
A Simple Extension to Finite Tree
Automata for Defining Sets of Labeled,

Connected Graphs

Akio Fujiyoshi1 and Daniel Pr̊uša2(B)

1 Department of Computer and Information Sciences, Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

akio.fujiyoshi.cs@vc.ibaraki.ac.jp
2 Faculty of Electrical Engineering, Czech Technical University,

Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic
prusapa1@fel.cvut.cz

Abstract. This paper introduces spanning tree automata (ST
automata) usable for defining sets of labeled, connected graphs. The
automata are simply obtained by extending ordinary top-down finite
tree automata for labeled, ordered trees. It is shown that ST automata
can define any finite set of labeled, connected graphs, and also some
subclasses of infinite sets of graphs that can represent the structure of
chemical molecules. Although the membership problem for ST automata
is NP-complete, an efficient software was developed which supports a
practical use of ST automata in chemoinformatics as well as in other
fields.

Keywords: Automata theory · Tree automaton · Graph automaton ·
NP-completeness · Chemoinformatics

1 Introduction

Formal grammars, finite automata and regular expressions are powerful tools for
defining sets of strings over a finite alphabet [10,11]. For defining sets of labeled,
ordered trees, we have tree grammars and finite tree automata as well [2,4,8,13].
How about for defining sets of graphs? Monadic second-order logic (MSOL) has
been studied for describing graph properties [6]. There are many studies of graph
grammars [14]. As for practical tools like context-free grammars and regular
expressions, however, there is no common idea. This paper suggests the use of
finite tree automata with a simple extension for defining sets of graphs.

Simple but powerful tools for defining a set of labeled, connected graphs has
been requested in the field of chemoinformatics [3]. Pharmaceutical companies
and research laboratories have to claim their intellectual property on chemical

A. Fujiyoshi—Supported by JSPS KAKENHI Grant Number JP18H01036.
D. Pr̊uša—Supported by the Czech Science Foundation grant 19-21198S.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 121–132, 2019.
https://doi.org/10.1007/978-3-030-23679-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_10

122 A. Fujiyoshi and D. Pr̊uša

structures of new medicine by applying for patents. Chemical structure formu-
las of molecules are labeled, connected graphs, where vertices are labeled as
the name of atoms and edges are labeled as the type of bonds. To protect the
intellectual property of new medicine, not only the exact chemical structure of
new medicine but also similar chemical structures must be explicitly claimed
in a patent application because a chemical compound with a similar chemical
structure usually has a similar chemical property. The most popular way for this
purpose is using a Markush structure. A Markush structure is a graphical dia-
gram with expressions in a natural language commonly used in patent claims,
firstly used in January, 1923. Because of the limitation of its expressive power,
the range of a Markush structure often becomes too broad and contains many
unrelated chemical compounds [15]. However, a substitutable method has not
been invented so far, and Markush structures are continuously used for almost
100 years.

This paper introduces spanning tree automata (ST automata) for defining
sets of labeled, connected graphs. ST automata are simply obtained by extend-
ing ordinary top-down finite tree automata for labeled, ordered trees. The idea
behind this extension is based on a very simple fact: “Any connected graph with
cycles becomes a tree if we break all cycles.” As shown in Fig. 1, by choosing an
edge from each cycle and inserting two virtual vertices at the middle of the edges,
a tree is obtained. We call this tree an extended spanning tree. An ST automaton
may be viewed as a finite tree automaton that accepts extended spanning trees
instead of labeled, connected graphs.

Fig. 1. Obtaining an extended spanning tree.

The goal of the paper is to demonstrate that the proposed ST automata
(defined in Sect. 3) are a practical tool which can be applied to describe and
analyse structures important for chemoinformatics and other fields. It is shown
that ST automata can define any finite set of labeled, connected graphs (Sect. 4).
The ability to define infinite sets of graphs is strengthened after introducing a
variant of ST automata working over breadth-first search spanning trees only
(Sect. 5). Although the membership problem for ST automata is NP-complete,
we were able to develop an implementation efficient enough to find subgraphs
accepted by an ST automaton in graphs induced by real data. The implementa-
tion extends the algorithm in [7] proposed for finding a spanning tree accepted

Extended Finite Tree Automata Defining Sets of Graphs 123

by a finite tree automaton in a graph of treewidth 2. A report on the newly
developed software and performed experiments is available in Sect. 6.

2 Preliminaries

A graph is an ordered pair G = (V,E), where V is a finite set of vertices, and E
is a set of unordered pairs of distinct vertices, called edges. An edge {u, v} ∈ E
is written as uv or vu. A vertex u ∈ V is adjacent to another vertex v ∈ V if
an edge uv is in E. For v ∈ V , we define N(v) = {u | u ∈ V and u is adjacent
to v}, and |N(v)| is called the degree of v.

For vertices u, v ∈ V , a path of length n ≥ 0 from u to v is a sequence of
vertices v1, . . . , vn+1 where u = v1, v = vn+1, for all 1 ≤ i ≤ n, vi is adjacent
to vi+1, and v1, v2, . . . , vn+1 are all distinct except that v1 may equal to vn+1.
The distance between u, v ∈ V in G, denoted dG(u, v), is the length of a shortest
path from u to v. A cycle is a path of positive length from v to v for some v ∈ V .
Graph G is acyclic if there is no cycle in G. Graph G is connected if there is a
path from u to v for any pair of distinct vertices u, v ∈ V .

A tree is a connected, acyclic graph. A vertex of a tree is called a node. A
rooted tree is a pair (T, r) such that T is a tree, and r is a node of T . The node r
is called the root. In a rooted tree, we assume that the edges have a natural
direction away from the root. The parent of a node v is the node adjacent to v
on the path from the root to v. Note that every node except the root has a
unique parent. The children of a node v are the nodes whose parent is v. A node
without any children is called a leaf.

Let Σ be a finite set of vertex labels, and let Γ be a finite set of edge labels.
A vertex labeling of G is a function σ : V → Σ, and a edge labeling of G is
a function γ : E → Γ . A labeled graph over Σ and Γ is a quadruple G =
(V,E, σ, γ). In this paper, we assume every graph to be connected and labeled,
and a graph implies a labeled, connected graph unless otherwise stated. We
use letters in Roman alphabet A, a,B, b, C, c, . . . for vertex labels and numerical
digits 1, 2, 3, . . . for edge labels.

Let G = (V,E, σ, γ) be a graph over Σ and Γ , and let B ⊆ E be a subset of
edges such that T = (V,E � B) is a tree. B is called a set of non-tree edges. An
extended spanning tree of G decided by B is a tree T = (V ′, E′, σ′, γ′) over Σ
and Γ defined as follows:

– V ′ = V ∪{bu, bv | b = uv ∈ B}, where bu and bv are new vertices not included
in V , called virtual vertices for a non-tree edge b.

– E′ = (E � B) ∪ {ubu, vbv | b = uv ∈ B}.
– σ′ : V ′ → Σ is such that, for each v ∈ V , σ′(v) = σ(v), and, for each

v ∈ V ′
� V , σ′(v) is set to undefined.

– γ′ : E′ → Γ is such that, for each e ∈ E, γ′(e) = γ(e), and, for each
b = uv ∈ B, γ′(ubu) = γ′(vbu) = γ(b).

124 A. Fujiyoshi and D. Pr̊uša

Fig. 2. (1) The graph G, (2) the extended spanning tree decided by B1, and (3) the
extended spanning tree decided by B2.

Example 1. Let G = (V,E, σ, γ) be a graph over Σ = {a, b}, Δ = {1, 2, 3}, where

V ={v1, v2, v3, v4, v5, v6},

E ={v1v2, v1v4, v1v5, v2v3, v3v4, v5v6},

σ ={(v1, a), (v2, b), (v3, a), (v4, b), (v5, b), (v6, a)}, and
δ ={(v1v2, 1), (v1v4, 2), (v1v5, 3), (v2v3, 2), (v3v4, 1), (v5v6, 3)}.

For the graph G, B1 = {v1v2} and B2 = {v3v4} are two of the sets of non-tree
edges. The graph G and the extended spanning trees decided by B1 and B2 are
illustrated in Fig. 2.

3 Spanning Tree Automata for Labeled, Connected
Graphs

A spanning tree automaton is defined as an extension of the well-known nonde-
terministic top-down finite tree automaton for labeled, ordered trees [4]. Instead
of graphs, an ST automaton deals with their extended spanning trees.

3.1 Definitions

A spanning tree automaton (ST automaton) is a 6-tuple A = (Q,Σ, Γ, q0, P,R)
where:

– Q is a finite set of states,
– Σ is an alphabet of vertex labels,
– Γ is an alphabet of edge labels,
– q0 ∈ Q is the initial state,
– P is a set of unordered pairs of states, called acceptable state matchings, and
– R is a finite set of transition rules of the form

Extended Finite Tree Automata Defining Sets of Graphs 125

q(f(c1, c2, . . . , cn)) → f(q1(c1), q2(c2), . . . , qn(cn))

where n ≥ 0, f ∈ Σ, q, q1, q2, . . . , qn ∈ Q, and c1, c2, . . . , cn ∈ Γ . The num-
ber n is called the width of a transition rule. When n = 0, we write q(f) → f
instead of q(f()) → f().

Let A = (Q,Σ, Γ, q0, P,R) be an ST automaton, let G = (V,E, σ, γ) be a graph,
let T = (V ′, E′, σ′, γ′) be an extended spanning tree of G decided by a set of
non-tree edges B, and let r ∈ V be a vertex of G. A state mapping on T is a
function μ : V ′ → Q. A state mapping μ on the rooted tree (T, r) is acceptable
by A if the following conditions hold:

– μ(r) = q0, i.e., a state mapped to the root is always the initial state,
– for each node v ∈ V ′ with n (n > 0) children v1, v2, . . . , vn, if σ(v) = f ,

μ(v) = q, γ(vv1) = c1, γ(vv2) = c2, . . . , γ(vvn) = cn, and μ(v1) = q1,
μ(v2) = q2, . . . , μ(vn) = qn, then R contains the following transition rule:

q(f(c1, c2, . . . , cn)) → f(q1(c1), q2(c2), . . . , qn(cn)),

– for each leaf v ∈ V , if σ(v) = f and μ(v) = q, then R contains the following
transition rule:

q(f) → f,

– and for each b = uv ∈ B, {μ(bu), μ(bv)} ∈ P , i.e., the states mapped to the
virtual vertices for b must be in acceptable state matchings.

The graph G is accepted by A if an extended spanning tree T decided by some
set of non-tree edges B exists, a state mapping μ on T exists, a vertex r ∈ V
exists, and μ on (T, r) is acceptable by A.

The set of graphs defined by an ST automaton A is the set accepted by A.

Example 2. A = (Q,Σ, Γ, q0, P,R) is an example of an ST automaton, where
Q = {q0, q1, q2, q3}, Σ = {a, b}, Γ = {1, 2, 3}, P = {{q1, q1}, {q1, q2}}, and R
consists of transition rules:

q0(a(1, 2, 3)) → a(q1(1), q2(2), q3(3)) , q1(a(2)) → a(q2(2)) ,

q2(b(1)) → b(q1(1)) , q3(b(3)) → b(q3(3)) , q3(a) → a .

Consider the graph G and its non-tree edge set B1 in Example 1. Let G′ be
the extended spanning tree of G decided by B1. Consider the following state
mapping μ on G′:

μ ={(v1, q0), (v2, q2), (v3, q1), (v4, q2), (v5, q3), (v6, q3), (v1v2v1 , q1), (v1v2v2 , q1)} .

The state mapping μ on (G′, v1) is illustrated in Fig. 3. The graph G is accepted
by A because μ on (G′, v1) is acceptable by A. Note that the pair of states
mapped to the virtual vertices for v1v2 is {q1, q1}, and it is in P .

126 A. Fujiyoshi and D. Pr̊uša

Fig. 3. The state mapping μ on (G′, v1).

(a) (b)

Fig. 4. Chemical structural formulas of (a) benzene and (b) cycloalkanes.

3.2 Examples of Spanning Tree Automata

Example 3. We present two ST automata defining a set of chemical structural
formulas. One defines the chemical structural formula of benzene as illustrated
in Fig. 4a, and the other defines the cycloalkanes as illustrated in Fig. 4b. In
a chemical structural formula, carbon atoms are implied to be located at the
vertices of line segments, and hydrogen atoms attached to carbon atoms are
omitted.

We set Σ = {C} and Γ = {1, 2}, where the vertex label C stands for a
carbon atom, and the edge labels 1 and 2 stand for a single bond and a double
bond, respectively.

The following is an ST automaton that defines a chemical structural formula
of benzene: A = (Q,Σ, Γ, q0, P,R), where Q = {q0, q1, q2, q3, q4, q5, q6}, P =
{{q6, q6}} and R consists of transition rules:

q0(C(1, 2)) → C(q1(1), q6(2)) , q1(C(2)) → C(q2(2)) , q2(C(1)) → C(q3(1)) ,

q3(C(2)) → C(q4(2)) , q4(C(1)) → C(q5(1)) , q5(C(2)) → C(q6(2)) .

The following is an ST automaton that defines chemical structural formulae
of the cycloalkanes: A = (Q,Σ, Γ, q0, P,R), where Q = {q0, q1, q2, q3}, P =
{{q3, q3}} and R consists of transition rules:

q0(C(1, 1)) → C(q1(1), q3(1)) , q1(C(1)) → C(q2(1)) ,

q2(C(1)) → C(q2(1)) , q2(C(1)) → C(q3(1)) .

Extended Finite Tree Automata Defining Sets of Graphs 127

4 Properties of Spanning Tree Automata

Lemma 1. For any graph G there is an ST automaton A defining the set {G}.
Proof. Suppose that G = (V,E, σ, γ), a graph over Σ and Γ , is given. Let B be a
set of non-tree edges of G, and let G′ = (V ′, E′, σ′, γ′) be the extended spanning
tree of G decided by B. Choose any vertex r ∈ V for the root.

We can construct an ST automaton A = (Q,Σ, Γ, q0, P,R) as follows:

– Q = {v̂ | v ∈ V } ∪ {p̂ | p ∈ B},
– q0 = r̂,
– P = {{p̂, p̂} | p ∈ B}, and
– for each v ∈ V , R has the following transition rule:

v̂(f(c1, c2, . . . , cn)) → f(q1(c1), q2(c2), . . . , qn(cn))

where v has n children v1, v2, . . . , vn in the rooted tree (G′, r), f = σ(v), and,
for 1 ≤ i ≤ n, if vi = pv for some p = uv ∈ B, then ci = γ(uv) and qi = p̂,
otherwise ci = γ(vvi) and qi = v̂i.

An acceptable state mapping μ on (G′, r) can be obtained as follows: For
v ∈ V , μ(v) = v̂, and, for p = uv ∈ B, μ(pu) = μ(pv) = p̂.

Clearly, the ST automaton A precisely defines the set {G}. �	
Lemma 2. The class of sets of graphs accepted by ST automata is effectively
closed under union.

Proof. Let A = (Q,Σ, Γ, q0, P,R) and A′ = (Q′, Σ′, Γ ′, q′
0, P

′, R′) be ST
automata. We may assume that Q ∩ Q′ = ∅. We consider an ST automaton
A′′ = (Q′′, Σ′′, Γ ′′, q′′

0 , P ′′, R′′) defined as follows:

– Q′′ = Q ∪ Q′ ∪ {q′′
0}, where q′′

0 is a new state,
– Σ′′ = Σ ∪ Σ′,
– Γ ′′ = Γ ∪ Γ ′,
– P ′′ = P ∪ P ′, and
– R′′ = R ∪ R′ ∪ {r′′ | r ∈ R ∪ R′, q0 or q′

0 appears on the left-hand side of r,
and r′′ is obtained by replacing q0 or q′

0 on the left-hand side of r with q′′
0}.

Clearly, a graph G is accepted by A′′ if and only if G is accepted by either A
or A′. �	
Theorem 1. For any finite set of graphs, we can construct an ST automaton
that defines it.

Proof. The theorem clearly follows from Lemmas 1 and 2. �	
Because the membership problem for ST automata includes the graph iso-

morphism problem, it is at least GI-hard. Its NP-completeness is obtained by the
reduction from the Hamiltonian cycle problem with vertex degree at most 3 [9].
When a graph with degree at most 3 has a Hamiltonian cycle, (1) the graph
has no vertex of degree 0 or 1, (2) for each vertex of degree 2, both edges con-
nected to the vertex belong to the Hamiltonian cycle, and (3) for each vertex of
degree 3, two edges connected to the vertex belong to the Hamiltonian cycle but
the remaining edge does not and is adjacent to another vertex of degree 3.

128 A. Fujiyoshi and D. Pr̊uša

Theorem 2. The membership problem for ST automata is NP-complete.

Proof. Consider the ST automaton A = (Q,Σ, Γ, q0, P,R), where Q =
{q0, q1, q2}, Σ = {a}, Γ = {1}, P = {{q1, q1}, {q2, q2}} and R consists of transi-
tion rules:

q0(a(1, 1)) → a(q1(1), q1(1)) , q0(a(1, 1, 1)) → a(q1(1), q1(1), q2(1)) ,

q1(a(1)) → a(q1(1)) , q1(a(1, 1)) → a(q1(1), q2(1)) .

It is clear that A accepts a graph with degree at most 3 that has a Hamilto-
nian cycle. Since the Hamiltonian cycle problem with vertex degree at most 3 is
NP-hard, this problem is also NP-hard.

On the other hand, given a graph G, we can nondeterministically obtain a
set of non-tree edges B, an extended spanning tree G′ decided by B, a state
mapping μ on G′, a vertex r ∈ V , and check if μ on (G′, r) is acceptable by A
in polynomial time. Thus the problem is in the class NP. �	

5 Breadth-First Search Spanning Tree Automata

ST automata can define some infinite sets of graphs, like the set of chemical
structural formulas of cycloalkanes shown in Example 3. On the other hand, it
is not difficult to find infinite sets of graphs impossible for any ST automaton to
define. For example, there is no ST automaton accepting any set of graphs where
the graph maximum degree is not bounded. This might not seem too restrictive
as vertex degrees of chemical structures are usually bounded. However, there
is a more limiting restriction which comes from the observation that if an ST
automaton A accepts a graph whose number of minimum cycles is greater than
the number of acceptable state matchings of A, then some pairs of virtual vertices
are mapped in the same state matching. Consequences are demonstrated by the
following example.

Example 4. The set of chemical structural formulas for benzene and acenes,
shown in Fig. 5, cannot be defined by any ST automaton.

Fig. 5. Chemical structural formulas for benzene and acenes.

There is no limit for the number of minimum cycles of the defined graphs.
From this reason, for any ST automaton A, there is a graph G in the defined
set such that its number of minimum cycles exceeds the number of acceptable

Extended Finite Tree Automata Defining Sets of Graphs 129

state matchings of the automaton. If two pairs of virtual vertices (uvu, uvv) and
(sts, stt) are mapped to the same state matching, and u, v, s, t are all distinct,
then another graph obtained from G by removing the edges uv and st and adding
the new edges ut and vs is accepted by A. However, the newly obtained graph
is not a chemical structural formula for an acene anymore.

To handle chained structures like acenes by ST automata, we introduce a
variant of the automata working over extensions of breadth-first search (BFS, [5])
spanning trees only. A breadth-first search spanning tree automaton (BFS-ST
automaton) is a six-tuple A = (Q,Σ, Γ, q0, P,R) where the components have the
same meaning as in the case of the ST automaton defined in Subsect. 3.1.

A graph G = (V,E, δ, γ) is accepted by A if G has a BFS spanning tree T =
(V,ET) rooted in a vertex r (i.e., for all v ∈ V , it holds that dG(r, v) = dT (r, v))
such that the pair (T ′, r), where T ′ is the extended spanning tree decided by E�

ET , is accepted by A for some state mapping μ.
We give a characterization of a certain family of infinite sets of graphs

accepted by BFS-ST automata, which includes the set of graphs representing
benzene and acenes. The idea behind the family is (1) to take a word w from a
regular language, (2) to substitute graphs for symbols of w (where occurrences
of the same symbol are substituted by isomorphic graphs), and (3) to combine
neighboring graphs by merging some of their predefined pairs of vertices. A
detailed description of this construction follows.

Let Σ and Γ be finite sets of vertex and edge labels, respectively. We
say that C = (V,E, σ, γ,V +,V −) is a graph component over (Σ,Γ) if C ′ =
(V,E, σ, γ) is a labeled, connected graph over Σ, and Γ , V + and V − are
non-empty vectors of distinct elements of V , there is no edge in E connect-
ing a pair of vertices from V −, and there is an integer d ≥ 1 such that
∀u ∈ V +,∀v ∈ V − : d′

C(u, v) ∈ {d, d + 1}. An example of graph components is
given in Fig. 6.

Let L be a regular language over an alphabet Σ1. Let FIRST(L) ⊆ Σ1 be
the set of symbols that begin a word from L, and FOLLOW(L, a) ⊆ Σ1 be the
set of symbols b ∈ Σ1 for which there is a word in L in which b follows after a.

A component substitution function π is a function assigning to each symbol
of Σ1 a graph component over (Σ,Γ). Let π(a) = Ca = (Va, Ea, σa, γa,V

+
a ,V −

a)
for each a ∈ Σ1. We say π is compatible with L iff for all a ∈ Σ1, b ∈
FOLLOW(L, a), it holds that |V −

a | = |V +
b |, and, for all a ∈ FIRST(L), it holds

that |V +
a | = 1. Note that |v| denotes the dimension of a vector v.

For a π compatible with L, we define G(L, π) to be the set of graphs G(w, π)
where w = a1 . . . an, with ai ∈ Σ1, is a non-empty word from L and the graph
G(w, π) = (V,E, σ, γ) is constructed as follows. Let Ci = (Vi, Ei, σi, γi,V

+
i ,V −

i)
be a graph component isomorphic to π(ai). Assume that Vi ∩ Vj = ∅ for all
1 ≤ i < j ≤ n. Treat vectors of distinct elements as sets and define a mapping

ν :
n⋃

i=1

Vi →
n⋃

i=1

Vi �

n−1⋃

i=1

V −
i

130 A. Fujiyoshi and D. Pr̊uša

4
−3

2+
1
−

Ca

5
+ 4

3
1
+

6
−

2
−

Cb

4
+ 3

2 −
1
+

Cc

Fig. 6. Graph components Cs = (Vs, Es, σs, γs,V
+
s ,V −

s), s ∈ {a, b, c}, where it holds
that V +

a = (2), V −
a = (1, 4), V +

b = (1, 5), V −
b = (2, 6), V +

c = (1, 4) and V −
c = (2).

Vertices of the sets V +
s and V −

s are distinguished by symbols + and −, respectively.
We define γs : Es → {0, 1} where labels 0 and 1 represent single and double bonds,
respectively.

fulfilling: if v is the j-th component of V −
i , where i < n, then ν(v) equals the

j-th component of V +
i+1, otherwise ν(v) = v. Then, V =

⋃n
i=1 Vi �

⋃n−1
i=1 V −

i =
{ν(v) | v ∈ ⋃n

i=1 Vi}, E = {{ν(u), ν(v)} | {u, v} ∈ ⋃n
i=1 Ei}, and σ(ν(v)) =

σi(v), γ({ν(u), ν(v)}) = γi({u, v}) for all v ∈ Vi, {u, v} ∈ Ei, i = 1, . . . , n.

Example 5. Let L be a regular language over Σ1 = {a, b, c} defined by the regular
expression ab∗c. Let π : Σ1 → {Ca, Cb, Cc} be a component substitution function
such that π(a) = Ca, π(b) = Cb, π(c) = Cc where the graph components are
those shown in Fig. 6. Observe that π is compatible with L. Then, G(L, π) is a
set of graphs that represent benzene and acenes.

Theorem 3. For any regular language L over Σ1 and any component substitu-
tion function π : Σ1 → C, where C is a set of graph components over (Σ,Γ) and
π is compatible with L, there is a BFS-ST automaton A accepting G(L, π).

We omit the proof of this theorem because of lack of space.

6 Implementation and Experiments

For practical use of ST automata, a search software which for a given dataset of
graphs finds subgraphs accepted by an ST automaton was developed. It allows
to search for acceptable subgraphs of the maximum or minimum size. The source
code of the software, written in the C++ programming language, is available on
the web site: http://apricot.cis.ibaraki.ac.jp/CBGfinder/.

The graphset-subgraph matching algorithm used in the software is an exten-
sion of the algorithm described in [7], which was designed to find a spanning
tree accepted by a finite tree automaton in an input graph of treewidth 2. The
new algorithm was developed based on the original one with the following exten-
sions: (1) It searches for graphs defined by ST or BFS-ST automata instead of
spanning trees defined by tree automata. (2) It is optionally able to search for
subgraphs and induced subgraphs (defined by an ST or BFS-ST automaton) in
a given input graph. (3) There is no limit on the input graph treewidth.

The algorithm is dynamic programming based and works in a bottom-up
manner to construct an acceptable state mapping. Partial solutions established

http://apricot.cis.ibaraki.ac.jp/CBGfinder/

Extended Finite Tree Automata Defining Sets of Graphs 131

Fig. 7. Longest aromatic cycles detected by the search software. Three samples of
input molecules are shown on the left. All parts of the found longest aromatic cycles
are highlighted by the dashed line segments on the right.

over subgraphs are combined to reach a global solution. For a graph G = (V,E)
and an ST automaton A, the maximum number of partial solutions over a sub-
graph is T = (r · 2width · tw)tw, where tw is the treewidth of G, r is the number
of transition rules of A, and width is the maximum width of a transition rule. It
can be derived that the space complexity is O(|E| · T), and the time complexity
is O(|E|·T 2 ·log(T)). Note that these estimates are theoretical upper bounds, the
actual space consumptions and running times are typically lower due to pruning
many of the partial solutions that do not extend to larger ones.

To demonstrate a practical usage of the software, an evaluation was con-
ducted to find the longest aromatic cycle of each molecule stored in the ChEMBL
database. ChEMBL is a database of bioactive drug-like small molecules main-
tained by the European Bioinformatics Institute. 635,933 molecules are stored in
ChEMBL version 8. Among them, 87 molecules containing a fullerene structure
are excepted because their treewidth is too big. The number of atoms (bonds) of
a molecule varies from 1 (0) to 878 (895) and is 32.02 (34.46) on average. An ST
automaton defining the set of aromatic cycles was used.

As a result, among 635,846 molecules, 580,354 molecules were accepted with
largest aromatic cycles detected, and 55,492 molecules without aromatic cycles
were rejected. The evaluation was finished in 353.4 s in total (0.55 ms per item on
average). The molecule which took the longest time (0.028 s) was the rightmost
one in Fig. 7. The specification of the machine used for the experiment is as
follows: Intel core i5-5200U (2.20GHz) CPU, 8 GB RAM, and Microsoft Windows
7 (64Bit) OS.

The software can be used not only for chemoinformatics but also for various
NP-hard graph problems such as subgraph isomorphism, travelling salesman,
longest path, feedback vertex set, Steiner tree, and so on.

To demonstrate this, we briefly report on the Third Parameterized Algo-
rithms and Computational Experiments Challenge (PACE 2018) competi-
tion [12], in which the software participated in Track B. The task was to com-
pute an optimal Steiner tree of a given graph within a given time limit on the
same public environment. For this competition, a well-known speed-up tech-
nique [1] was implemented. The software correctly solved 49 out of 100 com-
petition instances, despite it is not fully optimized for this particular task (for
comparison, the best five participating systems solved 92, 77, 58, 52 and 52
instances, respectively).

132 A. Fujiyoshi and D. Pr̊uša

7 Conclusions

We introduced ST automata defining sets of labeled, connected graphs. We
demonstrated that they are suitable for detection of chemical structures in
molecules, which was confirmed by experiments. As a future work, regular
expressions for the automata should be considered. It would also be beneficial
to identify broader subclasses of sets of graphs defined by BFS-ST automata.

References

1. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008

2. Brainerd, W.S.: Tree generating regular systems. Inf. Control 14(2), 217–231
(1969). https://doi.org/10.1016/S0019-9958(69)90065-5

3. Brown, N.: Chemoinformatics-an introduction for computer scientists. ACM Com-
put. Surv. 41(2), 8:1–8:38 (2009). https://doi.org/10.1145/1459352.1459353

4. Comon, H., et al.: Tree automata techniques and applications (2007). http://tata.
gforge.inria.fr/. Accessed 12 Oct 2007

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009). http://mitpress.mit.edu/books/introduc
tion-algorithms

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of Mathematics and its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

7. Fujiyoshi, A.: A practical algorithm for the uniform membership problem of labeled
multidigraphs of tree-width 2 for spanning tree automata. Int. J. Found. Comput.
Sci. 28(5), 563–582 (2017). https://doi.org/10.1142/S012905411740007X

8. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory Com-
put. Syst. 33(1), 59–83 (2000). https://doi.org/10.1007/s002249910004

9. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-
lems. Theoret. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-
3975(76)90059-1

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

11. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University
Press, Princeton (1951)

12. PACE 2018. https://pacechallenge.org/2018/steiner-tree/
13. Rounds, W.C.: Mapping and grammars on trees. Math. Syst. Theory 4(3), 257–287

(1970). https://doi.org/10.1007/BF01695769
14. Rozenberg, G., Ehrig, H., Engels, G., Kreowski, H., Montanari, U. (eds.): Hand-

book of Graph Grammars and Computing by Graph Transformations, Volume 1–3.
World Scientific (1997–1999)

15. Sibley, J.F.: Too broad generic disclosures: a problem for all. J. Chem. Inf. Comput.
Sci. 31(1), 5–9 (1991). https://doi.org/10.1021/ci00001a002

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1145/1459352.1459353
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1142/S012905411740007X
https://doi.org/10.1007/s002249910004
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://pacechallenge.org/2018/steiner-tree/
https://doi.org/10.1007/BF01695769
https://doi.org/10.1021/ci00001a002

	A Simple Extension to Finite Tree Automata for Defining Sets of Labeled, Connected Graphs
	1 Introduction
	2 Preliminaries
	3 Spanning Tree Automata for Labeled, Connected Graphs
	3.1 Definitions
	3.2 Examples of Spanning Tree Automata

	4 Properties of Spanning Tree Automata
	5 Breadth-First Search Spanning Tree Automata
	6 Implementation and Experiments
	7 Conclusions
	References

