
A Benchmark Production Tool for
Regular Expressions

Angelo Borsotti1, Luca Breveglieri1(B), Stefano Crespi Reghizzi1,2,
and Angelo Morzenti1

1 Politecnico di Milano, 20133 Milan, Italy
angelo.borsotti@mail.polimi.it,

{luca.breveglieri,stefano.crespireghizzi,angelo.morzenti}@polimi.it
2 CNR-IEIIT, 20133 Milan, Italy

Abstract. We describe a new tool, named REgen, that generates reg-
ular expressions (RE) to be used as test cases, and that generates also
synthetic benchmarks for exercising and measuring the performance of
RE-based software libraries and applications. Each group of REs is ran-
domly generated and satisfies a user-specified set of constraints, such as
length, nesting depth, operator arity, repetition depth, and syntax tree
balancing. In addition to such parameters, other features are chosen by
the tool. An RE group may include REs that are ambiguous, or that
define the same regular language but differ with respect to their syn-
tactic structure. A benchmark is a collection of RE groups that have
a user-specified numerosity and distribution, together with a represen-
tative sample of texts for each RE in the collection. We present two
generation algorithms for RE groups and for benchmarks. Experimental
results are reported for a large benchmark we used to compare the per-
formance of different RE parsing algorithms. The tool REgen and the
RE benchmark are publicly available and fill a gap in supporting tools
for the development and evaluation of RE applications.

Keywords: Regular expression generation ·
Benchmark for regular expressions · Regular expression tool

1 Introduction

Regular expressions (RE) are a widely applied language definition model. Actu-
ally the term RE refers not only to the Kleene formal model, but also to pro-
gramming notations like that of the Java.regexp library, which we generically call
technical RE [2]. Many algorithms and software libraries using REs, referred to
as RE SW, continue to be developed for many purposes, e.g., string matching,
text editing, code inspection, intrusion detection, etc. Our focus is on those RE
SW that not just recognize regular sets of strings, but also assign them a struc-
ture, i.e., do parsing. Quite often, the REs in such applications are ambiguous,
therefore a string can be parsed in many different ways.
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 95–107, 2019.
https://doi.org/10.1007/978-3-030-23679-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_8

96 A. Borsotti et al.

The development and evaluation of RE SW would benefit from using large
collections of REs, but surprisingly we could not find any available one, which
we needed for measuring the performance of different RE parsing algorithms,
including our own [1]. This motivated the design and implementation of a new
tool, called REgen, to produce customizable RE collections, as well as string
samples of the corresponding regular languages. By using the tool, we synthe-
sized a large RE benchmark, described in Sect. 4, that we used for an objective
comparison of RE parsing algorithms. However, REgen is not biased towards a
specific RE SW and is planned as a general-purpose customizable tool.

Related Work. We briefly consider two research directions, and why they
could not be exploited here. First, string generation programs driven by a given
context-free (CF) grammar have been used, at least since the ’80s, to produce
input data for testing compilers, e.g., [3], and other software systems, e.g., [7].
Such generator algorithms are typically guided by simple criteria, such as the
minimal coverage criterion, ensuring that all CF rules are used to produce a
minimal set of strings. Of course, most produced strings, though syntactically
correct, are illegal input data for the SW system under test; they may help debug-
ging, but they are not intended for evaluating SW execution performance. In
practice, compiler evaluation relies on big hand-written language-specific bench-
marks, e.g., SPEC for the C language. Our tool is also driven by a CF grammar,
namely the meta-grammar of REs, but it essentially differs because REgen has a
meta-level and a terminal level. At meta-level, each output string is a generated
RE (GRE), and is used at terminal level to drive the text generation component
of REgen, which creates a set of generated texts (GT).

Second, our project objectives differ from those of more theoretical research
on RE enumeration, although enumeration algorithms may seem to address sim-
ilar requirements as our meta-language level. The RE enumeration procedure
in [5] is actually targeted at enumerating regular languages rather than REs,
thus it carefully avoids generating two equivalent REs, whereas for a tool like
ours, generating also equivalent GREs is acceptable and even desirable, e.g., to
evaluate how the structure of equivalent REs impacts on SW performance.

Paper Contributions. The design of a new tool for generating REs and the
corresponding texts raised various technical questions for which existing systems
did not offer ready solutions. Since the range of RE SW is ill-defined and open, we
decided that our tool should be customizable, so that the future users of REgen
will be able to match the features of the GRE benchmarks, with the typical
properties of the REs occurring in, say, a code inspection versus a web searching
application. For instance, the REs used in text searching typically have a very
small nesting level for the star (more generally, repetition) operator. Unfortu-
nately, we could not find any established classification of REs oriented towards
their application domains, and we had to examine the following question: how to
select a not too large set of parameters that would allow to classify REs accord-
ing to flexible empirical criteria. We started from the classical parameters such as
RE length and star (better, repetition) depth, then we added and experimented
others, later described in the paper, such as the maximal arity of an operator (or

A Benchmark Production Tool for Regular Expressions 97

and dot). Other parameters specify that certain combinations of operations are
forbidden. Another interesting structural parameter is whether the RE tree is
balanced or not; we found that it is better to separate the generation algorithms
for the two cases. Clearly, the RE parameters we have identified and included in
the current tool are just a well-thought initial model, which is open to revision
and tuning to better adjust to unanticipated use cases.

The main output of our research is the specification and implementation of
the REgen tool, which actually includes two generator levels, GRE and GT.
The GRE generator is the innovative and major component, while the GT gen-
erator is indispensable but more traditional. More precisely, the tool consists
of three parts. Part one outputs a single GRE compliant with user-specified
or default parameter values, thus, by repeated application with fixed values, it
generates a random group of GREs that fulfill identical constraints. Part two
repeatedly applies Part one, each time with stepping parameter values, and thus
outputs a random collection of GRE groups, to be called a benchmark, which
has user-specified features. Part three works on a given GRE and produces a
representative sample of GTs, with a user-specified length and numerosity.

By using REgen, a large RE benchmark has been created, and we report the
main measurements of the GREs and GTs, and the tool execution times. More-
over, we have further analyzed the GREs for the following important properties
that are not controlled by the current input parameters: the ambiguity of GREs,
and how many GREs present in the benchmark define nondisjoint languages.

The Java code of REgen and the benchmark are available at the URL http://
github.com/FLC-project/REgen, and they will hopefully serve software devel-
opers and formal language researchers.

Paper Organization. Section 2 contains the basic definitions of GREs and
their operators and abstract syntax trees, followed by the input parameters that
constrain tree shape and contents. Section 3 outlines the generation algorithms.
Section 4 presents some quantitative aspects of the benchmark generated. The
Conclusion hints to future developments.

2 Basic Definitions

The notions we use are standard in formal language theory. First, we define the
RE family to be considered. A generated RE (GRE) is a string over an alphabet
Ω = M � Σ, where set M contains the metasymbols and set Σ, called the text
alphabet, contains the terminals that may occur in a generated text (GT). The
GRE structure is better represented by an abstract syntax tree (AST). Table 1
and the examples in Fig. 1 should give a sufficient idea of the language of GREs,
denoted LGRE, and also of the ASTs. To denote a GRE we use letters such as
e, f , e1, . . . ; the empty string is ε. Notice that rule 5 in Table 1 defines the
repetition operation, which contains rules 5.1, 5.2 and 5.3 as special cases.

Definition 1 (AST). Let e ∈ LGRE , the corresponding AST, denoted eT , has
the structure and node labels specified in Table 1. ��

http://github.com/FLC-project/REgen
http://github.com/FLC-project/REgen

98 A. Borsotti et al.

Table 1. Components and rules of a GRE and the corresponding AST tree.

Rules defining GRE e Node label of the corresponding AST

1 e = ε Leaf node with label ε (empty string)

2 e = a ∈ Σ Leaf node with label a (terminal character)

3 e = e1 | e2 | . . . | ek k ≥ 2 Inner node with label “ | ” and k children

4 e = e1 · e2 · . . . · ek k ≥ 2 Inner node with label “ · ” and k children

5 e = ei,j1 0 ≤ i < j ≤ ∞ Inner node with label i, j and one child e1

5.1 e = e∗
1 same as e0, ∞

1 Inner node with label “ ∗ ” and one child e1

5.2 e = e+1 same as e1,∞1 Inner node with label “ + ” and one child e1

5.3 e = e?1 same as e0, 11 Inner node with label “ ? ” and one child e1

See the examples in Fig. 1. An internal node of an AST belongs to the types:

type =
{

non-unary

union |, concatenation ·,
unary

repetition (min . . . max)
}

As said, the iterators star “ ∗ ” and cross “ + ”, and the optionality operator
“ ? ”, are subcases of repetition nodes, with the values already shown in Table 1.

The language defined by a GRE e is denoted L (e) ⊆ Σ∗, and to prevent
confusion, its sentences are called generated texts (GT). The GREs e and f
(Fig. 1) are weakly equivalent since L (e) = L (f). Yet, since GRE f assigns to
the text a b a b a syntax tree (ST) different from the two trees assigned to the
same string by GRE e (in Fig. 1, middle right), the two GREs e and f are not
interchangeable when they are used for string matching or searching.

In Table 2 we list and describe the parameters and choices the user may enter,
to customize the collection of GREs produced by REgen; some parameters are
illustrated in Fig. 1 (bottom). The current selection of parameters tries to balance
the complication of having too many generation parameters and the flexibility
needed for tayloring GREs to specific applications.

3 The RE Generator

The goal of the RE generator is to produce a set of possibly very many GREs
that match the parameter values specified by the user or by default. This is
achieved through iteratively executing a procedure that generates random REs.
Such a procedure is designed to produce, with a very high probability, a distinct
RE at each invocation, so as to minimize the likelihood of discarding duplicates.

More precisely, the RE generator produces a set of ASTs, called a group, such
that for all ASTs in the same group, the primary parameters of Table 2 take the
same values, e.g., all ASTs are balanced or all are unbalanced. However, as it
would be detrimental that all ASTs have the same frontier length, we decided
that the number ϕ of leaves is not fixed, but that it ranges in the same interval.

A Benchmark Production Tool for Regular Expressions 99

Fig. 1. Top: GREs e and f (a and b are arbitrary terminals). Middle left: the ASTs
eT and fT of e and f . Middle right: the syntax trees in T (e) of the text a b a b, where
in the left ST the higher node “ + ” has two children, since there are two iterations.
Bottom: values of the main parameters of eT ; in the last row, the (parent, child) pairs
that do not occur in eT are listed as forbidden.

Thus, a group is qualified by the following parameter values. The text alpha-
bet Σ (thus its cardinality α = |Σ |) and the balance parameter β have fixed
values. The tree depth τ ranges over an interval (min and max may coincide),
and δ� has a fixed value, which specifies the interval [2 . . . δ�]; the case of δ| is
identical. In the GREs, we rule out the occurrence of immediately nested unary
operators, since they are idempotent (in an obvious sense) and it is unlikely that
any RE SW needs to discriminate between the sub-REs, say, (e)∗ and

(
(e)∗)?.

Though two ASTs in the same group have the same parameters, they may
differ for the choice of internal node types and labels. To produce a wider variety
of ASTs, the generator is repeatedly invoked with different parameter settings,
thus resulting in a set of groups, which we call a collection.

First, we describe at a high-level the RE generation algorithm, which is actu-
ally split into two parts for balanced and unbalanced trees.

100 A. Borsotti et al.

Table 2. Main GRE parameters to drive the generator.

primary parameters

text alphabet size α = |Σ |. The leaf labels of an AST are in set Σ ∪ { ε }.
frontier length ϕ ≥ 1. It is the number of AST leaves, including the ε ones.
tree depth τ ≥ 0. It is the maximal path length from AST root to frontier.
balanced or unbalanced β (boolean). It specifies whether in an AST all the

paths from root to frontier have the same length.

secondary parameters

associative-operator degree δ , δ| ≥ 2. They denote the max bounds on the
numbers of child nodes of a concatenation and a union node, respectively.
We set δ = max δ , δ| . In Fig. 1 their values are listed for each node.

repetition depth ρ ≥ 0. For a path from node to leaf, it specifies the number
of repetition nodes that occur on that path.

forbidden parent-child (relation) This binary relation in type× type specifies
the pairs of parent-child node types that must not occur in an AST.

Balanced Tree Generation Algorithm. First, we state and prove a property,
used in the algorithm, about the number of leaves in a balanced tree. In the
coming discussion, we set δ = max

(
δ�, δ|

)
.

Proposition 1 (relation between leaf number and operator degree).
Consider the root-to-leaf paths in a balanced tree. Define the (non-empty) set
{ 〈i, ni〉 | 1 ≤ i ≤ δ }, where ni ≥ 0 is the number of degree-i nodes on a given
such path; therefore, the tree depth is τ =

∑
1≤i≤δ ni. If such a set is the same on

all root-to-leaf paths, then the following relation holds for the tree leaf number:

ϕ = 1n1 · 2n2 · . . . · δ nδ =
∏

1≤i≤δ

ini

��
Proof. The proof is by induction on the tree depth τ .

Base Step. Consider the (elementary) tree with a single node, thus τ = 0 and
ϕ = 1. Then, ni = 0 for 1 ≤ i ≤ δ, and the above relation trivially holds.

Inductive Step. For any k with 1 ≤ k ≤ δ, consider k ≥ 1 trees t1, . . . , tk that
have equal depth τ ≥ 1 and the same set { 〈 i, ni 〉 | 1 ≤ i ≤ δ } of numbers
ni of degree-i nodes on any root-to-node path. By the inductive hypothesis, all
such trees have the same leaf number ϕ =

∏
1≤i≤δ ini . Build a (balanced) tree

t̂ with a new root of degree k ≥ 1 and append the trees t1, . . . , tk to this root.
For tree t̂, the set of the numbers n̂i of degree-i nodes on any root-to-node path,
i.e., { 〈 i, n̂i 〉 | 1 ≤ i ≤ δ }, is identical on all such paths, with n̂k = nk + 1

A Benchmark Production Tool for Regular Expressions 101

and n̂i = ni for every i �= k. By construction, the leaf number of t̂ is ϕ̂ = kϕ =
k ·1n1 ·. . .·δ nδ = 1n1 ·. . .·k ·k nk ·. . .·δ nδ = 1n1 ·. . .·k nk+1 ·. . .·δ nδ =

∏
1≤i≤δ i n̂i .

Thus, tree t̂ satisfies the above relation. ��
We outline the recursive procedure that builds an AST, in the top-down order:

1 Randomly generate a factorization of parameter ϕ according to Proposition 1,
i.e., generate a set of pairs 〈 node-number, degree-value 〉:
{

〈 i, ni 〉 | (1 ≤ i ≤ δ) ∧ (ni ≥ 0) ∧ (
τ =

∑

1≤i≤δ

ni

) ∧ (
ϕ =

∏

1≤i≤δ

ini
) }

(1)

2. In any order, build a child node, then recursively build the child subtrees.

As the algorithm recurs down on a root-to-leaf path, it carries over as a procedure
parameter the list of the degrees chosen for the nodes created on that path.

We discuss some special cases occurring in the preceding algorithm. Since
the range of values of the secondary parameters δ� and δ| is typically quite
restricted, for certain values of the primary parameter ϕ there may not be any
factorization (1); for instance, when ϕ = 69 = 3 × 23 and δ < 23. In such cases,
the following heuristics is applied: parameter ϕ is decreased by a few units, then
a balanced tree is built and is adjusted to the original value of ϕ by attaching
the few missing nodes to the tree bottom branches. Therefore, all the generated
ASTs are balanced and every root-to-leaf path comprises the same number of
nodes for any degree, except possibly for the two last tree levels. We note that
such adjustments are possible because an exact compliance with the parameter
values is not required for a benchmark generator. On the other hand, a formal
enumeration algorithm, e.g., [5], is subjected to much stricter requirements.

Unbalanced Tree Generation Algorithm. Unbalanced trees are also gener-
ated top-down, by means of a recursive procedure that combines the primary
parameters for the frontier length ϕ and tree depth τ , thus achieving a large vari-
ety of tree shapes. The procedure repeatedly executes the following two phases:

1. For an internal node, starting from the root, randomly elect one of the child
nodes as distinguished, which will be the root of the deepest subtree that has
the maximum number of leaves. The total leaf number N (initially N = ϕ for
the root of the whole tree) is partitioned, and a fixed fraction of leaves, equal
to

[
N
F

]
for a certain F , is assigned to such a child node, while the remaining

N − [
N
F

]
leaves are randomly distributed to the other siblings.

2. Iterate phase 1 at the next tree level. Notice that the number of leaves assigned
to the current distinguished child node decreases with the distance of the node
from the root, according to a geometric progression.

To satisfy the tree depth parameter τ , the equality F = τ
√

ϕ must hold. The
maximum node degree δ must agree with F as well, hence also with the fron-
tier length ϕ and the tree depth τ from which F derives, to ensure that the
distinguished child node is assigned a leaf number greater than all those of the
other siblings. Since the number of siblings is at most δ − 1 and in total they

102 A. Borsotti et al.

have N − [
N
F

]
leaves, for the above condition to be satisfiable, this (properly

rounded) inequality must hold: N
F >

(
N − N

F

)
/ (δ − 1). It follows δ > F . This

constraint is easily satisfied in all the practical cases. For instance, with ϕ = 100
and τ = 5, it holds F = 2.512, and the maximum node degree is constrained to
δ > 2. Therefore, all the generated ASTs have one or more root-to-leaf paths of
the desired length, and all the other paths are shorter. Moreover, the degree of
all the nodes is within the limit δ.

Fig. 2. Sample REs in two GRE groups identified by their primary parameters. The
ASTs are simplified to show only the levels and highlight the balanced (top) vs. unbal-
anced (bottom) structure.

Group Production. As said, the GREs of a group are obtained by repeatedly
invoking the random generation procedure with fixed primary parameter values.
Due to randomness, it may happen that two identical GREs are produced, and
a check is performed to avoid duplicates in the same group. We have experi-
mentally found that duplications occur in a negligible number of cases and do
not affect the generation speed. Figure 2 shows a few GREs with their ASTs,
generated for two groups identified by the listed parameter values.

In the current version of REgen, the RE generator does not have any way to
enforce that the generated RE is ambiguous or not. Such a control, if required,
is currently performed off-line by another part of the tool, see later. We have
found that a significant portion of GREs is ambiguous, typically about 60%.

A Benchmark Production Tool for Regular Expressions 103

Printing GREs as Formulas. The ASTs must be eventually converted into
a textual form suitable for the intended RE SW. We do not describe the simple
conversion, and just comment on the introduction of parentheses into a GRE.
Parentheses serve two purposes: to enforce an operator evaluation priority and,
for technical REs such as Posix, also to identify the sub-REs that have to be
matched with the source text (this use is known as capturing). When converting
an AST into a formula, REgen always prints the priority parentheses. In addi-
tion, if a sub-RE has to be “captured”, an embracing parenthesis pair is printed,
even if it is unnecessary for priority. To know when, the new boolean parameter
capturing is affixed to all the internal AST nodes.

3.1 Benchmark Production

In our setting, a (synthetic) benchmark is a large set of GREs, each one accom-
panied by a set of texts. More precisely, a benchmark is structured as one or
more collections of groups, each group being a randomly generated set of REs
that have the same user-specified primary parameters.

Since benchmarks can be generated for different and unforeseen RE SW, it
would be unwise to fix any general properties for benchmarks. The case of a
benchmark of broad interest, used to evaluate RE parsing SW, is described in
detail in Sect. 4. The benchmark comprises many groups of GREs of increasing
length, and each GRE is accompanied by a set of texts of increasing length.
The wide range of GRE lengths allowed us to measure and plot the time an
RE parsing algorithm takes to “compile” an RE, as a function of its length.
Moreover, the text parsing time depends on both the text length and the RE
length; to compare such times, our benchmark contains a large and diversified
corpus of GREs and texts.

Notice that generating a few short REs and texts is simple, but doing so for
long and significantly different REs and texts may run into time and memory
limits. The naive approach based on enumerating REs by increasing length,
and then selecting the few of them that fit the given criteria, is too slow to be
feasible. In other words, an ideal requirement for an efficient generator is that
only the REs that fit the benchmark objectives be generated, thus avoiding the
production of REs that would be later discarded. Our tool approaches such an
ideal and produces tolerably few unfit REs.

Text Generation Algorithm. Given an RE e, our tool randomly computes
one or more generated texts GT x ∈ L (e) by two simple procedures. The first
procedure has two parameters, the RE e and the length
 of the text to be
generated, and it produces just one GT x with length |x | ≈
. The second
procedure is used to generate many GTs organized into a finite collection C =
{ G1, G2, . . . , Gg } of text groups, i.e., Gi ⊂ L (e), each group containing about
the same number of texts. The length of the text increases from one group to the
next, as specified by one of the input parameters, which are the following: the
RE e, the number g of groups, the group size |Gi |, and the step s > 0. Then,
each GT group comprises GTs with approximately the following lengths:

104 A. Borsotti et al.

∀x ∈ G1 |x | ∈ [0 . . . s] ∀i ≥ 2 ∀x ∈ Gi |x | ∈ [
(i − 1) · s + 1 . . . i · s

]

In this way, a user can customize the text lengths of a GT collection and so
produce groups that include a statistically significant sample of texts within
specified length intervals. Concerning the GT generation algorithm, it suffices to
say that it operates in two phases:

1. Given a GRE e, encoded by the AST, the generator tabulates, for each subtree
corresponding to a sub-RE ej , the min and max lengths of a text in L (ej).

2. For each length
, the GTs are top-down recursively computed by visiting
their inner nodes and, for each node, by randomly partitioning the text length
and distributing the resulting parts to its child nodes; details are omitted.

Last, notice that the GT collection is neither intended nor guaranteed to cover
all the possible choices of the given RE, since REgen is not a test case generator
for verifying SW systems. However, since the GTs are randomly generated, the
benchmark can be dimensioned to be statistically significant.

4 Experimental Results

By using REgen, we have generated a large benchmark, which we needed for a
related project, where we had developed a new deterministic parsing algorithm
for ambiguous REs [1]. We wanted to objectively compare its speed against other
existing algorithms, such as the RE2 library. The few collections of REs we could
find, though too small for such a purpose, provided an initial indication of the
kind of REs to be considered for a benchmark. Since the RE parsers are not
biased towards specific uses of REs, we needed to exert them on an RE mix
covering large intervals of essentially all the parameters listed in Table 2.

Some relevant features of such a benchmark are shown in Table 3 and are
commented below. There are two collections of ten groups, one unbalanced and
the other balanced, and each group contains one hundred GREs. The group
parameters, which control the GRE generation, have the following values. The
frontier length ϕ ranges from 1 to 100, increasing by 10 in each group; the depth
τ ranges from 2 to 5; the repetition depth (in particular the star and cross
depths) is limited only by τ ; and the operator arity δ is unlimited. The fol-
lowing operator pairs are forbidden for parent-child nodes: (‘ | ’, ‘ | ’), (‘ · ’, ‘ · ’)
and (unary, unary). The text letters are taken from the alphanumeric alphabet
(62 characters). The benchmark size in terms of GREs, which is of 2, 000 REs
totalizing about 280, 000 characters, is much larger than any existing collection.

Next, we look at other properties. Through an external ambiguity detection
algorithm [1], we analyzed the GREs. In Table 3, the ambiguous row counts
the number of ambiguous GREs, with the rather surprising result that 59%
unbalanced and 67% balanced GREs are ambiguous. Of course, having a large
percentage of ambiguous REs was very desirable for evaluating the parsers.

In each collection, we also checked the presence of GREs defining the same
language, and we found almost none of them. A plausible explanation is that the

A Benchmark Production Tool for Regular Expressions 105

Table 3. Benchmark for the performance evaluation of RE parsing algorithms.

Applies to Benchmark feature Collection 1 Collection 2

Generated
regular
expression
(GRE)

Balancing Unbalanced Balanced

Total number of GREs 1, 000 1, 000

N. of groups of GREs 10 10

N. of ambiguous GREs 596 677

N. of weakly equiv. GREs 6 2

N. of overlapping GREs 544 666

N. of discarded GREs 0 486

Total GRE length 125, 165 char 154, 436 char

Gen. text (GT) Number of texts 99, 730 99, 820

Total GT length 45, 081, 981 char 45, 155, 166 char

GRE+GT CPU generation time 33 s 37 s

generated corpus, though large, is very small compared to the huge generation
space, so that the generation algorithms effectively produce random GREs. On
the other hand, the number of GREs that define non-disjoint languages is much
higher: 54% unbalanced and 66% balanced GREs define a language that overlaps
the language of another GRE in the same collection.

In the row discarded, the unbalanced generator always ends successfully,
whereas the balanced one creates 49% GREs that fail to have the required
frontier length ϕ. This is plausibly due to the length constraint imposed by
Proposition 1 for a given depth. This notwithstanding, collection generation is
fast (see below). Then, we comment the results for GTs. We wanted to plot the
execution times of different parsing algorithms on texts of length in 1 . . . 100.
Moreover, to improve measurement accuracy, the number of GTs in each length
class must be uniform and sufficiently large. Initially, this was problematic, since
the density function [8] of regular languages for most GREs is a high-order poly-
nomial or exponential. Therefore, for a given GRE, the population of shorter
GTs was often scarce. To increase the number of short texts, we gathered the
GTs of identical length coming from different GREs present in the benchmark,
thus obtaining an adequate and uniform number of GTs for all the lengths.

REgen is fast enough for a practical use. Table 3 reports the CPU time1 to
generate the benchmark, including both GREs and GTs, but excluding the time
for testing GRE ambiguity and language disjointness, performed off-line.

Based on such an experience, we anticipate that it will be easier and faster
to generate customized benchmarks for RE applications more specialized than
RE parsing. For instance, REs for text or pattern searching are typically simpler
and have a low nesting operator degree, in particular for repetition operators.

1 On an AMD Athlon dual-core processor with 2.00 GB RAM and 2.20 GHz clock.

106 A. Borsotti et al.

5 Conclusion

Since no previous work on RE generation systems was available, in order to
make a well-thought design of REgen we initially considered a wide range of
RE parameters. Then, we experimented with tool prototypes for different input
parameters, and we compared the generation times and the sensitivity of the
generated GRE corpus to various parameters. Eventually, we selected the param-
eters listed in this paper. With such a selection, REgen is capable of producing
a satisfactory variety of GREs, and is fast. Yet the current choice is by no means
final, and further experience will be important. We hope that this tool and the
benchmark will serve the scientific and technical communities.

Future Developments. The percentage of ambiguous GREs in the benchmark
is likely to be significant for some RE SW, such as those for searching, but
currently it is not an input parameter to REgen. To add it to the parameters,
we need to study how to efficiently incorporate an ambiguity test, such as [6],
into the RE generator. A different possibility would be to incorporate an NFA
generation algorithm (see [4] and its references) into REgen, and then to compute
one or more REs for the language recognized. At last, a promising parameter for
a future investigation is the RE density function [8]. By using the formal results
in that paper, one might engineer a generator to produce GREs with specified
density functions, say, polynomial. Yet the interplay between GRE density and
ambiguity remains to be clarified: in our setting, it seems more appropriate to
define for an RE a density function representing, for any length value, the number
of syntax trees, instead of the number of texts as done in [8].

References

1. Borsotti, A., Breveglieri, L., Crespi Reghizzi, S., Morzenti, A.: From ambiguous
regular expressions to deterministic parsing automata. In: Drewes, F. (ed.) CIAA
2015. LNCS, vol. 9223, pp. 35–48. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22360-5 4

2. Câmpeanu, C., Salomaa, K., Yu, S.: Regex and extended regex. In: Champarnaud,
J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 77–84. Springer, Heidel-
berg (2003). https://doi.org/10.1007/3-540-44977-9 7

3. Celentano, A., Crespi Reghizzi, S., Della Vigna, P., Ghezzi, C., Granata, G.,
Savoretti, F.: Compiler testing using a sentence generator. Softw. Pract. Exp. 10,
897–918 (1980). https://doi.org/10.1002/spe.4380101104

4. Héam, P.-C., Joly, J.-L.: On the uniform random generation of non deterministic
automata up to isomorphism. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 12

5. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In:
Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol.
3317, pp. 2–22. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30500-2 2

6. Sulzmann, M., Lu, K.Z.M.: Derivative-based diagnosis of regular expression ambi-
guity. Int. J. Found. Comput. Sci. 28(5), 543–562 (2017)

https://doi.org/10.1007/978-3-319-22360-5_4
https://doi.org/10.1007/978-3-319-22360-5_4
https://doi.org/10.1007/3-540-44977-9_7
https://doi.org/10.1002/spe.4380101104
https://doi.org/10.1007/978-3-319-22360-5_12
https://doi.org/10.1007/978-3-540-30500-2_2
https://doi.org/10.1007/978-3-540-30500-2_2

A Benchmark Production Tool for Regular Expressions 107

7. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley, Boston (2007)

8. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with
polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 494–503. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55808-
X 48

https://doi.org/10.1007/3-540-55808-X_48
https://doi.org/10.1007/3-540-55808-X_48

	A Benchmark Production Tool for Regular Expressions
	1 Introduction
	2 Basic Definitions
	3 The RE Generator
	3.1 Benchmark Production

	4 Experimental Results
	5 Conclusion
	References

