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Abstract. The model of deterministic input-driven multi-counter auto-
mata is introduced and studied. On such devices, the input letters
uniquely determine the operations on the underlying data structure that
is consisting of multiple counters. We study the computational power of
the resulting language families and compare them with known language
families inside the Chomsky hierarchy. In addition, it is possible to prove
a proper counter hierarchy depending on the alphabet size. This means
that any input alphabet induces an upper bound which depends on the
alphabet size only, such that k + 1 counters are more powerful than k
counters as long as k is less than this bound. The hierarchy interestingly
collapses at the level of the bound. Furthermore, we investigate the clo-
sure properties of the language families. Finally, the undecidability of the
emptiness problem is derived for input-driven two-counter automata.

1 Introduction

Multi-counter automata are finite state automata equipped with multiple coun-
ters which can be incremented, decremented, and tested for zero. It is well known
that general one-way deterministic two-counter automata are computationally
universal, that is, they can simulate Turing machines [17]. However, the latter
simulation may need an unbounded amount of space. Hence, deterministic space-
bounded as well as time-bounded multi-counter automata have been considered
in [7] where, in particular, the case when the available time is restricted to real-
time is studied. The authors establish in this case an infinite and strict counter
hierarchy as well as positive and negative closure results. The generalization
to multi-counter automata that may work nondeterministically as well as may
use two-way motion on the input tape has been done in [8]. Since one-counter
automata can be seen as a special case of pushdown automata, multi-counter
automata may be considered a special case of multi-pushdown automata intro-
duced in [6].

A recently introduced restriction to pushdown automata which turned out to
provide nice closure properties and decidability questions is the requirement to
work in an input-driven way. This means that input-driven pushdown automata
are ordinary pushdown automata where the actions on the pushdown store are
dictated by the input symbols. In particular, if an input symbol forces the
machine to pop a symbol from the empty pushdown store, the computation
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continues with empty pushdown store. This variant of pushdown automata has
originally been introduced in 1980 by Mehlhorn [16] and further investigations
have been done in 1985 by von Braunmühl and Verbeek [5]. The results of both
papers comprise the equivalence of nondeterministic and deterministic models
and the proof that the membership problem is solvable in logarithmic space.
The model has been revisited under the name of visibly pushdown automata in
2004 [1]. Complexity results on the model are summarized in the survey [18]. An
input-driven variant of one-counter automata has been introduced in [2] and two
recent papers [9,12] examine algebraic and logical aspects of input-driven counter
automata. The above-mentioned generalization to multi-pushdown automata in
terms of input-driven devices is described in [15] where several additional restric-
tions are put on the general model in order to obtain manageable models with
positive closure properties and decidable questions. Finally, we mention that the
computational power of input-driven automata using the storage medium of a
stack and a queue, respectively, have been investigated in [3,13].

In this paper, we will introduce and investigate the model of input-driven
multi-counter automata which are basically the input-driven variant of the real-
time multi-counter automata discussed in [7]. It should be noted that this model
is different from the model of “input-driven pushdown automata with counters”
recently introduced by Ibarra [11]. This model is basically an input-driven push-
down automaton with additional reversal-bounded counters (see also [10]), where
the input symbols govern the behavior on the pushdown store, but not necessar-
ily on the counters. In contrast, our model has a counter update function which
solely depends on the input alphabet. The paper is organized as follows. In the
next section we introduce the necessary notations on multi-counter automata
and their input-driven versions. In Sect. 3 we study the computational capacity
of input-driven multi-counter automata and their relation to the language fam-
ilies of the Chomsky hierarchy. Then, a hierarchy on the number of counters is
established that interestingly depends on the size of the input alphabet. This
means that every alphabet size n determines a bound f(n) such that k coun-
ters with 1 ≤ k < f(n) are less powerful that k + 1 counters, but any number
of counters larger than f(n) is as powerful as f(n) counters. Sections 4 and 5
are devoted to investigating the closure properties of and decidability questions
for input-driven multi-counter automata. The main result in the latter section
is that already two input-driven counters are sufficient to obtain that all usu-
ally studied decidability questions are undecidable, whereas all but one of the
questions is decidable for input-driven one-counter automata.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ and the reversal of a word w by wR. For the length of w we
write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

Let k ≥ 0 be a natural number. A (one-way) deterministic k-counter automa-
ton (DCA(k)) is a finite automaton having a single read-only input tape. In addi-
tion, it is equipped with k counters. At the outset of a computation the counter
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automaton is in the designated initial state, the counters are set to zero, and
the head of the input tape scans the leftmost input symbol. Dependent on the
current state, the currently scanned input symbol, and the information whether
the counters are zero or not, the counter automaton changes its state, increases
or decreases the counters or leaves the counters unchanged, and moves the input
head one square to the right. The automata have no extra output tape but the
states are partitioned into accepting and rejecting states.

A counter automaton is called input-driven if the input symbols currently
read define the next action on the counters. To this end, we assume that each
input symbol is associated with actions to be applied to the counters. Let Σ be
the input alphabet. Then α : Σ → {−1, 0, 1}k gives these actions, where the ith
component α(x)i of α(x), for 1 ≤ i ≤ k and x ∈ Σ, is added to the current
value of counter i. The subtraction is in natural numbers, that is, decreasing a
counter value 0 gives counter value 0. This behavior is in line with the definition
of input-driven pushdown automata that may pop from the empty pushdown
store leaving the pushdown store empty. For any x ≥ 0 we define the function
sg(0) = ⊥ and sg(x) = + for x ≥ 1.

An input-driven counter automaton with k ≥ 0 counters (IDCA(k)) is a
system M = 〈Q,Σ, k, q0, F, α, δ〉, where Q is the finite set of internal states, Σ
is the finite set of input symbols, k ≥ 0 is the number of counters, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, α : Σ → {−1, 0, 1}k is the
counter update function, and δ : Q × Σ × {+,⊥}k → Q is the partial transition
function that determines the successor state dependent on the current state, the
current input symbol, and the current statuses of the counters (+ indicates a
positive value and ⊥ a zero).

A configuration of an IDCA(k) M = 〈Q,Σ, k, q0, F, α, δ〉 is a (k + 2)-tuple
(q, w, c1, c2, . . . , ck), where q ∈ Q is the current state, w ∈ Σ∗ is the unread
part of the input, and ci ≥ 0 is the current value of counter i, 1 ≤ i ≤ k. The
initial configuration for input w is set to (q0, w, 0, 0, . . . , 0). During the course of
its computation, M runs through a sequence of configurations. One step from a
configuration to its successor configuration is denoted by �. Let q, q′ ∈ Q, a ∈ Σ,
w ∈ Σ∗, and ci ≥ 0, 1 ≤ i ≤ k. We set

(q, aw, c1, c2, . . . , ck) � (q′, w, c1 + α(a)1, c2 + α(a)2, . . . , ck + α(a)k)

if and only if δ(q, a, sg(c1), sg(c2), . . . , sg(ck)) = q′ (recall that the subtraction is
in natural numbers). As usual, we define the reflexive and transitive closure of �
by �∗.

The language accepted by the IDCA(k) M is the set L(M) of words for which
there exists some computation beginning in the initial configuration and halting
in a configuration in which the whole input is read and an accepting state is
entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, 0, 0, . . . , 0) �∗ (q, λ, c1, c2, . . . , ck)
with q ∈ F, ci ≥ 0 for 1 ≤ i ≤ k }.
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So, an input-driven k-counter automaton is a realtime device since it cannot
perform stationary moves. It halts within n steps on inputs of length n. For each
counter Ci, the definitions imply the partition of the input alphabet into the sets
Σ

(i)
D , Σ

(i)
R , and Σ

(i)
N that control the actions increase or drive (D), decrease or

reverse (R), and leave unchanged or neutral (N) of counter Ci. Such a partition
is called a signature.

The family of all languages which can be accepted by some device X is denoted
by L (X).

To clarify our notion we continue with an example.

Example 1. The language L = {abbā3b̄b̄a5bbā7b̄b̄ · · · a4n+1b | n ≥ 0} is non-
semilinear and accepted by the IDCA(2) M = 〈Q,Σ, 2, q0, F, α, δ〉 with state set
Q = {q0, q1, q2, q3, q4}, final states F = {q2}, counter update function defined
by α(a) = (−1, 1), α(b) = (0, 1), α(ā) = (1,−1), α(b̄) = (1, 0), and transition
function

1. δ(q0, a,⊥,⊥) = q1
2. δ(q1, b,⊥,+) = q2
3. δ(q2, b,⊥,+) = q3

4. δ(q3, ā,⊥,+) = q3
5. δ(q3, ā,+,+) = q3
6. δ(q3, b̄,+,⊥) = q4

7. δ(q4, b̄,+,⊥) = q1
8. δ(q1, a,+,⊥) = q1
9. δ(q1, a,+,+) = q1

The IDCA(2) M uses its second counter to store the number of consecu-
tive a’s. The following two b’s are used to increment the counter by two in
order to match the number of ā’s in the following block. The comparison is
made by decreasing the second counter on ā’s. Simultaneously, the first counter
is increased to store the number of ā’s for the verification of the next block
length. The addition of two is done while reading two symbols b̄’s. Similarly the
length of an ā block is compared with the length of the following a block. These
comparisons are done alternately.

The correct format of the input is checked in the states.
Finally, the total length of an accepted input is (2n + 2)2 − 2 and, thus, the

language is not semilinear. �

3 Computational Capacity

We start the investigation of the computational capacity of input-driven counter
automata by considerations on unary languages. Example 1 shows that even
two counters are sufficient to push the power of input-driven counter automata
beyond the edge of semilinearity and, thus, context-freeness. However, to this
end non-unary witness languages have to be used. In fact, for unary languages
any number of counters does not help to accept a non-regular language.

Proposition 2. Any unary language accepted by some IDCA is regular.

Proof. Let M = 〈Q, {a}, k, q0, F, α, δ〉 be an IDCA(k) accepting a unary lan-
guage L(M) ⊆ a∗. If k = 0, then M is a finite automaton and the accepted
language is regular. If k > 0, the signature of any counter Ci, 1 ≤ i ≤ k, consists
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of one singleton and two empty sets. If Σ
(i)
R or Σ

(i)
N is non-empty then M will

never increase counter Ci from its initial value zero. So, counter Ci is useless
and can be omitted. If Σ

(i)
D is non-empty then counter Ci is never decreased to

zero once it has been increased to one. This fact can be remembered in the state
such that counter Ci can be omitted in this case either. In this way all counters
can be omitted and we end up in a finite automaton that accepts L(M). �

Clearly, any regular language is accepted by some IDCA(0). So, for any k ≥ 0
the family of unary languages accepted by IDCA(k) coincides with the family
of regular languages. Moreover, any IDCA can be simulated by a deterministic
linear bounded automaton in a straightforward way. This implies that the family
of languages accepted by IDCA is included in the family of deterministic context-
sensitive languages. The inclusion is even strict, since the (deterministic) (linear)
context-free language { an$an | n ≥ 0 } is not accepted by any IDCA.

Lemma 3. Language L = { an$an | n ≥ 0 } is not accepted by any IDCA.

Proof. Contrarily assume that there is some IDCA(k) M = 〈Q,Σ, k, q0, F, α, δ〉
that accepts L.

We give evidence that the counters cannot help. Let Ci, 1 ≤ i ≤ k, be a
counter. If a ∈ Σ

(i)
R or a ∈ Σ

(i)
N then M will increase counter Ci at most once

on reading the $. This fact can be remembered in the state and counter Ci can
be omitted.

If a ∈ Σ
(i)
D and n ≥ 2 then counter Ci is never decreased to zero once two a’s

have been read from the input. This fact can be remembered in the state as well
such that counter Ci can be omitted in this case either.

In this way all counters can be omitted and we end up in a finite automaton
that accepts L. This is a contradiction since L is not regular. �

The next corollary summarizes the relationships with the linguistic families
of the Chomsky hierarchy.

Corollary 4. Let k ≥ 1 be an integer. Then the family of regular languages is
strictly included in L (IDCA(k)) which, in turn, is strictly included in the family
of deterministic context-sensitive languages.

For k ≥ 2, the family L (IDCA(k)) is incomparable with the family of (deter-
ministic) (linear) context-free languages.

Next, we turn to examine the power of the number of counters.

Lemma 5. Let Σ be an m-symbol alphabet and k = 3m − 2m+1 + 1. Then any
IDCA(k + i), i ≥ 1, can be simulated by an IDCA(k).

Proof. Let i ≥ 1 and M = 〈Q,Σ, k + i, q0, F, α, δ〉 be an IDCA(k + i).
The proof of Proposition 2 revealed that a counter whose signature does

not associate an increase and a decrease operation with some alphabet symbol
can safely be omitted. So, any useful signature has non-empty sets ΣR and
ΣD. There are 3m different signatures of Σ. From these, 2m signatures have an
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empty set ΣR. Another 2m signatures have an empty set ΣD. Moreover, there
is exactly one signature with both sets ΣR and ΣD empty. Therefore, there are
at most 3m − 2m+1 + 1 different useful signatures.

Clearly, if two counters of M have the same signature, one of them can be
omitted. The same is true for a counter with a useless signature. We conclude
that at least i counters can be removed from M without affecting the language
accepted. �

In particular, Lemma5 shows that any counter hierarchy for IDCA necessar-
ily collapses at a level that is solely determined by the alphabet size. Next, we
turn to show that, in fact, these hierarchies exist.

Theorem 6. Let m ≥ 2 be an integer. For 1 < k ≤ 3m −2m+1+1, the family of
languages accepted by IDCA(k−1) over an alphabet of size m is strictly included
in the family of languages accepted by IDCA(k) over an alphabet of size m.

Proof. Let Σ = {a1, a2, . . . , am} be some alphabet of size m ≥ 2. The proof of
Lemma 5 showed that there are kmax = 3m −2m+1+1 different useful signatures
Si =

(
Σ

(i)
D , Σ

(i)
R , Σ

(i)
N

)
, 1 ≤ i ≤ kmax. For each signature Si language Li ⊆ Σ∗ is

defined as

Li = {w1w2w3 | w1 ∈ (
Σ

(i)
D

)+
, w2 ∈ (

Σ
(i)
N

)∗
, w3 ∈ (

Σ
(i)
R

)+
, |w3| = |w1| + 1 }.

First, we show that, for any subset I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , kmax},
language LI =

⋃
i∈I(Li)+ is accepted by some IDCA(k) M . To this end, the

counter update function α of M associates signature Sij
with counter Cj ,

for ij ∈ I. In this way, when starting with counter value zero, for any input
factor w1w2w3 from Lij

, counter Cj is incremented to |w1| while M processes
the prefix w1 of the factor. On w2 the value of counter Cj is unchanged. Since
|w3| = |w1| + 1, counter Cj is decremented to value zero for the first time
when only one input symbol of the factor is left. The next transition of M on
counter value zero drives M into an accepting state while the value of counter Cj

remains zero. Therefore, M accepts if the input has been processed entirely. Oth-
erwise it repeats the process for the next input factor from Lij

. Moreover, since
((

Σ
(ij)
D

)+(
Σ

(ij)
N

)∗(
Σ

(ij)
R

)+)+

is regular, M can determine in its states whether

the input has the format of all words in (Lij
)+. Since M has as many counters

as languages are joined to LI , an input can be accepted if and only if it belongs
to LI .

Second, we show that, for any subset I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , kmax},
language LI is not accepted by any IDCA(k − 1). In contrast to the assertion
assume that there is some subset I = {i1, i2, . . . , ik} and some IDCA(k − 1)
M = 〈Q,Σ, k − 1, q0, F, α, δ〉 that accepts LI . Since LI is the union of k lan-
guages which in turn are defined by k signatures, but M has only k−1 counters,
there is at least one of the joined languages, say (Lj)+, whose underlying sig-
nature Sj =

(
Σ

(j)
D , Σ

(j)
R , Σ

(j)
N

)
does not appear as the signature of any of the

counters.
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In order to obtain a contradiction, we next turn to construct an input word
ϕ ∈ (Lj)+ that fools all counters of M simultaneously. To this end, let

Σ
(j)
D = {x1, x2, . . . , xp}, Σ

(j)
N = {y1, y2, . . . , yq}, and Σ

(j)
R = {z1, z2, . . . , zr}.

The word ϕ is the concatenation of r words u1, u2, . . . , ur from Lj that are
as follows. Let c > r + 2 be a fixed constant. Then

ui = (x1x2 · · · xp)czc·p+1
i , for 1 ≤ i ≤ r − 1.

So, the length of ui is 2 · c · p + 1. Now we set cr = (r − 1)(2 · c · p + 1) + p + |Q|
and s = (p + 1) · cr, and define

ur = (x1x2 · · · xp)cry2·s
1 y22·s

2 · · · y2q·s
q zcr·p+1

r .

Next we determine how the counters of M evolve on input ϕ = u1u2 · · · ur

that belongs to L(M). To this end, we distinguish three cases dependent on the
signatures of the counters.

Case 1. Let Σ
(j)
N �⊆ Σ

(i)
N for some counter Ci.

To determine how counter Ci evolves on input ϕ we consider the greatest
index � from {1, 2, . . . , q} such that y� /∈ Σ

(i)
N .

The length of the prefix of ϕ up to but not including the factor y2�·s
� from ur

is (r−1)(2·c·p+1)+cr ·p+2·s+22 ·s+· · ·+2�−1 ·s < s+2·s+22 ·s+· · ·+2�−1 ·s =
(2� − 1) · s. Therefore, after processing the prefix, the value of counter Ci is at
most (2� − 1) · s.

If y� ∈ Σ
(i)
R then the value of counter Ci is decremented to zero after pro-

cessing the following factor y2�·s
� . Furthermore, since � has been chosen to be

the greatest index, the value of counter Ci remains zero until the first symbol zr

appears in the input. Dependent on whether zr belongs to Σ
(i)
D or Σ

(i)
N ∪Σ

(i)
R the

value of counter Ci increases on the remaining input suffix zcr·p+1
r or remains

zero. In both cases the status of counter Ci does not change on the last cr · p
input symbols.

If y� ∈ Σ
(i)
D then the value of counter Ci is at least 2� · s after processing the

following factor y2�·s
� . Furthermore, since � has been chosen to be the greatest

index, the value of counter Ci does not change until the first symbol zr appears
in the input. Moreover, since cr · p + 1 < 2� · s the status of counter Ci does not
change on the last cr · p input symbols.

Case 2. Let Σ
(j)
N ⊆ Σ

(i)
N and Σ

(j)
D �⊆ Σ

(i)
D for some counter Ci.

The length of the prefix u1u2 · · · ur−1 of ϕ is (r − 1)(2 · c · p + 1). Therefore,
after processing the prefix, the value of counter Ci is at most (r −1)(2 · c ·p+1).
Since there is at least one symbol from {x1, x2, . . . , xp} that does not belong
to Σ

(i)
D , the value of counter Ci increases by at most cr · (p − 1) on process-

ing the following factor (x1x2 · · · xp)cr . This gives a counter value of at most
(r − 1)(2 · c · p + 1) + cr · (p − 1) = cr − p − |Q| + cr · p − cr = cr · p − p − |Q|.
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Dependent on whether zr belongs to Σ
(i)
D ∪Σ

(i)
N or Σ

(i)
R the value of counter Ci

increases or remains unchanged, or decreases by cr ·p+1 on the remaining input
suffix zcr·p+1

r . In the former case, clearly, the status of counter Ci does not change
on the last cr · p input symbols. In the latter case the counter is decreased to
zero after processing at most cr · p − p − |Q| input symbols zr. So, the status of
counter Ci does not change on the last p + |Q| + 1 input symbols.

Case 3. Let Σ
(j)
N ⊆ Σ

(i)
N and Σ

(j)
D ⊆ Σ

(i)
D for some counter Ci.

In this case we know that at least one of the inclusions is strict and obtain
Σ

(i)
R ⊂ Σ

(j)
R . Let � be the greatest index from {1, 2, . . . , r} such that z� /∈ Σ

(i)
R .

Since counter Ci increases on all input factors x1x2 · · · xp by p, after pro-
cessing the prefix (x1x2 · · · xp)c of u� if � < r or (x1x2 · · · xp)cr of ur if � = r,
the counter value is at least c · p in the former and at least cr · p in the latter
case. Since z� /∈ Σ

(i)
R , the value does not decrease on suffix zc·p+1

� of u� if � < r

or zcr·p+1
� of ur if � = r.
If � = r this implies immediately that the status of counter Ci does not

change on the last cr · p input symbols.
If � < r, the value of counter Ci is at least c · p after processing factor

u� of ϕ. The value increases by c · p and subsequently possibly decreases by
c ·p+1 on each of the remaining r− �−1 factors u�+1, u�+2, . . . , ur−�−1. Finally,
on the prefix (x1x2 · · · xp)cr of ur it increases by cr · p. At that time its value
is at least c · p − (r − � − 1) + cr · p. Recall that p, r ≥ 1 since Sj is useful.
Since Σ

(j)
N ⊆ Σ

(i)
N , it decreases by at most cr ·p+1 on the remaining input suffix.

By c · p − (r − � − 1) + cr · p > c · p − r + cr · p > (r + 2) · p − r + cr · p > 2 + cr · p
we conclude that counter Ci is not decremented to zero on the suffix and, thus,
the status of counter Ci does not change on the last cr · p input symbols. This
concludes Case 3.

Cases 1 to 3 show that the status of all counters of M at least do not change
on the last p + |Q| ≥ 1 + |Q| input symbols. Since these input symbols are all
the same, that is, they are zr, automaton M enters some state at least twice
when processing this suffix. Let zn

r with 1 ≤ n ≤ |Q| drive M from some state q
to state q when processing this suffix. Define ϕ′ to be the word ϕ with n sym-
bols zr chopped off. Since ϕ is accepted we conclude that ϕ′ is accepted as well.
However, ϕ′ does not belong to (Lj)+.

Since L(M) = LI , it remains to be shown that ϕ′ does not belong to any of
the languages (Li)+ with i ∈ I = {i1, i2, . . . , ik} and i �= j.

Assume there is such an i such that ϕ′ ∈ (Li)+. We consider the structure
of all words in (Li)+. It follows that x1 ∈ Σ

(i)
D and zr ∈ Σ

(i)
R .

Case 1. Let there be some xt ∈ {x2, x3, . . . , xp} that does not belong to Σ
(i)
D .

Since the symbol after xp is x1 ∈ Σ
(i)
D this implies that a prefix of x1x2 · · · xp

belongs to (Li)+. If this prefix is proper, the prefix (x1x2 · · · xp)2 of ϕ′ shows
that ϕ′ cannot belong to (Li)+. Therefore, the prefix is not proper and we
conclude that the word x1x2 · · · xp itself belongs to (Li)+. However, in this case
the prefix (x1x2 · · · xp)czc·p+1

1 x1x2 · · · xp of ϕ′ implies that ϕ′ is in a wrong format
if z1 ∈ Σ

(i)
N and cannot belong to (Li)+ if z1 ∈ Σ

(i)
D ∪ Σ

(i)
R .
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Case 2. We have Σ
(i)
D ⊇ Σ

(j)
D . Since all symbols z ∈ {z1, z2, . . . , zr−1} have

predecessor symbol xp ∈ Σ
(i)
D and successor symbol x1 ∈ Σ

(i)
D in ϕ′, they must

belong either to Σ
(i)
R or to Σ

(i)
D .

If there is some 1 ≤ t < r − 1 such that zt ∈ Σ
(i)
D and zt+1 ∈ Σ

(i)
R then the

number c ·p+1 of symbols zt+1 does not match one plus the number of symbols
from Σ

(i)
D appearing directly before the zt+1. So, ϕ′ does not belong to (Li)+ in

this case. We conclude that if there is some zt ∈ Σ
(i)
D , for 1 ≤ t ≤ r − 1, then

all z ∈ {zt, zt+1, . . . , zr−1} belong to Σ
(i)
D . Since in the suffix ur of ϕ′ there are

less than cr · p + 1 symbols zr ∈ Σ
(i)
R but cr · p symbols from Σ

(i)
D , at least one

of the symbols from {y1, y2, . . . , yq} must belong to Σ
(i)
R in order to make ϕ′

belong to (Li)+. Since any y from {y1, y2, . . . , yq} appears more frequently than
the length of its prefix from ϕ′, the word ϕ′ does not belong to (Li)+ in this
case as well. So, we have {z1, z2, . . . , zr−1} ⊆ Σ

(i)
R .

Case 3. We have Σ
(i)
D ⊇ Σ

(j)
D and Σ

(i)
R ⊇ Σ

(j)
R . So, the prefix u1u2 · · · ur−1

of ϕ′ belongs to (Li)+. Now, if there is some yt ∈ {y1, y2, . . . , yq} that does
not belong to Σ

(i)
N then a straightforward calculation shows that the suffix

(x1x2 · · · xp)cry2·s
1 y22·s

2 · · · y2q·s
q zcr·p+1−n

r does not belong to (Li)+. So, ϕ′ does
not belong to (Li)+ either. This concludes Case 3.

Cases 1 to 3 show that in any case ϕ′ does not belong to (Li)+. The contra-
diction implies that ϕ′ does not belong to LI which in turn is a contradiction to
the assumption that LI is accepted by M . �

4 Closure Properties

Here we are interested in the closure properties of the language families accepted
by input-driven counter automata. However, the results for ordinary k-counter
automata are complemented by deriving closure under complementation which,
in turn, yields non-closure under intersection. The results are summarized in
Table 1.

Table 1. Closure properties of the language families discussed. Symbols ∪c, ∩c, and ·c
denote union, intersection, and concatenation with compatible signatures. Such oper-
ations are not defined for non-input-driven devices and are marked with ‘—’.

∪ ∩ ∪c ∩c · ·c ∗ hl.p. REV

REG yes yes yes — — yes — yes yes yes

L (IDCA(k)) yes no no yes yes no no no no no

L (IDCA) yes yes yes yes yes no no no no no

L (DCA(k)) yes no no — — no — no no no

L (DCA) yes yes yes — — no — no no no
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We say that two signatures Σ = ΣD ∪ ΣR ∪ ΣN and Σ̂ = Σ̂D ∪ Σ̂R ∪ Σ̂N

are compatible if the symbols shared by both alphabets have the same effect on
the counters. That is, if

⋃
j∈{D,R,N}(Σj \ Σ̂j)∩ Σ̂ and

⋃
j∈{D,R,N}(Σ̂j \ Σj) ∩ Σ

are empty. Two input-driven counter automata M and M ′ have compatible
signatures, if for any counter of M there is a counter of M ′ with compatible
signature, and vice versa.

Since the devices under consideration are deterministic and are working in
realtime, the closure of the accepted language families under complementation
can be derived.

Proposition 7. Let k ≥ 0. The families of languages accepted by DCA(k),
IDCA(k), and IDCA are closed under complementation.

The property of working input-driven suggests to consider closure properties
for the cases where the languages are accepted by devices having compatible
signatures.

Proposition 8. Let k ≥ 0. The family of languages accepted by IDCA(k) is
closed under union and intersection with compatible signatures.

If we drop the restriction of compatible signatures then multi-counter
automata accept language families that are still closed under union and inter-
section.

Proposition 9. The family of languages accepted by IDCA is closed under
union and intersection.

We conclude the investigation of closures under Boolean operations by stress-
ing that the restriction to compatible signatures is a serious one. If we drop that
restriction for a fixed number of counters, the positive closure property gets lost.

Proposition 10. Let k ≥ 1. The family of languages accepted by IDCA(k) is
neither closed under union nor under intersection.

We conclude the section with the investigation of the closure properties under
the operations concatenation, iteration, reversal, and length-preserving homo-
morphism. We use {ambn | 0 ≤ n ≤ m}, which may leave an unbounded amount
of garbage in the counters, as basic witness language to show the non-closures.

Proposition 11. Let k ≥ 1. The families of languages accepted by IDCA(k) and
IDCA are not closed under concatenation with compatible signatures, iteration,
reversal, and length-preserving homomorphism.

5 Decidability Problems

In this section we turn to explore the decidability problems of emptiness, finite-
ness, universality, inclusion, equivalence, and regularity for IDCA(k) with k ≥ 0
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counters. Since IDCA(0) are deterministic finite automata, all decidability ques-
tions mentioned are decidable. If k = 1, we obtain one-counter machines which
are special cases of deterministic pushdown automata. Since emptiness, finite-
ness, universality, equivalence, and regularity is decidable for such automata, we
obtain these decidability results for IDCA(1) as well. Finally, the decidability of
inclusion for IDCA(1) with compatible signatures is shown in [14]. However, it
is shown in [14] as well that the inclusion problem for IDCA(1) becomes unde-
cidable if the signatures are not necessarily compatible.

The complexity of the equivalence problem for DCA(1) is known to be NL-
complete [4]. So, it is in NL for IDCA(1) as well. Moreover, since the emptiness
problem for deterministic finite automata is already NL-hard, and the emptiness
problem easily reduces to the equivalence problem, the latter is NL-complete for
IDCA(1).

The inclusion problem for deterministic input-driven pushdown automata
with compatible signatures is P-complete [18]. From the NL-hardness of the
equivalence problem for IDCA(1) the NL-hardness of the inclusion problem fol-
lows. The constructions for the closure under complementation and intersection
together with the fact that the emptiness problem for IDCA(1) is in NL yields
an NL algorithm for the inclusion problem for IDCA(1). So, the inclusion prob-
lem for IDCA(1) is NL-complete.

Now, we consider the case of IDCA with at least two counters. It turns out
that in this case undecidability results can be obtained, since it is possible to
utilize the undecidability of the halting problem for two-counter machines shown
by Minsky [17].

Theorem 12. Let k ≥ 2 and M be an IDCA(k). Then it is undecidable whether
or not L(M) is empty as well as whether or not L(M) is finite.

The closure under complementation relates the questions of emptiness and
universality, whereas inclusion and equivalence questions can be reduced to uni-
versality questions.

Corollary 13. Let k ≥ 2 and M be an IDCA(k) over some input alphabet Σ.
Then it is undecidable whether or not L(M) = Σ∗.

Proof. Due to Proposition 7 it is possible for an IDCA(2) M to construct an
IDCA(2) M ′ accepting the complement L(M). Hence, the question of whether
L(M) = Σ∗ is equivalent to L(M ′) = L(M) = ∅. Since the latter question is
undecidable due to Theorem12 we obtain the claim of the theorem. �
Corollary 14. Let k ≥ 2 and M and M ′ be two IDCA(k) with compatible
signatures. Then it is neither decidable whether or not L(M) ⊆ L(M ′) nor
whether or not L(M) = L(M ′).

Finally, we obtain that the regularity problem is undecidable as well.

Theorem 15. Let k ≥ 2 and M be an IDCA(k). Then it is undecidable whether
or not M accepts a regular language.

The undecidability results obtained obviously hold also for the stronger vari-
ants of IDCA as well as for the corresponding non-input-driven counter machines.
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