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Abstract. Graph-walking automata are finite automata walking on
graphs given as an input; tree-walking automata and two-way finite
automata are their well-known special cases. Graph-walking automata
can be regarded both as a model of navigation in an unknown environ-
ment, and as a generic computing device, with the graph as the model of
its memory. This paper presents the known results on these automata,
ranging from their limitations in traversing graphs, studied already in
the 1970s, to the recent work on the logical reversibility of their compu-
tations.

1 Introduction

A graph-walking automaton (GWA) walks over a given graph by moving from
one node to another along the edges. It is equipped with finite memory, and at
each step it uses its current state and the label of the current node to determine
its action, that is, which edge to follow and which new state to enter.

A natural prototype for a graph-walking automaton is a robot exploring an
unknown environment using limited internal memory and leaving no marks in
the environment. A typical task is to traverse the entire graph, for instance, in
search for a specially marked node. The most famous example of this task is
found in the classical Greek myth about Theseus traversing the Labyrinth and
slaying the Minotaur therein.

To be exact, Theseus is faced with three consecutive tasks: first, finding the
Minotaur in the Labyrinth; second, slaying him; and third, finding the way out.
As the myth is usually told, the main difficulty was to find the way out of the
Labyrinth, once the Minotaur is slain. However, as illustrated in Fig. 1, Theseus
was fortunate to be helped by Ariadne, whose thread allowed him to return to
the gate of the Labyrinth in time O(n). Even though the myth does not explain
how Theseus found the Minotaur, it is not difficult to see that even Ariadne’s
thread alone is sufficient to traverse the entire graph by using an inefficient form
of depth-first search.
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v0

Fig. 1. Theseus searching for the Minotaur in a graph with the help of Ariadne’s
thread.

If Theseus were to accomplish his task with no Ariadne to guide him, he
would act as a graph-walking automaton. In this case, already the problem
of finding the Minotaur would present a substantial difficulty. This problem,
in general, amounts to traversing the entire graph. The question of whether
there exists a finite automaton that can traverse any given undirected graph by
following its edges was reportedly first proposed by Michael Rabin: in his 1967
public lecture, he conjectured that this is impossible [12]. The conjecture was
confirmed by Budach [9], who proved that for every graph-walking automaton
there is a planar graph that it cannot fully traverse. In other words, there is a
maze, in which Theseus, without Ariadne, would not even find the Minotaur.

This result by no means contradicts the assumptions made by the Ancient
Greeks. Indeed, Theseus had to traverse one particular maze—the Cretan
Labyrinth—which was apparently constructed in the way that reaching the
Minotaur from the gate was easy, whereas finding the way back was hard. This
suggests the following formal representation of the task faced by Theseus if Ari-
adne turns her back on him: on his own, he begins at the gate to the Labyrinth
(the initial node v0) and, acting as a graph-walking automaton, presumably finds
the Minotaur; then, can he return to v0 while still acting as a graph-walking
automaton? Unexpectedly, there is a positive solution to this problem: if there
exists a graph-walking automaton that leads Theseus from the Labyrinth gate to
the Minotaur, then there is also a graph-walking automaton that leads him back
to the gate; this was established by Kunc and Okhotin [19], based on a general
idea discovered of Sipser [28]. Roughly speaking, the resulting graph-walking
automaton backtracks all possible paths that lead to the Minotaur according to
the method employed by Theseus.

Besides the direct interpretation of graph traversal as motion in a discrete
environment, graph-walking automata also serve as a model of computation.
Two simple cases of graph-walking automata are well-known in the literature.
First, there are the two-way deterministic finite automata (2DFA), which tra-
verse a given input string as a graph that consists of a single path; they are
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Fig. 2. Memory configurations of a Turing machine modelled by a graph.

notable for being equivalent to one-way finite automata [15,26], as well as for
having a nondeterministic variant that can be determinized, with important
complexity issues surrounding the complexity of determinization [16]. The other
model are the tree-walking automata (TWA), which traverse trees in the same
sense as do the graph-walking automata: in contrast to the case of 2DFA, these
automata are weaker in power than the “one-way” (bottom-up or top-down) tree
automata [8], and their nondeterministic variant is strictly more powerful than
the deterministic case [7].

Many other models of computation can be represented as graph-walking
automata. The graph represents the memory of a machine: nodes are mem-
ory configurations, and edges are elementary operations on the memory. This
graph is implicitly constructed for every input object, and then the computation
of the machine is interpreted as a walk over this graph. For example, for a Tur-
ing machine, nodes correspond to different head positions and tape contents, as
illustrated in Fig. 2. If a Turing machine has bac on the tape, with the head at
a in a state q, and if it executes a stationary transition that rewrites a with a′

and enters a state q′, this corresponds to a GWA at v1 in the state q, moving to
v2 in the state q′.

This way, many general ideas on computation, such as nondeterminism,
reversibility, halting, probabilistic computation, etc., which are defined for var-
ious models of computation, admit a unified representation in terms of graph-
walking automata. Many standard research problems, such as the complexity
of testing membership and emptiness, closure properties and state complexity,
can also be represented and studied for graph-walking automata. The particular
models of computation can then be regarded as families of input graphs, poten-
tially reducing the difference between the models to graph-theoretic properties.
This view of graph-walking automata as a powerful general model in automata
theory further motivates their study.

This paper gives a brief overview of the graph-walking automaton model.
The overview begins with the basic definitions: graphs traversed by automata are



Graph-Walking Automata 13

–1+1 +1–1
a1 +1 1+1– –1

1+10 2
a2 a. . .

Fig. 3. A string w = a1a2 . . . a� with end-markers, represented as a graph with V =
{0, 1, 2, . . . , �, � + 1}.

defined in Sect. 2, followed by a definition of graph-walking automata in Sect. 3;
justifications for various details of the definitions are provided. Section 4 presents
the most well-known result in the area, that there is no graph-walking automaton
that can traverse every graph—that is, that Theseus, without Ariadne’s thread,
would not find the Minotaur in the Labyrinth. The fundamental construction of
a graph-walking automaton that simulates the computations of another graph-
walking automaton backwards is explained in Sect. 5; by this result, if Theseus
finds the Minotaur, then he can find his way back by tracing back his footsteps.
The next Sect. 6 describes the applications of this construction to reversible
computing: every graph-walking automaton can be transformed to a reversible
graph-walking automaton that accepts the same set of finite graphs. Using this
result, the closure of graph-walking automata under Boolean operations is estab-
lished in Sect. 7. Section 8 defines the basic decision problems for graph-walking
automata. Possible variants of the graph-walking automaton model are discussed
in Sect. 9, whereas algorithms for graph exploration based on other models are
briefly mentioned in Sect. 10. The last Sect. 11 suggests some directions for the
future study of graph-walking automata.

2 Graphs

A definition of graph-walking automata naturally begins with the form of the
graphs on which they walk. There are quite a few details to be fixed: are graphs
directed or undirected? finite or infinite? is the initial node specifically marked
or not? is the degree of nodes bounded or unbounded? what kind of labels are
there to guide the automaton?

Different choices lead to different models, and perhaps, once the theory of
graph-walking automata reaches maturity, the difference between the resulting
models shall be formally investigated. In the definitions given in the literature,
the details were chosen to fit the motivating applications, such as exploring an
unknown environment, and representing models of computations in a unified
setting.

The relation to other models of computations begins with the simplest case
of graph-walking automata: the deterministic two-way finite automata (2DFA),
A string, as it is processed by a 2DFA, is the simplest case of a graph. This is
a finite connected undirected graph, with its nodes corresponding to positions
in the string, and accordingly labelled with input symbols and end-markers (�,
�). The nodes are connected into a chain, as illustrated in Fig. 3. As per the
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standard definition of a 2DFA, the automaton moves between the nodes in the
directions −1 and +1, which are assigned to end-points of edges.

The origins and applications of the graph-walking models researched so far
lead to the following choices in the basic definitions.

Graphs are undirected, and every edge can be traversed in both directions. This
is a natural assumption under the maze-walking interpretation, where one can
always retract the last step. If a graph is taken as a model of a memory, this
means that every modification of the memory carried out in a single opera-
tion can always be reversed by applying another single operation. In particular,
there cannot be a “global reset” operator that erases an unbounded amount of
information.

Graphs may, in theory, be infinite, although an accepting computation of a
graph-walking automaton still must be a finite walk over the input graph. This
corresponds to the intuition of traversing a maze, which may be infinite, yet
Theseus has to slay only one Minotaur and get back within a finite time. This also
fits the definition of classical computation: for instance, even though a Turing
machine is equipped with unbounded memory, it must terminate in finitely many
steps in order to accept.

However, dealing with infinite graphs in graph-walking automata is usually
difficult, and, in particular, all results presented in this paper hold only for finite
graphs.

The initial node is specifically marked, that is, upon entering a node, the automa-
ton knows whether it is initial or not. Over this point, there is a certain discrep-
ancy between different applications. On the one hand, the initial node is the gate
to the Labyrinth, where Theseus begins his journey, and where to he expects to
get back after slaying the Minotaur: of course, upon visiting a node, it should
be immediately visible whether it is the gate.

On the other hand, a marked initial node in a computing device means that
the machine always knows whether its memory is in the initial configuration. This
holds for simpler kinds of automata, such as 2DFA, which can see whether their
heads are in the initial position. However, for a Turing machine, this means that
at any moment it should know whether its entire work-tape is clear; in practice,
this would require re-scanning the tape.

Some of the existing results on graph-walking automata assume graphs with
a marked initial node, and some results refer to the case of an unmarked initial
node.

The degree of nodes is bounded by a constant. Furthermore, the end-points of
edges meeting at each node are labelled with different directions from a fixed
finite set D. This is necessary for an automaton to distinguish between these
edges, and to be able to proceed in each available direction.

In a maze, this means that a bounded number of corridors meet at every
junction, and that each outgoing corridor has a unique label. For a computing
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device, directions are elementary operations on the memory, and following an
edge means applying that operation.

In order to handle graphs of unbounded degree, nodes of higher degrees can
be split into subgraphs, and so this restiction is actually inessential.

Nodes are labelled, and so are the end-points of edges. Node labels are analogous
to symbols in a string, and the set of possible labels is accordingly denoted by Σ.
At every moment of its computation, a graph-walking automaton can observe
only the label of the current node v, denoted by a = λ(v). Furthermore, the label
of a node determines the set of directions available in that node, denoted by Da,
with Da ⊆ D, Knowing this label and using its internal state, the automaton
decides, in which direction from Da to proceed, and which state to enter.

In a string, there are two directions: to the previous symbol (−1) and to
the next symbol (+1), with D = {−1,+1}. It is essential that moving to the
direction +1 and then to the direction −1 always leads back to the same symbol:
that is, +1 and −1 are opposite directions. In the general case of graphs, every
direction d in D must have an opposite direction −d ∈ D, defined by a bijective
operator − : D → D.

With the above details fixed, graphs processed by a graph-walking automaton are
defined over a signature, which includes a set of directions, a set of node labels,
and a set of available directions for each node label, as well as identifies the labels
for the initial node. A signature is generalization of an alphabet for the case of
graphs.

Definition 1 (Kunc and Okhotin [19]). A signature is a quintuple S =
(D,−, Σ,Σ0, 〈Da〉a∈Σ), where

– D is a finite set of directions, that is, labels at the end-points of edges;
– − : D → D is a bijective operator that defines the opposite direction, it

satisfies −(−d) = d for all d ∈ D;
– Σ is a finite set of node labels;
– Σ0 ⊆ Σ is a non-empty subset of labels allowed in the initial node, whereas

all other nodes have to be labelled with elements of Σ \ Σ0;
– each Da ⊆ D, with a ∈ Σ, is the set of directions avaliable in all nodes

labelled with a, so that every such node must have degree |Da|, with the
incident edges corresponding to the elements of Da.

Graphs over a signature S are undirected labelled graphs defined as follows.

Definition 2 (Kunc and Okhotin [19]). A graph over a signature S =
(D,−, Σ,Σ0, 〈Da〉a∈Σ) is a quadruple (V, v0,+, λ), where

– V is a set of nodes;
– v0 ∈ V is the initial node;
– λ : V → Σ is a function assigning a label to each node v ∈ V , so that the

label λ(v) is in Σ0 if and only if v = v0;
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– +: V ×D → V is a function representing the edges of the graph: it is defined
in each node v ∈ V and for each direction d ∈ Dλ(v) applicable in that node,
so that the neighbour of v in the direction d is denoted by v + d.
The neighbour of v in the direction −d is accordingly defined by v − d. The
graph must satisfy the condition (v+d)−d = v, for all v ∈ V and d ∈ Dλ(v).
In particular, Dλ(v+d) must have the direction −d.

A graph with an unmarked initial node is defined in the same way, but with no
special label for v0: every node v ∈ V must have λ(v) /∈ Σ0.

Example 1. Strings over an alphabet Γ delimited by left and right end-markers
(�, �) are represented as graphs over a signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ)
with directions D = {+1,−1}, where −(+1) = −1, and with node labels Σ =
Γ ∪ {�,�}. The only initial label is the left end-marker: Σ0 = {�}. The set of
directions at each input symbol a ∈ Γ is Da = {+1,−1}. Only one direction
available at each end-marker: D� = {+1}, D� = {−1}.

Every connected graph over the signature S is a labelled path graph of the
form depicted in Fig. 3. It corresponds to a string over Γ .

3 Automata

Definition 3 (Kunc and Okhotin [19]). A deterministic graph-walking auto-
maton over a signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ) is a quadruple A =
(S, Q, q0, δ, F ), in which

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q × Σ is a set of acceptance conditions;
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all a and q where it is defined.

The automaton gets a graph (V, v0,+, λ) over the signature S as an input.
At each point of its computation, the automaton is at a node v ∈ V in a state
q ∈ Q; the pair (q, v) is known as the automaton’s configuration. The initial
configuration is (q0, v0), that is, the automaton begins at the initial node in its
initial state. At each step of the computation, while in a configuration (q, v),
the automaton observes the symbol λ(v) and evaluates its transition function on
δ(q, λ(v)). There are three possibilities.

– If this value is defined, let δ(q, λ(v)) = (q′, d). Then the automaton moves
in the direction d and enters the state q′, so that the next configuration is
(q′, v + d).

– If δ is undefined on (q, λ(v)), then the automaton halts. If (q, λ(v)) ∈ F , it
accepts the input graph, and if (q, λ(v)) /∈ F , it rejects.

The computation on a given graph is uniquely defined, and it can either be
infinite, or accepting, or rejecting. The set of graphs recognized by the automaton
A consists of all graphs over the signature S on which it halts and accepts.
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Example 2. Let S = (D,−, Σ,Σ0, 〈Da〉a∈Σ) be a signature for strings over an
alphabet Γ represented as graphs, as defined in Example 1. A graph-walking
automaton over this signature is a deterministic two-way finite automaton
(2DFA).

Another well-known special case of graph-walking automata are the tree-
walking automata operating on trees of a bounded degree. This model was first
defined by Aho and Ullman [1, Sect. VI], and later Bojańczyk and Colcombet [7,
8] showed that these automata are weaker than bottom-up and top-down tree
automata, and that their nondeterministic variant cannot be determinized. Since
a string is a special case of a tree with out-degree 1, the signature for trees
processed by these automata generalizes the one from Example 1 by providing
additional directions.

Example 3. Trees of degree k with nodes labelled by symbols from a set Γ are
defined over a signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ), with the set of directions
D = {+1, . . . ,+k,−1, . . . ,−k}, where each direction +i means going down to
the i-th successor, whereas −i points from the i-th successor to its predecessor.
The directions +i and −i are opposite: −(+i) = −i.

Nodes are labelled with the symbols from a set Σ = {
,⊥1, . . . ,⊥k} ∪ (Γ ×
{1, . . . , k}). The root node v0 is labelled by the top marker (
), with D� = {+1}
and Σ0 = {
}. Each i-th bottom marker (⊥i) has D⊥i

= {−i}, and serves as a
label for leaves. Internal nodes are labelled with elements of Γ × {1, . . . , k}, so
that a label (a, i), with a ∈ Γ and i ∈ {1, . . . , k}, indicates a node containing
a symbol a, which is the i-th successor of its predecessor; the set of available
directions is D(a,i) = {−i,+1, . . . ,+k}.

Connected graphs over this signature are exactly the k-ary trees augmented
with a top marker and with bottom markers.

4 To Find the Minotaur

In terms of graph-walking automata, the problem of maze exploration is repre-
sented as follows. In the signature, the alphabet Σ contains two special labels,
one marking the initial node, and the other marking the location of the Minotaur.
A graph-walking automaton has to test whether the given Labyrinth contains
at least one Minotaur, as illustrated in Fig. 4.

This problem is often stated for graphs with an unmarked initial node: in
other words, Theseus appears in the middle of the Labyrinth and has to test
whether there is at least one Minotaur in the Labyrinth. In this setting, there is
the following well-known result.

Theorem 1 (Budach [9]). There exists a signature S, such that for every
graph-walking automaton A over S there is a planar graph G over S, with an
unmarked initial node, such that the computation of A of G does not visit one
of its nodes.
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Fig. 4. Theseus using finite memory and node and edge labels to search for the Mino-
taur without Ariadne’s thread.

The original proof of this result was very sophisticated. Later, the following
short and clear proof was discovered.

Lemma 1 (Fraigniaud et al. [12]). For every d � 3, let the signature Sd =
(D,−, Σ,Σ0, 〈Da〉a∈Σ) have D = {1, . . . , d}, with −i = i for all i ∈ D, Σ = {a},
Σ0 = ∅ and Da = D. Then, for every n-state graph-walking automaton A over
S there is a planar connected graph G = (V, v0,+, λ) over S with unmarked
initial node and with |V | � n + d + 3, on which A does not visit all nodes.

Proof (a sketch). Since Σ = {a}, all nodes of the graph appear identical, and
the automaton’s transitions by a induce a sequence of states q0, q1, . . ., and a
sequence of directions d1, d2, . . ., with δ(qi, a) = (qi+1, di+1). The sequence of
states is periodic with some period p, with p ∈ {1, . . . , n}, so that qi+p = qi for
all i � n − 1. Therefore, the sequence of directions has the same period.

At first, it is convenient to assume that the automaton operates on an infinite
tree. Then, the periodic part of the sequence of directions can either drive the
automaton into a cycle, or set it into periodic motion leading away from the
initial node. In the former case, the automaton actually visits only finitely many
nodes of the tree; it is sufficient to take the resulting subtree with one extra
node, and to reconnect the unused edges between these nodes.

In case the automaton moves away along a periodic sequence of directions,
the general idea is to merge two nodes of the infinite tree that are visited in
the same state, thus effectively replacing this tree with a finite “trap”, on which
the automaton follows the same periodic trajectory. Consider the example in
Fig. 5(top), where the sequence of directions is a(bccabacab)ω, with the same
state q visited after each prefix in a(bccabacab)∗. The periodic part contains a
detour cc, and with this detour omitted, it takes the form babacab. Let periodic
part of the sequence, with all detours removed, be of the form αβαR, where
α, β ∈ D∗ and αR denotes the reversal of α: in Fig. 5(top), α = ba and β = bac.
The plan is to join the nodes on the border of β, so that the periodic part visits
α twice. The resulting trap is given in Fig. 5(bottom left).

It remains to add one extra node and fill in the missing nodes, as done in
Fig. 5(bottom right).
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Fig. 5. Construction of a trap in the proof of Lemma 1: (top) A periodic sequence on
an infinite tree; (bottom left) A trap constructed by merging two nodes in the periodic
part; (bottom right) The trap with an unreachable node and all missing transitions
added.

The full proof has several complicated cases, such as the case when the peri-
odic part with detours removed is an odd palindrome. However, all cases are
handled by a similar, yet more sophisticated construction, with the periodic
computation condensed into looping in a finite trap. �

The above proof does not directly apply to the case of graph-walking
automata with a marked initial node, because every appearance of v0 in var-
ious places of the sequence disrupts the argument. One can likely work around
these issues by an extensive case analysis. A concise new proof of this result for
the marked case has been found by Martynova [22], and shall be published in
due time.

Since the problem of graph exploration is an important algorithmic prob-
lem, if graph-walking automata cannot handle it in general, then the question
is, which models can? For instance, if graph-walking automata were equipped
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with finitely many pebbles that can be dropped at any nodes and later picked
up, then could there exist an automaton of this kind that can traverse every
maze? The answer is again negative; as shown by Rollik [27], even a team of
communicating automata cannot traverse all graphs (a team may be regarded as
a single automaton equipped with multiple heads: at every moment each head is
stationed at some node, and the automaton observes the symbols in those nodes,
as well as senses whether any heads share the same position).

An interesting special case studied in the literature is the case of embedded
plane graphs, with all edges going either from north to south or from east to
west, and with the automaton being aware of the direction of each edge. As
proved by Blum and Kozen [6], there is a graph-walking automaton equipped
with two pebbles that can walk through every such maze.

5 Tracing Back the Footsteps

Several results on graph-walking automata are based on the same common con-
struction of an automaton that traces back all computations of a given automa-
ton that lead to a particular configuration.

TO THE

MINOTAUR

TO THEMINOTAUR

TO
 TH

E

M
IN

O
TA

Suppose Theseus stands over the
fresh corpse of the Minotaur, remem-
bering nothing besides the finite-
state transition rules he has followed
to reach this place. Can he trace
back his own footsteps and find the
exit? This is not obvious at all:
for instance, if every node in the
Labyrinth is equipped with a plaque
“to the Minotaur” pointing to the
most suitable edge, then the Minotaur can be found using a one-state tran-
sition table. However, such plaques would not help getting back: as illustrated
in the picture, Theseus would not even know the penultimate node on his path
to the Minotaur.

Nevertheless, the answer to the question is positive, and Theseus can always
find the way back by tracing back all the paths that would lead him to the
Minotaur according to his own transition rules. This is done using the general
idea of backtracking the tree of accepting computations, discovered by Sipser [28]
in his study of halting space-bounded computations. This idea has been reused
many times: for instance, Lange et al. [21] applied it in their proof of the equiv-
alence of deterministic space O(s(�)) to reversible space O(s(�)). Kondacs and
Watrous [17] have improved the details of Sipser’s construction, leading to a
simulation of an n-state 1DFA by a reversible 2DFA with as few as 2n states.
Geffert et al. [14], Muscholl et al. [24] and Morita [23] used the same idea to pro-
duce similar constructions for various automaton models, with various degree of
efficiency.
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Actually, this construction applies to particular automaton models so easily,
for the reason that it is correct in the general case of graph-walking automata—
and therefore it holds true for their particular cases, such as all automaton
models to which it was previously applied.

In order to define the construction for tracing back the footsteps of a graph-
walking automaton, the following property of automata turns out to be useful.
A GWA is said to be direction-determinate, if it always remembers the direction,
in which it came to the current node.

Definition 4. A graph-walking automaton A = (S, Q, q0, δ, F ) over a signature
S = (D,−, Σ,Σ0, 〈Da〉a∈Σ), is direction-determinate, if, for some partial func-
tion d : Q → D, whenever a transition δ(p, a) leads the automaton to a state q,
it must move in the direction d(q).

Then, for each a ∈ Σ, the transitions by a are defined by a partial function
δa : Q → Q, with δ(p, a) = (q, d(q)), where q = δa(p).

Every graph-walking automaton with a set of states Q can be transformed to
a direction-determinate automaton with the set of states Q × D, which simply
remembers the last direction it has taken in the second component of its state,
without ever using this information.

Lemma 2 (Kunc and Okhotin [19]). For every direction-determinate graph-
walking automaton A = (S, Q, q0, δ, F ), there exists an automaton over the same
signature S and with the set of states

−→
Q ∪ [Q], where

−→
Q = {−→q | q ∈ Q } and

[Q] = { [q] | q ∈ Q }, which, on any finite graph, backtracks all computations
of A leading to any accepting configuration (q̂, v̂), with (q̂, λ(v̂)) ∈ F , in the
following sense: if B begins its computation in the configuration ([q̂], v̂ − d(q̂)),
then it passes through all such configurations ([q], v), that the computation of A
beginning in (q, v + d(q)) accepts in the configuration (q̂, v̂).

Proof (a sketch). The automaton B traverses the tree of all computations of A
that terminate in the configuration (q̂, v̂). The construction is based on ordering
the states in Q, which implies an ordering on the branches of the computation
tree. Then, whenever B finds a configuration of A that has some predecessors,
it proceeds with tracing back the least of the computation paths leading to the
current configuration. Once B reaches a configuration of A without predecessors,
it switches to forward simulation, which is carried out in the states

−→
Q . In these

“forward states”, for every configuration of A visited by B, it tries to trace
back the next computation path according to the chosen ordering. If the path
being traced forward is already greater than the other paths meeting at the
present point, then the forward simulation continues. This way, the entire tree
of computations converting in the chosen configuration is eventually traversed.

�
Sipser’s [28] paper actually contains two methods for implementing this kind

of computation tree traversal: his first method involves remembering two states
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–d

v0

q

[q]

dv

v

Fig. 6. Theseus tracing back his path from the gate to the Minotaur: on the way back,
he is in the configuration ([q], v) if, on his way forward, he would reach the Minotaur
from the configuration (q, v + d(q)).

of the original automaton, that is, produces the set of states Q × Q; the sec-
ond method sketched by Sipser [28] requires remembering a state and a symbol,
that is, uses the states Q × Σ. The improvement contributed by Kondacs and
Watrous [17] was to remember a state and one bit, using states Q × {0, 1}. The
construction in Lemma 2 implements the method of Kondacs and Watrous [17]
for graph-walking automata, which seem to be the natural limit of the applica-
bility of this method.

Lemma 2 directly implies the promised result that if Theseus can find the
Minotaur using finite-state transition rules, then he can get back, as illustrated
in Fig. 6. In terms of graph-walking automata, this is formalized as follows.

Definition 5. A graph-walking automaton A = (S, Q, q0, δ, F ) is called return-
ing, if it can accept only at the initial node, that is, F ⊆ Q × Σ0.

Theorem 2 (Kunc and Okhotin [19]). For every n-state graph-walking
automaton A over some signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ), with |D| = d,
there exists a direction-determinate returning graph-walking automaton with 3dn
states that accepts the same set of finite graphs.

Proof (a sketch). The given GWA A is first transformed to a dn-state direction-
determinate GWA B. By Lemma 2, there is a 2dn-state direction-determinate
automaton C that traces back all accepting computations of B. The promised
returning automaton operates as follows: first, it behaves as B until it reaches
an accepting configuration; then, it behaves as C, accepting if it ever encounters
the initial configuration of B, and rejecting if it ever returns to its accepting
configuration.

Remark 1 (Martynova [22]). If the resulting returning graph-walking automaton
is not required to be direction-determinate, then it is sufficient to use only (2d+
1)n states. The new automaton first behaves as A until acceptance, and then
proceeds with simulating C.

The property of being returning is crucial for Theseus, and it can also be use-
ful in other exploration problems. On the other hand, as a property of computing
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devices, it is not always relevant: for instance, if a Turing machine is represented
as a graph-walking automaton, then being returning only means that it always
restores the original contents of its tapes before acceptance.

As it shall now be demonstrated, the construction for tracing back the accept-
ing computations can ensure several important general properties of abstract
machines.

6 Reversible Computation

Reversibility is a stronger form of determinism: a deterministic machine is
reversible, if its computations are also backward deterministic, that is, given
its current configuration, its configuration at the previous step can always be
uniquely determined. This is an interesting theoretical notion.

Furthermore, reversibility of computations is important from the point of
view of the physics of computation [5]: according to Landauer’s principle [20], a
logically irreversible erasing of one bit of information incurs dissipation of kT ln 2
joules of energy, where k is the Boltzmann constant and T is the temperature.
Reversible computing, in theory, can avoid this effect. Furthermore, since the
laws of quantum mechanics are reversible, reversible computing is the basic case
of quantum computing. These applications further motivate theoretical studies
on reversible computation.

In automata theory, Kondacs and Watrous [17] showed that reversible 2DFA
can recognize every regular language, whereas reversible 1DFA, as well as one-
way quantum automata (1QFA) recognize a proper subset of regular languages.
Every Turing machine can be simulated by a reversible Turing machine [5]. Lange
et al. [21] proved that the class of sets recognized by reversible Turing machines
in space O(s(n)), denoted by RSPACE(s(n)), is equal to DSPACE(s(n)). This
was done by applying Sipser’s [28] method for tracing back accepting computa-
tions. The same method was used a few times for different automaton models,
showing that their reversible subclass is as powerful as the full deterministic
class. This general argument again works for graph-walking automata, and can
be established in a clearer form for this model.

Definition 6 (Kunc and Okhotin [19]). A graph-walking automaton A =
(S, Q, q0, δ, F ) is called reversible, if it is direction-determinate and returning,
every partial transformation δa is injective, and for each initial label a0 ∈ Σ0,
there is at most one state q with (q, a0) ∈ F .

To put it simple, reversibility means that every computation can equally
be executed backwards. In particular, given a finite graph with λ(v0) = a0,
which can only be accepted in the configuration (q, v0), one can proceed with
backtracking a potential accepting computation beginning in this configuration.
Since all partial transformations are injective, the predecessor configuration shall
always be uniquely defined, until one of the following two outcomes: either the
simulation backtracks to the initial configuration (q0, v0), or an unreachable con-
figuration is reached. In the latter case, the automaton rejects this graph.
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The automaton constructed in Lemma 2 is actually reversible.
There is also a notion of a strongly reversible graph-walking automaton, sat-

isfying some further requirements: in particular, if a graph is rejected, then it
can be rejected only in the initial node, in a particular configuration (qrej , v0);
furthermore, all transformations δa with a /∈ Σ0 must be bijective. As long as
the input graph is finite, this forces the automaton to halt on every input in one
of the two predetermined configurations at the initial node.

Theorem 3 (Kunc and Okhotin [19]). For every n-state direction-
determinate returning graph-walking automaton, there exists a strongly reversible
graph-walking automaton with 2n + 1 states recognizing the same set of finite
graphs.

Proof (a sketch). First, Lemma 2 is applied to the given returning automaton
A. The resulting automaton is augmented with a new initial state, in which it
initiates tracing back the computations of A leading to its accepting configura-
tion (owing to the fact that all accepting configurations of A are at the initial
node). �
Corollary 1. For every n-state graph-walking automaton over a signature with
d directions, there is a strongly reversible automaton with 6dn + 1 states that
recognizes the same set of finite graphs.

The notion of a reversible automaton applies to infinite graphs as well. Unfor-
tunately, the above construction of a reversible automaton is apparently useless
in that case. Indeed, on an infinite graph, the constructed reversible GWA may,
and typically will, immediately rush away from the initial node along an infinite
path, perfectly reversibly and perfectly uselessly.

7 Closure Properties and State Complexity

In the case of string languages, a plenty of regularity-preserving operations are
known. The study of how they affect the number of states in finite automata is
known as the state complexity. The state complexity of all reasonable operations
on 1DFA and 1NFA is known perfectly well. For unambiguous automata (1UFA)
and for two-way automata (2DFA, 2NFA), there are only partial results, and
many interesting problems are still open.

Closure properties of graph-walking automata are a new subject, and, at
the moment, there are hardly any operations to be studied besides the Boolean
operations. The existing results on graph-walking automata easily imply their
closure under all Boolean operations.

Theorem 4. Let A and B be two graph-walking automata, with m and n states,
respectively, defined over the same signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ) with
|D| = d. Then, there exist:

1. a graph-walking automaton C with 6 dm + n + 1 states that accepts a finite
graph if and only if it is in the union L(A) ∪ L(B);
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2. a graph-walking automaton D with (2d+1)m+n states that accepts a finite
graph if and only if it is in the intersection L(A) ∩ L(B);

3. a graph-walking automaton E with 6dm+1 states that accepts a finite graph
if and only if it is in the complement L(A).

Proof (a sketch). (Union) To begin with, the first automaton A is made strongly
reversible, so that it halts on every input at the initial node. Then the automaton
C for the union simulates the A, and accepts if it accepts, or proceeds with
simulating B if it rejects.

(Intersection) By Theorem 2 and Remark 1, the first automaton is made
returning. The automaton D first simulates it until it returns and is about to
accept; if this happens, then it turns to simulating B.

(Complementation) It is sufficient to make the automaton strongly reversible,
and then exchange the acceptance and rejection decisions. �

8 Decision Problems

The most commonly studied decision problems on automata include the member-
ship problem (whether a given automaton accepts a given input); the emptiness
problem (whether a given automaton accepts any input); the universality prob-
lem (whether a given automaton accepts every input); the equivalence problem
(whether two given automata accept exactly the same inputs); and the inclusion
problem (whether every input accepted by the first of the two given automata is
accepted by the other). In each case, the “input” is taken to be any graph over
the same signature as the automaton.

The membership problem for graph-walking automata is obviously decidable
in time O(mn), where n is the size of the automaton and m is the size of the
input. One simply has to run the automaton until it accepts or rejects, or until
mn steps have been made, after which it can be pronounced looped.

The rest of the problems (emptiness, universality, equivalence, inclusion) are
reducible to each other in view of the closure under all Boolean operations.
Whether these problems are decidable, remains unknown. If “emptiness” is inter-
preted as the existence of a graph accepted by the automaton that belongs to
a certain family, then, for certain families of graphs, such as for all grids, the
problem becomes undecidable [29]. However, since a graph-walking automaton
cannot ensure that a given graph is a grid, this undecidability is hardly relevant
to the properties of automata. For the emptiness problem in the form “does
there exist any graph over the signature that is accepted by the automaton?”,
it is unknown whether it is decidable or not.

In the special cases of 2DFA and TWA, the same problems are well-known
to be decidable, One way of showing this for 2DFA is to define the behaviour
function of the given automaton on substrings, which specifies the outcome of a
computation entering a substring from the left or from the right in every possible
state. Since there are finitely many such functions, one can determine the set of
functions that are actually implemented on some substring. This is sufficient to
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decide whether any string is accepted. For TWA over k-ary trees, the algorithm
is the same, using subtrees instead of substrings, and dealing with computations
enterable from k + 1 different sides. Here the number of behaviour functions is
still finite, leading to the same enumeration of functions implemented on some
trees.

The problem with graphs is that, for graphs of an unrestricted form, it seems
impossible to have an upper bound on the number of entry points to subgraphs.
Then, a full enumeration of implementable behaviour functions cannot be done,
and the argument breaks down.

9 Variants of Graph-Walking Automata

This paper concentrates on one particular kind of graph-walking automata, as
explained and justified in Sects. 2 and 3. What kind of other related models could
be considered?

First, one can consider different definitions of graphs. Graphs may be directed,
in the sense that some edges can be passed only in one direction. An example
of a GWA operating on a directed graph is a 1DFA, in which the graph is a
directed chain. Could any interesting results be obtained along these lines?

The case of infinite graphs is definitely interesting, yet all the constructions
presented in this paper are valid only for finite graphs. Some new ideas are
needed to handle the infinite case.

The case of an unmarked initial node does not look much different from the
marked case. However, all results related to reversibility rely on the initial node’s
being marked. It remains to investigate whether this is really essential or not.

Leaving the form of the graphs alone, it is interesting to consider the stan-
dard modes of computation for graph-walking automata. Most models of com-
putations, from one-way finite automata to Turing machines, have all kinds of
variants: reversible, deterministic, nondeterministic, unambiguous, probabilis-
tic, alternating, etc. These definitions apply to graph-walking automata as well.
What kind of results could one expect?

As proved by Bojańczyk and Colcombet [7], nondeterministic tree-walking
automata cannot be determinized, and so this holds for graph-walking automata
in general. However, graph-walking automata over some signatures can be deter-
minized, and, for instance, it would be interesting to characterize those signa-
tures. The unambiguous mode of computation is yet to be investigated even for
the tree-walking automata.

A kind of one-way model for graphs, the tilings on a graph, was considered
by Thomas [29]. A tiling assigns labels to all nodes of the graph, so that the
labellings of all small subgraphs satisfy certain given conditions. A deterministic
graph-walking automaton, and even a nondeterministic one, can be simulated
by a tiling. In the case of trees, tilings are bottom-up tree automata, and, by
the result of Bojańczyk and Colcombet [7], tree-walking automata are weaker
than tilings. This extends to graph-walking automata, yet some special cases are
worth being considered.
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10 Graph Exploration Algorithms

Since there is no GWA that can traverse any graph, this means that searching
in the graph requires devices or algorithms that either use internal memory of
more than constant size, or store any information in the nodes of the graph, or
do both. In these terms, Ariadne’s thread can be regarded as information stored
in the nodes. The standard depth-first search includes both Ariadne’s thread (as
the stack) and marks left in the visited nodes.

Many new algorithms for graph exploration are being developed. For
instance, Disser et al. [10] presented a solution using O(log log n) pebbles and
O(log n) internal states; this is one of the several algorithms obtained by deran-
domizing randomized algorithms for graph exploration, which were first inves-
tigated by Aleliunas et al. [3]. Algorithms by Albers and Henzinger [2], and by
Panaite and Pelc [25] are aimed to minimize the number of edge traversals. Algo-
rithms for searching in a graph with an unbounded degree of nodes have recently
been presented by Asano et al. [4] and by Elmasry et al. [11].

From the point of view of automata theory, the question is: can the graph-
walking automata be somehow extended to contribute to the more practical
methods of graph exploration?

11 Conclusion

The study of graph-walking automata looks like a promising direction in
automata theory, yet, at the moment, it is still in its infancy. There are only a
few isolated results, which are useful for representing the general form of known
generic ideas, but insufficient to form a theory. On the other hand, there are
plenty of uninvestigated basic properties, and some of them may turn out rela-
tively easy to determine.

A suggested possible starting point for research is finding a new special case of
graphs, along with a motivation for considering it, and then investigate its basic
properties. It would be particularly fortunate to find an intrinsically interesting
simple case: for instance, for 2DFA, their simple case is the case of a unary
alphabet [13,14,18], for which much more is known than for 2DFA over multiple-
symbol alphabets. Is there such a non-trivial class of non-path graphs that could
similarly drive the early research on graph-walking automata?
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