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Abstract. Linear weighted extended top-down tree transducers with
regular look-ahead and with weights from a semiring are formal mod-
els that are used in syntax-based statistical machine translation. The
composition hierarchies of some restricted versions of such weighted tree
transducers (also without regular look-ahead) are considered. In par-
ticular, combinations of the restrictions of ε-freeness (all rules consume
input), nondeletion, and strictness (all rules produce output) are consid-
ered. The composition hierarchy is shown to be finite for all but one ε-free
variant of these weighted transducers over any commutative semiring.

1 Introduction

Linear extended top-down tree transducers (l-xt) were introduced (under a dif-
ferent name) and investigated already in [1]. We present them in the framework
of synchronous grammars [3] since in syntax-based statistical machine transla-
tion these transducers are applied, and since we utilize some results of [6,14].
An l-xt M has a finite set of states and finitely many rules of the form 〈�, q, r〉,
where q is a state and the left- and right-hand side � and r are trees, which
may also contain state-labeled leaves such that each state in r also occurs in �.
Linearity requires that each state occurs at most once both in � and in r. In
particular, in ε-rules the left-hand side � and in non-strict rules the right-hand
side r is just a state. The semantics of M is defined by means of synchronous
rewriting using the derivation relation ⇒. It is defined over sentential forms,
which are triples (ξ, L, ζ) consisting of trees ξ and ζ with state-labeled leaves
and a set L of links. A link is a pair (u, v) of positions pointing to occurrences of
the same state in the trees ξ and ζ, respectively. A rule 〈�, q, r〉 can be applied to
a sentential form (ξ, L, ζ) if there is a link (u, v) ∈ L such that u and v point to
an occurrence of the state q. In this case we write (ξ, L, ζ) ⇒ (ξ′, L′, ζ ′), where
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the sentential form (ξ′, L′, ζ ′) is obtained by replacing the linked occurrences of
q in ξ and ζ by � and r, respectively. In addition, L is updated to include links
induced by occurrences of the same state in � and r. The initial sentential form
is (q0, {(ε, ε)}, q0), in which q0 is the initial state of M , and we apply derivation
steps until no occurrences of linked states remain. Any remaining (unlinked)
state occurrence in the input tree t can then be replaced by an arbitrary tree.
An instance of t is obtained by replacing all state occurrences and I(t) is the set
of all instances of t. The tree transformation induced by M consists of all pairs
(t′, u) such that (q0, {(ε, ε)}, q0) ⇒∗ (t, ∅, u) and t′ ∈ I(t). In order to increase
their expressive power, l-xt can be equipped with regular look-ahead [4], which
restricts the instances I(t) such that an unlinked occurrence of a state q can only
be replaced by an element of a given regular tree language c(q). We abbreviate
‘l-xt with regular look-ahead’ by l-xtR.

Weighted l-xtR, abbreviated by l-wxtR, are able to express quantitative prop-
erties of the tree transformations [7,13,14,16]. In an l-wxtR a weight from a
semiring K is associated to each rule, and these rule weights are multiplied in
a derivation. Provided that several derivations exist, these derivation weights
are summed up. In this manner, an l-wxtR M assigns a weight ‖M‖K(t, u) ∈ K

to each pair (t, u) of trees. It turned out that both l-wxt and l-wxtR over the
probabilistic semiring can serve as formal models of tree transformations which
are used in syntax-based statistical machine translation [10,12].

We focus on the composition closure of l-wxt and l-wxtR without ε-rules (�εl-
wxt and �εl-wxtR, respectively) and some of their restricted subclasses because
compositions of weighted tree transformations induced by them can be defined in
terms of finite sums. Our motivation is that complex systems are often specified
in terms of compositions of simpler tree transformations [17], which are easier
to develop, train, and maintain [12]. More precisely, let C be a class of weighted
tree transformations (e.g. the class of all weighted tree transformations induced
by �εl-wxtR). The composition hierarchy of C is C ⊆ C2 ⊆ C3 ⊆ · · · , where Cn

denotes the n-fold composition of C. It is either infinite (i.e., Cn
� Cn+1 for all

n) or finite (i.e., Cn = Cn+1 for some n). In the latter case, the minimal such n
is interesting since all compositions can be reduced to this length.

The additional standard restrictions we consider are strictness (‘s’), which
requires that the right-hand side r is not a single state, and nondeletion (‘n’),
which means that each state in the left-hand side � occurs also in the right-hand
side r, in both cases for each rule 〈�, q, r〉 of the �εl-wxtR. Thus, for instance
�εsl-wxtR abbreviates the expression ‘strict �εl-wxtR’. The class of all weighted
tree transformations induced by certain kind of �εl-wxtR is denoted by typeset-
ter letters so for instance �εsl-WXTR(K) stands for the set of all weighted tree
transformations computable by �εsl-wxtR over the semiring K. We consider the
composition hierarchies of the classes �εnsl-WXT(K), which is also investigated
in [15], and �εsl-WXT(K), �εsl-WXTR(K), �εl-WXTR(K), and �εl-WXT(K). As main
result we show that the composition hierarchies of these classes collapse at lev-
els 2, 2, 2, 3, and 4, respectively, for an arbitrary commutative semiring K (cf.
Theorem16). We achieve our results by lifting the results [1, Theorem 6.2] and
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[6, Theorems 26, 31, 33, 34], where it is shown that the corresponding hierarchies
in the unweighted cases collapse at the same levels. To this end, we decompose an
�εl-wxtR into a weighted relabeling that handles all weights and nondeterminism,
and a Boolean functional unambiguous �εl-wxtR (cf. Lemma 12). Moreover, we
show that we can compose any such relabeling to the right of any l-wxtR (cf.
Lemma 13). These two constructions together will allow us to take all �εl-wxtR in a
composition chain into a particularly simple normal form (cf. Theorem14). After
some additional technical tailoring, we can utilize the mentioned results [1,6] and
lift them to the corresponding weighted devices over any commutative semiring.

2 Preliminaries

We let N = {0, 1, 2, . . . } and [n] = {i ∈ N | 1 ≤ i ≤ n} for every n ∈ N.
For sets S and T , we let 2S = {S′ | S′ ⊆ S}, and we identify S = {s} with
the element s. Moreover, TS = {f | f : S → T}, and |S| is the cardinality
of S. For every R ⊆ S × T , we let dom(R) = {s | ∃t ∈ T : (s, t) ∈ R} and
range(R) = {t | ∃s ∈ S : (s, t) ∈ R}. The composition of R with R′ ⊆ T × U is
R ; R′ = {(s, u) | ∃t ∈ T : (s, t) ∈ R, (t, u) ∈ R′}. Given n ∈ N, we let Sn be the
n-fold Cartesian product of S with itself and S∗ =

⋃
n∈N

Sn is the set of all
words over S. The length |w| of w ∈ Sn is n. The empty word () is also denoted
by ε. The concatenation of v, w ∈ S∗ is v.w or vw.

A ranked alphabet (Σ, rk) consists of a nonempty, finite set Σ and rk: Σ → N,
which we omit whenever it is obvious. We let Σ(n) = {σ ∈ Σ | rk(σ) = n} for
every n ∈ N. In the following, Σ, Δ, and Γ are arbitrary ranked alphabets. Let V
be a set with V ∩ Σ = ∅. The set TΣ(V ) of Σ” trees indexed by V is defined in the
usual way, and we let TΣ = TΣ(∅). If t ∈ TΣ(V ) is given as t = σ(t1, . . . , tn), then
we often omit the obvious quantification that n ∈ N, σ ∈ Σ(n), and t1, . . . , tn ∈
TΣ(V ). The map pos: TΣ(V ) → 2(N

∗) assigning positions is inductively defined
for all t ∈ TΣ(V ) by pos(t) = {ε} if t ∈ V and pos(t) = {ε} ∪ {i.w | i ∈ [n], w ∈
pos(ti)} if t = σ(t1, . . . , tn). The size |t| of a tree t ∈ TΣ(V ) is |pos(t)|. The label
of t at w ∈ pos(t) is t(w) and the subtree of t rooted at w is t|w. For every set
D ⊆ Σ ∪ V of labels, we let posD(t) = {w ∈ pos(t) | t(w) ∈ D}. The tree t is
linear (resp. nondeleting) in V ′ ⊆ V if |posv(t)| ≤ 1 (resp., |posv(t)| ≥ 1) for
every v ∈ V ′. We let T lin

Σ (V ) be the set of all trees of TΣ(V ) that are linear in
V . Moreover, var(t) = {v ∈ V | posv(t) �= ∅}. We use the countably infinite set
X = {xi | i ∈ N} and Xn = {xi | i ∈ [n]} for every n ∈ N. For every n ∈ N, we
define the set CΣ(Xn) = {t ∈ T lin

Σ (Xn) | var(t) = Xn} of n-contexts and the set
ĈΣ(Xn) = {t ∈ CΣ(Xn) | the order of variables in t is x1, . . . , xn} of straight
n-contexts. Let X ′ ⊆ X and θ : X ′ → TΣ . Each such mapping θ extends to a
mapping (·)θ : TΣ(X) → TΣ(X) such that for all t ∈ TΣ(X) we have tθ = t if
t ∈ X \X ′, tθ = θ(t) if t ∈ X ′, and tθ = σ(t1θ, . . . , tnθ) if t = σ(t1, . . . , tn). Given
t ∈ TΣ(X) and t1, . . . , tn ∈ TΣ , we write t[t1, . . . , tn] for tθ, where θ : Xn → TΣ

is given by θ(xi) = ti for every i ∈ [n]. Moreover, for every t ∈ TΣ and k ∈ N,
let
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decomp(t) =
⋃

n∈N

{
(c, t1, . . . , tn) ∈ ĈΣ(Xn) × (TΣ)n | t = c[t1, . . . , tn]

}

and substk(t) =
{
(u, θ) ∈ T lin

Σ (Xk) × (TΣ)var(u) | t = uθ
}
. Note that both

decomp(t) and substk(t) are finite sets.
As weight structures we use commutative semirings [9,11]. Formally, a com-

mutative semiring is an algebraic structure K = (K,+, ·, 0, 1) such that (K,+, 0)
and (K, ·, 1) are commutative monoids, · distributes over finite sums, and for all
a ∈ K we have a · 0 = 0. Given a mapping f : S → K, it is Boolean if
range(f) ⊆ {0, 1}, and its support supp(f) is supp(f) = {s ∈ S | f(s) �= 0}. Any
map L : TΣ → K is a weighted tree language.

We will often utilize the Boolean semiring B = ({0, 1},∨,∧, 0, 1), which is
used to model the unweighted case, and the semiring N = (N,+, ·, 0, 1). For the
rest of this contribution, let K = (K,+, ·, 0, 1) be a commutative semiring.

A weighted tree automaton is a tuple A = (Q,Σ,Q0,wt), in which Q is a finite
set of states, and Q0 ⊆ Q is a set of initial states, Σ is a ranked alphabet of input
symbols, and wt: (

⋃
n∈N

Qn × Σ(n) × Q) → K is a weight assignment to transi-
tions. It is Boolean if the weight assignment ‘wt’ is Boolean, and it is (bottom-
up) deterministic if q = q′ for all (q1, . . . , qn, σ, q), (q1, . . . , qn, σ, q′) ∈ supp(wt).
The semantics ‖A‖K : TΣ → K of A is ‖A‖K(t) =

∑
q∈Q0

‖A‖q
K
(t) for every

t ∈ TΣ , where the map ‖A‖q
K
: TΣ → K is inductively defined for every

q ∈ Q and tree t = σ(t1, . . . , tn) by ‖A‖q
K
(t) =

∑
q1,...,qn∈Q wt(q1, . . . , qn, σ, q) ·

∏n
i=1 ‖A‖qi

K
(ti). A weighted tree language L : TΣ → K is (K-)regular if there

exists a weighted tree automaton A such that L = ‖A‖K. The class of all such
regular weighted tree languages is denoted by REGΣ(K). For a Boolean deter-
ministic weighted tree automaton A the weighted tree languages ‖A‖K and ‖A‖q

K

for all q ∈ Q are obviously Boolean. The regular weighted tree languages are
closed under the weighted relabelings [7, Theorem 5.3], which we introduce next.

A weighted tree transformation is a mapping τ : TΣ(V ) × TΔ(V ) → K.
The domain ‘dom(τ)’ and range ‘range(τ)’ for a weighted tree transformation
τ : TΣ(V ) × TΔ(V ) → K are simply defined by dom(τ) = dom(supp(τ)) and
range(τ) = range(supp(τ)). The transformation τ is functional (resp., finitary),
if {u | (t, u) ∈ supp(τ)} contains at most one element (resp., is finite) for every
t ∈ TΣ(V ). For a functional τ , its support supp(τ) is a partial function.

A weighted relabeling is a mapping ν : Σ×Δ → K such that ν(σ, δ) = 0 for all
σ ∈ Σ and δ ∈ Δ with rk(σ) �= rk(δ). Each weighted relabeling ν : Σ × Δ → K
extends to a finitary weighted tree transformation ν : TΣ(V ) × TΔ(V ) → K,
which is given as follows: for all variables v, v′ ∈ V , trees t = σ(t1, . . . , tn) ∈
TΣ(V ), and u = δ(u1, . . . , uk) ∈ TΔ(V ), we define ν(v, u) = ν(t, v′) = 0 and

ν(v, v′) =

{
1, if v = v′;
0, otherwise,

ν(t, u) =

{
ν(σ, δ) · ∏n

i=1 ν(ti, ui) , if n = k;
0, otherwise.

Note that the weighted tree transformation ν is finitary. Since ν and ν coincide
on Σ(0) × Δ(0), we will not distinguish carefully between them and use just ν
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for both. In fact, for all t ∈ TΣ(V ), u ∈ TΔ(V ), and each (c′, u1, . . . , un) ∈
decomp(u)

ν(t, u) =
∑

(c,t1,...,tn)∈decomp(t)

ν(c, c′) ·
n∏

i=1

ν(ti, ui) . (1)

There is actually at most one decomposition of t in (1) that yields a non-zero
weight for the sum (since the shapes of c and c′ and similarly ti and ui need to
coincide for all i ∈ [n]). The analogous property holds provided that a decom-
position of t is given. The class of all weighted tree transformations induced by
weighted relabelings is denoted by WREL(K).

Given a finitary weighted tree transformation τ : TΣ × TΔ → K and a
weighted tree language L : TΔ → K, we can define the pre-image τ−1(L) : TΣ →
K of L via τ for every t ∈ TΣ by

(
τ−1(L)

)
(t) =

∑
u∈TΔ

τ(t, u) · L(u). Given
another weighted tree transformation τ ′ : TΔ × TΓ → K, we define the compo-
sition τ ; τ ′ : TΣ × TΓ → K of τ followed by τ ′ for every t ∈ TΣ and v ∈ TΓ as(
τ ;τ ′)(t, v) =

∑
u∈TΔ

τ(t, u) ·τ ′(u, v). Given classes C, C′ of tree transformations,
we let C ; C′ = {τ ; τ ′ | τ ∈ C, τ ′ ∈ C′}. We also write τ ; L instead of τ−1(L) for
a weighted relabeling τ and a weighted tree language L : TΔ → K.

Theorem 1 ([7, Theorem 5.1]). For every weighted relabeling τ ∈ WREL(K) of
type τ : TΣ × TΔ → K and regular weighted tree language L ∈ REGΔ(K), the
weighted tree language τ−1(L) is again regular [i.e., τ−1(L) ∈ REGΣ(K)].

3 Transformational Model

A linear weighted extended top-down tree transducer with regular look-ahead (for
short: l-wxtR) over K [14] is a tuple M = (Q,Σ,Δ, q0, R,wt, c), in which

– Q is a finite set of states, and q0 ∈ Q is an initial state,
– Σ and Δ are ranked alphabets of input and output symbols, respectively,
– R ⊆ T lin

Σ (Q) × Q × T lin
Δ (Q) is a finite set of rules such that var(r) ⊆ var(�)

and {�, r} �⊆ Q for every rule 〈�, q, r〉 ∈ R,
– wt: R → K is a weight assignment to the rules, and
– c : Q → REGΣ(K) is a regular weighted look-ahead for each state.

To save parentheses, we will write cq instead of c(q) for every state q ∈ Q.
Next, we recall some common restrictions of the general model that have

already been discussed in [7]. The l-wxtR M is

– ε-free (resp., strict), if � /∈ Q (resp., r /∈ Q) for every rule 〈�, q, r〉 ∈ R,
– nondeleting, if var(�) = var(r) for every rule 〈�, q, r〉 ∈ R,
– Boolean, if ‘wt’ and cq are Boolean for every state q ∈ Q,
– an l-wxt (i.e., without look-ahead) if cq(t) = 1 for every state q ∈ Q and tree

t ∈ TΣ , and
– an l-wtR (i.e., non-extended) if posΣ(�) = {ε} for every rule 〈�, q, r〉 ∈ R.
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Next we recall the semantics of an l-wxtR M = (Q,Σ,Δ, q0, R,wt, c), which
is the weighted tree transformation ‖M‖q

K
: TΣ × TΔ → K defined inductively

for every t ∈ TΣ and u ∈ TΔ by

‖M‖q
K
(t, u) =

∑

(�,t1,...,tn)∈decomp(t)
(r,θ)∈substn(u)

q1,...,qn∈Q
ρ=〈�[q1,...,qn],q,r[q1,...,qn]〉∈R

wt(ρ) ·
( ∏

xi∈var(r)

‖M‖qi

K
(ti, xiθ)

)

·
( ∏

xi∈var(�)\var(r)
cqi(ti)

)

. (2)

Using our remarks about decomp(t) and substn(u), all sets used in the index of
the sum are finite, so the sum has only finitely many summands. Since we have
〈�[q1, . . . , qn], q, r[q1, . . . , qn]〉 ∈ R, we know that � /∈ Q or r /∈ Q. Consequently,
|ti| < |t| or |xiθ| < |u| for every i ∈ [n] with xi ∈ var(r), which proves that
the recursion is well-founded. Besides the rule weight wt(ρ), we multiply the
weights ‖M‖qi

K
(ti, xiθ) of the recursive processing of those subtrees ti that are

further processed. The subtrees that are not further processed contribute their
look-ahead weight cqi(ti). The semantics ‖M‖K : TΣ × TΔ → K is then given
for every t ∈ TΣ and u ∈ TΔ by ‖M‖K(t, u) = ‖M‖q0

K
(t, u). For nondeleting

l-wxtR the rightmost product in (2) yields 1, hence nondeleting l-wxtR and
nondeleting l-wxt are equally expressive. An l-wxtR M is functional if ‖M‖K is
functional. We note that each l-wxtR M that is ε-free or functional induces a
finitary ‖M‖K. Next we relate l-wxtR over the semiring N and l-wxtR over K.
For this, we recall that N is the initial commutative semiring, so there exists
a unique homomorphism [9,11] from N to K, i.e., a mapping h : N → K with
h(0) = 0, h(1) = 1, h(n + n′) = h(n) + h(n′), and h(n · n′) = h(n) · h(n′) for all
n, n′ ∈ N.

Lemma 2. Let M = (Q,Σ,Δ, q0, R,wt, c) be an l-wxtR over the semiring N of
nonnegative integers, and let h : N → K be the unique semiring homomorphism
from N to K. Then h(‖M‖N(t, u)) = ‖M ′‖K(t, u) for all (t, u) ∈ TΣ × TΔ, where
M ′ = (Q,Σ,Δ, q0, R,wt′, c′) is the l-wxtR over the semiring K with wt′(ρ) =
h(wt(ρ)) and (c′)q(t) = h(cq(t)) for all ρ ∈ R, q ∈ Q, and t ∈ TΣ .

We abbreviate the properties of l-wxtR as follows: ‘�ε’ = ε-free, ‘s’ = strict,
‘n’ = nondeleting, ‘B’ = Boolean, ‘f’ = functional. We use these shorthands
with the stems ‘l-wxtR’,
‘l-wxt’, ‘l-wtR’, and ‘l-wt’ to talk about an l-wxtR, l-wxt, l-wtR, or l-wt that
additionally has the abbreviated properties attached as a prefix. For example,
Bnl-wxt stands for “Boolean nondeleting l-wxt”. We use the same abbrevia-
tions with the stem (i.e., the material behind the hyphen) in typesetter letters
(and the semiring K in parentheses) for the corresponding classes of induced
weighted tree transformations. For instance, nl-WXT(K) stands for the set of all
weighted tree transformations computable by nl-wxt.

Utilizing the bimorphism characterizations of [7, Section 4] and the closure of
the regular tree languages under linear homomorphisms [8, Theorem II.4.16], we
easily obtain that both the domain as well as the range of each such transducer
are regular, which we utilize without explicit mention.
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Lemma 3. For every τ ∈ l-WXTR(B) both dom(τ) and range(τ) are regular.

Finally, we recall the results for the composition hierarchies of the unweighted
tree transformation classes, which we lift to the weighted case in Sect. 5.

Theorem 4 (see [1, Theorem 6.2] and [6, Theorems 26, 31, 33, 34]).

�εnsl-WXT(B)3 = �εnsl-WXT(B)2 (3a)

�εsl-WXT(B)3 = �εsl-WXT(B)2 (3b)

�εl-WXT(B)5 = �εl-WXT(B)4 (3c)

�εsl-WXTR(B)3 = �εsl-WXTR(B)2 (3d)

�εl-WXTR(B)4 = �εl-WXTR(B)3 (3e)

Additionally, the classes of (3b) and (3d) as well as (3c) and (3e) coincide.

4 Faithful Representation

In this section, we deal with the question in which cases unweighted trans-
ducers faithfully represent certain Boolean weighted transducers (note that
the weighted tree transformation induced by a Boolean l-wxtR might not be
Boolean). Moreover, we consider for which such transducers M another such
transducer M ′ exists, which induces a partial function ‖M ′‖B ⊆ ‖M‖B with the
same domain as ‖M‖B. We start with the definition of unambiguous l-wxtR. To
this end, we reinterpret Boolean l-wxtR over the semiring K, which anyway
only use the neutral elements 0 and 1, as Boolean l-wxtR over the semiring N

of nonnegative integers by identifying the neutral elements 0 and 1 in K and N.
Thus, given a Boolean l-wxtR M (over K), we write ‖M‖N for its semantics in
the semiring of nonnegative integers. We also reinterpret M over the Boolean
semiring B and write ‖M‖B. Over the Boolean semiring B, we sometimes iden-
tify mappings f : S → {0, 1} with their support supp(f) and vice versa, so
‖M‖B : TΣ × TΔ → {0, 1} is identified with ‖M‖B ⊆ TΣ × TΔ for a Boolean
l-wxtR M .

Definition 5. Let M = (Q,Σ,Δ, q0, R,wt, c) be a Boolean l-wxtR over K and
L ⊆ TΣ . We say that M is unambiguous on L if ‖M‖N(t, u) ∈ {0, 1} for every
(t, u) ∈ L × TΔ (i.e., the mapping ‖M‖N restricted to L × TΔ is Boolean). In
the case of L = TΣ , we also say that M is unambiguous.

Lemma 6. Let M = (Q,Σ,Δ, q0, R,wt, c) be a Boolean l-wxtR over K that is
unambiguous on L ⊆ TΣ . Then ‖M‖K(t, u) = ‖M‖B(t, u) for all (t, u) ∈ L×TΔ.

Next we consider how Boolean weighted tree transformations behave under
composition. We will identify another restriction, functionality, that is required
for the faithful representation via unweighted composition.

Lemma 7. Let τ : TΣ × TΔ → K and τ ′ : TΔ × TΓ → K be Boolean weighted
tree transformations. If τ is functional, then τ ; τ ′ = supp(τ) ; supp(τ ′).
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With this knowledge we are now ready to state the main lemma of this
section. Given Boolean transducers that additionally obey certain functional-
ity and unambiguity restrictions, the computation inside the Boolean semiring
faithfully represents the computation in the semiring K. We recall that the neu-
tral element of composition is the identity mapping idTΣ

= {(t, t) | t ∈ TΣ} of
the correct set TΣ , whose range is clearly TΣ .

Lemma 8. Let n ≥ 1 be an integer and Mi = (Qi, Σi, Σi+1, q
0
i , Ri,wti, ci) be a

Boolean l-wxtR for every i ∈ [n]. If (i) Mi is unambiguous on

range(‖M1‖K ; · · · ; ‖Mi−1‖K)

and (ii) ‖M1‖K ; · · · ; ‖Mi−1‖K is functional for every i ∈ [n], then

‖M1‖K ; · · · ; ‖Mn‖K = ‖M1‖B ; · · · ; ‖Mn‖B .

We identify a weighted tree transformation over B with its support for the
rest of this section. A uniformizer [2] of a tree transformation τ ⊆ TΣ × TΔ

is a partial function f : TΣ → TΔ such that f ⊆ τ and dom(f) = dom(τ). In
other words, a uniformizer of τ is a maximal partial function contained in τ .
We start with a simple proposition that shows how uniformizers behave under
composition.

Lemma 9 ([2, Lemma 24]). Let n ≥ 1 be an integer, Σ1, . . . , Σn+1 be ranked
alphabets, and τi ⊆ TΣi

× TΣi+1 and fi : TΣi
→ TΣi+1 be tree transformations

for all i ∈ [n]. If

1. range(τj) ⊆ dom(τj+1) for all 1 ≤ j ≤ n − 1 and
2. fi is a uniformizer for τi for all i ∈ [n],

then f = f1 ; · · · ; fn is a uniformizer for τ = τ1 ; · · · ; τn and dom(τ) = dom(τ1).
If additionally τ is functional, then f = τ .

Finally, we need two results from the theory of unweighted tree transducers.
The first statement establishes the existence of uniformizers of tree transforma-
tions induced by �εl-wxtR over B.

Lemma 10 (variant of [5, Lemma]). For every w ⊆ {n, s}, each tree trans-
formation of w�εl-WXTR(B) has a uniformizer in w�εfl-WXTR(B).

The second statement builds also on [5, Lemma], which essentially says that
functional top-down tree transducers can be determinized provided that they
have regular look-ahead. We utilize the same idea to prove a corresponding
lemma, where we use unambiguity instead of determinism. The lemma shows
that we can remove ambiguity from a functional l-wxtR over B. We use the
shorthand ‘u’ to abbreviate ‘unambiguous’.

Lemma 11. wfl-WXTR(B) = wful-WXTR(B) for all w ⊆ {�ε, n, s}.
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5 Main Results

We start with a construction that shows that a weighted relabeling can be sepa-
rated from an ε-free l-wxtR that handles all the weights and the nondeterminism
leaving a Boolean functional ε-free l-wxtR that is also unambiguous.

Lemma 12. For all w ⊆ {n, s}
w�εl-WXTR(K) ⊆ WREL(K) ; w�εBful-WXTR(K)
w�εl-WXT(K) ⊆ WREL(K) ; w�εBful-WXT(K) .

Proof. Let M = (Q,Σ,Δ, q0, R,wt, c) be an arbitrary ε-free l-wxtR. Since we
also need access to the transitions of a weighted tree automaton computing the
regular look-ahead, let A = (Q′, Σ,Q′

0,wt) be a weighted tree automaton such
that Q ⊆ Q′ and ‖A‖q

K
= cq for every q ∈ Q (e.g., we can take the disjoint union

of the weighted tree automata computing cq for all q ∈ Q). Let P = R∪supp(wt)
be the set of all rules and transitions used in M and A. We first construct the
ranked alphabet (Σ′, rk′) consisting of the symbols Σ′ = Σ ∪ (Σ × P ) such that
rk′(σ) = rk(σ) and rk′(〈σ, ρ〉) = rk(σ) for every σ ∈ Σ and ρ ∈ P . Next, we
construct the weighted relabeling ν : Σ×Σ′ → K as follows: ν(σ, σ′) = δσσ′ and

ν(σ, 〈σ′, ρ〉) =
{

δσσ′ · wt(ρ), if ρ ∈ R;
δσσ′ · wt(ρ), if ρ ∈ supp(wt)

for all σ, σ′ ∈ Σ and ρ ∈ P , where δσσ′ is the usual Kronecker delta. In
other words, the relabeling either (i) keeps the symbol or (ii) keeps the input
symbol, but annotates a rule or transition and charges the corresponding weight.
Intuitively, the relabeling annotates the rules and transitions to be executed,
but the relabeling does not ensure that the annotation can actually be executed
at the annotated position. This check and the execution are performed by the
Boolean ε-free l-wxtR M ′ = (Q,Σ′,Δ, q0, R

′,wt′, c), to which the Boolean
weighted tree automaton A′ = (Q′, Σ′, Q′

0,wt
′) is associated via cq = ‖A′‖q

K
for

every state q ∈ Q. We set

– ρ′ =
〈〈�(ε), ρ〉(�|1, . . . , �|rk(σ)), q, r

〉 ∈ R′ and wt′(ρ′) = 1 for every rule ρ =
〈�, q, r〉 ∈ R,

– wt′(q′
1, . . . , q

′
n, 〈σ, ρ〉, q′) = 1 for every ρ = (q′

1, . . . , q
′
n, σ, q′) ∈ supp(wt), and

– no additional rules are in R′ and wt′(ρ) = 0 for all other transitions ρ.

Note that �(ε) ∈ Σ in the first item because M is ε-free. Hence M ′ is ε-free.
Moreover, A′ is deterministic and both M ′ and A′ are Boolean because cq =
‖A′‖q

K
is also Boolean. So the constructed l-wxtR M ′ is Boolean and ε-free.

Moreover, it inherits the properties ‘nondeleting’ and ‘strict’ from M . If M
has trivial look-ahead c, then we set c to the trivial look-ahead for TΣ′ for
the statements on l-wxt. Finally, it is straightforward to establish that M ′ is
functional and unambiguous as it can at most execute the annotated rules and
transitions (and can perform this in at most one fashion).
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It remains to prove that ‖M‖K = ν ; ‖M ′‖K, for which we first prove that
‖M‖q

K
= ν ; ‖M ′‖q

K
for every q ∈ Q and ‖A‖q′

K
= ν ; ‖A′‖q′

K
for every q′ ∈ Q′.

These proofs can be found in the appendix.

We prove that we can compose any such relabeling to the right of any l-wxtR.

Lemma 13. For all w ⊆ {n, s}
w�εl-WXTR(K) ; WREL(K) ⊆ w�εl-WXTR(K)
w�εl-WXT(K) ; WREL(K) ⊆ w�εl-WXT(K) .

Proof. Let M = (Q,Σ,Δ, q0, R,wt, c) be an ε-free l-wxtR and ν : Δ × Δ′ → K
be a weighted relabeling. We construct the l-wxtR M ′ = (Q,Σ,Δ′, q0, R′,wt′, c)
such that 〈�, q, r′〉 ∈ R′ and wt′(〈�, q, r′〉) =

∑
〈�,q,r′′〉∈R wt(〈�, q, r′′〉) · ν(r′′, r′)

for every translation rule 〈�, q, r〉 ∈ R and r′ ∈ TΔ′(Q) with ν(r, r′) �= 0. No
additional rules are in R′. Since the left-hand sides and the shape of the right-
hand sides remains the same, it is clear that M ′ inherits the properties ‘ε-free’,
‘nondeleting’, and ‘strict’ directly from M . Since the look-ahead coincides these
results also hold for l-wxt.

It remains to prove that ‖M‖K ; ν = ‖M ′‖K, which we prove again with the
help of ‖M‖q

K
;ν = ‖M ′‖q

K
for every q ∈ Q. The proof details are in the appendix.

We now have the two ingredients that allow us to normalize composition
chains of ε-free l-wxtR.

Theorem 14. For all n ≥ 1 and w ⊆ {n, s}
w�εl-WXTR(K)n ⊆ WREL(K) ; w�εBful-WXTR(K)n

w�εl-WXT(K)n ⊆ WREL(K) ; w�εBful-WXT(K)n .

Proof. We prove the statements by induction on n. For n = 1, they are proved
in Lemma12. Suppose that the property holds for n ≥ 1. Then using Lem-
mas 12 and 13 and the induction hypothesis in sequence we obtain

w�εl-WXTR(K)n+1 ⊆ w�εl-WXTR(K)n ; WREL(K) ; w�εBful-WXTR(K)

⊆ w�εl-WXTR(K)n ; w�εBful-WXTR(K) ⊆ WREL(K) ; w�εBful-WXTR(K)n+1

and the same reasoning proves the statement also for l-wxt.

Finally, we compose a weighted relabeling to the left of an ε-free l-wxtR to
eliminate the weighted relabeling again.

Lemma 15. WREL(K) ; w�εl-WXTR(K) ⊆ w�εl-WXTR(K) for all w ⊆ {n, s}.
Proof. Let ν : Σ ×Σ′ → K be a weighted relabeling, M = (Q,Σ′,Δ, q0, R,wt, c)
be an arbitrary ε-free l-wxtR. The ε-free l-wxtR M ′ = (Q,Σ,Δ, q0, R

′,wt′, c) is
given by 〈�′, q, r〉 ∈ R′ and wt′(〈�′, q, r〉) = ∑

〈�′′,q,r〉∈R ν(�′, �′′) ·wt(〈�′′, q, r〉) for
every rule ρ = 〈�, q, r〉 ∈ R and �′ ∈ TΣ(Q) with ν(�′, �) �= 0. No additional rules
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are in R′. In addition, we let cq = ν ; cq for every q ∈ Q, which is regular by
Theorem1. Obviously, the constructed l-wxtR M ′ is ε-free, and it inherits the
properties ‘nondeleting’ and ‘strict’ from M .

To prove that ν ; ‖M‖K = ‖M ′‖K, we first prove that ν ; ‖M‖q
K
= ‖M ′‖q

K
for

every q ∈ Q. Both proofs can be found in the appendix.

Now we are ready to state and prove our main results.

Theorem 16.

�εnsl-WXT(K)3 = �εnsl-WXT(K)2 (4a)

�εsl-WXT(K)3 = �εsl-WXT(K)2 (4b)

�εl-WXT(K)5 = �εl-WXT(K)4 (4c)

�εsl-WXTR(K)3 = �εsl-WXTR(K)2 (4d)

�εl-WXTR(K)4 = �εl-WXTR(K)3 (4e)

Additionally, the classes of (4b) and (4d) as well as (4c) and (4e) coincide.

Proof. All the right-to-left inclusions are trivial. The left-to-right inclusions are
shown as follows. To prove (4a), let τ ∈ �εnsl-WXT(K)3 be of type τ : TΣ × TΔ →
K. According to Theorem14 there exist a weighted relabeling ν : Σ × Σ′ → K
and τ ′ : TΣ′ × TΔ → K such that τ = ν ; τ ′ and τ ′ ∈ �εnsBful-WXT(K)3. Since
the composition of functional weighted tree transformations is naturally again
functional, we can apply Lemma8 to obtain that τ ′ ∈ �εnsful-WXT(B)3. Using
(3a), we obtain τ ′ ∈ �εnsl-WXT(B)2. Let τ ′ = τ ′

1 ; τ
′
2 with τ ′

1, τ
′
2 ∈ �εnsl-WXT(B).

Next we restrict the range of τ ′
1 to the regular tree language dom(τ ′

2). In this way,
we obtain the tree transformation τ ′′

1 ∈ �εnsl-WXT(B). Clearly, τ ′′
1 ; τ ′

2 = τ ′
1 ; τ

′
2.

Using Lemma 10 we additionally obtain uniformizers f ′′
1 , f ′′

2 ∈ �εnsfl-WXT(B) for
τ ′′
1 and τ ′

2, respectively. Since τ ′ is functional, we fulfill all the requirements
of Lemma 9 and we can conclude that f ′′

1 ; f ′′
2 = τ ′′

1 ; τ ′
2 = τ ′

1 ; τ ′
2 = τ ′. Hence

τ ′ ∈ �εnsfl-WXT(B)2. With the help of Lemma11 we obtain τ ′ ∈ �εnsful-WXT(B)2,
which immediately also yields τ ′ ∈ �εnsBful-WXT(K)2 by Lemma8. Finally, we
utilize Lemma15 to show that τ = ν ; τ ′ ∈ �εnsl-WXT(K)2 as desired.

This approach works in the same manner for (4d) and (4e). However, instead
of (3a), we use the results (3d) and (3e), respectively.

To prove (4b) we proceed in the same manner as in case (4a) and obtain that
τ = ν ; τ ′, where ν is a weighted relabeling and τ ′ ∈ �εsful-WXT(B)3. Then we
use

�εsl-WXT(B)3 = �εnsl-WXT(B) ; �εsl-WXTR(B)
from [6, Theorem 20], and again as in the proof of case (4a) we obtain the
statement τ ′ ∈ �εnsBful-WXT(K) ; �εsBful-WXTR(K). It is well-known that regular
look-ahead can be simulated by a nondeleting, strict, and linear weighted top-
down tree transducer. Thus, we obtain that τ ′ is an element of

�εnsBful-WXT(K) ; �εsBful-WXTR(K) ⊆�εnsl-WXT(K) ; nsl-WT(K) ; �εsl-WXT(K)

⊆�εnsl-WXT(K) ; �εsl-WXT(K) ⊆�εsl-WXT(K)2,
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where the second inclusion is due to [13, Theorem 8]. Then by Lemma15 we
obtain that τ ∈ �εsl-WXT(K)2.

Finally, for (4c) we also proceed as usual: τ = ν ; τ ′, where ν is a weighted
relabeling and τ ′ ∈ �εful-WXT(B)5. We continue with

�εl-WXT(B)5 = �εl-WXT(B)4 ⊆�εl-WXTR(B)4 ⊆ l-WTR(B) ; �εsl-WXTR(B)2 ,

where the first equality is by (3c) and the second inclusion is due to [6, Theo-
rem 24]. Continuing on as before, we arrive at

τ ′ ∈ Bful-WTR(K) ; �εsBful-WXTR(K)2 .

Removing the regular look-ahead with the constructions already mentioned, we
obtain

τ ′ ∈ nsl-WT(K) ; l-WT(K) ; �εsl-WXT(K)2 ⊆�εl-WXT(K)4

and then by Lemma15 we conclude that τ ∈ �εl-WXT(K)4. The final equalities
between the classes of (4b) and (4d) as well as (4c) and (4e) follow directly from
the presented arguments.
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