians), who “were not led to their discoveries by a
process of deduction from general postulates or principles, but rather by a thorough
examination of properly chosen particular cases”, with the generalization coming
later “because it is far easier to generalize an established result than to discover a
new line of argument” [5]. In this sense, Nayfeh’s approach was not too far from the
purpose of studying concrete nonlinear systems with their “natural effects”, which
also inspired earlier theoretical research in nonlinear dynamics at Moscow [1] and
Kiev [3] schools.

It is anyway important to notice that such a ‘list-looking’ aspect of his presen-
tations was constantly paralleled in all books by the successful attempt to achieve
a unified, comprehensive, and comparative framework into which presenting the
various case-studies and highlighting the relevant differences and peculiarities. Sen-
tences from the prefaces of some Nayfeh’s books quoted in Fig. 1.5 witness the care
he always paid to the matter.

Two more aspects of Nayfeh’s fully effective educational and professional per-
spective as a book author are to be mentioned. Concepts were always illustrated
through worked-out examples and exercises useful to reinforce understanding and
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• Perturbation Methods (1973):
“Presents in a unified way an account of most of the perturbation techniques, pointing
out their similarities, differences, and advantages, as well as their limitations”

• Applied Nonlinear Dynamics (1995):
“Unlike most other texts, which emphasize either classical methods, experiments and
physics, geometrical methods, computational methods, or applied mathematics,
provides a coherent and unified treatment of analytical, computational, and
experimental methods and concepts of nonlinear dynamics”

• Nonlinear Interactions (2000): 
“Provides a coherent and unified treatment of analytical, computational, and
experimental methods and concepts of modal interactions”
As an obvious extension of Applied Nonlinear Dynamics (1995), the relevant “methods
are used to explore and unfold in a unified manner the fascinating complexities in
nonlinear dynamical systems”

• Linear and Nonlinear Structural Mechanics (2004): 
“A unique unified approach, more general than those found in most structural
mechanics books, is used to model geometric nonlinearities of structures”

Fig. 1.5 A unified framework

assess progress of students. Moreover, very rich and (for their time) updated
bibliographies were provided at the end of each book. They are still invaluable
sources of information/knowledge about ‘classical’ and more recent books and jour-
nal/conference papers, for scholars in nonlinear dynamics. This is even more impor-
tant in the current time in which scientific problems are sometime ‘rediscovered’, in
a context of overall minor care paid to the historical evolution and advancement of
science by some young scientist mostly aimed at attaining specific, and also possibly
limited, goals.

1.4 Complementing Mathematical and Engineering
Approaches to Nonlinear Systems

A fundamental part of Ali Nayfeh’s legacy consists of the conceptual, and mostly
operational, contributions to the method of multiple time scales provided at the
beginning of his scientific activity, and later on expanded in the direction of fre-
quently needed higher-order expansions and in terms of popularization. As a matter
of fact, multiple time scales are continuously being used by generations of scientists
for solving nonlinear dynamics problems. This holds irrespective of mathematical
warnings raised about pitfalls possibly occurring in the asymptotics of the MMS



12 G. Rega

owed mostly to the anticipated choice of timescales, a feature which does not occur
in the averaging method where they emerge by nonsecularity conditions without any
a priori assumption [17]. But Nayfeh was most likely aware of those pitfalls. This
is witnessed both by the reference constantly made to the need to properly select
timescales (including fractional ones) depending on the dynamic problem at hand,
and by his many performed comparisons of equivalent approximations provided by
multiple scales and averaging. It is however to be noticed that Nayfeh’s enormous
skill and experience about how properly selecting a priori the timescales necessary
for a reliable asymptotic solution of a given problem ensue from exceptional per-
sonal features in terms of intuition and overall understanding which are not in the
patrimony of all scientists.

As a matter of fact, looking at his outstanding scientific activity on a huge variety
of themes [16], Nayfeh’s main nature of a scholar in engineering sciences could
be further highlighted. While being well-acquainted with applied mathematics, he
was fundamentally interested in using his skill and expertise to catch the nonlin-
ear behavior of mechanical and structural systems. Indeed, moving from his earlier
achievements on the nonlinear oscillations of simple models, in the second part of
Nayfeh’s academic life further distinguishing and highly influential features in the
realm of applied mechanics and engineering emerged clearly. Therein, with an unri-
valed capability to grasp novel advancements and research trends, he succeeded in
remarkably complementing a profound expertise on asymptotic methods and nonlin-
ear oscillations theory, revisited throughmodern symbolic algebra, with the effective
interpretation and organization of experimental outcomes, both in-house and from
the literature, along with the smart use of knowledge and tools from modern dynam-
ical system theory.

Acknowledgements The financial support of the Italian Research Project PRIN 2015 (No.
2015JW9NJT) is acknowledged.
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Chapter 2
Henri Poincaré (1854–1912) Engineer,
Mathematician, Physicist and
Philosopher

Ferdinand Verhulst

Abstract We present a brief introduction to Poincaré’s ideas and projects. After a
global survey of his life and work we give an extensive evaluation of his famous
Prize Essay and discuss his concepts of dynamical systems. A section is devoted
to Poincaré’s influence on theoretical engineering and one on his many results in
mathematical physics.

Keywords Poincaré · Dynamical systems · Mathematical physics

2.1 Introduction, Poincaré’s Life and Work

There exist a number of biographies of Henri Poincaré. A recent one is [4] which
emphasizes the historical relation between Poincaré and earlier and contemporary
scientists; [1] is unusual, it contains information of the reactions to Poincaré’s ideas
and papers in the newspapers and other public media. A similar interesting book
was composed by Ginoux on Albert Einstein [2]; Poincaré and Einstein discussed
relativity and the first ideas on quantum mechanics at the 1911 Solvay conference in
Brussels. The present paper is based on [8] with a number of additions on the impact
of Poincaré on engineering and mathematical physics, see also [3].

Other important aspectswere discussed in [9]where thedevelopment ofPoincaré’s
analysis situs (algebraic topology) was studied in relation to his various ideas and
projects. In [10] two neglected ideas of Poincaré were revived and shown to be very
useful.

In 1854 Henri Poincaré was born in Nancy, Eastern France. It was natural to have
in his family lively discussions on scientific and social issues. It seems that at an
early stage these discussions stimulated Henri’s interest in scientific problems. His
father was a medical specialist with research activities who later became professor
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at the University of Nancy. The family lived in a building that also housed the
pharmacy of his grandfather Poincaré; this grandfather wrote among other things a
flora of nature around the river Mosel. The brother of his father, Antoni Poincaré,
was an influential civil engineer in Northern France. Uncle Antoni had two sons,
Raymond and Lucien. Raymond became an important politician, prime minister
and later President of the French Republic. Lucien became general supervisor of
secondary education in France.

When Henri was 5 years old, he contracted diphteria, a life-threatening illness.
This caused temporary paralysis of his legs and made it impossible for him to talk.
This illness lasted 9 months but, remarkable enough, there seemed to be few conse-
quences of the illness later on. Another event that certainly made an impression on
Henri was the war 1870–1871, between Prussia and France. The Prussians occupied
Nancy; Henri who was 16 years old at that time, served as a medical assistant to his
father, tending the wounded. The important dates of Poincaré’s life are:

• Born in 1854, Nancy, Loraine.
• School years in Nancy, 1860–1873.
• École Polytechnique, 1873–1875, Paris (general science education).
• École des Mines, 1875–1878, Paris, to become a mining engineer.
• SubmissionMathematics Thesis, Sorbonne, 1878 (University of Paris, supervisors
Darboux, Laguerre and Bonnet).

• Mining engineer Vesoul/Ronchamps, 1879 (Eastern France).
• Mathematics lecturer in Caen, Normandy, 1879–1881.
• Marriage with Louise Poulain d’Andecy, 1881 (4 children).
• Appointment at ParisUniversity (Sorbonne), 1881–1912.He taughtmany different
subjects, for instance experimental physics, celestial mechanics, electricity and
optics, elasticity, probability. There exist 14 lecture note books composed by his
students.

• Died July 17, 1912, 58 years old.

The mathematical style of Poincaré is at present appreciated more by physicists
than by pure mathematicians. He was in his youth influenced by M. Chasles who
wrote in his inaugural lecture (1846):

One can see the respective advantages of Analysis and Geometry: the first one leads by using
the miraculous mechanism of its transformations quickly from the starting point to the point
to be reached, but often without revealing the road that was travelled or the significance of
the numerous formulas that one has used. Geometry on the other hand derives its inspiration
from thoughtful consideration of things and from the ordered arrangement of ideas. She is
obliged to discover in a natural way the statements that Analysis could neglect and ignore.

This is in contrast with the style of Lagrange, Laplace, Weierstrass and other mathe-
maticians who promoted analytic and algorithmic approaches. In his book of essays
‘La valeur de la science’ Poincaré compares the style and perception of variousmath-
ematicians, geometric, intuitive and analytic. It is clear from his writing that he used
both approaches, he felt rightly that both are necessary for the progress of science
(Fig. 2.1).
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Fig. 2.1 Henri Poincaré
around the time of writing
his famous Prize Essay

We present a global survey of Poincaré’s work. First the theory:

• The qualitative theory of differential equations
• Automorphic functions, uniformisation
• Bifurcation theory
• Asymptotic expansions, normal forms
• Dynamical systems, integrability
• Mathematical physics, PDEs
• Topology (analysis situs)
• Philosophy

Among many applications, we mention:

• 1st order PDEs with singularities (his thesis)
• Self-excited oscillations in telegraphy
• The gravitational three-body problem
• Transport of heat
• Estimates for eigenvalues
• Cosmogonic hypotheses,
• Formulation of the principle of relativity (1905).

2.2 Thesis, Prize Essay and Dynamical Systems

From the beginning of Poincaré’s career in science dynamical systems played an
important part in his work. One of his thesis supervisors, Gaston Darboux, pointed
out to him that recent work by Briot and Bouquet showed how to obtain series
solutions of ODEs near regular points and near singularities. He should try to extend
these results to first order partial differential equations.
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2.2.1 The Doctorate Thesis

It seems that Henri Poincaré wrote his thesis almost casually during his second and
third year at the École des Mines. Using the method of characteristics the problems
for first order partial differential equations can be reduced to n-dimensional nonlinear
ODEs with singularities. His supervisors were not very happy with the first version,
thereweremanygaps in the reasoning. Poincaréfilled in all the gaps rather reluctantly,
he was already working on a different topic, automorphic functions.

The thesis contains new concepts, the notion of a so-called algebroid function
and what is now called the Poincaré domain in complex parameter space. This
domain tells us for which subset of parameters certain expansions are possible.
Using these concepts we can in a number of cases determine whether holomorphic
series expansions exist near a singularity and whether there are certain algebraic
elements in the expansions; Poincaré gives examples, some of which are cases that
are undecided. The thesis is still of interest as it covers also a discussion of expansion
near irregular singular points.

2.2.2 The Prize Essay

In 1885, it was announced by Gösta Mittag-Leffler, professor of mathematics in
Stockholm, that King Oscar II of Sweden and Norway sponsored a scientific com-
petition for his 60th birthday in 1889. Essays had to be handed in by June 1, 1888.
Problem 1 of the four topics was:

Dirichlet communicated to a friend that he could solve the equations describing
Newtonianmotion. This could be used to demonstrate the stability of the Solar System.
Topic: reconstruct Dirichlet’s reasoning.

Other topics were concerned with automorphic functions and special functions.
The committee for the essays consisted of Mittag-Leffler (chairman, Stockholm),
Weierstrass (Berlin) and Hermite (Paris), see Fig. 2.2. Poincaré won the prize, his
life-long friend Paul Appell became second.

Nowadays there has been much discussion on an error by Poincaré in the first
version of the prize essay. We will describe the contents of his essay and finish with
an evaluation.

It is clear that the topic of the essay is dynamical systems with as example the
gravitational three-body problem. The aim was to add to solving the question of
stability of the solar system, a question still completely unsolved today. There are 4
main achievements in the essay:

1. The recurrence theorem for conservative systems on a bounded domain: “orbits
will always return infinitely many times arbitrarily close to the original position”.
It is interesting that this idea was considered a useless tool in statistical mechanics.
It is now coming up as a tool for lower-dimensional Hamiltonians, less than 50 dof
instead of 1022 dof as in statistical mechanics; see [10].



2 Henri Poincaré (1854–1912) Engineer, Mathematician, Physicist and Philosopher 19

Fig. 2.2 From left to right: Gösta Mittag-Leffler, Karl Weierstrass, Charles Hermite

2. Periodic solutions, existence and convergence or asymptotic character of series
expansions. Until the time of the results obtained by Poincaré the series in celestial
mechanics were formal; there was on this question a famous discussion between
Laplace and Cauchy on the convergence of the series of Laplace. Poincaré con-
sidered differential equations involving a small parameter ε (he used μ). If ε = 0
the problem can be solved, some solutions are periodic. Can we continue the peri-
odic solutions for ε > 0? Think as examples of perturbed harmonic motion or the
perturbed gravitational two-body problem. Poincaré uses as an example the pla-
nar restricted three-body problem showing that most classical expansions do not
satisfy the implicit function theorem and so cannot be expected to converge. This
caused quite an uproar at the time as contemporary scientists published only formal
expansions.

3. Bifurcations. It is typical for Poincaré’s inquisitive mind that he studied then
the cases where the implicit function theorem could not be applied. What happens
when holomorphic expansions break down? His answer: new expansions and new
phenomena which was the birth of bifurcation theory. He returned to these problems
in his famous 3 books [7].

4. Integrability versus non-integrability. In the first version of his essay Poincaré
wanted to demonstrate that the stable and unstable solutions of the planar restricted
three-body problem would be surrounded by invariant tori that could be glued
together globally. The implication was integrability of this problem. When edit-
ing the essay for publication in the Acta Mathematica, Lars Phragmén had many
queries. This was not unusual for Poincaré, he was inclined to make big steps in his
reasoning and was often too impatient to discuss all (tedious) details. He had to add
nearly 100 pages to fill in gaps, but one gap could not be filled. To his chagrin he
found that the reasoning on integrability was not sound. With an enormous tour de
force he then showed that the planar restricted three-body problem is not integrable.
The expansions he computed can not be used to obtain invariant tori.

It should be stressed that Poincaré recognized the error himself and repaired
it. Credit goes to Phragmén for his many questions asking for clarifications and
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improvements. In addition we conclude that the first three results of the prize essay
were each of them enough to grant Poincaré the prize.

Generalization

In [7] he returns to the integrability question showing by different means that in gen-
eral Hamiltonian systems are non-integrable. Consider for this strong generalization
of the Prize Essay a time-independent Hamiltonian system H(x, y)with 2n variables
of the form:

ẋ = ∂H

∂y
, ẏ = −∂H

∂x
. (2.1)

H(x, y) is a first integral, suppose that H depends on a small parameter μ with
convergent series expansion

H = H0(x, y) + μH1(x, y) + μ2H2(x, y) + · · · (2.2)

Suppose that x, y are action-angle variables and that H0 depends on x alone, the
Jacobian |∂H0/∂x | is non-singular, H(x, y) is periodic in y, analytic in its variables
in a domain D ⊂ R

2n . Suppose there exists an analytic independent second integral
φ(x, y), periodic in y and with convergent expansion:

φ(x, y) = φ0(x, y) + μφ1(x, y) + μ2φ2(x, y) + · · · (2.3)

Poincaré shows thatφ(x, y) can only be an analytic independent second integral if we
impose further conditions. The proof uses expansion with respect toμ of the Poisson
bracket that establishes independence. The subsequent equations can be solved only
when φ(x, y) at each order of μ is dependent on H . It took roughly 80 years for
scientists to realise the implications of this result in the context of chaos theory.

2.2.3 Bifurcations

Early examples in the theory of rotating fluid masses (MacLaurin, Jacobi, Dirichlet,
Dedekind, Riemann, 1750–1850) suggested bifurcation phenomena. The 2-axial and
3-axial ellipsoidal fluid shapes that were found to exist for self-gravitating fluid
masses change with the rotation velocity. At a certain velocity the ellipsoidal fluid
breaks up (bifurcates) into two parts (bifurcation = two-forking).

Poincaré (1892) considers bifurcations in a very general setting for systems of
differential equations with parameters, dissipative and conservative. He considers
any qualitative change of the solutions of a differential equation by a change of
parameters a bifurcation; he develops the idea of a bifurcation set, the set of param-
eter values where such changes occur. In this context it is of interest to consider a
periodic solution φ(t) of an n-dimensional ODE containing parameters. Perturb with
a small parameter ε around such a periodic solution; for ε = 0 one finds periodic
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solution φ(t). Apply the implicit function theorem and the periodicity condition to
the perturbed n-dimensional equation with an n-dimensional perturbed initial value
β = (β1, . . . , βn). This produces n periodicity equations for n unknowns βn . If a
certain Jacobi determinant J is nonzero, a new periodic solution has been found.

This is the famous Poincaré-Lindstedt method. The perturbation expansion was
applied formally by Lindstedt to perturbed harmonic equations. Poincaré formulated
the method in a general n-dimensional setting and gave a proof by continuation using
the implicit function theorem.

Poincaré-Andronov-Hopf Bifurcation

The bifurcation set may contain points with purely imaginary eigenvalues or cases
when the Jacobi determinant J vanishes, it is structurally unstable at these points.
The case of purely imaginary eigenvalues includes the so-called Hopf-bifurcation,
formulated in general form by Poincaré, reformulated later by Andronov and redis-
covered by Hopf again much later. The classical example is the equation formulated
by Balthasar van der Pol:

ẍ + x = εẋ(1 − x2). (2.4)

Poincaré studies this bifurcation in the Méthodes Nouvelles [7] vol. 1 (1892).
His prominent publications in dynamical systems are the Mémoire of 1881–1882

[6] and Méthodes Nouvelles de la Mécanique Célèste (1892–1899) [7].
A common misunderstanding is that the 3 books Méthodes Nouvelles are books

on celestial mechanics; instead they can be considered the first systematic books on
dynamical systems. Problems of celestial mechanics are often discussed as exam-
ples in [7] but the treatment on bifurcations and on characteristic exponents is com-
pletely general, as are the results on conservative dynamics. A brief contents of
the 3 volumes would include: Poincaré expansion with respect to a small parame-
ter, the Poincaré-Lindstedt method, characteristic exponents including the important
cases where first integrals exist, the famous proof of general non-integrability of
time-independent Hamiltonian systems, the idea of asymptotic approximation, the
Poincaré domain in normal form theory, asymptotic invariant manifolds, the recur-
rence theorem, Poincaré maps as a tool, homoclinic and heteroclinic solutions of
dynamical systems. See [8] for more details and discussion.

2.3 Poincaré and Engineering

Already as a boy Henri Poincaré took a keen interest in engineering, see [8]. After
becoming a mining engineer in 1878 he spent a year supervising the Vesoul mines in
Eastern France. His responsibilities were the production capacity and safety. His last
report as an inspector was to propose a new ventilation system for the Magny mine,
see the plan of the mine in Fig. 2.3. He continued to hold a position in the Corps des
Mines; in 1910 he became inspector-general of the French mines, a mainly honorary
position.
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Fig. 2.3 Plan of the Vesoul
mine from Poincaré’s report
on its safety

At the same time and later in Caen he continued his study of nonlinear oscillations
described by ODEs. One of his achievements was his study of so-called sustained
oscillations, self-excitation and limit cycles. Poincaré lectured at theÉcole supérieure
des Postes et Télegraphs. He published lecture notes on electrical oscillations and
the theory of Maxwell. An application proposed by Poincaré in 1908 was to wire-
less telegraphy. In Fig. 2.4 an electrical circuit is shown that can produce sustained
oscillations. The electrical circuit is described by:

Lx ′′ + ρx ′ + θ(x ′) + Hx = 0; (2.5)

ρx ′ represents the resistance and other energy losses in the circuit, θ(x ′) is the
radiation term produced by the electric arc, L the self-induction. Knowing a suitable
function θ , one can construct isolated periodic solutions of this equation. He goes
in detail about the various designs of the antenna. The emitted radiation takes the
form of a plane wave described by a Fourier integral. The design of these self-excited
oscillations predates Van der Pol’s triode by many years.

Two revolutionary papers by Poincaré on periodic solutions, in particular limit
cycles, were published already in 1881–1882 [6]. They contain the analysis of second
order autonomous ODEs using projection on what is now called the Poincaré sphere;
the papers introduce index theory and discuss the presence of periodic solutions in the
phase-plane. It took a long time for this basic theory to reach the field of applications.
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Fig. 2.4 Design of a circuit
to use for wireless
telegraphy, the singing arc
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An extensive study of the development of nonlinear oscillation theory in France
is [3]. It is a remarkable fact that during roughly 20 years, say 1910–1930, the name
of Poincaré hardly appears in the French engineering literature. Ginoux [3] (see
references there) attributes this to the absence of theoretical framework in French
engineering in this period. For instanceAndréBlondel analyses sustained oscillations
without using and referring to Poincaré’s basic results. Alfred Liénard obtained
results for periodic solutions in a way that is clearly reminiscent of Poincaré’s work,
but it is not clear if hewas aware of the relation. TheFrench engineerswere acquainted
with Van der Pol’s work but this inventive scientist does not cite Poincaré in the
context of his own work on self-excitation. Later Philippe Le Corbeiller became
a prominent scientist, he was an admirer of Van der Pol but failed also to discuss
Poincaré.

Between 1920 and 1940 the engineering and nonlinear oscillation results of
Poincaré were mainly continued and extended in the Soviet Union by Andronov,
Krylov and Bogoliubov. One of the conclusions of this period in France may be that
it is not good for engineering to neglect in teaching and research new theoretical
developments.

2.4 Mathematical Physics

Poincaré’s interest in physics extended beyond mathematics to explain and under-
stand real-life phenomena. In our subsequent summary we cover many papers and
books, for references see [8].

2.4.1 Partial Differential Equations

It is not well-known that Poincaré made fundamental contributions to the theory of
PDEs (I owe much information to a paper by Jean Mawhin [5]). He noticed that the
equation of Laplace, the heat equation, the Helmholtz equation arise in many fields
of physics, so he paid special attention to these basic equations. We mention:
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• Balayage or sweeping method (1890). “Balayage” is used to solve Poisson equa-
tions to determine the gravitational field of arbitrarily shaped bodies. Replacemass
elements by spherical surfaces with mass, then construct a covering of the whole
body by these surfaces. Nowadays one uses variational methods for existence
questions in potential theory, balayage is still used in abstract potential theory.

• Minimax estimates of eigenvalues (1894). The minimax eigenvalue estimates are
concerned with the Helmholtz equation on bounded domains. Poincaré uses the
Dirichlet principle and aminimizing procedure to estimate subsequently the eigen-
functions and eigenvalues of the equation. Themethod still plays an important part
in eigenvalue estimation theory.

• Introduction of generalized functions (1894). Boundary value problems involving
continuous boundary conditions can be interpreted using Green’s functions with
integral expressions as “solution” instead of explicit twice differentiable functions.
This work predates the analysis of later mathematicians of generalized solutions.

• Convergence in the mean of Fourier series (1890–1894, far before Hilbert) Dis-
continuities in the boundary conditions lead to convergence problems in Fourier
series. Convergence in the mean is introduced inspired by variational calculus.

In all these cases actual physical problems suggested the development of mathemat-
ical tools.

2.4.2 Rotating Fluid Masses

The study of rotating self-gravitating fluids is preliminary for studying star and planet
formation. When Poincaré considered these problems many prominent scientists
had already obtained important results, for instance MacLaurin, Jacobi, Dirichlet,
Dedekind, Riemann. In Poincaré’s lecture notes attention is paid to suitable orthog-
onal special functions. Higher-order Lamé functions play a part in the expansions
of MacLaurin’s and Jacobi’s triaxial ellipsoids. Poincaré discovered a new series of
pear-shaped equilibrium configurations branching off the Jacobi ellipsoids. The sta-
bility analysis takes place by linearization. Interestingly, he describes the transcritical
bifurcation (without using this modern term) that produces an exchange of stabili-
ties between two equilibrium configurations when a bifurcation parameter passes a
certain critical value.

2.4.3 Dynamics of the Electron, Special Relativity

In 1895 Poincaré wrote 4 articles on theory and experiments in optics and electricity.
He stated that absolute motion can not be demonstrated, only relative motion of
matter with respect to matter. In 1904 Hendrik A. Lorentz stated that time was not
absolute, it depends on the location and motion in space. Also he gave his brilliant
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formulation for the length contraction of bodies in relative motion with velocity v

introducing the contraction factor:

k =
√

1

1 − v2/c2
, (2.6)

where c is the velocity of light. For motion in the x-direction the transformation
according to Lorentz is:

x ′ = kl(x + v

c
t), y′ = ly, z′ = lz, t ′ = kl(t + v

c
x). (2.7)

The factor k and parameter l arise in Lorentz’ group of transformations describing
motion of mass in x-direction in space and time. Poincaré derived this group of
transformations rigorously in 1905 showing that rotational invariance required that
l = 1; Eq. (2.7) is called the Lorentz-Poincaré transformation. The transformations
admit dilation, boosts along the axes and rotations. He concludes that combination
of transformations of this group conserves the quadratic form:

x2 + y2 + z2 − t2. (2.8)

Another consequence of these transformations onwhichLorentz and Poincaré agreed
is that gravitationalwaves and interactions have to propagatewith the velocity of light.
The position and motion of a moving body determines the gravitational attraction
and so the emitted gravitational wave. For details and references see again [8].

2.4.4 Cosmogony

Poincaré’s book on cosmogony is still useful for his critical appraisal of the various
hypotheses regarding the origin and stability of the solar system. He gives credit to
the nebula hypothesis of Laplace, considers evolution by contraction and tidal effects,
and the capture hypothesis. Noteworthy are Poincaré’s reviews of (at the time) new
hypotheses by H. Faye, R. du Ligondès and T. J. J. See; he presents a proof and
applications of the virial theorem. Many cosmogonic hypotheses are a mixture of
qualitative and quantitative arguments with most problems still unsolved.

2.5 Conclusions

We have discussed only a few of the many topics studied by Poincaré. We mention
briefly some related aspects.
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1. ForPoincaré concrete problemswere of great interest, but immediatelywhile tack-
ling them he developed new concepts and tools inmathematics. An example is the
theory of automorphic functions which he developed as a young man in Caen and
Paris. It started with obtaining insight in singularities of linear ODEs. Such equa-
tions defining special functions arise naturally in mathematical physics (Lamé
functions, hypergeometric functions etc.). For Poincaré there was the beauty of
these transformations and the insight in singularities of linear ODEs in the com-
plex plane. His remarkable insight was that some of the transformations near
singularities lead to behaviour on Riemann sheets that can only be understood in
terms of non-Euclidean geometry. Poincaré clearly enjoyed this. The theory of
automorphic functions amounts to about 10% of his publications.

2. There was a deep link between very different looking topics of his studies. For
instance, at the same time when Poincaré developed his Méthodes Nouvelles [7]
he created new concepts of algebraic topology (Analysis Situs). The first paper
“Analysis Situs” appeared in 1895, followed by 5 supplements. Topology gave
deeper understanding in both the tools of automorphic functions which he studied
earlier in his career and manifolds in Hamiltonian dynamics; see [9].

3. As is shown in Henri Poincaré’s work, in a fruitful development of science, con-
cepts and tools are closely bound together. New calculational tools for examples
produce intuition for underlying structures leading to new concepts and theory.
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Chapter 3
Basins of Attraction for
Higher-Dimensional Nonlinear
Dynamical Systems: Preliminary Results
on the Case Study of a Sympodial Tree

Nemanja Andonovski, Stefano Lenci and Ivana Kovacic

Abstract Analysis of global behaviour of low-dimensional, strongly nonlinear
dynamical systems has beenwell explored in the past, andmodern trends are directed
toward the investigation of dynamics of systemswhose dimension is large, i.e. higher
or equal to six. To deal with the huge number of computations required for high-
dimensional global analysis, we are developing a software which exploits High Per-
formance Computing (HPC) frameworks on cluster computers (distributed memory
systems). In this work, we present preliminary results obtained during the global
analysis of a model of a sympodial tree with the first/level branches, which has three
degrees of freedom, i.e. six state variables.

Keywords Basin of attraction · High performance computing · Sympodial tree ·
Nonlinear dynamics

3.1 Introduction

A lack of suitable analytical methods to investigate the global behaviour of strongly
nonlinear, high-dimensional dynamical systems triggered intensive development of
numerical methods for their global analysis. The global behaviour of such systems is
determined once the attractors and corresponding basins of attraction are discovered
and computed [1, 2]. In fact, often knowing the type of attractors is not enough
in engineering applications where the compactness of the basin surrounding the
attractors is also highly relevant [3]. Thus, the importance of global analysis lies in
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the fact that the structure of the basins of attraction gives additional information on
the robustness of an attractor, which is strongly related to the practical stability, and
thus, to the reliable use of the considered attractor in applications.

Numerical methods widely used to compute basins can be divided into two cate-
gories by the technique used to discretize the continuous state-space. The first type of
methods use points as discretization entities, and are often not suitable as the regions
between points remain undefined. To avoid possible issues with undefined regions,
the majority of methods (second category) divide the state-space into collection of
small volumes, commonly called cells [4].

With the Grid-of-Starts (GoS) method [5] (pages 311, 313 and 323), attractors
and basins are computed by time-integrating all initial conditions (in the discretized
domain) up to the steady-state behaviour. It is accurate and easy to implement,
often used to examine basins on arbitrary cross-sections. It can give full-dimensional
basins, but it requires a large amount of CPU time to execute all computations.

In this work, we use algorithms based on cell mappings—a family of methods
developed to reduce the computational time. Initially developed in [4] and improved
by many others (e.g. [6–8]), cell mapping methods approximate continuous trajecto-
ries by defining a mapping function between the cells. A discrete map is obtained by
the integration over only one excitation period (or, more generally, from one Poincaré
section—not necessarily the stroboscopic one—to itself). The results are again given
in form of full-dimensional basins of attraction.

Beside requirements for large computational power [9], full-dimensional basins
(especially those computed with cell-mapping methods) also occupy large amounts
of memory, which is not available on conventional computers.

To overcome limitations of high dimensionality, steps are made toward the usage
of HPC in global analysis. Cluster computations with GoS method that produce
full-dimensional basin have been developed in [10–12] and parallelization of cell
mapping methods has been discussed in [7, 13–15].

The ultimate goal of our work is to explore structural stability of nonlinear dynam-
ical systems in at least six dimensions. To do so, the first part is dedicated to devel-
oping a software tool that can be used by engineers and scientists that have access to
small clusters (several dozen of cores) and need full-dimensional basins. The pro-
gram numerically computes attractors and their basins with the Simple Cell Mapping
(SCM) method and prepares the data for visualization in an external freeware soft-
ware (i.e. ParaView© [16]).

In this work, our software is applied to the model of sympodial tree with first-level
branches [17]. The interest in studying this subject comes from the fact that trees are
able to endure variety of negative natural conditions, showing a resilient behaviour
that needs to be understood, first, and then it might be appropriately exploited in
engineering applications. This system is particularly worth of global analyses, since
the preliminary investigations herein reported highlight the complex behaviour of
basins of attraction, showing, in particular, that not all the attractors are equally
robust.
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3.2 Sympodial Tree Model

The sympodial treemodel shown in Fig. 3.1amimics trunkwith two identical leafless
branches. The trunk of mass m, length l and diameter D is attached to the ground
by a viscous damper (its damping coefficient is labelled by b) and a spring (its
stiffness is labelled by k) and is able to oscillate around its base. Two identical
branches with the corresponding parameters m1, l1, D1 are attached to the trunk.
There are viscous dampers and springs between the branches and the trunk, and their
respective coefficients are labelled by b1 and k1. The trunk is excited by a periodic
torque of magnitude M and angular frequency Ω . The additional parameter used
to model tree-like structures is the branching angle α. The generalized coordinates
are defined in terms of the absolute angles, ϕ for trunk and ψ1, ψ2 for the branches,
measured from the respective equilibrium positions, as shown on Fig. 3.1b.

To derive dimensionless differential equations of motion, the following parame-
ters are used: the diameter ratio D1/D = λ1/2, the length ratio l1/ l = λ1/2s , themass
ratio m1/m = λ4/3, the stiffness ratio κ = k1/k, the dimensionless damping coeffi-
cient ζ = b/2l

√
3/km and the damping ratio β = b1/b. The governing equations

are then:

−2κ(ψ1 + ψ2) − 4βζ(ψ̇1 + ψ̇2)

−3λ5/3ψ̇2
2 sin(α − ϕ + ψ2) + 2(1 + κ)ϕ + 4(1 + 2β)ζ ϕ̇

+3λ5/3ψ̇2
1 sin(α + ϕ − ψ1) + 2(1 + 6λ4/3)ϕ̈

+3λ5/3ψ̈1cos(α + ϕ − ψ1) − 3λ5/3ψ̈2 cos(α − ϕ + ψ2) = 2M cos(Ωt), (3.1)

Fig. 3.1 Model of
sympodial tree with
first-level branches, a model
properties, b generalized
coordinates
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2κϕ + 4βζ ϕ̇ + 3λ5/3ϕ̇2 sin(α + ϕ − ψ1) − 2κψ1

−4βζ ψ̇1 − 3λ5/3ϕ̈ cos(α + ϕ − ψ1) − 2λ2ψ̈1 = 0, (3.2)

2κϕ + 4βζ ϕ̇ − 3λ5/3ϕ̇2 sin(α − ϕ + ψ2) − 2κψ1

−4βζ ψ̇2 − 3λ5/3ϕ̈ cos(α − ϕ + ψ2) + 2λ2ψ̈2 = 0. (3.3)

In the following analysis we will use λ = 1/2 and s = 3/2. These parameters are
taken from previous theoretical and experimental works [18, 19].

Equations (3.1–3.3) are coupled by second-order time-derivatives, and are not
easy to be handled by classical numerical integrators. By introducing y0 = ϕ, y1 =
ϕ̇, y2 = ψ1, y3 = ψ̇1, y4 = ψ2, y5 = ψ̇2, the system (3.1–3.3) is transformed into a
system of six first-order ordinary differential equations, which is more amenable
for numerical simulations, although it is yet cumbersome due to the existing strong
nonlinearities of the problem.

3.3 Computation Method

Since our main goal is to compute full-dimensional basins in six dimensions and this
is challenging from a computational point of view, we need to choose the method
which balances between the working efficiency on small clusters and result accuracy.
Good methods are cell mappings since they have, with respect to GoS method,
much shorter integration time (but larger memory requirements). In our case, the
Simple Cell Mapping [4] is an adequate choice for basin computation as other, more
advanced, cell mapping methods are focused on getting more accurate attractors and
utilize more computing resources.
SCM integration stage—The first step in the computation of basins on a cluster is
to collocate initial conditions among nodes. The process is analog to state-space
partitioning in parallelized multi-degree-of-freedom cell mapping [13]. Then each
node integrates the dedicated portion of initial conditions. Integration time is equal
to one excitation period (because the excitation is periodic and we consider the
stroboscopic Poincaré map) for systems where transient behaviour does not escape
from the predefined state-space window. In cases where this happens, the integration
time is prolonged until the trajectories return to the state-space window. This can
significantly increase integration time, but for some systems it is necessary, and in
the majority of cases trajectories return in less periods than it is required to settle
on an attractor as in GoS method. If, after an integration over the fixed number of
periods (120 in this example), the solution does not return to the considered window,
we assign it to the unique “external attractor”, which actually is the union of all
attractors—including the one at infinity, if any—residing outside the considered
region of the phase space.

The integration part of computations is highly parallelizable, as integrations are
independent of each other. This gives opportunity for very high scalability of com-
putations, which means that execution time can be reduced proportionally to the
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increase of computing processor cores. As systems grow in complexity, some loss
of scalability is expected due to various technical restrictions [20].
SCM post-processing and visualization—The result of the integration stage is a
mapping function which is in fact a discrete approximation of trajectories. A post-
processing algorithm [4] follows trajectories and discovers loops of the mapping
function. A recursive point of the mapping corresponds to a (crude) approximation
of a periodic solution in the original system. A set of points lying on a closed curve
corresponds to a quasi-periodicmotion, while stationary points havingmore complex
structure represent chaotic attractors. Post-processing concludeswhenall cells (initial
conditions) are assigned to the corresponding attractor.

A drawback is that the original post-processing algorithm is inherently sequen-
tial and is not suited for computation on cluster computers. Possibility to parallelize
post-processing or to simultaneously integrate and process cells is investigated in
[13–15]. Some of those methods are developed for computational GPUs that are
efficient for computing when data can be accessed very quickly. As data between
cluster nodes must be exchanged through designated communication channels (sig-
nificantly slower than access to the dynamic memory of CPU/GPU), it automatically
prevents us from using algorithms adapted for GPU computations. In cases of joint
algorithms, where integration and basin processing are done simultaneously, a very
large number of unpredictable accesses to storage arrays are required. There is no
way to know a priori inwhatmanner the storage arrayswill be accessed, as it depends
on the considered dynamical system. This is an effective approach for shared mem-
ory tools where any parallel process can access data directly from dynamic memory.
On a cluster those arrays are distributed among nodes which lead to highly unpre-
dictable and irregular number of communication operations per node. As nodes are
doing drastically unequal amount of work, the computing efficiency of this approach
is sometimes comparable to sequential and often worse. In any case, it does not
provide efficiency benefits over sequential post-processing and requires much more
additional programming effort to realise the algorithm itself and to manage load
balancing or job scheduling of parallel processes.

Therefore, the original serial post-processing method has been proven to be most
suitable approach so far. Also, as the dimension increases, the number of initial con-
ditions that have to be integrated increases with geometrical progression and the
integration time becomes significantly longer than (serial) post-processing. There-
fore, it is justified to retain serial post-processing and an effort to parallelize it, at
this moment, would not bring any particular improvement in efficiency.

In summary, the optimal approach for six-dimensional systems on small clusters
is the SCM method with a highly parallelized integration stage and sequential post-
processing. For larger clusters, it is an open possibility that parallelization of post-
processing can bring benefits, which we have not investigated yet.

After post-processing, basins of attraction are stored in a file that can often be
too large for stand-alone computers to handle. In such cases, ParaView© can exploit
cluster to visualize large data sets. Another option is to use the additional program to
extract 2D and 3D cross-sections so the visualization does not have to be constrained
to a cluster.
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3.4 Results

To compute basins, we use the model parameters β = 1/2, κ = 0.3, ζ = 0.03 and
α = 20◦ as in [17] and also the excitation amplitude M = 0.5. To identify regions
of interest (excitation frequencies where multiple attractors exist), we plotted the
frequency/response diagram in Fig. 3.2, and the brute force bifurcation diagram in
Fig. 3.3.

A single Period-1 (P1) attractor exists for the frequencies up to the first bifurcation
point at Ω = 1.5475, where a quasi-period (QP) attractor is born by a saddle-node-
like bifurcation. An example of this attractor is reported in Fig. 3.4. Increasing the
frequency, the P1 branch continues to exist, but now it is paralleled by the QP one.
In this range, P1 and QP co-exist and compete (see the forthcoming basins of attrac-
tion). At Ω = 1.5962, P1 disappears through a saddle-node bifurcation. Above this
threshold, only the QP exists. It survives up toΩ = 1.622, where it disappears likely
as a consequence of a reverse Hopf bifurcation.

At Ω = 1.618, a new periodic attractor P1′ appears. In the interval between Ω =
1.618 andΩ = 1.622 again both periodic and quasi-periodic attractors coexist. After
Ω = 1.622, P1′ is the unique attractor of the system.

To examine the structure of the basins we consider, as an illustrative example, the
frequency fixed at Ω = 1.57, where P1 and QP co-exist (see Fig. 3.2). Here the P1
state-space coordinates, computed by direct integration, are

y = (0.094, 0.089,−0.451,−0.248,−0.385,−0.278), (3.4)

while QP is reported in Fig. 3.4. To capture all attractors we then used the state-
space region delimited by yi = (−2, 1). The maximum resolution we are able to
achieve is 38 cells per dimension (which means 386 = 3′010′936′384 cells), as we
are memory-constrained to cluster with total 32GB of RAM. For the system of Eqs.

Fig. 3.2 Frequency-response diagram. Trunk ϕ (red) and branchesψ1 andψ2 displacements (blue),
“•” = P1, “+” = QP and “�” = P1′
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Fig. 3.3 Brute force
bifurcation diagram of ϕ for
a increasing, b decreasing
frequencies

(a)

(b)

(3.1–3.3), a predicted integration time for this resolution is about 32 days with the
cluster with 16 single-core nodes. Such long integration time was unacceptable to us
at thismoment, sowe reduced the resolution to 25 cells per dimension, ending upwith
“only” 256 = 244′140′625 cells. Even with such a low resolution, the computation
lasted 50.3 h, while post-processing was finished within 18 minutes.

The resulting basins of attraction are stored in a file from which arbitrary 2D or
3D cross-sections can be extracted in the Visualization Tool Kit format (VTK). For
demonstration purposes, we examine basins on 3D cross-sections containing the P1
attractor whose actual state-space coordinates are reported in the Eq. (3.4) and cell-
space coordinates (computed with the SCM) are y0 = 17, y1 = 18, y2 = 14, y3 =
15, y4 = 14, y5 = 15 (it is given by the green cell in Fig. 3.5). Note that, due to low
resolution of computations, the coordinates reported in Eq. 3.4 do not overlap exactly
with those computed with the SCM. This is a well-known issue, already reported in
[4]. In Fig. 3.5a, the y0, y2, y4 cross-section with remaining cell-space coordinates
fixed at y1 = 18, y3 = 15, y5 = 15 is presented, while Fig. 3.5b shows the y1, y3, y5
cross-section with y0 = 17, y2 = 14, y4 = 14. It is evident from Fig. 3.5 that the
basin of the P1 attractor (the transparent cells) dominates. In certain cross-sections,
there are no basin traces of the QP attractor (labelled by the red cells) showing how
it does not fill the entire window considered in this case.
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Fig. 3.4 QP attractor projections (Poincaré sections) in a y0, y2, y3, b y1, y3, y5 sub-space at
Ω = 1.57

Fig. 3.5 Basins 3D cross-section with the period-1 attractor (green cell). a y0, y2, y4 with y1 =
18, y3 = 15, y5 = 15 and b y1, y3, y5 with y0 = 17, y2 = 14, y4 = 14

For other dynamical systems, or for other values of Ω in the system considered,
it may happen that the basins around relevant attractors are not compact, so that it
not so easy to understand its (likely fractal) structure. In this respect, different and
involved views are needed, which we have obtained by using the post-processing
software Paraview©. A non-exhaustive list of some basic manipulation features is
shown in Fig. 3.6, for the cross-section y2, y3, y4 with y0 = 18, y1 = 18, y5 = 18,
where again, the transparent cells refer to the basin of P1 and the red cells belong to
the basin of QP. The basins are shown on the Fig. 3.6a, a 2D cross-section of the 3D
view on Fig. 3.6b, an intersection with a cylinder on the Fig. 3.6c and the extraction
of a 3D cylinder-like section on the Fig. 3.6d.
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Fig. 3.6 3D cross-section y2, y3, y4 with y0 = 18, y1 = 18, y5 = 18, a basins; cross-section
manipulation by cutting with b plane, c cylinder, d inverted cylinder. Please note that the blue
cells are the same as the transparent cells (P1 attractor) of the other figures, here reported in blue
only for highlighting the cross-sections within the 3D region

3.5 Conclusions

In this work, we presented an ongoing development of a software tool, implemented
with the MPI standard [21] for cluster computers, which numerically computes
basins of attraction and prepares data for visualization in the external software. Full-
dimensional basins can be visualized and manipulated by any software that is able
to read a VTK file format, which offers a range of useful features that greatly help
to examine the structure of basins.

For global analyses on small clusters, it has been found that the SCM is the
most appropriate method since it uses minimal computing resources and it gives
results in the form of full-dimensional basins of attraction. In cases where fractality
is present (and important to examine), the SCM method is not accurate enough,
and other methods that work on an isolated cross-section in much higher resolution
must be used.
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A case study of a sympodial tree model demonstrates the difficulties that can be
encountered during numerical computations in terms of both its memory and CPU
time.
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Chapter 4
Dynamic Morphing of Actuated Elastic
Membranes

Andrea Arena, Flavio Massimi and Walter Lacarbonara

Abstract Parametric resonances of elastic membranes actuated by harmonic
in-plane strains prescribed along given directions are exploited to drive dynamic
morphing of lightweight, flexible panels employed in engineering applicationswhich
require active, shape-changing surfaces. An approximate nonlinear model of a pre-
tensionedmembrane together with its Galerkin discretization are adopted to describe
the membrane out-of-plane motion. The method of multiple scales is used to explore
the bifurcation scenarios and the instability regions (i.e., morphing regions) asso-
ciated with the principal parametric resonances. Moreover, parameter continuation
of the periodic solutions of the ordinary differential equations describing the mem-
brane motion is performed via a path following procedure implemented in Matlab.
The study shows that single- and multi-mode parametric responses can be achieved
by suitable tuning of the excitation amplitude and frequency.

Keywords Parametric resonances · Dynamic morphing · Elastic membranes ·
Strutt diagrams

4.1 Introduction

Morphing technology is a new paradigm inmany engineering fields aiming to realize
self-actuating, active, smart structures such as skins, wings, architectural surfaces
that undergo shape changes when subject to external stimuli (pressure, velocity,
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temperature change, light, etc.). In aerospace, for example, the concept of morphing
wing is likely to enhance performance and efficiency over a wider range of flight
conditions in future aerostructures [1].

In the present work, a new concept of dynamic morphing of flexible membranes
is explored by exploiting the strain-induced parametric resonances of the membrane
modes. In the context of classical linear theories, closed-form solutions for the trans-
verse motion of elastic membranes were recently proposed in [2] where a Fourier-
Bessel solution was found for a linear circular membrane subject to uniform radial
tension at its boundary. In [3] a geometrically fully nonlinear model of prestressed
micromembraneswas employed to explore the nonlinear range inwhich the high sen-
sitivity of the nonlinear frequency with respect to the applied pressure is proposed
for pressure sensing purposes.

The geometric nonlinearities—due to the coupling between stretching and
curvature—can affect very much the nonlinear dynamic response and can be suitably
exploited for practical applications. In particular, the dynamic amplification of trans-
verse motion caused by the principal parametric resonance of any of the membrane
modes can be exploited for dynamic morphing to achieve drag reduction in lifting
surfaces, hence, better aerodynamic efficiency.

In [4] the principal parametric instability regions of the radial motions of nonlin-
early viscoelastic cylindrical/spherical shells under pulsating pressures were studied
via the method of multiple scales (MMS). Studies employing the same perturba-
tion method to analyze the free nonlinear planar extensional-flexural motions of
unshearable nonlinearly elastic rings were presented in [5] showing that the pres-
ence of extensibility preserves the softening characteristics of extensional-flexural
modes of linearly elastic rings. Together with perturbation approaches, to study the
bifurcation behavior of nonlinear systems, numerical continuation techniques are
commonly applied to low-dimensional systems of ordinary differential equations to
extend the predictions of local analyses. In [6] this numerical approach was used
to perform parameter continuation and to pursue concurrent bifurcation analysis of
periodic solutions of directly excited structural nonlinear systems.

In the present study, the dynamic morphing response under parametric excitation
effected by strain actuation is investigated first via the method of multiple scales
applied to a reduced order model of elastic membranes. To investigate the nonlinear
response of the parametrically excited lowest modes, the nonlinear partial differ-
ential equation (PDE) of motion describing the membrane out-of-plane motion is
discretized according to the Faedo-Galerkin procedure, and a fifth-order asymptotic
expansion of the solution of the resulting ordinary differential equation (ODE) for
the mth mode is performed to study the bifurcation behavior. To prove the accu-
racy of the results obtained via the MMS, path following of the parametric response
of the actuated membrane is performed by means of a continuation toolbox called
COCO [7]. The Strutt diagrams with the instability regions, where the parametric
resonance morphing can be achieved, are obtained for the lowest nine membrane
modes. A study of the nonlinear response is further carried out via time integration
of the nonlinear equation of motion to demonstrate that the membrane dynamic mor-
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phing can be suitably driven and optimized for innovative design of active surfaces
in engineering applications.

4.2 Problem Formulation

An approximate nonlinear model of pretensioned elastic membranes subject to para-
metric excitation is proposed. The model considers only the membrane transverse
motion by condensing the nonlinear effect of the in-plane stresses in the governing
equation of motion. The source of the parametric excitation is provided by prescribed
dynamic strains acting along a selected number of active strings orthogonally collo-
cated within the membrane.

As depicted inFig. 4.1, the reference squaremembrane configuration is assumed to
be planar and coinciding with the equilibrium under the effect of a uniform prestress
N0. TheCartesian frame {e1, e2, e3}, having its origin in one of themembrane corners,
is such that e3 is normal to the reference configuration and the membrane midplane
lies in the {e1, e2}-plane. The position of each material point of the membrane is
thus described by the space coordinates x1 and x2 along e1 and e2, respectively,
while w(x1, x2, t) represents the transverse displacement, and t denotes time. In the
case study here investigated, the thickness is h = 2 × 10−4 m and the edge length is
l = 2 × 10−2 m. The Young modulus, Poisson ratio, and mass density are those of
an engineering polymer (i.e., PEEK); namely, E = 3.6 GPa, ν = 0.4, and ρ = 1320
kg/m3, respectively.

The analytical model is cast in nondimensional form by adopting the membrane

edge length l and the frequency ωc =
√
E/[(1 − ν2

)
ρ l2] as characteristic length

and frequency, respectively, for the nondimensionalization. Therefore, the space and
time nondimensional coordinates become x̄i = xi/ l (i = 1, 2) and t̄ = ωc t , respec-
tively, while N̄0 = N0/[ρ h ω2

c l
2] and α = E/[(1 − ν2

)
ρ ω2

c l
2] are the nondimen-

sional prestress and elastic stiffness, respectively.
The parametric excitation is provided by the membrane forces N1(x2, t) and

N2(x1, t) acting along the directions e1 and e2, respectively, and whose position

Fig. 4.1 Membrane
reference, prestressed
configuration

N0

N0

e1

e2
e3 l

l

h
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w(x1,x2,t)

e0 cos Ω t

e 0 
co

s Ω
 t
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within the membrane midplane is given by Dirac-delta functions (see cyan lines in
Fig. 4.1). These excitation forces, generated by a periodic strain e0 , have the following
nondimensional expressions:

N̄1 = α e0 cos Ω̄t
ns∑
i=1

δ
(
x̄2 − x̄2,i

)
, N̄2 = α e0 cos Ω̄t

ns∑
j=1

δ
(
x̄1 − x̄1, j

)
, (4.1)

where ns is the number of active strings, x̄1, j and x̄2, j indicate the position of the
string across the membrane, and e0 is the amplitude of the prescribed strain. The
number of strings and their position are chosen so as to provide optimal actuation
for both symmetric and skew-symmetric membrane modes. In particular, here it is
ns = 2 and x̄1,1 = 1/4, x̄1,2 = 3/4, x̄2,1 = 1/4, x̄2,2 = 3/4, respectively.

By assuming the classical linear viscous force fd = ζ∂w̄/∂ t̄ , where ζ is the damp-
ing ratio, and by enforcing the balance of linear momentum, the nondimensional
equation of motion for the square, prestressed membrane, obtained from the model
proposed in [8], can be written as:

∂2w̄

∂ t̄2
+ ζ

∂w̄

∂ t̄
− N̄0∇2w̄ − α

2

[
∂2w̄

∂ x̄21

∫ 1

0

(
∂w̄

∂ x̄1

)2

dx̄1 + ∂2w̄

∂ x̄22

∫ 1

0

(
∂w̄

∂ x̄2

)2

dx̄2

]

+N̄1
∂2w̄

∂ x̄21
+ N̄2

∂2w̄

∂ x̄22
= 0 ,

(4.2)

together with the boundary conditions w̄(0, x̄2, t̄) = w̄(1, x̄2, t̄) = 0, w̄(x̄1, 0, t̄) =
w̄(x̄1, 1, t̄) = 0, ∂2

x̄1
w̄(0, x̄2, t̄) = 0 = ∂2

x̄1
w̄(1, x̄2, t̄), ∂2

x̄2
w̄(x̄1, 0, t̄) = 0 = ∂2

x̄2
w̄

(x̄1, 1, t̄), and the initial conditions. In Eq. (4.2), ∂ t̄ and ∂ x̄i (i = 1, 2) indicate par-
tial differentiation with respect to the nondimensional time and space coordinates,
respectively, while ∇2 is the Laplace operator.

4.3 Asymptotic Approach

The parametric resonances of the lowest nine membrane modes are investigated. To
this end, the Faedo-Galerkin method is employed to reduce the partial differential
equation ofmotion into theODEgoverning the dynamics of eachmode. According to
the adopted discretization, the transverse displacement is expressed as w̄(x̄1, x̄2, t̄) =
2qm,n(t̄) sinm π x̄1 sin n π x̄2 , where qm,n(t̄) is the (m, n)th generalized coordinate,
thus, the single-mode projection of Eq. (4.2) can be written as
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q̈m,n + ζ q̇m,n + ω̄m,nqm,n + 3

4
απ4

(
m4 + n4

)
q3
m,n (4.3)

+απ2

[
−2

(
m2 + n2

) + m2

(
cos

nπ

2
+ cos

3nπ

2

)

+n2
(
cos

mπ

2
+ cos

3mπ

2

)]
e0 qm,n cos ω̄t = 0,

where the overdot indicates differentiation with respect to the nondimensional time

t̄ and ω̄m,n = π

√(
m2 + n2

)
N̄0 is the linear nondimensional circular frequency of

the (m, n)th mode.
The method of multiple scales is employed to perform a perturbation analysis

of Eq. (4.3); by letting ε denote a small nondimensional parameter, a fifth-order
expansion of the solution of the discrete form of Eq. (4.2) is sought as qm,n(t̄) =∑5

i=1 εi qi (t0, t2, t4), where t0 = t̄ is the nondimensional fast time scale, and t2 = ε2 t̄
and t4 = ε4 t̄ are the nondimensional slow time scales. Since the nonlinearity of Eq.
(4.3) is purely cubic and due to the fifth-order expansion adopted in the perturbation
procedure, only even powers of ε are considered in the expansion [4]. The dissipative
effects due to the damping force as well as the periodic strain e0 which provides
the membrane actuation are here supposed to be higher order effects with respect
to the first order inertial and elastic restoring forces of the membrane; therefore,
the corresponding mechanical parameters are rescaled as follows: ζ = ε2ζ and e0 =
ε2e0 . By substituting the fifth-order expansion of the solution into the discrete form of
the equation of motion, a hierarchy of problems of order ε, ε3, and ε5, respectively, is
obtained by equating to zero coefficients of like powers of ε. Finally, the lowest three
perturbation problems, specialized to the lowest membrane mode, i.e., m = 1 = n,
are given by

ε : D2
0q1 + ω̄2

1,1q1 = 0, (4.4)

ε3 : D2
0q3 + ω̄2

1,1q3 = −3

2
π4α q3

1 − ζD0q1 − 2D0D2q1 + 4απ2 e0q1 cos Ω̄ t̄,

ε5 : D2
0q5 + ω̄2

1,1q5 = −9

2
π4α q2

1q3 − ζ (D2q1 + D0q3) − D2
2q1 − 2D0D4q1

−2D0D2q3 + 4απ2 e0q3 cos Ω̄ t̄,

where D0, D2 and D4 are operators indicating differentiation with respect to t0, t2,
and t4, respectively. The general solution of the linear problem can be written as
q1(t0, t2, t4) = A(t2, t4)ei ω̄m,n t0 + Ã(t2, t4)e−i ω̄m,n t0 , where A(t2, t4) is the unknown
complex-valued amplitude of the (m, n)th mode and Ã(t2, t4) is its complex-
conjugate. By substituting the solution of order ε into the second perturbation, letting
cos Ω̄ t̄ = 1/2 eiΩ̄ t̄ + cc (where cc stands for the complex conjugate) and express-
ing the frequency of the external parametric excitation as Ω̄ = 2ω̄m,n + ε2σ , being
σ a detuning parameter, the modulation equation for the amplitude A(t2, t4) can be
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obtained by setting to zero the secular terms. In particular, for the case (m, n) = (1, 1)
one obtains:

2 iω̄1,1D2A + iζ ω̄1,1A + 9

2
π4α A2 Ã − 2απ2e0 Ã eit2σ = 0. (4.5)

4.3.1 Nonlinearity of the Membrane Modes

Before moving towards the investigation of the principal parametric resonances, by
setting e0 = 0 in Eq. (4.5), it is possible to study the nonlinearity of the lowest mem-
brane modes through the backbone curves which regulate variation of the nonlinear
frequency ω̄NL

m,n of each mode with the modal amplitude. This can be done by intro-
ducing the polar form of the complex amplitudes as A(t2, t4) = 1/2 a(t2, t4)eiθ(t2,t4)

and Ã(t2, t4) = 1/2 a(t2, t4)e−iθ(t2,t4), substituting it into the modulation equation,
separating real and imaginary parts and obtaining the two differential equations gov-
erning the modulation of the real amplitude a and relative phase γ = σ t2 − θ , where
σ represents the detuning between the linear and the nonlinear frequencies of the
(m, n)th mode (i.e., ω̄NL

1,1 = ω̄1,1 + ε2σ ).
By seeking periodic solutions (i.e., by imposing D2a(t2, t4) = 0 = D2γ (t2, t4)),

it is then possible to obtain the closed-form expression, up to the third order approxi-
mation, of the backbone curve for each investigated mode. In particular, for the mode
(m, n) = (1, 1), the latter has the expression ω̄NL

1,1 = ω̄1,1 + ε2 9π
4αa2

16ω̄1,1
. The backbone

curves shown in Fig. 4.2 for the lowest six membrane modes highlight the hardening
feature of the membrane nonlinear normal modes. Due to the symmetry of the mem-
brane, modes (1, 2), (1, 3), and (2, 3) and their companion modes (2, 1), (3, 1), and
(3, 2) share the same backbone curves.

Fig. 4.2 Backbones of the
lowest six membrane mode
shapes
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4.3.2 Principal Parametric Resonance

Before studying the parametric resonances, conditions for possible activation of inter-
nal resonances are sought. Two-to-one ratios occur for the lowest two modes while
three-to-one ratios take place between the third and the first mode. However, these
modes turn out to be uncoupled due to nonlinear orthogonality between them [9].

Next, parametric resonances of individual modes are studied via the method
of multiple scales. Substituting into the second perturbation the expression of the
t2-rate-of-change of the complex-valued amplitude A(t2, t4) obtained by solving
the modulation equation Eq. (4.5), third order nonresonant terms can be found in
the right-hand side of the second perturbation problem. Thus, the particular solu-
tion of the inhomogeneous problem of order ε3 can be found in the form q3(t0, t2,
t4) = b1A3(t2, t4)e3iω̄m,n t0 + b2A(t2, t4)eiΩ̄t0+iω̄m,n t0 + b3 Ã3(t2, t4)e−3iω̄m,n t0+b4 Ã(t2,
t4)e−iΩ̄t0−iω̄m,n t0 , where the real coefficients bi (i = 1, . . . , 4) are obtained by equat-
ing coefficients of like terms (i.e., having the same frequency) in the inhomogeneous
problem; those, for (m, n) = (1, 1), have the following expressions: b1 = b3 = 3π4α

16ω̄2
1,1

and b2 = b4 = − 2απ2e0
Ω̄(Ω̄+2ω̄1,1)

.

At fifth order, the annihilation of secular terms leads to the following equation
that modulates on the time scale t4 the amplitude A(t2, t4) for (m, n) = (1, 1):

2 iω̄1,1D4A − 1

4
ζ 2A − 9ζπ4α i A2 Ã

4ω̄1,1
− 135π8α2A3 Ã2

32ω̄2
1,1

(4.6)

+e0

(
9A Ã2π6α2

4ω̄2
1,1

+ Ãπ2ασ

ω̄1,1
− 9A Ã2π6α2

σ 2 + 6σ ω̄1,1 + 8ω̄2
1,1

)
eiσ t2

−21A3π6α2e0

8ω̄2
1,1

e−iσ t2 + e2
0

(
Aπ4α2

ω̄2
1,1

+ 4Aπ4α2

σ 2 + 6σ ω̄1,1 + 8ω̄2
1,1

)
= 0.

By adopting the same procedure used to find the third order solution, the solu-
tion of order ε5 can be then found in the form q5(t0, t2, t4) = c1(t2, t4)e3iω̄1,1t0 +
c2(t2, t4)e5iω̄1,1t0 + c3(t2, t4)eiΩ̄t0+iω̄1,1t0+c4(t2, t4)eiΩ̄t0+3iω̄1,1t0 +c5(t2, t4)e2iΩ̄t0+iω̄1,1t0

+c6(t2, t4)e2iΩ̄t0−iω̄1,1t0 + cc, where ci (t2, t4) (i = 1, . . . , 12) are complex-valued
coefficients found by equating coefficients of like terms (i.e., having the same fre-
quency) in the inhomogeneous fifth-order problem. For the sake of conciseness, the
expressions of such coefficients are not reported here.

By using the method of reconstitution [10], the time rate of change of the
modal amplitude can be expressed as Ȧ(t̄) = ε2D2A(t2, t4) + ε4D4A(t2, t4) and,
thus, it is possible to obtain the modulation equation up to fifth order. Finally, by
introducing the polar form of the complex amplitudes as A(t̄) = 1/2 a(t̄)eiθ(t̄) and
Ã(t̄) = 1/2 a(t)e−iθ(t̄), substituting it into the reconstituted modulation equation,
and separating real and imaginary parts, the two differential equations governing the



44 A. Arena et al.

modulation of the real modal amplitude a(t̄) and relative phase γ (t̄) = σ t̄ − 2θ(t̄)
can be straightforwardly obtained.

The fixed points of the fifth-order modulation equation are then found by impos-
ing the stationarity of a(t̄) and γ (t̄) (i.e., ȧ(t̄) = 0 = γ̇ (t̄)). The ensuing system
includes two nonlinear algebraic equations in the unknowns a(t̄) and γ (t̄). These
two equations can be solved for sin γ (t̄) and cos γ (t̄) to obtain the bifurcation
equation involving only the amplitude a(t̄), the detuning σ , and the mechanical
parameters of the system; this is provided by imposing the trigonometric iden-
tity sin2 γ (t̄) + cos2 γ (t̄) = 1. Therefore, for fixed values of the strain amplitude
e0 and damping factor ζ , it is then possible to obtain, in closed form, the bifur-
cation curve represented by solid and dashed lines in Fig. 4.3a where the black
lines refer to the fifth-order asymptotic analysis while the grey lines show the
solution up to the third-order approximation. The red squares depicted in Fig.
4.3a represent the amplitudes of the stable oscillations calculated by brute-force
time integration of the equation of motion given by Eq. (4.2), whose approxi-
mate solution was found as the combination of the lowest nine membrane modes
w̄(x̄1, x̄2, t̄) = 2

∑3
m=1

∑3
n=1 qm,n(t̄) sinm π x̄1 sin n π x̄2 .

The stability is ascertained by monitoring the eigenvalues λ of the Jacobian of
the bifurcation equations governing the slow dynamics of the amplitude and relative
phase; in particular, Fig. 4.3b shows the path of the eigenvalues associated with the
amplitude a(t̄) in which two pitchfork bifurcation points delimiting the frequency
range in which the parametric resonance arises are found when λ vanishes (namely,
A and B in Fig. 4.3a, b, indicating supercritical and subcritical pitchfork bifurca-
tions, respectively). On the other hand, a fold bifurcation point C, identifying the
boundary between stable (solid line) and unstable (dashed line) branches, is found
as the conditions where the change of the eigenvalue sign takes place.

By setting to zero themodal amplitude a(t̄) in the equations providing the periodic
solutions (i.e., ȧ(t̄) = 0 = γ̇ (t̄)), it is then possible to derive the stability equation
which allows to study the effect of the actuation amplitude e0 on the stability of
the membrane. In particular, the perturbation treatment allows to obtain closed form
expressions of the transition curves (i.e., the paths of the pitchfork bifurcation points)
with the limitation given by the fifth-order approximation of the asymptotic expan-
sion. These expressions are obtained from the stability equation by finding the roots
of the fourth-order polynomial in e0 representing the stability equation.

To assess the range of e0 for which the fifth-order asymptotic expansion gives a
suitable approximation of the stability curves, numerical continuation of the peri-
odic solution obtained from the nonlinear modal equation given by Eq. (4.3) was
performed by means of a Matlab-based continuation toolbox called COCO [7]. To
delve more into the details of the numerical continuation procedure, starting from
a parametric response calculated via time integrating the equation of motion of the
(m, n)thmode, the path of the nonresonant dynamic response having2ωm,n frequency
is followed to determine the period doubling (PD) bifurcations marking the onset of
the parametric response having ωm,n frequency. In particular, the toolbox provides
the bifurcation analysis by solving simultaneously the first variational equations for
the monodromy matrix associated with the periodic solutions and the corresponding
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Fig. 4.3 a Bifurcation curve
of the lowest membrane
mode for e0 = 1.5 × 10−4

and ζ = 2 × 10−3: stable
branch (solid line), unstable
branch (dashed line),
amplitudes of the stable
parametric oscillations via
numerical integration (red
squares). The black lines
refer to fifth-order
approximation, while the
grey lines refer to third-order
approximation. b Path of the
eigenvalues associated with
the amplitude a(t̄)

eigenvalues (i.e., the Floquet multipliers). Once the PD bifurcation points are deter-
mined for a given value of e0 , the continuation of the PD points is performed in a
selected range of strain amplitudes e0 . Figure 4.4 shows the resonance tongues for
the lowest two modes of the membrane (i.e., (m, n) = (1, 1) and (m, n) = (1, 2))
and the results obtained with the perturbation approach up to the third-order approx-
imation (grey dashed-dotted-dotted lines), up to fifth-order approximation (black
dashed-dotted lines), are compared to the numerical continuation curves (black solid
lines). The comparisons confirm that, up to moderately high values of the actuation
strain, e0 < 1.4 × 10−3, the predictions of the perturbation treatment up to fifth order
is in excellent agreement with the numerical results.

Finally, fromdirect time integrations of the nonlinear equation ofmotion ofmodes
(1, 1) and (1, 2), performed in the rangeof excitation frequency Ω̄ near the parametric
resonance and for selected values of the strain e0 , the bifurcation points (i.e.,where the
stable response loses the 2

(
2π/ω̄m,n

)
periodicity) were calculated and are reported

in Fig. 4.4 as red circles to show the agreement with the stability curves obtained via
numerical continuation.
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Fig. 4.4 Stability regions of
the parametric resonance of
the lowest two modes for
ζ = 2 × 10−3. Comparison
between asymptotic
approach via MMS up to
fifth-order approximation
(black dashed-dotted line)
and numerical continuation
(black solid line). The grey
dashed-dotted-dotted lines
provide the results for
third-order asymptotic
approximation

Fig. 4.5 Strutt diagram of
the actuated elastic
membrane for the lowest six
modes

Figure 4.5 shows the Strutt diagram for the lowest six membrane modes obtained
via numerical continuation of the nonlinear modal equations (here, the curves for
the modes (2, 1), (3, 1), and (3, 2) are not reported). In particular, Fig. 4.5 allows to
appreciate the bandwidth frequency where the resonance tongues (shaded regions)
overlap and multi-mode responses are expected to arise. To show the multi-mode
response in the overlapped instability regions, a direct time integration of the mem-
brane equation of motion was performed by projecting Eq. (4.2) into the basis of
trial functions given by the lowest nine membrane modes (i.e., all the modes investi-
gated in the perturbation analysis, including the companion modes (2, 1), (3, 1), and
(3, 2)). The results of the numerical simulations are depicted in Fig. 4.6, where the
time histories and the fast Fourier transforms (FFTs) were obtained upon varying the
excitation frequency to seek parametric response involving single- or multi-mode
oscillations. In particular, the membrane morphing through single-mode motion is
shown in Fig. 4.6a–c, while mixed-mode motions are shown Fig. 4.6d.
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Fig. 4.6 FFTs and time histories of the deflection at selected resonant conditions for parametric
excitation given at the excitation frequency for the case (a), (b), (c) and (d), indicated in Fig. 4.5

4.4 Conclusions

The investigated parametric resonances of strain-actuated elastic membranes show
that the ensuing mixed-mode motions can be exploited for dynamic morphing of
flexible skins. In the overlapped Mathieu tongues, mode mixing due to two simul-
taneous parametric resonances can give rise to complex morphing motions. The
ongoing investigations into the parametric resonances of individual modes show that
there is great flexibility and richness in driving dynamic morphing with complex
mode mixing.

Acknowledgements This work was partially supported by the European Office of Aerospace
Research and Development/Air Force Office of Scientific Research (AFOSR) Grant No. 12141951,
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Chapter 5
Nonlinear Dynamics as a Tool
in Selection of Working Conditions
for Radial Ball Bearing

Ivana D. Atanasovska, Dejan B. Momcilovic, Radivoje M. Mitrovic,
Natasa D. Soldat and Nikola Nesic

Abstract This paper contains elements of a comprehensive research devoted to
the dynamic behavior of radial ball bearings in real working conditions. The general
motivation for this topic comes from the requirements for high performance operation
of bearings within complex mechanical systems, defined in many industrial branches
during the last decades. The discussion of the fundamental postulates of the approach
used for analyzing the vibration response of rolling ball bearings in order to select the
optimal working conditions is given. The certain simplifications and reductions used
for analyzing the radial ball bearings are explained. The developed procedure can be
used for research of influence of different damages and variable operation conditions
on the rolling bearings dynamics. The detail analyses of the dynamic behavior of
rolling bearings are performed for particular types of radial ball bearings in two
case studies: for the damaged outer raceway surface in accordance with real fatigue
damage shapes and dimensions and, for variable working temperature. Obtained
results are shown by comparative diagrams of vibration and phase plane portraits.
Presented results could be a base for more widely research of nonlinear dynamics
of radial ball bearings with different damages and for the application of phase plane
analysis in order to choose the optimal operation conditions.
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5.1 Introduction

The increased requirements for lightweight design and overload reduction lead to
necessity for developing the power transmission systems as complex systems of
elements designed with optimal load capacity. Consequently, the systems for moni-
toring and maintenance of these elements should be defined very carefully in order
to provide a steady operation state of the certain system. One of the most critical
parts of every power transmission system is bearings. Therefore, during last decade
researchers are dedicated to analysis of different tasks related with correct operating
state of rolling bearings, but research in this area is still required because of their
complex mechanics.

The developing both of experimental methods and theoretical approaches are
in the focus of contemporary research of dynamics of rolling bearings. Within the
experimental research, the special attention is given to the methods for signal moni-
toring and analysis [1], and verification of analyticalmodels of bearings vibration [2].
The comprehensive consideration of the impact of different parameters and working
conditions on the failure occurrence is also very important in order to predefine the
expected changes in the monitored vibrations shortly before failure. This research
path could leads to the diminishing occurrence of catastrophic failures. These pos-
tulates are the basis of extensive research which part is presented in this paper.

The complexity of the design of roller bearings, which have a character of multi-
body contact system [3] and have the very high values of contact stresses, and in
same time operate in conditions of complex external loads and/or the existence of
damages at raceway surfaces and/or inclusions in the material and other causes of
discontinuity in the load distribution, leads to a significant number of parameters
which have the influence on the complex load distribution within the bearing, as well
as the complex kinematics and dynamics behavior. Although it is very important to
simultaneously consider as much of the influential variables as possible, the authors
mainly analyze one or few impact parameters and introduce the additional assump-
tions and simplifications in order to make the dynamic problem solvable. Through
years a significant number of research are dedicated to the studying of clearance
as the one of the most strongly influenced factors in load distribution and dynamic
behavior of rolling bearings. Mitrovic gave the analytical consideration of the influ-
ence of internal radial clearance on the load distribution and stress capacity for radial
ball bearings [4], while Kappaganthu and Nataraj few decades later considered the
influence of the same parameter as a source of excitation of nonlinear dynamics of
the rotor-bearing system [5]. In last few years, the research projects dedicated to
the ball bearings, take in first place the modeling of different defects on the contact
surfaces. One of the comprehensive researches of this type of problem is given by
Rafsanjani et al. [6]. Special attention also should be dedicated to the research of
Dougdad et al. [7], who presented an experimental verification of a simplified model
of the nonlinear ball bearing behavior and gave an approach for considering the
defects simulation. Also, it must be pointed that the significant number and effort
in research dealing with the dynamics of rolling bearings with micro-damages at
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raceways is still up-to-date [8–11]. In accordance with this and with the possibilities
provided by the theories of nonlinear dynamics in this kind of research, there is a big
space for new improvements in this area. Thus, Kostek [12] analyzed the dynamics
of deep groove ball bearing by analyzing the phenomena associated with non-linear
dynamics and chaos and used this approach for discussion of the influence of internal
clearance, while De Moerlooze et al. [13] used the theory of non-linear dynamics
and discussed a ball bearing dynamics as a case of the complex task of dynamics of
ball rolling between two planes. The research and results presented in this paper are
on this track, and presents a part of extensive research still in progress. The main goal
of this research is to develop the unique methodology for studying the dynamics of
ball bearings, which will be sufficiently simple and time-consuming limited, and can
be widely applied for relative quantification of impact of different operating param-
eters on the dynamic behavior of rolling bearings as a part of complex mechanical
systems. The uniqueness of the presented methodology consists in the fact that roller
bearings are regarded as a “Multi-body contact” [3].

5.2 Theoretical Consideration

The rolling bearing vibration can be analyzed usingwell-knownmathematical model
explained byLim andSingh [14] and improved byAtanasovska [15], which describes
a machine system that consists of a flexible shaft and a flexible casing coupled with
a rolling bearing and mounted on a flexible support. This system is usually a part of
various real mechanical systems and machines.

The discrete vibration model of this system is given with the following equation
in matrix form:

[M]{q̈(t)} + [D(μ)]{q̇(t)} + [C(q, μ, t)]{q(t)} = {F(c, t)} (5.1)

where [M], [D(μ)] and [C(q, μ, t)] are the system mass, damping and stiffness
matrices respectively, and {q(t)} and {F(c, t)} are the generalized displacement and
applied load vectors. Some assumptions and simplifications are required in order to
make Eq. (5.1) solvable. The detail description of reduction of Eq. (5.1) in the case of
radial rolling bearings is explained by Atanasovska [15]. This reduction procedure
assumes the time dependent periodic stiffness of rolling element bearings and non-
existence of damages and defects on contact surfaces. If the radial ball bearing is
presented with freely suspended mechanical system [14, 15], the matrix Eq. (5.1)
can be reduced to the vibration model with one degree of freedom with reduced
mass of shaft and housing and the general complex function which defines the radial
stiffness for radial bearings with and without damages and/or irregularities at contact
surfaces:

mred ẍ + d(μ)ẋ + c(x, μ, t)x = F (5.2)
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The determination of total bearing stiffness as a function of: time (which reflects
the variable number and position of rolling elements in contact), contact deformation
(which reflects the geometrical and material characteristics of contact surfaces with-
out or with defects and/or irregularities) and coefficient of friction (which depends of
the lubricant)—c(x,μ, t) is the most important task for solving the nonlinear dynam-
ics of rolling bearings with damages. Meanwhile, the external load is assumed to
stay constant.

It is important to point up the significance of the developed procedure as a part
of fully new approach in solving the real problems of complex mechanical systems
with two or more deformable bodies in contact, named “Multi-body contact” and
presented by Atanasovska [3]. One of the most important postulates of this approach
is definition of total stiffness of multi-body contact, which analyzed the real mechan-
ical system with two or more deformable bodies in contact as a separated part of big
machines.

The total radial stiffness of radial ball bearings defined in this way can be success-
fully determined by the numerical finite elements method (Finite Elements Analy-
sis—FEA) explained in previous works [10, 15]. The radial ball bearing stiffness is
characteristic of the ball bearing assembly and in general can be calculated as ratio
of external load and deformation:

cb(x, μ, t) = F/δ(x, μ, t) (5.3)

In this equation theF is the constant external radial load and δ(x,μ, t) is the elastic
displacement of bearing axis that is equal to the total deformation of ball bearing in
the radial direction, i.e. total radial displacement of axis of bearing in radial direction.

The time varying radial stiffness can be calculated analytically [16], by different
experimental procedures of measuring of ball bearing displacement in terms of pre-
defined external loads [11, 17], or by Finite Element Analysis [18]. The quasi-static
Finite Element Analysis for one time varying period of one ball passing along the
contact period (period during one ball is continuously in contact) is used in the calcu-
lations presented in this paper. The definition and analytical procedure for calculation
of one contact period angle is given in [4] and has the following form:

2ψ0 = 2arccos(1− 2ε), ε = 1

2

(
δ0

δ0 + e
2

)
(5.4)

where: 2ψ is the angle that correspond to one contact period, ε is the load zone
parameter, δ0 is total contact deformation of bearing parts in start point of contact
on the most loaded ball and e is radial clearance of radial ball bearing.

The developed Finite Element Model (FEM) is used for calculation the radial ball
bearing stiffness (5.3) by calculation the total radial displacement of axis of bearing
in radial direction and assumption that the external load remains constant.
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5.3 Results—Case Studies

A particular type of radial ball bearing is chosen for analysis of influence of damages
at raceway surface on nonlinear dynamics of radial ball bearings. The main charac-
teristics of chosen 6206 type of rolling bearing are: diameter of outer ring—62 mm,
diameter of inner ring—30 mm, number of balls—9, radial clearance—0 μm. The
FEA is performed and total radial stiffness is calculated for the case of bearing with-
out damages and for bearing with damage at the contact surface of outer ring raceway
(groove shape and dimensions: width of 0.3mm and depth of 50μm) [10]. The shape
and dimension of modeled damage is chosen in accordance with real fatigue dam-
ages on raceways found by inspection of dismounted bearings, presenting in detail by
FAG (bearing producer) [19]. Calculations are performed for few different external
loads within the predefined load capacity range, with constant values of: 500, 1000,
2000 and 5000 N.

The obtained time-dependent functions of radial stiffness for radial bearing with
damage are shown on Fig. 5.1 for different external loads. In order to minimize the
calculation time, only few main contact position within a ball contact period are
analyzed in this point. Therefore, some of presented results can look unexpectedly.

These periodical function are incorporated in Eq. (5.2) and numerical solutions
are obtained by numerical Runge–Kutta method and MatLab software for following
conditions:mred = 0.5 kg, n= 1000 rpm, neglected damping, initial conditions: x= 0,
ẋ = 0 and time period of twenty rotations. The calculations have been performed for
both of the cases: with and without damages. The results of the differential equation
of ball bearing vibration are presented by time-dependent diagrams at Fig. 5.2, for
four different values of external load.

In order to verify the developed procedure for research of nonlinear dynamics of
radial ball bearings, the obtained results for bearings without damages are compared
and verified with the results obtained experimentally for the same ball bearing type
[20].

Fig. 5.1 The comparative diagrams of time-dependent function of total radial stiffness for radial
ball bearing with damage for different external load values—with zoom in detail around damage
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Fig. 5.2 The vibration
response of the radial ball
bearing with damage at outer
ring raceway
surface—comparative
diagrams for different values
of external load

5.4 Discussion

The obtained results are also presented by velocity-displacement diagrams for three
values of external load for the period of two rotations, comparative for bearings with
and without damage (Figs. 5.3, 5.4 and 5.5).

It is easy to conclude that the phase portrait diagrams created for bearings without
damages (red lines at Figs. 5.3, 5.4 and 5.5) show a character of linear dynamic
systems with periodic motion, while those for radial ball bearing with damage (black
lines at Figs. 5.3, 5.4 and 5.5) show the nonlinear character of dynamics behavior.

The comparative presentation of the results obtained for different external loads
(Fig. 5.6) could be used for selection of optimal range of external loads, which is in
the particular case is about 1000 N.

Fig. 5.3 The comparative
diagrams for radial ball
bearings with and without
damage at outer ring
raceway, for external load of
500 N for the period of two
rotations
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Fig. 5.4 The comparative
diagrams for radial ball
bearings with and without
damage at outer ring
raceway, for external load of
1000 N for the period of two
rotations

Fig. 5.5 The comparative
phase portraits for radial ball
bearings with and without
damage at outer ring
raceway, for external load of
5000 N for the period of two
rotations

Fig. 5.6 The comparative
phase portraits for different
external loads for radial ball
bearing with damage at outer
ring raceway for the period
of two rotations
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Fig. 5.7 aModel for transient dynamic FEA; b velocity-displacement diagrams for different work-
ing temperatures

In the second performed case study, for investigation of the influence of working
temperature on dynamic behavior of rolling bearings, a radial ball bearing of 6310
type is analyzed. The appropriate FEM is developed for quasi-static calculations of
load distribution function [21], which is then used in the transient dynamic FEA,
Fig. 5.7a.

For the external load of 5000 N and two different working temperatures, obtained
results are shown in the comparative diagram on Fig. 5.7b [21]. The comparative
presentation of the results for different working temperature (Fig. 5.7) could be used
for selection of optimal range of working parameters with influence on the bearing
temperature.
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5.5 Conclusions

This paper describes the capacity of the theory of the nonlinear dynamics in the
selection of the values of working parameters for the mechanical systems with radial
roller bearings. The approach used for solving the rolling bearings dynamics and
creating the phase portraits is explained in detail. The developed procedure provides
a tool for simplified application even for those who are not familiar with the basics
of the theory of nonlinear dynamics. This is enabled by visual analysis of obtained
comparative presentation of phase portraits.

As illustration, two case studies for particular types of radial ball bearings and
defined working parameters are performed. The presented results shown that the
visual qualitative and/or qualitative analyses of the results obtained by explained
approaches are appropriate for selection the optimal ranges of the investigated work-
ing parameters. In the first of the analyzed case studies, the analysis is performed
for a particular radial ball bearing with certain damage at outer ring raceway as an
excitation for nonlinear dynamics behavior. It is obviously that the optimal range
of external load is about 1000 N and that the external loads near the limit value
of the bearings load capacity are not recommended from the viewpoint of bearing
dynamics behavior. The second case study shows the negative impact of the operating
temperature increasing due to friction or other sources.

Acknowledgements Parts of this research were supported by the Ministry of Sciences and Tech-
nology of Republic of Serbia through Mathematical Institute of SASA, Belgrade, Projects: OI
174001 and TR35029.
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Chapter 6
On a Geometrically Exact Beam Model
and Its Finite Element Approximation

Enrico Babilio and Stefano Lenci

Abstract A geometrically exact beam model is considered along with a total

lagrangian finite element approximation. Basic details about kinematics, dynamics

and constitutive assumptions on both continuous and discretized models are given.

Results of numerical simulations, both in statics and dynamics, are reported and,

whenever possible, compared to existing literature findings.

Keywords Geometrically exact beam ⋅ Total lagrangian approach ⋅ Finite

element ⋅ Nonlinear dynamics

6.1 Introduction

Beams, as well as structures that can be effectively modelled as such, are used

in many engineering fields, spanning from civil engineering and architecture to

mechanical and aerospace engineering and even to nanotechnology and bio-inspired

applications. Therefore, beam theories able to catch specific aspects have been devel-

oped over the years till to current days. Furthermore, since geometric non-linearities

often play a relevant role, theories taking into account effects of large displace-

ments and rotations are desirable. It is noteworthy that a beam model, which is one-

dimensional (1D), is simpler to develop and also to face numerically in comparison

with 2D and 3D models, especially in the nonlinear realm, where the latter two are

very cumbersome. Moreover, when the beam is slender enough (as real beams often

are), beam theories are also sufficiently accurate (see [1], for instance).
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In [2], a geometrically exact beam has been deduced and, among others, it

becomes part of the list of models initiated by Reissner in [3], originally restricted to

the plane static problem and then generalized to the fully three-dimensional dynam-

ical case by Simo in [4]. Both the approaches in [2] and [3] rely on the principle

of virtual work, the differences between them depending on the fact that virtual

strains are computed from given displacements and generalized stresses are then

obtained, as their work conjugate, in the former, while in the latter arbitrary stresses

are introduced in advance and conjugate virtual strains are computed, further obtain-

ing strains in terms of displacements. Actually, since deducing generalized stresses

or strains, when either one of the two sets is assigned, is possible through the prin-

ciple of virtual work [5], both approaches are legitimate.

Equations of motion in [2] are written in a not-centroidal, general frame of ref-

erence and to investigate their behaviour and features some work has already been

done, even by using different numerical approaches. Numerical computations based

on a finite difference technique are performed in [2], concerning, for simplicity,

the static analysis of beams that are unshearable, homogeneous and with double

symmetric uniform cross sections. In [6], the possibility to derive a hierarchy of

approximated models from the geometrically exact parent theory is discussed. Some

hypotheses adopted in there are recalled in [7] to simplify equations and finally

achieve a reduced order model through a single mode Galerkin approximation. Then,

the whole set of equations of motion is attacked in [8], through the method of lines.

However, the approach experienced some difficulties in dynamics and, therefore, we

decided to implement the finite element (FE) approximation, which this contribu-

tion is devoted to. It is noteworthy that, being FEs very general tools, many FE-

based codes are already available, as proprietary commercial, open-source research-

oriented and even courseware-designed programs. However, in working with exist-

ing codes, a proper choice of models and parameters requires not only the knowledge

of the problem under investigation, but also skills and a suitable understanding of

specific aspects of the software chosen for the analysis. Therefore, in order to con-

trol any single step in passing from the partial differential equations derived in [2]

to their numerical counterpart, we preferred to consider a home-made implementa-

tion. The present contribution is organized as follows. We give some details on the

beam model and on its discretization in Sect. 6.2, in terms of kinematics, dynamics

and constitutive relationships. In Sect. 6.3, applications in statics and dynamics are

reported. Finally, some brief remarks close the contribution.

6.2 The Continuous Model and Its Discretization

For the sake of brevity, we report here only basics about the model we are dealing

with and refer to [2] for further detail. The finite element approximation we derive

is compared strictly to its continuous parent, in a step by step fashion.
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6.2.1 Kinematics

Let us accept henceforth the vague definition of a beam as a deformable line, called

the beam-centerline or the axis, whose points are equipped each with a flat rigid

body, the cross-section S0, and assume that the length L0 of the undeformed axis

prevails on the largest dimension of the cross section. To locate points of the beam

in space, a reference Cartesian frame, of axes x, y and z, is adopted. We restrict

the analysis to beams which are straight in their undeformed reference configura-

tion, with the beam axis laying down x and the cross-sectional principal axes set

along y and z. In terms of deformation map, the axis is allowed to bend and stretch

and cross sections may rotate under a different angle with respect to the tangent to

the deformed axis, with the restriction that displacement and rotation functions are

sufficiently regular and invertible. So far, apart from the limitation implying that the

deformation map cannot induce volume annihilation or infinite expansion, no further

assumption is made on the magnitude of displacements and rotations. However, to

deal with the simplest case of commutative rotations, we assume the beam deform in

xy−plane undergoing twist-free configurations only. At the continuous model level,

the displacement components u = u(x, t) and v = v(x, t), along x and y respectively,

the cross-sectional rotation 𝜃 = 𝜃(x, t) and the beam axis rotation 𝜑 = 𝜑(x, t), are

introduced. We accept 𝜃 ≠ 𝜑, in general. Generalized strains, that is axial strain

𝜀 = 𝜀(x, t), mechanical bending curvatures 𝜅 = 𝜅(x, t) and shear angle 𝛾 = 𝛾(x, t),
are defined as

𝜀 = u′ + u′2

2
+ v′2

2
, 𝜅 = 𝜃

′
, 𝛾 = 𝜃 + arctan

(
v′

1 + u′

)
, (6.1)

prime standing for differentiation with respect to the space variable x.
It is noteworthy that, besides 𝜅 as here defined, other possibilities exist for suitable

curvatures (see [2] for a discussion on the subject and references therein).

In order to develop the discretized version of the model, we formulate a finite

element approximation, by replacing first the real beam with a discretization made of

ne one-dimensional elements, for simplicity assumed of the same initial length le =
L0∕ne, with linearly varying displacements and rotations along the generic element

e, leading to approximate actual displacement and rotation functions over the beam

with C0
–continuous functions. Hence, for the finite element e, spanning from the

initial to the final abscissas xi and xf , re-mapped onto the interval −1 ≤ 𝜉 ≤ 1, the

discretized counterparts of Eqs. (6.1) are

𝜀e =
Uf

e − Ui
e

le
+

(
Uf

e − Ui
e

)2
+
(
Vf
e − Vi

e

)2

2 l2e
, 𝜅e =

𝛩

f
e − 𝛩

i
e

le
,

𝛾e =
𝛩

i
e + 𝛩

f
e

2
+ arctan

(
Vf
e − Vi

e

Uf
e − Ui

e + le

)
,

(6.2)
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being Ui
e, Vi

e, 𝛩
i
e, U

f
e , V

f
e and 𝛩

f
e the values of displacements and rotations of the

element endpoints, collected in a six-dimensional vector defined as

𝐔 ∶=
(
Ui

e Vi
e 𝛩

i
e Uf

e Vf
e 𝛩

f
e
)T

. (6.3)

Notice that approximating the shear strain over the finite element with a constant

function (same order as 𝜀e and 𝜅e) allows getting convergent results with a number of

elements significantly smaller than choosing linear 𝛾e (which indeed induces locking

phenomenon), as shown in [9], through numerical examples.

6.2.2 Equations of Motion

In the present contribution, with slight loss of generality, we consider the simplest

case of a homogeneous beam with S0 held constant along the beam length. On stipu-

lating the principle of virtual work among generalized stresses N, T and M and their

work-conjugate virtual variations of 𝜀, 𝛾 and 𝜅, as well as among external, inertial

and dissipative forces and the corresponding virtual displacements, the equations of

motion are got as

m0 ü + c0 u̇ = (N(2𝜀 + 1) cos𝜑 − T sin𝜑)′ + qx , (6.4)

m0 v̈ + c0 v̇ = (−N(2𝜀 + 1) sin𝜑 + T cos𝜑)′ + qy , (6.5)

m2 ̈
𝜃 + c2 ̇

𝜃 = M′ − T
√
2𝜀 + 1 + q

𝜃

, (6.6)

that must be complemented by properly imposed boundary conditions. Terms in

Eqs. (6.4–6.6) are given per unit length, being m0 and c0 axial and transverse inertia

and damping; m2 and c2 rotary inertia and damping; qx, qy and q
𝜃

external loads.

Prime, as before, and superimposed dot stand for differentiation with respect to the

space variable x and time t, respectively. For any element e, we may deduce the six

equations of motion by requiring the virtual work equation

𝛿W internal strain

e = 𝛿Wexternal load

e − 𝛿W inertial forces

e − 𝛿Wdissipative forces

e (6.7)

be satisfied for every 𝛿𝐔, which is the virtual variation of 𝐔, defined in Eq. (6.3).

It is noteworthy that the approximation of the model we are dealing with leads to

a system of nonlinear equations, with a stiffness matrix dependent on 𝐔. From the

virtual work due to internal strain, the tangent stiffness matrix, at any 𝐔 = 𝐔∗
, can

be deduced as

𝐊e =
[

𝜕

2

𝜕𝛿𝐔 𝜕𝐔
(
𝛿W internal strain

e
)]

𝐔=𝐔∗
. (6.8)
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In the case of non-uniform beams, also masses and damping matrices vary and,

similarly to Eq. (6.8), they are related to virtual works of inertial and dissipative

forces, respectively. However, instead of writing 𝐊e from Eq. (6.8), we numerically

compute its entries with Mathematica®

exploiting the robust methods implemented

in and designed to solve systems of algebraic or differential nonlinear equations (as

Newton-Raphson, Runge-Kutta, or others, depending on the nonlinear problem to

solve).

For the homogeneous uniform beam we are dealing with (however the gener-

alization to the more general non-homogeneous and non-uniform case being quite

straightforward) terms in Eq. (6.7) comment as

𝛿W internal strain

e =
le
2

1

∫
−1

((
Ne𝛿𝜀e + Te𝛿𝛾e

)√
2𝜀e + 1 +Me𝛿𝜅e

)
d𝜉 , (6.9)

𝛿W inertial forces

e =
le
2

1

∫
−1

(
m0

(
üe𝛿ue + v̈e𝛿ve

)
+ m2 ̈𝜃e𝛿𝜃e

)
d𝜉 , (6.10)

𝛿Wdissipative forces

e =
le
2

1

∫
−1

(
c0

(
u̇e𝛿ue + v̇e𝛿ve

)
+ c2 ̇𝜃e𝛿𝜃e

)
d𝜉 , (6.11)

𝛿Wexternal load

e =
le
2

1

∫
−1

(
qxe𝛿ue + qye𝛿ve + q

𝜃e𝛿𝜃e
)
d𝜉 . (6.12)

Finally, in order to build the whole system of equations for the original beam dis-

cretized in ne elements, motion equations specialized for every element e of the dis-

cretization must be properly assembled with suitable boundary conditions enforced,

as well.

6.2.3 Constitutive Relationships

For further development, we assume elastic constitutive assumptions between gen-

eralized strains and stresses. In particular, we adopt here without further justifica-

tion, the relationships deduced in [2], and (coherently with what we have done for

equations of motion) specialize them to the simplest case of a homogeneous beam

with S0 held constant along the beam axis. Furthermore, on assuming that 𝛾 remains

small enough, as confirmed by previous numerical experiences with finite difference

approaches [9], we achieve
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N = 1√
2𝜀 + 1

(
K0 𝜀 +

3
2
K2 𝜅

2
)
, M =

(
K2 (3𝜀 + 1) + 1

2
𝜅

2 K4

)
𝜅 ,

T =
√
2𝜀 + 1

(
KS − K2 𝜅

2)
𝛾 ,

(6.13)

where K0, K2, K4 and KS are cross-sectional stiffnesses. Thanks to Eqs. (6.2), the

discretization of Eqs. (6.13) is straightforward.

6.3 Numerical Results

The present section is devoted to describe some numerical results obtained using

Mathematica®

based codes. For the sake of comparison, we consider, first, the static

problem from [10] that is a thick cantilever beam 2 m long, with uniform rectan-

gular cross section 0.5 m height and 0.1 m width, undergoing large displacements

under a combined static load, which is a downward tip force of 125 × 106 N plus

a counter-clockwise tip moment of 160 × 106 N m. The beam is made of a material

characterized by a Young’s modulus of 207 GPa and vanishing Poisson’s ratio. Basi-

cally, in [10], the beam is of Reissner’s type and it is analysed through an absolute

nodal coordinate formulation (ANCF) and a fully three-dimensional computation

with linear hexahedral finite elements (3D FE).

In Table 6.1, values of non-vanishing parameters used in the present computations

are reported. In Table 6.2 and in Fig. 6.1, results are shown. In particular, in Table 6.2,

tip (axial and transversal) displacements are compared with results from [10]. Also

rotation and shear angle are reported, although the latter two are not reported in [10].

Further, because of different sign assumptions, axial displacements appear positive-

signed in [10]. Figure 6.1 collects graphics of axial and transverse displacements at

the axis height, cross-sectional rotations and deformed shape of the beam.

By virtue of the good agreement between present results and comparison litera-

ture findings, we may infer that our (indeed quite simple) finite element approxima-

tion is reliable. Furthermore, we emphasize that the beam model itself, as introduced

in [2] is as predictive as the Reissner’s one, at least in the analysed case. However,

since the two models slightly differ from each other, there’s still room to understand

in what those differences play role. We leave this for future work.

Table 6.1 Stiffnesses adopted in computations

KS (N) K0 (N) K2 (N m
2
) K4 (N m

4
)

43.125 × 108 10.350 × 109 215.625 × 106 808.594 × 104
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Table 6.2 Comparison of our results, from the present finite element formulation (FEM) and 2nd

and 4th order finite difference approaches (FDM), with available literature findings

Type # els u (m) v (m) 𝜃 (rad) 𝛾 (rad)

FEM 16 −0.02783 0.09211 0.35873 0.02798
32 −0.02803 0.09311 0.35894 0.02874
64 −0.02808 0.09336 0.35900 0.02893

FDM (2nd) 16 −0.02916 0.10665 0.34988 0.02909
32 −0.02892 0.09382 0.35959 0.02900
64 −0.02955 0.09043 0.36307 0.02878

FDM (4th) 16 −0.02916 0.10665 0.34988 0.02909
32 −0.02892 0.09382 0.35959 0.02900
64 −0.02891 0.09292 0.36028 0.02901

ANCF [10] 16 −0.02932 0.09136 – –

ANCF [10] 32 −0.02938 0.09256 – –

3D FE [10] 256 −0.02948 0.09030 – –

3D FE [10] 4096 −0.02958 0.09043 – –

u
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−

Fig. 6.1 Results for a 64-element discretized beam. Top panels: axial (left) and transverse (right)

displacements. Bottom panels: rotation (left) and deformed shape superimposed to undeformed

configuration (displacements and rotations are not amplified)

The next set of examples, for which at the moment we do not present comparison,

is aimed at testing the present finite element approach in the more challenging and

time consuming dynamical case.

We consider a beam hinged at the both ends, of initial length L0 = 1m, whose

mechanical data are reported in Table 6.3 (the parameters that do not appear here or

there are set to zero). The beam is subjected to a midspan dynamic point load Q(t) =
P cos𝛺t. The amplitude of load is set as a fraction of the axial stiffness, namely

P = K0∕100. The angular frequency 𝛺 is set as the bifurcation parameter. Results
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Table 6.3 Parameters adopted for computations in dynamics (not reported ones are set to zero)

KS
(N)

K0
(N)

K2
(N m

2
)

K4
(N m

4
)

m0
(kg m

−1
)

m2
(kg m)

c0
(N s m

−2
)

5.25 × 108 1.05 × 109 2.19 × 105 82.03 39.25 8.18 × 10−3 2.89 × 103

are computed by choosing 240 equally spaced values 𝛺i (i = 1, 2,… , 240) in the

interval

0.8𝜔 ≤ 𝛺 ≤ 1.2𝜔 , (6.14)

𝜔 being the first linear angular frequency

𝜔 = 𝜋

2

L20

√
K2

m0
(6.15)

of the beam. At every 𝛺i the integration of the equations of motion is performed

over the time interval spanning from t0 = 0 to the final time tmax defined as

tmax = min (NC, 𝜏)
2𝜋
𝛺i

, (6.16)

where NC and 𝜏 are the maximum number of load cycles for each integration (here

we choose NC = 200) or the number of cycles that is necessary to the 𝜏-periodic

solution to return on itself (under the obvious limitation 𝜏 < NC). In other words,

the i-th integration stops soon after a periodic solution is found or after 200 cycles

of load are done. Initial displacements and rotations of the first computation, i.e.

i = 1 (with 𝛺1 = 0.8𝜔) correspond to the static equilibrium of the beam under the

midspan static force of magnitude P. Initial velocities are set to zero. For any fur-

ther computation, i.e. i ≥ 2, initial data are taken form the final state of the previous

(i − 1)-th simulation.

In simulations we report, the beam is discretized with 4 elements, that is, after

hinged boundary conditions are properly imposed, with 11 degrees of freedom, lead-

ing to a non-autonomous system of 22 first order ordinary differential equations.

Some results are reported in Figs. 6.2 and 6.3. In particular, Fig. 6.2 shows solu-

tions for three selected load frequencies, namely 𝛺 set to 0.8𝜔, 0.9𝜔 and 𝜔. The

first and third solutions are periodic, with period equal to 1 and 3 times the period

of the load, respectively, while the second one is chaotic. Figure 6.3 collects these

and other solutions in terms of a bifurcation diagram, built in a brute force fashion

by using a code running in Mathematica®

and already applied in [11], with specific

changes introduced for the problem here considered.
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Fig. 6.2 Three solutions for selected load frequencies. Top panels: transient (dashed gray) and

steady (red) phase trajectories with superimposed Poincaré return map (yellow dots). Bottom pan-

els: steady state time histories (only few load-cycles time-interval shown)

Fig. 6.3 Dimensionless midspan displacement v∕L0 (top panel) and velocity v̇∕(𝜔 L0) (bottom

panel) vs dimensionless angular frequency 𝛺∕𝜔 of load. Initial state of the beam is deformed under

the static force P = K0∕100, K0 being the axial stiffness of the beam. Each numerical integration is

stopped whenever a periodic solution is found or after 200 cycles of force. The diagram is plotted

discarding the transient phase
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6.4 Conclusions

Basic details of a geometrically exact beam model, both at the continuous and at an

approximated formulation levels, are presented. The set of three second-order partial

differential equations is discretized through a total lagrangian finite element formu-

lation. The functions approximating displacements and rotations are linear along the

generic finite element, and as such enter in the definition of approximated axial and

bending strains. However, to avoid locking phenomena, rotation is held constant in

approximating shear strain. Results from simulations, both in statics and dynamics,

are reported. Solutions of a static benchmark problem are compared with literature

results. The good agreement, which has been found, validates both the theoretical

beam model and its finite element approximation. Results from dynamic analysis,

in terms of phase trajectories, time histories, Poincaré return maps and bifurcation

diagrams contain typical feature found in analysing nonlinear systems. As expected,

from a computational viewpoint, the discretized dynamic problem, held by ordi-

nary differential equations, was significantly more expensive in comparison with the

static counterpart, held by algebraic equations. We conclude by emphasizing that

the kinematically-consistent model we are dealing with, in which 1D constitutive

relationships (at the beam level) are deduced from continuum-based (point level)

stress-strain assumptions, straightforwardly applies to examples more general than

those considered in the present contribution, as beams with variable cross sections

and material space gradation. Of course, since different kinematic formulations can

be employed, many other models to compare with do exist, and for any model several

numerical approximation strategies can be adopted. Hence, the choice of the most

convenient approximation of any suitable theoretical model relies on many interre-

lated aspects and, indeed, it may be problem-dependent.
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Chapter 7
Targeted Nonlinear Energy Transfer
for Electroacoustic Absorbers

D. Bitar, A. Ture Savadkoohi, C.-H. Lamarque, E. Gourdon and M. Collet

Abstract In order to investigate the effects of coupling a nonlinear electrical shunt
circuit to a loudspeaker terminal, a representative two degrees of freedom (dof) sys-
tem has been considered. It consists of a main system describing the displacement
of the loudspeaker membrane, which is linearly coupled to a Nonlinear Energy Sink
(NES) with a small mass compared to the principal one. An analytical treatment
enabling the analysis of the behaviour of the system around the 1:1 resonance at dif-
ferent time scales is endowed. Thismethodology enables the detection of equilibrium
and singular points, corresponding to periodic and modulated regimes, respectively.
The analytical developments prepare necessary design tools for tuning parameters
of the NES.
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7.1 Introduction

Audible sound is a combination of direct sound flowing from a source and indirect
reflections. In order to improve the quality of sound in a room, the control of noise
reverberations at the propagation and reception paths is essential. Among the various
employed sound absorption technologies, we are interested in the active absorption
approach. For instance, an electrodynamic loudspeaker can be turned into an elec-
troacoustic absorber by connecting a convenient passive electrical shunt circuit to
the transducer terminal. This approach permits to dissipate sound power of incident
waves [1]. The concept of energy pumping from a primary source to a NES was
introduced in several domains of engineering sciences with two main applications
namely passive control and energy harvesting (see for example [2–4]).

Nonlinear systems are well known for their ability to improve the performance
of the control and increasing frequency range of absorption [5]. For this purpose,
a passive nonlinear shunt circuit has been connected to the loudspeaker terminal.
Then, the whole structure can be represented by a two dof system, including the
main linear system describing the displacement of the loudspeaker membrane which
is linearly coupled to an electrical NES.

In order to solve the system analytically, an extended version of complex variables
of Manevitch [6] is introduced, taking into account higher harmonics. It permits a
better prediction of system behaviors, especially during bifurcations. The multiple-
scalemethod [7] is employed enabling to detect the behavior of the system at different
time scales. This approach allows the identification of the system invariant at fast
time scale and equilibrium and singular points at slow times scales [8, 9].

7.2 System Representation

The dynamics of an electroacoustic loudspeaker, shunted with an electrical nonlin-
ear circuit and subjected to an external periodically varying sound pressure can be
described by the following differential system:

{
Mms ẍ(t) + Rms ẋ(t) + C−1

mc x(t) − CBlV̇ (t) = SAm cos (�t),
C(Le + Lc)V̈ (t) + C(Re + Rc)V̇ (t) + kV 3 + Blẋ(t) = 0.

(7.1)

where x and V describe respectively the small displacement of the loudspeaker
membrane and the electric potential in the nonlinear shunt circuit. The dot notation
indicates the derivative with respect to time t i.e. ẋ = dx/dt . Mms , Rms and Cmc

are the mass, the mechanical resistance of the moving bodies and the equivalent
compliance of the enclosed loudspeaker. Bl is the force factor of the transducer with
B representing the magnetic field magnitude and l standing for the length of the
wire in the voice coil. Am is the pressure amplitude, � is the angular frequency and
S stands for the diaphragm surface. Re and Le are respectively the DC resistance
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and the inductance of the voice coil with Blẋ(t) describing the back electromotive
force. Rc, Lc andC are the inductance, resistance, and capacitance of the correspond-
ing nonlinear shunt circuit with k the nonlinear coefficient related to the multiplier
connections.

After introducing the non-dimensional time variable T = ω0t with ω0 =√
1/(MmsCmc) the natural angular frequency, the physical two degree of freedom

system of Eqs. (7.1) can be expressed by the following scaled system

{
ÿ1 + ελẏ1 + y1 − εα ẏ2 = ε f cos (ωT ),

ε
(
ÿ2 + γ ẏ2 + ξy32 + η ẏ1

) = 0.
(7.2)

The dot notation indicates now the derivative with respect to time T . y1 and y2
stand for x and V in the new time domain. The scaled parameters used in Sys. (7.2) are
ε = Le + Lc, RmsCmcω0 = ελ,CBlCmcω0 = εα, SAmCmc = ε f, (Re + Rc)/ω0 =
εγ, k/(Cω2

0) = εξ, ω = �/ω0 and Bl/(Cω0) = εη.

7.3 Analytical Treatment

In order to analyze the dynamical behavior of the system around the 1:1 resonance
by letting ω = 1 + εσ with σ a detuning parameter, Manevitch’s complex variables
[6] can be introduced as

{
ẏ1 + iωy1 = ψ1(T )eiωT

ẏ2 + iωy2 = ψ2(T )eiωT
(7.3)

Before introducing the complex variables (7.3) into the scaled Sys. (7.2), we
choose to investigate on the contribution of harmonics in both variables ẏn + iωyn
with n ∈ {1, 2}. Then, we plot in Fig. 7.1 the modulus of ẏ1 + iωy1 and ẏ2 + iωy2
according to scaled time T for the following parameters: ε = 0.01, η = α = λ = 0.2,
γ = 0.3, ξ = 0.5 and f = 0. The corresponding numerical results obtained by direct
numerical integration of Eqs. (7.2) using a Runge-Kutta schemewith the correspond-
ing initial conditions as y1(0) = y2(0) = ẏ2(0) = 0 and ẏ1(0) = 3.7.

Remarkably, for the first modulus represented in Fig. 7.1a, it can be clearly seen
that the first harmonic is sufficient enough to qualify the energy level of the primary
system. Thus, for the energy amplitude of the NES represented in Fig. 7.1b the
addition of the third harmonic has remarkable effects on its behavior the individual
presence of the first harmonic.

7.3.1 Dynamical Behavior Around 1:1 Resonance

An extended version of Manevitch’s complex variables is introduced in the present
study, taking into account the effect of the first harmonic for the principal system and
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(a) (b)

Fig. 7.1 Time histories of |dy1/dT + iωy1| = N1 and |dy2/dT + iωy2| obtained by the direct
integration of Sys. (7.2) under free oscillations; i.e. f = 0

both first and third harmonics for the NES. In addition, we apply a multiple scales
approach by introducing a fast time scale τ0 and slower ones (τ1, τ2, . . . ) as:

T = τ0, τ1 = ετ0, τ2 = ε2τ0 . . . (7.4)

The new complex variables are introduced as in the following relationship:

{
ẏ1 + iωy1 = ψ1(τ1, τ2, . . . )eiωτ0

ẏ2 + iωy2 = ψ2(τ1, τ2, . . . )eiωτ0 + ψ3(τ1, τ2, . . . )e3iωτ0 (7.5)

After introducing the complex variables presented in Eq. (7.5) into Eqs. (7.2) we
obtain the system below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ψ̇1 − i

(1 − ω2)

2ω
ψ1 + ε

λ

2
ψ1 − ε

α

2
ψ2 − ε

f

2

]
eiωτ0 − ε

α

2
ψ3e

3iωτ0 + c.c. = 0

[
ψ̇2 + i

ω

2
ψ2 + γ

2
ψ2 + η

2
ψ1 − i

3ξ

8ω3

(
ψ2|ψ2|2 − ψ3ψ

∗2
2 + 2ψ2|ψ3|2

)]
eiωτ0

+[
ψ̇3 + i

5ω

2
ψ3 + γ

2
ψ3 − i

ξ

8ω3

(
3ψ3|ψ3|2 − ψ3

2 + 6ψ3|ψ2|2
)]
e3iωτ0

+i
3ξ

8ω3
ψ2ψ

2
3e

7iωτ0 + i
3ξ

8ω3

[
ψ2
2ψ

3
3 − ψ2

3ψ
∗
2

]
e5iωτ0 + c.c. = 0,

(7.6)
where c.c. stands for the complex conjugate of the rest of the arguments. The complex
variables ψn describe the slow modulation of fast vibrations at the frequency ω.

Using the Galerkin technique [9], we keep the first harmonic of the main system
and the first and the third harmonics of the NES and truncate higher ones. In applying
the method, we suppose that ψ1, ψ2, ψ3 are independent of the fast time τ0. Then,
we obtain an averaged system composed of three first order differential equations in
terms of ψ1, ψ2 and ψ3 as:
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ψ̇1 − i
(1 − ω2)

2ω
ψ1 + ε

λ

2
ψ1 − ε

α

2
ψ2 = ε

1

2
f (7.7)

ψ̇2 + i
ω

2
ψ2 + γ

2
ψ2 + η

2
ψ1 − i

3ξ

8ω3

(
ψ2|ψ2|2 − ψ3ψ

∗2
2 + 2ψ2|ψ3|2

) = 0 (7.8)

ψ̇3 + i
5ω

2
ψ3 + γ

2
ψ3 − i

ξ

8ω3

(
3ψ3|ψ3|2 − ψ3

2 + 6ψ3|ψ2|2
) = 0 (7.9)

This methodology enables the detection of the system invariant at the fast time
scale τ0, which allows the detection of the system behaviors at the slower time scales.

7.3.1.1 The System Behavior at τ0 Time Scale

At the order ε0, resonant terms at τ0 time scale in Eq. (7.7) give

∂ψ1

∂τ0
= 0 ⇒ ψ1 = ψ1(τ1, τ2, . . . ) (7.10)

Thenψ1 is constant according to the fast time scale τ0 winch validates our hypothe-
ses during using theGalerkinmethod. However, Eqs. (7.8) and (7.9) can be expressed
as in the following form

⎧⎪⎨
⎪⎩

∂ψ2

∂τ0
+ H1(ψ1,ψ2,ψ3,ψ

∗
2 ,ψ

∗
3) = 0,

∂ψ3

∂τ0
+ H2(ψ2,ψ3,ψ

∗
2 ,ψ

∗
3) = 0,

(7.11)

where H1 and H2 define the ε1 order functions of Eqs. (7.8) and (7.9). System (7.11)
presents an asymptotic equilibrium governed by a manifold called Slow Invariant
Manifold (SIM), which is in fact a geometrical representation of the fixed points of
the system i.e.,

τ0 −→ ∞ ⇒

⎧⎪⎨
⎪⎩

∂ψ2

∂τ0
−→ 0,

∂ψ3

∂τ0
−→ 0.

(7.12)

or we can set

H (δ1, N1, δ2, N2, δ3, N3) = 0 ≡
{

H1(ψ1,ψ2,ψ3,ψ
∗
2 ,ψ

∗
3) = 0,

H2(ψ2,ψ3,ψ
∗
2 ,ψ

∗
3) = 0.

(7.13)

Writing the complex variables in the polar form as ψ j = N jeiδ j with j = 1, 2, 3,
Sys. (7.13) can be expressed and reduced to the following form after separating its
real and imaginary parts:
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h1 = N2
[
γ + 3

4
ξ sin (3δ2 − δ3)N2N3

] + η cos (δ1 − δ2)N1 = 0 (7.14)

h2 = N2
[
1 − 3

4
ξ(N2(N2 + cos (3δ2 − δ3)N3) − 2N 2

3 )
]

+η sin (δ1 − δ2)N1 = 0 (7.15)

h3 = 4γN3 − ξ sin (3δ2 − δ3)N
3
2 = 0 (7.16)

h4 = 4N3
[ − 5 + 3

2
ξN 2

2 + 3

4
ξN 2

3

] − ξ cos (3δ2 − δ3)N
3
2 = 0 (7.17)

Replacing Eqs. (7.16) and (7.17) into Eqs. (7.14) and (7.15) respectively, the SIM
can be expressed as it follows:

⎧⎪⎪⎨
⎪⎪⎩

N1 = N2

η

√
γ2

(
1 + 3

N 2
3

N 2
2

)2 + (
1 − 3

4
ξN 2

2 − 15
N 2
3

N 2
2

+ 3ξN 2
3 + 9

4
ξ
N 4
3

N 2
2

)2
,

ξ2N 6
2 = 16N 2

3

[
γ2 + (−5 + 3

2
ξN 2

2 + 3

4
ξN 2

3 )2
]
.

(7.18)
Under free oscillations, we plot in Fig. 7.2 the numerical result obtained by a

direct integration of the scaled Sys. (7.2) compared to the SIM obtained by solving
Sys. (7.18). The classical SIM driven by employing the first harmonics only is rep-
resented in dashed dot line can be obtained after replacing N3 by 0 in Eq. (7.18).
Remarkably, the addition of the third harmonic managed to adjust the gap between
the numerical integration and analytical developments, mainly at the bifurcation.

Fig. 7.2 A comparison
between the classical
(− − −) and modified (∗)
SIM together with the direct
numerical integration
( ) of the scaled
Sys. (7.2) under free
oscillations; i.e. f = 0
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7.3.1.2 The System Behavior at τ1 Time Scale

Treating Eq. (7.7) at the order ε1, we can analytically identify the equilibrium points
and singularities leading to the presence of periodic or quasi-periodic regimes.
Equation (7.7) at ε1 reads:

∂ψ1

∂τ1
= f (ψ1,ψ2) = −(

λ

2
+ iσ)ψ1 + α

2
ψ2 + f

2
(7.19)

Writing Eq. (7.19) into its polar form and separating its real and imaginary parts
we obtain the following system

⎧⎪⎨
⎪⎩

∂δ1

∂τ1
= f1(δ1, N1, δ2, N2) = −λ

2
N1 + α

2
N2 cos (δ2 − δ1) + f

2
cos (δ1)

∂N1

∂τ1
= f2(δ1, N1, δ2, N2) = 1

N1

(α

2
N2 sin (δ2 − δ1) − σN1 − f

2
sin (δ1)

)
.

(7.20)
CombiningEqs. (7.13) and (7.20), the systembehavior at slow time scale τ0 around

its invariant can be studied using following equation

⎛
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(7.21)

Equation (7.21) can be arranged to be written in the following form
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(7.22)
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Then, equilibrium points of the system, can be obtained by solving the following
system [10] ⎧⎨

⎩
H = 0
f1 = f2 = 0
det (M ) 	= 0.

(7.23)

However, fold singularities are reached when

⎧⎨
⎩

H = 0
f1 = f2 = 0
det (M ) = 0.

(7.24)

7.4 Some Results and Discussion

Let us consider a systemwith f = 0.3 and the detuning parameter σ = 0, Sys. (7.23)
is validated with f1 = f2 = 0, H = 0 and det (M ) 	= 0, which indicates the exis-
tence of an equilibrium point. Figure7.3a shows the modified SIM compared to the
numerical integration of the scaled Sys. (7.2). This later oscillates around the upper
branch of the SIM, then once reaching the stability border, it jumps to follow the
small amplitude level to be finally attracted by an equilibrium point. The existence
of an equilibrium point indicates the existence of a periodic regime, which is verified
in Fig. 7.3b once reaching the permanent regime.

Solving Sys. (7.23) for f = 0.3 and σ = 0, we can deduce the existence of the
equilibrium point (N2, N1) = (0.274, 1.3959). Then, we can deduce that the analyti-
cal predictions are in good agreement with the numerical results depicted in Fig. 7.4,

(a) (b)

Fig. 7.3 a SIM of the system with the numerical integration of the scaled Sys. (7.2) under small
forced oscillations with f = 0.3 and the detuning parameter σ = 0. b Time histories of the velocity
dy1/dT
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(a) (b)

Fig. 7.4 Time histories of both amplitudes |dy1/dT + iωy1| = N1 and |dy2/dT + iωy2| obtained
by the direct integration of Sys. (7.2) under small forced oscillations with f = 0.3 and the detuning
parameter σ = 0

where we plot the histories of N1 = | dy1dT + iωy1| and | dy2dT + iωy2|. In this given
example, the NES is able to control the primary system against periodic external
forces by presenting small amplitudes during periodic regimes.

7.5 Conclusions

In order to reduce noise at the propagation and reception paths, an electroacoustic
loudspeaker has been turned into a passive absorber by coupling to its terminal a
nonlinear electrical shunt circuit. The nonlinear behavior of the systemwas described
by a rescaled two degrees of freedom system, which consists of a linear master
structure under sinusoidal forcing that is linearly coupled to a nonlinear energy sink.
The study was carried out using an extended versionManevitch’s complex variables,
including first and third harmonics. The complex system was treated analytically
using a multiple-scale method, allowing the detection of the system invariant at the
fast time scale. A predictive tool enabling the identification of the dynamical regime
(periodic or modulated regimes) is given for the purpose of passive control of the
main system.

Acknowledgements This work was conducted in the framework of the LABEX CeLyA (“Centre
Lyonnais d’Acoustique”), ANR-10-LABX-60.
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Chapter 8
Using Symbolic Computational
Dynamics as an Aid to Design

Matthew P. Cartmell and Niloufar Motazedi

Abstract The topic of Symbolic Computational Dynamics, as presented here, has
been motivated by the utility of approximate analytical solutions for reduced order
models, and the power of computers to copewith the challenges of both problem scale
and automation. Application has traditionally been limited by the algebra needed for
problems of more than a few coupled coordinates, making such problems excellent
candidates for automation through symbolic computation. But there is a lot of useful
information that is naturally lost when doing this, due to the on-going processes of
algebraic simplification, the different mathematical-physical processes behind the
small parameter, and defining relative strengths of physically based terms. We offer
a novel symbolic computational process that applies a semi-automated asymptotic
method for solution that also retains all information, leading to a first generation
approach to the global visualisation of problems in dynamics.

Keywords Nonlinear dynamics · Perturbation methods · Symbolic computation ·
Design

8.1 Introduction

Research into Symbolic Computational Dynamics (SCD) by Cartmell and Khanin
began in 1997 under this title and owes something of its heritage to earlier work
carried out by others, notably Rand et al., over a period going back to the early nine-
teen eighties, mainly on the computation of perturbation methods for approximate
analytical solutions to reduced order differential equation models. There are several
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asymptotic methods that can be very usefully applied to nonlinear dynamics prob-
lems when they are represented in differential equation form, including the method
of Struble, the Lindstedt–Poincaré method, applications of the Volterra series, Har-
monic Balance, the method of multiple scales, and the method of direct separation
of motions, amongst others. So, in general, approximate analytical solutions can
usually be found for reasonably set up reduced-order differential equation models,
given certain conditions and constraints. Such solutions can accurately represent
the dynamics of the problem—within the limitations of the approximations made.
Ease of application of these potentially powerful methods is often limited by the
sheer scale of algebraic manipulation needed for nonlinear problems that involve
more than a few coupled coordinates. On this basis they are excellent candidates
for semi-automation through symbolic computation. The first published research on
the formal use of computers to solve symbolic problems in nonlinear dynamics is
attributable to Rand [1] in 1984 who introduced the MACSYMA language for this
purpose, and then to Rand and Keith who explored normal forms and centre mani-
fold calculations using MACSYMA in 1985 [2], noting that there are several other
significant and relevant publications by Rand et al. from around this time. By 1987
Rand and Armbruster had successfully brought together bifurcation theory, pertur-
bation methods, and computer algebra in a major new book [3]. Rand continued to
add to this pioneering body of work with a further book on computer algebra applied
to nonlinear dynamics in 1994 [4]. Through these seminal works Rand effectively
pioneered, and then firmly established, the formal application of symbolic computa-
tion to the principal mathematical topics that are used right across the general area of
applied dynamics. Recently Professor Rand has issued a comprehensive treatment of
nonlinear vibration in the form of published lecture notes, fromwhich virtually all the
theories and treatments required for nonlinear analysis are usefully and practically
summarised for the practitioner [5].

The long-standing motivation behind the research presented in this paper is
an acknowledgement that certain forms of mathematical information are naturally
lost when analytically solving the nonlinear differential equations that realistically
describe problems encountered in dynamics. This lost information has potential use
because of what it canmean physically. One example of this loss is simply that which
occurs due to the on-going processes of algebraic simplification. Another is due to
the different mathematical-physical reasoning processes that underpin, say, the use
of the small perturbation parameter, as it appears and then re-appears throughout an
analysis. A third is the way in which we define the relative strengths of physically
based terms when they are first introduced into the equations of motion, and the
repercussions of getting this partially, or even completely wrong. So, the objective
in this research has been to create a symbolic computational process that efficiently
applies a semi-automated asymptotic method in a correct, consistent, and adaptable
manner. The process was also intended to provide a facility for the identification and
retention of all the mathematical-physical information generated that could finally
be represented back to the user in an easy-to-interpret visualisation.

The origins of the research specifically reported here go back to a series of lengthy
second order multiple scales analyses undertaken by Cartmell and completed in 1984
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[6]. That work stimulated many informal and independent experiments in the sym-
bolic codification of perturbation schemes, in the intervening period up to 1997. This
led to the award to Cartmell, then based at the University of Edinburgh, of the first
of several research grants from 1997 onwards. New forms of symbolic software in
MathematicaTM emerged from the work done by Cartmell and Khanin under this
funding, enabling both serial and parallel computation [7–10]. The work was trans-
ferred to the University of Glasgow in 1998 with further research funding awarded
from 2000 and this led to the next generation of programs and the burgeoning idea of
‘term-tracking’ [11–13]. Funded research continued up to 2008. The work was then
transferred in 2012 to the University of Sheffield, by which time relatively advanced
symbolic solution codes had been developed by Khanin, Forehand, and Cartmell, all
written in the MathematicaTM language. In addition preliminary research had also
been undertaken by Cartmell and Forehand on understanding the challenges inherent
in the visualisation of the new information generated by this sort of computation.
Motazedi joined the project in 2013 and she subsequently revised and developed
the solver software and created an entirely new term-tracker package initially based
on some of the ideas that had been proposed by Cartmell, Khanin, and Forehand.
Motazedi then went on to devise, build, and test new software for visualisation of
symbolic data [14, 15], again in MathematicaTM. Motazedi also took on the sub-
stantial problem of writing semi-automated symbolic code for the treatment of the
modulation equations that arise naturally within the perturbation method of multiple
scales, and she devised a generic and adaptable computational structure for handling
these important equations systematically in order to complete the solution procedure
[14]. These activities have since led to the identification by the authors of Symbolic
Computational Dynamics (SCD) as a convenient umbrella term for their approach
to this general area of research. The authors make no claim for any wider uptake of
this term in this context, as yet.

The choice ofMathematicaTM as the preferred programming language was strate-
gic and made by Cartmell back in the mid 1990s. The thinking behind this decision
was generally influenced by the very powerful high-level nature of this language,
the fact that it’s always been aimed fundamentally at symbolic programming, and
because of the many specific features of the language that have lent themselves
directly to logical implementations for SCD. The current generation of programs
operate as digital interactive notebooks within the MathematicaTM interface. This
provides an essential level of flexibility for the user so that s/he can apply any
assumption or simplification when it is required. The current generations of code
allow considerable user interaction and customisation of the core solver and term-
tracker, to the extent that differential equations can be added at will, and the internal
solution procedures themselves can be customised easily if necessary. This offers a
great deal of generality and flexibility in use.
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8.2 Symbolic Computational Dynamics

8.2.1 The Process of Symbolic Computational Dynamic
Solution

Theprinciples behindSCDare that the problemshould be representable in differential
equation form and that the equation(s) should lend themselves to asymptotic analysis,
also that the analysis method should be adaptable yet algorithmic enough in structure
to enable a symbolic computer code to be written to do all the mathematics reliably
and accurately yet also adaptively. In addition SCD, as we define it, requires a facility
for identifying, encoding uniquely, and then tracking all the mathematical-physical
operations within the solution procedure so that a record of the whole process can
be generated from which useful visualisations and information can be extracted.
The end result is, for example, a typical perturbation analysis in equation form,
which is supplemented by a graphic that shows the interconnectedness of the stages
within the analysis—in the context of the system variables, operators, constants, and
parameters. A detailed mathematical study has been provided by Motazedi [14] and
in summarised form in [15], and these two references provide the principal sources for
what follows. The utility of the SCD approach depends strongly on the format of the
graphic, and this remains an open topic for research with current ideas summarised
later. The architecture of an SCD solver is given in Fig. 8.1.

The term-tracker module is based on the authors’ Source and Evolution Encoding
Method (SEEM) and the encoding strategy is summarised in Table 8.1.

An example of how this encoding logic is applied in practice is given in
Eqs. (8.1)–(8.5) in which the governing differential equation of motion for a para-
metrically excited pendulum and the associated multiple scales expansions are all
shown in encoded form,

Fig. 8.1 SCD solver architecture [14]
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Table 8.1 SEEM logic summary [14]

Encoding level Description Visualisation

First level Origin of the equation and the perturbation order (i, j)

Second level First level + equation number in which it becomes explicit (i, j, k)

Third level Second level + equation number in which the explicit
form is modified

(i, j, k, l)

Compound-I When two quantities such as e and i subsume, two or more
individual e and i terms

(∗, i)

Compound-II (i, j, k, l)1 expadd
∗(i, j, k, l)2 (∗, klatest )

(i, j, k, l)3 expadd(i, j, k, l)4 (#, klatest )

(i, j, k, l)5 expadd(i, j, k, l)6
(
$, klatest

)

(i, j, k, l)7 expadd(i, j, k, l)8 (£, klatest )

Encoding of
signs

Signs are not normally encoded unless they are created as
the result of an algebraic operation. The divisor is not
encoded as well

(i, j, k, l)

θ̈ + 2εβ θ̇
︸ ︷︷ ︸
(1,1)

+
⎛

⎜
⎝ 1︸︷︷︸

(1,0)

− εqω2

︸ ︷︷ ︸
(1,1)

cos( ω︸︷︷︸
(1,0)

T0)

⎞

⎟
⎠θ + εγ

︸︷︷︸
(1,1)

θ3 = 0 (8.1)

θ(τ, ε) = θ0︸︷︷︸
(2,0)

+ εθ1︸︷︷︸
(2,1)

+O
(
ε2

)
(8.2)

d

dt
= D0︸︷︷︸

(3,0)

+ εD1︸︷︷︸
(3,1)

+O
(
ε2

)
(8.3)

d2

dt2
= D2

0︸︷︷︸
(4,0)

+ 2εD0D1︸ ︷︷ ︸
(4,1)

+O
(
ε2

)
(8.4)

θ3 = θ3
0︸︷︷︸

(2,0,5)

+O(ε). (8.5)

The time domain solution is given by Eq. (8.6), with full SEEM encoding shown,

θ (τ, ε) = a[T1]︸ ︷︷ ︸
(20,0,31)

cos(

⎡

⎢
⎢
⎢
⎣

1
(9,0,31)

−
2︸︷︷︸

(13,0,34)

2︸︷︷︸
(21,0)

⎤

⎥
⎥
⎥
⎦

τ + 1

2︸︷︷︸
(21,0)

⎡

⎢
⎣( 2︸︷︷︸

(13,0)

− 2︸︷︷︸
(9,0)

+ ω︸︷︷︸
(14,0,34)

)τ + ψ
︸︷︷︸
(24,0)

⎤

⎥
⎦)

−
ε︸︷︷︸

(2,1)

ε︸︷︷︸
(1,1,19)

ε︸︷︷︸
(2,1,19)

1

23︸︷︷︸
(20,0)

1

8︸︷︷︸
(19,0)

γ
︸︷︷︸

(1,1,19)

a[T1]3︸ ︷︷ ︸
(20,0)

cos( 3︸︷︷︸
(1,0,10,19)

τ
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+
3︸︷︷︸

(20,0,36)

2︸︷︷︸
(21,0)

⎡

⎢
⎣( 2︸︷︷︸

(13,0)

−2︸︷︷︸
(9,0)

− 2︸︷︷︸
(13,0,34)

ω︸︷︷︸
(14,0,34)

)τ − ψ
︸︷︷︸
(24,0)

⎤

⎥
⎦)

+
ε︸︷︷︸

(2,1)

ε︸︷︷︸
(1,1,19)

ε︸︷︷︸
(2,1,19)

qω2

︸︷︷︸
(1,1,19)

1

2︸︷︷︸
(1,0,11,19)

1

8︸︷︷︸
(19,0)

1

2︸︷︷︸
(20,0)

cos

⎡

⎢⎢
⎢
⎣

⎛

⎜⎜
⎜
⎝

2︸︷︷︸
(13,0,19)

+ 1︸︷︷︸
(9,0,19)

+
2︸︷︷︸

(13,0)

2︸︷︷︸
(21,0)

−
2︸︷︷︸

(9,0)

2︸︷︷︸
(21,0)

−
2︸︷︷︸

(13,0,34)

2︸︷︷︸
(21,0)

− 2︸︷︷︸
(13,0,34)

⎞

⎟⎟
⎟
⎠

τ

+

⎛

⎜
⎜⎜
⎝

ω︸︷︷︸
(14,0,34)

+
ω︸︷︷︸

(14,0,34)

2︸︷︷︸
(21,0)

⎞

⎟
⎟⎟
⎠

τ + −

ψ
︸︷︷︸
(24,0)

2︸︷︷︸
(21,0)

⎤

⎥
⎥⎥
⎦

+ O
(
ε2

)
(8.6)

In order to generate Eq. (8.6) an appropriate form of the method of multiple
scales for this problem is run automatically by the solver so that every symbolic and
numerical computation can be picked up and recorded by the term-tracker, running in
parallel, to generate a completely encoded approximate solution in the time domain,
supplemented by the modulation equations from which amplitudes and phases can
be obtained. The time domain solution for a first order multiple scales expansion
with encoding is given in Eq. (8.6). The as-generated encoding data is clearly quite
unwieldy in form but it can still be used to identify the sources of each term, and
to make a connection back to the physical conceptualisation of the problem. The
specific meaning of the encoding information is directly dependent on the solution
procedure and the way that has been introduced mathematically. The complexity
of the SEEM generated encodings invariably increases significantly as the problem
solution develops. The cancellation of parameters with the solution procedure that
would naturally take place in an efficient and elegant algebraic process is deliberately
avoided in SEEM, unless both the quantity and the first two encoding digits are iden-
tical. The small parameters that are introduced at different points early in a multiple
scales perturbation analysis do not necessarily have the same numerical value, and
the encoding reflects this. However the reverse may be true where different instances
of the small parameter end up being encoded differently (because of their historical
treatment) but where in fact these are the same small parameter numerically. SEEM
accommodates all such possibilities in all the necessary contexts. The programming
strategy for a generic SEEM analysis is given in full in [14] and summarised in [15],
and is based on 28 different algorithms which have been created and then coded in
MathematicaTM in order to implement the solver/tracker.
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8.2.2 Visualisation

There are two requirements for an SCD visualiser, these being the need to repre-
sent the complete form of information and also the practical requirement for this
information to be immediately readable, understandable and assimilable. As there is
a fundamental conflict between these requirements a series of pragmatic decisions
ultimately led to the visualisation graph format of Fig. 8.2. This relates directly to
Eqs. (8.1)–(8.5) and shows the user the equations in a layered sequential form together
with the link between Eqs. (8.2) and (8.5), via encoding (2,0,5). The software has
since been configured to allow selective viewing of the analysis with zoom and con-
verge features providing concentrated visualisation of the finest detail, together with
controllable zoom-out for the bigger picture. Automated colour and line thickness
features have been included to differentiate between links based on information flows
based on different perturbation order and systematic definitions of term complexity.
A statistical package has also been devised to provide a strength factor metric visu-
alised in the form of shaded circles of different diameter. This allows comparisons
to be made between the relative importance of terms within the same equation and
also with terms as they relate to other terms in other equations, travelling forwards
or backwards through the analysis. This is shown in Fig. 8.3.

The visualisations of Figs. 8.2 and 8.3 are based on a sequential hierarchy, in
which the analysis proceeds graphically from top right to bottom left, however
Fig. 8.4 shows an example fromone highly promising avenue of research inwhich the
sequential constraint is dropped in favour of an alternative algorithm which presents
the problem three dimensionally and emphasises the interconnectedness as a domi-
nant feature. This visualisation could be more useful than the sequential approach,
when combinedwith the strength factormetric and full three dimensional positioning
and automated rotation about a user specifiable axis. The left hand image in Fig. 8.4
is a plan view of the interconnectedness visualisation showing two distinct regions,
which relate to the two parts of the analysis of a 2 DoF autoparametric oscillator
(physically representing a pair of coupled beams).

Most of the analysis connected with the primary beam is in and around the upper
left area and conversely for the secondary beam in the lower right area. The right hand

Fig. 8.2 Visualisation graph for the first five equations of the parametrically excited pendulum
example (refer to Eqs. (8.1)–(8.5)) [14]
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Fig. 8.3 An implementation of the strength factor metric in the early stages of the parametrically
excited pendulum example [14]

Fig. 8.4 Two images of typical SCD output for a 2 DoF autoparametric oscillator in two different
elevations [14]
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image shows the same graphic when rotated into a side elevation (noting that these
definitions of elevation do not relate in any obvious way to any physical aspects
of the problem, they are simply convenient terms for distinguishing between the
views shown). Closer investigation of the two images reveals a cylindrical structure
emerging for each physical part of the problem.

8.3 Conclusions

This research has taken place over a long period and has led to a series of compu-
tational strategies which can generate user graphics for the dynamics. The rules of
interpretation are evolving and have not been stated here in detail. The work confirms
that the fundamental mathematical model contains a richness of information that is
normally not seen, and if this is converted into an explicit form it can be used to
provide a supplement to the conventional symbolic and/or numerical solution to the
problem. This could offer insights into interrelationships within the mathematical
and physical representations of the system, provided the graphics can be interpreted
meaningfully and quickly. These remaining challenges of user interpretation are
currently under intensive study.

Acknowledgements The authors wish to acknowledge the pioneering research of Professor
Richard H. Rand of Cornell University and his colleagues, also the support of Engineering
and Physical Sciences Research Council grants EP/C530446/1, GR/N32334/02, GR/N32334/01,
GR/N32280/01, GR/L30749/02, and GR/L30749/01, and the support made available to Motazedi
by the University of Sheffield.

References

1. Rand, R.H.: Computer Algebra in Applied Mathematics: An Introduction to MACSYMA,
Research Notes in Mathematics, vol. 94, p. 181. Pitman Publishing Inc. (1984)

2. Rand, R.H., Keith, W.L.: Normal forms and center manifold calculations on MACSYMA.
In: Pavelle, R. (eds.) Applications of Computer Algebra, pp. 309–328. Kluwer Academic
Publishers (1985)

3. Rand, R.H., Armbruster, D.: PerturbationMethods, Bifurcation Theory andComputer Algebra,
Applied Math Sciences, vol. 65, p. 243. Springer, Berlin (1987)

4. Rand, R.H.: Topics in Nonlinear Dynamics with Computer Algebra, p. 229. Gordon andBreach
(1994)

5. Rand, R.H.: Lecture Notes in Nonlinear Vibrations. Published online via http://ecommons.
library.cornell.edu/handle/1813/28989 (2012)

6. Cartmell,M.P.: Combination instabilities and nonlinear vibratory interactions in beam systems.
Ph.D. thesis, University of Edinburgh (1984)

7. Khanin, R., Cartmell, M.P., Gilbert, A.: Applying the perturbation method of multiple scales.
Math. Educ. Res. 8(2), 19–26 (1999)

8. Khanin, R., Cartmell, M.P.: A computerised implementation of the multiple scales perturbation
method using Mathematica. Comput. Struct. 76, 565–575 (2000)

http://ecommons.library.cornell.edu/handle/1813/28989


90 M. P. Cartmell and N. Motazedi

9. Khanin, R., Cartmell, M.P.: Parallelisation of perturbation analysis: application to large-scale
engineering problems. J. Symb. Comput. 31, 461–473 (2001)

10. Cartmell, M.P., Ziegler, S.W., Khanin, R., Forehand, D.I.M.: Multiple scales analyses of the
dynamics of weakly nonlinear mechanical systems. Trans. ASME Appl. Mech. Rev. 56(5),
455–492 (2003)

11. Forehand, D.I.M., Khanin, R., Cartmell, M.P.: A Lagrangian multibody code for deriving the
symbolic state-space equations of motion for open-loop systems containing flexible beams.
Math. Comput. Simul. 67(1/2), 85–98 (2004)

12. Forehand, D.I.M., Cartmell, M.P., Khanin, R.: Initial development towards an integrated fully
symbolic-analytical multibody code. Int. J. Mech. Eng. Educ. 33(2), 149–176 (2005)

13. Forehand, D.I.M., Cartmell, M.P.: The implementation of an automated method for solution
term-tracking as a basis for symbolic computational dynamics. Proc. Inst. Mech. Eng. Part C
J. Mech. Eng. Sci. 225(1), 40–49 (2011)

14. Motazedi, N.: The development of solvers for symbolic computational dynamics. Ph.D. thesis,
University of Sheffield (2017)

15. Motazedi, N., Cartmell, M.P., Rongong, J.A.: Extending the functionality of a symbolic com-
putational dynamics solver by using a novel term-tracking method. Proc. Inst. Mech. Eng. Part
C J. Mech. Eng. Sci. (2017) https://doi.org/10.1177/0954406217737104

https://doi.org/10.1177/0954406217737104


Chapter 9
Theorem and Observation About
the Nature of Perpetual Points
in Conservative Mechanical Systems

Fotios Georgiades

Abstract Perpetual points have been defined recently and they have been associated
with hidden attractors. The significance of these points for the dynamics of a system
is ongoing research. Herein, a theorem is presented, describing the nature of the
perpetual points in linear natural conservative mechanical systems and as it is shown
they are defining the rigid body motions and vice versa. Subsequently, the perpetual
points of two conservative nonlinear mechanical systems are determined. The first
one is a two degrees of freedom nonlinear natural mechanical system and, as it is
shown there are two sets of perpetual points which are associated with the rigid body
motions. The other system is a non-natural conservative system, a flexible spinning
shaft with non-constant rotating speed and, as it is shown, there are also three sets of
perpetual points, and all of them are associated with the rigid body motions. In all
examined nonlinear systems, the same observation made, that the perpetual points
are associated with the rigid body motions, but formal proofs with the associated
conditions as future work should be considered to generalise this observation. This
work is essential to understand the nature of perpetual points in mechanical systems
and opens new horizons for new operational modes and new design processes, tar-
geting the ultimate operational modes of many mechanical systems which are the
rigid body motions without having any vibrations.

Keywords Perpetual points · Rigid-body motion · Theorem for perpetual points

9.1 Introduction

In [1], the notion of perpetual points (PPs) is defined, as special points for the dynam-
ics of a system, by setting accelerations and jerks as zero (like fixed points), restricted
to cases of non-zero set of velocities. Initially, in [1] it was suggested, that the PPs can
be used as indicators for dissipative dynamical systems, but in [2] with counterex-
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amples it was showed that this is not the case. In [3], the experimental investigation
of the PPs in a pendulum has been done. The general trend nowadays is to develop
methods for identification of hidden attractors in dynamical systems, and the defini-
tion of the PPs is one of them [4]. The significance of the PPs in the dynamic analysis
of systems is still under investigation [1–4].

In this work, a theorem about the nature of PPs in linear natural mechanical
systems is presented and then the PPs in two nonlinear mechanical systems are
determined. The first nonlinear system is a two degree of freedom (DOF) system of
coupled oscillators with linear and nonlinear springs. The second nonlinear system
is a conservative non-natural mechanical system, by means of a mechanical system
with gyroscopic effects. It is a flexible spinning shaft with non-constant rotating
speed. Finally, in the numerical section, the theoretical findings for both nonlinear
mechanical systems are validated by examining the responses.

9.2 Theorem About Perpetual Points in Linear Mechanical
Systems

On this section, a theorem about PPs in linear conservative natural mechanical sys-
tems is presented. In linear mechanical systems, in case that the stiffness matrix is
positive semidefinite, then there is a rigid body mode with mode shape the rigid
body motions (not unique) which correspond to a nondeformable configuration of
the flexible parts [5]. Therefore, in rigid body motions, all the moving parts have the
same values of positions and velocities.

Theorem The perpetual points in linear conservative natural mechanical systems
are defined by the rigid body motions and the inverse.

Direct proof;
The equations of motion of a linear conservative natural mechanical system are

given by [5],

[Mns]{ẍ} + [K ]{x} = 0, (9.1)

whereas, in general the stiffness matrix (K ) it can be positive semi-definite and the
mass matrix (Mns) for natural systems it can be only positive definite [5], therefore,

[Mns]{ẍ} = 0 ⇔ {ẍ} = 0. (9.2)

In PPs from Eqs. (9.1) and (9.2) arise,

[K ]{x} = 0, (9.3)

which is true in case of a semi-definite stiffness matrix.
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The equations of jerks arise by differentiation of Eq. (9.1) and they are given by,

[Mns]{...x } + [K ]{ẋ} = 0. (9.4)

Similarly, since the mass matrix is positive definite then,

[Mns]{...x } = 0 ⇔ {...x } = 0, (9.5)

Therefore, in PPs,

[K ]{ẋ} = 0, (9.6)

with non-zero solutions in velocities only in the case of positive semi-definite stiffness
matrix that is associated with the rigid body motions. Therefore, the three conditions
in defining PPs; (i) zero accelerations, (ii) zero jerks, (iii) nonzero set of velocities,
are leading to rigid body motions.

Inverse proof;
Starting from Eq. (9.1) and considering that in the case of rigid body motions the

2nd term is eliminated (due to Eq. 9.3) and this leads to Eq. (9.2). Then, considering
Eq. (9.4) and, taking into account that in rigid bodymotions the 2nd term is eliminated
(due to Eq. 9.6), and this leads to Eq. (9.5). Therefore, the rigid body motions define
PPs.

Example 1 A two DOF linear system is considered. The configuration is shown in
Fig. 9.1a (as an example a car connected with a trailer through a flexible connector)
with masses m1, m2, stiffness of coupling spring k and, equations of motion and
jerks, given by,

m1 ẍ1 = −k(x1 − x2) ⇔ m1
...
x 1 = −k(ẋ1 − ẋ2), (9.7a-b)

Fig. 9.1 Configurations of
linear natural conservative
mechanical systems:
a Example 1, b Example 2

(a)

(b)
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m2 ẍ2 = −k(x2 − x1) ⇔ m2
...
x 2 = −k(ẋ2 − ẋ1), (9.7c-d)

which is clear that the PPs are x1,p = x2,p and ẋ1,p = ẋ2,p (all over the article the
index p indicates the PPs) and, corresponds to the rigid body motions.

Example 2 A second two DOF linear system is considered. The configuration is
shown in Fig. 9.1b, with masses M1, M2, stiffnesses of coupling springs ka, kb and,
the equations of motion and jerks are given by,

M1 ÿ1 = −ka y1 − kb(y1 − y2) = 0 ⇔ M1
...
y 1 = −ka ẏ1 − kb(ẏ1 − ẏ2), (9.8a-b)

M2 ÿ2 = −kb(y2 − y1) ⇔ M2
...
y 2 = −kb(ẏ2 − ẏ1), (9.8c-d)

which, lead to positions y1,p = y2,p = 0 and velocities ẏ1,p = ẏ2,p = 0. In this
example, there are no PPs since all velocities are zero, and, there are no rigid body
motions too.

Therefore, the PPs are existing even in very simple conservative mechanical
dynamical systems such as linear oscillators and, they are associated with mani-
folds, that are not necessarily hidden attractors, such as the rigid body motion.

9.3 Case Study About Perpetual Points of a Nonlinear
Natural Mechanical System

In this section, a conservative natural nonlinear mechanical system of 2 DOF is
considered. The two masses

(
mx ,my

)
are coupled together with a linear (k1) and a

nonlinear spring (k2) as shown in Fig. 9.2. As an example, it could be a car connected
with a trailer through a flexible connector that exhibits stiffness nonlinearities. The
equations of motion are given by,

mx ẍ = −k1(x − y) − k2(x − y)3 = −(x − y)
(
k1 + k2(x − y)2

)
, (9.9a)

my ÿ = k1(x − y) + k2(x − y)3 = (x − y)
(
k1 + k2(x − y)2

)
. (9.9b)

The associated equations of the jerks are given by,

Fig. 9.2 Configuration of
the nonlinear natural
mechanical system
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mx
...
x = −(ẋ − ẏ)

(
k1 + 3k2(x − y)2

)
, (9.9c)

my
...
y = (ẋ − ẏ)

(
k1 + 3k2(x − y)2

)
. (9.9d)

The PPs on this system can be determined, by setting the accelerations and the
jerks equal to zero, which leads to

(1) xp = yp and for ẋ p = ẏp �= 0,
(2) xp = √−k1/k2 + yp (only in case that k2 < 0, by means of softening nonlinear

effects) and for ẋ p = ẏp �= 0.

Both sets are valid for any values of position and nonzero velocities. The 1st PP
is clearly associated with the rigid body motions of the system. Although, it is not
obvious also the 2nd PP is associated with rigid body motion, since the two masses
aremoving togetherwith a constant distance and this is becomingmore obvious in the
numerical section of this article. An additional observation based on the condition of
the existence of the second PP is a qualitative difference of softening and hardening
nonlinear effects.

9.4 Case Study About Perpetual Points of a Nonlinear
Non-natural Conservative Mechanical System

In this section, a non-natural conservative mechanical system is considered, a spin-
ning shaft with non-constant rotating speed.

In [6], the modal equations of a spinning shaft with non-constant rotating speed
(neglecting any non-conservative loads) have been derived. The configuration is
shown in Fig. 9.3, whereas the generalized coordinates; rigid body angular posi-
tion (θ ), rigid body angular velocity (θ̇), the modal displacements (qv , qw in lateral
bending and qϕ in torsion) of the considered system, including their associated defor-
mations (v,w, ϕ), are indicated. The equations of motion are given by,

0

Fig. 9.3 Configuration and generalized coordinates of the spinning shaft



96 F. Georgiades

⎡

⎢⎢
⎣

Mθ qw −qv −2F
qw (1 − M) 0 0
−qv 0 (1 − M) 0
−F 0 0 1

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

θ̈

q̈v

q̈w

q̈ϕ

⎫
⎪⎪⎬

⎪⎪⎭

= [Mtot ]

⎧
⎪⎪⎨

⎪⎪⎩

θ̈

q̈v

q̈w

q̈ϕ

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

−2θ̇ q̇vqv − 2θ̇ q̇wqw − 4θ̇ q̇ϕqϕ[
θ̇2 − ω2

b(1 − M)
]
qv − 2θ̇ q̇w[

θ̇2 − ω2
b(1 − M)

]
qw + 2θ̇ q̇v(

θ̇2 − ω2
T

)
qϕ

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

h1
h2
h3
h4

⎫
⎪⎪⎬

⎪⎪⎭
, (9.10)

with Mθ = 2I L + q2
v + q2

w + 2q2
ϕ . Also, M = − I1π2

mL2 , F = 2
π

√
2I1L , I1 =

πρ
(

D4
o−D4

i
64

)
, m = πρ

(
D2

o−D2
i

4

)
, with Do and Di the external and internal diame-

ters, ρ the density of the shaft and also E , G are the Young’s and shear modulus

respectively. Also, ωb =
√

π4E I
L2π2 I1+L4m and, ωT = π

2L

√
GI
I1

[6].

The mode shapes are given by [6],

yk(x) =
√

2

mL
sin

(
kπ

L
x

)
, (9.11a)

Yk(x) =
√

2

I1L
sin

(
(2k − 1)π

2L
x

)
. (9.11b)

The deformations are given by [6],

v(x, t) = y1(x)qv(t), (9.12a)

w(x, t) = y1(x)qw(t), (9.12b)

ϕ(x, t) = Y1(x)qϕ(t), (9.12c)

whereas the first two correspond to lateral bending motions and the last one in
torsion (Fig. 9.3).

The equations of jerks can be derived with differentiation of (Eq. 9.10),

[
Ṁtot

]

⎧
⎪⎪⎨

⎪⎪⎩

θ̈

q̈v

q̈w

q̈ϕ

⎫
⎪⎪⎬

⎪⎪⎭
+ [Mtot ]

⎧
⎪⎪⎨

⎪⎪⎩

...
θ...
q v...
qw...
q ϕ

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

ḣ1
ḣ2
ḣ3
ḣ4

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

G1

G2

G3

G4

⎫
⎪⎪⎬

⎪⎪⎭

⇔

⎧
⎪⎪⎨

⎪⎪⎩

...
θ p...
q v,p...
qw,p...
q ϕ,p

⎫
⎪⎪⎬

⎪⎪⎭
= [Mtot,p]−1

⎧
⎪⎪⎨

⎪⎪⎩

G1,p

G2,p

G3,p

G4,p

⎫
⎪⎪⎬

⎪⎪⎭
= [Mtot,p]−1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2θ̇pq̇2v,p − 2θ̇pq̇2w,p − 4θ̇pq̇2ϕ,p[
θ̇2p − ω2

b(1 − M)
]
q̇v,p[

θ̇2p − ω2
b(1 − M)

]
q̇w,p(

θ̇2p − ω2
T

)
q̇ϕ,p

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(9.13)
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whereas, the right hand-side has beenderived considering that inPPs the accelerations
are zero (to avoid confusion the index p is used in all associated components). The
inverse of the mass matrix ([Mtot ]−1), always exist and as it is shown in [7], it is
given by,

[Mtot ]−1

= 1

δ

⎡

⎢
⎢⎢
⎣

(1 − M) −qw qv 2(1 − M)F

−qw Mθ − q2v
(1−M)

− 2F2 − qvqw

(1−M)
−2Fqw

qv − qvqw

(1−M)
Mθ − q2w

(1−M)
− 2F2 2Fqv

F(1 − M) −Fqw Fqv (1 − M)Mθ − q2v − q2w

⎤

⎥
⎥⎥
⎦

,

(9.14)

with,

δ = 2(1 − M)
(
I1L − F2

) − Mq2
v − Mq2

w + 2(1 − M)q2
φ > 0, (9.15)

as shown in [7].
To find the PPs, the equations of the jerks (Eq. 9.13) are set to zero and lead to

the following algebraic system:

(1 − M)G1,p − qw,pG2,p + qv,pG3,p + 2(1 − M)FG4,p = 0, (9.16a)

− qw,pG1,p +
(

2
(
I1L − F2

) − Mq2
v,p

(1 − M)
+ q2

w,p + 2q2
φ,p

)

G2,p

−
(
qv,pqw,p

(1 − M)

)
G3,p − 2Fqw,pG4,p = 0, (9.16b)

qv,pG1,p −
(
qv,pqw,p

(1 − M1)

)
G2,p +

(

2
(
I1L − F2

) − Mq2
w,p

(1 − M)
+ q2

v,p + 2q2
φ,p

)

G3,p

+ 2Fqv,pG4,p = 0, (9.16c)

F(1 − M)G1,p − Fqw,pG2,p + Fqv,pG3,p

+ (
2(1 − M)I1L − Mq2

v,p − Mq2
w,p + 2(1 − M)q2

φ,p

)
G4,p = 0. (9.16d)

The multiplication of Eq. (9.16a) with F and using it in Eq. (9.16d), it emerges
that,

{
2(1 − M)

(
I1L − F2

) − Mq2
v,p − Mq2

w,p + 2(1 − M)q2
φ,p

}
G4,p

= 0 ⇔ δG4,p = 0, (9.17)

and using Eqs. (9.13) and (9.15) this is true when,

θ̇2
p = ω2

T or, q̇φ,p = 0. (9.18a-b)
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Then, using Eq. (9.17) in Eq. (9.16a) arise that,

G1,p = qw,p

(1 − M)
G2,p − qv,p

(1 − M)
G3,p, (9.19)

which can be used in Eq. (9.16b) and after some manipulations lead to,

(

2
(
I1L − F2

) − Mq2
v,p

(1 − M)
− Mq2

w,p

(1 − M)
+ 2q2

φ,p

)

G2,p = 0 ⇔ δ

(1 − M)
G2,p = 0,

(9.20)

and using Eqs. (9.13) and (9.15), this is true (Eq. 9.20) when,

θ̇2
p = ω2

b(1 − M) or , q̇v,p = 0. (9.21a-b)

Similarly, using Eq. (9.19) in Eq. (9.16c) and after some manipulations one gets,

(

2
(
I1L − F2) − Mq2

w,p

(1 − M)
− Mq2

v,p

(1 − M)
+ 2q2

φ,p

)

G3,p = 0 ⇔ δ

(1 − M)
G3,p = 0,

(9.22)

considering Eqs. (9.13), (9.15) in Eq. (9.22) lead to,

θ̇2
p = ω2

b(1 − M) or , q̇w,p = 0. (9.23a-b)

Setting the accelerations (Eq. 9.12) equal to zero, the following systemof algebraic
equations is arising:

(1 − M)h1 − qwh2 + qvh3 + 2(1 − M)Fh4 = 0, (9.24a)

− qwh1 +
(
2
(
I1L − F2

) − Mq2
v

(1 − M)
+ q2

w + 2q2
φ

)
h2

−
(

qvqw

(1 − M)

)
h3 − 2Fqwh4 = 0, (9.24b)

qvh1 −
(

qvqw

(1 − M1)

)
h2 +

(
2
(
I1L − F2

) − Mq2
w

(1 − M)
+ q2

v + 2q2
φ

)
h3

+ 2Fqvh4 = 0, (9.24c)

F(1 − M)h1 − Fqwh2 + Fqvh3

+ (
2(1 − M)I1L − Mq2

v − Mq2
w + 2(1 − M)q2

φ

)
h4 = 0. (9.24d)



9 Theorem and Observation About the Nature of Perpetual … 99

Multiplication of Eq. (9.24a) with F and replacement in Eq. (9.24d) lead to,

{
2(1 − M)

(
I1L − F2

) − Mq2
v − Mq2

w + 2(1 − M)q2
φ

}
h4 = 0 ⇔ δh4 = 0,

(9.25)

after considering Eqs. (9.10), (9.13) then (Eq. 9.25) is true when,

θ̇2
p = ω2

T or, qϕ,p = 0, (9.26a-b)

then using Eq. (9.25) in Eq. (9.24a), emerges that,

h1 = qw

(1 − M)
h2 − qv

(1 − M)
h3, (9.27)

then using Eq. (9.27) in Eq. (9.24b) and after some manipulations arise that,

(
2
(
I1L − F2

) − Mq2
v

(1 − M)
− Mq2

w

(1 − M)
+ 2q2

φ

)
h2 = 0 ⇔ δ

(1 − M)
h2 = 0,

(9.28)

whereas considering Eqs. (9.10), (9.13) and (9.23) lead to,

θ̇2
p = ω2

b(1 − M)with q̇w,p = 0 or qv,p = 0 with θ̇2
p �= ω2

b(1 − M). (9.29a-d)

Then using Eq. (9.27) in Eq. (9.24c) and after some manipulations, emerges that,

(
2
(
I1L − F2

) − Mq2
w

(1 − M)
− Mq2

v

(1 − M)
+ 2q2

φ

)
h3 = 0 ⇔ δ

(1 − M)
h3 = 0,

(9.30)

and considering Eqs. (9.10), (9.13) and (9.21) lead to,

θ̇2
p = ω2

b(1 − M) with q̇v,p = 0 or qw,p = 0 with θ̇2
p �= ω2

b(1 − M). (9.31a-d)

Considering Eqs. (9.28) and (9.30) in Eq. (9.27), lead to,

h1 = 0 ⇔ −2θ̇ q̇vqv − 2θ̇ q̇wqw − 4θ̇ q̇ϕqϕ = 0, (9.32)

which is always true, since all the modal velocities should be zero.
Also, whereas θ̇2

p = ω2
T and considering Eq. (9.19) with Eqs. (9.21b) and (9.23b)

it arises that,

G1,p = 0 ⇔ q̇φ,p = 0. (9.33)
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Summarizing the results of Eqs. (9.18a-b, 9.21a-b, 9.23a-b, 9.26a-b, 9.29a-d, 9.31a-d,
9.33) lead to the following three sets of PPs:

(1) qv,p,1 = qw,p,1 = qϕ,p,1 = q̇v,p,1 = q̇w,p,1 = q̇ϕ,p,1 = 0 and,
(
θp,1, θ̇p,1

) ∈ S1 × R, (9.34a)

(2) qϕ,p,2 = q̇v,p,2 = q̇w,p,2 = q̇ϕ,p,2 = 0, θ̇p,2 = ±ωb

√
1 − M and,

(
θp,2, qv,p,2, qw,p,2

) ∈ S1 × R
2, (9.34b)

(3) qv,p,3 = qw,p,3 = q̇v,p,3 = q̇w,p,3 = q̇ϕ,p,3 = 0, θ̇p,3 = ±ωT and,
(
θp,3, qϕ,p,3

) ∈ S1 × R. (9.34c)

The only non-zero velocities are the rigid body angular velocities and, although it
is not obvious, all the PPs are associated with the rigid body rotation of the shaft and
this is evident with the plots in the numerical section. In [7], the rigid bodymotions of
the shaft are determined, and they coincide with those defining the PPs in Eq. (9.34).

9.5 Numerical Results for Natural Mechanical System

On this section, a natural mechanical system is considered and using direct numerical
integration of the set (Eq. 9.8a-b) the responses are determined. In this section, the
following mass values mx = my = 1 kg and stiffness values k1 = 1000 N/m,
k2 = −500 N/m in (Eq. 9.8a-b) are used. Two sets of initial conditions (ICs) have
being considered; (a) xp = yp = 1 m, ẋ p = ẏp = 1 m/s which belongs to the 1st
set of PPs and (b) yp = 1 m, ẋ p = ẏp = 1 m/s, xp = √−k1/k2 + yp = 2.4142 m
which belongs to the 2nd set of PPs. The choice of the ICs can be done arbitrarily
since as it is shown they lead to rigid body motions and, in this particular case
considering a car with a trailer they have sensible values (the defined parameters
corresponds, to masses of the vehicles and, stiffnesses of the connections scaled by
1/1000 which can be done due to the form of the Eqs. 9.8a-b). Figure 9.4 depicts
the responses arising from the 1st set of initial conditions and it is obvious that the
two masses are moving together in a rigid body motion. Figure 9.5 is depicting the
displacements using the 2nd set of initial conditions. Initially, the two masses are
moving together with constant distance but after around the 5th second, the solution
jumps (it seems that it is an unstable PP) to another non-periodic motion. After the
5th second, it seems that the two responses are comprised by the same periodic term
in antiphase combined with the same linearly increasing amplitude, as indicated by
the displacements depicted in Fig. 9.5a. Based on Figs. 9.4 and 9.5, both PPs on this
system are associated with the rigid body motions.
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Fig. 9.4 Responses of the natural mechanical system associated with ICs belonging in 1st set of
PPs
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Fig. 9.5 Responses of the natural mechanical system associated with ICs belonging in 2nd set of
PPs; a displacements, b velocities

9.6 Numerical Results for Non-natural Mechanical System

On this section, using direct numerical integration of Eq. (9.10) the responses of
the non-natural mechanical system (spinning shaft) are determined. A 1-m length
steel shaft with external and internal radii, ro = 0.03 m ri = 0.028 m, respectively,
is considered. The material properties of the shaft are; density ρ = 7850 kg/m3,
Poisson’s ratio ν = 0.3, Young’s and shear modulus, E = 200 GPa and G =
76.9 GPa, respectively.
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Fig. 9.6 Responses of the
non-natural mechanical
system, with ICs belonging
in 1st set of PPs
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Using the provided formulae, the rest parameters are; M = −0.0042,
ωb

√
1 − M = 1022.165 rad/s and, ωT = 4916.411 rad/s.

The following three sets of ICs (one for each set of PP) are considered:

(1)
(
θp,1, qv,p,1, qw,p,1, qϕ,p,1, θ̇p,1, q̇v,p,1, q̇w,p,1, q̇ϕ,p,1

)=
(0, 0, 0, 0, 1500, 0, 0, 0),

(2)
(
θp,2, qv,p,2, qw,p,2, qϕ,p,2, θ̇p,2, q̇v,p,2, q̇w,p,2, q̇ϕ,p,2

)=
(0, 15, 20, 0, 1022.165, 0, 0, 0),

(3)
(
θp,3, qv,p,3, qw,p,3, qϕ,p,3, θ̇p,3, q̇v,p,3, q̇w,p,3, q̇ϕ,p,3

)=
(0, 0, 0, 10, 4916.411, 0, 0, 0).

Rearranging (Eq. 9.12) and using (Eq. 9.11) then the units for the modal displace-
ments in lateral bending (qv, qw) are in m

√
kg, for the modal displacement in torsion

(qϕ) is in radm
√
kg, and also the units for rigid body angular position and velocity

are in rad and rad/s respectively. Considering the proof in [7] that these sets of ICs
correspond to rigid body motions, the initial conditions have been chosen arbitrarily
large to have close values to 2π and also to become evident the difference with the
zero values of the other displacements on the plots.

In Fig. 9.6 the responses associated with the 1st set of ICs are depicted which
is obvious that the shaft is just spinning without any deformation. In Fig. 9.7 the
responses associated with the 2nd set of ICs are depicted, and it is evident that the
shaft is just spinning with nonzero but constant lateral bending deformation.

Figure 9.8 depicts the responses associated with the 3rd set of ICs, and the shaft
is spinning with nonzero but constant torsional deformation in a rigid body motion.
Therefore, all the sets of PPs of the spinning shaft are associated with the rigid body
motions.
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Fig. 9.7 Responses of the
non-natural mechanical
system with ICs belonging in
2nd set of PPs

2π

Fig. 9.8 Responses of the
non-natural mechanical
system with ICs belonging in
3rd set of PPs

2π

9.7 Conclusions

In this article, the nature of perpetual points in several types of conservative mechan-
ical systems is examined. A theorem about the nature of the perpetual points in linear
natural mechanical systems is given, by means that the PPs are defined only by rigid
body motions, and that the rigid body motions are defined by the PPs. Also, two
cases of nonlinear mechanical systems; (a) a natural system and (b) a non-natural
system, are examined, and in both systems, the same observation made, that the per-
petual points are defined by the rigid body motions. This work gives insight into the
nature of perpetual points in mechanical systems. The fact that the perpetual points
are defined by the rigid body motions accompanied with the provided relevant for-
malism of PPs, open horizon for a newmechanical design for specific configurations
of mechanical systems that lead to stable attracting perpetual points (the stability
analysis of PPs has been developed in [1]), which eliminate vibrational motions that
might be caused by perturbations. This is the ultimate operational mode for many
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mechanical systems. Further work should be done in all these directions and, also,
in deriving formal proofs (with the associated conditions) that the perpetual points
are defined by the rigid body motions for more general cases e.g. non-natural linear,
nonlinear etc. mechanical systems.
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Chapter 10
Energy Flow Considerations in Nonlinear
Systems on the Basis of Interesting
Experiments with Three Paradigmatic
Physical Systems in Engineering

Ioannis T. Georgiou

Abstract Nonlinear dynamical systems host types of central dynamics-phenomena
whose phase space dynamic structure allows potentially the appearance of motions
underlined by irreversible energy flow among the physical system components or the
perpendicular projections of the vector dynamics. Motions exhibiting irreversible
energy flow are a very important feature, and their potential existence could be
addressed by either a mathematical model or a physical one, both endowed with
coexisting central phenomena to form the dynamics environment for irreversible
energy flow. Here we present experimental evidence that indeed irreversible energy
flow-motions are observed in physical laboratory nonlinear systems possessing by
design either coexisting static equilibria or coexisting chaotic and regular attrac-
tors. The observation of irreversible energy flow-motions in physical paradigmatic
systems forms a basis for targeted-and-effective nonlinear modification of flexible
elastic continua for vibration isolation and energy harvesting by inserting nonlinear-
ities to create irreversible energy flow. From the scientific point of view, advanced
considerations of nonlinear systems at the levels of energy or power flow is funda-
mental and potentially paves, as the present work indicates, an avenue for systematic
exploitations of nonlinearities in mechanical-structural-electrical engineering appli-
cations.
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10.1 Introduction

Smart exploitation of well-understood bifurcation-chaos phenomena in nonlinear
dynamical systems [1, 2] can lead to innovations in broad scope engineering in
reference to barriers-limitations inherent in linear and weakly nonlinear systems.
For example, coexisting regular and chaotic attractors can be turned from harmful
features into beneficial ones as manipulators of energy flow. Vibration isolation,
noise reduction, energy harvesting, and sensing-actuation are some dynamical pro-
cesses that can potentially be enhanced by introducing nonlinearities in a system
or extending its operation in the intrinsic nonlinear regime. The simplest way, yet
very fundamental in paving ways for a systematic study, to create exploitable non-
linear phenomena in linear or weakly nonlinear continuum mechanical structures
is to augment a mother flexible structure properly by attaching bi-stable mechani-
cal oscillators [3] and in general by attaching a multi-stable flexible continuum [4,
5]. Desirable nonlinear phenomena, for exploitation, are motions characterized by
irreversibly energy transfer, in the time averaged sense [6]. For the motion to be
exploitable, the energy flow feature should take place between the separate-and-
interacting components of the system, or between the perpendicular resultants of the
system coupled vector dynamics. The coexistence of multiple attractors can form
topology features in phase space that allow paths supporting motions with irre-
versibility features in energy or power flow. In general, the creation of coexisting
nonlinear central phenomena can be traced systematically by using the geometric
concepts of global Slow and local transversal Fast Invariant Manifold (SIM, FIM).
Being static equilibria for the local fast dynamics, the global SIM potentially under-
goes many qualitative changes-since it admits, as a nonlinear geometric object, tan-
gent bifurcations at folding points, leading to the creation of motion-paths taking the
system from one steady state (attractor) to another one with irreversible energy flow
dynamics [5, 6]. Coexisting multiple attractors means the coexistence of many low-
dimensional stable-and-unstable invariant manifolds [1, 2]. Perhaps for the first time,
an interesting energy irreversible-nonlinear phenomenon—was observed in numer-
ical and experimental studies in a coupled structural-mechanical system composed
of a cantilevered flexible beam modified with a planar pendulum [3], a classical bi-
stable nonlinear oscillator. In this system, a forced motion where the beam vibrates
at large amplitude and the pendulum at small amplitude transforms naturally into
a motion where the beam vibrates at smaller amplitude whereas the pendulum set-
tles into a vibration of considerably larger amplitude. Clearly, energy had flown
irreversibly from the flexible beam subsystem to the nonlinear pendulum one. This
phenomenon was formed because of the coexistence of multiple attractors in a bi-
stable continuum-rigid system. This observation has attracted the attention of several
researchers in nonlinearmechanics-dynamics as they have considered the basic prob-
lem which is the dynamic modification of a linear oscillator with a nonlinear one [7].
Herein presented is a physical model-based experimental study with subject three
paradigmatic systems which are flexible continua modified dynamically to introduce
nonlinear phenomena that disrupt the uniformity of the phase space flow structure of
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the uncoupled continuum system. The creation of hills, valleys and whirls dynamics
structures in the phase space potentially creates a critical dynamics environment for
the creation of motions characterized by irreversible energy transverse. In particular,
we explore whether a phase space flow topology, as formed by the presence of coex-
isting equilibria either pure static or steady state dynamic, allows the appearance of
motions with irreversible energy flow between two coupled subsystems. The work
is organized as follows: Sect. 3 presents a flexible continuum with multiple static
equilibria introduced by boundary conditions. Section 4 presents a cantilevered beam
modified by a highly degenerate oscillator, the eccentric rotor. And Sect. 5 presents a
cantilevered flexible beam interacting over a finite area with a basic electromagnetic
system. All systems are viewed as dynamic nonlinear modifications of a core flexi-
ble structure. The core structure is used as a reference in a physical-model approach
study of the coupled system into which the core system is modified.

10.2 The Physical Model-Based Methodology and the POD
Transform

The present study involves laboratory physical models. Thus, it is a pure experimen-
tal data-driven analysis. Distributed experimental acceleration data are turned into
modal like features to enable analysis. Given a reliable vibration measuring system,
well-designed physical models provide an efficient way to initially discover and then
exploit nonlinear phenomena. On a basis of well-understood phenomena in bi-stable
mechanical structural systems, the physical models studied here possess by design
the necessary constituents to introduce coexisting phenomena as the means to create
motions with desirable energy flow properties, such as irreversibility in the average
sense. These are the coexisting equilibria and coexisting chaotic and regular attrac-
tors. The existence of multiple attractors disrupts semantically the flow structure of
a dynamical system since some of them have unstable invariant manifolds contained
in a bounded region of the phase space.

Regarding the availability of physical databases, we are using a state-of-the-art
vibration measurement system to sample in high resolution the motions of flexible
structures in space and time. The sensors are embedded in the system and thus we
acquire natural, in local coordinates, measurements of the acceleration field. The
acquired data sets are analyzed with advanced proper orthogonal decomposition
(POD) tools to form a basis for analytics. The reader can consult reference [8]
dealing with the POD transform of geometry consistent experimental measurements
of acceleration in beam like structures viewed as Cosserat continua [9] to model
geometrically exactly the coupled vector dynamics. The POD modal structure of
the sampled motions is used as a basis to detect and quantify irreversible energy
flow phenomena. Specifically, to compute the rate of irreversible energy flow, the
dominant POD modal amplitude is transformed into RMS-per-cycle information,
revealing how POD modal vibration decays as a function of sequential time frames,
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their duration being equal to a natural period of oscillation. It turns out that a motion-
induced irreversible energy flow has a completely differed RMS-per-cycle character
than that of a naturally, irreversibly dissipated mechanical energy in the limit of
weakly nonlinear continuum dynamics.

10.3 Dynamic Modification of a Continuum by Boundary
Constraints

Figure 10.1 depicts a high strength steel beam constrained in such a way at its bound-
aries to effectively-and-naturally introduce multiple static equilibria, coexisting at
specific values of the control parameter (distance of pin bearing locations). This
basic technique of structural modification disrupts greatly the topology of the phase
space flow of the reference structure, defined as the one possessing a single static
equilibrium. The pinned-pinned boundary constraint controls the number of multi-
ple static equilibria. Specifically, although three static equilibria are visible, many
more could coexist, depending on the magnitude of compression imposed the axial
boundary displacement constraint [10]. Because the system possesses many equi-
librium states, it is easy to store strain energy in bending mode by applying slowly
transverse forces or bending moments about the pin axes. This is an exploitable fea-
ture for vibration isolation and energy harvesting [11]. We hope that the modified
phase space structure is allowing the appearance of motions with irreversible energy
transfer from bending into axial stretching and lateral bending with shearing, thus
exploiting in full the three-dimensional flexibility of the structure. Motivated by con-
siderations and results in works [4, 5], the present multi-stable beam structure as
well as the scope of the present study are quite different from the classical studies of
the buckled beam-column under the action of a dead load [12]. The present study,
thanks to the physical model approach, reveals how strong the coupling among three-
dimensional dynamics is: In-plane bending, axial stretching accompanied by torsion
and out-of-plane bending accompanied by shearing are nonlinearly coupled and thus
quite interesting phenomena may take place.

The presence of multiple stable-and-unstable equilibrium states along with the
pinned-pinned boundary conditions forms physics mechanisms allowing naturally
the occurrence of transverse displacements of considerable magnitude by applying
slowly transverse forces or moments about the pin bearing axes. The important fact is
that both the transverse forces and the bendingmoments are of smallmagnitudes. This
means that themulti-stable continuumcan be used to store strain energy statically and
dynamically in the bendingmode of motion. This cannot happen to the same extent if
the beam has a single static equilibrium. In view of the above fact, we concentrate our
study in understanding the coupled dynamics initiated by static or dynamic initial
bending. We performed a series of systematic experiments to investigate whether
the interaction of near homoclinic motions with the multiple static equilibria causes
vibrations with interesting properties, such as fast mechanical energy dissipation.



10 Energy Flow Considerations in Nonlinear Systems on the Basis … 109

Fig. 10.1 A lab set-up of a thin beam constrained at the boundaries by pin bearing supports to
introduce-and-control coexisting multiple equilibrium states. An array of sixteen sensors samples
the transverse acceleration field in local coordinates for a POD-basedmodal analysis of the dynamics

Thesemotions are created bydisplacing slowly one of the static equilibria to approach
at nearly zero velocity the unstable equilibrium [11]. Figure 10.2 reveals that such an
excited freemotion possesses remarkable features: (1) It processes a quite broad POD
energy spectrum in comparison to that of a beamwith a single equilibrium; and (2) is
decomposed into intrinsic slow and fast PODmodal vibration patterns characterized
by ultra-fast decay. The term intrinsic points to the stationary geometric features
formed by the database when viewed as a geometric object, data cloud, sitting in the
linear hyperspace of measurements [8].

Themulti-stable continuum is very flexible in almost all possiblemodes ofmotion
and thus we wonder whether the ultra-fast decay of bending vibration, Fig. 10.2,
stems from interactions-in a multi-stable environment-of bending with axial stretch-
ing and lateral bending accompanied, among others. Figure 10.3 presents a measure-
ment of the acceleration tri-axial orthogonal components at the middle point of the
beam. We see that the coupled vibrations are of the same order and that besides the
slow vibration present are fast vibrations in all orthogonal components of the motion.
It is clear that a certain physicsmechanism triggers irreversible energy flow fromslow
bending vibration to coupled slow and fast vibrations in axial stretching and lateral
bending. This interaction triggers irreversible flow of mechanical energy, initially
stored mainly as bending strain energy in low frequencies, into higher frequencies
of bending; and low and high frequencies motions in the axial and lateral direc-
tions. The irreversible energy flow from the slow invariant manifold (SIM) to slow
and fast coupled vibrations manifests itself as an ultra-fast decay of the transverse
acceleration component as well as in the two coupled orthogonal components [11],
as Fig. 10.3 reveals. In the presence of multiple static equilibria, strong interactions
among the components of the coupled transverse-axial-lateral vibrations are possible
mainly due to the fact that the axial stretching interacts with the hills and valleys
of the elastic strain potential. In creating near homoclinic motions, the strain energy
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Fig. 10.2 POD-basedmodal analysis of a near homoclinicmotion.ThebroadPODenergy spectrum
(top) characteristic of irreversible energy flow. Slow dominant (middle) and secondary fast (bottom)
POD modal amplitudes with fast decay, quite different from natural free vibration decay

is initially stored in a shape that belongs to the space of slow bending motions. We
conjecture that the irreversibility of energy flow occurs because the SIM undergoes
transverse bifurcations and thus potential heteroclinic and homoclinic connections
lurk. Because of the presence of coupled three-dimensional motions, the SIM of the
multi-stable continuum is a quite complicated dynamics structure embedded in a
high-dimensional space. Thus the near heteroclinic slow motions interact with slow
and fast multi-dimensional coupled dynamics. This has been seen in a coupled sys-
tem composed of a pendulum coupled to a stiff elastic rod [13]. The irreversible
spread of mechanical energy from slow vibrations to fast ones should speed up its
natural dissipation by internal frictional forces, thus possibly explaining the observed
ultra-fast decay of vibrations.
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Fig. 10.3 Experimental time series of the acceleration orthogonal components in local coordinate
system (in volts) of the middle point of the constrained beam, Fig. 10.1, during a near homoclinic
motion

10.4 Dynamic Modification of a Flexible Cantilevered
Beam with an Eccentric Rotor System

Figure 10.4 depicts a lab mechanical system composed of a high strength steel beam
with attached at its free end an eccentric rotor. This coupled structural-mechanical
system is endowed with a coexisting continuum of neutral equilibrium states, intro-
duced naturally by the interacting eccentric rotor. We have conducted several experi-
ments aimed at detectingmotions transferring irreversibly-in the average sense-strain
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Fig. 10.4 A lab set-up of a flexible beam-eccentric rotor system as a paradigm of a coupled dynam-
ical system with a continuum of coexisting equilibrium static states of neutral character. The phase
space flow of the flexible beam is disturbed semantically with a whirl dynamics structure introduced
by the eccentric rotor

energy from the flexible cantilevered beam to the freely rotating eccentric rotor.
Specifically, the steel beam is released abruptly-with nearly zero velocity-from an
initial displacement reached by applying slowly a transverse force, thus controlling
the amount of strain energy stored initially in the flexible beam. The following phe-
nomenon is observed: while the beam is vibrating in bending, the initially at rest rotor
starts rotating to burst into a spinmotion.As the rotor is accelerating, the beammotion
decays fast. Eventually, the rotor comes into a rest state while the beam continues
vibrating at its fundamental natural bending frequency. The motions are sensitive
to the initial conditions: the rotor reaches different rest positions when started form
different initial conditions.

An array of eight sensors was installed (Fig. 10.4) to acquire high resolution
samples of the bending motion of the beam as it is exchanging energy with the
eccentric rotor. The dynamics of the coupled beam-rotor system are dominated by a
single PODmode whose shape remains the same as the bending deflection increases,
see Fig. 10.5. The eccentric rotor drains continuously in timemechanical energy from
the elastic beam because it is under the action of an inertia-induced torque due to the
acceleration differential between the eccentric mass and the rotor center. Possessing
a continuum of neutral static equilibria, the rotor absorbs very effectively work done
from this no alternating torque. This mechanism, which is clearly nonlinear, allows
the rotor to drain continuously energy from the oscillating beam. We find that the
rotor motion is quite sensitive to the initial conditions, a clear sign that heteroclinic
or homoclinic connections have been introduced by the interacting eccentric rotor.
For completeness, we mention that we have noticed a phenomenon where the beam
drains irreversibly energy, in an average sense, from the moving rotor since the latter
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Fig. 10.5 The shape of the dominant POD mode of the beam-rotor system, Fig. 10.4, in free
vibrations. The rotor motion does not affect the shape of the dominant POD mode. A reduced
dynamical system is present. The accompanying time modulation of the dominant POD mode is
used to analyze the experimental dynamics

gives rise to an internal force with frequency close to the resonance frequency of
the beam + mass of rotor system. This is the well-known phenomenon of passage
through resonance. This amount of energy is very small compared to that flows
irreversibly form the flexible beam to the eccentric rotor.

10.4.1 Experimental Evidence of Energy Flow: Computation
and Quantification

The rate of mechanical energy flow from the flexible beam into the rigid eccentric
rotor can be estimated accurately when comparing the dominant POD modal ampli-
tude of a motion with the rotor unlocked to that of a similar motion with the rotor
locked. For both cases, nearly the same amount of strain energy was stored in the
cantilevered steel beam. Figure 10.6 (bottom) presents the beam bending dynamic
(dominant POD mode) when its energy flows irreversibly into the eccentric rotor
dynamics: The beam oscillation undergoes a forced-like decay being quite differ-
ent from that occurring naturally in the beam when the rotor subsystem is locked,
Fig. 10.6 (top). The natural decay, being irreversible energy flow into heating, is due
to the internal material friction. We quantify the rate of irreversible energy flow from
the flexible beam into the rotor by computing the RMS-per-cycle quantity contained
in the dominant POD modal amplitude. This energy like quantity is computed by
dividing the observed time interval into a sequence of time intervals, each equal in
length to the natural fundamental period of the beam-locked rotor structure. It turns
out that the RMS-per-cycle quantity of a motion with the rotor locked is an expo-
nential function of the sequence of natural time frames, revealing the fact that the
frictional internal force is proportional to the velocity. Figure 10.7 (top) shows quali-
tatively the rate bywhich the stored energy atmacro-scales is transformed irreversibly
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Fig. 10.6 Waveform of dominant experimental POD modal amplitude of bending motion of the
beam-rotor coupled system, Fig. 10.4. Evolution of motion (top) with natural dissipation (rotor
locked) of beam strain energy (top). Evolution of motion (bottom) with irreversible energy flow
from the flexible beam into rotational kinetic energy flow of the rigid eccentric rotor

into heat, being the random micro motion of the molecule-level microstructure of
the steel material. Figure 10.7 (bottom) reveals that this picture changes dramatically
when energy flows irreversibly from the flexible beam into the rotor.Clearly, natural
irreversible energy flow would not materialize if the rotor were counteracted by a
restoring moment, a fact impossible here due to the coexisting continuum of neutral
static equilibria. Figure 10.7 (bottom) reveals that the rate of flow of strain energy
to the eccentric rotor is fast linear compared to the slow exponential one, when the
rotor is locked, see Fig. 10.7(top). Figure 10.8 presents a measurement of the local
tangential acceleration component of the acceleration of the eccentric mass. It pos-
sesses a large nonzero mean value indicating the fact the kinetic energy of the rotor
increases as the beam vibration decays linear fact. This verifies independently the
fact that mechanical energy flows irreversibly from the flexible continuum to the
eccentric rotor.
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Fig. 10.7 RMS-based quantification of irreversible energy flow from the flexible beam. Natural
slow dissipation (top) of strain energy due to internal frictional forces. Increased energy dissipation
(bottom) due to motion-induced irreversible flow of energy from the flexible beam into the eccentric
rotor (bottom)

Fig. 10.8 Experimental time series, recorded by wireless MEMES sensor, of the tangential com-
ponent of the acceleration of the eccentric mass of the rotor. After time point 30,000 the rotor has
reached equilibrium for rotation. The RMS-per-cycle is nearly constant, a fact meaning that the
rotor has given away all its rotational kinetic energy
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10.5 Coupled Flexible Structural-Electromagnetic System:
Multi-physics Complex and Extreme Dynamics

Figure 10.9 depicts a lab set-up of a representative coupled structural-electromagnetic
system for an important class of multi-physics nonlinear systems encounter in aero
and marine engineering applications. Motivated by the results of theoretical work
[14] and the results of the mechanical systems studied above, we conducted a series
of systematic experiments aimed at discovering the possibility that this system is the
host of extreme nonlinear dynamics phenomena with potential irreversible energy
flow. To this end, when forced harmonically by a voltage source, this coupled system
exhibits coexisting multiple chaotic-and-regular attractors with a wide magnitude
spectrum [15].

Figure 10.9 shows the transition of the flexible beam from a large amplitude steady
state motion to a coexisting one of very low amplitude. At these particular values of
the system parameters, we have detected at least five coexisting regular and chaotic
attractors [15]. The coexisting chaotic and regular attractors stem from the distortion
and disintegration of the SIM (slow invariant manifold) [14]. Over a relatively small
region of the phase space, the SIM is computed analytically as a function of the
slow variables. The analytic approximations to the SIM do not converge exactly at

Fig. 10.9 Lab set-up of a prototypical structural-electromagnetic system at the NTUA nonlinear
dynamics lab (left photo). Experimental time series of a transition of the vibrating flexible beam
from a large amplitude attractor to a coexisting one of smaller amplitude (computer screen graph)
for voltage excitation frequency at 12.80 Hz and magnet-to-mass gap = 36.6 mm
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the phase space point where the manifold stops being described by a single-valued
function. At this critical point, the SIMmanifold admits folding and potential tangent
bifurcations lurk to create out of the blue coexisting actuators with homoclinic and
heteroclinic connections. In a series of recently published papers, the complexity of
the dynamics is studied with Poincare sections, and the continuation methods [16].
Indeed, pictures of very complex chaotic-regular dynamics have been computed
indicating that this complicated system, coupled multi-physics with infinite degrees-
of-freedom, is an interesting physical system paradigm to search for phenomenawith
irreversible energy flow. It is reasonable to conjecture that the coexistence ofmultiple
chaotic attractors-of wide spectrum of magnitude-potentially allows the existence of
motions that drain energy from the electromagnetic system to the structural system
and vice versa. We have seen this clearly in the dynamics of the cantilevered flexible
beam modified at its free end by an eccentric rotor.

The author wishes to add here the fact that the present work, centered on the notion
of irreversible energy flow in nonlinear dynamics systems, has its roots-motivation in
a past experimental-theoreticalwork [17] that he conducted at PurdueUniversity over
a period of four years (1987–1991), and where he designed an experimental method
to measure the temperature rise in thermoplastic composite materials subjected to
cyclic fatigue load. It these experiments chaotic stress-strain curves were detected
in unidirectional coupons fixed at an immovable grip and subjected to unidirectional
periodic forcing. Furthermore, it was found that the temperatures rise, measure of
irreversible energy flow from macro-micro-motion into fast molecular motion, was
a highly nonlinear phenomenon since the systematic experiments revealed that the
measured temperature rise is a cubic function of the stress or strain squared for
all orientations of the carbon fibres embedded in a thermoplastic polymeric resin.
We have irreversible transformation of mechanical energy input at the continuum
mechanics lever (slow time scale) into heat, a measure of the kinetic energy of the
random fast motions of the molecules. We contrast this natural irreversible energy
flow from macro-scales to molecule scales with the spirit and results of the present
study, where we have detected in coupled mechanical-structural systems irreversible
flow of energy from natural slow time scales to natural fast time scales and then
the natural transformation of the scattered mechanical energy in many natural time
scales into heat.

10.6 Conclusions

We have studied to some extent the experimental dynamics of three paradigmatic,
physical nonlinear systems in an effort to learn how nonlinear phenomena can be
exploited in designing engineering systems with desired features, such as the fast
decay of unwanted vibrations, for example. The nonlinear phenomenon that we wish
to understand and exploit is motions with irreversible energy flow among the com-
ponents of a coupled multi-body system or among the components of the vector
dynamics of a flexible one-dimensional continuum. The three systems studied here
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are nonlinear modifications of core systems in order to introduce coexisting nonlin-
ear phenomena which in turn modify the phase space flow with hills, valleys and
whirls as critical structures to support the formation of heteroclinic and homoclinic
connections, among other motion types. It seems that the coexistence of multiple
static equilibrium states or that of multiple chaotic-and-regular attractors create a
dynamic environment where the creation of motion paths with irreversible energy is
possible. In a future work, the above paradigmatic physical systems shall be explored
systematically in a unified nonlinear dynamics approach to isolate and understand
the type of motions that support irreversible energy flow. The studied systems are
infinite-dimensional and derivation of optimum reduced order models, via a POD-
based method of a high fidelity mathematical model, shall be very useful to map
in parameter space sets of coexisting attractors. Poincare sections and continuation
methods can be used to compute holistic bifurcation and attractor diagrams in param-
eter space. Indeed, a very elementary reduced order model for the multi-physics
paradigmatic system reveals very complicated attractor and bifurcation diagrams.
The irreversible energy flow characteristic of nonlinear systems is a very important
feature and should be studied appropriately for realistic exploitation of nonlinearities
and the fact that this adds to the production of entropy in general. From the scientific
point of view, research considerations of nonlinear systems at the levels of energy-
and-power flow is fundamental and as such shall pave the way for the exploitation
of nonlinearities in engineering for energy harvesting and transmission of informa-
tion. The multi-physics system draws our attention for further systematic study of its
coupled structural-thermal-electromagnetic dynamics via a programmatic research
program with emphasis on the detection of irreversible energy flow.
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Chapter 11
Energy Harvesting in a Duffing Oscillator
with Modulated Delay Amplitude

Zakaria Ghouli, Mustapha Hamdi and Mohamed Belhaq

Abstract We study periodic and quasi-periodic (QP) vibration-based energy har-
vesting (EH) in a delayed Duffing harvester device in which a piezoelectric com-
ponent is considered. It is supposed that the delay feedback is inherently present in
the system and it is modulated with a certain frequency around a mean value. We
focus attention on the case of delay parametric resonance for which the frequency
of the modulation is near twice the natural frequency of the oscillator. The method
of multiple scales is applied to approximate the amplitude of periodic vibrations
and the corresponding power output of the harvester device. The amplitude of the
QP response and the corresponding power output are determined using numerical
integration. Results show that for fixed values of amplitude and frequency of themod-
ulated delay amplitude and small values of the unmodulated delay amplitude, only
periodic vibrations can be exploited to extract energy. For large values of unmodu-
lated delay amplitude, periodic solutionmay turn to unstable in certain ranges of time
delay and only QP vibrations can be used to extract energy with good performance.

Keywords Energy harvesting · Delayed duffing oscillator · Quasi-periodic
vibrations · Piezoelectric coupling.

11.1 Introduction

Amonostable piezoelectric nonlinear EH device has been widely studied in the liter-
ature [1–4]. It is well known that, for appropriate choice of the nonlinearity, damping,
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and excitation amplitude, such a harvester may exhibit a relatively broadband fre-
quency interval around the resonance in which the amplitude of the response and
voltage can be exploited to extract energy. However, bistability and jump phenom-
ena may occur in the system. This problem induced by the non linearity can pose a
serious limitation of the harvester performance. Such a limitation can be overcome
using QP vibrations away from the resonance.

A recent investigation showed that introducing a modulated delay amplitude in
a van der Pol oscillator, QP vibrations having large amplitude performing in large
range of parametersmay occur away from the resonance [5]. Taking advantage of this
result, it was reported [6] that in a delayed van der Pol oscillator withmodulated delay
amplitude coupled to an electromagnetic energy harvester, such QP vibrations can
be exploited to scavenge energy in broadband of parameters. In [6] the time delay is
introduced in the mechanical subsystem. The case where the time delay is introduced
in bothmechanical component and electrical circuit was studied in [7].More recently,
QP vibration-based EH in a delayed nonlinear MEMS device consisting of a delayed
Mathieu-van der Pol-Duffing oscillator coupled to a delayed piezoelectric coupling
mechanism was investigated [8]. It was shown that QP vibrations can be exploited
to extract energy with good performance compared to periodic vibrations.

The time delay has also been used in a Duffing-type monostable harvester device
subject to a harmonic excitation and coupled to a piezoelectric circuit [9]. The
obtained QP vibrations have been exploited for improving EH performance in the
case where the time delay is unmodulated. It was shown that for appropriate values of
delay parameters, QP vibration-based EH may be exploited to scavenge energy over
a large interval of frequencies far from the resonance with good efficiency. As result,
bistability and jump phenomena occurring near the nonlinear frequency response
can be circumvented when considering QP vibrations.

Motivated by such a performance of time delay in improving EH, the purpose of
the present work is to study the EH performance in the case of a delayed Duffing
harvester device with modulated delay amplitude and coupled to an electric circuit
through a piezoelectricmechanism. This study can be useful in certain applications in
which time delay is inherently present in the mechanical attachment of the harvester.
In this case, the time delay is not considered as an additional power input introduced
into the system.

The difference between the current work and the one given in [9] is that in [9]
the Duffing harvester is subject to a periodic external forcing and the time delay is
unmodulated, while in the present study the external excitation is absent and the time
delay is modulated around a mean value with certain amplitude and frequency.

The rest of the paper is structured as follows. Section11.2 describes the piezo-
electric EH system. Using the multiple scales method and numerical simulations,
periodic and QP responses and the corresponding powers are derived. In Sect. 11.3
the effect of parameters of the system on the EH performance is examined. The last
section concludes the work.
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11.2 The Harvester and Perturbation Analysis

The system we consider consists of a delayed Duffing equation as the mechanical
subsystem and a piezoelectric device as the electrical component. We study the case
forwhich the delay is time-dependant and is introduced in the position. The schematic
of the system is presented in Fig. 11.1.

The governing equation for the system can be written in the dimensionless form
as

ẍ(t) + δ ẋ(t) + x(t) + γ x(t)3 − χv(t) = αx(t − τ), (11.1)

v̇(t) + βv(t) + κ ẋ(t) = 0, (11.2)

where x(t) is the relative displacement of the rigid massm, v(t) is the voltage across
the load resistance, δ is the mechanical damping ratio, γ is the stiffness parameter, χ
is the piezoelectric coupling term in the mechanical attachment, κ is the piezoelectric
coupling term in the electrical circuit, β is the reciprocal of the time constant of the
electrical circuit, α and τ are, respectively, the delay amplitude and time delay. As
pointed out before, it is emphasized that the delay may not be considered as an power
input into the system. For instance, in cutting operations, the delay phenomenon is
imposed by the system itself [10–12]. In this case, the delay can be considered as
proportional to the external forcing supplied to the harvester by a host structure such
as a milling machine.

We assume that the delay amplitude α is modulated around a mean value such
that

α = α1 + α2 cos(ωt), (11.3)

where α1 is the unmodulated delay amplitude and α2, ω are, respectively, the ampli-
tude and the frequency of the modulation. Note that the case of forced and unmod-
ulated time delay (α2 = 0) was studied in [9]. From mechanical point of view, the
modulation of the time delay present in milling and cutting operations can be gener-
ated for instances in machining a mechanical tool with modulated surface in which
a rolling motion of a special cam is involved.

Fig. 11.1 Schematic
description of the EH system
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We investigate the response of the system near the delay parametric resonance by
introducing the resonance condition 1 = ω2

4 + σ where σ is a detuning parameter.
Introducing a bookkeeping parameter ε, scaling parameters as δ = εδ̃, γ = εγ̃ , χ =
εχ̃, α1 = εα̃1, α2 = α̃2, σ = εσ̃ , and applying the method of multiple scales [13],
Eqs. (11.1) and (11.2) take the form

ẍ(t) + ω2

4
x = ε[−δ̃ ẋ(t) − γ̃ x(t)3 + χ̃v(t) − σ̃ x(t) + (α̃1 + α̃2 cos(ωt))x(t − τ)],

(11.4)
v̇(t) + βv(t) + κ ẋ(t) = 0. (11.5)

A solution to Eqs. (11.4) and (11.5) can be sought in the form

x(t) = x0(T0, T1) + εx1(T0, T1) + O(ε2), (11.6)

v(t) = v0(T0, T1) + εv1(T0, T1) + O(ε2), (11.7)

where T0 = t , and T1 = εt . In terms of the variables Ti , the time derivatives become
d
dt = D0 + εD1 + O(ε2) and d2

dt2 = D2
0 + ε2D2

1 + 2εD0D1 + O(ε2) where D j
i =

∂ j

∂ j Ti
. Substituting (11.6) and (11.7) into (11.4) and (11.5) and equating coefficient of

like powers of ε, one obtains:

D2
0x0 +

ω2

4
x0 = 0, (11.8)

D0v0 + βv0 + κD0x0 = 0, (11.9)

D2
0x1 +

ω2

4
x1 = −2D0D1x0 − δ̃D0x0 − σ̃ x0 − γ̃ x30 + χ̃v0 + (α̃1 + α̃2 cos(ωt))x0τ ,

(11.10)
D0v1 + βv1 = −D1v0 − κD0x1 − κD1x0. (11.11)

Up to the first order the solution is given by

x0(T0, T1) = A(T1)e
i ωT0

2 + Ā(T1)e
−i ωT0

2 , (11.12)

v0(T0, T1) = −κiωA(T1)

2β + iω
ei

ωT0
2 + κiω Ā(T1)

2β − iω
e−i ωT0

2 , (11.13)

where A(T1) and Ā(T1) are unknown functions. Substitution of Eqs. (11.12) and
(11.13) into (11.10) and (11.11) and removing the secular terms lead to

− iω(D1A) − i δ̃Aω

2
− σ̃ A − 3γ̃ A2 Ā − κiωχ̃ A

2β + iω
+ α̃1Ae

− iωτ
2 + α̃2

2
Āe

iωτ
2 = 0.

(11.14)
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Expressing A = 1
2ae

iθ where a and θ are the amplitude and the phase, we obtain up
to the first order the modulation equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

da

dt
= S1a + S2a cos(2θ) + S3a sin(2θ),

a
dθ

dt
= S4a + S5a

3 + S3a cos(2θ) − S2a sin(2θ),

(11.15)

where S1 = −δ
2 − 2χκβ

4β2+ω2 − α1
ω
sin ωτ

2 , S2 = α2
2ω sin ωτ

2 , S3 = − α2
2ω cos ωτ

2 , S4 = σ
ω
+

χκω

4β2+ω2 − α1
ω
cos ωτ

2 and S5 = 3γ
4ω . The solution to the first order given by (11.12) and

(11.13) can be written as x0(T0, T1) = a cos(ωt
2 + θ) and v0(T0, T1) = V cos(ωt

2 +
θ + arctan 2β

ω
) where the voltage amplitude V is given by

V = κω
√
4β2 + ω2

a. (11.16)

The steady-state response of system (11.15), corresponding to periodic oscillations
of Eqs. (11.4) and (11.5), are determined by setting da

dt = dθ
dt = 0. Eliminating the

phase, we obtain the following sixth-order algebraic equation in a

(S1a)2 + (S4a + S5a
3)2 = (S22 + S23 )a

2. (11.17)

An expression for the average power is obtained by integrating the dimensionless
form of the instantaneous power P(t) = βv(t)2 over the period of the delay modu-
lation T . This is given by

Pav = 1

T

∫ T

0
βv2dt , (11.18)

where T = 4π
ω
. Then, the average power expressed by Pav = βV 2

2 reads

Pav = 1

2
(

βκ2ω2

4β2 + ω2
)a2, (11.19)

where the amplitude a is obtained from Eq. (11.17). Using the maximization proce-
dure, one obtains the maximum power response as

Pmax = (
βκ2ω2

4β2 + ω2
)a2. (11.20)

Hereafter, we fix the parameters as δ = 0.1, γ = 0.25, κ = 0.5, β = 0.05 and χ =
0.05. The time delay is fixed as τ = 2.7, except in the stability chart reported below.
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11.3 Main Results

Next, the influence of different parameters of the system on vibration and power
amplitudes is examined. Equation (11.17) is used for periodic solutions and
Eq. (11.20) is exploited to calculate the power response. The amplitude of the QP
response and the corresponding power extracted from QP vibrations are obtained
numerically by using dde23 algorithm [14].

In Fig. 11.2 is shown the variation of the amplitudes of periodic and QP responses
(Fig. 11.2a) as well as the maximum power output amplitudes (Fig. 11.2b) versus
the unmodulated delay amplitude α1 and α2 = 0.2. The analytical prediction (solid
lines for stable and dashed line for unstable) of periodic solutions are compared to
numerical simulation (circles) obtained by using dde23 algorithm [14]. The QP
modulation envelope (circles connected by vertical line) is obtained numerically
[14]. The boxes inset in the figures show time histories of the amplitudes (Fig. 11.2a)
and the power responses (Fig. 11.2b) in the periodic and QP regions.

It can be seen fromFig. 11.2b that for negative values ofα1, energy canbe extracted
from QP vibration with better performance comparing to the periodic power output.

Figure11.3 shows the variation of the amplitude of the responses (Fig. 11.3a) and
the powers (Fig. 11.3b) versus the modulated delay amplitude α2 for α1 = −0.9. It
can be observed that periodic and QP vibration-based EH can be extracted over large
band of the modulation delay amplitude α2. It is worth noting that the ratio

α2
α1

plays
a crucial role rather than the individual quantities themselves. For instance, from
Figs. 11.2 and 11.3, it is seen that the QP response can be observed when this ratio
is approximately greater than − 1

2 .
Figures11.4 and 11.5 show, respectively, the variation of the amplitude of the

responses (Figs. 11.4a, 11.5a) as well as the powers (Figs. 11.4b, 11.5b) versus the
frequency ω for α1 = −0.1 (Fig. 11.4) and α1 = −0.9 (Fig. 11.5). Figure11.4 shows
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that for α1 = −0.1, power can be generated only from periodic oscillations. For
α1 = −0.9, energy can be harvested from both periodic and QP vibrations. In the
periodic regime a small range of frequencies can be exploited (solid line in the power
response, Fig. 11.5b), while in the QP one a broadband of frequencies away from the
resonance can be used to extract energy, as depicted inset in Fig. 11.5b.
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Finally, to ensure the stability of vibrations during operation, the stability chart
is determined in the parameter plane (α1, τ ). This can be obtained by consider-
ing the Jacobian matrix J of the slow flow (11.15). The curves delimiting the
regions of stability of solutions are given by the conditions (Tr(J) = 2S1 < 0 and
Det (J) = 4a2S4S5 + 4a4S25 > 0). The grey regions of stable limit cycle (LC) are
depicted in Fig. 11.6a. The stable QP (SQP) and unstable QP (UQP) responses are
also shown in this chart. In Fig. 11.6b–i are shown time histories and power responses
corresponding to crosses 1, 2, 3 and 4 in Fig. 11.6a. From cross 3 to 2 the system
response changes behavior in a secondary Hopf bifurcation from LC to SQP oscil-
lations with slight amplitude modulation offering a better performance of the power
output. It can be observed that when the negative unmodulated delay amplitude
increases, the power output performance is improved, as clearly shown in Fig. 11.6b,
c corresponding to cross labelled 1 in Fig. 11.6a.

It is interesting to point out that modulating the delay amplitude α around a
negative value of α1 gives a stable behavior in the range 0 < τ < π and modulating
it around a positive value of α1 gives a stable behavior in the range π < τ < 2π .
This result is illustrated in the stability chart (Fig. 11.6a).

11.4 Conclusions

In this paper we have studied periodic and QP vibration-based EH in a delayed
Duffing oscillator coupled to an electric circuit through a piezoelectric mechanism
in the case where the delay amplitude is modulated. It is supposed that the delay
in the harvester is induced by the system itself and should not be considered as
an additional power input. Application of the method of multiple scales enables
the approximation of the amplitude of the periodic vibration and the corresponding
power output. The QP response and the corresponding power output were obtained
by numerical simulation. These periodic and QP vibrations are used to extract the
corresponding power from the harvester device. It was shown that the modulation of
the delay amplitude gives rise to large-amplitudeQPvibrationwhich can be exploited
to extract energy with good performance away from the resonance. Depending on
the modulated delay amplitude, energy can be harvested from periodic vibrations
in a small interval of the frequency near the resonance or from QP vibrations over
broadband of frequencies away from the resonance. Also, the results indicated that
the power output performance can be enhanced substantially by increasing negative
values of the unmodulated delay amplitude. From engineering application point of
view, the modulation of the time delay can be used in milling and cutting opera-
tions for machining mechanical tools with a modulated surface considering a rolling
motion of a special cam.
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Chapter 12
Rotary Speed Modulation to Improve
the Stability of Steady Drilling

Sunit K. Gupta and Pankaj Wahi

Abstract In this work, we investigate the effect of periodic modulations in the
rotary speed of the top table on the drill-string dynamics of rotary drilling. The
analysis is presented for the lumped-parameter model corresponding to the axial-
trosionalmodes. The regenerative effect due to the axial vibration is included through
the functional description of the cut surface instead of a traditional state-dependent
delay model. This further results in the coupled ODE-PDEmodel with time periodic
coefficients, defining the axial-trosional dynamics with modulating rotary speed.
The rotary speed modulation causes the emergence of number of possible solutions
for steady-drilling states. In particular, the case wherein the steady depth of cut
remains constant even with periodically varying steady twist of the drill-string has
been considered in the current work. We observe the significant improvement in
the stability of the system as the modulation frequency reaches towards the natural
frequency corresponding to trosional mode.

Keywords Rotary drilling · Axial-torsional model · Stability ·
Rotary speed modulation

12.1 Introduction

One of the popular methods in the exploration of oil and natural gas is the rotary
deep drilling. Rotary deep drilling systems consist of a rotary table at the top to
transmit the rotary power required for drilling through a series of drill-pipes, also
known as drill-string, to the bottom hole assembly (BHA) which further carries the
drill-bit to cut the rock formation [2]. Drill-string is also used for the transmission of
the drilling-fluid which acts as the lubricant for the drill-bit. Thus, drill-string plays
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an important role in the drilling operation and any failure of drill-string causes the
shut down of the entire drilling operation and economic loss to drilling industry. One
of the major causes of the drill-string failure is the self-exciteyeard axial, torsional
and lateral vibrations and the coupling between them. These self-excited vibrations
further manifest to bit-bounce, stick-slip and whirling motions in axial, torsional and
lateral directions, respectively. These manifested form of the self-excited vibrations
are detrimental to the system and eventually lead to the failure of drill-string. Hence,
it is necessary to understand the behavior of drill-string under different operating
conditions to improve the performance of drilling. In the current work, we present
one of the methods to enhance the stability of the system by modulating the rotary
speed around a mean value.

There are different methods available in the literature proposed by the researchers
to control or suppress these self-excited vibrations. These methods can be broadly
classified into three categories: (1) proper analysis of drilling apparatus at the design
stage itself along with the optimum choice of operating parameters [4, 9]; (2) passive
control of drill-string vibrations through the use of shock absorbers (shock subs) [6,
21]; and (3) the use of active controllers [3, 22].

Further, in machining processes, modulation in rotary speed is also considered as
one of the effective methods to control/suppress excessive machine tool vibrations
(chatter) [10, 19]. However, the incorporation of modulating rotary speed with the
regenerative effect in machining processes leads to variable delay differential equa-
tion (VDDE). It is noted that the stability analysis of the VDDE model is not as
straightforward as that of the constant DDE models. Several studies have been done
for the stability analysis of these VDDE using different methods [11, 15, 17, 18].
With the same motivation, Alzibdeh [1] implemented the rotary speed modulation
in the torsional-lateral vibration of the drill-string and observed the effectiveness of
modulation in the attenuation of the vibration.

We implement themodulation in the rotary speed of the top table in axial-torsional
model of rotary drilling with the regenerative effect. However, traditional model to
include regenerative effect in drilling leads to implicit state-dependent delay differ-
ential equation (SDDDE) and we have observed that SDDDE model to be rather
cumbersome for this purpose. Instead we have modified the recently proposed alter-
nate approach to model the axial-torsional dynamics of rotary drilling [8] to include
rotary speed modulation. We start with a brief description of a mathematical model
for rotary drilling with speed modulation.

12.2 Mathematical Model

We first start with the mathematical description of the rotary drilling process with the
speed modulation. Rotary drilling typically involves two user-controlled operating
parameters viz. top table rotary speed, �0, and the effective weight on bit (WOB),
W0. In the current work, wewill allow the possibility of havingmodulations in theW0

which will be synchronous with the rotary speed modulations. Drill-string vibrations
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Fig. 12.1 Schematics of a axial and b torsional dynamics of drill-string

have been studied extensively using continuum models, lumped parameter models
and finite element models [5, 13, 14] but to avoid complexity and focusing on the
formulation we are considering the lumped parameter model [8]. For the sake of
completeness and convenience of readability, we briefly outline the mathematical
model of rotary drilling [8] which is being used in the current work. The schamatics
of axial and torsional modes of drill-string are shown in Fig. 12.1. In the axial
direction, the drill-string is modeled as a spring-mass-damper system with spring
stiffness (Ka), viscous damping coefficient (Ca) and the combined mass (M) of the
drill-pipes and the bottom hole assembly (BHA) lumped at the end (Fig. 12.1a). For
torsional oscillations, the drill-string is modeled as a system with torsional spring
stiffness (Kt ), torsional viscous damping coefficient (Ct ) and the combined rotary
inertia of the drill-pipes and the BHA (J ) about the rotational axis (Fig. 12.1b).

Equations of motion for this system in the axial and torsional directions are [8]

MÜ (t) + CaU̇ (t) + Ka (U (t) − V0t) = W0 − ξεad(t)H(�̇)H(d(t)) , (12.1a)

J �̈(t) + Ct�̇(t) + Kt (�(t) − �0t) = −εa2d(t)/2H(�̇)H(d(t)) . (12.1b)

where H(.) represents the Heaviside step function. The other quantities are: ξ is the
cutter inclination coefficient, ε is the rock specific strength, a is the radius of the
drill-bit, d(t) is the instantaneous depth of cut per revolution [16]. Note that under
variable �0 and W0, the rate of progression V0 will be also time-varying and hence,
the above equations of motion will be modified to
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MÜ (t) + CaU̇ (t) + Ka

(
U (t) −

∫ t

0
V0

(
t̃
)
dt̃

)
= W0(t) − ξεad(t)H(�̇)H(d(t)) ,

(12.2a)

J �̈(t) + Ct�̇(t) + Kt

(
�(t) −

∫ t

0
�0

(
t̃
)
dt̃

)
= −εa2d(t)/2H(�̇)H(d(t)) .

(12.2b)
As a result of the rotary speed modulation, the change of variables from U (t)

and �(t) to x(t) and θ(t), in a frame of reference translating with the feed veloc-

ity V0(t) and rotating with an angular velocity �0(t) will be U (t) =
∫ t

0
V0

(
t̃
)
dt̃ +

x(t), �(t) =
∫ t

0
�0

(
t̃
)
dt̃ + θ(t) . Therefore the equations of motion, i.e.,

Eq. (12.2) in the new variables are

Mẍ(t) + Ca (ẋ(t) + V0(t)) + Kax(t) = W0(t) − ξεad(t) , (12.3a)

J θ̈ (t) + Ct
(
θ̇ (t) + �0(t)

) + Ktθ(t) = −εa2d(t)/2 . (12.3b)

Note that, we have replaced H(�0 + θ̇ ) = 1 and H(d(t)) = 1 in Eq. (12.3) as the
main emphasis of the study is to obtain steady states and their stability and hence,
free from any self-interruption. Equation (12.3) represents the lumped parameter
axial-torsional model of rotary drilling with modulating rotary table speed for the
continuous cutting condition. We next present the necessary modifications in the
alternate model for the depth of cut [8] during rotary speed modulation (Fig. 12.2).

For an alternate model for the depth of cut, we represent the cut surface by a
function L(φ, t) with φ ∈ (0, 2π/n]. It should be noted here that the domain of
φ, i.e., (0, 2π/n] is measured in a reference frame rotating with the drill-bit, i.e.,
�0(t) + θ̇ (t). If L(0, t) and L(2π/n, t) represent the points on the cut surface at the
two adjacent cutter locations, then the depth of cut per cutter is

Fig. 12.2 Schematic of the
section between two
successive cutters

V0

Ω0

U(t)

U(t − tn)

dn(t)Φ(t − tn)Φ(t)
φ = 0
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dn(t) = L

(
2π

n
, t

)
− L(0, t), (12.4)

which is related to depth of cut per revolution, d(t), by d(t) = ndn(t). Following [8]
we get the evolution of L to be governed by the partial differential equation (PDE)

∂L

∂t
+

(
�0(t) + dθ

dt

)
∂L

∂φ
= 0 . (12.5)

Equation (12.5) is a first order nonlinear partial differential equation (PDE) with a
time-dependent parametric forcing and to solve it we need an initial and boundary
condition. The initial condition for this PDE can arbitrarily be set to L(φ, 0) = 0
(an initial flat surface). Since we are interested in operating conditions where the bit
is always in contact with the cut surface, i.e., the engaged position, the boundary
condition, L(0, t) will be specified by the axial location of the cutter. In the presence
of axial vibrations of the drill string, the actual position of the cutter and consequently
L(0, t) is

L(0, t) = L(0, 0) −
∫ t

0
V0

(
t̃
)
dt̃ − x(t) = −

∫ t

0
V0

(
t̃
)
dt̃ − x(t) (by L(0, 0) = 0).

(12.6)
Accordingly, the instantaneous depth of cut can be written as

dn(t) = L

(
2π

n
, t

)
+

∫ t

0
V0

(
t̃
)
dt̃ + x(t). (12.7)

The first order PDE given by Eq. (12.5) with Eq. (12.6) acting as the boundary
condition governs the evolution of the cut surface for arbitrary t and φ ∈ (0, 2π/n].
For ease of further algebra, we introduce the function L̄ ([8, 20]) as

L̄(φ, t) = L(φ, t) +
∫ t

0
V0

(
t̃
)
dt̃ .

Accordingly, the PDE governing the evolution of cut surface and the boundary con-
dition get modified to

∂ L̄

∂t
+

(
�0(t) + dθ

dt

)
∂ L̄

∂φ
− V0(t) = 0 , (12.8)

B.C. L̄(0, τ ) = −x(t) . (12.9)

With this function, the instantaneous depth of cut dn(t) from Eq. (12.7) becomes

dn(t) = L̄

(
2π

n
, t

)
+ x(t) . (12.10)



136 S. K Gupta and P. Wahi

Equations (12.3), (12.8)–(12.10) represent the complete mathematical model for
rotary drilling with modulating rotary speed and WOB during cutting, free from any
kind of self-interruption. We now utilize the equations of motion for rotary drilling
with modulations in the WOB and angular velocity of the top table to study the
effect of rotary speed variation on the steady drilling states and use this information
to non-dimensionlize the equations of motion.

12.3 Steady States

In this section, we will discuss the various possible steady drilling states and non-
dimensionlize our equations after shifting about the practically relevant steady state.
For the current work we have used the modulation in the form of

�0(t) = �0s [1 + m cos (ωmt)] , (12.11)

with �0s as the mean rotary speed, m as the percentage amplitude modulation and
ωm as the frequency of the modulation. We will further consider a synchronous
modulation in the effective WOB (the other operating parameter) of the form

W0(t) = W0s + W1 sin (ωmt) + W2 cos (ωmt) . (12.12)

Note that we have not assumed any particular values of W1 and W2 and hence, have
allowed for a phase difference between the rotary speed modulation and the mod-
ulation in the WOB. Under these operating conditions, we assume that the various
relevant quantities defining the steady drilling state are also synchronous with the
variations in the rotary speed and can be defined as

d(t) = ds + d1 sin (ωmt) + d2 cos (ωmt) , x(t) = xs + x1 sin (ωmt) + x2 cos (ωmt)

θ(t) = θs + θ1 sin (ωmt) + θ2 cos (ωmt) , V0(t) = V0s + V1 sin (ωmt) + V2 cos (ωmt) ,

L̄(φ, t) = L̄0s(φ) + L̄1(φ) sin (ωmt) + L̄2(φ) cos (ωmt) . (12.13)

In the above mentioned variables, the subscript s represents the mean component of
the steady state values. Substituting these variables in Eqs. (12.3),(12.8)–(12.10) and
using harmonic balance, we will get 15 equations which can be used to obtain the 15
unknowns involved in Eq. (12.13) in terms of the quantities involved in Eqs. (12.11)
and (12.12). We will have multiple possible steady drilling states which arises from
the fact that while modulating the rotary speed, we can either choose to modulate
the WOB or not. For the same rotary speed modulation, different synchronous mod-
ulations of the WOB could lead to different steady drilling states. In the current
work, we have considered the steady drilling state which does not accompany any
axial vibrations and has a steady depth of cut per revolution. This steady state is
of practical relevance as axial vibrations during drilling operation are not desirable.
Accordingly, the various quantities of interest can be written
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d(t) = ds, x(t) = 0, L̄(φ, t) = L̄s(φ),

θ(t) = θs + θ1 sin (ωmt) + θ2 cos (ωmt) = θ̃s(t) ,

V0(t) = V0s + V1 sin (ωmt) + V2 cos (ωmt) = Vs(t) . (12.14)

The equations governing the axial and torsionalmotion of the drill-string and the PDE
governing the cut surface along with its boundary condition for this steady state are

MV̇s(t) + CaVs(t) = W0(t) − ξaεds , (12.15a)

J
(
�̇0(t) + ¨̃

θs(t)
)

+ Ct

(
�0(t) + ˙̃

θs(t)
)

+ Kt θ̃s(t) = −εa2ds/2 . (12.15b)

(
�0(t) + ˙̃

θs(t)
) ∂ L̄s

∂φ
− Vs(t) = 0 , L̄s(0, t) = −x(t) = 0 . (12.15c)

Substituting �0(t), W0(t), θs(t) and Vs(t) in Eq. (12.18) solving for the unknowns
using harmonic balance, we get

V0s = W0s + ξεads
Ca

, θs = −εa2ds − Ct�0s

2Kt
, L̄s = dsφ

2π
,

θ1 = − Ct
2ωm m�0s

Ct
2ωm2 + Kt

2 − 2 Kt Jωm2 + J2ωm4
, θ2 =

(
−Kt + Jωm

2
)
Ct m�0s

Ct
2ωm2 + Kt

2 − 2 Kt Jωm2 + J2ωm4
,

V1 = − dsθ2ωm

2π
, V2 = ds

2π
(θ1ωm + m�0s ) , W1 = V1Ca ,W2 = V2Ca . (12.16)

Having obtained the steady state solution, we can study its stability by linearizing
our system of equations around this solution along with the non-dimensionlization
to reduce the effective number of parameters.

12.4 Linearization and Nondimensionlization

Having obtained all the quantities corresponding to the steady drilling state, we
provide small perturbations to the various states viz. x(t), θ(t), d(t) and L(φ, t) as

x(t) = ηx , θ(t) = θ̃s(t) + ηθ (t)d(t) = ds + ηds(t) , L̄(φ, t) = L̄s(φ) + ηL̄(φ, t)

where
{
ηx , ηθ , ηds, ηL̄

} � 1. On substituting these in Eqs. (12.3) and (12.8), uti-
lizing the steady state relations given by Eq. (12.18) and ignoring all higher order
terms involving

{
ηx , ηθ , ηds, ηL̄

}
, we get the linearized system of equations as

M η̈x + Ca η̇x + Kaηx = −ξεaηds , (12.17a)

J η̈θ + Ct η̇θ + Ktηθ = −εa2ηds/2 , (12.17b)
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∂ηL̄

∂t
+

{
�0(t) + ˙̃

θs(t)
} ∂ηL̄

∂φ
+ η̇θ

ds
2π

= 0 . (12.17c)

It should be noted that all the four perturbations
{
ηx , ηθ , ηds, ηL̄

}
are not inde-

pendent. In particular, Eq. (12.9) gives us ηL̄(0, t) = −ηx while we have ηds =
n(ηx + ηL̄(2π/n, t)) from Eq. (12.10). Using these two relations in conjunction
with Eq. (12.17c) completely determines the linearized system of equations. Now,
we non-dimensionalize our system using following nondimensional variables:

L̃ = 2Kt

εa2
, ψ = ξaεJ

MKt
, η̃x = ηx

L̃
, ã = a

L̃
, η̃L̄ = ηL̄

L̃
, η̃δns = ηds

nL̃
, τ =

√
Kt

J
t, δs = ds

L̃
,

ζ = Ca

2
√
KaM

, κ = Ct

2
√
Kt J

, ω0s = �0s√
Kt
J

, ω̃m = ωm√
Kt
J

, β =
√

Ka
M√
Kt
J

.

Using these the nondimensional linearized equations can be written as

η̈x + 2ζβη̇x + β2ηx = −nψηδns , (12.18a)

η̈θ + 2κη̇θ + ηθ = −nηδns , (12.18b)

∂ηL̄

∂τ
+ {

ω0s (1 + m cos (ωmτ)) + θ̇s(τ )
} ∂ηL̄

∂φ
+ η̇θ

δs

2π
= 0 , (12.18c)

with θs(τ )

θ̇s = −ω0s
(−1 + 1ωm

2 + 4κ2
)
mωm

2 cos (ωm τ) + 2 κ ω0s m sin (ωm τ) ωm

1 + ωm
4 + (−2 + 4 κ2

)
ωm

2
.

(12.19)
In the above, we have dropped the tilde from the nondimensional variables for the
sake of notational convenience. Furthermore, the solution for θs(τ ) has been obtained
from Eq. (12.14) after substituting Eq. (12.16) followed by nondimensionalization.
Since our linearized equations involve a PDE and time-periodic coefficients, we first
need to discretize the system to obtain reduced order system of ODEs, presented in
the next seciton, which can be used to obtain the stability curves using the Floquet
theory [7, 12].

12.5 Reduced Order System

For the discretization of Eq. (12.18c), we approximate the perturbation ηL̄(φ, τ ) as

ηL̄(φ, τ ) = a0(τ )

(
1 − nφ

2π

)
+ a1(τ )

nφ

2π
+

N−1∑
k=1

ak+1(τ ) sin

(
nkφ

2

)
, (12.20)



12 Rotary Speed Modulation to Improve the Stability of Steady Drilling 139

with N representing the number of terms in the approximation and ai (τ )′s for i =
0, · · · , N represent the undetermined functions of τ that define the variation in the cut
surface from the steady linear profile. From the above approximation for ηL̄(φ, τ ),
we have ηL̄(0, τ ) = a0(τ ) = −ηx (τ ) (using the boundary condition at φ = 0) and
ηL̄(2π/n, τ ) = a1(τ ). Hence, the perturbation to the steady depth of cut can be
written as

ηδns = a1(τ ) + ηx (τ ). (12.21)

Since, ηL̄ is not the exact solution of Eq. (12.18), we will get the residue on substi-
tuting ηL̄ in Eq. (12.18) and defined by

Re = − η̇x (τ )

(
1 − nφ

2π

)
+ ȧ1(τ )

nφ

2π
+

N−1∑
k=1

ȧk+1(τ ) sin

(
nkφ

2

)

+ (
ω0(τ ) + θ̇s

) {
ηx (τ )

n

2π
+ a1(τ )

n

2π
+

N−1∑
k=1

ak+1(τ )nk

2
cos

(
nkφ

2

)}

+ η̇θ

δs

2π
. (12.22)

This residual Re is minimized in the Galerkin projection approach by making it
orthogonal to the shape functions corresponding to the unknown variables ai (t) for
i = 1, · · · , N . This results in the following N ODEs governing the evolution of
ai (τ ):

∫ 2π/n

0
Re

nφ

2π
dφ = 0 ,

∫ 2π/n

0
Re sin

(
nkφ

2

)
dφ = 0 , for k = 1, . . . , N − 1 .

(12.23)
The complete set of linear ODEs for the always cutting condition is given by N + 4
first order ODEs obtained from Eqs. (12.18a), (12.18b) along with (12.23). We next
present the stability curves in the δs-ω0s plane for different values of modulation
amplitude m and frequencies ωm using the Floquet theory.

12.6 Stability Curves

The complete set of linear ODEs from Eqs. (12.18a), (12.18b) along with (12.23)
can be written in a compact form as Ẋ(τ ) = A(τ )X(τ ), with A(τ ) as a Jacobian
matrix with time-periodic coefficients and X(τ ) as a state vector with compo-
nents X(τ ) = {a1(τ ), a2(τ )...aN (τ ), ηx (τ ), η̇x (τ ), ηθ (τ ), η̇θ (τ )}. To study the sta-
bility characteristics of this system, we obtain the Floquet multipliers (as per the
Floquet theory).

To generate the stability curves, we divide the chosen range of operating param-
eters into 4000 × 500 subregions with 4000 discrete points along the ω0s axis and
500 discrete points along the δs axis. We next run the algorithm for generating the
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Fig. 12.3 Stability curveswithmodulation amplitude a 10%and b 20%of imposed angular velocity
and different modulation frequencies. The other system parameters are β = 1.5816, ψ = 13.8943,
ζ = 0.01, κ = 0.01 and n = 4

fundamental matrix and obtain the Floquet multipliers, λi , as the eigenvalues of this
matrix for each point. We check the magnitude of the dominant Floquet multiplier,
if the dominant Floquet multiplier is less than 1 in magnitude, the system is stable
whereas if it is greater that 1, the system is unstable. Hence, the stability boundary is
obtained as the locus of the points corresponding to the dominant Floquet multiplier
having a magnitude of 1. After evaluating the Floquet multipliers at every point, the
boundary between the stable region and the unstable region is plotted in Fig. 12.3 for
different modulation frequency for modulation amplitude of m = 0.1 and m = 0.2,
respectively.

From Fig. 12.3 we can observe that as the modulation frequency approaches
1, i.e., the nondimensional frequency corresponding to the torsional mode, there
is significant improvement in the stability of steady drilling. However, modulating
frequency very close to 1 also causes a deterioration in the stability because of the
resonance between the modulation and the torsional mode which could lead to stick-
slip oscillations in the steady state itself. Furthermore, higher the m value, larger is
the improvement in the stability property of the system. Againwe should not use very
high values of modulation amplitude as the combined effect of the modulation and
the resulting forced torsional oscillations can set the system into stick-slip motions
which are detrimental to the drill-string.

12.7 Conclusion

In this work, we present the effect of modulation of the turntable speed on the
appearance of axial vibrations during rotary drilling. It has been observed that for
a given value of modulation amplitude, the stable regime increases as the modula-
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tion frequency approaches the nondimensional natural frequency corresponding to
the torsional mode. Furthermore, modulation frequencies smaller than the torsional
frequencies have been found to be more effective in suppressing axial vibrations.
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Chapter 13
Comparative Analysis of NES and TMD
Performance via High-Dimensional
Invariant Manifolds

Giuseppe Habib and Francesco Romeo

Abstract A comparative study between a tuned mass damper (TMD) and a
nonlinear energy sink (NES), attached to a linear two-degree-of-freedom (DoF)
mechanical system under impulsive excitation, is performed. The analysis involves
different scenarios; namely, we consider the cases in which only one or both modes
of the primary system are initially excited. First, exploiting a harmonic balance
approach, the invariant manifolds describing the slow dynamics of the system are
identified.Then, introducing the so-called relative dissipationpower, the performance
of the two absorbers is carefully compared, based on analytical computations. Results
illustrate that the two absorbers have similar performance, albeit resorting to differ-
ent mechanical properties: the NES achieve a broad frequency band of operation
exploiting nonlinearity, while the TMD by increasing damping. An interesting fea-
ture, highlighted by the invariant manifold, is that the NES is generally unable to
resonate with more than one mode of the primary system at the same time, rather, it
experiences a sort of modal cascade.

Keywords Nonlinear energy sink · Tuned mass damper · Multi-modal vibration
absorber · Impulsive energy dissipation

13.1 Introduction

Resonance vibrations have since ever aroused great concern in the engineering com-
munity due to their harmful consequences on mechanical and structural systems.
Countlessmitigation strategies, eachwith its pros and cons, have been so far proposed
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in the literature; a common classification distinguishes between active, semi-active,
passive and hybrid techniques which, in turn, can rely on devices characterized by
linear and nonlinear behaviours. Among the passive linear vibration absorbers, tuned
mass dampers (TMDs) are undoubtedly an established benchmark for mitigation of
resonances [1, 2]. As known, their effectiveness lies in the tuning of their own natural
frequencywith that of the resonance to bemitigated, which implies that a single TMD
can be used to optimally damp only one resonance of the host structure. Such intrin-
sic limitation of TMDs has prompted the engineering challenge of expanding the
absorbers bandwidth of operation, giving the start to an extensive and multifaceted
research activity. Among the proposed passive linear strategies, multiple tuned mass
dampers (MTMDs) and spatially distributed MTMDs have been considered in lit-
erature, as reported in the recent review article [3]. Alternatively, willing to keep
a single device in the control system, nonlinear absorbers designed to resonate for
broad frequency band have been recently proposed. This brought the development
of the nonlinear energy sink (NES), consisting of a small mass connected to the
primary system by an essential nonlinear spring [4, 5]. Given the inherent different
dynamic regimes involved in the passive linear and nonlinear absorbers during the
vibration mitigation processes, a comparison between the performance of the two
families of devices is not straightforward. Moreover, the variety of excitations, host
structure typology, design constraints and objectives have so far lead to partial and
incomplete performance comparisons between the two families of devices. In [6] it
is illustrated that, in some specific conditions, the NES can outperform the TMD for
resonance mitigation of a single-degree-of-freedom (DoF) linear primary system,
exploiting quasiperiodic motions. In [7], a comparative analysis about the relevance
of damping for NES and TMD revealed that, for low damping of the absorber, the
NES can be more effective than the TMD also in narrow-band energy dissipation;
increasing damping, the TMD behaves better than the NES. A comparison between
NES and TMDperformance in a periodically excited linear beam is performed in [8].

In this work, an attempt is made to qualitatively and quantitatively compare the
TMDand theNES capabilities for themitigation of broadband impulsive energy, con-
sidering various engineering scenarios. By exploiting the high-dimensional invariant
manifold of a two-DoF host system, an effective performance measure is introduced,
the so-called relative dissipation power.

13.2 Mathematical Model and Invariant Manifold
Derivation

We consider the simple model shown in Fig. 13.1. The dynamics of this system is
governed by the equations
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Fig. 13.1 A three-DoF system consisting of two coupled symmetric linear oscillators and an NES
connected to one of them

Mx ′′
1 + kx1 + k (x1 − x2) + knl (x1 − xa)

3 + ca
(
x ′
1 − x ′

a

) = 0

Mx ′′
2 + kx2 + k (x2 − x1) = 0

mx ′′
a + knl (xa − x1)

3 + ca
(
x ′
a − x ′

1

) = 0

(13.1)

where x1 and x2 refer to the displacements of the primary 2 DoF system, while xa
refers to the displacement of the absorber; m is assumed much smaller than M and
the prime denote differentiation with respect to time t . The choice of considering an
undamped hosting structure reflects results obtained in previous works [9], where it
is illustrated that small damping in the primary system does not affect the overall
qualitative dynamics.

We divide the system of Eqs. (13.1) by M , introduce the dimensionless time T =
ωnt and dimensionless variables y1 = √

λ3 (x1 + x2) /2, y2 = √
λ3 (x1 − x2) /2 and

y3 = √
λ3 (x1 − xa), where ωn = √

k/M and λ3 = knl/
(
mω2

n

)
, obtaining the gov-

erning equations in primary system dimensionless modal coordinates, i.e.

ÿ1 + y1 = ε

(
− y33

2
− μa ẏ3

)

ÿ2 + 3y2 = ε

(
− y33

2
− μa ẏ3

)

ÿ3 + y1 + 3y2 + (1 + ε)
(
y33 + 2μa ẏ3

) = 0

(13.2)

where ε = m/M , μa = ca/ (2mωn) and the overdots denote differentiation with
respect to T . Starting from Eqs. (13.2), by considering ε � 1 as a perturbation
parameter, an analytical framework enabling to design the NES and to optimize
its performance is derived.

In order to study the slow dynamics of the system, we collect terms of order ε0,
reducing the system to
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ÿ1 + y1 = 0 (13.3)

ÿ2 + 3y2 = 0 (13.4)

ÿ3 + 2μa ẏ3 + y33 = −y1 − 3y2. (13.5)

We define an approximate solution by adopting the harmonic balance method [10,
11], assuming 1:1 resonance between the primary system and the absorber. The
solutions of Eqs. (13.3) and (13.4) are y1 = A1eiT + c.c. and y2 = A2e

√
3iT + c.c.,

where A1 and A2 are complex and c.c. stands for complex conjugate. The approximate
solution of Eq. (13.5) is expressed by y3 = B1 (t1) eiT + B2 (t1) e

√
3iT + c.c.

We substitute the approximate solutions of y1, y2 and y3 into Eq. (13.5) and collect
harmonics of eiT and e

√
3iT , obtaining

(
eiT

) : − B1 + A1 + 3B2
1 B̄1 + 6B1B2 B̄2 + 2μai B1 = 0

(
e
√
3iT

)
: − 3B2 + 3A2 + 3B2

2 B̄2 + 6B1 B̄1B2 + 2
√
3μai B2 = 0.

(13.6)

By defining B1 = 1/2b1eiβ1 , B2 = 1/2b2eiβ2 , A1 = 1/2a1eiα1 and A2 = 1/2a2eiα2 ,
and separating real and imaginary parts of the first equation of (13.6), we have

1

2
a1 cosα1 = 1

2
b1

(
1 − 3

4
b21 − 3

2
b22

)
cosβ1 + μab1 sin β1

1

2
a1 sin α1 = 1

2
b1

(
1 − 3

4
b21 − 3

2
b22

)
sin β1 − μab1 cosβ1.

(13.7)

We calculate the squares of the two equations of (13.7) and we sum them up attaining

a21 = b21

(
1 − 3

4
b21 − 3

2
b22

)2

+ 4μ2
ab

2
1. (13.8)

Repeating the same operation with the second equation of (13.6) we obtain

a22 = b22

(
1 − 1

4
b22 − 1

2
b21

)2

+ 4

3
μ2
ab

2
2. (13.9)

Equations (13.8) and (13.9) describe the invariant manifold that relates the slow
dynamics of y3 with respect to y1 and y2. A detailed analysis of the obtainedmanifold
is performed in the following sections by considering separately the cases in which
the excitation involves either a single or both modes.

We notice that, although the absorber is characterized by the three parameters
ε, μa and λ3, thanks to the performed non-dimensionalization the only parameter
left in the manifold equation is μa . λ3 simply scales the amplitude of the variables,
while ε is proportional to the energy dissipation rate, but, if it is kept small, it has no
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Fig. 13.2 a Invariant manifold for the first mode (μa = 0.1, γ = 1 for TMD); b Estimated relative
dissipation power based on the invariant manifold (μa = 0.1, ε = 0.01, γ = 1 for TMD). Blue and
orange lines refer to analytical results of NES and TMD, respectively, black lines refer to numerical
results

qualitative effect on the slow dynamics of the system, which can be captured by the
adopted approach.

13.3 Single Mode Dynamics

Weconsider at first the casewhen only the firstmode of the primary system is initially
excited. In this case, y2 is assumed of order ε, therefore the invariant manifold is
defined only by Eq. (13.8), with b2 = 0, i.e.

a21 = b21

(
1 − 3

4
b21

)2

+ 4μ2
ab

2
1. (13.10)

The relative manifold is illustrated in Fig. 13.2a for μa = 0.1. The black line in the
figure is the result of a numerical simulation, which qualitatively confirms analytical
results. Modal amplitudes were obtained through a wavelet transformation of the
system time series. Although stability of the manifold was not studied, it can be
guessed that, if for a single a1 value there are three different b1 values, the middle
one is unstable.

The invariant manifold enables one to predict the amplitude of oscillation of y3
depending on the oscillation amplitude y1. Large values of y3 (i.e. b1) correspond
to high dissipation power. Adopting the hypothesis of single harmonic response,
dissipation power in one period is given by εμab21. However, from an engineering
point of view, it is more significant to indicate the energy dissipated in one period
with respect to the energy present in the primary system, that is (if only the first mode
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is activated) Pr = εμab21/a
2
1 . This curve is illustrated in Fig. 13.2b for μa = 0.1 and

ε = 0.01.
The shape of the Pr function gives important information about the performance

of the NES. For very high values of a1, Pr is very low (Pr tends to zeros for a1 →
∞); however, at large amplitudes additional harmonics, overlooked by the adopted
analytical approach, might become more relevant. Reducing a1, Pr increases until it
reaches a high peak (called P in the figure),whose exact position can be calculated and

it is P =
(
4μa/

√
3, ε/(4μa)

)
. For a1 < 4μa/

√
3, Pr has a sudden decrease and it

reaches an almost constant plateau until a1 = 0 (for a1 → 0, Pd = εμa/(1 + 4μ2
a)).

This lower limit corresponds to the minimum energy threshold belowwhich the NES
is not activated, a feature which has been extensively studied [5]. Numerical results,
represented by black dots in the figure, agree very well with the analytical prediction.
The main difference consists in the slightly mismatching position of the peak.

During the design of an NES, the position of point P is clearly a key parameter
for defining the performance of the device and the range of operation. Since the
amplitude was normalized with respect to

√
λ3, this parameter can be tuned to adjust

the energy level of optimal operation. Furthermore, the a1-coordinate of point P
grows linearly with μa . Increases of μa also enlarge the peak and lower P, reducing
the maximal dissipation power, but widening the amplitude range of operation.

The same procedure performed for the NES, can be analogously computed for
the TMD, in order to compare the two absorbers. The analysis leads to the invariant
manifold described by the equation

a21 = b21
(
1 − γ 2

)2 + 4μ2
ab

2
1 or a1 = b1

√(
1 − γ 2

)2 + 4μ2
a, (13.11)

where γ is the ratio between the natural frequency of the TMD and of the primary
system. Orange lines in Fig. 13.2a and b illustrate the manifold and the relative
dissipation power for the TMD, which can be directly compared with the NES. It is
particularly interesting that, if γ = 1, the relative dissipation power of the TMD is
always equal to the maximum Pr of the NES. This clearly highlights the superiority
of the TMD over the NES when it is properly tuned and only one mode is involved.
Also in this case, numerical results qualitatively confirm analytical predictions.

13.4 Two Modes Dynamics

In the hypothesis that bothmodes of the primary system are activated, Eqs. (13.8) and
(13.9) form a unique system of equations. This defines the invariant manifold, that
is a 2-dimensional surface in the 4-dimensional space (a1, a2, b1, b2). Figure13.3
illustrates the manifold exploiting two projections: x- and y-axes mark the modal
amplitude in the primary system of the first (a1) and second (a2) mode, respectively;
z-axis indicates the modal amplitude related to the first (b1, Fig. 13.3a) and to the
second mode (b2, Fig. 13.3b) in the NES.
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Fig. 13.3 Invariant manifold projected on the (a1, a2, b1) (a) and on the (a1, a2, b2) (b) spaces for
μa = 0.1. The black dots mark the instantaneous modal amplitude of the time series in Fig. 13.4
calculated through a wavelet transformation. Subplots c and d offer top views of subplots a and b,
respectively
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Fig. 13.4 a Time series for system (13.2) with μa = 0.1 and ε = 0.01; b wavelet transformation
of y3

We notice the interesting feature that, for given a1 and a2 values, either b1 is large
and b2 is small, or the opposite is verified. An ideal line, splitting in two the a1, a2
space, divides the two regions where either b1 or b2 is larger. This consideration has
important practical consequences, indeed it means that the NES, although is able to
interact with modes at different frequencies, it works well with only one at a time.

A numerical validation of this phenomenon is illustrated in Fig. 13.4. Figure13.4a
shows time series for the three system coordinates, while Fig. 13.4b depicts the
instantaneous frequency of the NES motion (y3), obtained through a wavelet trans-
formation. For T < 1500, Fig. 13.4b clearly illustrates that the NES has a strong
coupling with the second mode (at 1.732 rad/s), while it does not interact with the
first one. This is consistent with the manifold in Fig. 13.3; in fact, for the adopted
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initial conditions (y1(0) = 6 and y2(0) = 4), b1 is relatively small, while b2 is much
larger. This causes a relatively rapid dissipation of energy on the second mode of
the primary system, while the first one is almost unaffected by the absorber, as it
can be verified from the time series in Fig. 13.4a. At T ≈ 1500, the NES abruptly
disengages from the second mode and it couples with the first one, forming a sort of
modal cascade. In terms of invariant manifold, this coincides to reach the boundary
dividing the regions where either b1 or b2 is large. The correspondence between ana-
lytical and numerical results is given by the black dots in Fig. 13.3a and b: although
the black dots, indicating the modal amplitude in the NES b1 and b2, do not exactly
lie on the manifold, the transition between second and first modes is well predicted
in terms of modal amplitudes a1 and a2. For 1500 < T < 8000 the energy decreases
on both modes; however, the dissipation rate for the second mode is significantly
diminished, in virtue of the discussed modal transition. At T ≈ 8000 the NES dis-
engages also from the first mode, causing a sudden drop of its oscillation amplitude
and of the energy dissipation on the first mode. Considering that at this point most
of the energy was only on the first mode, this phenomenon practically coincides
with the drop illustrated in Fig. 13.2 for the case of single mode dynamics. Super-
and sub-harmonic resonances, visible in Fig. 13.4b, are overlooked by the analytical
framework adopted.

We notice that, if the system is initially in the region where the first mode is
prevalent but there is some energy also on the second mode, the NES will have a
stronger coupling with the first mode, but it will still dissipate some energy on the
second mode. This cancels the modal cascade, which seems to occurs only from
higher modes to lower ones. We also remark that the ideal line dividing the two
regions of modal coupling follows a somehow different trend for low amplitude.
The minimum energy threshold of each mode and the S shape observed in Fig. 13.2a
is dominant over the interaction between the two modes, causing a drop of modal
amplitude for the first mode at a1 = 0.23 and for the second mode at a2 = 0.23.
Indeed, the best dissipation performance are obtained for a1 and a2 only slightly
larger than these limits.

13.4.1 NES-TMD Comparison

In the following, we compare the NES and TMD performance while operating on
the primary system with both modes activated. We consider the initial conditions
y1(0) = y2(0) = 0, ẏ1(0) = ẏ2(0) = v0 and identify parameters providing the min-
imum dissipation time, given ε = 0.01. For the NES, the only parameter to be opti-
mized is μa as a function of the initial velocity v0; we remind that the amplitude is
scaled with

√
λ3, therefore, in principle, the system can be set to any energy level.

For the TMD, optimization is performed tuning μa and γ ; because of the linearity
of the system, dynamics is invariant with respect to v0.

As optimal conditions, we obtain for the NES that 70% of the initial energy is
dissipated in 147 time units for μa = 0.1248, if v0 = 0.504. Regarding the TMD,
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Fig. 13.5 a, b Energy decrement on the first and on the second mode for system (13.2) with μa =
0.1248, ε = 0.01, ẏ1(0) = ẏ2(0) = 0.504 and y1(0) = y2(0) = 0; c wavelet transformation of y3;
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y1(0) = y2(0) = 0 and ẏ1(0) = ẏ2(0) = 0.504 (d), ẏ1(0) = 1 and ẏ2(0) = 0.5 (e), ẏ1(0) = 0.5
and ẏ2(0) = 1 (f)

minimumdissipation timeof 172 timeunits is obtained forμa = 0.204 andγ = 1.04.
In these conditions the NES outperform the TMD by 17% in terms of dissipation
time.

Extensive numerical simulations show that, for optimal parameter values, the
NES has a strong interaction with the first mode, keeping, at the same time, a weak
interaction with the second one, therefore the modal cascade shown in Fig. 13.4 is
no longer present. This can be clearly seen from the wavelet transformation of y3
in Fig. 13.5c, which refers to the optimal NES. Figure13.5a and b depict the energy
decrement on the first and on the second mode of the primary system, respectively.
It can be noted that energy decreases on both modes at a similar rate, until T ≈ 150,
when the NES disengages from both of them almost simultaneously.

Referring to an optimal TMD, because the value of γ is only slightly larger than
1, y1 oscillation amplitude undergoes a much rapid decrement than y2; this was
verified through direct numerical simulations, not shown here for the sake of brevity.
Nevertheless, energy of the second mode is still dissipated thanks to the quite large
damping (μa = 0.204).

A comparison of the energy decrement obtained by the NES and by the TMD
is illustrated in Fig. 13.5d, which shows that the NES only slightly outperforms the
TMD. However, after dissipating 70% of the energy, it becomes almost ineffec-
tive, while the TMD works also for small amplitude. Figure13.5e and f, depict the
energy decrement adopting the same absorbers, but changing initial conditions. For
ẏ1(0) = 1 and ẏ2(0) = 0.5 (more energy on the first mode, Fig. 13.5e) the NES has
a significant deterioration of its performance, while the TMD an improvement. Con-
versely, increasing the initial energy on the secondmode (ẏ1(0) = 0.5 and ẏ2(0) = 1,
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Fig. 13.6 Relative
dissipation power for the
NES (colored surface) and
the TMD (orange surface)
with ε = 0.01 and
μa = 0.12 (NES) or
γ = 1.04 and μa = 0.204
(TMD)

a2
a1

Pr

Fig. 13.5f), the TMDhas slightly worst performance, while the NES has an important
improvement.

This behavior can be better understood by plotting the relative dissipation
power Pr as a function of a1 and a2. This is defined by the equation Pr =
εμa

(
b21 + 3b22

)
/
(
a21 + 3a22

)
and it is illustrated in Fig. 13.6 (colored surface) for

ε = 0.01 and μa = 0.1248. In the figure, we notice that there are two peaks; the
smaller is related to the first mode and the higher one to the second mode. These
correspond to the points with maximum dissipation power (their height is ε/(4μa)

and 3ε/(4μa), respectively, as it can be computed by the hypothesis of single mode
dynamics). For the initial conditions ẏ1(0) = ẏ2(0) = 0.504 the NES fully exploits
the smaller peak, obtaining a good energy dissipation for the first mode. Increasing
the initial energy on the first mode (ẏ1(0) = 1), the peak of the second mode is still
not exploited, while some additional time is required before reaching the peak of
the first mode. This results in a deterioration of the performance. On the contrary,
increasing the energy on the second mode (ẏ2(0) = 1), the NES first exploits the
peak relative to the second mode and then the one relative to the first one. This can
be recognized observing that the energy decrement approximately consists of three
linear segments. These correspond to dissipation of the energy on the second mode,
then on the first mode and finally slowly dissipated residual energy.

Overlapping the relative dissipation power surface of the TMD (orange surface in
Fig. 13.6) over the one of the NES, we can directly estimate the relative performance
of the two absorbers. In general, for the same a1, a2 values, the surface with the
higher Pr value is the one providing better performance.
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13.5 Conclusions

The dynamics of an NES attached to a two-DoF linear oscillator was investigated,
evaluating the performance of the absorber against impulsive excitations. Invariant
manifolds, describing the slow dynamics of the system, proved to be an effective
tool to predict quite accurately the behavior and the performance of the absorber. In
particular, they allowed us to explain how the NES couples with the primary system
when more than one mode is activated. If the energy content on both modes is suffi-
cient, the NES first dissipates energy on the higher mode and then, once a threshold
is reached, it couples with the lower one abruptly decoupling from the higher one. A
direct comparison between the NES and the TMD illustrated which conditions are
required for the NES to outperform the TMD. Prediction of the comparative behavior
based on the invariant manifold was confirmed by direct numerical simulations.

The verification of the existence of the described modal cascade for primary
systems with large number of DoF will be the subject of a future study.
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Chapter 14
Nonlinear Dynamics of a Planar
Hinged-Simply Supported Beam
with One End Spring: Higher Order
Resonances

Lukasz Kloda, Stefano Lenci and Jerzy Warminski

Abstract The paper addresses the nonlinear dynamics of a hinged simply supported
beam with an axial elastic support. The investigation is based on the Multiple Time
Scales Method (MTSM) applied directly to the governing partial differential equa-
tions of motion, and is focused on the first seven bending resonances of a planar
system. The effect of axial spring on hardening/softening phenomena is illustrated.
Backbone Curves (BbCs) and Frequency Response Curves (FRCs) for selected cases
are shown and compared with their numerical counterpart done with the Finite Ele-
ment Method (FEM) to cross-checking the reliability of analytical and numerical
methods.

Keywords Hardening/softening behaviour · Higher order resonances ·
Hinged-simply supported beam · Multiple time scales method · Finite element
method · Frequency response curve

14.1 Introduction

Nowadays, a lot of attention is paid to nonlinear dynamics of beams under
different boundary conditions, like clamped-clamped, cantilever, hinged-hinged,
hinged-simply supported and so on. Advanced software mathematical manipula-
tors, and more powerful hardware, allow us to attack analytically more and more
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accurate models of such systems by covering all geometrical effects. However, non-
linear dynamics of higher order modes are frequently omitted in investigations, as
the main attention is commonly devoted to principal natural frequencies.

Higher order resonances are presented in [7] for hinged-hinged beams, where it
is shown that frequency response curves of the first six bending modes are always
hardening. The first three bending modes of a Micro Electro Mechanical System
(MEMS) in clamped-clamped configuration are studied analytically and experimen-
tally in [3], again highlighting that the structure is always hardening. In this paper
authors present, hitherto unexplored, higher order resonances of a hinged simply
supported beam with an elastic longitudinal support for arbitrarily stiffnesses. For
varying axial spring stiffness the structure can be softening, hardening or can have
a linear backbone curve.

14.2 Beam Model

A planar system composed of a hinged simply supported beam and a linear axial
spring attached to the sliding support, see Fig. 14.1, is considered. The beam has
a linear elastic material behaviour and performs displacements along three direc-
tions (axial Z , transversal X and rotational). Different values of spring stiffness
determinate three possible scenarios:

• ks = 0 (i.e. no spring): the beam is hinged-simply supported, namely one end is
free to move in Z -direction;

• ks → ∞: the beam end displacement is blocked and the structure is hinged-hinged;
• 0 < ks < ∞ (which is the most general case): the system is hinged-simply
supported-spring.

Finite Element Model described in Sect. 14.2.2 requires to work with a dimensional
object, whose geometrical and mechanical properties are presented in Table14.1.
However, to better understand forthcoming analytical results, the dimensionless
parameter κ = ks L

E A is introduced.
All nonlinearities of the structure are geometric, and are not caused by nonlinear

material.

Fig. 14.1 The beam model
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Table 14.1 Beam properties

Beam
length
L (m)

Cross section
B × H (mm)

Density
ρ (kg/m3)

Young
modulus
E (GPa)

Poisson’s
ratio ν (-)

Shear factor
χ (-)

Spring
stiffness
κ (-)

0.5 50 × 50 7850 210 0.3 0.85 0 ≤ · · · ≤ ∞

(a) (b)

Fig. 14.2 Kinematics (a) and coplanar forces (b) of the deformed beam element

14.2.1 Analytical Approach

The beam element undergoes large in plane deformations, where beam infinitesimal
length in rest (deformed) configuration is dZ (dS). Transversal and axial displace-
ments are denoted by U and W , respectively. Slope angle ϕ does not coincide with
rotation of cross section θ because the beam is shearable. In other words, the angle
θ consists of the slope angle ϕ and Timoshenko angle γ , and in our investigations
γ �= 0, see Fig. 14.2a. The geometrical curvature is used (k = dθ/dS), as an exten-
sible beam is considered. For more exhaustive information on different curvature
definitions we refer to [1, 8].

Combining (linear) material law behaviour, equilibrium (Fig. 14.2b) and kine-
matics (Fig. 14.2a) of the beam element the following system of partial differential
equations of motion is obtained [5]:

{
E A

[√
(1 + W ′)2 +U ′2 − 1

]
1 + W ′√

(1 + W ′)2 +U ′2
+

+GA

[
θ − arctan

(
U ′

1 + W ′

)]
U ′√

(1 + W ′)2 +U ′2

}′
= ρAẄ + CW Ẇ , (14.1)
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{
E A

[√
(1 + W ′)2 +U ′2 − 1

]
U ′√

(1 + W ′)2 +U ′2
+

−GA

[
θ − arctan

(
U ′

1 + W ′

)]
1 + W ′√

(1 + W ′)2 +U ′2

}′
=

= ρAÜ + CUU̇ + PU (Z , T ), (14.2)[
E J

θ ′√
(1 + W ′)2 +U ′2

]′
+

−GA

[
θ − arctan

(
U ′

1 + W ′

)] √
(1 + W ′)2 +U ′2 = ρ J θ̈ + Cθ θ̇ , (14.3)

where dot (˙) and prime ( ′ ) correspond to partial derivativewith respect to time T and
coordinate Z . Terms Cθ , CU and CW denote linear viscous damping coefficients. We
refer to [5] for the definition of the various parameters appearing in Eqs. (14.1)–(14.3)
and for further details. Related boundary conditions are:

W (0, T ) = 0, U (0, T ) = 0, U (L , T ) = 0, M(0, T ) = 0, M(L , T ) = 0, (14.4)
N (L , T ) cosϕ + V (L , T ) sin ϕ + ksW (L , T ) = 0. (14.5)

Detailed procedure of applying the MTSM to the exact partial differential equations
of motion (14.1)–(14.3) is shown in [5] and will not be repeated here.

14.2.2 Numerical Approach

The finite element beam model is made of 100 (initially) equal length B31 type
elements. Each element undergoes large in plane deformation, and is provided by
local coordinate system at each node, that allows to compute the true deformations
and stresses. The out of plane displacement is restrained (equals to zero) as well as
associated rotations (RZ = 0, RX = 0 but RY �= 0). Linear spring is fixed to beam
end and axially anchored to the ground. For κ = 0 the spring is eliminated, and for
κ = ∞ the beam end is blocked in the axial direction.

Transient simulations have been set in dynamic explicit module, and the axial
and transversal displacements of relevant nodes have been sampled with a frequency
that is 40 times of the frequency of excitation, for a time large enough to detect
the amplitudes of the steady state motion. Frequency excitation has been gradually
swept, forward and backward around the nth natural frequency in order to reconstruct
the whole Frequency Response Curve (FRC). More details about this method are
presented in [4–6].
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14.3 Results

14.3.1 Linear Oscillations

The nth natural circular frequencies depend on geometrical and mechanical proper-
ties of the beam and are given by:

ω2
n = π2n2 J (E + G) + AGL2 −

√[
AGL2 + π2 Jn2(E + G)

]2 − 4π4EGJ2n4

2J L2ρ
,

(14.6)

while the associated mode shapes are:

Ûn(Z) = sin

(
nπ Z

L

)
, θ̂n(Z) = π2n2G − L2ρω2

n

πGnL
cos

(
nπ Z

L

)
. (14.7)

Note that axial boundary conditions do not influence Ûn(Z), θ̂n(Z) and ωn .
In this paper the ratio between the axial and transversal displacements is assumed

to be small, so that the longitudinal linear modes of the beam have not be deter-
mined in the analytical part of the work. A set of calculation results is presented in
Table14.2. Numerical computations have been done with displacement normaliza-
tion by Eigensolver Lanczos module of Abaqus_CAE©commercial software. The

Table 14.2 The lowest ten linear natural frequencies and corresponding free vibrationmode shapes.
Single star (*) corresponds to hinged-simply supported case and two stars (**) describe hinged-
hinged beam

Mode
No.

Mode shape FEM
frequency
(rad/s)

Analytic
frequency
(rad/s)

Maximaof displacement/rotation
vectors

FEM (-)/(◦) MTSM: ε1 (-)/(◦)
1 1st bending 2899.50 2899.51 1/6.13 1/6.130

2 2nd bending 11086.68 11087.12 1/11.45 1/11.447

3 1st longitudinal 16248.95*
32496.63**

Not
included

1/0 Not
included

4 3rd bending 23373.45 23377.34 1/15.53 15.535

5 4th bending 38511.53 38511.84 1/18.41 1/18.382

6 2nd
longitudinal

48742.44*
64986.99**

Not
included

1/0 Not
included

7 5th bending 55501.89 55521.12 1/20.19 1/20.197

8 6th bending 734657.78 73702.39 1/21.20 1/21.223

9 3rd
longitudinal

81222.74*
97458.49**

Not
included

1/0 Not
included

10 7th bending 92526.19 92614.78 1/21.65 1/21.683
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(a) (b)

Fig. 14.3 Nonlinear correction coefficient of the first seven bending modes

FEM analysis involves 3 × 100 degrees of freedom in X -, Z - and RY -directions, as
consequence, longitudinal modes are spontaneously covered in outcomes. The influ-
ence of boundary conditions on the natural frequencies in the longitudinal direction
is shown for 3rd, 6th, and 9th modes. By varying spring stiffnesses from 0 to∞, nat-
ural frequencies in the longitudinal direction can be changed of about 100%, 33.3%
and 20%, respectively.

14.3.2 Free Nonlinear Oscillations—Hardening and
Softening Behaviors

Free nonlinear oscillations can undergo hardening or softening phenomena. If free
oscillations frequency decreases with increasing vibrations amplitude it is called
softening, and if the frequency increases it is named hardening. When frequency of
oscillations is independent of the amplitude (which occurs only for some specific
values of the parameters), the system has a linear nature also in the nonlinear regime.

This behaviour is mathematically described by nonlinear correction coefficient
c which is given by

σ = c1
c2
a2 = ca2, c2 = ρωn

J
(
Gn2π2 − L2ρω2

n

)2 + AL

G2Ln2π2
, (14.8)

and where the real parameter c1, that depends on mechanical and geometrical prop-
erties of the structure, has a long expression that cannot be reported here; it is given
in [5].

σ denotes the (additive) detuning parameter with respect to nth natural frequency
ωn (i.e. the actual frequency of oscillation is Ω = ωn + σ ) and a is the amplitude
of oscillation. It is easy to observe that c > 0 determines hardening behavior, while
c < 0 softening phenomenon.
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(a) (b)

Fig. 14.4 Backbone curves of 5th (a) and 7th (b) bending modes

For the first seven bending modes the nonlinear correction coefficients are shown
in Fig. 14.3a, b. On average, c increases when the order modes growth. All curves
have the smallest values for κ = 0 (simply supported beam) and as spring stiffness
increases, they tend to the constant value corresponding to hinged-hinged beam.
Astonishing singularities (the parameter c tends to±∞) are observed for 2nd, 6th and
7th modes. Softening behavior appears for small spring stiffnesses of the 1st bending
mode; also the 5th mode has negative values in range 0 < κ < 0.2865. Examples of
BbCs are shown in Fig. 14.4a, b. Nonlinear oscillations of a hinged-simply supported
beam (κ = 0) have softening nature for 5th bending mode. As axial spring stiffness
increases the BbCs bends toward right, across linear case (κ = 0.2865) up to the
limit branch, which corresponds to hinged-hinged beam (κ = ∞). The case of the 7th
bendingmode ismuchmore different. Beamswith hinged and simply supported right
end present similar levels of hardening, and even huge changes scarcely influence
the nonlinear dynamics, except at a singularity, which occurs between κ = 50 and
κ = 60. The hardening to softening to hardening transition across the singularity is
well described in Fig. 14.4b. Linear oscillations appear again for κ = 53.835.

Numerical verification of BbCs is possible, and can be done as in [2], but to limit
the length of the paper this comparative analysis is left for future works. Validation
of the singularity of the 2nd bending mode by FEM will be presented in Sect. 14.3.3
in terms of FRC.

14.3.3 Forced Damped Vibrations—Frequency Response
Curves

In this section damping factors (in rotational and transversal directions) are equal
to 6% and external excitation is assumed to be an harmonic concentrated force
pv, applied to Z = L/4 in vertical direction (X ). The frequency response curve,
determined analytically by the MTSM, is given by [4, 5]
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Fig. 14.5 Frequency
response curves of the first
bending mode. Lines (dots)
represent analytical
(numerical) solutions

σ = c1a2 ±
√

p2v
a2 sin

2
(
nπ
4

) − c23
c2

, c3 = ωn

[
cθ

(
Gn2π2 − L2ρω2

n

)2
2G2Ln2π2

+ cU
L

2

]
.

(14.9)

Frequency response curves for first three bendingmodes are shown inFigs. 14.5, 14.7,
14.8. In general, numerical and analytical approaches are in very good agreement,
even for large amplitudes of oscillations.

Discrepancies occur when the excitation is far from resonant frequencies. This is
reasonable, because the MTSM is valid for small values of the detuning parameter,
and the solution is sought only up to third order. Higher order analysis could provide
more accurate results. Furthermore, Perturbation Method is focused on only one nth
bending mode, while FEM covers many modes combination. For example Fig. 14.5
shows results where σ has been swept from −0.1ω1 to +0.5ω1, while excellent
agreement for ±0.1ω1 is obtained.

The considered excitation, and in particular the fact that the concentrated load is at
Z = L/4, simultaneously activates the 1st and 2nd bending modes of the system, as
shown by the FFT analysis of Fig. 14.6a. Frequencies Ω = 1.2ω1 and Ω = 1.45ω1

are represented by single picks, while steady state motion for Ω = 1.4ω1 consists
of two frequencies, which correspond to the frequency of excitation Ωa = 1.4ω1

(1st mode) and its multiplicity Ωb = 3 × 1.4ω1 (2nd mode). To better explain the
results of Fig. 14.6a, the time histories of the corresponding solutions are reported in
Fig. 14.6b.

The FRCs for the second bending mode have very good agreement between FEM
and MTSM for spring stiffnesses, see Fig. 14.7. The relevant aspect of this figure
is that analytical and numerical results qualitatively agree also across the particular
spring stiffness where the behavior changes from hardening to softening. For exam-
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(a)

(b)

Fig. 14.6 Fast Fourier transform (a) and Time history (b) of a steady state motion of beam-spring
system (κ = 1, n = 1, Z = L/4). Selected cases are marked by circles in Fig. 14.5

Fig. 14.7 Frequency
response curves of the
second bending mode. Lines
(dots) represent analytical
(numerical) solutions

ple, both show softening behaviour for κ = 1.6; 1.7; 1.75 (these values are in the
interval of c < 0 in Fig. 14.3a) and hardening behaviour elsewhere. For low ampli-
tudes the agreement is also quantitative, while of course for increasing amplitude—
as well as approaching the critical value of κ (see the case κ = 1.6)—the accuracy
decreases.

Figure14.8 shows qualitatively and quantitatively agreement of the methods for
the third bending mode. Relatively small range of detuning parameter as well minor
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Fig. 14.8 Frequency
response curves of the third
bending mode. Lines (dots)
represent analytical
(numerical) solutions

nonlinear correction coefficient variations contribute in this case to perfect overlap-
ping.

14.4 Conclusions and Further Developments

The nonlinear oscillations around the first seven bending modes of a planar beam
have been investigated. Results of numerical and analytical comparative analyses
for primary, secondary and tertiary nonlinear resonances have been presented, and
it is shown that the best agreement is obtained for the 3rd bending mode. At this
level of investigation, the MTSM applied to the exact beam model is not able to
capture superharmonic and subharmonic resonances, but this can be done in the
future. Extended study on singularities is necessary to better understand the nature
of the hardening/softening transition phenomenon across these critical points.

Acknowledgements This work is part of the collaboration between Polytechnic University of
Marche and Lublin University of Technology, which is aimed at developing a Joined Doctoral
Programme.

References

1. Babilio, E., Lenci, S.: Consequences of different definitions of bending curvature on nonlinear
dynamics of beams. Procedia Eng. (2017). https://doi.org/10.1016/j.proeng.2017.09.382

2. Clementi, F., Lenci, S., Rega, G.: Cross-checking asymptotics and numerics in the harden-
ing/softening behaviour of Timoshenko beams with axial end spring and variable slenderness.
Arch. Appl. Mech. (2017). https://doi.org/10.1007/s00419-016-1159-z

https://doi.org/10.1016/j.proeng.2017.09.382
https://doi.org/10.1007/s00419-016-1159-z


14 Nonlinear Dynamics of a Planar Hinged-Simply Supported Beam … 165

3. Jaber, N., Ramini, A., Carreno, A.A.A., Younis, M.I.: Higher order modes excitation of electro-
statically actuated clamped-clamped microbeams: experimental and analytical investigation. J.
Micromech. Microeng. 26(2), 025008 (2016)

4. Kloda, L., Lenci, S., Warminski, J.: Nonlinear dynamics of a planar hinged-supported beam
with one end spring system. In: MATEC Web of Conferences (2018). https://doi.org/10.1051/
matecconf/201814806004

5. Kloda, L., Lenci, S., Warminski, J.: Nonlinear dynamics of a planar beam-spring system: ana-
lytical and numerical approaches. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-
4452-2

6. Kloda, L., Lenci, S., Warminski, J.: Nonlinear dynamics of a planar hinged-supported beam
with one end lumped mass and longitudinal elastic support. In: MATEC Web of Conferences
(in proceedings)

7. Lacarbonara, W., Camillacci, R.: Nonlinear normal modes of structural systems via asymptotic
approach. Int. J. Solids Struct. (2004). https://doi.org/10.1016/j.ijsolstr.2004.04.029

8. Lenci, S., Rega, G.: Nonlinear free vibrations of planar elastic beams: a unified treatment of
geometrical and mechanical effects. Procedia IUTAM (2016). https://doi.org/10.1016/j.piutam.
2016.03.007

https://doi.org/10.1051/matecconf/201814806004
https://doi.org/10.1051/matecconf/201814806004
https://doi.org/10.1007/s11071-018-4452-2
https://doi.org/10.1007/s11071-018-4452-2
https://doi.org/10.1016/j.ijsolstr.2004.04.029
https://doi.org/10.1016/j.piutam.2016.03.007
https://doi.org/10.1016/j.piutam.2016.03.007


Chapter 15
Helmholtz, Duffing
and Helmholtz-Duffing Oscillators:
Exact Steady-State Solutions

Ivana Kovacic and Gianluca Gatti

Abstract This work presents an analytic technique aimed at designing the exter-
nal excitation of linear and nonlinear oscillators so that a prescribed form of their
steady-state response can be achieved. The technique exploits the exact analytic solu-
tions of the oscillator response having quadratic and/or cubic nonlinearities. Both
single-frequency and multi-frequency responses are considered. Examples of possi-
ble applications are provided in terms of virtual experiments.

Keywords Nonlinear oscillator · Quadratic nonlinearity · Cubic nonlinearity

15.1 Introduction

Quadratic and cubic geometric nonlinearities appear in a variety of physical and engi-
neering oscillatory systems. Quadratic nonlinearities are referred to as Helmholtz-
type nonlinearities, since it was Helmholtz, who first postulated that the eardrum
behaves as an asymmetric oscillator with a restoring force including a linear and a
quadratic geometric term [1]. Cubic nonlinearities are referred to as Duffing-type
nonlinearities, and are named after Duffing, who investigated pendula with restor-
ing forces containing cubic nonlinearities [2]. Analogously, oscillators that comprise
both quadratic and cubic stiffness nonlinearities are referred to as Helmholtz-Duffing
oscillators.

During the previous decades, many perturbation and non-perturbation techniques
have been developed to obtain the free and forced responses of Helmholtz, Duffing
and Helmholtz-Duffing oscillators. All of these techniques are based on approxima-
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tions [1, 3]. However, recent investigations have considered strategies based on the
exact solutions of the steady-state response of nonlinear oscillators, and the design
of external excitations to generate them. The idea of a specially designed external
excitation to generate a specific form of steady-state response dates back to Hsu [4].
Such an idea has been recently extended to forced one-degree-of-freedom undamped
oscillators with cubic or quadratic nonlinearities [5], purely nonlinear oscillators [6],
multi-degree-of-freedompurely nonlinear chains [7], aswell as to a variety of damped
nonlinear oscillators [8, 9].

This study aims at extending themethodology presented in [9], which is limited to
oscillators containing a symmetric form of stiffness nonlinearity, to oscillators con-
taining quadratic nonlinearities as well, thus leading to asymmetric force-deflection
curves.

15.2 Theoretical Approach

15.2.1 Free Oscillators

The equation of motion of a Helmholtz-Duffing oscillator can be written down as

ẍ + c1x + c2x
2 + c3x

3 = 0, x(0) = A, ẋ(0) = 0, (15.1)

where c1, c2 and c3 are all assumed to be equal or greater than zero. The initial
conditions are selected so that the initial velocity is assumed to be zero.

There is no exact solution for the response of the Helmholtz-Duffing oscillator,
and the approximate solution for its motion contains odd and even harmonics [3].
However, the exact solution for the response of Helmholtz and Duffing oscillators
does exist and is given below.

When c3 = 0, the exact solution for the Helmholtz oscillator includes the square
of the Jacobi elliptic sn function [10] and can be written down as follows

x = A0 + A1sn
2(ωt, k), (15.2)

where

A0 = c1
2c2

k2 + 1 − √
λ√

λ
, A1 = −3c1

2c2

k2√
λ

, ω =
√
c1
2

1

λ
1
4

, λ = k4 − k2 + 1. (15.3)

Note that the Jacobi sn elliptic function has two arguments: the first is a function
of the frequency ω, the second is the elliptic modulus k. For k = 0 the sn function
turns into the sin function. It should be pointed out that the Helmholtz oscillator with
positive coefficients has two equilibria: a center point at the origin and a saddle point
at x = − 3c1

2c2
. The separatrix that passes through the saddle point corresponds to k =
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1 [10]. The phase trajectories that lie inside the separatrix are closed, and indicate the
occurrence of periodic motion. Furthermore, the existence of the constant term in the
solution given by Eq. (15.2) implies that the system oscillates around a non-trivial
value. The frequency content can be determined based on the Fourier expansion [11,
12], where the sn function can be represented as a sum of odd harmonics of the sin
function, as follows

sn(ωt, k) =
∑∞

N=1
SN sin

[
(2N − 1)

π

2K
ωt

]
, (15.4)

where the coefficients SN are given by

SN = 2π

kK

qN−1/2

1 − q2N−1
, (15.5)

K = K (k) is the complete elliptic integral of the first kind [11, 12], and q = q(k) is
the so-called Nome, given by

q = exp

⎛

⎝−
πK

(√
1 − k2

)

K (k)

⎞

⎠. (15.6)

The fact that the sn function appears as a squared function in Eq. (15.2) implies that
the oscillatory response includes an offset and both odd and even harmonics.

When c2 = 0, Eq. (15.1) corresponds to the equation of motion of the Duffing
oscillator, whose exact solution has the form of a Jacobi cn elliptic function

x = Acn(ωt, k), (15.7)

where

ω =
√
c1 + c3A2, k2 = c3A2

2
(
c1 + c3A2

) . (15.8)

For positive coefficients, i.e. for hardening nonlinearity, such oscillator has one equi-
librium, which is a center point at the origin. The frequency content can be deter-
mined from a Fourier expansion, which includes odd harmonics of the cos function
as follows

cn(ωt, k) =
∑∞

N=1
CNcos

[
(2N − 1)

π

2K
ωt

]
, (15.9)

and the coefficients CN are given by

CN = 2π

kK

qN−1/2

1 + q2N−1
. (15.10)
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When c2 = c3 = 0, Eq. (15.1) simplifies to a linear oscillator, having the well-known
solution for motion given by

x = A cos
(√

c1t
)
. (15.11)

15.2.2 Forced Oscillators

Based on the previous discussion, it is possible to determine the exact solution for
the steady-state response of a variety of damped and undamped linear and nonlinear
oscillators governed by the following generalized equation of motion

ẍ + 2ς ẋ + c1x + c2x
2 + c3x

3 = F(xr (t), ẋr (t)). (15.12)

Furthermore, it is possible to design the external excitation of such oscillators to
achieve a desired form for their free response xr (t), as discussed below.

15.2.2.1 Single-Harmonic Response

If it is desirable that the oscillator governed by Eq. (15.12) responds as a free linear
oscillator, i.e. with a single harmonic as in Eq. (15.11), then this can be achieved
with the external force having the following form

F(xr (t), ẋr (t)) = 2ς ẋr (t) + Ex + c2x
2
r (t) + c3x

3
r (t), (15.13)

where E is a constant.
Using Eq. (15.11) as the desired response, the equation of motion can be written

as

ẍ + 2ς ẋ + c1x + c2x
2 + c3x

3 = −2ς A� sin(�t)

+ 1

4

(
2A2c2 + (

4AE + 3A3c3
)
cos(�t) + 2A2c2 cos(2�t) + A3c3 cos(3�t)

)
,

(15.14)

where � = √
c1 − E , and c1 ≥ E .

On the one hand, equating c3 to zero and assuming E = 0, gives the equation of
motion of an externally excited Helmholtz oscillator, whose steady-state response is
harmonic. Such an oscillator is governed by:

ẍ + 2ς ẋ + c1x + c2x
2 = −2ς A

√
c1 sin

(√
c1t

)

+ 1

4

(
2A2c2 + 2A2c2 cos

(
2
√
c1t

))
. (15.15)
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On the other hand, equating c2 to zero in Eq. (15.14) and assuming E = 0, gives the
equation of motion of the externally excited Duffing oscillator, whose steady-state
response is also harmonic. Such an oscillator is governed by:

ẍ + 2ς ẋ + c1x + c3x
3 = −2ς A

√
c1 sin

(√
c1t

)

+ 1

4

(
3A3c3 cos

(√
c1t

) + A3c3 cos
(
3
√
c1t

))
. (15.16)

15.2.2.2 Multi-harmonic Response

The samemethodology can be applied to design an external excitation for a nonlinear
oscillator tomake it respond as any other oscillator. Thus, assuming the external force
in the form

F(xr (t), ẋr (t)) = 2ς ẋr (t) + Bx2r (t) + Dx3r (t), (15.17)

Equation (15.12) becomes

ẍ + c1x + (c2 − B)x2 + (c3 − D)x3 = 0. (15.18)

If c3 = D, then the system response has the form given by Eq. (15.2), where c2 in
Eq. (15.3) is replaced by c2 − B, and c2 > B. Similarly, for c2 = B and c3 > D, the
system response has the form given by Eq. (15.7), and c3 in Eq. (15.8) is replaced
by c3 − D.

15.3 Numerical Simulations

To validate the previous theoretical considerations, virtual experiments [13] are per-
formed on a mechanical model of the system illustrated in Fig. 15.1. The system
consists of one mass m attached to three linear springs of stiffness k, geometrically
arranged to achieve the desired stiffness nonlinearity.

In particular, a vertical linear spring is combined with two lateral linear springs,
which incline as the oscillating mass moves. The static equilibrium position of the
mass from the position where the lateral springs are horizontal is denoted by a, so
that the natural spring length is l0 = √

a2 + b2, where b is labeled in Fig. 15.1. A
linear viscous damper c is introduced for dynamic purposes. The expression of the
static force-deflection curve of the oscillator in Fig. 15.1 is

F = kx + 2k(x + a)

(
1 −

√
a2 + b2

(a + x)2 + b2

)
, (15.19)
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Fig. 15.1 Mechanical
implementation of a
nonlinear oscillator under
consideration

which can be expanded in Taylor series to the third term to give

F ∼ k

(
1 + 2a2

a2 + b2

)
x + 3kab2

(
a2 + b2

)2 x
2 + k

(
b4 − 4a2b2

)
(
a2 + b2

)3 x3. (15.20)

It can be noted from Eq. (15.20) that when a = b/2, the system behaves as the
Helmholtz oscillator, since the cubic stiffness coefficient becomes zero, and when
a = 0 the system behaves as the Duffing oscillator, since the quadratic stiffness
coefficient becomes zero.

Three virtual experiments are then performed on the Helmholtz, Duffing and
Helmholtz-Duffing oscillator, respectively, and they are reported below.

15.3.1 Forced Helmholtz Oscillator

In this case, a representation of the system in its static equilibrium configuration is
shown in Fig. 15.2a. The geometric system parameters are a = 0.1, b = 0.2, k =
100, c = 2, m = 1, so that ς = 1, c1 = 140 and c3 = 480 in Eq. (15.15). The force-
deflection curve given by Eq. (15.19) and its approximation in Eq. (15.20) are plotted
in Fig. 15.2b. It can be seen that the Taylor series expansion is a good approximation
in the displacement range from −0.1 to 0.1. The curve is clearly asymmetric.

The excitation given by Eq. (15.13), with c3 = 0 and E = 0 is applied to the
oscillating mass, and is plotted in Fig. 15.3a with a solid line. The excitation is such
that the displacement amplitude at the steady-state is 0.1. In Fig. 15.3a, a sinusoidal
excitationwith an amplitude equal to the first harmonic of the excitation inEq. (15.13)
is plotted as a dashed line. Figure 15.3b shows the Fourier coefficients of the two
excitations plotted in Fig. 15.3a with a corresponding line style. Clearly, a second
harmonic and an offset are evident from the solid line.

Two virtual experiments are then carried out by exciting the system in Fig. 15.2a
with the two excitations described above. The results are presented in Fig. 15.3c.
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Fig. 15.2 aHelmholtz-like oscillator in its static equilibrium configuration.bCorresponding force-
deflection curve: exact expression from Eq. (15.19) (solid line) and approximate expression from
Eq. (15.20) (dashed line)
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Fig. 15.3 Helmholtz-like oscillator. a Force excitation and b corresponding Fourier coefficients;
c displacement response and d corresponding Fourier coefficients. Force excitation according
to Eq. (15.13) and corresponding response (solid line), harmonic excitation and corresponding
response (dashed line)
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Fig. 15.4 a Duffing-like oscillator in its static equilibrium configuration. b Corresponding force-
deflection curve: exact expression from Eq. (15.19) (solid line) and approximate expression from
Eq. (15.20) (dashed line)

It is noted that simulations run from the static equilibrium condition (i.e. x(t) =
ẋ(t) = 0), and after a transient, both responses reach a steady-state that is fairly har-
monic. However, as noted in Fig. 15.3d, the Fourier coefficients of the displacement
responses in Fig. 15.3c show that the specifically designed excitation in Eq. (15.13)
significantly reduces the presence of the offset and also of the second harmonic in
the response.

15.3.2 Forced Duffing Oscillator

In this case, a representation of system is shown in Fig. 15.4a. The system parameters
are a = 0, b = 0.2, k = 100, c = 2, m = 1, so that ς = 1, c1 = 100 and c3 = 2500
in Eq. (15.16). The force-deflection curve is plotted in Fig. 15.4b and it is now
symmetric. Taylor series approximation holds, as in the previous section.

The force excitation given in Eq. (15.13), with c2 = 0 and E = 0 is plotted in
Fig. 15.5a with a solid line, and a sinusoidal excitation with an amplitude equal to the
first harmonic of the excitation in Eq. (15.13) is plotted as a dashed line. Figure 15.5b
shows the Fourier coefficients of the two excitations plotted in Fig. 15.5a with a
corresponding line style. Clearly, a third harmonic is evident from the solid line.

Two virtual experiments are performed by exciting the system in Fig. 15.4a with
the two excitations described above. The results are presented in Fig. 15.5c. It can
be noted that after a transient, both responses reach a fairly harmonic steady-state.
However, as noted in the close-up of Fig. 15.5d, the Fourier coefficients of the
displacement responses in Fig. 15.5c show that the specifically designed excitation
inEq. (15.13) considerably reduces the presence of the third harmonic in the response.
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Fig. 15.5 Duffing-like oscillator. a Force excitation and b corresponding Fourier coefficients;
c displacement response and d corresponding Fourier coefficients. Force excitation according
to Eq. (15.13) and corresponding response (solid line), harmonic excitation and corresponding
response (dashed line)

15.3.3 Forced Helmholtz-Duffing Oscillator

In this case, a representation of the system is shown in Fig. 15.6a. The system
parameters are a = 0.1, b = 0.2, k = 100, c = 2, m = 1, so that ς = 1, c1 =
111.7647, c2 = 332.1799 and c3 = 1563.2 in Eq. (15.14). The asymmetric force-
deflection curve is plotted in Fig. 15.6b, togetherwith its Taylor series approximation.

The force excitation given by Eq. (15.13), with E = 0, is plotted in Fig. 15.7a with
a solid line, and a sinusoidal excitation with an amplitude equal to the first harmonic
of the excitation in Eq. (15.13) is plotted as a dashed line. Figure 15.7b shows the
Fourier coefficients of the two excitations plotted in Fig. 15.7a. An offset, a second
and a third harmonic are evident from the solid line.

Two virtual experiments are carried out as described earlier. The results are pre-
sented in Fig. 15.7c, where it is noted that both responses reach a steady-state which
is again fairly harmonic. However, as noted in Fig. 15.7d, the Fourier coefficients
of the displacement responses from Fig. 15.7c show that the specifically designed
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Fig. 15.6 aHelmholtz-Duffing-like oscillator in its static equilibrium configuration. bCorrespond-
ing force-deflection curve: exact expression from Eq. (15.19) (solid line) and approximate expres-
sion from Eq. (15.20) (dashed line)
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Fig. 15.7 Helmholtz-Duffing-like oscillator. a Force excitation and b corresponding Fourier coef-
ficients; c displacement response and d corresponding Fourier coefficients. Force excitation accord-
ing to Eq. (15.13) and corresponding response (solid line), harmonic excitation and corresponding
response (dashed line)
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excitation in Eq. (15.13) significantly reduces the presence of the offset and of the
second harmonic in the system response.

15.4 Conclusions

Oscillators with quadratic and/or cubic nonlinearities have been considered in this
paper. An analytic technique has been presented to properly design a specific exter-
nal excitation to make them respond as different desired free oscillators. The case
where the response contains one single harmonic only, and the case where there is
a multi-frequency response, have been considered. Virtual experiments have been
performed on a mechanical assembly of the oscillator, and they have shown that the
proposed technique can significantly reduce the presence of undesired harmonics in
the oscillator response.
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Chapter 16
Tree-like Structures as Hierarchical
Coupled Oscillators

Ivana Kovacic, Miodrag Zukovic and Dragi Radomirovic

Abstract This bio-inspired study deals with the dynamics of tree-likemodels whose
main structural part mimics a trunk, while the first- and second-order branches are
modelled as pendula coupled to it. Conditions for the existence of modes localized
in branches are determined in terms of the system parameters. This is then compared
with the behaviour of the system performing large-amplitude vibration. It is found
that certain localized modes exist when the system performs both small-amplitude
vibration and large-amplitude vibration.

Keywords Bio-inspired structure · Coupled oscillators · Hierarchy · Modes ·
Localization

16.1 Introduction

Branches of trees are, in general, slender structures, but they cope fairly well with
small and large-amplitude vibrations caused by various types of excitation. As such,
they are seen as potentially suitable for biomimetic design [1] of man-made hierar-
chical structures that can rapidly localize external energy, where this energy can be
either dissipated or harvested, which opens up new avenues for progress in a variety
of engineering applications.

For this purpose, theoretical mechanical and mathematical modelling of trees
is needed first. Mechanical models of branched trees that have been formed and
investigated so far involve either discrete (lumped) or continuous/elastic systems,
with the former having a finite number of degrees of freedom, and the latter having
an infinite number of degrees of freedom. The former are of interest for this study as
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there have been just few multi-degree-of-freedom models of branched trees, whose
elements have been particles/discrete masses or rigid bodies. They include: a coupled
spring-mass-damper system [2, 3], a system of 13 rigid rods hinged together [4], a
Y-shaped system of pendula [5], and symmetric or asymmetric two and three-branch
physical pendula [6]. In [2, 3], each structural element of a tree (the trunk andbranches
of different hierarchy) are treated as oscillatingmasses, attachedmutually via a spring
and a damper. The spring on the branches of the same order are arranged in parallel.
The springs in the same hierarchical order have the same stiffness properties, which
is still an open question as being unrealistic. Themodel is very simple and its concept
corresponds to a model of multiple tuned mass-dampers. In [4], Kerzenmacher and
Gardiner developed a mechanical and mathematical model of a spruce tree and
compared the results with field measurements. A model of a tall tree whose height
was 13 m contains 13 rigid sections hinged together with rotational springs at each
joint, while each section has the same length and with the masses concentrated at the
center of each segment. The differential equations of motionwere derived first for the
case of small vibration. The equations of motion with damping included are solved
then in the symbolic software package Mathematica Wolfram. The comparison with
field measurements enabled one to note the complexity of tree responses to wind
excitation and the deficiencies of the mechanical model. The authors pointed out
that ‘the lack of coupling of the branches and stem is a major weakness of the current
model.’ To overcome this shortage, in our paper, the influence of coupling is taken
into consideration through the stiffness ratio. In [5], a Y-shaped system of pendula
coupled with rotational springs is considered. However, although the system has
three degrees of freedom, the authors treated it as a two-degree-of-freedom system,
assuming that two angles are the same. In this way, they omitted the possibility when
the angles of rotation are not the same and are out-of-phase. The same mechanical
model is considered in our paper, but no assumption of this kind is introduced and
three generalised coordinates are introduced to catch all the modes of vibration.
In [6], symmetric and asymmetric two-branch and three-branch physical pendula
are investigated. The analytical investigations comprise modal shapes of small free
vibrations, which are then represented as oscillating mass coupled via springs. The
natural damped frequencies and mode shapes are also determined. The case of large-
amplitude vibrations is treated numerically, showing the associated frequency spectra
for the points on the trunk and two branches, emphasizing the difference between
them. The authors noted that the analytical solution obtained for small-amplitude
vibrations breaks down and ‘is unable tomimic the (true) numerical solution’. Unlike
in [6], the study in [7] includes symmetric two-branch physical pendula, but also six-
branch physical pendula, which are analysed both in small- and large-amplitude free
and forced vibrations.

This study contributes to the investigations of hierarchical bio-inspired tree-like
structures focusing on free small and large-amplitude vibration especially related to
localized modes of vibration in terms of the main system parameters.
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16.2 Models and Responses

16.2.1 Free Small- and Large-Amplitude Response
for First-Order Branching

The tree-like structure under consideration is motivated by the Leeuwenberg tree
model [8], which contains symmetric lateral segments at each branching point, but
does not include axial segments. The mechanical model contains physical pendula
coupled with torsional springs with first-order branches as shown in Fig. 16.1a. The
constant branching angle α is the angle of divergence of lateral branches from the
axial direction of the previous segment. The lateral branching ratio is defined as
the ratio between cross-sectional areas of segments after and before branching, and
it is assumed to be λ = 1/2. The diameter, length, mass and stiffness ratios are
defined as the ratios of the corresponding parameters between the subsequent and
preceding element, and they are hierarchically reduced. They are, respectively, given
by:D1/D= λ1/2, l1/l= λ1/3, m1/m= λ4/3 and κ = k1/k (see [7] and the references cited
therein). The system has three degrees of freedom and the corresponding generalized
coordinated are taken to be the absolute angles ϕ, ψ1 and ψ2 between each pendula
and its position in the static equilibrium, as labelled in Fig. 16.1a.

Fig. 16.1 a Mechanical model with first-order branching; b modes of vibration corresponding to
α = 20° and κ = 0.3; c Modes of vibration corresponding to ᾱ = 121.947o and κ = 0.3
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Equations of motion will be derived by using Lagrange’s equations of the second
kind. Therefore, the potential energy and the kinetic energy need to be formed first.
Neglecting the gravitational potential energy, the overall potential energy V stems
from the deflection of the springs and is given by:

V = 1

2
kϕ2 + 1

2
k1(ϕ − ψ1)

2 + 1

2
k1(ψ2 − ϕ)2. (16.1)

The trunk performs rotationalmotion,while the branches are in general planemotion,
so that the overall kinetic energy T can be expressed as:

T = 1

2
JOϕ̇2 + 1

2
m1v

2
C1

+ 1

2
JC1ψ̇

2
1 + 1

2
m1v

2
C2

+ 1

2
JC2ψ̇

2
2 , (16.2)

where the square of the velocities of the centres of mass C1 and C2 of the first-order
branches are:

v2C1
= l2ϕ̇2 + 1

4
l21ψ̇

2
1 + ll1ϕ̇ψ̇1cos(α − ϕ − ψ1). (16.3)

v2C2
= l2ϕ̇2 + 1

4
l21ψ̇

2
2 + ll1ϕ̇ψ̇2cos(α − ϕ + ψ2). (16.4)

Treating the trunk and the branches as rods, their mass moments of inertia are,

respectively, JO = ml2

3 , JC1 = JC2 = m1l21
3 .

Calculating the kinetic energy (16.2)–(16.4) while the system passes through the
equilibrium position, i.e. by putting ϕ = 0, ψ1 = 0 and ψ2 = 0 into Eqs. (16.3) and
(16.4), and using Lagrange’s equation of the second kind for small (linear) vibrations
in the form (d/dt)

(
∂T (qi = 0)/∂

.
qi

) + ∂V/∂qi = 0 [9], where qi ∈ {ϕ,ψ1, ψ2},
the following differential equations for linear vibrations are obtained:

ϕ′′ + 1 + 2κ

1 + 6λ4/3
ϕ − κ

1 + 6λ4/3
(ψ1 + ψ2) + 3λ5/3

2
(
1 + 6λ4/3

)cos(α)
(
ψ ′′

1 + ψ ′′
2

) = 0,

(16.5)

ψ ′′
1 + κ

λ2
ψ1 − κ

λ2
ϕ + 3

2λ1/3
cos(α)ϕ′′ = 0, (16.6)

ψ ′′
2 + κ

λ2
ψ2 − κ

λ2
ϕ + 3

2λ1/3
cos(α)ϕ′′ = 0, (16.7)

where the primes stand for the derivatives with respect to non-dimensional time τ =
t ω∗, with ω∗ = √

3k/ml2. Note that the parameter used for non-dimensionalization
of the time has a clear physical meaning—it corresponds to the natural frequency of
the trunk itself.

Based on Eqs. (16.5)–(16.7), three natural frequencies are calculated:
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ω2
I = 2κ

6κλ5/3cos(α) + √

 + 6κλ4/3 + 2κλ2 + κ + λ2

, (16.8)

ω2
II = κ

λ2
, (16.9)

ω2
III = 2κ

6κλ5/3 cos(α) − √

 + 6κλ4/3 + 2κλ2 + κ + λ2

, (16.10)

where:


 = κλ2(9λ4/3cos(2α) − 15λ4/3 − 4
)

+ (
6κλ5/3cos(α) + 6κλ4/3 + 2κλ2 + κ + λ2

)2
(16.11)

It is seen that the first and the third natural frequency are influenced both by
the stiffness ratio and the branching angle, while the second one depends on the
stiffness ratio and the lateral branching ratio but not on the branching angle. There is
an interesting special case in which the number of possible natural frequencies and
possible modes is reduced: when cos(ᾱ) = −2λ1/3/3, one has ωII = ωIII. For the
lateral branching ratio used in this study, this condition is satisfied for ᾱ = 121.947o.
The modes that corresponds to α = 20° are shown in Fig. 16.1b for the fixed stiffness
ratio. They include:Mode I, with thewhole structure behaving as a rigid bodywithout
the hinge in the branching point and with the angles between the branches staying
2α; Mode II: when the trunk does not oscillate, while the branches move out-of-
phase symmetrically, i.e. the mode is localized in the branches; Mode III: when
the trunk and the branches move out-of-phase and the angle between the branches
stays fixed to 2α. Two modes that corresponds to ᾱ = 121.947o are presented in
Fig. 16.1c and involve one localized Mode II when the trunk does not move, while
the branches behave as two physical pendula that are uncoupled but oscillate with
the same frequency. Note that the localized mode can be deduced from the equations
of motion (16.5)–(16.7) by substituting ϕ = 0.

The next aim is to investigate free large-amplitude (nonlinear) oscillations of
the tree-inspired model from Fig. 16.1a. The exact equations of motion are there-
fore derived based on the exact expressions for the potential and kinetic energy
(16.1)–(16.4) by using Lagrange’s equation (d/dt)

(
∂T/∂

.
qi

)+∂T/∂qi +∂V/∂qi =
0 [9], where qi ∈ {ϕ,ψ1, ψ2}. These equations can be written down in the following
non-dimensional form

ϕ′′ + 1 + 2κ

1 + 6λ4/3
ϕ − κ

1 + 6λ4/3
(ψ1 + ψ2) + 3λ5/3cos(α)

2
(
1 + 6λ4/3

)
(
ψ ′′

1 + ψ ′′
2

)

+ 3λ5/3

2
(
1 + 6λ4/3

) sin(α + ϕ − ψ1)ψ
′2
1 − 3λ5/3

2
(
1 + 6λ4/3

) sin(α − ϕ + ψ2)ψ
′2
2

+ 3λ5/3

2
(
1 + 6λ4/3

)cos(α + ϕ − ψ1)ψ
′′
1 + 3λ5/3

2
(
1 + 6λ4/3

)cos(α − ϕ + ψ2)ψ
′′
2 = 0,

(16.12)
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ψ ′′
1 + κ

λ2
ψ1 − κ

λ2
ϕ − 3

2λ1/3
sin(α + ϕ − ψ1)ϕ

′2

+ 3

2λ1/3
cos(α + ϕ − ψ1)ϕ

′′ = 0, (16.13)

ψ ′′
2 + κ

λ2
ψ2 − κ

λ2
ϕ + 3

2λ1/3
sin(α − ϕ + ψ2)ϕ

′2

+ 3

2λ1/3
cos(α − ϕ + ψ2)ϕ

′′ = 0. (16.14)

Note that nonlinearities in these equations exist due to the last terms appearing in
the expressions for the squares of the velocities of centres of mas, Eqs. (16.3) and
(16.4), involving the coefficients of the quadratic forms in the angular velocities that
also have nonlinear and displacement-dependent coefficients.

It is important to note that the mode localized in branches, i.e. Mode II from
Fig. 16.1b, c exists when the system performs large-amplitude oscillations. This is
confirmed in Fig. 16.2, where time histories for all three angles are shown for the
linear and nonlinear systemwith the initial conditions corresponding toMode II from
Fig. 16.1b—they coincide.

Thus, it should be pointed out that the sympodial tree-like structures from
Fig. 16.1a have the following feature potentially useful for biomimetic applications:
when perturbed in a way that only their first-order branches oscillate equally but in
the opposite direction, such behaviour persists both when branches perform small
and large-amplitude oscillations.

Modes I and III do not have this property, but new frequencies are likely to be
born in the nonlinear case. To investigate this deeper, the whole tree-like structure is
exposed to a pull-and-release test, in which the initial amplitudes of the generalised
coordinates are equal as in Mode I, while the initial angular velocities are taken to
be zero. The equations of motion (16.12)–(16.14) are solved numerically for large
initial angles equal to 0.5 rad = 28.65°. Then, spectral analyses are performed on
these solutions for the range of values of the branching angle α ∈ (0, 180o). The

Fig. 16.2 Time-histories for
all three angles with the
initial conditions
corresponding to Mode II
from Fig. 16.1b: ϕ (red line),
ψ1 and ψ2 (blue line). Solid
line—linear case, dashed
line—nonlinear case
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Fig. 16.3 Spectral analyses of large-amplitude vibrations calculated numerically fromEqs. (16.12)
to (16.14) for κ = 0.3 (blue lines): a, b amplitude of ϕ; c, d amplitude of ψ1; e, f amplitude of ψ2.
Red line—the frequencies of the linear system

content obtained is shown in blue with respect to the non-dimensional frequency
f /f * and the branching angles for all generalised coordinates (Fig. 16.3a, c, e). When
viewed from above (Fig. 16.3b, d, f), these graphs can be compared with the plots
of the natural frequencies (16.8)–(16.10) plotted as the red solid line. Results for the
trunk show that the first frequency is dominant in its response. It is also evident that
other frequencies can exist in the response of the first-order branches. For certain
values of the branching angle, these frequencies are very dense.
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16.2.2 Free Small- and Large-Amplitude Response
for Second-Order Branching

The second-order branches are added in a hierarchical way (Fig. 16.4a) with the
parameters D2/D1 = λ1/2, l2/l1 = λ1/3, m2/m1 = λ4/3and κ = k2/k1. Four new gener-
alized coordinates are introduced as the absolute angles θ1–θ4 between the second-
order branches and their positions in the static equilibrium, as labelled in Fig. 16.4a.

The equations of motion are formed first for small vibrations (they are not given
here for brevity), and natural frequencies and the corresponding modes are also
sought. For the branching angles different from ᾱ = 121.947o, seven natural fre-
quencies and the corresponding modes are determined. Note that the corresponding
calculated non-dimensional frequencies are presented as a function of the branching
angle in Fig. 16.6 as the red solid lines. Further, three associated modes of vibra-
tion are found to be characterized by localization. They are presented in Fig. 16.4b:
Mode II and VI are localized in the first- and second-order branches, while Mode
IV is localized in the second-order branches only. As seen in Fig. 16.6, where the
frequency lines are plotted in red, for the branching angle ᾱ = 121.947o some of
the frequency lines coincide, so that five different ones exist. It is also obtained that
out of the five corresponding modal shapes, two are characterized by localization
(Fig. 16.4c). In each of these two modes, the trunk does not move. In Mode II, both
the branches of the first- and second-order oscillate, while in Mode IV for which
ω2
IV = κ2/λ4, only the second-order branches oscillate. Other expressions for the

Fig. 16.4 aMechanical model with second-order branching; b localized modes of vibration corre-
sponding to α = 20° and κ = 0.3; c localized modes of vibrations corresponding to ᾱ = 121.947o

and κ = 0.3
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Fig. 16.5 Time-histories for
all seven angles with the
initial conditions
corresponding to Mode IV
from Fig. 16.4b: ϕ (red
lines), ψ1 and ψ2 (blue
lines)), θ1–θ4 (green lines).
Solid line—linear case,
dashed line—nonlinear case

natural frequencies are obtained as well, but they are not given here for brevity. Note
that similarly to the natural frequency ω2

II, Eq. (16.9) of the localized mode in the
system with first-order branching, this ωIV of the mode localized in the highest-order
branching does not depend on the branching angle, but does depend on the stiffness
ratio and the lateral branching ratio.

Analogously to the case studied in the previous section, the mode localized in
the highest-order branches is also found to exist in the exact (nonlinear) equations
for motion. Figure 16.5 illustrates it, showing time-histories for all seven angles
with the initial conditions corresponding to Mode IV from Fig. 16.4b. The solutions
for the small- and large-amplitude oscillations coincide, confirming the behaviour
described.

This fact does not hold when the whole tree-like structure is exposed to a pull-
and-release test with the initial conditions corresponding to Mode I. i.e. as a rigid
body. This is seen in Fig. 16.6, which shows both the frequencies for the linear case
and the frequency spectra obtained numerically for the nonlinear case for different
branching angles. The lowest frequency is again dominant for the trunk, while the
spectra for the branches are more dense as their order increases.

16.3 Conclusions

This study has been bio-inspired by the behaviour of the trunk and branches of sym-
podial trees. A hierarchical mechanical model has been formed and investigated for
the case of the first-order branches and also for the case of second-order branches. The
number of natural frequencies corresponds, respectively, to the number of degrees of
freedom (three and seven) if the branching angle is different from a certain special
value, which depends on the lateral branching ratio. The expression for this special
value has been obtained, as well as the corresponding reduced number of natural fre-
quencies. Themodal shapes have been examined in details, and have been found to be
associated with the possibility for localization, when the trunk does not move but the
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Fig. 16.6 Spectral analyses of large-amplitude vibrations for κ = 0.3 (blue lines): a, b amplitude
of ϕ; c, d amplitude of ψ1; e, f amplitude of θ1; g, h amplitude of θ2. Red line—the frequencies of
the linear system
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branches do oscillate. The modes localized in the highest-order branches have been
found to exist both in the system performing small- and large-amplitude vibration.
Given the fact that these localized modes can be of interest for biomimetic design,
the current research is concerned with the development of an analytical framework
for determining localized modes for an arbitrary number of the branching order and
their potential bifurcations.
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Chapter 17
Energy Transport and Localization
in Weakly Dissipative Resonant Chains

Agnessa Kovaleva

Abstract In this paper we examine the effect of dissipation on the emergence of
resonance in a weakly dissipative Klein-Gordon chain subjected to harmonic forcing
applied to the first oscillator. Both asymptotic approximations and numerical sim-
ulations prove that weak linear dissipation counteracts resonant oscillations in the
entire chain even if a similar undamped array exhibits resonance. Stable resonance
may occur either in a short-length chain or in an initial segment of a long-length
weakly damped chain but motion of distant oscillators becomes non-resonant. Fur-
thermore, an increase of dissipation diminishes the localization length for resonant
oscillations. The conditions of the emergence of resonance as well as an expected
length of localization are obtained from the equations for the steady solutions of
the system under consideration. The closeness of the approximate solutions to exact
(numerical) results is demonstrated.

Keywords Nonlinear oscillations · Asymptotic methods · Energy localization

17.1 Introduction

The emergence of resonance and localization of resonant oscillations in the chain
driven by harmonic forcing with constant frequency have been discussed over past
decades (see, e.g., [1–5]). It has been concluded that the nonlinearity plays the impor-
tant role in the emergence and stability of resonance in non-dissipative chains. How-
ever, the excitation of resonant oscillations and the development of localized struc-
tures in dissipative arrays have not been studied in details. The results have been
obtained for particular mechanical applications, such as, for example, dissipative
roto-breathers [6], dissipative optical resonators [7], micro- and macro-scale can-
tilever arrays [5, 8–11].

A. Kovaleva (B)
Space Research Institute, Moscow 117997, Russia
e-mail: agnessa_kovaleva@hotmail.com

© Springer Nature Switzerland AG 2020
I. Kovacic and S. Lenci (eds.), IUTAM Symposium on Exploiting Nonlinear
Dynamics for Engineering Systems, IUTAM Bookseries 37,
https://doi.org/10.1007/978-3-030-23692-2_17

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23692-2_17&domain=pdf
mailto:agnessa_kovaleva@hotmail.com
https://doi.org/10.1007/978-3-030-23692-2_17


192 A. Kovaleva

The objective of this work is to study nonlinear mechanisms for resonant energy
transport and localization in the weakly dissipative Klein-Gordon array consisting of
identicalweakly linearly coupledDuffing oscillators and driven by external harmonic
forcing applied to the first oscillator. It is assumed that the behavior of the array is
close to 1:1 (fundamental) resonance, when the responses of all oscillators have a
dominant harmonic component with the frequency close to the excitation frequency.
The physical effects arising in the resonant chain are studiedwith the help of thewell-
developed multiple time scales formalism [12]. The derived asymptotic solutions
demonstrate that the presence of dissipation may prevent the occurrence of large-
amplitude resonant responses in the entire array even if a similar non-dissipative
array is resonant. If dissipation cannot be ignored, then resonant oscillations can be
localized only in the initial part of the chain close to the source of energy but the
distant particles undergo non-resonant oscillations.

17.2 The Model

In this work we study the resonant dynamics of a weakly dissipative oscillator chain
subjected to a harmonic force applied at an edge of the chain. Under the condition
of linear coupling between the oscillators, the equations of motion are given by

d2ur
dt2

+ χ
dur
dt

+ ω2ur + γ u3r + κ
[
ηr,r+1(ur − ur+1) + ηr,r−1(ur − ur−1)

]

= Fr sinΩt, r ∈ [1, n]. (17.1)

In (17.1), the variable ur depicts the absolute displacement of the rth oscillator; ω2 is
the linear spring stiffness; κ is the linear coupling constant; χ denotes the coefficient
of dissipation; γ is the cubic spring stiffness. Since the harmonic excitation is directly
applied only to the first particle, we let F1 = F, Ω = ω(1 + d), d � 1 but Fr =
0, r ≥ 2. Note that all coefficients are reduced to the unit mass. The parameters ηr,k

= {1, k ∈ [1, n]; 0, k = 0, k = n + 1} indicate that the end oscillators unilaterally
coupled with the neighboring particles.

The chain is assumed to be initially at rest, i.e. ur = 0, vr = dur
dt at t = 0 for all

oscillators. By definition, Eq. (17.1) with zero initial conditions depict the transition
from the initial rest state to stable resonant oscillations along the so-called Limiting
Phase Trajectories (LPTs) corresponding to maximum energy transport from the
source of energy to the oscillator [13–15].

We reduce the equations of motion to the dimensionless form. Assuming weak
coupling between the oscillator, we define the dimensionless parameter ε =
κ/(2ω2) � 1 as a small parameter of the problem. Then, considering weak dis-
sipation, weak nonlinearity, and weak resonant forcing in the resonant chain, we
introduce the rescaled parameters by formulas:
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d = 2εs, μ = 1

s
, γ = 8εαω2, χ = 2εsδω, Λ =

√
s

3α
,

Fr = 2εsΛ frω
2, Ur = ur

Λ
. (17.2)

Finally, we introduce the dimensionless fast and slow time variables as τ 0 = ωt and
τ = ετ 0, respectively. Substituting the rescaled parameters into (17.1), we obtain the
dimensionless equations

d2Ur

dτ 2
0

+ 2εsδ
dUr

dτ0
+Ur + εs

8U 3
r

3

+ 2εsμ
[
ηr,r+1(Ur −Ur+1) + ηr,r−1(Ur −Ur−1)

] = 2εs fr sin θ,

dθ

dτ0
= 1 + 2εs, (17.3)

where f 1 = f but f r = 0 if r ∈ [2, n]. Equation (17.3) are solved with the help of the
multiple scales method [12]. To this end, the following complex-valued change of
variables is introduced:

Ψr =
(
dUr

dτ0
+ iUr

)
e−iθ , r ∈ [1, . . . , n]. (17.4)

By definition, the expressions ãr = |Ψr | and Δ̃r = argΨr depict the (exact) response
amplitude and the phase of the rth particle. After substituting (17.4) into (17.3), we
obtain the following equations for the complex variablesΨ r :

dΨr

dτ0
= −εsδΨr − εsi

{(
1 − |Ψr |2

)
Ψr − μ

[
ηr,r+1(Ψr − Ψr+1) + ηr,r−1(Ψr − Ψr−1)

]

+ fr + Gr }, (17.5)

with initial conditionsΨ r(0)= 0, r ∈ [1, n]. The coefficientsGr in the right-hand side
of (17.5) comprise higher harmonics in θ but explicit expressions of these coefficients
are unimportant for the asymptotic analysis.

We deduce from (17.5) that each complex-valued envelope Ψ r can be presented
as Ψr (τ, τ0, ε) = ψr (τ ) + εψ(1)

r (τ ) + · · · , τ = εsτ0, with the main slow term ψ r(τ )
satisfying the equation:

dψr

dτ
= −δψr − i

{(
1 − |ψr |2

)
ψr − μ

[
ηr,r+1(ψr − ψr+1) + ηr,r−1(ψr − ψr−1)

]

+ fr } (17.6)

with initial conditions ψ r(0) = 0, r∈ [1, n]. The change of variables

ψr = are
iΔr , ar = |ψr |, Δr = argψr (17.7)
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transforms (17.6) into the following system for the amplitudes ar and the phases Δr :

dar
dτ

= −δar + μ
[
ηr,r−1ar−1 + ηr,r+1ar+1 sin(�r+1 − �r )

] − fr sin�r ,

ar
d�r

dτ
= ar + μ

[
ηr,r−1(ar − ar−1 cos(�r−1 − �r ))

+ηr,r+1(ar − ar+1 cos(�r+1 − �r ))
]

− (
1 − a2r

)
ar − fr cos�r (17.8)

with initial amplitudes ar(0) = 0 and indefinite initial phases Δr (0), r ∈ [1, n].
Note that these initial conditions make the system singular at τ 0 = 0. To avoid this
uncertainty, numerical solutions are constructed from regular Eq. (17.6); in the next
step, the amplitudes and the phases are found by definition (17.7).

The correctness of asymptotic approximations (17.6)–(17.8) is discussed, e.g., in
[12]. In particular, it was proved that |ãr(τ , ε) − ar(τ )| → 0 as ε → 0. The accuracy
of the resonance approximations may also be checked by the comparison of the exact
(numerical) solutions of Eq. (17.3) with their slow approximations (17.8). The results
of numerical simulations are discussed below.

17.3 Critical Parameters of the Non-dissipative Chain

In this section we define the parametric boundaries between non-resonant and reso-
nant oscillations in the non-dissipative system.

Since the coupling response can be interpreted as the driving force for the attached
oscillator, large-amplitude resonant oscillations of the excited oscillator can be con-
sidered as the necessary condition of the emergence of resonance in the neighboring
oscillator. This means that the first critical threshold between resonant and non-
resonant oscillations can be found from the approximate equations of the excited
oscillator, namely,

da1
dτ

= − f sinΔ1,

a1
dΔ1

dτ
= −(1 − μ)a1 + a31 − f cosΔ1 (17.9)

The initial conditions a1(0) = 0, Δ1(0) = −π/2 corresponds to the LPT of oscillator
(17.9) [14]. Equations (17.9) confirm that resonance in oscillator (17.9) may occur
if 0 ≤ μ < 1. Furthermore, the number of particles in the attachment does not change
(in the main approximation) the resonance condition for the excited oscillator.

It was found [13, 14] that the boundary between non-resonant and resonant oscil-
lations of oscillator (17.9) are expressed as
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f1μ = f1

√
(1 − μ)3, f2μ = f2

√
(1 − μ)3 (17.10)

where f1 = √
2/27, f2 = 2/

√
27. It follows from [13] that the LPT depicts an outer

boundary for a set of closed trajectories encircling the stable center on the axis Δ1

= −π at f < f 1μ, while at f > f 1μ the LPT characterizes an outer boundary for the
trajectories encircling the stable center on the axisΔ1 = 0. The transition from small
to large oscillations takes place through instability of the LPT at f = f 1μ.

If the forced oscillator is captured into resonance, then resonant oscillations of the
entire chain can emerge if coupling strengthμ is sufficient to sustain large-amplitude
oscillations of the neighboring oscillator. We recall that the admissible values of the
parameter μ, or, by definition, the values of the frequency detuning s = 1/μ can be
found from the equations for the constant steady states amplitudes and phases of the
non-dissipative system. The steady states ār, Δ̄r satisfy the conditions

dār/dτ = 0, dΔ̄r/dτ = 0.

The first group of equations yields the following stationary phases of the non-
dissipative system:

sin Δ̄1 = 0, sin(Δ̄r − Δ̄r−1) = 0, r ∈ [2, n]. (17.11)

Equations (17.11) have a pair of solutions, namely, Δ̄r = 0 (mod 2π ) and Δ̄r = π

(mod 2π ), r ∈ [1, n]. The analysis of the variational equations linearized near ār, Δ̄r

proves that, in analogy to a single oscillator [14], the phases Δ̄r = 0 correspond to the
stable resonance with the maximal stationary amplitudes. In this case, the stationary
amplitudes are defined by the following equations:

(
a21 − 1

)
a1 + μ(a1 − a2) = f,(

a2r − 1
)
ar + μ(2ar − ar−1 − ar+1) = 0, r ∈ [2, n − 1],(

a2n − 1
)
an + μ(an − an−1) = 0.

(17.12)

It is easy to prove that the maximal solutions of Eq. (17.12) are approximated by
formulas:

ā1 = 1 + f/2 + O(μ f ); ār = 1 + O
(
μr−1 f

)
, r ∈ [2, n]. (17.13)

Solutions (17.13) formally exist even if the coupling coefficient μ is nearly negli-
gible. The purpose is to find the coupling strength μ, which produces the coupling
response sufficient to excite resonance in an arbitrary oscillator under the condition of
resonance in all previous oscillators. We begin with the analysis of the nth oscillator.
To this end, we rewrite the nth equation in (17.12) in the form

a3n − (1 − μ)an = ϕn, ϕn = μān−1, (17.14)
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where ān−1 = 1. Following [16], we analyze the roots of Eq. (17.14) through the
properties of the discriminant Pn = 27ϕ2

n − 4(1 − μ)3. If Pn < 0, then Eq. (17.14)
has 3 different real roots; if Pn = 0, two real roots merge; if Pn > 0, there exists a
single real and two complex conjugate roots [16].

It is easy to demonstrate that the inequality Pn > 0 can be rewritten in the form μ

> f 2μ, or

μ > μcr = 0.25. (17.15)

In the next step, we analyze the steady state of the rth particle under the conditions
of resonance in the (r − 1)th particle and non-resonant oscillations of the (r + 1)th
particle. These conditions imply the following equation for the amplitude ar :

a3r − (1 − 2μ)ar = ϕr , ϕr = μār−1, r ∈ [2, n − 1]. (17.16)

Equation (17.16) is studied through the properties of the discriminant Pr = 27ϕ2
r −

4(1 − 2μ)3 [16]. It is easy to calculate that Pr > 0 at μ > 0.189 for r ∈ [2, n − 1].
One can conclude from (17.10), (17.15) that an admissible parametric domain for a
multi-particle Klein-Gordon chain is determined by the same conditions as for a pair
of coupled Duffing oscillators [13], namely,

f1μ = f1

√
(1 − μ)3, μ > μcr = 0.25. (17.17)

Conditions (17.17) are illustrated in Fig. 17.1. It is seen from Fig. 17.1 that oscilla-
tors with the parameters (f, μ) ∈ D1 perform small non-resonant oscillations; if the
parameters (f,μ)∈D0, then the entire chain is captured into resonance and each oscil-
lator perform large-amplitude resonant oscillations; if the (f,μ) ∈D, then the excited
oscillator is captured into resonance but the dynamics of the attachment should be
investigated separately. Note that conditions (17.17) do not correspond to the exact
boundaries of the resonant domain, as they have been derived under special assump-
tions on the dynamics of the chain. However, conditions (17.17) remain in close
proximity to the results of direct numerical simulations for the exact non-dissipative
system.

Figure 17.2 illustrates the effect of the forcing amplitude on capture into resonance
and escape from it for the 2-particle arrays with the coupling strength μ = 0.25.
From Fig. 17.2, it follows that both particles exhibit small-amplitude non-resonant
oscillations if the parameters (f = 0.15, μ = 0.25) ∈ D1; the excited oscillator
is captured into large-amplitude resonance but the attachment exhibits small non-
resonant oscillations at (f = 0.2, μ = 0.25) ∈ D; both oscillators are captured into
resonance at (f = 0.3, μ = 0.25) ∈ D0. It is important to note that the amplitude a1
in Fig. 17.2b is similar to the LPT of a single oscillator (17.9) but the effect of the
attached oscillator in Fig. 17.2c is negligible only in the initial step of motion, and
both amplitudes tend to their steady states at large times. This effect remains valid
for the chains of arbitrary length.
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Fig. 17.1 Parametric
thresholds (17.17)
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Figure 17.2c demonstrates that capture into resonance of both oscillators takes
place at large times. This allows excluding the initial interval of irregular motion
from the analytical investigation.
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Fig. 17.2 Small-amplitude and large-amplitude oscillations of the 2-particle chain: a (f = 0.15, μ
= 0.25) ∈ D1; b (f = 0.2, μ = 0.25) ∈ D; c (f = 0.3, μ = 0.25) ∈ D0
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Fig. 17.3 Capture into resonance (a) and escape from it (b) of the 4-particle undamped chains with
coupling stiffness μ = 0.25 and μ = 0.09, respectively
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Figure 17.3 depicts the response amplitudes of the 4-particle non-dissipative
chains with parameters (f = 0.4, μ = 0.25) ∈ D0 and (f = 0.4, μ = 0.09) ∈ D
at large times. It follows from Fig. 17.3a that resonant oscillations in the entire
chain can be described as in-phase oscillations near the stationary states (17.13).
Figure 17.3b illustrates resonant oscillations of the excited particle, intermittent cap-
ture into resonance and escape from it of the second particle, and evident escape
from the resonance domain of the distant (third and fourth) particles.

17.4 Resonance Capture in Dissipative Chains

In this part of the paper, we develop an analytical framework to understand the
influence of dissipation on the resonant properties of the oscillator array.We show that
the resulting process in the weakly dissipative Klein-Gordon chain can be presented
as resonant oscillations in the entire short-length chain or in an initial part of the
long-length chain against small-amplitude oscillations in the part of the chain far
removed from the source of energy. The number p of the resonant oscillators can be
interpreted as localization length, beyond which resonant oscillations cannot occur.

First, we find the critical coordinates and parameters from the equations for the
stationary states ār , Δ̄r of (17.8). It was shown in the previous section that the
solutions ār , Δ̄r satisfy the conditions dār/dτ = 0, dΔ̄r/dτ = 0. However, in the
weakly damped resonant system the solutions ār are approximated by equalities
(17.13). In this case, the following approximate equations for the stationary phases
Δ̄r are considered:

−δ + μ sin(Δ̄2 − Δ̄1) − f sin Δ̄1 = 0,
−δ + μ

[
sin(Δ̄r−1 − Δ̄r ) + sin(Δ̄r+1 − Δ̄r )

] = 0, r ∈ [2, n − 1],
−δ + μ sin(Δ̄n−1 − Δ̄n) = 0

(17.18)

provided that δ � 1,
∣∣sin Δ̄1

∣∣ � 1,
∣∣sin(Δ̄r − Δ̄r−1)

∣∣ � 1. Starting from the last
equation, we obtain

sin Δ̄1 = −nδ

f
, sin(Δ̄n−r − Δ̄n−(r+1)) = − (r + 1)δ

μ
. (17.19)

If the rth oscillator is captured into resonance, then the corresponding phase
Δ̄r belongs to the interval I: (−π /2, 0) (see Figs. 17.4 and 17.5). Non-resonant
oscillations of the rth oscillator are accompanied not only by a strong reduction of
the amplitude ār but also by the exit of the phase Δ̄r from the interval I (Fig. 17.6).
The computation of the phase Δ̄r by formulas (17.19) yields

sin Δ̄1 = −δ
n

f
, sin Δ̄r = −δ

(
n

f
+ (r − 1)(2n − r)

2μ

)
(17.20)
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under a given value of dissipation δ. The phase Δ̄r is defined by formulas (17.20)
provided that

∣∣sin Δ̄r

∣∣ � 1, r ∈ [1, n].
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Localization length for a given chain can be found as the maximum value of the
index r satisfying the inequality

δ � δr =
(
n

f
+ (r − 1)(2n − r)

2μ

)−1

. (17.21)

It follows from (17.20), (17.21) that, although the Klein-Gordon chain includes n
identical oscillators, the loss of energy in each oscillator increases with an increasing
number of oscillators n as well as with an increasing distance r of the rth oscillator
from the source of energy. This means that the criteria of resonance, which are
valid for a non-dissipative chain, cannot be directly transferred to a similar weakly
damped chain. Then, it follows from (17.19), (17.20) that the phase shift between
two neighboring oscillators diminishes but the absolute value

∣∣sin Δ̄r

∣∣ grows with
the change of the index r from r = 1 to r = n. Therefore, resonance may arise either
in a short-length chain with a small number of particles or in an initial segment of a
long-length chain consisting of p < n particles. The distant “tail” of the chain with
the oscillator numbers from r = p + 1 to r = n executes small oscillations. In this
case, the index p defines the so-called localization length for resonant oscillations.

Figure 17.4 illustrates resonant dynamics of the 8-particle chain with parameters
f = 0.25, μ = 0.25 and dissipation δ = 0.01. It is seen from Fig. 17.4 that, although
the amplitudes ar tend to their stationary values (17.13) at large times, the respective
phases Δr remain far from zero, thus making approximations (17.20) inaccurate.

Formulas (17.19) give the following values of the stationary phases: cos Δ̄1 =
0947; cos Δ̄2 = 0.847; cos Δ̄3 = 0.777; cos Δ̄4 = 0.533; cos Δ̄5 = 0.445;
cos Δ̄6 = 0.371; cos Δ̄7 = 0.32; cos Δ̄8 = 0.28. These theoretical results are
close to the numerical results presented in Fig. 17.4.

Figure 17.5 illustrates the dynamics of the 4-particle chain with parameters f =
0.4, μ = 0.25, δ = 0.01. Note that critical dissipation δ4 = 0.03 > δ for this chain.
From Fig. 17.5, it is clearly seen that the chain with dissipation δ < δ4 is completely
captured into resonance.

Figure 17.6 demonstrates exit from resonance of the last oscillator in the 4-particle
chainwith parameters f = 0.4,μ= 0.25 and dissipation δ = 0.05 > δ4. FromFig. 17.6,
it is seen that the first three oscillators (r = 1, 2, 3) are resonant but the 4th oscillator
is non-resonant.

Finally, we consider the appearance of resonance and escape from it in the 8- and
12-particle arrays with parameters f = 0.25, μ = 0.12, δ = 0.005. It follows from
definition (17.21) that δ1 = 0.0312 > δ, δ8 = 0.003 < δ for the 8-particle chain but
δ1 = 0.021 > δ, δ12 = 0.002 < δ for the 12-particle chain. Also, we note that the
parameters (f, μ) ∈ D. This implies resonant oscillations of the exited oscillator but
the behavior of the attachment should be studied separately.

The results presented in Fig. 17.7 indicate that the oscillators close to the source
of energy are resonant but the distant oscillators are non-resonant in both cases. Since
the resonant amplitudes fluctuate near the value ār = 1, Fig. 17.7a demonstrates only
the amplitudes a1, a2, a7 and the non-resonant amplitude a8 in the 8-particle chain.
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Fig. 17.7 Dynamics of the 8-particle (a) and 12-particle (b) chains with parameters f = 0.25, μ =
0.12, δ = 0.005

Similarly, Fig. 17.7b demonstrates resonance in the first and second oscillators (r =
1, 2) and exit from resonance of the distant oscillators in the 12-particle chain.
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Chapter 18
Asynchronous Modes of Beams on Elastic
Media Subjected to Varying Normal
Force: Continuous and Discrete Models

Carlos E. N. Mazzilli and Eduardo A. R. Ribeiro

Abstract The asynchronous vibration modes of a prismatic beam on elastic media
under varying normal force are addressed for both continuous and discrete models.
For the latter ones, with three DOF (degrees of freedom), the classical linear analysis
was used to discuss the vibration modes, whereas for the continuous model quasi-
Bessel modes are proposed. In the 3-DOF model, pre-stressing is force-imposed,
while in the continuous one it is applied through a displacement imposition. Even if
bothmodels are calibrated in order to lead to the “same” asynchronous vibrationmode
in linearised formulations, it is seen that the differently assumed boundary conditions
lead to distinct non-linear behaviour: softening for the 3-DOF and hardening for
the continuous model. Classic linear modal analysis for associated finite-element
models is addressed for the sake of comparison and to bring about the issue of modal
accumulation, which seems to be an accompanying phenomenon to that of modal
asynchronicity.

Keywords Asynchronicity · Asynchronous modes · Quasi-Bessel modes · Modal
accumulation

18.1 Introduction

The classical linear normal modes of non-gyroscopic conservative systems are
characterised by stationary waves, in the sense that the system’s physical coordi-
nates oscillate with the same frequency and phase, attaining their maxima/minima
simultaneously. Such classical modes are, therefore, periodic synchronous motions.
Rosenberg’s extension to non-linear systems led to the so-called “similar modes”,
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which basically share the same synchronicity properties with the classic linear
modes [10–12]. Later, Shaw and Pierre proposed the invariant manifold defini-
tion for the non-linear realm [14–16], according to which non-linear normal modes
are free-vibration motions that take place in a 2D invariant manifold in the phase
space, tangent to the respective linearised-system eigenplane in the equilibrium
point. For conservative systems, such non-linear modes still yield periodic motions.
However, when non-conservative ones are regarded, the motions might not be
characterised by stationary waves anymore, due to phase differences among the
generalised displacement-velocity fields. In such scenario, the motions are referred
to “non-similar” modes.

With regard to asynchronicity in modal analysis, there are basically two lines of
investigation. In the first approach, it is assumed that different parts of the physi-
cal system (with non-null measure, if it is continuous) display different frequency
contents. Yet, since the frequency contents of an oscillation are obtained through
Fourier’s transform, which is an intrinsically linear operator, this approach seems to
lead to a “linear definition” of asynchronicity, posing restrictions to its application
to the non-linear modal analysis. A second approach can alternatively be envisaged:
asynchronous modes would simply be localised ones, in which parts of the system
(with non-null measure, if it is a continuous one) are at rest (with zero frequency),
while other parts oscillate with a non-null frequency ω. Hence, different frequency
spectra would already co-exist. Obviously, the (even linear) combination of a number
of synchronous and asynchronous modes, each one with its own frequency, may give
origin to a generic asynchronous response, which, as in the first approach, will be
characterised by different frequency spectra in different parts of the physical system.
Furthermore, asynchronous modes can also be understood as classical modes of a
modified system, so that virtual constraints have been “added” to the original one
in order to prevent parts of it to move. Of course, the reactions associated to these
virtual constraints should be null, so that themodified and the original systemswould
be mechanically equivalent. This point of view allows to determine asynchronous
modes as those that cause the vanishing of the virtual reactions.

In what follows, the concept of asynchronous modes of vibration adopted is that
one associated to the localisation phenomenon, as already been recently explored
in the literature [3–6, 8, 9]. The asynchronous modes of a pre-stressed prismatic
beam on elastic media of constant stiffness, subjected to varying normal force, are
addressed in this paper, in addition to a simplified 3-DOFmodel. Possible application
of the reported results is expected to be found in the dynamics of guyed masts, guyed
vertical offshore risers and pre-stressed cylindrical shells subjected to dead weight
(resorting to the classical analogy with beams on elastic foundation [17]).

The 3-DOFmodel depicted in Fig. 18.1a, with lumpedmasses and rigid rods inter-
connected by displacement and rotational linear elastic springs, has been thoroughly
studied in [9], both in the linear and non-linear analysis, and the system parame-
ters were adjusted to comply with the admissibility conditions for the occurrence
of asynchronous modes. Some of the results reported in [9] will be recast in what
follows.
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(a) 3-DOF model (b) Infinite-DOF model

Fig. 18.1 Discrete and continuous models

Also, a model with infinite DOF is further considered (Fig. 18.1b), for which
the so-called Bessel-like modes (according to [7]) are imposed in part of the beam
length (for 0 ≤ x ≤ ξL and 0 < ξ < 1), the complementary part being at rest (for
ξL ≤ x ≤ L and 0 < ξ < 1). Parameters of the continuous system are correlated
with those of the corresponding 3-DOF model and carefully chosen for the sake
of satisfying the condition for a nearly “equivalent” (localised) asynchronous free-
vibrationmotion. The corresponding static normal force diagrams are also illustrated
in Fig. 18.1.

18.2 Asynchronous Modes of Vibration of the Continuous
Model

Figure18.2 illustrates Bernoulli–Euler kinematics for the beam theory, from which
the following coupled non-linear equations of motion, for a linearly elastic beam
with Young’s modulus E , can be written [7]:

ρAü −
[
E A

(
u′ + 1

2
w′2

)]′
+ p = 0 (18.1)

ρAẅ + E Iw′′′′ −
[
E A

(
u′ + 1

2
w′2

)
w′

]′
+ κw = 0 (18.2)
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Fig. 18.2 Bernoulli–Euler
kinematics for beam theory

in which ρ is the beam material density, A and I are respectively the cross-section
area and moment of inertia, p is the uniformly distributed axial load, κ is theWinkler
medium stiffness coefficient, and u and w are respectively the longitudinal and the
transversal displacements. Over dots mean differentiation with respect to time t and
primes mean differentiation with respect to the axial coordinate x .

Using the classical approximation of negligible inertial axial forces (ρAü = 0),
the normal forces T (x, t) are readily evaluated:

T (x, t) =
[
E A

(
u′ + 1

2
w′2

)]
= Tb(t) + px = Tt (t) − pL + px (18.3)

where Tb(t) = T (0, t) and Tt (t) = T (L , t) are respectively the normal forces at the
bottom and top sections. Integration of (18.3) from x = 0 to x = L when ρAü = 0
leads to:

T (x, t) = E A

L
u(L , t) − pL

2
+ px + E A

2L

∫ L

0

[
w′(x, t)

]2
dx (18.4)

Imposing the boundary condition u(L , t) = u(L , 0), i.e. constant pre-stressing
applied via displacement imposition at time t = 0, it comes out:

T (x, t) =
T (x,0)︷ ︸︸ ︷

E A

L
u(L , 0) − pL

2
+ px + E A

2L

∫ L

0

[
w′(x, t)

]2
dx =

T (x, 0) + E A

2L

∫ L

0

[
w′(x, t)

]2
dx

(18.5)

Finally, from (18.2) and (18.5), the de-coupled equation of motion in the transver-
sal direction is obtained, in which the notation T (x) = T (x, 0) has been used for
short:

E Iw′′′′ − T (x)w′′ − pw′ + κw − E A

2L
w′′

∫ L

0

[
w′(x, t)

]2
dx + ρAẅ = 0 (18.6)
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Single-mode dynamics is next pursued, assuming variable separation in the form:

w(x, t) = W (x) sin(ωt) (18.7)

whereW (x) is the modal shape andω is the modal frequency. Of course, full variable
separation is not achieved using (18.7) in the non-linear Eq. (18.6), because of the
non-linearity. Yet, an approximate solution is searched making use of a temporal
Galerkin projection over a cycle, leading to:

E IW ′′′′ − T (x)W ′′ − pW ′ + κW − 3E A

8L
W ′′

∫ L

0
W ′2dx − ρAω2W = 0 (18.8)

Following [13], yetwithin the non-linear realmhere, the so-calledfictitious normal
force N (x) is introduced through:

E IW ′′′′ − 3E A

8L
W ′′

∫ L

0
W ′2dx = −N (x)W ′′ (18.9)

For the sake of grasping themeaning of this fictitious normal force, it is interesting
to evaluate it from its “definition” in (18.9), when the classical linear modes are used:

Wn(x) = W0n sin(
nπx

L
) (18.10)

(with n ∈ Z
+ designating the mode number) leading to:

N (x) ∼= N0n =
(nπ

L

)2
E Ieq (18.11)

E Ieq = E I

(
1 + 3η2

n

16

)
(18.12)

ηn = W0n

r
(18.13)

r =
√

I

A
(18.14)

Taking (18.9) into (18.8), an “equivalent” cable equation is obtained, in which the
true normal force T (x) is replaced by T (x) + N (x):

[T (x) + N (x)]W ′′ + pW ′ + (
ρAω2 − κ

)
W = 0 (18.15)

The solution of (18.15) can be written in terms of the Bessel functions of first
and second kind and zero order. Yet, in this paper it is resorted to a quasi-Bessel
solution, which can be accomplished from a perturbation procedure explained in [7],
according to which the natural frequency and the mode n are given by:
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ωn = 1√
ρA

√
κ +

[nπ

2L

(√
Ttn + √

Tbn
)]2

(18.16)

Wn(x) = 4

√
Tbn

Tbn + px
sin(z − zb) (18.17)

z(x) =
√
Tbn + px√
Ttn − √

Tbn
nπ (18.18)

zb = z(0) =
√
Tbn√

Ttn − √
Tbn

nπ (18.19)

If it is assumed that a localised mode exists along the bottom part of length ξL ,
where 0 < ξ < 1, the aforementioned quasi-Bessel solution can be adapted in the
following way:

ωn = 1√
ρA

√
κ +

[
nπ

2ξL

(√
Tξn + √

Tbn
)]2

(18.20)

Wn(x) =
⎧⎨
⎩

4

√
Tbn

Tbn + px
sin(z − zb) for 0 ≤ x ≤ ξL

0 for ξL ≤ x ≤ L
(18.21)

z(x) =
√
Tbn + px√

Tξn − √
Tbn

nπ (18.22)

zb = z(0) =
√
Tbn√

Tξn − √
Tbn

nπ (18.23)

18.3 Example

For the sake of an example, Fig. 18.3 depicts the asynchronous modes (with n = 2)
for the models with infinite and three DOF, respectively, with the following system
parameters:

kt = 1.2 × 107 Nm−1; kr = 4.8 × 107 Nm; E I = 109 Nm2; κ = 45 000 Nm−2

m = 184 245 kg; ρA = 691 kgm−1; Tt = 370 030N; g = 10ms−2

L = 800m; � = 200m; ξ = 0.75

Establishing the “equivalence” between discrete and continuous models is by no
means a trivial task. It is expected that, for an effective comparison, the resulting
values of the systems’ parameters in both models be the same. In fact, correlat-
ing the mass and the transversal stiffness in both systems is straightforward, since
the distributed mass ρA and the Winkler-medium stiffness κ are uniformly spread
throughout the structure, so that:
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Fig. 18.3 Asynchronous mode for the continuous and 3-DOF models

ρAL =
3∑

i=1

mi = 3m (18.24)

κL =
3∑

i=1

kt,i = 3kt (18.25)

On the other hand, equating the bending stiffness product E I and the concentrated
stiffness of rotational springs kr is not trivial, because such parameters have different
natures: E I is related to the proportionality between the bending moment M and the
cross-section angle variation rate ϕ′, while kr stands for the proportionality between
such amoment and the rotational spring deformationϕ at a given point. Therefore, the
bending stiffness product requires smooth deflections, while the discrete rotational
stiffness accepts discontinuities. However, as a first approximation, the elastic curve
equation (for beams with negligible axial force) and the moment for one rotational
spring are regarded:

|M | = E I |w′′| ≈ E I |ϕ′| (18.26)

|M | = kr |ϕ| (18.27)

Equating (18.26) and (18.27) and considering that � ≈ dx for a discrete model with
a considerably large number of DOF, the following expression is obtained:

E I = μkr� (18.28)



210 C. E. N. Mazzilli and E. A. R. Ribeiro

(a) 3-DOF model (b) Infinite-DOF model

Fig. 18.4 Non-linear frequency-amplitude relationship

whereμ = 0.1042 stands for a correcting dimensionless factor, calibrated according
to the second mode frequency, so that E I = 109 Nm2. Such a factor must be defined
so that the natural frequency of the second quasi-Bessel mode, for the continuous
model of a beam with a span of 0.75L (ω = 8.045 rad s−1), be approximately the
same as the natural frequency for the 3-DOF model (ω = 8.056 rad s−1), recalling
that 0.75L is precisely the part of this model set into vibration in the localised
mode. Figure18.3 indicates that the normalization of both modes with respect to
the maximum amplitude displays a non-negligible difference in the modal shapes,
both in terms of the functional values in each abscissa and of the localisation of
their crests. Of course, one should not expect more from the 3-DOF model than a
qualitative identification of the asynchronicity phenomenon. This discussion will be
recast shortly, when finite-element models with many more degrees of freedom will
also be discussed.

Before this is pursued, it is interesting to see the effect that different forms of
pre-stressing application have in the post-critical behaviour of the non-linear asyn-
chronous modes. It is recalled that in the 3-DOF model such a pre-stressing was
imposed through a constant axial force in one of the beam ends, whereas in the con-
tinuous model it was imposed through a fixed displacement at the same beam end.
These distinctly assumed boundary conditions lead to different behaviour: soften-
ing for the former (as discussed in [8, 9]), Fig. 18.4a, or hardening for the latter (as
discussed in [7]), Fig. 18.4b.

Now, a finite-element model with 97 beam elements and properties consistent
with those of the continuous model is discussed and a classical modal analysis is
carried out with ADINA [1]. It is remarkable that its first modes are asynchronous,
localisation being more intense in the lower modes, as seen in Fig. 18.5. Moreover,
the associated modal frequencies are squeezed in a very small range (from 7.60 to
7.95 rad s−1, therefore very close to the second-mode estimations of both the 3-DOF
and the continuous models).

These results suggest that a combination of these modes of the finite-element
model would be able to reproduce the single second mode of the continuous model.
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(a)Mode 1 (b)Mode 2 (c) Mode 3 (d)Mode 4 (e)Mode 5

Fig. 18.5 Finite-element modes from ADINA

Furthermore, the asynchronicity phenomenon is accompanied here by another phe-
nomenon, namely that of the modal accumulation. The question is: are the two phe-
nomena (asynchronicity and modal accumulation) somehow related? In other words,
is it to be expected that asynchronicity would be accompanied by modal accumu-
lation and would modal accumulation be an indicative of asynchronicity? Answers
to these questions go beyond the limits of this initial peering into this sort of prob-
lems. Nevertheless, it is to be recalled that modal accumulation has been reported
in cylindrical shells [2] and that beams on elastic media, such as those addressed in
this paper, are lower hierarchy models for these structures, as far as axi-symmetric
behaviour is concerned, resorting to the already mentioned analogy [17].

18.4 Concluding Remarks

The 3-DOF model should be regarded as a low-hierarchy one, with respect to the
infinite-dimensional continuous model and the finite-element models. Nevertheless,
the former was able to qualitatively capture asynchronous modes of vibration that are
also seen to exist in the higher-hierarchy ones. A reasonable quantitative matching
can also be said to happen with regard to the linear natural frequencies of the modes
studied, provided a careful calibration of system parameters is carried out, although
the modes have different maxima at different positions. This discrepancy may be
explained here by the combination of several localised modes, as seen in the finite-
element model.More remarkably, it is the occurrence of modal accumulation, arising
a questioning of a possible link between the phenomena of modal asynchronicity and
modal accumulation.
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Chapter 19
Modelling and Analysis of Bifurcation
Dynamics of Two Coupled Pendulums
with a Magnetic Forcing

Krystian Polczyński, Adam Wijata, Grzegorz Wasilewski, Grzegorz Kudra
and Jan Awrejcewicz

Abstract The paper presents a novel mechatronic system comprised two flexibly
coupled pendulums forced by a repulsive magnetic field. The dynamics of the system
is investigated theoretically and experimentally. General equations of motion includ-
ing magnetic interaction are derived as well as the potential energy of the system
is presented. Bifurcation analysis proves presence of periodic, quasi-periodic and
chaotic types of the system motion. Chaotic attractors and their neighboring regular
responses are shown, coexisting of the regular attractors is detected too and basins
of attraction for these regular solutions are calculated numerically in terms of initial
conditions.

Keywords Pendulum · Modelling · Bifurcation · Chaos · Magnetic forcing

19.1 Introduction

In engineering and physics there are three fundamental fields which are useful. The
first one is gravitational field and it occurs between particles endowed with a mass.
The second and the third ones are electric and magnetic fields, respectively. These
two last fields have a very similar character of interaction, moreover they induct and
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coexist mutually. Mechatronic systems often use advantages of electric andmagnetic
fields.

Fradkov et al. [1] have studied problems of excitation and synchronization of
oscillations in system of two coupled double pendulums with interacting magnets.
The algorithms for typical analysis, design problems and synchronization have been
described. Speed-gradient approach has been used to obtain pulse-width modulate
algorithm and excitability index of the system. Therefore they have justified that the
behavior of a system of controlled single pendulum may not exhibit chaos regarding
behavior of one double pendulum [2].

In works [3, 4] the coupled pendulum systems forced by magnetic field have been
investigated numerically and experimentally. Bifurcation diagrams, phase plots and
Poincaré sections have revealed periodic, quasi-periodic and chaotic behaviors in the
systems. A novel experimental model of a magnetic torque has been also presented
and confronted with experimental data.

Studies on the single pendulum embedded in a repulsive magnetic field and sinu-
soidally excited are presented in papers [5, 6]. In the first reference, the characteris-
tic features of non-linear dynamics such as bistable states, hysteresis and amplitude
jumps are displayed. The features have been justified theoretically and experimen-
tally. In the second reference we can read that parametric damping without periodic
fluctuationmay amplify ormitigate chaoswhereas parametric dampingwith periodic
fluctuation can extend a region of regular motion.

Khomeriki [7] has considered a damped driven pendulum with magnetic driven
force. Lyapunov exponents for the system have been calculated by using numerical
simulations and compared with a theoretical growth rate. Conclusion is that chaotic
motion of the system has occurred onlywhen the conditions for parametric resonance
are fulfilled.

Tran et al. [8] have developed system of pendulum driven by DC motor and
subjected to steadymagnetic field. The coefficients of the system have been validated
for a one drive frequency and can be used to predict the behavior of the system at
a different drive frequency. The chosen frequency has not corresponded to the case
of regular motion of the system. Both quantitatively and qualitatively the ability to
predict the structure of chaotic attractors (outside of the regions in which the models
were fit) has been demonstrated.

Mann [9] has examined the non-linear dynamics of a bistable experiment com-
prised a pendulum and two magnets. The shape of the potential energy curve has
been determined experimentally. Studies of parametric excitation yield that a poten-
tial well escape has interrupted a series of period-doubling cascades Sensitivity to
initial conditions has been observed and investigated by computing basins of attrac-
tion.
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19.2 Experimental Apparatus

Our experimental stand (see Fig. 19.1) consists of two coupled pendulums (1) and
(2), where pendulum shafts (3) are clutched by an elastic cuboidal rubber element (4).
The pendulum marked as 1 possesses a brass element (5a), whereas the pendulum
marked as 2 has a neodymium magnet (5b). Coils (6) generate alternating magnetic
field, during our investigation only the coil that lies below pendulum 2 was active.
Disk (7) is an element used for measurement of magnetic torques. The stand is made
of non-magnetic materials to eliminate a distortion of the magnetic field between the
coil and the magnet.

A control current signal which occurs inside the coil is shown in Fig. 19.2 and it
is characterized by square shape with a variable frequency f and a duty cycle w.

The tests of the system dynamics have been conducted for a coil current amplitude
equal to I2a = 1.5 A.

Fig. 19.1 A stand of coupled pendulums: 1, 2-pendulums; 3-shafts; 4-elastic element; 5-
magnet/brass element; 6-coils, 7-disk

I2a

I2(t)

t

τz τw

τ

Fig. 19.2 A current signal which flows in a coil; τz—high state; τw—low state; f =
1/τ—frequency; w = (τz/τ) · 100%—duty cycle
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19.3 System Description and Equations of Motion

In this section, there is presented a physical and a mathematical model of the exper-
imental rig described in Sect. 19.2. The physical model of the investigated system is
shown in Fig. 19.3. Terms TD1 and TD2 describe damping torques for each pendulum
and they are a sum of viscous damping and dry friction. The coefficients of viscous
damping, which originates from bearings and air resistance, are denoted as c1 and c2,
respectively to the pendulum 1 and 2, whereas the elastic element is characterized
by a viscous damping coefficient ce and stiffness ke. The coefficients cB1 and cB2
represent a dry friction inside the bearings. The torque Tmag2 introduces a magnetic
excitation. Gravitational forces mg are put in the center of mass of each pendulum.
The distances of these centers from the axes of rotation are denoted by s. Parameters
J1 and J2 are the moments of inertia of the pendulums.

The governing equations of the investigated system are

J q̈ + C(q̇) + K (q) = P(q, t), (19.1)

where

q =
{

ϕ1

ϕ2

}
, q̇ =

{
ϕ̇1

ϕ̇2

}
, q̈ =

{
ϕ̈1

ϕ̈2

}
, J =

[
J1
0

0
J2

]
,

C(q̇) =
{
c1ϕ̇1 + cB1

2
π
arctan(ε · ϕ̇1) + ce(ϕ̇1 − ϕ̇2)

c2ϕ̇2 + cB2
2
π
arctan(ε · ϕ̇2) + ce(ϕ̇2 − ϕ̇1)

}
,

K (q) =
{
mgs sin ϕ1 + ke(ϕ1 − ϕ2)

mgs sin ϕ2 + ke(ϕ2 − ϕ1)

}
, P(q, t) =

{
0

Tmag 2(ϕ2, t)

}
. (19.2)

Fig. 19.3 Scheme of
coupled pendulums system
with the forces and torques
acting on it, where: 1,
2-pendulums; 3-shafts;
4-elastic element;
5-magnet/brass element;
6-coils, 7-disk
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Fig. 19.4 Comparison of
theoretical function
Mmag2(ϕ2) (blue line) and
experimentally obtained data
point (orange dots)

The parameter ε is a large number used in mathematical model regularization.
Vector P(q, t) comprises excitation torque Tmag(ϕ2, t)which is function of time and
angular position of pendulum 2. We assumed that the form of this excitation is

Tmag 2(ϕ2, t) = Mmag 2(ϕ2) · 2

π
arctan(ε · I (t)), (19.3)

where Mmag2 is a torque of magnetic forces, which depends on an angular position
of the pendulum 2. We have experimentally evaluated Mmag2 values for a constant
coil current I(t) = I2a = 1.5 A. In work [3] we have developed a special formula to
approximate obtained data points, the formula is as follows:

Mmag 2(ϕ2) = a · 2

π
arctan(ε · ϕ2) · exp

⎡
⎣−

(
2
π
arctan(ε · ϕ2) · ϕ2 + b

c

)2
⎤
⎦,

(19.4)

where the maximum value of the function is a point with coordinates (a, −b) and
parameter c controls a shape of function. Figure 19.4 shows the obtained data points
of Mmag2 and the fitted function (19.4).

19.4 Potential

Switching on and off an electrical coil underneath the pendulum with a magnet
creates a non-stationary potential. The potential switches between two states: simple
gravitational potential (one well) and the one with added magnetic interaction (two-
well), which is shown in the Fig. 19.5. Magnetic interaction divides gravitational
potential well into two (for ϕ ∈ (−π, π)), which is the reason for rich dynamical
behaviour of the magnetic pendulum system [8].

In our system the pendulumwithmagnet is coupled with the second pendulum via
a rubber element. This elastic coupling also modifies the summary potential of the
system. Its influence increases according to the difference between the pendulums’
angles, since the elastic potential is equal to 1

2k(ϕ1 − ϕ2)
2. The way elastic element



218 K. Polczyński et al.

Fig. 19.5 Gravitational (blue) and magnetic (red) potential for a single magnetic pendulum system

Fig. 19.6 Cross sections of the overall systems potential

influences the overall potential is illustrated in the Fig. 19.6, where cross section for
ϕ1 = 0 and ϕ1 = −ϕ2 are shown. In order to prevent the system from getting stuck
in the well 1 (as marked in the Fig. 19.6) we have limited the coil current to 1 A.
For higher values of the current round angle revolutions of the pendulums have been
observed.

The system which is stuck in the potential well 1 is shown in the Fig. 19.7. Plot
of the summarized gravitational, magnetic and elastic potentials is presented in the
Fig. 19.8.

19.5 Bifurcation Dynamics

In order to examine the system bymeans of numerical simulations, following param-
eters have been identified for the mechanical system: J1 = 6.8025 · 10−4 kgm2,
J2 = 6.7101 · 10−4 kgm2, mgs = 0.0578Nm, ke = 145.073 · 10−4 Nm−1, c1 =
3.1·10−5 Nm, c2 = 7.2·10−5 Nm, ce = 13.736·10−5 Nm, cB1 = 27.523·10−5 Nm,
cB2 = 27.888·10−5 Nm; and for themagnetic model (for Ia2 = 1A): a = 0.287684,
b = −0.107082, c = −0.095541.
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Fig. 19.7 Pendulums stuck
in the potential well

Fig. 19.8 Overall systems
potential V = f (ϕ1, ϕ2)

Dynamics of the system has been investigated in terms of bifurcation produced by
the increasing and decreasing excitation frequency. The amplitude of the electrical
current signal has been set to 1Aand the signal duty cycle has been set to 30%.Results
of the carried out numerical and experimental investigation in awide frequency range
(1.5 ÷ 6Hz) are illustrated and compared in the Fig. 19.9.

The algorithm used for a numerical computation of the bifurcation diagram fol-
lows a stable solution, i.e. initial conditions for consecutive simulations are taken
from the results of the previous ones. On the other hand, experimental diagrams
have been obtained by feeding the system with an excitation signal with a fixed
amplitude, duty cycle and a frequency that has been linearly growing (or decreasing)
with a relatively small slope (around 2 × 10−3 Hz s−1). There are several points of
similarity between numerically and experimentally generated diagrams. Both show
potentially chaotic and periodical solutions. One can observe the coincidence of
the frequency zones of chaotic, period-1 and period-2 orbits. However, the zones are
slightly shifted. A possible reason for that are long transitional processes, which have
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Fig. 19.9 Comparison between experimental and numerical bifurcation diagrams for the forced
pendulum with a magnet

not been omitted in our experimental study. The same explanation can be applied to
the lack of the period-6 solution around 5.1Hz frequency in the experimental results.
However, this solution has been verified, by an experiment with constant-frequency
excitation signal, what is shown in the Fig. 19.10.

One can see in the Fig. 19.9, that bifurcation dynamic of the studied system is
characterized by alternating regions of chaotic and regular motion. Cross sections of
the bifurcation diagram have been prepared and analysed for the consecutive chaotic
and regular zones (see Figs. 19.11 and 19.12). One can observe how chaotic attractors
reflect a near stable solution. It is visible, that Poincare sections of the system in the
chaotic regime orbits the points from nearby (frequency-wise) periodic solutions.

Fig. 19.10 Phase plots and
Poincaré sections for
period-6 motion obtained
numerically (a) and
experimentally (b) for 5.1Hz
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Fig. 19.11 Chaotic attractors (2.43Hz, 2.96Hz) and nearby periodic solutions (2.75Hz, 3.1Hz)

Fig. 19.12 Chaotic attractors (4.81Hz, 5.6Hz) and nearby periodic solutions (4.91Hz, 5.7Hz)
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Fig. 19.13 a Symmetrical periodic solutions and b basins of attraction of them for excitation
frequency equal to 3.5Hz

The bifurcation diagrams from the Fig. 19.9 shows, that there are some regions
where different solutions coexists. For example, between 3 and 4Hz there are two
types of a periodic solution. Figure 19.13a shows that Poincare section and phase
plots of themhave symmetrical structures, whatwas expected, since two symmetrical
solutions are typical for pendulum systems.

We have tried to found regions of existence of these two solutions in terms of
initial conditions. Therefore basins of attraction of the solutions, which are shown in
the Fig. 19.13a, were numerically computed. Initial conditions have been changed in
ϕ1−ϕ2 plane, while ϕ̇1 and ϕ̇2 have been set to zero. Corresponding plot is reported in
the Fig. 19.13b. Obtained results show that it is not easy to predict the solution variant
basing on applied initial conditions. Indeed the system seems to be very sensitive
in this frequency regime as far as initial conditions are concerned, although some
patterns and relatively large individual basins can be distinguished.

19.6 Conclusions

The novel magneto-mechanical system with two coupled pendulums has been stud-
ied. The system is non-autonomous due to time-dependent and angular-position-
dependent excitation, which originates from repulsive magnetic interaction between
an electrical coil and a permanent magnet, which is mounted at the end of one pen-
dulum. The combination of a magnetic interaction and elastic coupling results in a
multi-well systems potential, which is likely the reason for rich non-linear dynamics
of the system. Magnetic interaction modelling has been based on experimentally
obtained data. The proposed system’s model has proved its validity in terms of
bifurcation diagrams, phase plots and Poincaré section comparison between exper-
imentally and numerically obtained results. Proposed system may be the starting
point in modelling and analysis of more elaborate magneto-mechanical systems like
electric stepper motors with an elastic rotor or electric motors joined with a flexible
element i.e. an Oldham clutch. Our so far carried out analysis of the system does not
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account phenomena like synchronization and the transfer of energy, nevertheless it
seems interesting for the future investigation topics.
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Chapter 20
Dynamics of a System of Two Coupled
MEMS Oscillators

Richard H. Rand, Alan T. Zehnder, B. Shayak and Aditya Bhaskar

Abstract We investigate the dynamics of two limit cycle MEMS oscillators con-
nected via spring coupling. Each individual oscillator is based on a MEMS structure
which moves within a laser-driven interference pattern. As the structure vibrates, it
changes the interference gap, causing the quantity of absorbed light to change, pro-
ducing a feedback loop between the motion and the absorbed light and resulting in
a limit cycle oscillation. A simplified model of this MEMS oscillator, omitting para-
metric feedback and structural damping, has been previously presented (Rand et al in
Proceedings of 9th European Nonlinear Dynamics Conference (ENOC 2017), 2017,
[3]). For the coupled system, a perturbation method is used to obtain a slow flow
which is investigated using AUTO and numerical integration. Various bifurcations
which occur as a result of changing the coupling strength are identified.

Keywords Coupled oscillators · MEMS · Bifurcations · Perturbations

20.1 Introduction

Thiswork ismotivated by a type ofMEMSdevice inwhich a laser is used to determine
the motion of the device by interference. The MEMS device is typically a clamped-
clamped beam fabricated from a thin layer of Si and suspended above a Si substrate.
Laser light is focused onto the beam surface and is partially reflected, absorbed and
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transmitted. The transmitted portion is further reflected from the substrate and will
interfere with the reflected light to form a cavity interferometer. The net effect is that
both the reflected and absorbed light are periodic functions of the gap between the
beam and the substrate. Thus, vibration of the beam will modulate both the reflected
and absorbed light. The reflected light, directed to an AC coupled photo diode is used
to transduce the motion of the MEMS device.

The absorbed portion of the laser light causes heating of the MEMS device by the
laser beam, resulting in the deflection of the device, which then changes the amount
of heat absorbed, with the net effect of feedback between the motion and the thermal
heating, which can produce limit cycle (LC) oscillations.

We are interested in studying the dynamics of a system of such coupled LCoscilla-
tors. Each one consists of an elastic system,modeled as a second order ODE, coupled
to a first order ODE representing the heat transfer due to the laser heating effects.

A system of this kind was studied by Aubin et al. in [1], and may be written in
the following form:

z̈ + ż

Q
+ (1 + CT )z + βz3 = DT, (20.1)

Ṫ + BT = HP[a + γ sin2 2π(z − z0)] (20.2)

Here z is the displacement of a mechanical oscillator and T is its temperature due
to laser illumination. In the mechanical equation Q is the quality factor, C is the
stiffness change due to temperature, D is the displacement due to temperature and
β is the coefficient of the cubic nonlinearity. In the thermal equation the quantities
a and γ represent the average and contrast of the absorption of laser power, P is
the laser power, H and B represent the thermal mass and heat loss rate. The offset,
z0, models the equilibrium position of the oscillator with respect to the interference
field created by the oscillator/gap/substrate stack. This complicated model, which
includes effects of damping, stiffness change due to heating, periodic dependence of
light absorption on interferometric gap, and nonlinearity, was shown to support LC
oscillations.

In a recent paper, Zehnder et al. [2] considered a coupled system of two such LC
oscillators:

z̈1 + ż1
Q

+ (1 + CT1)z1 + βz31 + V 2(z1 − z2)

1 + |z1 − z2|p = DT1 , (20.3)

Ṫ1 + BT1 = HP[a + γ sin2(2π(z1 − z0))] , (20.4)

z̈2 + ż2
Q

+ κ(1 + CT2)z2 + βz32 + V 2(z2 − z1)

1 + |z2 − z1|p = DT2 , (20.5)

Ṫ2 + BT2 = HP[a + γ sin2(2π(z2 − z0))] . (20.6)

Here the V 2 terms represent electrostatic fringing field coupling, see Fig. 20.1.
Numerous interesting effects were observed in this numerical study of the gov-

erning differential equations, including regions of 1:1 locking, and more generally
of m:n locking. However, these differential equations are very complicated and it
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Fig. 20.1 A system of two coupled MEMS oscillators

is hard to tell which terms are responsible for the changes in qualitative dynamical
behavior. Thus, in order to better understand the dynamics, we posited a simpler
system which omitted effects such as damping, nonlinearity and stiffness changes
due to heating [3]:

z̈ + z = T and Ṫ + T = z2 − pz (20.7)

To produce the simplest possible model, all constants have been taken equal to unity.
The parameter z0 in Eqs. (20.3)–(20.6) is referred to as p and takes on a representative
value of 0.1. Numerical integration shows that this system supports a limit cycle [3].

In the present study, two oscillators of the form of Eq. (20.7) are considered,
connected via spring coupling. The equations of motion are:

z̈1 + z1 = T1 + α(z2 − z1) and Ṫ1 + T1 = z21 − pz1 (20.8)

z̈2 + z2 = T2 + α(z1 − z2) and Ṫ2 + T2 = z22 − pz2 (20.9)

where α is a positive parameter, the coupling strength. The spring coupling is anal-
ogous to the electrostatic fringing field of Eqs. (20.3), (20.5), see Fig. 20.1.

20.2 Perturbations

In order to prepare Eqs. (20.8), (20.9) for treatment by perturbations, a parameter ε

is introduced as follows:

z̈1 + z1 = εT1 + ε2α(z2 − z1) and Ṫ1 + T1 = z21 − εpz1 (20.10)

z̈2 + z2 = εT2 + ε2α(z1 − z2) and Ṫ2 + T2 = z22 − εpz2 (20.11)
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We use a three variable perturbation method (also known as multiple scales) [4],
which involves replacing the independent variable t with three new variables, ξ = t ,
η = εt (slow time) and ζ = ε2t (very slow time). The chain rule gives:

dz

dt
= ∂z

∂ξ

dξ

dt
+ ∂z

∂η

dη

dt
+ ∂z

∂ζ

dζ

dt
= ∂z

∂ξ
+ ε

∂z

∂η
+ ε2

∂z

∂ζ
(20.12)

d2z

dt2
= ∂2z

∂ξ 2
+ +2ε

∂2z

∂η∂ξ
+ ε2

(
∂2z

∂ζ∂ξ
+ ∂2z

∂η2

)
(20.13)

Next all 4 variables z1, T1, z2, T2 are expanded in power series in ε and are substituted
into Eqs. (20.10), (20.11). After collecting like powers of ε, we obtain:

z1 = A(ζ ) cos ξ + B(ζ ) sin ξ + O(ε) and z2 = C(ζ ) cos ξ + D(ζ ) sin ξ + O(ε)

(20.14)

where the slowly varying parameters A, B,C, D are determined by the following
slow flow, which is obtained by eliminating secular terms from the O(ε2) equations:

d A

d ζ
= −

60 α D + 31 B3 + 27 A B2 +
(
31 A2 − 30 p − 60 α

)
B + 27 A3 − 30 p A

120
(20.15)

d B

d ζ
=

60 α C − 27 B3 + 31 A B2 +
(
30 p − 27 A2

)
B + 31 A3 + (−30 p − 60 α) A

120
(20.16)

d C

d ζ
= −

31 D3 + 27C D2 +
(
31C2 − 30 p − 60 α

)
D + 27C3 − 30 p C + 60 α B

120
(20.17)

d D

d ζ
= −

27 D3 − 31C D2 +
(
27C2 − 30 p

)
D − 31C3 + (30 p + 60 α) C − 60 α A

120
(20.18)

These equations can be simplified by transforming to polar coordinates:

A = r1 cos θ1, B = r1 sin θ1, C = r2 cos θ2, D = r2 sin θ2, (20.19)

with the following result, where ϕ = θ2 − θ1:

dr1
dζ

= pr1
4

− 9r31
40

− α

2
r2 sin ϕ (20.20)

dr2
dζ

= pr2
4

− 9r32
40

+ α

2
r1 sin ϕ (20.21)

dϕ

dζ
= 31

120

(
r22 − r21

) + α

2
cosϕ

(
r1
r2

− r2
r1

)
(20.22)

The rest of this paper is based on an analysis of these last three equations.
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20.3 Bifurcations

The first thing to notice about Eqs. (20.20)–(20.22) is that they exhibit a symmetry:
they are invariant under the transformation

r1 −→ r2, r2 −→ r1, ϕ −→ −ϕ (20.23)

As we will see, this symmetry will have a profound effect on the bifurcations asso-
ciated with Eqs. (20.20)–(20.22).

Let us begin by looking for equilibria in the slow flow (20.20)–(20.22). These
turn out to satisfy

r1 = r2 =
√
10p

3
and sin ϕ = 0 =⇒ ϕ = 0 or π (20.24)

Here ϕ = 0 corresponds to the in phase (IP) mode and ϕ = π corresponds to the out
of phase (OP) mode.

As a first step in understanding the bifurcations occurring in Eqs. (20.20)–(20.22),
we use the bifurcation software AUTO [5]. See Fig. 20.2 where equilibrium points
in the slow flow are displayed using the convention that a solid (dashed) line repre-
sents a stable (unstable) equilibrium. Limit cycles in the slow flow (born in a Hopf
bifurcation) are not shown. The OP mode at ϕ = π is not shown, and is stable.

Note that for α > 0.0574 AUTO predicts that both the IP and OP modes are sta-
ble. These slow flow equilibria are separated by an unstable slow flow limit cycle
which we shall refer to as a separatrix. Moving from the 3 dimensional slow flow
space to the 6 dimensional space of Eqs. (20.8), (20.9), the separatrix appears as
a quasiperiodic motion. Although it is unstable we may nevertheless see what the
separatrix looks like by numerically integrating Eqs. (20.8), (20.9) for initial condi-
tions of the form (z1(0), ż1(0), T1(0), z2(0), ż2(0), T2(0)) = (0.1, 0, 0, μ, 0, 0), and
iteratively varyingμ so that the large time behavior (approximately) lies on the basin
boundary between the two equilibria. See Fig. 20.3 where we find that μ ≈ 0.0021
for α = 0.07.

Fig. 20.2 AUTO bifurcation
diagram for
Eqs. (20.20)–(20.22). A solid
(dashed) line represents a
stable (unstable) equilibrium
point in the slow flow. Limit
cycles in the slow flow born
in the Hopf bifurcations are
not shown. The OP mode at
ϕ = π is not shown, and is
stable
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Fig. 20.3 LEFT: Separatrixmotion, unstable, separates stable IP andOPmodes.RIGHT:Schematic
view showing IP, OP and separatrix. Stable motions are boxed in Red

Fig. 20.4 LEFT: Two new slow flow equilibria are born in a pitchfork, denoted by IP1 and IP2. In
the 6 dimensional space these are seen to be periodic motions, symmetrically located about the IP
mode. RIGHT: Schematic view showing IP1, IP2, IP, OP and separatrix. Stable motions are boxed
in Red

From Fig. 20.2 we see that when α is decreased through 0.0574, the IP mode
loses stability in a pitchfork bifurcation. Two new slow flow equilibria are born in
this pitchfork, denoted by IP1 and IP2. In the 6 dimensional space these are seen to
be periodic motions, see Fig. 20.4.

From Fig. 20.2 we see that when α is further decreased through 0.0468, the slow
flow equilibria IP1 and IP2 lose stability in Hopf bifurcations, resulting in stable
slow flow limit cycles LC1 and LC2. In the 6 dimensional space these are seen to be
quasiperiodic motions, see Fig. 20.5.
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Fig. 20.5 LEFT: Two new slow flow limit cycles are born in Hopf bifurcations, denoted by LC1 and
LC2. In the 6 dimensional space these are seen to be quasiperiodic motions, symmetrically located
about the IP mode, cf. Fig. 20.4. Note: For clarity of presentation, LC1 is not shown. RIGHT:
Schematic view showing LC1, LC2, IP1, IP2, IP, OP and separatrix. Stable motions are boxed in
Red

Fig. 20.6 Aschematic representation of the double homoclinic bifurcation inwhich the asymmetric
slow flow limit cycles LC1 and LC2 join to become a single slow flow limit cycle LC which exhibits
the symmetry of Eq. (20.23). Stable motions are boxed in Red

A further bifurcation occurs when α decreases through approximately 0.0436,
though this is not shown in Fig. 20.2. In this case there is a homoclinic bifurcation in
which the asymmetric slow flow limit cycles LC1 and LC2 join to become a single
slow flow limit cycle LC which exhibits the symmetry of Eq. (20.23). See Fig. 20.6.

Another bifurcation occurs when α decreases through approximately 0.0415, in
which two slow flow limit cycles merge together in a limit cycle fold and disappear.
Specifically, the unstable separatrix limit cycle “sep” merges simultaneously and
symmetrically with the symmetric slow flow stable limit cycle “LC”. See Fig. 20.7.
For values ofα less than approximately 0.0415, theOPmode is the only stablemotion.

The last two bifurcations (shown in Figs. 20.5 and 20.6) involve the merging of
two limit cycles into a single limit cycle (a double homoclinic bifurcation), which
is then followed by a limit cycle fold in which a stable and an unstable limit cycle
come together and disappear. This sequence of bifurcations has been seen in other,
unrelated dynamical systems. See [6] p. 376, Fig. 7.3.9, and [7] p. 69, Fig. 7.
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Fig. 20.7 A schematic
representation of the limit
cycle fold in which two slow
flow limit cycles merge
together and disappear,
leaving the OP mode as the
only stable motion. Stable
motions are boxed in Red

20.4 Conclusions

In this work we have investigated the dynamics of a system inspired by a pair of
coupled identical MEMS oscillators, Eqs. (20.8), (20.9). Our method involved intro-
ducing a small parameter εwhich permitted us to use a perturbationmethod, resulting
in a slow flow, Eqs. (20.20)–(20.22). We then used AUTO and numerical integration
to determine the various bifurcations which occurred when the coupling constant α
was varied (for fixed parameter p = 0.1). Since the perturbationmethod is by its very
nature approximate, we should not be surprised to find that the derived results are in
some cases incorrect. In particular analysis of the slow flow predicts that both the IP
and OP modes are stable for α sufficiently large. While this is true of the IP mode,
linear stability analysis of the OPmode shows that it becomes unstable for α > 0.82.
Proof of this statement will be the subject of another paper by the same authors.

We noted that the derived slow flow (20.20)–(20.22) possessed a symmetry which
led to nongeneric bifurcations such as a pitchfork and a homoclinic bifurcation
with symmetry. A useful extension of this work will involve a comparable study
of the dynamics of a pair of coupled nonidentical third order oscillators, which is not
expected to display these kinds of nongeneric bifurcations.

Perhaps the most important lesson learned from this study is that the IP mode
can be made stable by increasing the coupling between the oscillators. This result is
reminiscent of a comparable property of similarly coupled van der Pol oscillators [4].

Acknowledgements The authors wish to thank Professor J. Guckenheimer for advising them on
the bifurcations involved in this paper. This material is based upon work supported by the National
Science Foundation under grant number CMMI-1634664.
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Chapter 21
A Multimodal Nonlinear Tuned
Vibration Absorber

Ghislain Raze and Gaetan Kerschen

Abstract This paper presents a tuning methodology to design a vibration absorber
able to mitigate the vibratory amplitude of multiple resonances of a nonlinear struc-
ture. The linear characteristics of the absorber are first tuned to obtain the equal-peak
design on every mode to be controlled when the structure is behaving linearly. Non-
linearities are then introduced intentionally in the absorber to counteract the effect of
the nonlinearities inside the host structure. Their functional form is chosen accord-
ing to a principle of similarity, and their coefficients are determined to enforce equal
peaks in the nonlinear regime.

Keywords Nonlinear vibrations · Tuned vibration absorber · Multimodal
vibration absorber · Principle of similarity · Equal peak method

21.1 Introduction

Engineering structures are becoming lighter and more complex to suit the needs of
an ever-increasing demand for performance and to comply with stringent regula-
tions. This trend comes with several challenges, one of which being the increased
susceptibility to high-amplitude vibrations. These vibrations can be detrimental to
the device performance and lifetime, or even be threatening safety. Passive vibration
reduction techniques can provide a solution to this issue. The linear tuned vibration
absorber (LTVA, also often referred to as “tunedmass damper” or “dynamic vibration
absorber”) enters this category and is a widely-used device of proven efficiency [4].

TheLTVAwas first proposed by Frahm [5]. By attaching a one-degree-of-freedom
undamped oscillator to a host structure, one particular vibration mode can be com-
pletely suppressed. Ormondroyd and den Hartog [11] proposed to add a damping
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element to broaden the bandwidth in which the absorber is efficient. They based the
tuning methodology on invariant points in the frequency response function. These
points are insensitive to the absorber damping. The stiffness of the absorber is tuned
to make the amplitude of the frequency response function at these points equal and
the absorber damping may be chosen so that one of this two points is a local max-
imum of the frequency response function, yielding two possible values. Brock [1]
later proposed to take the average of these damping values to yield a nearly optimal
design. Almost sixty years later, Nishihara and Asami [10] found the exact closed-
form solution to this problem, based on the minimization of the maximal vibratory
amplitude of the host structure. With this design, the frequency response function
of the controlled structure exhibits two peaks of equal amplitude near the original
resonance of the host structure. Hence, this design was termed equal-peak design.

Many structures might have multiple resonances inside a frequency band of inter-
est. Considering a structure with multiple modes brings new challenge to the design
of tuned vibration absorbers. The influence of non-resonant modes might detune the
absorber, which is detrimental for its performance. Krenk andHøgsberg [9] proposed
to introduce quasi-dynamic background corrections to take into account the influence
of non-resonant modes. Ozer and Royston [12] proposed a numerical optimization
algorithm based on the invariant points of the frequency response function to tune
the absorbers. If the excitation frequency is uncertain or varying, or the structure is
subjected to a multiharmonic or broadband forcing, multiple resonances might be
excited. A simultaneous control of these resonances may be desirable.

Lighter and more flexible structures are more prone to high-amplitude vibrations.
These vibrations can trigger the nonlinearities present in the structure. One pecu-
liarity of nonlinear structures is their frequency-energy dependence: the resonance
frequencies of a nonlinear structure may change with the forcing amplitude. This can
be particularly detrimental to tuned vibration absorbers, as the nonlinear resonance
frequencies shift away from their initial position, detuning the absorber. This detuning
is often the cause for a loss of performance. Habib and Kerschen [8] purposely used
a nonlinear stiffness in a nonlinear tuned vibration absorber (NLTVA) to counteract
this undesirable phenomenon. They proposed to use a principle of similarity for the
design of nonlinear vibration absorbers. This principle states that the functional form
of the nonlinearity in the absorber should be identical to that of the host structure.
They designed a nonlinear vibration absorber able to maintain equal peaks over a
broader range of forcing amplitude than when using a linear vibration absorber. This
same principle of similarity was recently used by Habib and Kerschen [7] to modify
the characteristics of multiple nonlinear resonances. By introducing and properly
tuning nonlinearities in a structure, they were able to linearise its dynamics.

The purpose of this work is to associate the multimodal and nonlinear aspects
of a tuned vibration absorber. More specifically, this paper describes how to design
a vibration absorber able to mitigate the vibratory amplitude of multiple nonlinear
resonances. To this end, the absorber is first designed considering the underlying lin-
ear dynamics of the host structure. A design approach based on a modal expansion
of the frequency response function of the host structure is proposed. If more preci-
sion is required in the tuning, an objective function for an optimisation algorithm
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is proposed. The nonlinear behaviour of the structure is then taken into account.
Nonlinearities are intentionally introduced in the absorber. Their functional form is
chosen according to a principle of similarity. The same formalism as [7] is used
to impose equal peaks in the nonlinear frequency response function. With this new
design, the working range of vibration absorbers can be extended to higher forcing
amplitudes.

21.2 Multimodal Linear Tuned Vibration Absorber

This section introduces a tuning methodology for multiple LTVAs placed on an
undamped structure. The structure is modelled as a one-degree-of-freedom oscillator
from the point of view of the absorber, similarly to [9]. With this model, it is possible
to tune the parameters of the absorber. If a further precision is required, a cost function
for an optimisation algorithm is proposed.

The undamped equations of motion of the host structure are given by

M0ẍ0 + K0x0 = f0(t), (21.1)

where M0 is the structural mass matrix, K0 is the structural stiffness matrix, x0 is
the vector of generalized coordinates and f0(t) is the generalized loading vector. The
subscript 0 indicates quantities exclusively related to the host structure. Under the
assumption of a periodic forcing, i.e. f0(t) = f0 cosωt , the equations of motion can
be solved by expanding the response in the basis of the structural normal modes and
by projecting them onto this basis [6]. Eventually, by reconstructing the physical
response from the modal response,

x0 = �0
(
�2

0 − ω2I
)−1

�T
0 f0, (21.2)

where �0 is the matrix of mass-normalized mode shapes, �0 is a diagonal matrix
containing the associated mode frequencies, I is the identity matrix and the super-
script T denotes a transposition. This harmonic response can be used in the design
of the absorbers. Assuming that the absorber is placed at a location given by the
localisation vector w, its base displacement can be found as u = wT x0. Introducing

wT�0 = [
φu,1, . . . , φu,N0

]
, (21.3)

�T
0 f0 = [

φ f,1, . . . , φ f,N0

]T
f0, (21.4)

with the number of modes N0 and the forcing amplitude f0, the forced harmonic
response can be expressed as a sum of contributions from the different modes

u =
N0∑

i=1

φu,iφ f,i

ω2
i − ω2

f0. (21.5)
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Around the resonance frequency ofmode i , the harmonic responsemay be approx-
imated by that of a single-degree-of-freedom spring-mass system. Neglecting all the
terms different than those related to mode i in the sum of Eq. (21.5), the modal mass
mi and the modal stiffness ki are identified as

mi = 1

φu,iφ f,i
, ki = ω2

i

φu,iφ f,i
, (21.6)

respectively. Using this one-degree-of-freedom approximation, the stiffness ka,i and
damping ca,i of an LTVA of mass ma,i designed to mitigate the vibrations of mode
i can be determined using the classical one-degree-of-freedom absorber design ([1,
11] or [10]) from the modal characteristics in Eq. (21.6) and the modal mass ratio

μi = ma,i

mi
. (21.7)

Moreover, Eqs. (21.6) and (21.7) give guidelines on where to place the absorber.
Since the vibration reduction increases with the modal mass ratio, it is desirable
to maximize this ratio. For a given absorber mass and a given forcing, the best
placement is the one that maximizes the modal amplitude φu,i in the position at
which the absorber is placed.

To mitigate multiple resonances, multiple LTVAs can be placed on the struc-
ture. The above procedure can be repeated N times to tune the characteristics of N
vibration absorbers. This would result in a reduced amplitude around the N targeted
resonances, with ideally N pairs of equal peaks.

Because the truncation of the harmonic response in Eq. (21.5) involves neglecting
several terms due to the non-resonant modes and because the interactions between
the LTVAs are not properly taken into account by the aforementioned method, the
frequency response function (FRF) will generally not exhibit perfectly equal peaks,
as in the single-degree-of-freedom case. Numerical optimisation may be used to
enforce equal peaks up to the desired accuracy. If two peaks related to mode i are
located at the frequencies ωi,1 and ωi,2 and if H denotes the square modulus of the
FRF for which equal peaks should be enforced, the following cost function can be
used

f (ma,1, ca,1, ka,1, . . . ,ma,N , ca,N , ka,N ) =
N∑

i=1

(
H(ωi,1) − H(ωi,2)

)2
(21.8)

Minimizing this cost function will result in a design with N pairs of equal peaks.
The peaks may be found by sampling the FRF, by using suitably initialised gradient
ascent algorithms or by using H∞ norm computation algorithms [2] in a limited range
of frequencies to properly locate all the peaks. The sensitivity of the cost function
may be computed numerically through finite differences, or analytically.
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21.3 Multimodal Nonlinear Tuned Vibration Absorber

In this section, nonlinear elements are added to each absorbers to improve the vibra-
tion reduction in the nonlinear regime. It is assumed that the linear characteristics of
the absorbers have been properly tuned so that the frequency response function of
the controlled structure exhibits equal (or nearly equal) peaks in the linear regime.
The functional form of the introduced nonlinear elements is chosen according to
a principle of similarity, and their coefficients are computed by requiring that the
nonlinear frequency response function exhibit equal peaks in the nonlinear regime.

The same formalism as Habib and Kerschen [7] is used in the following. The
nonlinear equations ofmotion of the structure and of the nonlinear absorbers attached
to it are given by

Mẍ + Cẋ + Kx + knl

(

bnl(x) +
N∑

i=1

bnl,ibnl,i (x)

)

= f(t), (21.9)

where bnl represents the nonlinearities in the primary structure, and bnl,i are the non-
linearities in the absorbers. According to the principle of similarity [8], the latter are
chosen to have the same mathematical form as the former. The remaining unknowns
are the nonlinear coefficients of the absorbers, bnl,i .

The equations of motion are normalised considering y = x/ f , with f being a
forcing amplitude

Mÿ + Cẏ + Ky + α

(

bnl(y) +
N∑

i=1

bnl,ibnl,i (y)

)

= f(t)
f

. (21.10)

α is a nonlinearity parameter that depends on both the nonlinearity and the forcing.
For a polynomial nonlinear force of type fnl(x) = knl x p, it is given by

α = f p−1knl (21.11)

This parameter can be seen as ameasure of how the structural behaviour is affected
by the nonlinearities. The solution of Eq. (21.10) under a harmonic forcing can be
approximated with a first-order harmonic balance (HB) method. Using

y = qc cos(ωt) + qs sin(ωt), (21.12)

and introducing qT = [qT
c ,qT

s ], Eq. (21.10) becomes

Wq + α

(

d1,nl(q) +
N∑

i=1

bnl,id1,nl,i (q)

)

= c. (21.13)
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In Eq. (21.13), the matrixW represents the linear dynamics, c is the forcing term,
and the terms d1,nl and d1,nl,i represent the nonlinearities in the primary structure and
in the i th absorber, respectively. These vectors can be computed from q either ana-
lytically, or numerically with the alternating frequency/time-domain technique [3].
Thanks to the HB method, the set of nonlinear ordinary differential equations given
in Eq. (21.10) has been transformed into a set of nonlinear algebraic equations. To
find an approximate solution, it is further assumed that the nonlinearity parameter α

is small. Hence, the nonlinear response of the system may be expressed as a series
expansion in terms of α as

q =
∞∑

i=0

αiq(i). (21.14)

Inserting Eq. (21.14) into (21.13) and equating coefficients of like powers of α

up to first order leads to the following explicit relations:

q(0) = W−1c, (21.15)

q(1) = −W−1

(

d1,nl(q(0)) +
N∑

i=1

bnl,id1,nl,i (q(0))

)

= q(1)
nl +

N∑

i=1

bnl,iq
(1)
nl,i .

(21.16)
Equation (21.15) indicates that q(0) represents the response of the system when

no nonlinearity is present. Equation (21.16) shows that first-order terms q(1) are
generated by the nonlinear forces triggered by the zeroth-order motion. These terms
can be separated into terms due to the nonlinearities inside the primary structure q(1)

nl

and terms due to the nonlinearities inside the i th absorber q(1)
nl,i . The square of the

frequency response function at a given degree of freedom is given by

H = (qc) 2
j + (qs) 2

j . (21.17)

Inserting the solution of (21.15) and (21.16) into (21.17) and keeping only the
first-order terms leads to

H =
(
q(0)
c

) 2

j
+

(
q(0)
s

) 2

j
+ α

[
2

(
q(0)
c

)

j

(
q(1)
c,nl

)

j
+ 2

(
q(0)
s

)

j

(
q(1)
s,nl

)

j

]

+ α

[
N∑

i=1

bnl,i

[
2

(
q(0)
c

)

j

(
q(1)
c,nl,i

)

j
+ 2

(
q(0)
s

)

j

(
q(1)
s,nl,i

)

j

]]

= H (0) + αH (1)
nl

+ α

N∑

i=1

bnl,i H
(1)
nl,i

.

(21.18)

In Eq. (21.18), three types of term can be identified. The term H (0) stands for the
frequency response function of the underlying linear structure. The term αH (1)

nl is the
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modification brought by the (supposedly small) nonlinear forces generated by the
linear motion in the nonlinearities of the primary structure. The term αbnl,i H

(1)
nl,i is

the modification brought by the (supposedly small) nonlinear forces generated by the
linear motion in the nonlinearitiy i of the absorbers. Thanks to the straightforward
expansion, all these effects can be separated to first order in α.

With Eq. (21.18), it is now possible to impose N conditions on the first-order
nonlinear FRF. This yields a system of size N × N , where the nonlinear coefficients
bnl,i are the unknowns. Depending on the imposed conditions, this system can be
linear and the nonlinear coefficients may or may not depend on the parameter α.

21.3.1 Equal Peaks in the Nonlinear Regime

A condition enforcing equal peaks in the nonlinear regime will now be derived. The
linear absorbers are assumed to result in the equal-peak design, i.e. the peaks are
equal in magnitude and located at frequencies ωi,1 and ωi,2 in the linear regime. The
nonlinear effects cause a shift in these nonlinear peak frequencies, which are noted
ω̃i,1 and ω̃i,2. Using a series development in α of the nonlinear frequency response,
these nonlinear resonance frequencies are defined as

∂H

∂ω

∣∣∣∣
ω̃i, j

=
∞∑

n=0

αn ∂H (n)

∂ω

∣∣∣∣
ω̃i, j

= 0 (21.19)

They can be found by using a second series development in terms of the difference
between the linear and nonlinear resonance frequencies �ωi, j = ω̃i, j − ωi, j .

∂H

∂ω

∣∣∣
∣
ω̃i, j

=
∞∑

n=0

αn
∞∑

m=1

(
�ωi, j

)m−1

(m − 1)!
∂mH (n)

∂ωm

∣∣∣
∣
ωi, j

= 0 (21.20)

Keeping terms up to first order in �ωi, j and in α in the previous sum leads to

∂H (0)

∂ω

∣∣∣∣
ωi, j

+ �ωi, j
∂2H (0)

∂ω2

∣∣∣∣
ωi, j

+ O
(
�ωi, j

)2 + α
∂H (1)

∂ω

∣∣∣∣
ωi, j

+ O
(
�ωi, jα

) = 0

(21.21)
Because H (0) is the linear frequency response function, the first term inEq. (21.21)

vanishes.Hence, the nonlinear resonance frequency shift is of the order ofα. Now, the
nonlinear frequency response at the nonlinear resonance frequency can be expressed
as

H |ω̃i, j
=

∞∑

n=0

αn
∞∑

m=0

(
�ωi, j

)m

m!
∂mH (n)

∂ωm

∣∣∣∣
ωi, j

. (21.22)
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Evaluating Eq. (21.22) at both nonlinear resonance frequencies, equating the two
obtained nonlinear frequency response functions and keeping terms up to first order
in α leads to

H (0)
∣∣
ωi,1

+ �ωi,1
∂H (0)

∂ω

∣∣∣
∣
ωi,1

+ α H (1)
∣∣
ωi,1

+ O(α2) = H (0)
∣∣
ωi,2

+ �ωi,2
∂H (0)

∂ω

∣∣∣
∣
ωi,2

+ α H (1)
∣∣
ωi,2

+ O(α2).

(21.23)

Since equal peaks were assumed in the linear regime, the first terms in the left
and right hand side of Equation (21.23) cancel out. Moreover, the second terms also
vanish by definition of the linear resonance frequencies. Then, Eq. (21.23) becomes
independent of α and, using the contributions from the different nonlinearities high-
lighted by Eq. (21.18), it can be written as

N∑

n=1

bnl,n
(
H (1)

nl,n(ωi,1) − H (1)
nl,n(ωi,2)

)
= H (1)

nl (ωi,2) − H (1)
nl (ωi,1). (21.24)

Interestingly, the nonlinear resonance frequency shift is not taken into account
in the first-order frequency response function. Thus, the knowledge of the nonlinear
resonance frequencies is not needed to design absorbers, at least to first order in α.
Enforcing Eq. (21.24) for i = 1, . . . , N yields the following linear system of size
N × N :

⎡
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...

�ωN H
(1)
nl

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (21.25)

in which
�ωi H = H(ωi,1) − H(ωi,2). (21.26)

Equation (21.24) expresses that the (first-order) effects of all the nonlinearities
is the same at ωi,1 and ωi,2. Therefore, the perfect equality between the amplitudes
of the resonance peaks is not mandatory in practice. Peaks of approximately equal
amplitude in the linear regime will remain approximately equal in the nonlinear
regime.

Due to the series expansions limited to first order, this approach is a local approach,
in the sense that the obtained results will gradually lose their validity with increas-
ing α, that is, as the forcing amplitude or the nonlinear coefficients become large.
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Nevertheless, it is expected that the nonlinear absorbers yield better result than their
linear counterparts for small values of α.

21.4 Numerical Example

To demonstrate the efficiency of the proposed approach, a five-degree-of-freedom
structure depicted in Fig. 21.1 is studied, with numerical parameters given in
Table21.1. A cubic spring is attached to the first mass. A harmonic forcing is applied
to this mass and the structural response is measured at this same point.

Modes 1, 2 and 4 of the structure are targeted for vibration mitigation. The linear
absorbers are placed at the maximum amplitude of the mode they are supposed
to damp. Their parameters are optimised to obtain three pairs of equal peaks. The
numerical values of the parameters are given in Table21.2.

Figure21.2 shows the nonlinear frequency response functions (NFRFs) of the
structure with linear and nonlinear absorbers for two values of the nonlinearity
parameter α. The NFRFs were computed with a continuation procedure coupled
with a harmonic balance formalism [3] with five harmonics. For α = 0.01, the non-
linear effects are strong enough to detune the linear absorber of mode 2, whereas
adding a nonlinear spring to that absorbers helps enforcing equal peaks.Mode 1 and 4
are less affected, namely due to their lower vibratory amplitude.When α is increased,

m m m m m

c

k1

knl

c

k2

c

k3

c

k4

c

k5

c

k6

Fig. 21.1 Five-degree-of-freedom structure

Table 21.1 Numerical parameters of the five-degree-of-freedom structure

k1 (N/m) k2 (N/m) k3 (N/m) k4 (N/m) k5 (N/m) k6 (N/m) knl
(N/m3)

c (Ns/m) m (kg)

1 1 0.1 1 1 1 1 0.03 1

Table 21.2 Parameters of the absorbers

Absorber Location ma (kg) ca (Ns/m) ka (N/m) knl,a (N/m3)

Mode 1 dof 3 0.05 3.88 × 10−3 1.16 × 10−2 1.38 × 10−5

Mode 2 dof 2 0.05 6.03 × 10−3 2.19 × 10−2 3.02 × 10−4

Mode 4 dof 1 0.05 1.66 × 10−2 1.27 × 10−1 1.95 × 10−3
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Fig. 21.2 NFRFs of the five-degree-of-freedom structure with linear (—: stable solution, - -: unsta-
ble solution, •: fold bifurcation) and nonlinear (—) absorbers: α = 0.01 N3/m3 (a) and α = 0.09
N3/m3 (b)

Fig. 21.3 Evolution of the
peaks amplitudes with the
nonlinearity parameter α:
linear (—) and nonlinear
(—) absorbers
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mode 4 becomes affected. Equal peaks can be obtained thanks to the nonlinearities
in the absorber for mode 4. As for mode 2, the peaks can no longer be considered
as equal, but the situation is still improved compared to that of the linear absorbers.
Indeed, the maximum vibratory amplitude is lower when nonlinear absorbers are
used.

Figure21.3 shows how the amplitudes of the six peaks evolve with α. When no
nonlinear effect is present (α = 0), the linear and nonlinear absorbers are equivalent.
As α increases, the two lines representing the pair of peaks associated to a particular
mode diverges more quickly when no nonlinearity is used in the absorbers. Thanks
to Eq. (21.24), these lines are tangent at α = 0 when the nonlinearities are properly
tuned, which slows down their divergence for small α. This means that equal peaks
are enforced over a broader amplitude range when using nonlinear absorbers. It is
also clear that using nonlinear absorbers in this case leads to a lower maximum
vibratory amplitude.

Going beyond that nonlinear regime can reveal more on the behaviour and the lim-
itations of the proposed multimodal nonlinear tuned vibration absorber. The NFRFs
of the structure in the strongly (α = 0.36) and in the extremely (α = 0.81) nonlinear
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Fig. 21.4 NFRFs of the five-degree-of-freedom structure with linear (—: stable solution, - -: unsta-
ble solution, •: fold bifurcation) and nonlinear (—: stable solution, - -: unstable solution, •: fold
bifurcation, �: Neimark–Sacker bifurcation, • : time-integrated solution) absorbers at α = 0.36
N3/m3: close-up on modes 1 and 2 (a) and close-up on mode 4 (b)

0.4 0.5 0.6 0.7 0.8 0.9 1

 (rad/s)

0

1

2

3

4

|x
1
/f

1
| (

m
/N

)

1.5 2 2.5 3

 (rad/s)

0

1

2

3

4

|x
1
/f

1
| (

m
/N

)

(a) (b)

Fig. 21.5 NFRFs of the five-degree-of-freedom structure with linear (—: stable solution, - -: unsta-
ble solution, •: fold bifurcation) and nonlinear (—: stable solution, - -: unstable solution, •: fold
bifurcation, �: Neimark–Sacker bifurcation, • : time-integrated solution) absorbers at α = 0.81
N3/m3: close-up on modes 1 and 2 (a) and close-up on mode 4 (b)

regimes are shown in Figs. 21.4 and 21.5, respectively. With nonlinear absorbers, the
onset of quasiperiodic oscillations can be observed on mode two, with the appear-
ance of a pair of Neimark–Sacker bifurcations. The amplitude of those vibrations can
be computed through direct time integration of the equations of motion. The linear
absorbers are progressively detuned, which results in higher vibratory amplitudes
as α increases. With the nonlinear absorbers, a detached resonance curve (DRC)
merges with the rightmost peak of mode 4 at α = 0.518, leading to the possibil-
ity of much higher vibration amplitudes. At this point, there is little difference of
performance (in terms of maximal vibratory amplitude) between the linear and the
nonlinear absorbers. Interestingly, the DRC of the nonlinear absorbers is connected
to the NFRF through a branch of quasiperiodic solutions, which seems to lose its
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stability when the lower-amplitude periodic solutions become stable again, as the
behaviour of the amplitude obtained with time integration seems to indicate.

21.5 Conclusion

This paper proposed a tuning methodology for a multimodal nonlinear tuned vibra-
tion absorber. The linear characteristics of this absorber are first tuned. Based on a
modal expansion of the frequency response function of the structure at the degree
of freedom at which the absorbers are placed, an equivalent one-degree-of-freedom
model is derived. The tuning rules of the absorber for a single-degree-of-freedom
system can thus be used with multiple vibration absorbers to mitigate multiple reso-
nances. A better equality between the peaks amplitudes can be obtained with the help
of numerical optimisation. Nonlinearities are then added to the absorbers. Thanks to
a principle of similarity, the functional form of these nonlinearities are chosen to be
identical to those of the host structure. Their coefficients are determined by enforcing
equal peaks in the nonlinear regime.

The example showed that the nonlinear absorbers placed on a nonlinear structure
are more efficient than their linear counterpart. Not only are they able to enforce
equal peaks over a broader amplitude range, but they also allow to obtain frequency
response functions with lowermaximal amplitudes thanwhen using linear absorbers.
The nonlinear absorbers trigger nonlinear phenomena, such as quasiperiodic oscil-
lations and detached resonance curves. But even when these phenomena arise, the
situation is at worse equivalent to that of the linear absorbers.

Future work may involve the use of a modal approach to simplify the computation
of the nonlinear coefficients, therefore not requiring the full structural matrices.
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Chapter 22
Unveiling Transient to Steady Effects
in Reduced Order Models of
Thermomechanical Plates via Global
Dynamics

Valeria Settimi, Giuseppe Rega and Eduardo Saetta

Abstract A reduced model of third-order shear deformable plate with cubic tem-
perature is used to investigate the system nonlinear dynamic response in a full ther-
momechanical coupling framework. Numerical investigations of local and global
dynamics allow to highlight distinct response features as occurring under different
(constant or dome-shaped) prescribed spatial temperatures on the plate surfaces. In
both cases, the important role played by global analysis for unveiling meaningful
transient to steady effects in the system dynamics clearly comes out.

Keywords Laminated plate · Reduced order model · Thermomechanical
coupling · Thermal boundary conditions · Local and global analysis

22.1 Introduction

Reduced order modeling and nonlinear dynamics of composite plates under different
excitation conditions in a thermomechanical environment have been the subject of
recent papers aimed at highlighting the role of multiphysics coupling and the main
local and global features of the nonlinear response [1–5].

In the framework of a unified formulation of the thermomechanical problem based
on the Tonti approach to physical theories [6], two different 2D models of laminated
plates with von Kármán nonlinearities have been proposed, by either neglecting [1]
or considering [2] shear deformability and by consistently assuming a correspond-
ing linear or cubic variation of the unknown thermal field along the plate thickness.
For symmetric cross-ply laminates, proper and controllable dimension reduction
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accomplished via Galerkin approximations has allowed in both cases to attain a
minimal model (with one mechanical and two thermal equations/unknowns) still
exhibiting the fundamental features of geometrical nonlinearity and thermomechan-
ical coupling embedded in the underlying, yet more complicated, continuummodels.

The simpler (shear indeformable with linear temperature) reduced model—
labelled CTC for being based on the Classical theory with Thermomechanical
Coupling—has been employed for extended investigations of the plate nonlinear
dynamic response under both passive [5] and active [3, 4] thermal conditions. The
former refer to a situation in which thermal phenomena are dragged into the system
overall response by the distributed transverse mechanical excitation, as a result of
the full coupling; the latter account also for the presence of a thermal source (of
variable nature) entailing direct activation of the plate temperature field, in addition
to mechanical excitation. Compressive in-plane forces distributed along the plate
edges have been considered, too (see Fig. 22.1a).

Local and global nonlinear dynamics have been investigated, highlighting the
transition to mechanically- or thermally-induced buckled responses and also focus-
ing on the different role played by coupling effects in different excitation conditions,
with the ensuing possibility to consider simplified or partially coupled models [3].
Global dynamics has shown to be of major importance mostly in active thermal con-
ditions [3, 4], where it turns out to be decisive for reliably catching the non-trivial
influence of the slow transient thermal dynamics on the steady outcome of the faster
mechanical response.

In contrast, no parallel nonlinear dynamic analyses have been conducted yet with
the richer (shear deformable with cubic temperature) reduced model, labelled TTC
for being based on the Third-order theory with Thermomechanical Coupling. Yet,
its major richness, inherently embedded in the description of the thermal field [2],
allows us to consider a remarkably larger set of thermal boundary conditions with
respect to the CTC model.

The present paper is a first step in this direction, and aims at further highlighting
how proper consideration of system global dynamics turns out to be essential to
reliably unveil the transient to steady effects due to thermomechanical coupling.
Parametric investigation of the response under two different conditions of prescribed
temperature on the external surfaces (of interest in a variety ofmultiphysics structural
applications) is accomplished bymeans of local bifurcation diagrams, phase portraits
and planar cross sections of the four-dimensional basins of attraction. This allows
us to highlight some ensuing meaningful qualitative changes and to get an overall
confirmation of the role played by global analysis for attaining a comprehensive
understanding of system dynamics.

22.2 Thermomechanically Coupled Models

The mathematical model describing the motion of the thermomechanical plate under
analysis is derived in the framework of a unified 2D formulation presented in [2],
to refer to for all details, in which von Kármán nonlinearities, third-order shear
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Fig. 22.1 Composite plate subjected to mechanical loads (a); Spatially constant (b) and dome-
shaped (c) temperature distributions on the external surfaces

deformability and a cubic temperature distribution along the thickness are consid-
ered (TTCmodel).Moving fromseven (fivemechanical and two thermal) generalized
2D variables, and under the assumption of symmetric cross-ply laminates, kinematic
condensation of the in-plane displacements and shear angles is performed at the con-
tinuum and discretized level, respectively; then, a minimal dimension reduction via
a Galerkin procedure with dome-shape functions assumed for the remaining (two)
thermal and (one) mechanical variables is developed. Thanks to the richness and
flexibility of the underlying continuum formulation, the model allows us to account
for a variety of thermomechanical assumptions, excitations and boundary conditions.
Thus, it represents a substantial improvement of the CTC thermomechanical model
with shear indeformability and linear temperature variation along the thickness, pre-
viously investigated by the authors in the nonlinear dynamics regime [3–5], in which
the sole thermal boundary condition of free heat exchange between plate and envi-
ronment can be taken into account. Under this condition, anyway, the governing ther-
momechanical equations of the TTC and CTC models are formally equal, of course
with different expressions of the coefficients.Moreover, results not reported here have
shown that for the thin (i.e. ratio 1/100 between length and thickness) orthotropic
single-layered epoxy/carbon fibre composite plate with simply supported, movable
and isothermal edges [4], herein considered (Fig. 22.1a), the outcomes furnished by
the two models are practically coincident in terms of both local and global dynamics
analysis, as somewhat expected at least from the mechanical viewpoint. For this rea-
son, the following sections are devoted to the description of the TTCmodel response
under two different thermal boundary conditions while, when needing to bring up the
results relevant to the free heat exchange case, in a comparison perspective, reference
will be made to the corresponding outcomes presented for the CTC model in [4].

22.2.1 TTC Model with Constant Prescribed Temperature on
the External Surfaces

The first thermal boundary condition considered is associated with the condition of
prescribed temperature on the external, upper and lower, surfaces of the plate, with
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the temperature distribution which is assumed to be constant on each of the surfaces
(TTCC model, Fig. 22.1b). Referring to Eqs. 72 of [2], nondimensionalization with
respect to time and plate thickness allows us to obtain the following set of governing
equations

Ẅ + a12Ẇ + a13W + a14W
3 + a15TR1 + a16W · TR0 + a17 cos (t) = 0, (22.1)

ṪR0 + a22TR0 + a23α1(Tup + Tdown) + a24Ẇ · W + a25e0(t) = 0, (22.2)

ṪR1 + a32TR1 + a33Ẇ + a34e1(t) + a35α1(Tup − Tdown) = 0,(22.3)

in terms of the unknown 0D configuration nondimensional reduced variables W
(deflection of the center of the plate), TR0 (membrane temperature), TR1 (bending
temperature). Note that, for the sake of generality, besides the non-vanishing har-
monic transversal mechanical excitation in Eq. (22.1), body thermal membrane (e0)
andbending (e1) excitations also appear inEqs. (22.2)–(22.3); however, they are given
here zero values for the interest being in evaluating the effects of the sole boundary
conditions. The parameters representing the thermal boundary conditions are Tup and
Tdown , corresponding to the dimensional (in Kelvin) prescribed constant variations
of the temperature on the upper and lower external surface, respectively, with respect
to the reference value Tre f . The expressions of the ai j coefficients are not reported
here for the sake of brevity. However, the comparison with those obtained in Eq.2.1
of [4], for the case of plate with free heat exchange, points out the general increase
of the coefficients values in case of the TTCC model, due to the different physical
process activated by the two types of thermal boundary conditions. The choice of a
different boundary condition causes the replacement of the T∞ term (expressing the
difference between plate and environment temperatures) in the membrane equation
(22.2) by a substantially equivalent thermal term and, more important, the addi-
tion, into the bending temperature Eq. (22.3), of a new term related to the difference
between the upper and lower temperatures on the plate surfaces. As a consequence,
when the two faces have different temperatures, both the membrane and the bending
thermal variables are activated. This differs from the free heat exchange condition
which, considering a unique temperature for the external environment, determines
the triggering of the sole membrane thermal variable.

The different effect of the thermal boundary condition on the system equations
of motion reflects also in the dynamical response of the system, as highlighted by
the bifurcation diagram of Fig. 22.2 as a function of the temperature on the lower
surface Tdown . In fact, the symmetry characterizing the dynamics of the buckled
responses in the system with free heat exchange (see Fig. 3a of [4]) is here broken,
due to the contemporary activation of the (along the thickness) symmetric membrane
and anti-symmetric bending thermal variables. In particular, the results of Fig. 22.2
are obtained for a pre-buckling in-plane mechanical precompression value p = 2.51
and fixed temperature on the upper surface Tup = 100 able to bring up the two high-
amplitude buckled responses P1III and P1IV. Starting from this scenario, the varying
temperature on the lower plate surface drastically modifies the mechanical system
response. For Tdown > 0 the buckled scenario is strengthened by the arise of the
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Fig. 22.2 Bifurcation diagram of the transversal displacementW of the TTCC model as a function
of the temperature on the lower surface Tdown , for p = 2.51 and Tup = 100. Circle: saddle-node
bifurcation; diamond: period-doubling bifurcation

Fig. 22.3 For p = 2.51, Tup = 100 and Tdown = −400, phase portraits of the chaotic solution for
the TTCC model in the mechanical (a), membrane temperature (b) and bending temperature (c)
planes

two low-amplitude P1I and P1II solutions which, as the other ones, differ from each
other by amplitude as well as by region of occurrence. When the lower surface is
cooled (i.e. for Tdown < 0), conversely, buckling is reduced up to the disappearance
of multistability. However, for −633 < Tdown < −356, the TTCC system displays
a peculiar behavior, not present in the model with free heat exchange, marked out
by the presence of chaotic responses representing the sole stable solutions for the
system. Their characterization in terms of phase portraits is reported in Fig. 22.3,
with the first Lyapunov exponent being +0.05. Finally, for lower Tdown values, the
cross-well pre-buckling P1 solution regains stability.

To complete the description of the dynamical response for the TTCC model, the
global dynamics is investigated by realizing planar cross sections, with fixed thermal
initial conditions (i.c.), of the four-dimensional basins of attractions. As a sample
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Fig. 22.4 For p = 2.51, Tup = 100 and Tdown = 400, cross sections of the basins of attraction
of the TTCC model in the (W, Ẇ ) plane and thermal initial conditions TR0 = 0.0, TR1 = 0.0 (a),
TR0 = 2.30275, TR1 = 2.77037 (b), basins of attraction of the purely mechanical model (c). Red
basin: P1II solution; Blue basin: P1IV solution; Cyan basin: P1III solution; Gray basin: P1 solution;
Orange basin: P1I solution; Pink basin: P2 solution

case, the general situation of different prescribed temperatures on the external sur-
faces (i.e. Tup = 100, Tdown = 400) is reported in Fig. 22.4.When considering trivial
thermal initial conditions, representing the most natural configuration from a physi-
cal viewpoint, the outcomes furnished by the global dynamics analysis, reported in
Fig. 22.4a, are evidently different from those obtained by the bifurcation diagram
of Fig. 22.2. In fact, despite the contemporary presence of the five main 1-period
solutions detected by the bifurcation diagram, only two basins are identified by the
global analysis, corresponding to the P1 and P1IV solutions. This apparent discrep-
ancy of results between local and global dynamics analyses has to be attributed to
the effect of the thermal transient dynamics, as already pointed out in [4] for the free
heat exchange case. As confirmation, basins of Fig. 22.4a are compared with those
obtained by the relevant uncoupled system and reported in Fig. 22.4c. The latter
model is described by the sole mechanical Eq. (22.1) in which the thermal boundary
condition is taken into account by substituting the thermal variables TR0 and TR1 with
the relevant steady mean values achieved at the end of their temporal evolution, thus
neglecting the thermal transient. The outcomes display a strongly different scenario,
with the evident presence of the buckled, positive and negative, wells and the identi-
fication of all five 1-period basins. This is coherent with what detected with the local
dynamics analysis, with also the addition of a basin related to a 2-period response, in
pink, not reported in the bifurcation diagram for the sake of readability of that figure.
The crucial role played by the thermal transient emphasizes the importance of the
choice of the thermal i.c. when analyzing the TTCC model, since their selection is
fundamental in determining the lasting of the thermal evolution. In fact, if the ther-
mal transient is neglected also in the coupled model, i.e. the thermal i.c. are assumed
equal to the relevant steady state values as in Fig. 22.4b, the obtained response turns
out to be coincident with that of the uncoupled system (Fig. 22.4c); this underlines
how the latter is able to describe a specific dynamical scenario of the system achiev-
able only under selected, and physically barely realizable, thermal conditions. As
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a final remark, the non-symmetric behavior of the TTCC model highlighted by the
bifurcation diagram is confirmed also by the basins analysis, which organize inside
the two wells in a clearly different way.

22.2.2 TTC Model with Dome-Shape Prescribed Temperature
on the External Surfaces

In order to ensure consistency between modeling of internal and boundary temper-
atures, the thermal condition of prescribed temperature on the external surfaces of
the plate is here considered by referring to a dome-shape profile in both the upper
and lower faces (TTCDS model, Fig. 22.1c). The relevant governing equations read

Ẅ + a12Ẇ + a13W + a14W
3 + a15TR1 + a16W · TR0 + a17 cos (t)

+a18(Tup + Tdown)W + a19(Tup − Tdown) = 0, (22.4)

ṪR0 + a22TR0 + a23α1(Tup + Tdown) + a24Ẇ · W + a25e0(t) = 0, (22.5)

ṪR1 + a32TR1 + a33Ẇ + a34e1(t) + a35α1(Tup − Tdown) = 0. (22.6)

Comparing Eq. (22.4) with Eq. (22.1), the presence of two new terms related to the
Tup and Tdown parameters into the mechanical equation is pointed out, modifying
the linear mechanical stiffness and adding a constant external excitation. However,
looking at the numerical values of the relevant coefficients it can be observed that
a18 and a19 parameters are two orders of magnitude lower that the others, so that
their effect on the transversal displacement can be grasped only if temperatures on
the surfaces have great sum or difference. As a general observation, it can be noted
that the numerical coefficients of the TTCDS model are equal to those of the TTCC

model, with exception of those related to Tup and Tdown which are higher in the latter
case.

The local dynamics analysis is here performed by realizing again bifurcation
diagrams as a function of the Tdown parameter, with p = 2.51 and Tup = 100, and
comparing in Fig. 22.5 the results (in red) with those already presented in Fig. 22.2
(here reported in black). Looking at positive values of Tdown , the main differences
between the responses of the two models can be detected inside the negative buckled
well, corresponding to the plate bending towards the upper surface,which for Tdown >

100 (representing most of the range here considered) is the colder side of the plate.
The differences pertain to amplitude as well as existence region of the main periodic
solutions. Conversely, responses around the positive buckled configuration are almost
coincident in the twomodels. Diverse behavior between TTCC and TTCDS model can
be observed also for Tdown < 0, where the chaotic region is substituted, in the TTCDS

model, by the low-amplitude buckled P1III response represented in terms of phase
portraits in Fig. 22.6, which remains stable in the whole negative range analyzed.

Moving to the analysis of the basins of attraction of the TTCDS model, the results
presented in Fig. 22.7 allow us to confirm the importance of properly describing the
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W

Tdown

Fig. 22.5 Bifurcation diagrams of the transversal displacementW as a function of the temperature
on the lower surface Tdown , for p = 2.51 and Tup = 100: comparison between TTCC (black) and
TTCDS (red) models. Circle: saddle-node bifurcation; diamond: period-doubling bifurcation

Fig. 22.6 For p = 2.51, Tup = 100 and Tdown = −400, phase portraits of the P1III solution for
the TTCDS model in the mechanical (a), membrane temperature (b) and bending temperature (c)
planes

thermal transient via the coupledmodel in order to determine the steady state response
of the system. This proves to be a general characteristic of the thermomechanical
model under analysis, irrespective of the thermal boundary condition considered.
In fact, the behavior of the coupled TTCDS model with trivial thermal i.c. reported
in Fig. 22.7a is clearly different from the outcomes obtained by the relevant uncou-
pled mechanical system with prescribed thermal steady values (Fig. 22.7c), which
however can be perfectly reproduced setting the i.c. to the relevant steady values
(Fig. 22.7b). Moreover, comparing Figs. 22.4a and 22.7a, it can be observed that the
shape chosen for modeling the prescribed temperature on the external surfaces is
able to influence the steady dynamics of the system, by modifying the role of the
P1 (gray) and P1IV (blue) basins, the former dominating the response of the TTCC

model, the latter becoming the main basin for the TTCDS system, as shown also in
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Fig. 22.7 For p = 2.51, Tup = 100 and Tdown = 400, cross sections of the basins of attraction of
the TTCDS model in the (W, Ẇ ) plane and thermal initial conditions TR0 = 0.0, TR1 = 0.0 (a),
TR0 = 1.41818, TR1 = 1.70726 (b), basins of attraction of the purely mechanical model (c). Red
basin: P1II solution; Blue basin: P1IV solution; Cyan basin: P1III solution; Gray basin: P1 solution;
Pink basin: P2 solution

Fig. 22.8 For p = 2.51, Tup = 100, Tdown = 400 and i.c. (0, 0, 0, 0), time histories of the P1
solution of the TTCC model (black) and of the P1IV solution of the TTCDS model (red)

Fig. 22.8a. Here, apart from highlighting the different mechanical response achieved
by the two models, the effect of the boundary conditions on the thermal variable evo-
lution can be observed. As a general comment, the time histories of Fig. 22.8 clearly
stress the length of the thermal transients with respect to the mechanical one, even
if they are shorter than those relevant to the case of plate with free heat exchange
(see, e.g., Fig. 7(ii) of [4]). Furthermore, the steady values reached by the thermal
variables of the TTCDS model are lower than those of the TTCC model, a behavior
which is confirmed by the bifurcation diagrams with respect to the thermal variables,
not reported here, thus showing to be robust with respect to possible variations of the
thermal boundary parameters. Finally, also when neglecting the thermal transient,
e.g., in Figs. 22.7b and 22.4b, TTCDS and TTCC models display differences in the
basins organization, mostly localized in the negative well, as already deduced by the
bifurcation diagram of Fig. 22.5.
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22.3 Conclusions

A reduced model of third-order shear deformable laminated plate with spatially
assumed cubic variation of the unknown thermal field along the thickness has been
used for the first time to investigate the nonlinear dynamic response of an orthotropic
single-layered epoxy/carbon fibre composite plate with simply supported, movable
and isothermal edges. The analysis has been conducted in a full (i.e., two-way)
thermomechanical coupling framework. Besides mechanical (transverse harmoni-
cally varying and in-plane constant) excitations and body thermal excitations, the
third-order model allows us to consider a remarkable variety of thermal boundary
conditions to be possibly prescribed on the plate upper and lower surfaces. A condi-
tion of prescribed temperature entailing direct activation of the plate temperature field
has been considered in the numerical investigation; yet, two relevant spatial shapes,
either constant or dome-shaped, have been considered, the latter being more con-
sistent with the modeling assumption about the spatial distribution of the unknown
thermal field made in the Galerkin modal reduction. Local and global nonlinear
dynamics have been investigated, highlighting the transition to thermally-induced
buckled responses, however with meaningfully distinct response features occurring
when considering either one of the two different prescribed shapes. Nonetheless, the
remarkable influence of the slow transient thermal dynamics on the steady outcome
of the faster mechanical response clearly emerges in both cases. It can be suitably
caught only through the construction and comparison of proper planar cross sec-
tions of the system actual four-dimensional basins of attraction, getting an overall
confirmation of the role played by global analysis for attaining a comprehensive
understanding of system dynamics. Owing to its considerable richness and flexibil-
ity, the third-order model is currently being used to perform systematic investigations
of the effects of a variety of physically meaningful thermal boundary conditions on
the nonlinear dynamic response, by also looking at the results reliability in terms of
consistency of assumptions made in both the modeling and the analysis stage.

Acknowledgements Thefinancial support ofPRIN2015 (No. 2015JW9NJT) is gratefully acknowl-
edged.
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Chapter 23
Non-linear Free Vibrations of a Hanging
Cable with Small Sag

Guilherme Jorge Vernizzi, Guilherme Rosa Franzini and Celso Pupo Pesce

Abstract This paper presents a method for evaluating non-linear modes and the
corresponding natural frequencies of hanging cables with small sag. The use of a
Galerkin temporal scheme on the governing equations of motion associated with a
fictitious normal force accounting for the effects of the resulting non-linear terms
leads to a closed-form solution for the non-linear free vibration problem. The influ-
ence of amplitude on the modal shapes and frequencies are presented.

Keywords Non-linear normal modes · Extensible cable · Small sag · Closed form
solution · Galerkin projection

23.1 Introduction

Structural solutions based on tensioned cables with varying traction along the length
are commonly found in engineering applications. The study of the dynamic response
of those structures is of great importance in fatigue design and stability analysis.
Particularly, the study of the free-vibration problem is of interest, since it provides
intrinsic characteristics such as its natural frequencies and modes. Considering a
linear problem in free vibrations, the system oscillates with the form of a particular
normal mode if the initial conditions match this mode. This concept can be expanded
for non-linear systems by using the concept of the non-linear normal modes; see [1].

Reference [2] analytically investigates the linear free oscillations of a cate-
nary riser with negligible bending stiffness, providing aWentzel–Kramers–Brillouin
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(WKB) (see for example [3]) closed-form solution for the problem. Following, the
non-linear modes for a vertical beam with varying tension were addressed in [4],
which presents a closed-form expression for the modal shape and the natural fre-
quencies. In the latter paper, the authors employed a temporal Galerkin projection
and a fictitious normal force similar to that previously proposed in [5].

The present paper aims at contributing with the planar non-linear dynamics of
cables in free vibrations. Particularly, the major interest lies on determining the non-
linear modes and frequencies of a cable hanging between two points at different
heights, with a sag to span relation of order of 1:20 or smaller. The formulation
herein presented extends the results of [4], allowing for use in cables that are in a
configuration different from the vertical one. Furthermore, the formulation herein
presented includes some non-linear effects neglected in [2].

23.2 Mathematical Model

Consider a cable made of an elastic-linear material, with axial stiffness E A, mass
per unit length μ and unstretched length l, as sketched in Fig. 23.1. Let u and v be,
respectively, the displacements in the tangential and in the normal directions defined
with respect to the static configuration. In addition to these quantities, we define T as
the traction and θ as the angle with the horizontal in the static configuration, τ as the
dynamic traction variation, γ as the dynamic variation of θ and ε as the engineering
strain component related to τ . The definition T = T + τ is used in some mathemat-
ical steps. Throughout this paper, primes denote differentiation with respect to the
arclength coordinate s in the static configuration and dots represent differentiation
with respect to time. Since the sag is small and the tangential displacements are con-
sidered small compared to the transversal ones, the approximation γ ∼= v′ is used.
This is possible due to the fact that the term uθ ′, although linear in the dynamical
perturbations, becomes of second order when compared to v′. A detailed analysis on
order of magnitude of terms arising from a dynamic perturbation approach around
the equilibrium configuration may be found in [6].

The equations ofmotion herein analysed are based on theClebsch–Love equations
(see for example [7]). For the sake of a future generalization of this mathematical
model, the static terms are not approximated using a parabolic static configuration
as in [8]. Let bu and bv be the external forces per unit length in the tangential and
transversal directions, respectively. Defining fu and fv as the corresponding elastic
forces and neglecting rotatory inertial forces, the equations of motion are written as:

fu + bu = μü . (23.1)

fv + bv = μv̈ . (23.2)

Considering a cable segment δs, the resulting elastic forces in the tangential and
transversal directions are given by:



23 Non-linear Free Vibrations of a Hanging Cable with Small Sag 263

Fig. 23.1 Basic sketch and principal parameters

δFu = T (s + δs) cos (δθ + γ (s + δs)) − T (s) cos (γ (s)) . (23.3)

δFv = T (s + δs) sin (δθ + γ (s + δs)) − T (s) sin (γ (s)) . (23.4)

Taking the limit δs → 0 in Eqs. (23.3) and (23.4), considering that γ is small, the
resulting terms are:

fu = lim
δs→0

δFu = T
′ − T

(
θ ′ + γ ′) γ . (23.5)

fv = lim
δs→0

δFv = (Tγ )′ + Tθ ′ . (23.6)

The resulting equations of motion are then:

[T + bu] + τ ′ − T γ θ ′ − T γ γ ′ − τγ θ ′ − τγ γ ′ = μü . (23.7)
[
T θ ′ + bv

] + τθ ′ + (T γ )′ + (τγ )′ = μv̈ . (23.8)

Note that the expressions between brackets in Eqs. (23.7) and (23.8) are the
equations of static equilibrium when the dynamical changes in the external forces
can be disregarded or are, in fact, null.Nowa static condensation procedure is applied.
Following [2, 9], the inertial term in the tangential direction is disregarded. A price to
be paid ismissing themutual inertial effect between tangent and transverse dynamics.
Thewell known frequency cross-over phenomenon analysed in [8] ismissing aswell.
However, the tangential component of the mode function may still be written as a
function of the transversal one (see [2, 9]).

Also, a scaling analysis is used to simplify Eq. (23.7). The scaling is made con-
sidering v of unity order, which implies that v′ is of order η, the latter being a small
parameter. The additional curvature v′′ is of order η2, and the same order is consid-
ered for the small static curvature. This is in fact a strong hypothesis, limiting the
dynamic amplitude to a fraction of the wave length of the modes that will be sought.
Also, considering valid the scaling between tangential and transversal displacements
obtained in [8], τ is considered of order η. Keeping only terms of the smallest power
of η, the condensed equation for the tangential displacements becomes:
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E Aε′ − T v′θ ′ − T v′v′′ = 0 . (23.9)

To ensure mathematical clearness, a dummy variable ξ is used when indefinite
integrals of functions of s are required. Integration of Eq. (23.9) leads to:

E Aε = C1 +
∫ s

0
T v′θ ′ dξ +

∫ s

0
T v′v′′ dξ . (23.10)

Now, as made in [9], the constant C1 is obtained considering a spatial averaging
of Eq. (23.10). Also, the strain measure is defined as ε = u′ − vθ ′ + (

v′)2 /2. The
retained terms follow the smallest power of η that appears in the geometrically
complete expression of ε. The constant C1 is given by:

C1 = E A

2l

∫ l

0

(
v′)2 ds − E A

l

∫ l

0
vθ ′ ds − 1

l

∫ l

0

∫ s

0
T v′θ ′ dξ ds

−1

l

∫ l

0

∫ s

0
T v′v′′ dξ ds . (23.11)

Equation (23.11) allows writing the equation of transversal motion in an isolated
manner, i.e., decoupled from that associated with the tangential one. The resulting
equation is given by Eq. (23.12).

θ ′
(
C1 +

∫ s

0
T v′θ ′ dξ +

∫ s

0
T v′v′′ dξ

)
+ (

T v′)′ +

+T v′2 (
θ ′ + v′′) + v′′

(
C1 +

∫ s

0
T v′θ ′ dξ +

∫ s

0
T v′v′′ dξ

)
= μv̈ . (23.12)

Supposing that the dynamics is governed by a single mode, the solution is sought
in the form v = ψ (s) sin (ωt). After a series of algebraic manipulations and the use
of a Galerkin’s temporal scheme (see [4]), the equation of the modal shape for the
modes associated with the transversal direction becomes:

− E Aθ ′

l

∫ l

0
ψθ ′ ds − θ ′

l

∫ l

0

(∫ s

0
Tψ ′θ ′ dξ

)
ds + θ ′

∫ s

0
Tψ ′θ ′ dξ

+T ′ψ ′ + Tψ ′′ + 3

4
Tψ ′2ψ ′′ + 3E A

8l
ψ ′′

∫ l

0

(
ψ ′)2 ds

− 3

4l
ψ ′′

∫ l

0

∫ s

0
Tψ ′ψ ′′ dξ ds + 3

4
ψ ′′

∫ s

0
Tψ ′ψ ′′ dξ + μω2ψ = 0 . (23.13)

Following [4, 5], a fictitious or equivalent “normal force” N is proposed as:
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− E Aθ ′

l

∫ l

0
ψθ ′ ds − θ ′

l

∫ l

0

(∫ s

0
Tψ ′θ ′ dξ

)
ds

+θ ′
∫ s

0
Tψ ′θ ′ dξ + 3

4
Tψ ′2ψ ′′ + 3E A

8l
ψ ′′

∫ l

0

(
ψ ′)2 ds

− 3

4l
ψ ′′

∫ l

0

∫ s

0
Tψ ′ψ ′′ dξ ds + 3

4
ψ ′′

∫ s

0
Tψ ′ψ ′′ dξ = Nψ ′′ . (23.14)

The numerical evaluation of this term is made using a spatial Galerkin projection
considering a set of sinusoidal functions1 sin (nπs/ l), where n is the number of
half-waves existing in the mode considered. The consideration of the number of
half-waves is needed since, for inclined cables, the mode number is not necessarily
the number of half-waves since mode hybridization can occur; see [10]. Using the
wrong consideration regarding n leads to higher values of the fictitious normal force,
specially for the lower modes.

For a catenary configuration, the approximation T ∼= T = α + βs can be used
as a simplification for the static traction with small errors (see [2]). The fictitious
normal force is then associated with the number of half-waves n used in the Galerkin
projection, and is indicated by Nn . The vibration modes will then be non-linear
because some terms in Eq. (23.14) maintain a quadratic relation with the amplitude
used in the projection functionswhen computing thefictitious normal force.Applying
the approximation for the static traction and the evaluated fictitious normal force in
Eq. (23.13), the modal shapes ψn must satisfy Eq. (23.15).

(
T + Nn

)
ψ ′′

n + T
′
ψ ′

n + μω2
nψn = 0 . (23.15)

Notice that the averaging procedure represented by Eq. (23.14) transformed the
nonlinear Eq. (23.13) into a linear one. Following [4], some new quantities are
defined, being a = β/μω2

n , Tbn = α + Nn and Ttn = α + lβ + Nn . Note that Tbn
and Ttn are the modal tractions at the lower and upper ends of the cable respectively,
while ωn is the natural frequency associated with the mode containing n half-waves.
Defining now, as in [2, 4], a variable transformation, and the corresponding inverse
transformation:

z = 2ωn

β

√
μ (Tbn + βs) , (23.16)

s = az2

4
− Tbn

β
. (23.17)

1Sinusoidal functions are used for simplicity. Linear modes, given by the Bessel approximation or
by the WKB closed form solution in [2] might be used instead.
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Equation (23.15) turns out to a familiar Bessel form:

d2ψn

dz2
+ 1

z

dψn

dz
+ ψn = 0 . (23.18)

The solution of Eq. (23.18) can be written as a combination of zero-order Bessel
functions of first and second kinds (J0 (z) and Y0 (z), respectively). The relations in
the combination and the natural frequencies are obtained by applying the essential
boundary conditions of the cable and using the solvability condition for non-trivial
solutions. Although the use of Bessel functions is already a solution, the high values
of z for a catenary cable with small sag allows the use of an asymptotic solution.
Following [4, 5], consider the following transformation:

ψn = 1√
z
�n . (23.19)

Equation (23.18) becomes then:

d2�n

dz2
+

(
1 + 1

4z2

)
�n = 0 . (23.20)

In the case of a catenarywith small sag, 1/4z2 � 1. Such result allows substituting
this term in Eq. (23.20) by a small perturbation parameter, evaluated as the mean
value of 1/4z2 along the cable. As shown in [4], the solution of Eq.(23.20) can then
be well approximated by:

�n = An sin (z) + Bn cos (z) . (23.21)

This leads finally to:

ψn = 1√
z

(An sin (z) + Bn cos (z)) . (23.22)

Notice that Eq. (23.22) resembles the WKB solution previously obtained in [2].
Now, since the transversal displacements must be zero at both ends of the cable, the
system of the boundary conditions reads:

⎡

⎢⎢⎢
⎢
⎣

sin z0√
z0

cos z0√
z0

sin zl√
zl

cos zl√
zl

⎤

⎥⎥⎥
⎥
⎦

[
An

Bn

]
=

[
0
0

]
. (23.23)

Being z0 and zl the values of z at s = 0 and s = l, respectively. Since is desired
to obtain non-trivial solutions of Eq. (23.23), the solvability condition leads to:
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sin (zl − z0)√
zl z0

= 0 . (23.24)

The solution of Eq. (23.24) is zl − z0 = nπ , which, using Eq. (23.16) leads to:

ωn = nπ

2l
√

μ

(√
Ttn + √

Tbn
)

. (23.25)

The modal shapes can then be written as:

ψn = 4

√
Tbn

Tbn + βs
sin (z − z0) . (23.26)

Using Eq. (23.25) in Eq. (23.16), the coordinate z can be written in terms of the
modal tensions and the number of half-waves as:

z =
√
Tbn + βs√
Ttn − √

Tbn
nπ . (23.27)

23.3 Numerical Example

To illustrate the effects of the non-linearities, preserved in the presented formulation,
consider a cable with axial stiffness E A = 22970kN, diameter D = 1.57cm and
μ = 1.29kg/m. This cable is hanged such as h = 200m and d = 100m, and l =
223.73m.The length refers to the static equilibriumconfiguration length. In Fig. 23.2,
the superposition of linear and non-linear modes is presented for the mode with
n = 20, for a modal amplitude An = 3D. The modal shape functions are presented
in dimensionless form, normalized by the maximum value of itself. As can be seen,
there is no appreciable change in modal shape, since the modal amplitude is small.

Now, in Figs. 23.3 and 23.4, the superposition of linear and non-linear modes
is presented for modes with n = 10 and n = 20 respectively, considering for the
non-linear mode a modal amplitude of An = 20D. The change in modal shape now
is visible, altering the position of nodal points and rate of change of the vibration
amplitude along the cable. Those figures also show that higher modes are more
affected by non-linearities compared to lower ones.

The effects of the non-linearities over the natural frequencies are shown in
Table23.1. The natural frequencies for some modal amplitude values and modes
are shown. The modes are listed by the number of half-waves n in the modal shape.
It is possible to conclude that the non-linearities have a hardening effect over the
cable vibrations, and cause an increase in the natural frequencies. Such an increase
is more significant for higher modes and for larger modal amplitude. Table23.1 is
graphically summarized in the backbone curves presented in Fig. 23.5. Those curves
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Fig. 23.2 Mode n = 20, linear solution in red and non-linear in blue with An = 3D

Fig. 23.3 Mode n = 10, linear solution in red and non-linear in blue with An = 20D

Fig. 23.4 Mode n = 20, linear solution in red and non-linear in blue with An = 20D
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Table 23.1 Frequencies comparison (rad/s)

n Linear An = 1D An = 3D An = 5D An = 10D An = 20D

2 2.617 2.626 2.627 2.628 2.635 2.665

3 3.926 3.980 3.983 3.988 4.013 4.109

5 6.543 6.556 6.568 6.593 6.706 7.141

10 13.086 13.098 13.196 13.389 14.260 17.310

15 19.629 19.670 19.998 20.639 23.406 32.169

20 26.171 26.269 27.041 28.521 34.619 52.317

30 39.257 39.587 42.135 46.812 64.338 109.205

Fig. 23.5 Backbone curves
for the cable in study, being
ωn0 the natural frequency of
the linear problem

were numerically obtained by applying the proposed model to some values of modal
amplitude in the range presented in the figure.

23.4 Conclusions

A closed-form solution for the non-linear modes and natural frequencies of a hang-
ing cable with small sag was obtained. The results showed the dependence of the
frequencies on the amplitude of motion and the change in the modal shape, resulting
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in a shift of nodal points, changing the amplitude variation along the length. It is
important to highlight the increasing in natural frequencies due to the preserved non-
linearities, whichmay be significant for fatigue analysis for example. Finally, besides
giving intrinsic characteristics of the system, closed-form solutions for modal shapes
also allow for further direct implementations of projection methods in dynamic anal-
ysis, such as the Galerkin projection. Further work includes the search for non-linear
modes of hanging cables with arbitrary sag, and the application of non-linear modes
in Galerkin schemes to obtain reduced order models for problems of interest such
as cables subjected to vortex-induced vibrations or under the action of parametric
excitation.
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Chapter 24
Analytical and FEM Modelling
of the Behaviour of Pile in Dynamic Load
Test

Vladimir Zivaljevic, Dusan Kovacevic and Zvonko Rakaric

Abstract Pile load testing may be of static and dynamic character. Dynamic load
tests are carried out by applying an axial impulse load by the use of falling mass. In
this paper a dynamic load testing of a single pile foundation and its analytical and
numerical modelling by the use of finite element method (FEM) are described. The
vertical deflection due to the determined maximum allowed static force was calcu-
lated in FEM model and was used to control the value of the deflection in nonlinear
dynamic FEM analysis. The correlation between the force value, soil properties and
deflection is analysed. Hence, a proper FEMmodel for the purposes of pile dynamic
load testing procedures could be recommended.

Keywords Pile foundation · Dynamic test by load · FEM analysis · Clay soil

24.1 Introduction

Foundation piles are often used to transfer loads to the ground in order to increase
the soil bearing capacity or to reduce the settlement of the structure. Due to the
nature of their construction, quality control is limited. Therefore, calculation of the
bearing capacity of piles is one of the key steps in pile foundation design. Aside
from theoretical methods based on the physical-mechanical properties of the soil
and methods based on the dynamic data obtained during pile driving, another way of
the bearing capacity assessment of the piles is by the pile dynamic load tests using
a drop-weight system. This testing method implies assessment of the pile bearing
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capacity based on the measurement of the force and velocity near the top of the pile
due to the axial impact force [1].

The problem here is analysed on a 32 m long concrete pile. Foundation depth
is 30.0 m and the extension of 2.0 m above the ground was formed to give a more
realistic representation of the actual in situ conditions, where piles often extend over
the terrain surface in order to make connections of measuring instruments accessible.
The soil type that had been analysed is a clay soil of medium density.

In this paper, the dynamic load testing is analysed in two ways: analytical and
numerical.

24.2 Dynamic Test by Load of the Pile

Adynamic test by load can be applied to any type of pile regardless of the construction
method. It implies assessment of the pile bearing capacity based on the measurement
of force and velocity near the top of the pile due to the axial impact force. The axial
impact force can be applied by the use of conventional pile driving hammers and by
the use of a drop weight system designed especially for testing purposes. These tests
are of great significance for high-capacity piles (over 2.5 MN [2]), for which static
test by load is very expensive or physically difficult to perform (e.g. over water). In
this paper the emphasis will be put on a dynamic test with the use of drop weight
system, which is increasingly being used for dynamic testing of drilled piles and
caissons.

A typical system of drop weight consists of four components: a frame and/or a
guide for dropweight (ram), ram,mechanism for the release of ram and impact plates
with or without cushion.

The appliance of dynamic testing is performed by letting the mass fall from a
certain height to the top of the pile. The impact of the ram creates a dynamic stress
wave that proceeds to move towards the base of the pile. The impact force of the
ram should be large enough to induce the sufficient settlement of the pile, which will
fully mobilize its bearing capacity. Therefore, the requirement of great importance
for pile dynamic test by load is the utilization of a ram of suitable weight. This is
above all essential in cases of testing of high-capacity piles, and in cases where the
pile is located in the soft soil (in order to achieve proper settlement with the purpose
of activating the maximum resistance of the soil). Some authors [2] suggest that
the mass of the falling ram (in tons) is at least 0.1–0.2% of the required bearing
capacity of the pile (in kN) divided by the acceleration of 9.81 m/s2. By combining
the results of this test method with the results of pile static test by load, the accuracy
of determining the actual pile bearing capacity can be increased.

Some of difficulties that may compromise dynamic measurements are usually
related to construction, impact of the ram, pile resistance and measuring point. Irreg-
ular geometric shape, poor concrete quality, an inhomogeneous cross-section, an
uneven concrete surface can cause irregular reflection of stress waves generated
during the impact, uneven results in terms of stress distribution, which lead to an
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unacceptable calculation of generated forces. Uneven impacts, in particular impacts
over one contact point (rotated ram), cause unequal stresses along the pile at a great
distance from the impact point. High friction resistance that develops near the surface
of the soil, which is more common in drilled rather than in driven piles, creates large
signal reflections at an early stage and may lead to difficulties in signal analysis.

24.3 Definition of Analytical Model

Analytical model that was considered consists of n masses connected with spring
elements. The nthmass is connected to the non-movable ground support via nonlinear
spring element as well (Fig. 24.1).

Spring elements from i = 1 to i = n − 1 are assumed to be linear and the nth
nonlinear. The nonlinear change of force of the nth spring is described with the
Eq. (24.1):

Fnl = knl · Δlα (24.1)

Fig. 24.1 Analytical model
of the dynamic pile load
testing
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In Eq. (24.1) α∈R+ and α < 1, knl is spring stiffness and �l is spring elongation.
Furthermore, damping is considered as linear viscous and is taken into account as
Rayleigh damping. Damping between the masses of the pile is labelled as c1 and
damping between the nth mass and the ground is labelled as c2.

24.4 Definition of FEMModel

Numerical modelling of pile dynamic load testing was done using the FEM software
Midas GTS NX©, which is aimed for analysis of structure-soil interaction.

The geometry of the model can be very comfortably discretized using various
geometry tools, which enable the definition of points, lines, surfaces and various
3D shapes over which a mesh of FE is generated. The FE are further attributed
the characteristics of the material and/or some other characteristics that adequately
describe the behaviour of the model. The FEM model considered in this paper is
spatial (3D). The rendered view of cross section of numerical model is given in
Fig. 24.2.

The considered pile element is modelled using concrete material with the Young’s
modulus of elasticity of 30.0 GPa, Poisson’s ratio of 0.2 and damping ratio of 0.05

Fig. 24.2 Rendered view of
cross section of numerical
model
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Fig. 24.3 Modified
cam-clay model: the volume
change and pressure ratio in
soil

(which is value commonly used for concrete structures). The length of the pile is
32.0 m. Since the modulus of elasticity of pile element is 1.1 × 103 times greater
than the soil modulus of elasticity, material behaviour of pile is assumed to be linear-
elastic, while behaviour of soil is considered as nonlinear-elastic.

The model covers the soil “half-space” prism, with dimensions 40 × 40 × 60 m.
These dimensions provide enough distance from the pile to the edge of the soil
half-space in order make influences of the impact force far enough from the pile
negligible. Translational displacement of half-space prism is constrained in all three
global directions. The soil type that had been analysed is a clay soil of medium
density, homogeneous along the depth, with the Young’s modulus of elasticity of
27.5 MPa and Poisson’s ratio of 0.45. For the modelling of concrete pile and soil 3D
hexahedral FEs are used. Nonlinear parameters are included through the so-called
modified cam-clay model of the soil, which is embedded in the software as one of
the many possible nonlinear soil models [3]. This type of material model is used
to simulate the behaviour of clay materials. In general, the relationship between
the volume change and pressure in clay ground can be expressed using the concept
of normal consolidation line and overconsolidation line. The increase in load (i.e.
stress in ground) follows the overconsolidation line to the normal consolidation line
(Fig. 24.3). After the stress increase reaches the point of intersection of overconsol-
idation line and line of normal consolidation, the stress state is further described by
the normal consolidation line.

This type of soil behaviour can be interpreted in another way - through the elasto-
hardening plastic ratio of stress and strain (Fig. 24.4).

The dynamic calculation includes a nonlinear dynamic (time-history) analysis for
a time interval of 100 ms. The dynamic force acting on the pile is of a pulse character
and is given by the Eq. (24.2):

Fdyn = Fstat · f (t) (24.2)

In Eq. (24.2) Fstat is a static value of force and f(t) is a function that describes
a change in the force intensity depending on the time (Fig. 24.5). The change of
force with time is defined so that the function linearly changes the value from 0 to
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Fig. 24.4 Modified
cam-clay model: the
stress-strain ratio in soil

Fig. 24.5 Time function of
force intensity

1 in the interval from 0 to 4 ms, and in the interval from 4 to 9 ms the function
value is also linearly back to zero value. After this period, the function has a zero
value, which represents the interval in which the dropping mass is in the air after
bouncing off of pile surface after the impact. The peak intensity of the dynamic
force is determined using analytical methods. As a reference value, the values of
the nominal pile bearing capacity determined by theoretical methods based on the
physical-mechanical properties of the soil given in [4] were used to obtain the same
settlement as that due to the impulse force.

24.5 Analysis of the Results

Results of dynamic analyses are shown in the form of figures and diagrams.Diagrams
show the values of calculated velocity (m/s) and the settlement of the top and base
of the pile (m) at the four nodes along the pile’s cross-section radius (central, 0.1,
0.3 and 0.5 from the pile’s axis—Fig. 24.6) in function of time. Distribution of the
principal stresses due to the impulse force is given at time increments of 1.0, 9.0,
10.0, 12.0, 14.0 and 16.0 ms.

Figures 24.7 and 24.8 show a large difference between the value of the results
in the same time increments at different curves in the initial phase of the analysis.
Since these figures show the results on the top surface of the pile, the reason for this
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Fig. 24.6 Display of nodes
along the radius of a pile’s
cross-section for a more
detailed view of results

Fig. 24.7 Velocities (m/s) for time interval 0–100 ms (central node (red curve), 0.1 m (yellow
curve), 0.3 m (blue curve) and 0.5 m (green curve) from the pile’s axis)

phenomenon lies in the fact that the impulse force is modelled as a nodal load and as
such is applied in the central node of the upper surface of the pile. Therefore, the high
velocity and settlement peaks in the loaded node should be taken with the reserve
and in the analysis of the results the priority should be given to the results referring
to the points located at a certain distance from the loaded node (in this case at 0.1,
0.3 and 0.5 m from the central node) since the values of the results in the same time
increments on these curves are almost identical.

In Fig. 24.9, which represents the pile base settlement, settlement values in all
increments, on all curves (i.e. at all points along the radius of the lower surface of the
pile) are roughly equal. Therefore, it can be concluded that the stress concentration at
a sufficient distance from the loaded node does not affect the results of the analysis. By
comparing Figs. 24.8 and 24.9, it can be noticed that the peaks of settlement curves
of the base and the top of the pile are “translated” for 10 ms. This phenomenon
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Fig. 24.8 Settlement of the top of the pile (m) for time interval 0–100 ms (central node (red curve),
0.1 m (blue curve), 0.3 m (yellow curve) and 0.5 m (green curve) from the pile’s axis)

Fig. 24.9 Settlement of the base of the pile (m) for time interval 0–100 ms (central node (yellow
curve), 0.1 m (blue curve), 0.3 m (green curve) and 0.5 m (red curve) from the pile’s axis)

indicates the time necessary for the stress wave from the moment of impact to cover
the distance from the top to the base of the pile. Additional thing to notice is the
aperiodic mitigation of settlement after the impact.

Themaximum settlement of the top of the pile is st,max = 27.0mmand occurs at the
time increment t = 7 ms (the central node is exempted). The maximum settlement
of the base of the pile is sb,max = 20.0 mm and occurs at the time increment t =
17 ms. The maximum calculated peak velocity is vt,max = 7.5 m/s (the central node
is exempted).
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Fig. 24.10 Normal stresses
(kN/m2) in pile in time
increments: a 1 ms, b 9 ms,
c 10 ms, d 12 ms, e 14 ms,
f 16 ms
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Figure 24.10 indicate that the migration of the stress wave through the pile is
uniform. Stress wave in its early stage is shown.

24.6 Conclusions

In this paper recommendations considering the use of FEM analysis for the purposes
of pile dynamic load testing are given. After analysing the results of the dynamic
calculation, the following conclusions were made:

The large difference between the value of the results in the loaded node and nodes
along the radius of the pile in the same increments of time should be taken with
reserve because the impulse force was modelled as a nodal and as such was applied
in the central node of the upper surface of the pile. Hence, during the analysis of the
results the priority should be given to the results referring to the points located at a
certain distance across the cross-section radius from the loaded node.

Values of settlement in all increments are at all points along the radius of the lower
surface of the pile equal. Therefore, it can be concluded that the stress concentration
does not affect the results of the analysis at a sufficient distance from the point of load.
The maximum settlement of the base and the top of the pile values are “translated”
for 10 ms, indicating the time necessary for the stress wave from the moment of
impact to reach from the top to the base of the pile.

Definite determination of the pile bearing capacity would be derived as a result
of calibration of analytical and numerical methods by the experimental load testing.
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Chapter 25
Harnessing Geometric Nonlinearity
to Design Tunable Twist-Coupled Locally
Resonant Metastructure

Yitian Wang, Rui Zhu, Xiaoning Liu and Gengkai Hu

Abstract In this paper, a lightweight metastructure is designed based on the pris-
matic tensegrity structure (PTS) which enables unique twist-coupled effect. Dynam-
ically, the coupling between axial and torsional waves can also be observed in a
PTS chain. A theoretical model with the coupling stiffness matrix is developed to
study wave behavior of the proposed metastructures with local resonance-induced
low-frequency bandgaps. Tunable static stiffness as well as wave behaviors can be
achieved by harnessing the geometrically nonlinear deformation of the periodical
tensegrity prisms under global torsional or/and axial loads. The proposed tenseg-
rity metastructure could be useful for various engineering applications in the fields
of space and civil engineering where high strength-to-weight ratio as well as low-
frequency vibration suspension are in a high demand.

Keywords Metastructure · Nonlinearity · Vibration suspension

25.1 Introduction

A conventional way to attenuate structure-borne waves is attaching dampers to the
vibrating components, however, it becomes less efficient for the low frequency wave
due to the dissipation difficulty induced by the large wavelength. Metastructure,
as a metamaterial inspired concept, has recently emerged to refer to a lightweight
periodic material system with excellent low frequency wave attenuation abilities as
well as high stiffness-to-weight ratio [1, 2]. Like any passive structures, once the
functional units of the metastructures are manufactured, changing the position or
size of metastructures’ bandgap would be very difficult if not impossible in practice.
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One solution for actively controlling the wave behavior of the metastructure is to
introduce electromechanical couplingwhich provides an externally controlled degree
of freedom in each unit cell [3–5].However, in thisway, themetastructure’s unit cell is
difficult to manufacture and the complicated stability condition in the control circuits
could also become a problem to the robustness of the active system. On the other
hand, harnessing geometric nonlinearity provides an alternative solution to tune the
dynamic behavior of the metastructure without introducing the complicated multi-
physics coupling and therefore, becomes an excellent choice for the active control
of the small-amplitude linear elastic waves [6, 7]. This tunable design significantly
promotes manufacturing feasibility of the metastructure as well as decreases the
complexity of the entire system.

In this paper, a theoretical model is first developed to investigate the unique twist
coupling in a PTS through a coupling stiffness matrix. A lightweight metastruc-
ture is then designed based on local resonance mechanism to suspend the low fre-
quency vibration. Tunable static stiffness and wave behaviors of metastructure with
the periodically-ranged PTSs are observed under an axil static forcewhich introduces
the needed nonlinear deformation for tuning the elastic waves.

25.2 Theoretical Modelling of PTS Inspired Metastructure
Unit Cell

A schematic of the studied PTS unit cell is shown in Fig. 25.1a, which is modified
from the well-studied T3 module [8]. The PTS consists of two Aluminum (Al) disks
at the top and bottom ends. The mass and moment of inertia of the disks are 9.7 g and
175 g cm2, respectively. The two disks are then connected with three gray colored
cross-strings and three yellow colored bars, which are made of Nylon and polylactic
acid (PLA), respectively. The bars and strings constitute the PTS in a right-handed
chiral fashion. The stiffness of strings/bars are 4.8 × 104 and 4.6 × 104 N/m. Due
to the large differences in the material properties and mass between the disks and
the string/bars, the mass of the strings/bars can be ignored and the disks can be
considered rigid in the following study. The gray spheres in Fig. 25.1a represent
the spherical joints that permit rotational degrees of freedom (DOFs) of unit cell. A
reference configuration of the PTS is shown in Fig. 25.1b, where the radius of the
end-disks, the height of the PTS and the relative angle of the two end-disks are R =
6 cm, h and φ, respectively. In this study, we assume that the PTS is only loaded by
the axial force and torsion, so that the two end-disks are maintained to be parallel
and the central axis of the PTS, OO

′
, is always along the z direction. As a result, only

two DOFs of the PTS are permitted, which are the relative axial displacement u and
the relative rotational angle φ between the two end-disks.

Considering the symmetry of the PTS and using a local coordinate system n-t-z,
the equilibrium equation at joint E

′
can then be expressed as:
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Fig. 25.1 a Schematic of the right-handed chiral PTS unit cell; b reference configuration of the
PTS unit cell

qb
(OE′ − OE)

|OE′ − OE| +qs
(OE′ − OG)

|OE′ − OG| + qd
(OE′ − OO′)
|OE′ − OO′| = f (25.1)

where, f = ( fn, ft , fz) is the force applied at E
′
, qb, qs and qd are the forces density

along the bar, the string and the radius of the disk plane, respectively. Then, Eq. (25.1)
can be written in a matrix form as

CQ = f (25.2)

where C is a 3 by 3 matrix with each component as a function of φ and h. The
PTS must be in a stable equilibrium configuration under null nodal force. In such a
configuration, the homogeneous equation CQ= 0 should have a nontrivial solution.
As a result, the determinant of the matrix C should be zero as

det(C) = 0 (25.3)

which results in two possible initial angles with φ0 = −π/6 or 5π/6. However, the
position φ0 = −π/6 always yields a maximum of potential energy, so it’s an unstable
equilibrium configuration [8]. Therefore, φ0 = 5π/6 is the only stable tensegrity
configuration of the PTS, and h0 defines as the height h when the PTS under null
nodal force, which is equal to 9.5 cm. Then, the twoDOFs of the PTS can be rewritten
as the torsional angle θ = φ − φ0 and the relative axial displacement between the two
end-disks is u = h − h0. The potential energy of the PTS under large displacement
u and torsional angle θ can be given as
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E = 3

2
kb

[√
(Rcos(φ0 + θ) − R)2 + (R sin(φ0 + θ))2 + (h0+u)2 − Lnb

]2

+ 3

2
ks

[√
(Rcos(φ0 + θ) − R cos(2/3π))2 + (R sin(φ0 + θ) − R sin(2/3π))2 + (h0+u)2 − Lns

]2

(25.4)

where Ln
s and L

n
b are the nature length of the strings and bars, respectively.

The externally applied axial force and torque can be given as

F=∂E

∂u
, T = ∂E

∂θ
(25.5)

whereF and T are nonlinear functions of u and θ . To demonstrate the tunability of the
PTS, the effective tangent stiffness is first calculated by taking the partial derivatives
of T and F, which can be given as the nonlinear functions of the equilibrium state
θ0 and u0

km = ∂T

∂θ
(u0, θ0), kh = ∂F

∂u
(u0, θ0), kc = ∂F

∂θ
(u0, θ0), (25.6)

where km, kh, and kc are effective rotation stiffness, the effective axial stiffness
and effective coupling stiffness, respectively. Since geometrical nonlinear behavior
can be found intrinsically in the PTS [8, 9], large modifications in the structural
configuration induced by the external loadings could consequently vary the effective
stiffness and therefore, change the static as well as dynamic responses of the PTS.
Figure 25.2a shows that effective stiffness kh, kc and km as a nonlinear function of the
axial and rotational displacements state (u0, θ0) of the PTS. It can be found that both
the rotational angle and axial displacement can be utilized to control the effective
stiffness. Here, the applied axial force is chosen to adjust the effective stiffness as
well as the dynamic behavior due to the easy realization. Figure 25.2b shows the
applied static force F adjustments on the kh, kc and km. In the figure, kh and kc
increase monotonically when F increases while km decreases monotonically when F
increases, which suggests positive applied force (such as case 1) and negative applied
force (such as case 2) are different control strategies for the elastic wave propagations
in the tensegrity metastructure, which will be explained in the following part.

Although nonlinear wave behavior can be found in the tensegrity system, we here
only study the small-amplitude linear elastic wave propagations, which are defined
as�u(t),�θ (t), superimposed upon an equilibrium state in the 1D infinite tensegrity
metastructure,which is constructed by periodically arrangingPTSswith same elastic,
inertial and geometrical properties. The governing equation of the nth PTS cell can
then be obtained with effective stiffness as

[
m 0
0 J

]{ ..

�un
..

�θn

}
=

[
kh(u0, θ0) kc(u0, θ0)
kc(u0, θ0) km(u0, θ0)

]{
�un + 1 + �un−1 − 2�un
�θn + 1 + �θn−1 − 2�θn

}
(25.7)



25 Harnessing Geometric Nonlinearity … 285

Fig. 25.2 a kh, kc and km as functions of u0 and θ0; b kh, kc and km change with applied static
axial force F

where J andm are themoment of inertia andmass of thePTS’s disk, respectively.Con-
sidering harmonic wave excitations with angular frequency ω and periodic boundary
condition on the unit cell’s boundaries, an eigenvalue problem can be formed and
the dispersion results for two wave modes can be calculated. Figure 25.3 shows the
dispersion curve of the system. The blue dot dash line is dispersion relationship of the
quasi torsional wave, which has lower cut-off frequency and wave velocity. While
the red solid line is dispersion relationship of the quasi axial wave, which has higher
cut-off frequency and wave velocity.

25.3 Tunable Tensegrity Metastructure for Vibration
Suspension

Figure 25.4a shows the schematic of a local resonance-based tensegrity metastruc-
ture. The introduced resonator in each unit cell consists of a cylindrical resonator
(mR = 10.17 g) and two strings (kR = 4.6417× 104 N/m) that connects the resonator
to the PTS’s end disks. The diameter of the resonator is designed to fit inside the
central space of the chiral bars and strings without blocking their motions. In order



286 Y. Wang et al.

Fig. 25.3 The dispersion
curves of the 1D infinite
tensegrity metastructure
constructed by periodically
arranging PTSs, where k is
the wave vector

to reduce the overall weight of the metastructure, cross-patterned end disks (mC, JC)
with mC = 4.63 g and JC = 83.36 g cm2 are used in each PTS. Figure 25.4b shows
the dispersion curves of the LR-type metastructure. First, no full-wave bandgap can
be found in the low frequency region. Second, an axial wave bandgap can be found
in the light blue shaded region. The local resonance origin of the axial wave bandgap
is evidenced by the lower edge-maximum profile of the k*(Im) curve in the corre-
sponding frequency range [10]. Therefore, the LR-based tensegrity metastructure
can block axial wave in the frequency range from 447 to 696 Hz, while keeping the
light weight property of the entire structure unchanged.

Fig. 25.4 a Schematic of the LR-type tensegrity metastructure; b dispersion curves with real and
imaginary wavenumbers. Light blue-shaded region indicates axial wave bandgap
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Fig. 25.5 aDispersion curves of the tensegrity metastructure under positive control axial force and
b negative control axial force

In the previous section, quantitative analysis on the PTS’s effective stiffness con-
trolled by an external axial force loading has been conducted statically (Fig. 25.2b).
In order to controlled the band structure of the tensegrity metastructure, the ‘small-
on-large’ tunability [6, 7] is considered in this section. The ‘large’ means giving a
large global static external loading on the metastructure, therefore, causing the geo-
metrically nonlinear deformation and the effective stiffness changing of the PTS,
which is the fundamental formation of the tensegrity metastructure. The ‘small’
means the small amplitude linear wave propagating in the metastructure, which is
affected by the ‘large’ nonlinear deformation. A kind of metastructure with a right-
handed chiral PTS, a left-handed chiral PTS and a local resonator in the unit cell, is
design to exhibit the ‘small-on-large’ tunability of the tensegrity metastructure. Both
positive (case1 F = 1500 N) and negative (case2 F = −1000 N) control axial force
are applied to tune the band structure of the tensegrity metastructure. The tuned dis-
persion curves are shown in Fig. 25.5a, b, respectively. First, in the dispersion curve
of this kind of metastructure which is shown as gray dash line, a bandgap for both
two kinds of wave can be found in the frequency region 1124–1867 Hz. Second the
axial wave bandgap is unchanged in both case1 and case2. Third, by imposing the
positive control force (case1), the full wave bandgap and cutoff frequency rises to
a higher frequency region, as shown in Fig. 25.5a. By imposing a negative control
force (case2), the full wave bandgap and cutoff frequency drops to a lower frequency
region.

In the previous sections, wave propagations in the infinite tensegrity metastruc-
tures based on local resonance mechanism have been systematically investigated.
However, the infinite structure can’t be realized in the engineering field. Therefore,
we conduct the vibration tests in a finite tensegrity metastructure with defined bound-
ary conditions, which can validate the predicted wave properties of the tensegrity
metastructure in the previous part. Figure 25.6a shows the schematic of the finite
tensegrity metastructure with LR-type unit cells. The schematic only shows the side
views of the metastructure with the green thin lines, black thick lines and blue thin
lines being the thin strings connecting local resonators, the elastic bars and the strings
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Fig. 25.6 a Schematic of the 20 unit cells finite tensegrity metastructure; b corresponding FRF
results of the metastructure

connecting PTSs, respectively. The cross-linked disks are presented by the gray I-
pattern rectangles. The tensegrity metastructures are constituted of 20 unit cells. The
right side of the metastructure is fixed. The harmonic torsional and axial force excite
on the left side. A frequency sweep is conducted in the frequency range f = (0,
2800 Hz). Frequency-response functions (FRFs) then are defined for the torsional
and axial waves as FRFT and FRFA, respectively. For steady-state vibrations, the
FRFs for the two wave modes can be defined as follows:

FRFT = 20 log

(
θ20

θ1

)

FRFA = 20 log

(
u20
u1

)
(25.8)

where

θ j = θ̃ j e
−iωt , j = 1 or 20

u j = ũ j e
−iωt , j = 1 or 20

are the torsional and axial displacements measured at the sensor points located at first
end disks of the 1st and 20th metastructure unit cells. Significantly decreased FRFA
curve can be found in the frequency range f = (450, 690 Hz) in Fig. 25.6b, which
is in good agreement with the local resonance-induced axial wave bandgap (light
blue-shaded zone) found in the corresponding infinite LR-type metastructure. In this
frequency range, the FRFA amplitudes at most frequency points are below −20 dB
except for those at the four peaks which are generated by the global resonant motions
of the entire finite tensegrity metastructure.
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25.4 Conclusions

A theoretical model is developed to study the nonlinear axial-torsional coupling
effect of the prismatic tensegrity structure. Then, the band structures are calculated
to describe the axial-torsional coupling wave propagation in the metastructures con-
sisting of PTS cells. The unit cells are design on local resonance mechanism, which
can realize the low frequency vibration suspension. Moreover, the ‘small-on-large’
tunability is introduce to control of the wave propagation and vibration suspension in
the tensegrity metastructure by harnessing the geometrically nonlinear deformation
of the PTS. Finally, the vibration tests in finite tensegrity metastructure is conducted
to validate the axial wave blocking ability of the proposed tensegrity metastructures.
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Chapter 26
Vibrations of Rotating Thin-Walled
Composite Beams with Nonlinear
Piezoelectric Layers

Jerzy Warminski and Jaroslaw Latalski

Abstract A nonlinear model of a structure consisting of a rigid hub and three
thin-walled flexible laminated beams is analysed in this paper. It is assumed the con-
sidered blades have additional piezoceramic layers embedded into master laminate,
so due to elastic specimen deformation an electric field is induced. In the mathe-
matical model of the multi-material blades a full two-way piezoelectric coupling
effect involving mutual mechanical and electrical interactions is adopted. Moreover,
a nonlinear constitutive relation for piezoceramic material with respect to electrical
field is considered to properly model the active structure behaviour when operated in
near resonance conditions. The governing equations of the system have been sourced
from the previous authors’ research. Next, resonance curve plots of the coupled elec-
tromechanical system considering both the blades and the hub dynamics have been
prepared. Within the performed studies cases of a fully symmetric and next a slightly
mistuned rotor configuration have been discussed.

Keywords Rotating structures ·Active blades ·Nonlinear vibrations · Composites

26.1 Introduction

Rotating structures play a very important role in many branches of mechanical and
aerospace engineering.Representative examples of actual designsmight be steamand
gas turbines, generators, fans, compressors, aircraft propellers, helicopter rotor blades
etc. [1, 2]. Recent trends in rotating structures development are aimed at enhancing
their functionality so that they can react to the changing external conditions and
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behave as smart devices. This goal may be achieved by combining active materials,
like piezoceramics, shapememory alloys ormagnetostrictive ferrofluidswith tailored
hosting structures usually made of lightweight composites [3].

In the above context, amulti-disciplinary effort inmaterials,mechanics, electricity
and structural analysis is needed to address these challenges. It involvesmore accurate
mathematical and computational models to properly capture the complex multi-
domain structural behaviour. For instance, while considering piezoceramic layers
embedded into fibre reinforced composites an accurate and reliable mathematical
model has to take into account anisotropic properties of themaster compositematerial
as well as mutual coupling of electro-mechanical properties of the active material
[4, 5]. In the classical approach, when dealing with mechanical structural domain,
a nonlinear model is often adopted for small strains but large amplitude oscillations.
However, if a coupled piezo-composite structure is considered a set of additional
nonlinear constitutive equations for piezoelectric layers must be taken into account
[4, 6].

When looking at the mathematical models of transducers and active devices made
of piezoceramics there are two ways in which one may deal with the problem. The
most popular formulations are based on the converse effect only, where the impact
of the known electrical field on the mechanical one is considered, but the direct
piezoelectric effect is neglected. Unfortunately, this one-way coupling approach is
not sufficiently accurate since it tends to underestimate the material stiffness and
natural frequencies of the structure [7].

Another group of mathematical models are the two-way coupling ones that incor-
porate both converse and direct piezoelectric effects. Thesemodels aremore accurate
when comparing to the one-way coupling ones. Moreover, they provide an additional
electrical degree of freedom apart from regular mechanical ones.

The analytical two-way coupling model of a rotating composite thin-walled beam
with embedded nonlinear piezo-layers has been proposed recently in [8]. In themath-
ematical formulation of the problem both direct and converse piezoelectric effects
are considered by adopting the assumption of a spanwise electric field variation. In
this research a special laminate stacking configuration—so called circumferentially
asymmetric stiffness (CAS)—exhibiting strong coupling of bending and torsional
deformations of the beam has been considered. Free vibration tests and analysis of
individual components of mode shapes has shown some significant diversities in the
electric field distribution regarding the angular speed of the system and the type of
master structure deformation. The most prominent effects have been observed for
first modes. Moreover, the forced vibration analysis has revealed the presence of the
softening effect in systems with nonlinear piezoceramic material.

In the current paper the previous authors studies [8, 9] on rotor structures are
continued. In particular, a three bladed design with piezoelectric layers embedded on
two opposite outer surfaces of each beam is examined. Similar to the previous studies
it is assumed the piezoceramic material exhibits nonlinear constitutive properties
with respect to electric field. The dynamics of a fully symmetric and next a slightly
mistuned rotor configuration are examined in detail.
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Fig. 26.1 Model of the rotor composed of a rigid hub and three flexible blades with active piezo-
layers

26.2 Mathematical Model of a Rotating Structure

The investigated rotating structure is composed of a rigid hub and three flexible
thin-walled symmetric composite blades in the spatial setting presented in Fig. 26.1.
The blades are laminated according to the circumferentially asymmetric stiffness
CAS scheme. This configuration demonstrates the mutual coupling of beam flapwise
bending occurring in the plane of rotation and torsional deformations. Themagnitude
of this coupling depends on the reinforcing fibres orientation [10].

According to the previous authors’ papers [8, 10] and presented therein detailed
derivation procedure by means of the Hamilton principle and Galerkin discretisation
method the ordinary differential equations of motion of the system are

(
Jh +

3∑
j=1

Jb j +
3∑
j=1

αh j2q
2
j

)
ψ̈ + ζhψ̇ +

3∑
j=1

(
αh j1q̈ j + αh j3q j q̇ j ψ̇

) = μ,

q̈ j + ζ j q̇ j + α j2ψ̈ + (
α j1 + α j3ψ̇

2) q j + α j4q j q̇ j ψ̇

+α j5sgn(q j )q
2
j + α j6q

3
j = 0

(26.1)

where index j = 1, 2 or 3 represents the individual beam of the rotor. Moreover,
q j is a generalised beam coordinate, Jh, Jb j denote dimensionless mass moment
of inertia of the hub and each beam, respectively. Coefficients ζh, ζ j are viscous
damping factors of the hub and each individual beam; αh j1, αh j2, αh j3, α j1, α j2, α j3,
α j4, α j5, α j6 are coefficients obtained from the modal reduction procedure for each
j beam. The variable μ present on the right-hand side of the first formula represents
the dimensionless driving torque applied to the hub that in general case might be
a dimensionless time τ dependent function μ = μ(τ).

Provided the given above system of relations, the mathematical model of the
considered structure is represented by a set of four equations. The first one Eq. (26.1)1
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Table 26.1 Dimensionless coefficients of the rotating structure model

Hub equation Eq. (26.1)1
Jh = 5 Jb1 = Jb2 = Jb3 = 1 ζh = 0.1

αh j1 = 0.5323 αh j2 = −0.4042 αh j3 = −0.8085

ρ = 0.2 ω – varied

Beams equations Eq. (26.1)2
α j1 = 10.8636 α j2 = −1.7723 α j3 = 0.3484

α j4 = 1.5498 α j5 = −2.3268 α j6 = 0

ζ j = 0.02 × √
α j1

represents the dynamics of the hub and it is coupled to the three equations of every
individual beam Eq. (26.1)2 ( j = 1, 2, 3) by appropriate inertia terms Jb j . Further
studies of this relations reveal there are no elastic couplings in the system.

Moreover, it is to be noted the presented formulation includes the Coriolis, cen-
trifugal and inertia terms due to rotation of the structure, variable angular velocity
of the hub ψ̇ , as well as higher order geometric terms resulting from the nonlinear
piezoelectric effect.

26.3 Numerical Results

Numerical simulations are prepared for the graphite-epoxy laminate beams with
embedded layers of PZT-3203HD piezoceramic. Engineering constants for these
materials as well as geometric dimensions of the structure are given in [8]. The final
values of the coefficients αi j present in Eqs. (26.1) and resulting from the assumed
mode discretisation method are collected in Table 26.1.

26.3.1 Analysis of the Symmetric Rotor

To start the analysis, let us estimate the first natural frequency of the non-rotating
structure—i.e. the hub and three piezo-blades system at rest. This can be done based
on the linearised form of governing Eqs. (26.1). For the sake of brevity details of
these calculations are not presented here. However, the interested reader may refer
for more details to [10] where the mathematical procedure for a single bladed system
is presented. If all the blades are exactly the same the first natural frequency of the
whole rotor is ω01 = 2.833. As one may notice, this is different from the first natural
frequency of a cantilever beam ω1(beam) = √

α11 = 3.296. This is due to the fact that,
as opposed to the separated beam case, the natural frequencies of the full rotor (hub
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(a) (b)

Fig. 26.2 Resonance curves for a symmetric rotor with piezo-blades: blades (a) and hub (b)
response; oscillations of the structure about its rest position (μ0 = 0)

and beam system) depend on the relative hub to beam inertia. The detailed discussion
on this observation can be found in [10].

Now consider the system response if the structure is excited by external torque
μ(τ) imposed to the hub. To capture the possibly general excitation case it is assumed
the provided forcing might be composed of two terms, namely the constant and the
harmonic one μ(τ) = μ0 + ρ sinωτ .

First consider the case with μ0 = 0 that corresponds to the oscillations of the
structure about its rest position. The torque amplitude is set to ρ = 0.2 and excitation
frequency ω is varied in the neighbourhood of the first resonance. For this analysis
and the following ones the system of governing Eqs. (26.1) is solved numerically by
the direct integration method. Outcomes of the simulations for the fully symmetric
rotor are presented in Fig. 26.2.

The provided plots reveal a clear softening behaviour exhibited by the resonance
peaks leaning to the left. This effect results from the nonlinear properties of the
piezoelectric active layers and is typical for the nonlinear models which include the
quadratic terms accompanied by the small structural displacements constraint [11].
It should be noted the discussed softening phenomenon is present for the beams
Fig. 26.2a and for the hub Fig. 26.2b as well. Short segments of both characteristics
reveal the existence of unstable solutions. Moreover, one observes the responses of
all three beams are exactly the same due to the perfect symmetry of the system.
Another effect to be noticed on the presented plots is the hub vibration absorption
phenomenon. For the excitation frequency ω ≈ 3.3 energy from the excitation is
accommodated solely by the blades while the hub stays at rest (ψ̇ = 0).

In the further analysis the impact of the system rotation on the response of the
perfectly symmetric rotor is studied. It can be done by setting any nonzero value
to the μ0 torque summand. This assignment results in mean angular speed ψ̇(τ )

different from zero. Outcomes of the performed simulations for μ0 = 0, μ0 = 0.02
and μ0 = 0.05 are presented in Fig. 26.3.

Similar to the former case a softening effect is visible on the beams and the hub
resonance curves, note subplots (a) and (b) respectively. Besides, the responses of
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(a) (b)

Fig. 26.3 Resonance curves of the blades (a) and the hub (b) obtained for various external torques
μ0. Colours: μ0 = 0—black, μ0 = 0.02—blue, μ0 = 0.05—magenta; rotor in symmetric config-
uration with nonlinear blades

the beams are slightly shifted towards higher frequencies but without any signifi-
cant change in their overall shape. This shift is known as the centrifugal stiffening
effect and it comes from the additional linear stiffness term present in the governing
equations that is proportional to ψ̇2—see Eq. (26.1)2. The same stiffening effect is
observed on the resonance curves of the hub—Fig. 26.3b. However, a simultaneous
upward shift is present that corresponds to the nonzero mean angular velocity of the
rotor.

26.3.2 Analysis of the Mistuned System

Next we consider the case of a mistuned design. To this aim the blades No. 2 and 3
are replaced by the new ones of the same geometry and mechanical properties but
without nonlinearities in the piezoelectric effect (α j5 = α j6 = 0 for j = 2, 3). The
beam No. 1 stays the same as in the preceding reference case.

Similar to the former research stage the first simulation is performed for the rotor
just oscillating about its rest position keeping the same torque excitation amplitude
ρ = 0.2, the system response is demonstrated in Fig. 26.4. The previously spotted
softening effect is still present, however it is less apparent now. In particular, within
the tested range of excitation frequencies all the solutions are stable. This applies
both to the blades (Fig. 26.4a) and to the hub (Fig. 26.4b). The interesting further
insight to these results is that the softening effect is observed for all the beams i.e.
also for the beams No. 2 and No. 3 despite their linear properties (green curve). But
no matter of this disparity the peaks on both response curves correspond to the same
resonance frequency. However, the difference in the response amplitude between
linear and nonlinear blades is observed. Since the beams No. 2 and No. 3 exhibit
linear characteristics they are stiffer, therefore their response amplitude is smaller
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(a) (b)

Fig. 26.4 Resonance curves for a rotor: blades (a) and hub (b) response; oscillations of the structure
about its rest position (μ0 = 0, ρ = 0.2); rotor in mistuned configuration

(a) (b)

Fig. 26.5 Resonance curves for a rotor: blades (a) and hub (b) response; oscillations of the structure
about its rest position (μ0 = 0, ρ = 0.4); rotor in mistuned configuration

when comparing to the nonlinear blade No. 1. Simultaneously, the peak value of the
response q1 is now slightly higher if compared to the symmetric design case (0.29
vs. 0.26—see Fig. 26.2 for reference). The final comment regards the hub vibration
absorption phenomenon to occur at the same excitation frequency ω ≈ 3.3 as in the
case of perfectly symmetric rotor design.

To study the separated impact of the torque excitation amplitude the last simulation
is repeated for the ρ parameter set to 0.4 value. Results of this numerical experiment
are presented in Fig. 26.5.

Studying the beams and the hub response plots (subfigures (a) and (b), respec-
tively) one notice the already discussed softening effect to bemuchmore emphasized
when compared to the previous analysis. Some parts of all three response curves are
unstable again and the response amplitudes are much higher as for the ρ = 0.2
case. However, it should be commented the observed magnitudes are beyond the
scope of small displacements assumptions adopted to the mathematical model of the
structure. Nevertheless, one may conclude the response of the structure is sensi-
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(a) (b)

Fig. 26.6 Resonance curves of the blades (a) and the hub (b) obtained for various external torques
μ0. Colours: μ0 = 0—black, μ0 = 0.02—blue, μ0 = 0.05—magenta; rotor in mistuned configu-
ration

tive both quantitatively and qualitatively to the amplitude ρ of the torque periodic
component.

At the next research stage the dynamics of the mistuned rotor performing full
rotation is investigated. Similar to the analysis of the perfectly symmetric design
given in Sect. 26.3.1 the cases ofμ0 = 0.02 andμ0 = 0.05 are studied and referenced
to the μ0 = 0.0 outcome. Results of these simulations are presented in Fig. 26.6.

Similar to the perfectly symmetric design case the centrifugal stiffening effect
can be observed due to the increased mean rotating speed (μ0 > 0). The direct
consequences of this stiffening are the right shift of response curves towards higher
frequencies and a slight reduction of amplitudes magnitude. However, this second
effect can be noticed only under very high magnification. By virtue of the space
limitation this plot is not presented here. The previously reported difference in the
response amplitude between linear and nonlinear blades for theμ0 case (see Fig. 26.4
for reference) is observed also for rotating structure. This is featured on the response
plot by two separated curves for every driving torque case—Fig. 26.6a.

At the final stage the impact of rotating speed on system dynamics is investigated
more thoroughly. This analysis is carried out byvarying themean torqueμ0 parameter
over a wide range of values. To highlight some interesting effects the amplitude of
the periodic excitation term ρ sinωτ is increased to ρ = 0.4. At this magnitude
the unstable solutions on system response characteristics are present—see results in
Fig. 26.5 for reference.

Studies are carried out for two different torque frequencies ω starting from ω =
2.75. This value corresponds to the range of system response where, due to the beam
No. 1 nonlinearity, exactly three solutions are present. Outcomes of this simulation
are presented in Fig. 26.7.

It should be noted the system has multiple solutions but only within the range of
μ0 close to zero. These solutions correspond to the low or high vibration amplitudes
and are observed for the nonlinear and linear blades as well (Fig. 26.7a black and
green curves, respectively). However, the high amplitude solutions, namely the stable
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(a) (b)

Fig. 26.7 Dynamics of the rotor at the excitation loading ρ = 0.4 and ω = 2.75—beams (a) and
hub (b) responses; rotor in mistuned configuration

(a) (b)

Fig. 26.8 Dynamics of the rotor at the excitation loading ρ = 0.4 and ω = 2.8—beams (a) and
hub (b) responses; rotor in mistuned configuration

and unstable ones, coalesce in a saddle-node bifurcation as the magnitude of the μ0

parameter reaches the threshold value of 0.063. Above this limit only low amplitude
vibrations are observed. This phenomenon is explained by the stabilising action of the
centrifugal forces and blades stiffening as the rotor angular speed increases. Exactly
the same effect is observed for the hub—Fig. 26.7b. The final comment on these
two plots regards their symmetry with respect to vertical axis. This can be easily
explained since there is no difference in blades/hub behaviour while the rotor rotates
clockwise or counterclockwise.

The next simulation is carried out when setting the excitation frequency ω to 2.8.
This value corresponds to the range of system responsewhere just single solutions for
the blades and the hub are present (providing μ0 = 0)—see Fig. 26.5 for reference.
Outcomes of this simulation are presented in Fig. 26.8.

Studying these plots one observes the qualitatively different behaviour with
respect to μ0 parameter when compared to the previous case ω = 2.75 (Fig. 26.7).
Now the single solutions are present for both low and high values. However, there is
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a narrow range |μ0| ∈< 0.096, 0.122 > where unstable solutions occur apart from
the two stable ones.

Nevertheless, when collating both Figs. 26.7 and 26.8 plots one may spot some
pattern. Namely, by expanding down the high response curves seen in Fig. 26.7
at certain moment they merge with low response ones and contribute to just one
continuous line including both stable and unstable solutions as seen in Fig. 26.8. It
should be noted this comment refers both to the blades and to hub response curves.

26.4 Conclusions

The analysed model of the rotor with piezo-beams has demonstrated the resonance
softening effect due to nonlinearity in constitutive relation of the piezoceramic mate-
rial. This phenomenon has been observed either for the beams or the hub response.
Due to the perfect symmetry of the structure motion of all the beam has been iden-
tical and fully synchronised. In the following analysis the rotor has been mistuned
by replacing two blades by the similar ones but featuring linear properties. Interest-
ingly, the nonlinear softening phenomenon has been observed too, but not only for
the nonlinear bean but for linear ones as well. This behaviour has been caused by
internal coupling in the system through the hub substructure oscillations. Another
spotted phenomenon is the hub vibration absorption. For the excitation frequency
equal to the natural frequency of an isolated cantilever beam the oscillations have
been localised in beams motion with close to zero vibrations of the hub.
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Chapter 27
Nonlinear Analysis of Hunting Motion by
Focusing on Non-selfadjointness

Weiyan Wei and Hiroshi Yabuno

Abstract When the running speed of railway vehicles exceeds critical limits, they
begin to suffer from hunting motion that can affect ride comfort and threaten their
safety. Even below such critical speeds,which can be obtained by linear analysis, such
vehicles can experience hunting motions because their wheel systems have nonlinear
characteristics. In this study, by taking into consideration the non-selfadjointness of
such systems, we derive the normal form of the equation of motion for a single wheel
set under the relevant cubic and quintic nonlinearities. Equations for the different
orders that arise due to those nonlinearities are then derived from an original equation
using a method of multiple scales, and an adjoint linear operator is used to obtain
the equation governing the dynamics with a slower timescale. Additionally, a nor-
mal form with two unknown coefficients was obtained, after which we identify the
nonlinear coefficients of the normal form using the experimental method proposed
in our previous research. We also obtain a subcritical Hopf bifurcation diagram from
the normal form, the theoretical results of which agree well with our experimental
results.

Keywords Hunting motion · Quintic nonlinearity · Non-selfadjointness · Single
wheel set

27.1 Introduction

For more than a century, the stability of railway vehicles has been studied as part
of efforts to improve ride comfort, minimize damage to vehicle wheels, and reduce
derailment risks [1]. It is well known that railway vehicles become unstable and
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undergo hunting motions when their running speeds exceed critical limits [2]. These
hunting motions are a kind of flutter-type self-excited oscillation that results from
the development of creep force between the wheels and the track [3].

Recently, nonlinear analysis has revealed that Hopf bifurcations are produced
at those critical speeds. However, even below such speeds, railway vehicles can
produce hunting motion depending on the magnitude of disturbance they experience
[4–6]. This phenomenon is due to the subcritical Hopf bifurcation caused by the
softening cubic nonlinearity. In the subcritical Hopf bifurcation, the critical speed of
the hunting motion is called the linear critical speed. The other critical speed in the
subcritical Hopf bifurcation, which is slower than the linear critical speed, is called
the nonlinear critical speed.

Within the range that exists between these two critical speed types, there are
stable and unstable nontrivial steady states that coexist with the stable trivial steady
state [7]. This means that a disturbance whose magnitude is larger than the unstable
steady-state amplitude can cause the huntingmotion, even if the running speed is less
than the linear critical speed. If only the cubic nonlinear terms are considered in a
theoretical analysis, wewill be unable to discern a stable nontrivial steady statewithin
the range between the above-mentioned two critical speed types. Thus, in order to
investigate the steady-state amplitude of hunting motion when the running speed is
less than the linear critical speed, it is important to consider quintic nonlinearity.

There have been a number of previous numerical studies that considered the
nonlinear characteristics of hunting motion under cubic and quintic terms [8–10].
However, there are very few analytical methods for qualitatively investigating the
nonlinear phenomena of hunting motions. Therefore, in this study, by focusing on
non-selfadjointness and obtaining the normal form of steady-state amplitude, we
devise an analytical method that will allow us to investigate the essential character-
istics of bifurcation phenomena.

This method works as follows. First, by introducing the method of multiple scales
[11],wederive the equations of different orders from the original equations ofmotion.
Next,we define an adjoint linear operator to obtain the equation governing the dynam-
ics with a slow timescale. Then, we obtain the normal form [12] of the steady-state
amplitude. As a result, by considering the cubic and quintic terms in the original
equations, the nonlinear characteristics of the subcritical elements can be obtained.
Furthermore, by using the experimental identification method proposed in our pre-
vious research, the nonlinear coefficients of the normal form can be identified. A
comparison of the theoretically and experimentally obtained bifurcation diagrams
verifies the validity of the analytical method proposed in this study.
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27.2 Theoretical Analysis of Nonlinear Characteristics
of Hunting Motion

27.2.1 Equations of Motion of a Single Wheel Set

In this study, we consider a suspended single wheel set that can freely move in the
lateral and yaw directions, y and ψ , while traveling on a track. The mathematical
model of this single wheel set is shown in Fig. 27.1, where r0, kx , γ0, d0, d1, and v
are the centered wheel rolling radius, the x direction stiffness, the wheel tread angle,
the half-track gauge, the half-gap of stiffness, and the running speed, respectively.
The dimensionless equations governing the lateral and yaw motions are expressed
as follows [13].

ÿ∗ + d ′
11

v∗ ẏ∗ + k11y
∗ + k12ψ + β3y

∗3 + β5y
∗5 = 0,

ψ̈ + d ′
22

v∗ ψ̇ + k21y
∗ + k22ψ = 0, (27.1)

where the half-track gauge d0 is used as the representative length and the inverse value
of the linear natural frequency of the yaw motion ωψ is used as the representative
time. In these original equations of motion, most of the nonlinearity is caused by the
stiffness and structure of the wheels. However, the values of the nonlinear terms and
their coefficients are not clear. Accordingly, we use the cubic and quintic nonlinear
termswith two unknown coefficients, β3 and β5, to express the nonlinearity and show
that they are sufficient for obtaining the nonlinear characteristics of hunting motion.
According to the results shown in this paper, the coefficients of the nonlinear terms
in the theoretically obtained normal form can be expressed by the linear parameters
r0, kx , . . . , d1, and the nonlinear coefficients in the original equations. We assume
that the value of the coefficients in the normal form, fromwhich the cubic and quintic
nonlinear terms are chosen in the original equations, are constant and independent.
Therefore, β3 and β5 in Eq. (27.1) are the unknown coefficients of the cubic and
quintic nonlinear terms chosen to express the nonlinearity of the wheel system.

2r

d d(a) x

y
z

O

(b)

Ψ

v
γ

kx

z
O

Ψ y

x

Fig. 27.1 Configuration of the single wheel set and the rails: a top view, b bottom view (the
suspensions from the truck)



306 W. Wei and H. Yabuno

The other dimensionless coefficients of the above equations are expressed by the
dimensional parameters as

d ′
11 = 2κyy

md0ω2
ψ

, d ′
22 = κxxd0

kxd2
1

, k11 = ω2
y

ω2
ψ

, k12 = −2κyy

md0ω2
ψ

,

k21 =d2
0κxxγ0

kxd2
1r0

, k22 = 1, β3 = εβ̂3, β5 = ε2β̂5, (27.2)

where κxx and κyy are the creep coefficients in the x and y directions, respectively
[14], and ε is a small dimensionless parameter (|ε| << 1). We transform Eq. (27.1)
into a matrix equation as

ẍ + Cẋ + Kx + N (x) = 0, (27.3)

where

x =
[
y∗
ψ

]
,C =

⎡
⎢⎣
d ′
11

v∗ 0

0
d ′
22

v∗

⎤
⎥⎦ , K =

[
k11 k12
k21 k22

]
. (27.4)

In the next section, we study the nonlinear characteristics of hunting motion by
theoretically analyzing the vicinity of the linear critical speed.

27.2.2 Orders Analysis with Method of Multiple Scales

In order to investigate the nonlinear characteristics of hunting motion near the linear
critical speed, we set

v∗ = v∗
c (1 + Δv) = v∗

c (1 + εΔv̂), (27.5)

where v∗
c is the dimensionless linear critical speed. Then, matrix C can be expressed

as

C = Cc

(1 + εΔv̂)
≈ Cc(1 − εΔv̂ + ε2Δv̂2), (27.6)

where

Cc =
[
d11 0
0 d22

]
, d11 = d ′

11

v∗
c

, d22 = d ′
22

v∗
c

. (27.7)

The amplitude of x is changed near the linear critical speed. However, this amplitude
change is slower than the phase change of x. Therefore, the amplitude and phase
changes cannot be expressed by a single time scale. Accordingly, we introduce mul-
tiple time scales in order to express the amplitude changes that result due to the cubic
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and quintic nonlinearities. These multiple time scales are expressed as

t0 = t, t1 = εt, t2 = ε2t. (27.8)

Then, the time derivatives are expressed as follows:

d

dt
= D0 + εD1 + ε2D2, (27.9)

d2

dt2
= D2

0 + 2εD1D0 + 2ε2D2D0 + ε2D2
1, (27.10)

where

D0 = ∂

∂t0
, D1 = ∂

∂t1
, D2 = ∂

∂t2
. (27.11)

Weuse the small dimensionless parameter ε to express the uniformasymptotic expan-
sion of x as

x = x0 + εx1 + ε2x2. (27.12)

In addition, x0 is assumed as

x0 = a(t1, t2)e
λ0t0

[
y0
ψ0

]
= aeλ0t0Φ0, (27.13)

where λ0 is the eigenvalue of the linear part in Eq. (27.3),Φ0 is the eigenvector of λ0,
a(t1, t2) is the amplitude of mode Φ0 and with respect to the slow time scales t1 and
t2. We find that substituting Eq. (27.12) into Eq. (27.3), and equating the coefficients
of the like powers of ε yields the following equations for linear part O(ε0), cubic
nonlinear part O(ε1) and quintic nonlinear part O(ε2)

O(ε0) : D2
0x0 + CcD0x0 + Kx0 = 0, (27.14)

O(ε1) : D2
0x1 + CcD0x1 + Kx1 = −2D1D0x0 − CcD1x0 + CcΔv̂D0x0

− β̂3(ae
λ0t0 + āeλ̄0t0)3

[
1
0

]
, (27.15)

O(ε2) : D2
0x2 + CcD0x2 + Kx2 = −2D2D0x0 − CcD2x0 + CcΔv̂D1x0 − D2

1x0

− CcΔv̂2D0x0 − 10β̂5|a|4a|y0|4y0eiωt0
[
1
0

]
+ · · · , (27.16)

and the linear part can be rewritten as

O(ε0) : LΦ0a = 0, (27.17)

where
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L = λ2
0 I + λ0Cc + K =

[
λ2
0 + d11λ0 + k11 k12

k21 λ2
0 + d22λ0 + k22

]
. (27.18)

We obtain λ0 by considering |L| = 0 as

λ4
0 + (d11 + d22)λ

3
0 + (d11d22 + k11 + k22)λ

2
0 + (d11k22 + d22k11)λ0

+ k11k22 − k12k21 = 0. (27.19)

When the running speed reaches the linear critical speed of the hunting motion,
the matrix L has four eigenvalues: a pair of pure imaginary eigenvalues ±iω and
one complex conjugate pair of eigenvalues λr ± iλi . Substituting λ0 = ±iω into Eq.
(27.19) and separating the result into real and imaginary parts

Re : ω4 − (d11d22 + k11 + k22)ω
2 + k11k22 − k12k21 = 0, (27.20)

Im : −(d11 + d22)ω
3 + (d11k22 + d22k11)ω = 0, (27.21)

yields the dimensionless linear critical speed and eigenvalue ω as follows:

v∗
c =

√
d ′
11d

′
22ω

2

ω4 + k11k22 − k12k21 − (k11 + k22)ω2
, (27.22)

ω =
√
d11k22 + d22k11

d11 + d22
. (27.23)

In addition, the equation of the four eigenvalues can be expressed as

(λ2
0 + ω2)(λ0 − λr − iλi )(λ0 − λr + iλi ) = 0. (27.24)

Equating with Eq. (27.19) to obtain the real part of the complex conjugate pair of
eigenvalues as follows:

λr = −1

2
(d11 + d22) < 0. (27.25)

Therefore, we can only focus on the mode with the eigenvalues ±iω because the
other mode has the complex conjugate pair of eigenvalues with a negative real part.
The eigenvector for iω can be obtained as

Φ0 =
[

k12
ω2 − k11 − id11ω

]
. (27.26)

Substituting λ0 = iω into Eq. (27.15) yields the equation for cubic nonlinear part
O(ε1) as
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D2
0x1 + CcD0x1 + Kx1 = [(−2iωI − Cc)D1a + iωΔv̂aCc]

[
y0
ψ0

]
eiωt0

− 3β̂3|a|2a|y0|2y0
[
1
0

]
eiωt0 − β̂3a

3y30e
3iωt0

[
1
0

]
+ c.c. (27.27)

In the next section, we derive the equation governing the dynamics with t1 from the
solvability condition of Φ1, which is the mode of x1.

27.2.3 Nonlinear Analysis Using an Adjoint Linear Operator

We consider an adjoint linear operator L̄
T
of the non-selfadjointness matrix L, and

define a vector Φ̃0 associated with ω0 to satisfy

L̄
T
Φ̃0 = ¯̃

ΦT
0 L = 0, (27.28)

yields the vector Φ̃0 as

Φ̃0 =
[

ω2 − k22 + id22ω
k12

]
. (27.29)

Multiplying both sides of Eq. (27.27) by Φ̃0 from the left side and picking up the
terms including eiωt0 yields the equation that is, with respect to the timescale t1,
written as

¯̃
ΦT

0

{
[(−2iωI − Cc)D1a + iωΔv̂aCc]

[
y0
ψ0

]
− 3β̂3|a|2a|y0|2y0

[
1
0

]}
eiωt0 = 0,

(27.30)
or

D1a = −Q

P
Δv̂a − R

P
β̂3|a|2a, (27.31)

where

P = ar + ai i, ar = −2k12(d11k22 + d22k11), ai = −2ωk12(2ω
2 − k11 − k22 − d11d22),

Q = br + bi i, br = 2k12ω
2d11d22, bi = 0,

R = cr + ci i, cr = |y0|2y0(k22 − ω2), ci = |y0|2y0d22ω. (27.32)

The partial derivative of amplitude a with respect to t1 effected by the cubic nonlin-
earities is obtained.

Next, we obtain the particular solution x1 by setting

x1 =
[
y1
ψ1

]
e3iωt0 . (27.33)
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Substituting Eq. (27.33) into Eq. (27.27) to pick up the terms including e3iωt0 as

D2
0x1 + CcD0x1 + Kx1 = −β̂3a

3y30e
3iωt0

[
1
0

]
+ c.c. (27.34)

The particular solution x1 is

x1 = α̂3a3y30k12
64ω4k12 − 4ωai + 12iωar

[
9ω2 − k22 − 3iωd22

k21

]
e3iωt0 . (27.35)

Then, substituting Eq. (27.35) into Eq. (27.16) yields the following equation for the
quintic nonlinear part O(ε2) as

D2
0 x2 + CcD0x2 + Kx2 = − 2D2D0x0 − CcD2x0 + CcΔv̂D1x0 − D2

1 x0 − CcΔv̂2D0x0

+ (−10β̂5|a|4a|y0|4y0 − 3β̂3a
2y20y1)e

iωt0

[
1
0

]

− 2D1D0x1 − CcD1x1 + CcΔv̂D0x1 + {· · · }e3iωt0
+ {· · · }e5iωt0 + c.c. (27.36)

Multiplying both sides of Eq. (27.36) by Φ̃0 from the left hand and picking up the
terms including eiωt0 yields the equation that is, with respect to time scale t2, written
as

¯̃
ΦT

0 {[( − 2iωI − Cc)D2a + Δv̂D1aCc − D2
1a − iωΔv̂2Cc]

[
y0
ψ0

]

− (10β̂5|a|4a|y0|4y0 + 3β̂3a
2y20y1)

[
1
0

]
}eiωt0 = 0, (27.37)

where D2
1a is expressed from Eq. (27.31) as

D2
1a = −Q

P
Δv̂D1a − R

P
β̂3(2|a|2D1a + a2D1ā)

= Q2

P2
Δv̂2a + (

3QR

P2
+ RQ̄

|P|2 )β̂3Δv̂|a|2a + (
2R2

P2
+ |R|2

|P|2 )β̂2
3 |a|4a. (27.38)

Substituting D2
1a into Eq. (27.37) yields D2a as

D2a = −H

P
Δv̂2a − G

P
β̂3Δv̂|a|2a − (

M

P
β̂2
3 + N

P
β̂5)|a|4a, (27.39)

where

H = − ibr Q

ωP
+ (ωai − br )Q2

2ω2P2
− iar Q2

2ωP2
+ br ,
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G = − ibr R

ωP
+ (

ωai − br
2ω2

− iar
2ω

)(
3QR

P2
+ RQ̄

|P|2 ),

M = (
ωai − br

2ω2
− iar

2ω
)(
2R2

P2
+ |R|2

|P|2 ) + 3(−8ω2y30 + cr + 3ici )R

64ω4k12 − 4ωai + 12iωar
,

N = 10y20 R. (27.40)

As a result, the partial derivative of a with respect to t1 and t2 are obtained. In the
next section, we derive the normal form of the amplitude a(t1, t2).

27.2.4 Normal Form Governing Nonlinear Hunting Motion

The steady-state amplitude a(t1, t2) can be expressed in a polar form as

a = 1

2
α(t1, t2)e

iφ(t1,t2), (27.41)

Therefore, we can express Da as

Da = 1

2
(Dα + iαDφ)eiφ. (27.42)

Considering Eqs. (27.9) and (27.41), Da can be also expressed as

Da =εD1a + ε2D2a

=1

2
[−(

H

P
Δv + Q

P
)Δv − 1

4
(
G

P
Δv + R

P
)β3α

2 − 1

16
(
M

P
β2
3 + N

P
β5)α

4]αeiφ.

(27.43)

Equating the real part of Eqs. (27.42) and (27.43), we can obtain the normal form of
the amplitude of x as

Dα = −(L1Δv + L2Δv2 + N1α
2 + N2Δvα2 + N3α

4)α, (27.44)

where

L1 = Re[Q
P

], L2 = Re[H
P

], N1 = 1

4
Re[ R

P
]β3,

N2 = 1

4
Re[G

P
]β3, N3 = 1

16
Re[M

P
β2
3 + N

P
β5]. (27.45)

The trivial steady-state amplitude can be expressed as

αst = 0, (27.46)
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Fig. 27.2 Experimental setup: a photo of wheel set and roller rig, b mode diagram of total experi-
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and the nontrivial steady-state amplitude can be obtained from the equation as fol-
lows:

L1Δv + L2Δv2 + N1α
2
st + N2Δvα2

st + N3α
4
st = 0. (27.47)

In the next section, we experimentally identify the coefficients of Eq. (27.47) for the
experiment using a roller rig and a single wheel set.

27.3 Experimental Identification of Nonlinear Coefficients

27.3.1 Experimental Setup

We used a roller rig and a single wheel set to simulate the mathematical model
that was considered in the previous theoretical analysis, as shown in Fig. 27.2. We
placed the wheel set on the roller rig to simulate straight-line travel on a railway. The
dimensional parameters of the experimental setup are: the mass of the wheel set m
= 2.18 kg, the half-track gauge d0 = 0.049 m, the half-gap of stiffness d1 = 0.085 m,
the centered wheel rolling radius r0 = 0.036 m, the equilibrium state spring length l
= 0.06 m, the natural spring length l0 = 0.035 m, the wheel tread angle γ0 = 0.04, the
x direction stiffness kx = 200 N/m, the moment of inertia I = 0.004 kg, the lateral
natural frequency ωy = 8.75 rad/s, and the yaw natural frequency ωψ = 25.9 rad/s.
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27.3.2 Experimentally Observed Steady-State Amplitude

We observed the time histories of lateral and yaw directions of the wheel set at
different running speeds in order to obtain the stable steady-state amplitude. In our
experiments, fluctuation noise was produced from the surface roughness of the roller
rig and wheels, and the running speed was controlled slowly to prevent artificial
noise. In this situation, the linear critical speed of the hunting motion obtained from
the experiment corresponds to that obtained from the linear theory.

Figure 27.3a is a subcritical Hopf bifurcation diagram obtained from a numerical
simulation and shows the amplitude changes caused by running speed variations.
The numbered arrows describe the progression of steps in our experiment. First, we
increase the running speed at Point B to begin the hunting motion, which is called
the Hopf bifurcation point and the speed of which is the linear critical speed. Once
the running speed exceeds this speed, the amplitude increases abruptly as shown by
Arrow (2). Next, the amplitude changes as the running speed decrease, as seen at
Arrows (3) and (4). At Point A, which is called the saddle-node bifurcation point
and is the nonlinear critical speed, the amplitude decreases abruptly as the running
speed decreases.

In this experiment, we focus solely on the lateral motion because the yaw direc-
tion oscillation is similar to the lateral one. The experimentally observed steady-state
amplitude at different running speeds is shown in Fig. 27.3b. Because the oscillation
amplitude is not constant due to the experimental surface roughness of the roller rig,
the component in the power spectrum diagram varies with time. Therefore, we regard
the average value of the maximum oscillation amplitude as the steady-state ampli-
tude. The reason why the amplitude corresponding to the lower branch in Fig. 27.3b
is not zero is as follows. The time histories of the lateral displacement are translated
into power spectrum diagrams. In the power spectrum diagrams, there is a small
component with a frequency that changes with the wheel set running speed varia-
tions. This frequency is equal to the rotational speed frequency of the roller rig and
the magnitude of the component is approximately equal to the magnitude of vibra-
tion seen before the linear critical speed in experiments. Therefore, the amplitude
corresponding to the lower branch in Fig. 27.3b is due to the roller rig roughness. As
a result, the linear critical speed is 7.5 m/s and the nonlinear critical speed is 6.5 m/s.

In the next section, we use the experimentally observed amplitudes at the linear
and nonlinear critical speeds to identify the nonlinear coefficients of the theoretically
obtained normal form.

27.3.3 Identification of Nonlinear Coefficients

First, we use the dimensional parameters of the experimental setup to obtain the
dimensionless parameters as follows:
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solid and the dashed lines denote the stable and unstable steady states, respectively;b experimentally
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v∗
c = 6, d11 = 0.3, d22 = 0.44, k11 = 0.11, k12 = −1.77, k21 = 0.14, k22 = 1,

P = 1.23 − 0.74i, Q = −0.22, R = −2.94 − 1.68i, H = −0.4 − 0.058i,

G = 1.7 − 1.0i, M = 14.4 + 1.88i, N = −92.1 − 52.63i. (27.48)

The nontrivial steady state of α can be obtained as

α2
st = −(0.34Δv − 0.29)β3

2(0.5β2
3 − 2.26β5)

±
√

(0.34Δv − 0.29)2β2
3 + 4(−0.22Δv − 0.13)Δv(0.5β2

3 − 2.26β5)

2(0.5β2
3 − 2.26β5)

.

(27.49)

The relationship between the dimensional amplitude yst and the dimensionless ampli-
tude αst can be expressed as

yst = d0y
∗
st = |d0k12αst |. (27.50)

We substitute the steady-state amplitudes yst1 = 0.00067 m and yst2 = 0.00053 m at
linear and nonlinear critical speeds, i.e.,Δv1 = 0 andΔv2 = −0.13, into Eq. (27.49)
in order to obtain the nonlinear coefficients β3 and β5 as

β3 = 2240, β5 = −3.6 × 106. (27.51)

Therefore, Eq. (27.44) is rewritten as

Dα = (0.13 + 0.22Δv)Δvα + (0.29 − 0.34Δv)β3α
3 + (−0.5β2

3 + 2.26β5)α
5,

(27.52)
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obtained stable and unstable steady states, respectively. The plots show the stable steady-state
amplitudes directly obtained from the experiment

where the first term (0.13 + 0.22Δv)Δvα is the linear term, the second term
(0.29 − 0.34Δv)β3α

3 is cubic nonlinear term, and the third term (−0.5β2
3 + 2.26β5)

α5 is the quintic nonlinear term. In addition, we checked the balance of each term
in the normal form by substituting the value of Δv and the experimental amplitude
at the nonlinear critical speed. The values of the linear, cubic, and quintic nonlinear
terms are −0.013, 0.029, and −0.016, respectively. These values indicate that the
terms are balanced.

The bifurcation diagram of the wheel set lateral displacement is obtained as Fig.
27.4. In our experimental results, surface roughness prevented us from obtaining
zero amplitude below the nonlinear critical speed, but the Hopf and saddle-node
bifurcations were experimentally and theoretically obtained in this study. In this
study, only two experimental amplitudes are used for the identification of nonlinear
coefficients in the normal form and the nontrivial steady state is very close to the
experimental steady state. This confirms that the normal form with cubic and quintic
normal nonlinearities can capture the nonlinear characteristics of hunting motion,
not only qualitatively but also quantitatively.

27.4 Conclusions

In this study, using a single wheel set model, hunting motions were investigated
by taking into account cubic and quintic nonlinearities. By considering the non-
selfadjointness of the governing equations, the solvability conditions needed to
express the variation of the response amplitude with a slow time scale were obtained.
Furthermore, the normal form of the steady-state amplitude was derived using the
solvability conditions. The nonlinear coefficients of the normal form were identified
using two value of experimentally observed amplitudes. From the results obtained,
the existence of the Hopf and saddle-node bifurcations could be theoretically
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indicated. By comparing the theoretically and experimentally obtained bifurcation
diagrams, it was shown that the normal form obtained from the experimental data
at the linear and nonlinear critical speeds captures the nonlinear characteristics of
steady state amplitude that depends on the running speed, i.e., the experimentally
obtained bifurcation diagram.
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