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Abstract. Sequence binary decision diagram (SeqBDD) is a data struc-
ture to represent and manipulate sets of strings. This is a variant of zero-
suppressed binary decision diagram (ZDD) that manipulates combinato-
rial sets. Nowadays, binary decision diagrams (BDDs) and its family have
been recognized as an important data structure to manipulate discrete
structures. SeqBDD has some set manipulation operations inherited from
ZDD, but the number of the operations is not enough to deal with a wide
variety of requests in string processing area. In this paper, we propose
50 new algorithms for manipulating SeqBDDs. We divide the operations
into three categories and list up them. We also analyzed the time and
space complexities of some new algorithms.
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1 Introduction

Constructing indices that store sets of strings in compact space is a fundamental
problem in computer science, and have been extensively studied in the decades
[4,8–10,12,19]. Examples of compact string indices include: tries [1,9], finite
automata and transducers [10,13]. By the rapid increase of massive amounts of
sequential data such as biological sequences, natural language texts, and sensing
data stream, these compact string indices have attracted much attention and
gained more importance in many string processing applications [9,12]. In such
applications, an index not only has to compactly store sets of strings for search-
ing , but also has to efficiently manipulate them with various set operations.
For example, the most basic operations are union, intersection, difference, and
concatenation. Minimal acyclic deterministic finite automata (minimal ADFAs)
[9,10,13] are one of such index structures that fulfill the above requirements
based on finite automata theory, and have been used in many sequence process-
ing applications [15,19]. However, the algorithms to manipulate them is compli-
cated because of the multiple branching of the underlying directed acyclic graph
structure.

To overcome this problem, Loekito et al. [14] proposed sequence binary deci-
sion diagrams (SeqBDDs), which is a compact representation of finite sets of
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strings along with algorithms for manipulation operations. A SeqBDD is a
vertex-labeled graph structure, which resembles an acyclic DFA in binary form
(left-child, right-sibling representation [6]) with associated minimization rules
for sharing siblings as well as children that are different from ones for a mini-
mal ADFA. Due to these minimization rules, a SeqBDD can be more compact
than an equivalent ADFA [11]. Novel features of the SeqBDDs are their abilities
to share equivalent subgraphs and reuse results of intermediate computation
between different multiple SeqBDDs. These characteristics allow us to avoid
redundant generation of vertices and computation. In 2014, SeqDD, a variant
of SeqBDD, was proposed by Alhakami, Ciardo and Chrobak [2]. However, they
did not propose manipulating algorithms.

SeqBDD is a member of decision diagram family. Binary decision diagram
(BDD) [5] is proposed by Bryant to manipulate Boolean functions. There are
some studies about relationships between BDDs and Automata [7,17]. The
most fundamental operations for string sets, such as union, intersection, and
difference, are implemented by the almost same algorithms on zero-suppressed
BDD (ZDD) [18] which is a variant of BDD and manipulates sets of combi-
nations. ZDD has much more operations to manipulate sets of combinations.
Since SeqBDD can be said as a child of ZDD, it inherits some operations from
ZDD. However, it is not enough to manipulate sets of combinations because we
can define much more operations for string sets than sets of combinations due
to the differences between combinations and strings. SeqBDD did not have even
fundamental operations such as concatenation. Size of a combination is bounded
by the size of the universal set, but length of a string is not bounded by the size
of the alphabet. A combination does not have order between its elements, but a
string has order between its symbols. For example, a combination {a, b, c} equals
to {b, c, a}, {c, b, a}, and {a, b, c, b, a}, but a string abc is not equal to bca, cba,
and abcba. In addition, we can distinguish substrings such as prefixes, suffixes,
substrings, and subsequences even though they are the same as string. In this
paper, we propose 50 new operations on SeqBDD. Almost all algorithms can
be implemented as simple recursive algorithms. The collection of manipulation
operations will be useful to implement various string applications on the top of
SeqBDDs. The organization of this paper is as follows. In Sect. 2, we introduce
our notation and data structures, operations, and techniques used throughout
this paper. In Sect. 3, we propose new operations and analyze their complexities.

2 Preliminary

Let Σ = {a, b, . . .} be a countable alphabet of symbols. We assume that the
symbols of Σ are ordered by a precedence ≺Σ such as a ≺Σ b ≺Σ · · · in a
standard way. Let s = a1 · · · an, n ≥ 0, be a string over Σ. For every i = 1, . . . , n,
we denote by α[i] = ai the i-th symbol of α. We denote by |α| = n the length of
α. The empty string , a string of length zero, is denoted by ε. We denote by Σ∗

the set of all strings of length n ≥ 0. For two strings α and β, we denote the
concatenation of α and β by α · β or αβ. If ζ = αβγ for some possibly empty



110 S. Denzumi

Attribute Terminal Nonterminal
zero null zero(v)
one null one(v)
label label(v)
val value(v) null

Fig. 1. The attribute values for a ver-
tex v.

label(v) 

id(v) 
(value(v)=null) 

Nonterminal 
vertex v

0-edge 1-edge 

0-terminal vertex 0 

id(0)=0 
(value(0)=0) 

0 

1-terminal vertex 1 

id(1) = 1 
(value(1)=1) 

1 0-child 
zero(v) 

1-child 
one(v) 

Fig. 2. The 0-terminal, 1-terminal and
nonterminal vertices.

strings α, β, and γ, we refer to α, β, and γ as a prefix , factor , and suffix of ζ,
respectively. For a string ζ of length n and 1 ≤ i1 < i2 < · · · < ik ≤ n, we refer
to ζ[i1]ζ[i2] · · · ζ[ik] as a subsequence of ζ. A reverse of ζ is ζR = ζ[|ζ|] · · · ζ[1].

A language on an alphabet Σ is a set L ⊆ Σ∗ of strings on Σ. A finite lan-
guage of size m ≥ 0 is just a finite set L = {α1, . . . , αm} of m strings on Σ. A
finite language L is referred to as a string set. We define the cardinality of L by
|L| = m, the total length of L by ||L|| =

∑
α∈L |α|, and the maximal string length

of L by maxlen(L) = max{ |α| | α ∈ L }. The empty language of cardinality 0 is
denoted by ∅. For languages L,M ⊆ Σ∗, we define the following binary opera-
tions, called Boolean set operations: the union L ∪ M , the intersection L ∩ M ,
the difference L\M , the symmetric difference L ⊕ M = (L\M) ∪ (M\L), the
concatenation L · M = { αβ |α ∈ L, β ∈ M } as usual.

2.1 Sequence Binary Decision Diagrams

In this subsection, we give the SeqBDD, introduced by Loekito et al. [14], as our
graphical representation of a finite language. Then, we show its canonical form.
A vertex v in a SeqBDD is represented by a structure with the attributes id ,
label , zero, one, and value. We have two types of vertices, called nonterminal and
terminal vertices, both of which are represented by the same type of struct, but
the attribute values for a vertex v depend on its vertex type, as given in Fig. 1.
A graphical explanation of the correspondence between the attribute values and
the vertex type is given in Fig. 2.

Definition 1 (Sequence BDD) [14]. A sequence binary decision diagram (a
SeqBDD) is a multi-rooted, vertex-labeled, directed graph G = (V,E) with R ⊆ V
satisfying the following:

– V is a vertex set containing two types of vertices known as terminal and
nonterminal vertices. Each has certain attributes, id, label , zero, one, and
value. The respective attributes are shown in Fig. 1.

– There are two types of terminal vertices, called 1-terminal and 0-terminal
vertices, respectively. A SeqBDD may have at most one 0-terminal and at
most one 1-terminal: (1) A terminal vertex v has as an attribute value(v) ∈
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{0, 1}, indicating whether it is a 1-terminal or a 0-terminal, denoted by 1 or
0, respectively. v has an attribute label(v) = � the special null symbol � �∈ Σ,
which is larger than any symbol in Σ, i.e., c ≺Σ � for any c ∈ Σ. The equality
=Σ and the strict total order ≺Σ are defined on Σ ∪ {�}; (2) A nonterminal
vertex v has as attributes a symbol label(v) ∈ Σ called the label, and two
children, one(v) and zero(v) ∈ V , called the 1-child and 0-child. We refer to
the pair of corresponding outgoing edges as the 1-edge and 0-edge from v. We
define the attribute triple for v by triple(v) = 〈label(v), zero(v), one(v)〉. For
distinct vertices u and v, id(u) �= id(v) holds.

– We assume that the graph is acyclic in its 1- and 0-edges. That is, there
exists some partial order ≺V on vertices of V such that v ≺V zero(v) and
v ≺V one(v) for any nonterminal v.

– Furthermore, we assume that the graph must be ordered in its 0-edges, that
is, for any nonterminal vertex v, if zero(v) is also nonterminal, we must
have label(v) ≺Σ label(zero(v)), where ≺Σ is the strict total order on symbols
of Σ ∪ {�}. The graph is not necessarily ordered in its 1-edges.

– R is a set of roots. All vertices in V are reachable from at least one vertex
in R.

For any vertex v in a SeqBDD G, the subgraph rooted by v is defined as the
graph consisting of v and all its descendants. A SeqBDD is called single-rooted
if it has exactly one root, and multi-rooted otherwise. We define the size of the
graph rooted by a vertex v, denoted by |v|, as the number of its nonterminals
reachable from v. By definition, the graph consisting of a single terminal vertex, 0
or 1, is a SeqBDD of size zero. A graph G is called single-rooted . In this paper, we
identify a single-rooted SeqBDD and its root vertex name. Multi-rooted graphs
are useful in the shared SeqBDD environment described in Subsect. 2.2.

Now, we give the semantics of a SeqBDD.

Definition 2 (The Language Represented by a Single-Rooted Seq
BDD). In a single-rooted SeqBDD G, a vertex v in G denotes a finite language
LG(v) on Σ defined recursively as:

1. If v is a terminal vertex, LG(v) is the trivial language defined as: (i) if
value(v) = 1, LG(v) = {ε}, and (ii) if value(v) = 0, LG(v) = ∅.

2. If v is a nonterminal vertex, LG(v) is the finite language LG(v) = (label(v) ·
LG(one(v))) ∪ LG(zero(v)).

For example, the SeqBDD in Fig. 3 represents languages L(r1) = {aaba, aabc,
aac, abba, abbc, abc, acc, adc, bba, bbc, bc, cc, dc} and L(r2) = {abba, abbc,
abc, acc, adc, bbba, bbbc, bbc, bcc, bdc, cc, dc}.

We write L(v) for LG(v) if the underlying graph G is clearly understood.
Moreover, if G is a SeqBDD with the single root r ∈ R, we write L(G) for LG(r).
We say that G is a SeqBDD for L if L = L(G).
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Fig. 3. An example of a SeqBDD in a shared environment. Nonterminal vertices are
drawn as cercles with their labels. Terminal vertices are drawn as squares with their
values. 1-edges and 0-edges are drawn as solid arrows and dotted arrows, respectively.

2.2 Shared SeqBDDs

We can use a multi-rooted SeqBDD G as a persistent data structure for storing
and manipulating a collection of more than one set of strings on an alphabet Σ.
In an environment, we can create a new subgraph by combining one or more
existing subgraphs in G in an arbitrary way. As an invariant, all subgraphs
in G are maintained as minimal. A shared SeqBDD environment is a 4-tuple
E = (G,R, uniqtable, memocache) consisting of a multi-rooted SeqBDD G with
a vertex set V , a root vertex set R, and two hash tables uniqtable and memocache,
explained below. If two tables are clearly understood from context, we identify E
with the underlying graph G by omitting tables.

The first table uniqtable, called the unique vertex table, assigns a nonterminal
vertex v = uniqtable(a, v0, v1) of G to a given triple τ = 〈a, v0, v1〉 of a symbol
and a pair of vertices in G. This table is maintained such that it is a function
from all triples τ to the nonterminal vertex v in G such that triple(v) = τ . If
such a node does not exist, uniqtable returns null . When we want to get a vertex
with a certain attribute triple 〈a, v0, v1〉, we first check whether such a vertex
already exists or not by querying the uniqtable. If such a vertex exists, we use the
vertex returned from the uniqtable. Otherwise, we create a new vertex with the
attribute triple and register it to the uniqtable. The operation Getvertex(a, v0, v1)
executes this process. Due to this process, we can avoid generating redundant
equivalent vertices. Consequently, the SeqBDD is kept minimal even though it
is multi-rooted.

The second table memocache, called the operation cache, is used for a user to
memorize the invocation pattern “op(x1, . . . , xk)” of a user-defined operation op
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and the associated return value u = op(v1, . . . , vk), where each vi, i = 1, . . . , n
is an argument of the operation. An argument can be a symbol, a natural
number, or an existing vertex in G. We assume that the hash tables uniqtable
and memocache are global variables in E , and initialized to the empty tables
when E is initialized.

Figure 3 shows that two SeqBDDs rooted by r1 and r2 share their equiva-
lent subgraphs. In a shared environment, we can deal with multiple SeqBDDs
in minimal form by using uniqtable, and reuse computational results of opera-
tions for some vertex when we want to execute the same operation for the same
vertex by referring memocache. For example, assume that we compute Card(r1),
Card(v) is called for each descendant of r1 during the recursive process. (Note
that |L(v)| = |L(zero(v))|+ |L(one(v))|.) If we compute Card(r2) after obtaining
the result of Card(r1), during the computation of the cardinality of r2, we need
to continue recursive calls Card(zero(v)) and Card(one(v)) only at each nonter-
minal vertex v that is a descendant of r2 but not a descendant of r1 because the
memocache remembers the result Card(v).

2.3 Operations

We view a symbolic manipulation program as executing a sequence of commands
that build up representations of languages and that determine various properties
about them. For example, suppose we wish to construct the representation of the
language computed by a data mining program. At this point, we can test various
properties of the language, such as to list some member, to list all members, and
to test some string for membership.

Here, we will present algorithms to perform basic operations on sets of strings
represented as SeqBDD. Table 1 summarizes operations of SeqBDDs. This table
contains some new operations. Rev, LRotate, and RRotate are new ones and can
be used to find palindromes and Lyndon words [16]. These basic operations can
be combined to perform a wide variety of operations on sets of strings. We can
construct a SeqBDD that represents a given language in O(||L||) time. Aoki et
al. proposed a more efficient algorithm to construct a SeqBDD representing a
set of reversed strings [3]. Our algorithms utilize techniques commonly used in
BDD and ZDD algorithms such as ordered traversal, table look-up, and vertex
encoding. As the table shows, most of the algorithms have time complexity
proportional to the size of the SeqBDDs being manipulated. Hence, as long as
the languages of interest can be represented by reasonably small SeqBDD such
that used for speech recognition [19], our algorithms are quite efficient.

These algorithms are implemented as simple recursive algorithms. Such style
of algorithms are commonly used on other decision diagrams because it has the
following nice properties:

– Speeding up by memoization: Sharing intermediate results between different
execution of operations for SeqBDDs rooted by different vertices.
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Table 1. SeqBDD basic operations.

Name Output Time & space

complexity

0 The 0-terminal vertex O(1)

1 The 1-terminal vertex O(1)

Getvertex(a, v0, v1) A SeqBDD vertex r such that

label(r) = a, zero(r) = v0, one(v) = v1

O(1)

Build(α) A SeqBDD vertex r such that L(r) = {α} O(|α|)
Onset(u, a) A SeqBDD vertex r such that L(r) = {α|aα ∈ L(u)} O(|Σ|)
Offset(u, a) A SeqBDD vertex r such that

L(r) = {bα|bα ∈ L(u), b �= a}
O(|Σ|)

Member(u, α) α ∈ L(v)? O(|Σ||α|)
AddStr(v, α) A SeqBDD vertex r such that L(r) = L(v) ∪ {α} O(|Σ||α|)
DelStr(v, α) A SeqBDD vertex r such that L(r) = L(v)\{α} O(|Σ||α|)
Union(u, v) A SeqBDD vertex r such that L(r) = L(u) ∪ L(v) O(|u||v|)
Intersection(u, v) A SeqBDD vertex r such that L(r) = L(u) ∩ L(v) O(|u||v|)
Difference(u, v) A SeqBDD vertex r such that L(r) = L(u)\L(v) O(|u||v|)
SymDiff(u, v) A SeqBDD vertex r such that L(r) = L(u) ⊕ L(v) O(|u||v|)
Equal(u, v) L(u) = L(v)? O(1)

IsSubset(u, v) L(u) ⊆ L(v)? O(|u||v|)
Count(u) the number of nodes |u| O(|u|)
Card(u) |L(u)| O(|u|)
TotalLen(u)

∑
α∈L(u) |α| O(|u|)

MinLen(u) minα∈L(u){|α|} O(|u|)
MaxLen(u) maxα∈L(u){|α|} O(|u|)
Print1(v) Some string of L(v) O(maxlen(L(v)))

PrintAll(v) L(v) O(|L(v)|maxlen(L(v)))

Random(u) A string α ∈ L(u) chosen uniformly at random O(|u|)
All1() {a|a ∈ Σ} O(|Σ|)
Alln() A SeqBDD vertex r such that

L(r) = {a1 · · · an|a1, . . . , an ∈ Σ}
O(n|Σ|)

HeadRemove(u) {α|a ∈ Σ, aα ∈ L(u)} O(22|u|)

TailRemove(u) {α|a ∈ Σ, αa, ∈ L(u)} O(|u|)
Rev(u) A SeqBDD vertex r such that L(r) = {αR|α ∈ L(u)} N/A

LRotate(u) A SeqBDD vertex r such that

L(r) = {αa|aα ∈ L(u), a ∈ Σ} ∪ (L(u) ∩ {ε})
O(|u|2)

RRotate(u) A SeqBDD vertex r such that

L(r) = {aα|αa ∈ L(u), a ∈ Σ} ∪ (L(u) ∩ {ε})
N/A

– Easy implementation: From a long history of research of automata, we can
find a more efficient algorithm for each operation. However, implementing
the best algorithms is generally difficult. Simple algorithms are valuable to
make libraries in order to accept various requests for manipulation on sets of
strings.
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Therefore, implementing various operations in a simple recursive manner is
important to obtain the above properties even though there are more efficient
problem-specific algorithms.

3 SeqBDD Manipulation Operations

In this section, we list up new SeqBDD operations. We categorize the algorithms
into the following three groups:

– Combination: Combine multiple SeqBDDs.
– Enumeration: Enumerate all strings that satisfy some condition.
– Retrieval: Retrieve strings which satisfy some conditions from a given set.

All of the following algorithms use uniqtable and memocache as global vari-
ables. We can define operations not included in the following tables, but we only
consider operations that we can provide their algorithms.

3.1 Combination Operations

Combination operations are listed in Table 2. Basic Boolean set operations are
in the table of basic operations. Concat, OverlapConcat, LDiv, RDiv, CDiv, LRem,
RRem, and CRem are algebraic operations. These operations can be used to
construct SeqBDDs for given regular languages and decompose SeqBDDs into
several languages. LExistDiv, RExistDiv, CExistDiv, LExistRem, RExistRem, and
CExistRem is variants of LDiv, RDiv, CDiv, LRem, RRem, and CRem that can
be obtained by switching the quantifiers from ∀ to ∃ in the definition of oper-
ations. PrefAssign, SuffAssign, and FactAssign construct SeqBDDs by replacing
prefixes, suffixes, and factors of L(u) that is included in L(v) by the language
L(w), respectively. Separate computes all factors of L(u) that can be obtained
by considering strings in L(v) as delimiters of strings in L(u).

3.2 Enumeration Operations

Enumeration operations are listed in Table 3. For given a string α ∈ Σ∗, we define
Prefix(α) is the set of all prefixes of α, Suffix(α) is the set of all suffixes of
α, Factor(α) is the set of all factors of α, and Subseq(α) is the set of all subse-
quence of α. Also, we define PropPrefix(α) = Prefix(α)\{α}, PropSuffix(α)
= Suffix(α)\{α}, PropFactor(α) = Factor(α)\{α}, and PropSubseq(α) =
Subseq(α)\{α}. We use “?” as a wild card in the algorithm HammDistWild and
EditDistWild. Pref, Suff, Fact, Subseq. PropPref, PropSuff, PropFact, PropSubseq
construct SeqBDDs that can be used as indices. HammDist, EditDist, HammDis-
tWild. EditDistWild are applied to approximate indices and matching problems.
These algorithms are useful to generate all candidates to be processed explicitly.
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Table 2. SeqBDD combination operations.

Name Output Time & space complexity

Concat(u, v) A SeqBDD vertex r such that

L(r) = {αβ|α ∈ L(u), β ∈ L(v)}
O(|u|222|v|)

OverlapConcati,j,k (u, v) A SeqBDD vertex r such that

L(r) = {αβγ|αβ ∈ L(u), βγ ∈ L(v),

|α| ≥ i, |β| ≥ j, |γ| ≥ k}

N/A

LDiv(u, v) A SeqBDD vertex r such that

L(r) = {γ|∀β ∈ L(v), βγ ∈ L(u)}
O(|v|22|u|)

RDiv(u, v) A SeqBDD vertex r such that

L(r) = {α|∀β ∈ L(v), αβ ∈ L(u)}
O(|u||v|)

CDiv(u, v) A SeqBDD vertex r such that

L(r) = {αγ|∀β ∈ L(v), αβγ ∈ L(u)}
O(22|u||v|)

LRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), ∃β ∈ L(v), ζ �= βγ, ∀γ ∈ Σ∗}

O(|u||v|322|u|)

RRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), ∃β ∈ L(v), ζ �= αβ, ∀α ∈ Σ∗}

O(|u||v|22|u|)

CRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), ∃β ∈ L(v), ζ �= αβγ, ∀α, γ ∈ Σ∗}

N/A

LExistDiv(u, v) A SeqBDD vertex r such that

L(r) = {γ|∃β ∈ L(v), βγ ∈ L(u)}
O(|v|22|u|)

RExistDiv(u, v) A SeqBDD vertex r such that

L(r) = {α|∃β ∈ L(v), αβ ∈ L(u)}
O(|u||v|)

CExistDiv(u, v) A SeqBDD vertex r such that

L(r) = {α0 · · · αn|∃β1, . . . , βn ∈
L(v), α0β1α1 · · · βnαn ∈ L(u),

L(v) ∩ Factor(αi) = ∅, i = 0, . . . , n}

N/A

LExistRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), β ∈ L(v), ζ �= βγ, ∀γ ∈ Σ∗}

O(|v|22|u|)

RExistRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), β ∈ L(v), ζ �= αβ, ∀α ∈ Σ∗}

O(|u||v|)

CExistRem(u, v) A SeqBDD vertex r such that

L(r) = {ζ|ζ ∈ L(u), β ∈ L(v), β �∈ Factor(ζ)}
N/A

PrefAssign(u, v, w) A SeqBDD vertex r such that

L(r) = {ζγ|∃β ∈ L(v), βγ ∈ L(u), ζ ∈ L(w), or

β ∈ L(v), ζγ ∈ L(u), β �∈ Prefix(ζγ)}

O(|v|22|u||w|)

SuffAssign(u, v, w) A SeqBDD vertex r such that

L(r) = {αζ|∃β ∈ L(v), αβ ∈ L(u), ζ ∈ L(w), or

β ∈ L(v), αζ ∈ L(u), β �∈ Suffix(αζ)}

O(|v|22|u||w|)

FactAssign(u, v, w) A SeqBDD vertex r such that

L(r) = {α0ζα1 · · · ζαn|(∃β1, . . . , βn ∈ L(v),

α0β1α1 · · · βnαn ∈ L(u), L(v) ∩ Factor(αi) =

∅, i = 0, . . . , n, ζ1, . . . , ζn ∈ L(w)), or

(β ∈ L(v), α0 ∈ L(u), β �∈ Factor(α0))}

O(|v|22|u||w|)

Separate(u, v) A SeqBDD vertex r such that

L(r) = {αi|∃β1, . . . , βn ∈
L(v), α0β1α1 · · · βnαn ∈ L(u),

L(v) ∩ Factor(αi) = ∅, i = 0, . . . , n

α0 ∈ L(u), β ∈ L(v), β �∈ Factor(α0), i = 0}.

N/A
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Table 3. SeqBDD enumeration operations.

Name Output Time & space
complexity

Pref(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Prefix(α).

O(|u|)

Suff(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Suffix(α).

O(|u|2)

Fact(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Factor(α).

O(|u|2)

Subseq(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Subseq(α).

O(22|u|)

PropPref(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropPrefix(α).

O(|u|)

PropSuff(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropSuffix(α).

O(|u|2)

PropFact(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropFactor(α).

O(|u|2)

PropSubseq(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropSubseq(α).

O(22|u|)

HammDist(u, d) A SeqBDD vertex r consists of strings
within Hamming distance d from α ∈ L(u).

N/A

EditDist(u, d) A SeqBDD vertex r consists of strings
within edit distance d from α ∈ L(u).

N/A

HammDistWild(u, d) A SeqBDD vertex r consists of strings
within Hamming distance d from α ∈ L(u)
allowing use of wild cards.

N/A

EditDistWild(u, d) A SeqBDD vertex r consists of strings
within edit distance d from α ∈ L(u)
allowing use of wild cards.

N/A

3.3 Retrieval Operations

Retrieval operations are listed in Table 4. Shorter, Longer, Just, Shortest, and
Longest derive languages consisting of strings of desired length. ExistPref, Exist-
Suff, ExistFact, and ExistSubseq retrieve strings that have some string in L(v) as
their prefixes, suffixes, factors, and subsequences, respectively. PrefMaximal, Suff-
Maximal, FactMaximal, SubseqMaximal, PrefMinimal, SuffMinimal, FactMinimal,
and SubseqMinimal can find maximal or minimal strings among their prefixes,
suffixes, factors, and subsequences, respectively.

3.4 Complexity Analyses

In this subsection, we describe how the complexities in the above tables are cal-
culated. For basic set operations such as Union, Intersection, and Difference for
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Table 4. SeqBDD retrieval operations.

Name Output Time & space
complexity

Shorter(u, l) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), |α| ≤ l}.

O(l|u|)

Longer(u, l) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), l ≤ |α|}.

O(l|u|)

Just(u, l) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), l = |α|}.

O(l|u|)

Shortest(u) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), |α| = minβ∈L(u){|β|}}.

O(|u|)

Longest(u) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), |α| = maxβ∈L(u){|β|}}.

O(|u|)

ExistPref(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Prefix(α)}.

O(|u||v|)

ExistSuff(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Suffix(α)}.

O(|u||v|)

ExistFact(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Factor(α)}.

O(|u||v|)

ExistSubseq(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Subseq(α)}.

O(|u|22|v|)

PrefMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Prefix(β)}.

O(|u|2)

SuffMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Suffix(β)}.

O(|u|3)

FactMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Factor(β)}.

O(|u|3)

SubseqMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Subseq(β)}.

O(|u|22|u|)

PrefMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Prefix(α)}.

O(|u|3)

SuffMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Suffix(α)}.

O(|u|3)

FactMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Factor(α)}.

O(|u|4)

SubseqMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Subseq(α)}.

O(|u|222|u|2 )

ComnPref(u) A SeqBDD vertex r such that
L(r) =

⋂
α∈L(u) Prefix(α).

O(|u|)

vertices u and v, its time and space complexities are O(|u||v|) because possible
function calls with different pair of vertices are at most O(|u||v|), and function
calls with the same arguments are processed in constant time thanks to the mem-
oization technique. As a result, the size of output SeqBDD is also O(|u||v|) [11].
Consequently, if we continue Union or Intersection k times for vertices reachable
from v, the complexity becomes O(|v|k+1). Note that each vertex in the resultant
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SeqBDD can be written as a combination of k + 1 vertices of v’s descendants. If
the number of repetition k is not fixed, each vertex in the output SeqBDD can
be written as combination of all v’s descendants. Therefore, complexity becomes
O(22|v|) in such cases. Note that the size of output SeqBDD is O(2|v|). If each
output vertex can be written as a result of computing |v| vertices combined by j

non-commutative operations, its complexity is O(
∑|v|

i=1 ji−1i!). The complexi-
ties in the tables are obtained from the above observations. For operations with
more complicated algorithms, we could not calculate complexities and the time
& space complexity columns of such operations are N/A.

4 Conclusion

In this paper, we proposed 50 new algorithms for manipulating SeqBDDs. All
of our algorithms are written as recursive algorithms with memoization. Due to
intermediate results sharing caused by memoization technique, the total com-
putation time of multiple executions of the same operation will be faster when
dealing with multi-rooted SeqBDD in a shared environment. For future work,
we implement the algorithms proposed in this paper. The complexity analyses
can be improved. We should consider combining our algorithms with existing
problem-specific efficient algorithms. We will be able to define more operations
and give algorithms for them.
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