
Michal Hospodár
Galina Jirásková (Eds.)

LN
CS

 1
16

01

24th International Conference, CIAA 2019
Košice, Slovakia, July 22–25, 2019
Proceedings

Implementation and
Application of Automata

Lecture Notes in Computer Science 11601

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Michal Hospodár • Galina Jirásková (Eds.)

Implementation and
Application of Automata
24th International Conference, CIAA 2019
Košice, Slovakia, July 22–25, 2019
Proceedings

123

Editors
Michal Hospodár
Slovak Academy of Sciences
Košice, Slovakia

Galina Jirásková
Slovak Academy of Sciences
Košice, Slovakia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-23678-6 ISBN 978-3-030-23679-3 (eBook)
https://doi.org/10.1007/978-3-030-23679-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-23679-3

Preface

This volume contains the papers presented at the 24th International Conference on
Implementation and Application of Automata (CIAA 2019) organized by the Košice
branch of the Mathematical Institute of the Slovak Academy of Sciences and the
Slovak Artificial Intelligence Society (SAIS) in Košice, Slovakia, during July 22–25,
2019.

The CIAA conference series is a major international venue for the dissemination of
new results in the implementation, application, and theory of automata. The previous
23 conferences were held in various locations all around the globe: Charlottetown
(2018), Marne-la-Vallée (2017), Seoul (2016), Umeå (2015), Giessen (2014), Halifax
(2013), Porto (2012), Blois (2011), Winnipeg (2010), Sydney (2009), San Francisco
(2008), Prague (2007), Taipei (2006), Nice (2005), Kingston (2004), Santa Barbara
(2003), Tours (2002), Pretoria (2001), London Ontario (2000), Potsdam (WIA 1999),
Rouen (WIA 1998), and London Ontario (WIA 1997 and WIA 1996).

The topics of this volume include: complexity of languages and language opera-
tions, regular expressions, picture languages, jumping automata, input-driven and
two-dimensional automata, tree languages and tree transducers, architecture of ori-
tatami systems, intruder deduction problem, context-sensitive flash codes, rational
relations, and algorithms for manipulating sequence binary decision diagrams.

There were 29 submissions from 20 different countries: Belgium, Canada, China,
Croatia, Czech Republic, France, Germany, Hungary, India, Israel, Italy, Japan,
Poland, Portugal, Russia, Slovakia, South Korea, Spain, Sweden, and the USA.

The submission, single-blind peer-review process, and the collating of the pro-
ceedings were supported by the EasyChair conference system. Each submission was
reviewed by at least three Program Committee members, except for five that received
two reviews.

The committee selected 17 papers for presentation at the conference and publication
in this volume. The program also included five invited talks by Marián Dvorský,
Christos Kapoutsis, Sebastian Maneth, Alexander Okhotin, and Helmut Seidl.

We would like to thank the Program Committee members and the external reviewers
for their help in selecting the papers. We are also very grateful to all invited speakers,
contributing authors, session chairs, and all the participants who made CIAA 2019
possible.

We also thank the editorial staff at Springer, in particular, Alfred Hofmann, Anna
Kramer, and Christine Reiss, for their guidance and help during the publication process
of this volume, and for supporting the event through publication in the LNCS series.

Last but not least, we would like to thank the conference sponsors for their financial
support, and the Organizing Committee members, Peter Gurský, Ivana Krajňáková,
Peter Mlynárčik, Viktor Olejár, Matúš Palmovský, and Juraj Šebej, for their help with
organizing the social program, preparing conference materials, and for taking care

of the IT support as well as the financial issues of the conference. All of this was always
carefully checked and slightly criticized by Jozef Jirásek to whom our sincere gratitude
goes as well.

We all are looking forward to the next CIAA in Loughborough, UK.

May 2019 Michal Hospodár
Galina Jirásková

vi Preface

Organization

Steering Committee

Jean-Marc Champarnaud Université de Rouen, Rouen, France
Markus Holzer (Chair) Justus Liebig University, Giessen, Germany
Oscar Ibarra University of California, Santa Barbara, USA
Kai T. Salomaa (Co-chair) Queen’s University, Kingston, Ontario, Canada
Hsu-Chun Yen National Taiwan University, Taipei, Taiwan

Program Committee

Francine Blanchet-Sadri University of North Carolina, USA
Marie-Pierre Béal Université Paris-Est Marne-la-Vallée, France
Cezar Câmpeanu (Co-chair) University of Prince Edward Island, Canada
Jan Daciuk Gdańsk University of Technology, Poland
Jürgen Dassow University of Magdeburg, Germany
Mike Domaratzki University of Manitoba, Canada
Dora Giammarresi University of Rome Tor Vergata, Italy
Yo-Sub Han Yonsei University, Seoul, South Korea
Markus Holzer Justus Liebig University, Giessen, Germany
Artur Jeż University of Wrocław, Poland
Galina Jirásková (Chair) Slovak Academy of Sciences, Košice, Slovakia
Jarkko Kari University of Turku, Finland
Stavros Konstantinidis Saint Mary’s University, Halifax, Canada
Michal Kunc Masaryk University, Brno, Czech Republic
Sylvain Lombardy Bordeaux Institute of Technology, France
Andreas Malcher Justus Liebig University, Giessen, Germany
Andreas Maletti Universität Leipzig, Germany
František Mráz Charles University, Prague, Czech Republic
Cyril Nicaud Université Paris-Est Marne-la-Vallée, France
Giovanni Pighizzini University of Milan, Italy
Bala Ravikumar Sonoma State University, USA
Daniel Reidenbach Loughborough University, UK
Rogério Reis University of Porto, Portugal
Kai Salomaa Queen’s University, Kingston, Canada
Shinnosuke Seki The University of Electro-Communications, Japan
Brink van der Merwe Stellenbosch University, South Africa
György Vaszil University of Debrecen, Hungary
Mikhail Volkov Ural Federal University, Ekaterinburg, Russia
Bruce Watson Stellenbosch University, South Africa
Abuzer Yakaryılmaz University of Latvia, Riga, Lativa
Hsu-Chun Yen National Taiwan University, Taipei, Taiwan

Additional Reviewers

Anselmo, Marcella
Blair, Dakota
Caron, Pascal
Dando, Louis-Marie
Demaille, Akim
Gebhardt, Kilian
Gusev, Vladimir
Hashimoto, Kenji
Horváth, Géza
Ko, Sang-Ki

Kufleitner, Manfred
Landwehr, Patrick
Madonia, Maria
Mereghetti, Carlo
Miklarz, Clément
Montoya, Juan Andrés
Smith, Taylor J.
Villagra, Marcos
Wendlandt, Matthias

Invited Speakers

Marián Dvorský CEAi Slovakia s.r.o., Košice, Slovakia
Christos A. Kapoutsis Carnegie Mellon University, Doha, Qatar
Sebastian Maneth Universität Bremen, Germany
Alexander Okhotin St. Petersburg State University, Russia
Helmut Seidl Technische Universität München, Germany

Sponsors

City of Košice
Slovak Society for Computer Science
CEAi Slovakia s.r.o., Košice, Slovakia
VSL Software, a.s., Košice, Slovakia

viii Organization

Abstracts of Invited Talks

Large Scale Sorting in Distributed
Data Processing Systems

Marián Dvorský

CEAi Slovakia s.r.o., Košice, Slovakia
marian.dvorsky@gmail.com

Specialized distributed systems, such as MapReduce [3] or Spark [4] are being used to
process large amounts of data. At the core of these systems is a shuffle operation which
reorganizes the data represented as (key, value) pairs according to keys, to implement
basic data transforms such as aggregations or joins. The shuffle operation can be
viewed as large distributed sorting.

Fundamental research has been focused on figuring out bounds on the amount of
data that needs to be shuffled, see for example [1]. This talk will focus instead on the
problem of efficient shuffling itself.

For the most challenging applications the amount of data sorted exceeds the total
amount of memory available in these systems, so sorting is external. Lower bounds on
external sorting have been well studied, see for example [2]. However, less is known
about optimal algorithms for large scale sorting in distributed, fault-tolerant
environments.

We will discuss the problem of large scale sorting, its role in data processing
systems, recent advances in implementation of sorting algorithms in real-world cloud
systems, and open problems.

References

1. Afrati, F.N., Sarma, A.D., Salihoglu, S., Ullman, J.D.: Upper and lower bounds on the cost of
a map-reduce computation. Proc. VLDB 6(4), 277–288 (2013). https://doi.org/10.14778/
2535570.2488334

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
Commun. ACM 31(9), 1116–1127 (1988). https://doi.org/10.1145/48529.48535

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI
2004: Sixth Symposium on Operating System Design and Implementation, vol. 6,
pp. 137–150. San Francisco, CA (2004). https://doi.org/10.1145/1327452.1327492

4. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In: Gribble, S.D., Katabi, D. (eds.) In: Proceedings of 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2012, pp. 15–28.
USENIX Association (2012). https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/zaharia

http://dx.doi.org/10.14778/2535570.2488334
http://dx.doi.org/10.14778/2535570.2488334
http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1145/1327452.1327492
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

Alternation in Two-Way Finite Automata

Christos A. Kapoutsis

Carnegie Mellon University in Qatar, Doha, Qatar
cak@cmu.edu

Abstract. In this talk we will overview two-way alternating finite automata
(2AFAs). We will first list and reconcile the various definitions of what a 2AFA
is, as they have appeared in the literature; as well as the various corresponding
definitions of what it means for a 2AFA to accept its input. We will then study
the computability and size complexity of 2AFAs. A large part of the latter study
will involve the polynomial-size alternating hierarchy and its relation to its
natural variants in terms of predicates and oracles. We will conclude with a list
of open questions.

Deciding Equivalence of Tree Transducers
by Means of Precise Abstract Interpretation

Helmut Seidl

Fakultät für Informatik, TU München, Germany
seidl@in.tum.de

Abstract. This presentation reviews the construction of the earliest normal form
for top-down tree transducers. It will indicate how this construction allows to
decide equivalence of deterministic top-down tree transducers and how it can be
used to decide whether a top-down tree transducer is functional. The earliest
normal form also opens up the way for decidability of equivalence for functional
sequential tree-to-string transducers, as well as for deterministic macro tree
transducers, at least when they are basic and separated. Interestingly, both the
construction of the earliest normal form as well as it application to equivalence
for the given class of macro tree transducers rely on techniques borrowed from
precise abstract interpretation.

Contents

Invited Talks

Static Garbage Collection . 3
Sebastian Maneth

Graph-Walking Automata: From Whence They Come, and Whither
They are Bound . 10

Alexander Okhotin

Contributed Papers

Enumerated Automata Implementation of String Dictionaries 33
Robert Bakarić, Damir Korenčić, and Strahil Ristov

New Approaches for Context Sensitive Flash Codes 45
Gilad Baruch, Shmuel T. Klein, and Dana Shapira

Dolev-Yao Theory with Associative Blindpair Operators 58
A. Baskar, R. Ramanujam, and S. P. Suresh

Semi-linear Lattices and Right One-Way Jumping Finite Automata
(Extended Abstract) . 70

Simon Beier and Markus Holzer

Z-Automata for Compact and Direct Representation of Unranked
Tree Languages . 83

Johanna Björklund, Frank Drewes, and Giorgio Satta

A Benchmark Production Tool for Regular Expressions 95
Angelo Borsotti, Luca Breveglieri, Stefano Crespi Reghizzi,
and Angelo Morzenti

New Algorithms for Manipulating Sequence BDDs 108
Shuhei Denzumi

A Simple Extension to Finite Tree Automata for Defining Sets of Labeled,
Connected Graphs . 121

Akio Fujiyoshi and Daniel Průša

Composition Closure of Linear Weighted Extended Top-Down
Tree Transducers. 133

Zoltán Fülöp and Andreas Maletti

A General Architecture of Oritatami Systems for Simulating Arbitrary
Finite Automata . 146

Yo-Sub Han, Hwee Kim, Yusei Masuda, and Shinnosuke Seki

Descriptional Complexity of Power and Positive Closure
on Convex Languages . 158

Michal Hospodár

Partitioning a Symmetric Rational Relation into Two Asymmetric
Rational Relations . 171

Stavros Konstantinidis, Mitja Mastnak, and Juraj Šebej

Partial Derivatives of Regular Expressions over Alphabet-Invariant
and User-Defined Labels . 184

Stavros Konstantinidis, Nelma Moreira, João Pires, and Rogério Reis

Input-Driven Multi-counter Automata . 197
Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Two-Dimensional Pattern Matching Against Basic Picture Languages 209
František Mráz, Daniel Průša, and Michael Wehar

Decision Problems for Restricted Variants of Two-Dimensional Automata . . . 222
Taylor J. Smith and Kai Salomaa

Streaming Ranked-Tree-to-String Transducers. 235
Yuta Takahashi, Kazuyuki Asada, and Keisuke Nakano

Author Index . 249

xvi Contents

Invited Talks

Static Garbage Collection

Sebastian Maneth(B)

FB3 - Informatik, Universität Bremen, Bremen, Germany
maneth@uni-bremen.de

Abstract. We present a method that allows to bound the sizes of inter-
mediate trees in a composition of macro tree transducers. Macro tree
transducers are a powerful model of tree translation which, for instance,
includes all attribute grammars (seen as tree-to-tree translators). The
idea of the method is to change a transducer in the composition so that
it does not produce output nodes that will be removed (and ignored)
by a subsequent transducer in the composition. This can be considered
as a form of static garbage collection, where garbage is never produced
by any transducer. We then give three applications of this result and
show that (1) compositions of macro tree transducers can be computed
in linear time with respect to the sum of sizes of input and output trees,
(2) finiteness of ranges of compositions of macro tree transducers is decid-
able, and (3) the macro tree transducer composition hierarchy collapses
when restricted to functions of linear size increase.

Let f1, . . . , fn be functions and let s be an element in the domain of f1.
Consider the sequential composition

f1 ◦ f2 ◦ · · · fn−1 ◦ fn(s).

For us, this means the value fn(fn−1(· · · f2(f1(s)) · · ·)), which is in contrast to
common mathematical notation. In our setting, each function fi computes a tree-
to-tree transformation, where “tree” means “finite, ordered, ranked, rooted, and
node-labeled tree”. In this talk we present a technique which allows to restrict
the sizes of all intermediate results f1(s), f2(f1(s)), . . . , fn−1(fn−2(· · · f1(s) · · ·))
of the composition. The idea is that if a function fi (with i ∈ {2, . . . , n}) deletes
certain input nodes or input subtrees, then the previous function that produces
the input for fi should be altered in such a way that these nodes and subtrees
are never produced. Thus, if we consider as “garbage” the nodes in intermediate
trees that are deleted (and ignored) later, then our method can be considered
as a form of “garbage collection”.

Each fi in our setting is defined by a finite-state transducer of a certain type,
called macro tree transducer. We can statically alter these transducers into a new
sequence of transducers so that every transducer (except the first one) produces
at least one output node for each input leaf and for each monadic input node,
thus arriving at a technique of “static garbage collection”.

This idea of static garbage collection was first presented at FSTTCS 2002 [8]
and was used at FSTTCS 2003 [9] to prove that the macro tree transducer hierar-
chy collapses when restricted to functions of linear size increase. Recently a new
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 3–9, 2019.
https://doi.org/10.1007/978-3-030-23679-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_1

4 S. Maneth

presentation of these results was given [2]; this version formalizes all techniques
and technical contributions in terms of tree-walking tree transducers (which are
similar to attribute grammars). Here we stick to the original formalization using
macro tree transducers.

1 Macro Tree Transducers

Macro tree transducers [5,6] (for short, MTTs) were invented in the 1980s as
formal model for syntax-directed translation. They can be seen as functional
programs that take trees as input, produce trees as output, and perform pattern
matching on the input tree in order to produce output trees via concatenating
output nodes on top of recursively produced output trees. MTTs can also be
seen as generalization of top-down tree transducers and context-free tree gram-
mars. Top-down tree transducers themselves are a natural generalization from
strings to trees of the finite-state string transducers (often called “generalized
sequential machines”). Note that MTTs are strictly more powerful than attribute
grammars [7] (seen as tree-to-tree transducers by not interpreting their output
expressions). Here is an example of an MTT that proves this strictness.

a

a

a

f

f

f

a

2

a

f

a

2

e1

1

e

a

2

1

e

1

f

f

a

2

1

e

Fig. 1. An input tree and the corresponding output tree for the transducer of
Example 1.

Example 1. We define the MTT M which takes as input trees over the ranked
alphabet Σ = {f (2), a(0)} meaning that each f -labeled node has exactly two
children, and each a-labeled node has zero children. The transducer outputs
trees over the ranked alphabet Δ = {f (2), a(1), 1(1), 2(1), e(0)}. Intuitively, the

Static Garbage Collection 5

transducer adds under each leaf u of the input tree a monadic tree over {1, 2, e}
that corresponds to the reverse Dewey-path of u. For instance, the marked node
u on the left of Fig. 1 has Dewey path 1.2.2 (because u can be reached from the
root node by navigating to its first child, and from that node to its second child,
and from that node again to the second child). The reverse of this string, seen
as a monadic tree over {1, 2, e} is the tree 2(2(1(e))) which is marked in the tree
in the right of Fig. 1. The MTT M for this translation has the following rules:

q0(f(x1, x2)) → f(q(x1, 1(e)), q(x2, 2(e)))
q0(a) → a(e)
q(f(x1, x2), y) → f(q(x1, 1(y)), q(x2, 2(y)))
q(a, y) → a(y)

The state q of the MTT M uses an accumulating parameter denoted y (such
parameters are of type output tree) in which it computes the reverse Dewey
path of the current input node. Note that if a state occurs in the right-hand side
of a rule of an MTT, then its first argument must be one of the input variables
xi. The rules are used as rewrite rules in the usual way. Thus, the initial tree
q0(f(f(a, f(a, a)), a)) rewrites via the first rule to

f(q(f(a, f(a, a)), 1(e), q(a, 2(e)))).

Via the last rule the latter tree rewrites to f(q(f(a, f(a, a)), 1(e), a(2(e)))).

The reason why the translation τ from the example cannot be realized by
any attribute grammar (seen as tree transducer) is, that for such attributes
transducers, the relationship of number of distinct output subtrees to the size of
the input subtree is bounded by a constant (see Lemma 5.43 of [6]). This should
be intuitively clear, because an attribute grammar associates to each node of
the input tree a fixed number of attributes, in which certain output trees will
be computed. To see that τ does not have this property, consider an input tree
that is a full binary tree of size 2n and height n; it is translated into an output
tree that contains O(n · 2n)-many distinct output subtrees.

Note that all MTTs and all other transducers considered in this note are total
and deterministic. This means that for every state q and input symbol f the
transducer has exactly one rule with left-hand side q(f(. . .), . . .). A top-down
tree transducer is an MTT which does not use any accumulating parameters in
its rules.

2 Productive Macro Tree Transducers

A macro tree transducer is productive if for each input node that is either a leaf
or a monadic node, it produces at least one output node. An MTT can be made
productive by restricting the way in which it deletes input nodes. There are four
ways in which an MTT can delete nodes:

6 S. Maneth

1. Deletion of Parameters. Consider the rule

q(h(x1), y1, y2) → g(q′(x1, y2), a).

This rule deletes the first parameter y1. We will want to remove all such
rules and guarantee that every parameter from the left-hand side of a rule
also appears in the right-hand side of the rule. An MTT with this property
is call parameter non-deleting.

2. Erasure due to Parameters. Consider the following rule of a parameter non-
deleting MTT:

q(a, y1) → y1

Since this rule “consumes” an input leaf labeled a but does not produce any
new output nodes, it is called “erasing”. An MTT which contains no rule
with right-hand size equal to the tree y1 is called “non-erasing”.

3. Input Tree Deletion. Consider the rule

q(f(x1, x2), y1, y2) → g(q(x2, y2, y1), a).

Here, the input subtree x1 does not occur in the right-hand side and is thus
deleted (and ignored). However, we must be careful: many different states
may be processing the current f -labeled input node. The first subtree of
that node is only deleted, if all these states q′ have a (q′, f)-rule in which
x1 does not appear. Accordingly, an MTT is “non-deleting” if there is no
reachable state set Q, input symbol f , and number i such that for all states
in q′ ∈ Q, the (q′, f) rule does not contain the input variable xi. The state
set of node u of an input tree s consists of all states that appear in the tree
Mq0(s

′), where s′ is obtained from s be replacing the subtree at node u by
a new symbol for which the transducer has no rules.

4. Skipping of Monadic Input Nodes. A rule of the form

q(h(x1), y1, . . . , ym) → q′(x1, yj1 , . . . , yjm)

such that {y1, . . . , ym} = {1, 2, . . . ,m} is called a skipping-rule. An MTT is
non-skipping if there is no reachable state set Q and unary input symbol h
such that for every q′ ∈ Q the (q′, h)-rule is a skipping-rule.

It was already shown in [3] that for every MTT M one can construct an
equivalent MTT with regular look-ahead such that M ′ is parameter non-deleting
and non-erasing. Note that for a state q of M which has m parameters and an
input tree s, the tree Mq(s) obtained by rewriting the tree q(s, y1, . . . , ym) using
the rules of M , is a tree over output symbols plus leaves labeled by parameters
from Ym = {y1, . . . , ym}. For any strict subset Y of Ym, the set TΔ[Y] of all
trees over Δ in which each y ∈ Y occurs at least once is a regular tree language.
Since inverses of macro tree translations Mq effectively preserve the regular tree
languages (see [5]), we can determine via regular look-ahead which particular
subset Y of parameters of any state will occur in the corresponding output tree.
According to this information, we change the state calls in a right-hand side to

Static Garbage Collection 7

only contain the arguments which will not be deleted. Similarly, we can determine
via look-ahead if Mq(s) is equal to y1 and if so, remove from a right-hand side
every call to q by selecting its first parameter argument.

In order to remove the deletion of input subtrees, we can transform a given
MTT M into the composition of a linear top-down tree transducer T , followed
by an MTT which is nondeleting. The idea of the transducer T is to simulate
the state behavior of M , i.e., to compute in its state the current state set of M .
If no input tree is deleted for input symbol f , then T produces f as output and
proceeds. If for all states in the current state set the rules of M delete input
variables xi1 , . . . , xik (with i1 < · · · < ik), then T outputs a new symbol fi1,...,ik

of lower rank (according to k) and proceeds.
To remove skipping of monadic input nodes we proceed similarly and con-

struction a composition of a linear top-down tree transducer T and a non-
skipping MTT M . As before, T computes the current state set of M in its
state, and uses this information in order to remove the skipped monadic nodes.

Since the look-ahead can be transferred to the first transducer, and linear
top-down tree transducers (with look-ahead) are closed under composition we
obtain

MTT ⊆ LTR ◦ MTTprod

where LTR denotes the class of linear top-down tree transformations with regular
look-ahead, and MTTprod denotes the class of macro tree transformations that
are productive. Productive means all the four forms of deletion are not present,
i.e., the translation is realized by an MTT that is parameter non-deleting, non-
erasing, non-deleting, and non-skipping. Since any MTT can be realized by the
composition of a top-down tree transducer and a linear (with respect to the input
variables) MTT, we also have that MTT ⊆ TR ◦ LMTTprod. Since MTTs are
closed under right-composition with TR we obtain by induction that for every k,

MTTk ⊆ LTR ◦ Tprod ◦ LMTTk
prod (∗)

where Tprod denotes the class of translations realized by productive top-down
tree transducers. Each τ translation in the (k + 1)-fold composition on the right
side of the inclusion, except the first one, has linear bounded input, i.e., there
exists a constant c such that for every (s, t) ∈ τ , the size of s is smaller than
c · |t|. The reason for this is that for every input leaf and for every input monadic
node τ produces at least one output node (thus, c can be chosen as c = 2).

3 Applications

We now mention a few applications of our static garbage collection result (∗). It is
well known that attribute grammars can be evaluated in linear time (with respect
to the sum of sizes of input and output tree), assuming that the evaluation of
each semantic rule takes constant time (see [1]). Since every linear macro tree
transducer can be simulated by an attribute grammar, we obtain that each

8 S. Maneth

transduction in (∗) can be evaluated in time linear in the sum of sizes of input
and output tree. Since all translations except the first one have linear bounded
input, the size of every intermediate tree in (∗) is smaller than c · |t| for some
constant c (where t is the output tree of the composition). Hence, given an input
tree s, the entire composition t = τ(s) can be computed in time O(|s| + |t|).

Next, let us show that (∗) can be used to decide the finiteness of ranges of
compositions of MTTs, i.e., of languages L in ∪k≥1MTTk(REGT), where REGT
denotes the class of regular tree languages. Since REGT is closed under linear
top-down tree transducers (with regular look-ahead), (∗) implies that L = τ(R)
can be obtained by a composition τ of only productive transducers applied to a
regular tree language R. Since all input trees that generate a certain output tree
are bounded in size, according to the linear bounded input property, L is finite
if an only if τ−1(R) is finite. The letter set is effectively a regular tree language
(Theorem 6.4 of [5]), and finiteness is easily decided for a regular tree language.

Last, let us show that (∗) implies that the macro tree transducer hierarchy
collapses for functions of linear size increase. It is easy to see that if f ◦ g is
of linear size increase and g is of linear bounded input, then also f is of linear
size increase. This implies that each translation in the composition on the right-
hand side of (∗) is of linear size increase (note that every linear top-down tree
transduction is of linear size increase). Since macro tree transductions of linear
size increase are closed under composition (this follows, e.g., from the fact that
they can be characterized by MSO definable tree transductions [4]), we obtain
that every composition of MTTs that is of linear size increase, can be realized
by just one single MTT.

References

1. Deransart, P., Jourdan,M. (eds.):AttributeGrammars and theirApplications. LNCS,
vol. 461. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53101-7

2. Engelfriet, J., Inaba, K., Maneth, S.: Linear bounded composition of tree-walking
tree transducers: linear size increase and complexity. CoRR abs/1904.09203 (2019).
http://arxiv.org/abs/1904.09203

3. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO
definable tree translations. Inf. Comput. 154(1), 34–91 (1999). https://doi.org/10.
1006/inco.1999.2807

4. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput. 32(4), 950–1006 (2003). https://doi.org/10.1137/
S0097539701394511

5. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. System Sci. 31(1),
71–146 (1985). https://doi.org/10.1016/0022-0000(85)90066-2

6. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics - Formal Models Based on Tree
Transducers. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-72248-6

7. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145
(1968). https://doi.org/10.1007/BF01692511

https://doi.org/10.1007/3-540-53101-7
http://arxiv.org/abs/1904.09203
https://doi.org/10.1006/inco.1999.2807
https://doi.org/10.1006/inco.1999.2807
https://doi.org/10.1137/S0097539701394511
https://doi.org/10.1137/S0097539701394511
https://doi.org/10.1016/0022-0000(85)90066-2
https://doi.org/10.1007/978-3-642-72248-6
https://doi.org/10.1007/BF01692511

Static Garbage Collection 9

8. Maneth, S.: The complexity of compositions of deterministic tree transducers. In:
Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 265–276. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36206-1 24

9. Maneth, S.: The macro tree transducer hierarchy collapses for functions of linear
size increase. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol.
2914, pp. 326–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
24597-1 28

https://doi.org/10.1007/3-540-36206-1_24
https://doi.org/10.1007/978-3-540-24597-1_28
https://doi.org/10.1007/978-3-540-24597-1_28

Graph-Walking Automata: From Whence
They Come, and Whither They

are Bound

Alexander Okhotin(B)

St. Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg 199034, Russia

alexander.okhotin@spbu.ru

Abstract. Graph-walking automata are finite automata walking on
graphs given as an input; tree-walking automata and two-way finite
automata are their well-known special cases. Graph-walking automata
can be regarded both as a model of navigation in an unknown environ-
ment, and as a generic computing device, with the graph as the model of
its memory. This paper presents the known results on these automata,
ranging from their limitations in traversing graphs, studied already in
the 1970s, to the recent work on the logical reversibility of their compu-
tations.

1 Introduction

A graph-walking automaton (GWA) walks over a given graph by moving from
one node to another along the edges. It is equipped with finite memory, and at
each step it uses its current state and the label of the current node to determine
its action, that is, which edge to follow and which new state to enter.

A natural prototype for a graph-walking automaton is a robot exploring an
unknown environment using limited internal memory and leaving no marks in
the environment. A typical task is to traverse the entire graph, for instance, in
search for a specially marked node. The most famous example of this task is
found in the classical Greek myth about Theseus traversing the Labyrinth and
slaying the Minotaur therein.

To be exact, Theseus is faced with three consecutive tasks: first, finding the
Minotaur in the Labyrinth; second, slaying him; and third, finding the way out.
As the myth is usually told, the main difficulty was to find the way out of the
Labyrinth, once the Minotaur is slain. However, as illustrated in Fig. 1, Theseus
was fortunate to be helped by Ariadne, whose thread allowed him to return to
the gate of the Labyrinth in time O(n). Even though the myth does not explain
how Theseus found the Minotaur, it is not difficult to see that even Ariadne’s
thread alone is sufficient to traverse the entire graph by using an inefficient form
of depth-first search.

Supported by the Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 10–29, 2019.
https://doi.org/10.1007/978-3-030-23679-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_2&domain=pdf
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-23679-3_2

Graph-Walking Automata 11

v0

Fig. 1. Theseus searching for the Minotaur in a graph with the help of Ariadne’s
thread.

If Theseus were to accomplish his task with no Ariadne to guide him, he
would act as a graph-walking automaton. In this case, already the problem
of finding the Minotaur would present a substantial difficulty. This problem,
in general, amounts to traversing the entire graph. The question of whether
there exists a finite automaton that can traverse any given undirected graph by
following its edges was reportedly first proposed by Michael Rabin: in his 1967
public lecture, he conjectured that this is impossible [12]. The conjecture was
confirmed by Budach [9], who proved that for every graph-walking automaton
there is a planar graph that it cannot fully traverse. In other words, there is a
maze, in which Theseus, without Ariadne, would not even find the Minotaur.

This result by no means contradicts the assumptions made by the Ancient
Greeks. Indeed, Theseus had to traverse one particular maze—the Cretan
Labyrinth—which was apparently constructed in the way that reaching the
Minotaur from the gate was easy, whereas finding the way back was hard. This
suggests the following formal representation of the task faced by Theseus if Ari-
adne turns her back on him: on his own, he begins at the gate to the Labyrinth
(the initial node v0) and, acting as a graph-walking automaton, presumably finds
the Minotaur; then, can he return to v0 while still acting as a graph-walking
automaton? Unexpectedly, there is a positive solution to this problem: if there
exists a graph-walking automaton that leads Theseus from the Labyrinth gate to
the Minotaur, then there is also a graph-walking automaton that leads him back
to the gate; this was established by Kunc and Okhotin [19], based on a general
idea discovered of Sipser [28]. Roughly speaking, the resulting graph-walking
automaton backtracks all possible paths that lead to the Minotaur according to
the method employed by Theseus.

Besides the direct interpretation of graph traversal as motion in a discrete
environment, graph-walking automata also serve as a model of computation.
Two simple cases of graph-walking automata are well-known in the literature.
First, there are the two-way deterministic finite automata (2DFA), which tra-
verse a given input string as a graph that consists of a single path; they are

12 A. Okhotin

a... ...b c a'... ...b c
REWRITE a WITH a' REWRITE a' WITH a

a... ...b c

MOVE RIGHT
MOVE LEFT

v1 v2

v3

Fig. 2. Memory configurations of a Turing machine modelled by a graph.

notable for being equivalent to one-way finite automata [15,26], as well as for
having a nondeterministic variant that can be determinized, with important
complexity issues surrounding the complexity of determinization [16]. The other
model are the tree-walking automata (TWA), which traverse trees in the same
sense as do the graph-walking automata: in contrast to the case of 2DFA, these
automata are weaker in power than the “one-way” (bottom-up or top-down) tree
automata [8], and their nondeterministic variant is strictly more powerful than
the deterministic case [7].

Many other models of computation can be represented as graph-walking
automata. The graph represents the memory of a machine: nodes are mem-
ory configurations, and edges are elementary operations on the memory. This
graph is implicitly constructed for every input object, and then the computation
of the machine is interpreted as a walk over this graph. For example, for a Tur-
ing machine, nodes correspond to different head positions and tape contents, as
illustrated in Fig. 2. If a Turing machine has bac on the tape, with the head at
a in a state q, and if it executes a stationary transition that rewrites a with a′

and enters a state q′, this corresponds to a GWA at v1 in the state q, moving to
v2 in the state q′.

This way, many general ideas on computation, such as nondeterminism,
reversibility, halting, probabilistic computation, etc., which are defined for var-
ious models of computation, admit a unified representation in terms of graph-
walking automata. Many standard research problems, such as the complexity
of testing membership and emptiness, closure properties and state complexity,
can also be represented and studied for graph-walking automata. The particular
models of computation can then be regarded as families of input graphs, poten-
tially reducing the difference between the models to graph-theoretic properties.
This view of graph-walking automata as a powerful general model in automata
theory further motivates their study.

This paper gives a brief overview of the graph-walking automaton model.
The overview begins with the basic definitions: graphs traversed by automata are

Graph-Walking Automata 13

–1+1 +1–1
a1 +1 1+1– –1

1+10 2
a2 a. . .

Fig. 3. A string w = a1a2 . . . a� with end-markers, represented as a graph with V =
{0, 1, 2, . . . , �, � + 1}.

defined in Sect. 2, followed by a definition of graph-walking automata in Sect. 3;
justifications for various details of the definitions are provided. Section 4 presents
the most well-known result in the area, that there is no graph-walking automaton
that can traverse every graph—that is, that Theseus, without Ariadne’s thread,
would not find the Minotaur in the Labyrinth. The fundamental construction of
a graph-walking automaton that simulates the computations of another graph-
walking automaton backwards is explained in Sect. 5; by this result, if Theseus
finds the Minotaur, then he can find his way back by tracing back his footsteps.
The next Sect. 6 describes the applications of this construction to reversible
computing: every graph-walking automaton can be transformed to a reversible
graph-walking automaton that accepts the same set of finite graphs. Using this
result, the closure of graph-walking automata under Boolean operations is estab-
lished in Sect. 7. Section 8 defines the basic decision problems for graph-walking
automata. Possible variants of the graph-walking automaton model are discussed
in Sect. 9, whereas algorithms for graph exploration based on other models are
briefly mentioned in Sect. 10. The last Sect. 11 suggests some directions for the
future study of graph-walking automata.

2 Graphs

A definition of graph-walking automata naturally begins with the form of the
graphs on which they walk. There are quite a few details to be fixed: are graphs
directed or undirected? finite or infinite? is the initial node specifically marked
or not? is the degree of nodes bounded or unbounded? what kind of labels are
there to guide the automaton?

Different choices lead to different models, and perhaps, once the theory of
graph-walking automata reaches maturity, the difference between the resulting
models shall be formally investigated. In the definitions given in the literature,
the details were chosen to fit the motivating applications, such as exploring an
unknown environment, and representing models of computations in a unified
setting.

The relation to other models of computations begins with the simplest case
of graph-walking automata: the deterministic two-way finite automata (2DFA),
A string, as it is processed by a 2DFA, is the simplest case of a graph. This is
a finite connected undirected graph, with its nodes corresponding to positions
in the string, and accordingly labelled with input symbols and end-markers (�,
�). The nodes are connected into a chain, as illustrated in Fig. 3. As per the

14 A. Okhotin

standard definition of a 2DFA, the automaton moves between the nodes in the
directions −1 and +1, which are assigned to end-points of edges.

The origins and applications of the graph-walking models researched so far
lead to the following choices in the basic definitions.

Graphs are undirected, and every edge can be traversed in both directions. This
is a natural assumption under the maze-walking interpretation, where one can
always retract the last step. If a graph is taken as a model of a memory, this
means that every modification of the memory carried out in a single opera-
tion can always be reversed by applying another single operation. In particular,
there cannot be a “global reset” operator that erases an unbounded amount of
information.

Graphs may, in theory, be infinite, although an accepting computation of a
graph-walking automaton still must be a finite walk over the input graph. This
corresponds to the intuition of traversing a maze, which may be infinite, yet
Theseus has to slay only one Minotaur and get back within a finite time. This also
fits the definition of classical computation: for instance, even though a Turing
machine is equipped with unbounded memory, it must terminate in finitely many
steps in order to accept.

However, dealing with infinite graphs in graph-walking automata is usually
difficult, and, in particular, all results presented in this paper hold only for finite
graphs.

The initial node is specifically marked, that is, upon entering a node, the automa-
ton knows whether it is initial or not. Over this point, there is a certain discrep-
ancy between different applications. On the one hand, the initial node is the gate
to the Labyrinth, where Theseus begins his journey, and where to he expects to
get back after slaying the Minotaur: of course, upon visiting a node, it should
be immediately visible whether it is the gate.

On the other hand, a marked initial node in a computing device means that
the machine always knows whether its memory is in the initial configuration. This
holds for simpler kinds of automata, such as 2DFA, which can see whether their
heads are in the initial position. However, for a Turing machine, this means that
at any moment it should know whether its entire work-tape is clear; in practice,
this would require re-scanning the tape.

Some of the existing results on graph-walking automata assume graphs with
a marked initial node, and some results refer to the case of an unmarked initial
node.

The degree of nodes is bounded by a constant. Furthermore, the end-points of
edges meeting at each node are labelled with different directions from a fixed
finite set D. This is necessary for an automaton to distinguish between these
edges, and to be able to proceed in each available direction.

In a maze, this means that a bounded number of corridors meet at every
junction, and that each outgoing corridor has a unique label. For a computing

Graph-Walking Automata 15

device, directions are elementary operations on the memory, and following an
edge means applying that operation.

In order to handle graphs of unbounded degree, nodes of higher degrees can
be split into subgraphs, and so this restiction is actually inessential.

Nodes are labelled, and so are the end-points of edges. Node labels are analogous
to symbols in a string, and the set of possible labels is accordingly denoted by Σ.
At every moment of its computation, a graph-walking automaton can observe
only the label of the current node v, denoted by a = λ(v). Furthermore, the label
of a node determines the set of directions available in that node, denoted by Da,
with Da ⊆ D, Knowing this label and using its internal state, the automaton
decides, in which direction from Da to proceed, and which state to enter.

In a string, there are two directions: to the previous symbol (−1) and to
the next symbol (+1), with D = {−1,+1}. It is essential that moving to the
direction +1 and then to the direction −1 always leads back to the same symbol:
that is, +1 and −1 are opposite directions. In the general case of graphs, every
direction d in D must have an opposite direction −d ∈ D, defined by a bijective
operator − : D → D.

With the above details fixed, graphs processed by a graph-walking automaton are
defined over a signature, which includes a set of directions, a set of node labels,
and a set of available directions for each node label, as well as identifies the labels
for the initial node. A signature is generalization of an alphabet for the case of
graphs.

Definition 1 (Kunc and Okhotin [19]). A signature is a quintuple S =
(D,−, Σ,Σ0, 〈Da〉a∈Σ), where

– D is a finite set of directions, that is, labels at the end-points of edges;
– − : D → D is a bijective operator that defines the opposite direction, it

satisfies −(−d) = d for all d ∈ D;
– Σ is a finite set of node labels;
– Σ0 ⊆ Σ is a non-empty subset of labels allowed in the initial node, whereas

all other nodes have to be labelled with elements of Σ \ Σ0;
– each Da ⊆ D, with a ∈ Σ, is the set of directions avaliable in all nodes

labelled with a, so that every such node must have degree |Da|, with the
incident edges corresponding to the elements of Da.

Graphs over a signature S are undirected labelled graphs defined as follows.

Definition 2 (Kunc and Okhotin [19]). A graph over a signature S =
(D,−, Σ,Σ0, 〈Da〉a∈Σ) is a quadruple (V, v0,+, λ), where

– V is a set of nodes;
– v0 ∈ V is the initial node;
– λ : V → Σ is a function assigning a label to each node v ∈ V , so that the

label λ(v) is in Σ0 if and only if v = v0;

16 A. Okhotin

– +: V ×D → V is a function representing the edges of the graph: it is defined
in each node v ∈ V and for each direction d ∈ Dλ(v) applicable in that node,
so that the neighbour of v in the direction d is denoted by v + d.
The neighbour of v in the direction −d is accordingly defined by v − d. The
graph must satisfy the condition (v+d)−d = v, for all v ∈ V and d ∈ Dλ(v).
In particular, Dλ(v+d) must have the direction −d.

A graph with an unmarked initial node is defined in the same way, but with no
special label for v0: every node v ∈ V must have λ(v) /∈ Σ0.

Example 1. Strings over an alphabet Γ delimited by left and right end-markers
(�, �) are represented as graphs over a signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ)
with directions D = {+1,−1}, where −(+1) = −1, and with node labels Σ =
Γ ∪ {�,�}. The only initial label is the left end-marker: Σ0 = {�}. The set of
directions at each input symbol a ∈ Γ is Da = {+1,−1}. Only one direction
available at each end-marker: D� = {+1}, D� = {−1}.

Every connected graph over the signature S is a labelled path graph of the
form depicted in Fig. 3. It corresponds to a string over Γ .

3 Automata

Definition 3 (Kunc and Okhotin [19]). A deterministic graph-walking auto-
maton over a signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ) is a quadruple A =
(S, Q, q0, δ, F), in which

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q × Σ is a set of acceptance conditions;
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all a and q where it is defined.

The automaton gets a graph (V, v0,+, λ) over the signature S as an input.
At each point of its computation, the automaton is at a node v ∈ V in a state
q ∈ Q; the pair (q, v) is known as the automaton’s configuration. The initial
configuration is (q0, v0), that is, the automaton begins at the initial node in its
initial state. At each step of the computation, while in a configuration (q, v),
the automaton observes the symbol λ(v) and evaluates its transition function on
δ(q, λ(v)). There are three possibilities.

– If this value is defined, let δ(q, λ(v)) = (q′, d). Then the automaton moves
in the direction d and enters the state q′, so that the next configuration is
(q′, v + d).

– If δ is undefined on (q, λ(v)), then the automaton halts. If (q, λ(v)) ∈ F , it
accepts the input graph, and if (q, λ(v)) /∈ F , it rejects.

The computation on a given graph is uniquely defined, and it can either be
infinite, or accepting, or rejecting. The set of graphs recognized by the automaton
A consists of all graphs over the signature S on which it halts and accepts.

Graph-Walking Automata 17

Example 2. Let S = (D,−, Σ,Σ0, 〈Da〉a∈Σ) be a signature for strings over an
alphabet Γ represented as graphs, as defined in Example 1. A graph-walking
automaton over this signature is a deterministic two-way finite automaton
(2DFA).

Another well-known special case of graph-walking automata are the tree-
walking automata operating on trees of a bounded degree. This model was first
defined by Aho and Ullman [1, Sect. VI], and later Bojańczyk and Colcombet [7,
8] showed that these automata are weaker than bottom-up and top-down tree
automata, and that their nondeterministic variant cannot be determinized. Since
a string is a special case of a tree with out-degree 1, the signature for trees
processed by these automata generalizes the one from Example 1 by providing
additional directions.

Example 3. Trees of degree k with nodes labelled by symbols from a set Γ are
defined over a signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ), with the set of directions
D = {+1, . . . ,+k,−1, . . . ,−k}, where each direction +i means going down to
the i-th successor, whereas −i points from the i-th successor to its predecessor.
The directions +i and −i are opposite: −(+i) = −i.

Nodes are labelled with the symbols from a set Σ = {
,⊥1, . . . ,⊥k} ∪ (Γ ×
{1, . . . , k}). The root node v0 is labelled by the top marker (
), with D� = {+1}
and Σ0 = {
}. Each i-th bottom marker (⊥i) has D⊥i

= {−i}, and serves as a
label for leaves. Internal nodes are labelled with elements of Γ × {1, . . . , k}, so
that a label (a, i), with a ∈ Γ and i ∈ {1, . . . , k}, indicates a node containing
a symbol a, which is the i-th successor of its predecessor; the set of available
directions is D(a,i) = {−i,+1, . . . ,+k}.

Connected graphs over this signature are exactly the k-ary trees augmented
with a top marker and with bottom markers.

4 To Find the Minotaur

In terms of graph-walking automata, the problem of maze exploration is repre-
sented as follows. In the signature, the alphabet Σ contains two special labels,
one marking the initial node, and the other marking the location of the Minotaur.
A graph-walking automaton has to test whether the given Labyrinth contains
at least one Minotaur, as illustrated in Fig. 4.

This problem is often stated for graphs with an unmarked initial node: in
other words, Theseus appears in the middle of the Labyrinth and has to test
whether there is at least one Minotaur in the Labyrinth. In this setting, there is
the following well-known result.

Theorem 1 (Budach [9]). There exists a signature S, such that for every
graph-walking automaton A over S there is a planar graph G over S, with an
unmarked initial node, such that the computation of A of G does not visit one
of its nodes.

18 A. Okhotin

v0

q
a

d

–d

Fig. 4. Theseus using finite memory and node and edge labels to search for the Mino-
taur without Ariadne’s thread.

The original proof of this result was very sophisticated. Later, the following
short and clear proof was discovered.

Lemma 1 (Fraigniaud et al. [12]). For every d � 3, let the signature Sd =
(D,−, Σ,Σ0, 〈Da〉a∈Σ) have D = {1, . . . , d}, with −i = i for all i ∈ D, Σ = {a},
Σ0 = ∅ and Da = D. Then, for every n-state graph-walking automaton A over
S there is a planar connected graph G = (V, v0,+, λ) over S with unmarked
initial node and with |V | � n + d + 3, on which A does not visit all nodes.

Proof (a sketch). Since Σ = {a}, all nodes of the graph appear identical, and
the automaton’s transitions by a induce a sequence of states q0, q1, . . ., and a
sequence of directions d1, d2, . . ., with δ(qi, a) = (qi+1, di+1). The sequence of
states is periodic with some period p, with p ∈ {1, . . . , n}, so that qi+p = qi for
all i � n − 1. Therefore, the sequence of directions has the same period.

At first, it is convenient to assume that the automaton operates on an infinite
tree. Then, the periodic part of the sequence of directions can either drive the
automaton into a cycle, or set it into periodic motion leading away from the
initial node. In the former case, the automaton actually visits only finitely many
nodes of the tree; it is sufficient to take the resulting subtree with one extra
node, and to reconnect the unused edges between these nodes.

In case the automaton moves away along a periodic sequence of directions,
the general idea is to merge two nodes of the infinite tree that are visited in
the same state, thus effectively replacing this tree with a finite “trap”, on which
the automaton follows the same periodic trajectory. Consider the example in
Fig. 5(top), where the sequence of directions is a(bccabacab)ω, with the same
state q visited after each prefix in a(bccabacab)∗. The periodic part contains a
detour cc, and with this detour omitted, it takes the form babacab. Let periodic
part of the sequence, with all detours removed, be of the form αβαR, where
α, β ∈ D∗ and αR denotes the reversal of α: in Fig. 5(top), α = ba and β = bac.
The plan is to join the nodes on the border of β, so that the periodic part visits
α twice. The resulting trap is given in Fig. 5(bottom left).

It remains to add one extra node and fill in the missing nodes, as done in
Fig. 5(bottom right).

Graph-Walking Automata 19

q0

a

v0

b

a
b

a

c

c

a

b

a
b

a

c

c
q

q
a

b

q

q0

a

v0

b

a
b

ac
c

q
a

v0

b

a
b

ac
c

b

c

b

c
a

Fig. 5. Construction of a trap in the proof of Lemma 1: (top) A periodic sequence on
an infinite tree; (bottom left) A trap constructed by merging two nodes in the periodic
part; (bottom right) The trap with an unreachable node and all missing transitions
added.

The full proof has several complicated cases, such as the case when the peri-
odic part with detours removed is an odd palindrome. However, all cases are
handled by a similar, yet more sophisticated construction, with the periodic
computation condensed into looping in a finite trap. �

The above proof does not directly apply to the case of graph-walking
automata with a marked initial node, because every appearance of v0 in var-
ious places of the sequence disrupts the argument. One can likely work around
these issues by an extensive case analysis. A concise new proof of this result for
the marked case has been found by Martynova [22], and shall be published in
due time.

Since the problem of graph exploration is an important algorithmic prob-
lem, if graph-walking automata cannot handle it in general, then the question
is, which models can? For instance, if graph-walking automata were equipped

20 A. Okhotin

with finitely many pebbles that can be dropped at any nodes and later picked
up, then could there exist an automaton of this kind that can traverse every
maze? The answer is again negative; as shown by Rollik [27], even a team of
communicating automata cannot traverse all graphs (a team may be regarded as
a single automaton equipped with multiple heads: at every moment each head is
stationed at some node, and the automaton observes the symbols in those nodes,
as well as senses whether any heads share the same position).

An interesting special case studied in the literature is the case of embedded
plane graphs, with all edges going either from north to south or from east to
west, and with the automaton being aware of the direction of each edge. As
proved by Blum and Kozen [6], there is a graph-walking automaton equipped
with two pebbles that can walk through every such maze.

5 Tracing Back the Footsteps

Several results on graph-walking automata are based on the same common con-
struction of an automaton that traces back all computations of a given automa-
ton that lead to a particular configuration.

TO THE

MINOTAUR

TO THEMINOTAUR

TO
 TH

E

M
IN

O
TA

Suppose Theseus stands over the
fresh corpse of the Minotaur, remem-
bering nothing besides the finite-
state transition rules he has followed
to reach this place. Can he trace
back his own footsteps and find the
exit? This is not obvious at all:
for instance, if every node in the
Labyrinth is equipped with a plaque
“to the Minotaur” pointing to the
most suitable edge, then the Minotaur can be found using a one-state tran-
sition table. However, such plaques would not help getting back: as illustrated
in the picture, Theseus would not even know the penultimate node on his path
to the Minotaur.

Nevertheless, the answer to the question is positive, and Theseus can always
find the way back by tracing back all the paths that would lead him to the
Minotaur according to his own transition rules. This is done using the general
idea of backtracking the tree of accepting computations, discovered by Sipser [28]
in his study of halting space-bounded computations. This idea has been reused
many times: for instance, Lange et al. [21] applied it in their proof of the equiv-
alence of deterministic space O(s(�)) to reversible space O(s(�)). Kondacs and
Watrous [17] have improved the details of Sipser’s construction, leading to a
simulation of an n-state 1DFA by a reversible 2DFA with as few as 2n states.
Geffert et al. [14], Muscholl et al. [24] and Morita [23] used the same idea to pro-
duce similar constructions for various automaton models, with various degree of
efficiency.

Graph-Walking Automata 21

Actually, this construction applies to particular automaton models so easily,
for the reason that it is correct in the general case of graph-walking automata—
and therefore it holds true for their particular cases, such as all automaton
models to which it was previously applied.

In order to define the construction for tracing back the footsteps of a graph-
walking automaton, the following property of automata turns out to be useful.
A GWA is said to be direction-determinate, if it always remembers the direction,
in which it came to the current node.

Definition 4. A graph-walking automaton A = (S, Q, q0, δ, F) over a signature
S = (D,−, Σ,Σ0, 〈Da〉a∈Σ), is direction-determinate, if, for some partial func-
tion d : Q → D, whenever a transition δ(p, a) leads the automaton to a state q,
it must move in the direction d(q).

Then, for each a ∈ Σ, the transitions by a are defined by a partial function
δa : Q → Q, with δ(p, a) = (q, d(q)), where q = δa(p).

Every graph-walking automaton with a set of states Q can be transformed to
a direction-determinate automaton with the set of states Q × D, which simply
remembers the last direction it has taken in the second component of its state,
without ever using this information.

Lemma 2 (Kunc and Okhotin [19]). For every direction-determinate graph-
walking automaton A = (S, Q, q0, δ, F), there exists an automaton over the same
signature S and with the set of states

−→
Q ∪ [Q], where

−→
Q = {−→q | q ∈ Q } and

[Q] = { [q] | q ∈ Q }, which, on any finite graph, backtracks all computations
of A leading to any accepting configuration (q̂, v̂), with (q̂, λ(v̂)) ∈ F , in the
following sense: if B begins its computation in the configuration ([q̂], v̂ − d(q̂)),
then it passes through all such configurations ([q], v), that the computation of A
beginning in (q, v + d(q)) accepts in the configuration (q̂, v̂).

Proof (a sketch). The automaton B traverses the tree of all computations of A
that terminate in the configuration (q̂, v̂). The construction is based on ordering
the states in Q, which implies an ordering on the branches of the computation
tree. Then, whenever B finds a configuration of A that has some predecessors,
it proceeds with tracing back the least of the computation paths leading to the
current configuration. Once B reaches a configuration of A without predecessors,
it switches to forward simulation, which is carried out in the states

−→
Q . In these

“forward states”, for every configuration of A visited by B, it tries to trace
back the next computation path according to the chosen ordering. If the path
being traced forward is already greater than the other paths meeting at the
present point, then the forward simulation continues. This way, the entire tree
of computations converting in the chosen configuration is eventually traversed.

�

Sipser’s [28] paper actually contains two methods for implementing this kind

of computation tree traversal: his first method involves remembering two states

22 A. Okhotin

–d

v0

q

[q]

dv

v

Fig. 6. Theseus tracing back his path from the gate to the Minotaur: on the way back,
he is in the configuration ([q], v) if, on his way forward, he would reach the Minotaur
from the configuration (q, v + d(q)).

of the original automaton, that is, produces the set of states Q × Q; the sec-
ond method sketched by Sipser [28] requires remembering a state and a symbol,
that is, uses the states Q × Σ. The improvement contributed by Kondacs and
Watrous [17] was to remember a state and one bit, using states Q × {0, 1}. The
construction in Lemma 2 implements the method of Kondacs and Watrous [17]
for graph-walking automata, which seem to be the natural limit of the applica-
bility of this method.

Lemma 2 directly implies the promised result that if Theseus can find the
Minotaur using finite-state transition rules, then he can get back, as illustrated
in Fig. 6. In terms of graph-walking automata, this is formalized as follows.

Definition 5. A graph-walking automaton A = (S, Q, q0, δ, F) is called return-
ing, if it can accept only at the initial node, that is, F ⊆ Q × Σ0.

Theorem 2 (Kunc and Okhotin [19]). For every n-state graph-walking
automaton A over some signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ), with |D| = d,
there exists a direction-determinate returning graph-walking automaton with 3dn
states that accepts the same set of finite graphs.

Proof (a sketch). The given GWA A is first transformed to a dn-state direction-
determinate GWA B. By Lemma 2, there is a 2dn-state direction-determinate
automaton C that traces back all accepting computations of B. The promised
returning automaton operates as follows: first, it behaves as B until it reaches
an accepting configuration; then, it behaves as C, accepting if it ever encounters
the initial configuration of B, and rejecting if it ever returns to its accepting
configuration.

Remark 1 (Martynova [22]). If the resulting returning graph-walking automaton
is not required to be direction-determinate, then it is sufficient to use only (2d+
1)n states. The new automaton first behaves as A until acceptance, and then
proceeds with simulating C.

The property of being returning is crucial for Theseus, and it can also be use-
ful in other exploration problems. On the other hand, as a property of computing

Graph-Walking Automata 23

devices, it is not always relevant: for instance, if a Turing machine is represented
as a graph-walking automaton, then being returning only means that it always
restores the original contents of its tapes before acceptance.

As it shall now be demonstrated, the construction for tracing back the accept-
ing computations can ensure several important general properties of abstract
machines.

6 Reversible Computation

Reversibility is a stronger form of determinism: a deterministic machine is
reversible, if its computations are also backward deterministic, that is, given
its current configuration, its configuration at the previous step can always be
uniquely determined. This is an interesting theoretical notion.

Furthermore, reversibility of computations is important from the point of
view of the physics of computation [5]: according to Landauer’s principle [20], a
logically irreversible erasing of one bit of information incurs dissipation of kT ln 2
joules of energy, where k is the Boltzmann constant and T is the temperature.
Reversible computing, in theory, can avoid this effect. Furthermore, since the
laws of quantum mechanics are reversible, reversible computing is the basic case
of quantum computing. These applications further motivate theoretical studies
on reversible computation.

In automata theory, Kondacs and Watrous [17] showed that reversible 2DFA
can recognize every regular language, whereas reversible 1DFA, as well as one-
way quantum automata (1QFA) recognize a proper subset of regular languages.
Every Turing machine can be simulated by a reversible Turing machine [5]. Lange
et al. [21] proved that the class of sets recognized by reversible Turing machines
in space O(s(n)), denoted by RSPACE(s(n)), is equal to DSPACE(s(n)). This
was done by applying Sipser’s [28] method for tracing back accepting computa-
tions. The same method was used a few times for different automaton models,
showing that their reversible subclass is as powerful as the full deterministic
class. This general argument again works for graph-walking automata, and can
be established in a clearer form for this model.

Definition 6 (Kunc and Okhotin [19]). A graph-walking automaton A =
(S, Q, q0, δ, F) is called reversible, if it is direction-determinate and returning,
every partial transformation δa is injective, and for each initial label a0 ∈ Σ0,
there is at most one state q with (q, a0) ∈ F .

To put it simple, reversibility means that every computation can equally
be executed backwards. In particular, given a finite graph with λ(v0) = a0,
which can only be accepted in the configuration (q, v0), one can proceed with
backtracking a potential accepting computation beginning in this configuration.
Since all partial transformations are injective, the predecessor configuration shall
always be uniquely defined, until one of the following two outcomes: either the
simulation backtracks to the initial configuration (q0, v0), or an unreachable con-
figuration is reached. In the latter case, the automaton rejects this graph.

24 A. Okhotin

The automaton constructed in Lemma 2 is actually reversible.
There is also a notion of a strongly reversible graph-walking automaton, sat-

isfying some further requirements: in particular, if a graph is rejected, then it
can be rejected only in the initial node, in a particular configuration (qrej , v0);
furthermore, all transformations δa with a /∈ Σ0 must be bijective. As long as
the input graph is finite, this forces the automaton to halt on every input in one
of the two predetermined configurations at the initial node.

Theorem 3 (Kunc and Okhotin [19]). For every n-state direction-
determinate returning graph-walking automaton, there exists a strongly reversible
graph-walking automaton with 2n + 1 states recognizing the same set of finite
graphs.

Proof (a sketch). First, Lemma 2 is applied to the given returning automaton
A. The resulting automaton is augmented with a new initial state, in which it
initiates tracing back the computations of A leading to its accepting configura-
tion (owing to the fact that all accepting configurations of A are at the initial
node). �

Corollary 1. For every n-state graph-walking automaton over a signature with
d directions, there is a strongly reversible automaton with 6dn + 1 states that
recognizes the same set of finite graphs.

The notion of a reversible automaton applies to infinite graphs as well. Unfor-
tunately, the above construction of a reversible automaton is apparently useless
in that case. Indeed, on an infinite graph, the constructed reversible GWA may,
and typically will, immediately rush away from the initial node along an infinite
path, perfectly reversibly and perfectly uselessly.

7 Closure Properties and State Complexity

In the case of string languages, a plenty of regularity-preserving operations are
known. The study of how they affect the number of states in finite automata is
known as the state complexity. The state complexity of all reasonable operations
on 1DFA and 1NFA is known perfectly well. For unambiguous automata (1UFA)
and for two-way automata (2DFA, 2NFA), there are only partial results, and
many interesting problems are still open.

Closure properties of graph-walking automata are a new subject, and, at
the moment, there are hardly any operations to be studied besides the Boolean
operations. The existing results on graph-walking automata easily imply their
closure under all Boolean operations.

Theorem 4. Let A and B be two graph-walking automata, with m and n states,
respectively, defined over the same signature S = (D,−, Σ,Σ0, 〈Da〉a∈Σ) with
|D| = d. Then, there exist:

1. a graph-walking automaton C with 6 dm + n + 1 states that accepts a finite
graph if and only if it is in the union L(A) ∪ L(B);

Graph-Walking Automata 25

2. a graph-walking automaton D with (2d+1)m+n states that accepts a finite
graph if and only if it is in the intersection L(A) ∩ L(B);

3. a graph-walking automaton E with 6dm+1 states that accepts a finite graph
if and only if it is in the complement L(A).

Proof (a sketch). (Union) To begin with, the first automaton A is made strongly
reversible, so that it halts on every input at the initial node. Then the automaton
C for the union simulates the A, and accepts if it accepts, or proceeds with
simulating B if it rejects.

(Intersection) By Theorem 2 and Remark 1, the first automaton is made
returning. The automaton D first simulates it until it returns and is about to
accept; if this happens, then it turns to simulating B.

(Complementation) It is sufficient to make the automaton strongly reversible,
and then exchange the acceptance and rejection decisions. �

8 Decision Problems

The most commonly studied decision problems on automata include the member-
ship problem (whether a given automaton accepts a given input); the emptiness
problem (whether a given automaton accepts any input); the universality prob-
lem (whether a given automaton accepts every input); the equivalence problem
(whether two given automata accept exactly the same inputs); and the inclusion
problem (whether every input accepted by the first of the two given automata is
accepted by the other). In each case, the “input” is taken to be any graph over
the same signature as the automaton.

The membership problem for graph-walking automata is obviously decidable
in time O(mn), where n is the size of the automaton and m is the size of the
input. One simply has to run the automaton until it accepts or rejects, or until
mn steps have been made, after which it can be pronounced looped.

The rest of the problems (emptiness, universality, equivalence, inclusion) are
reducible to each other in view of the closure under all Boolean operations.
Whether these problems are decidable, remains unknown. If “emptiness” is inter-
preted as the existence of a graph accepted by the automaton that belongs to
a certain family, then, for certain families of graphs, such as for all grids, the
problem becomes undecidable [29]. However, since a graph-walking automaton
cannot ensure that a given graph is a grid, this undecidability is hardly relevant
to the properties of automata. For the emptiness problem in the form “does
there exist any graph over the signature that is accepted by the automaton?”,
it is unknown whether it is decidable or not.

In the special cases of 2DFA and TWA, the same problems are well-known
to be decidable, One way of showing this for 2DFA is to define the behaviour
function of the given automaton on substrings, which specifies the outcome of a
computation entering a substring from the left or from the right in every possible
state. Since there are finitely many such functions, one can determine the set of
functions that are actually implemented on some substring. This is sufficient to

26 A. Okhotin

decide whether any string is accepted. For TWA over k-ary trees, the algorithm
is the same, using subtrees instead of substrings, and dealing with computations
enterable from k + 1 different sides. Here the number of behaviour functions is
still finite, leading to the same enumeration of functions implemented on some
trees.

The problem with graphs is that, for graphs of an unrestricted form, it seems
impossible to have an upper bound on the number of entry points to subgraphs.
Then, a full enumeration of implementable behaviour functions cannot be done,
and the argument breaks down.

9 Variants of Graph-Walking Automata

This paper concentrates on one particular kind of graph-walking automata, as
explained and justified in Sects. 2 and 3. What kind of other related models could
be considered?

First, one can consider different definitions of graphs. Graphs may be directed,
in the sense that some edges can be passed only in one direction. An example
of a GWA operating on a directed graph is a 1DFA, in which the graph is a
directed chain. Could any interesting results be obtained along these lines?

The case of infinite graphs is definitely interesting, yet all the constructions
presented in this paper are valid only for finite graphs. Some new ideas are
needed to handle the infinite case.

The case of an unmarked initial node does not look much different from the
marked case. However, all results related to reversibility rely on the initial node’s
being marked. It remains to investigate whether this is really essential or not.

Leaving the form of the graphs alone, it is interesting to consider the stan-
dard modes of computation for graph-walking automata. Most models of com-
putations, from one-way finite automata to Turing machines, have all kinds of
variants: reversible, deterministic, nondeterministic, unambiguous, probabilis-
tic, alternating, etc. These definitions apply to graph-walking automata as well.
What kind of results could one expect?

As proved by Bojańczyk and Colcombet [7], nondeterministic tree-walking
automata cannot be determinized, and so this holds for graph-walking automata
in general. However, graph-walking automata over some signatures can be deter-
minized, and, for instance, it would be interesting to characterize those signa-
tures. The unambiguous mode of computation is yet to be investigated even for
the tree-walking automata.

A kind of one-way model for graphs, the tilings on a graph, was considered
by Thomas [29]. A tiling assigns labels to all nodes of the graph, so that the
labellings of all small subgraphs satisfy certain given conditions. A deterministic
graph-walking automaton, and even a nondeterministic one, can be simulated
by a tiling. In the case of trees, tilings are bottom-up tree automata, and, by
the result of Bojańczyk and Colcombet [7], tree-walking automata are weaker
than tilings. This extends to graph-walking automata, yet some special cases are
worth being considered.

Graph-Walking Automata 27

10 Graph Exploration Algorithms

Since there is no GWA that can traverse any graph, this means that searching
in the graph requires devices or algorithms that either use internal memory of
more than constant size, or store any information in the nodes of the graph, or
do both. In these terms, Ariadne’s thread can be regarded as information stored
in the nodes. The standard depth-first search includes both Ariadne’s thread (as
the stack) and marks left in the visited nodes.

Many new algorithms for graph exploration are being developed. For
instance, Disser et al. [10] presented a solution using O(log log n) pebbles and
O(log n) internal states; this is one of the several algorithms obtained by deran-
domizing randomized algorithms for graph exploration, which were first inves-
tigated by Aleliunas et al. [3]. Algorithms by Albers and Henzinger [2], and by
Panaite and Pelc [25] are aimed to minimize the number of edge traversals. Algo-
rithms for searching in a graph with an unbounded degree of nodes have recently
been presented by Asano et al. [4] and by Elmasry et al. [11].

From the point of view of automata theory, the question is: can the graph-
walking automata be somehow extended to contribute to the more practical
methods of graph exploration?

11 Conclusion

The study of graph-walking automata looks like a promising direction in
automata theory, yet, at the moment, it is still in its infancy. There are only a
few isolated results, which are useful for representing the general form of known
generic ideas, but insufficient to form a theory. On the other hand, there are
plenty of uninvestigated basic properties, and some of them may turn out rela-
tively easy to determine.

A suggested possible starting point for research is finding a new special case of
graphs, along with a motivation for considering it, and then investigate its basic
properties. It would be particularly fortunate to find an intrinsically interesting
simple case: for instance, for 2DFA, their simple case is the case of a unary
alphabet [13,14,18], for which much more is known than for 2DFA over multiple-
symbol alphabets. Is there such a non-trivial class of non-path graphs that could
similarly drive the early research on graph-walking automata?

References

1. Aho, A.V., Ullman, J.D.: Translations on a context free grammar. Inf. Control
19(5), 439–475 (1971)

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000). https://doi.org/10.1137/S009753979732428X

3. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: Proceed-
ings of 20th Annual Symposium on Foundations of Computer Science, FOCS 1979,
pp. 218–223. IEEE Computer Society (1979). https://doi.org/10.1109/SFCS.1979.
34

https://doi.org/10.1137/S009753979732428X
https://doi.org/10.1109/SFCS.1979.34
https://doi.org/10.1109/SFCS.1979.34

28 A. Okhotin

4. Asano, T., et al.: Depth-first search using O(n) bits. In: Ahn, H.-K., Shin, C.-S.
(eds.) ISAAC 2014. LNCS, vol. 8889, pp. 553–564. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13075-0 44

5. Bennett, C.H.: The thermodynamics of computation–a review. Int. J. Theor. Phys.
21(12), 905–940 (1982). https://doi.org/10.1007/BF02084158

6. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to
search than graphs). In: Proceedings of 19th Annual Symposium on Foundations
of Computer Science, FOCS 1978, pp. 132–142. IEEE Computer Society (1978).
https://doi.org/10.1109/SFCS.1978.30

7. Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized.
Theor. Comput. Sci. 350(2–3), 164–173 (2006). https://doi.org/10.1016/j.tcs.2005.
10.031

8. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regu-
lar languages. SIAM J. Comput. 38(2), 658–701 (2008). https://doi.org/10.1137/
050645427

9. Budach, L.: Automata and labyrinths. Math. Nachr. 86(1), 195–282 (1978).
https://doi.org/10.1002/mana.19780860120

10. Disser, Y., Hackfeld, J., Klimm, M.: Undirected graph exploration with O(log log n)
pebbles. In: Krauthgamer, R. (ed.) Proceedings of 27th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, pp. 25–39. SIAM (2016). https://doi.
org/10.1137/1.9781611974331.ch3

11. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In:
Mayr, E.W., Ollinger, N. (eds.) Proceedings of 32nd International Symposium on
Theoretical Aspects of Computer Science, STACS 2015. LIPIcs, vol. 30, pp. 288–
301. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/
10.4230/LIPIcs.STACS.2015.288

12. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by
a finite automaton. Theoret. Comput. Sci. 345(2–3), 331–344 (2005). https://doi.
org/10.1016/j.tcs.2005.07.014

13. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterminis-
tic unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203
(2003). https://doi.org/10.1016/S0304-3975(02)00403-6

14. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite
automata. Inf. Comput. 205(8), 1173–1187 (2007). https://doi.org/10.1016/j.ic.
2007.01.008

15. Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata.
In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp.
544–555. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 47

16. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.
Syst. 55(2), 421–447 (2014). https://doi.org/10.1007/s00224-013-9465-0

17. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceedings of 38th Annual Symposium on Foundations of Computer Science,
FOCS 1997, pp. 66–75. IEEE Computer Society (1997). https://doi.org/10.1109/
SFCS.1997.646094

18. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22321-1 28

19. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata.
In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 595–606.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2 53

https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/BF02084158
https://doi.org/10.1109/SFCS.1978.30
https://doi.org/10.1016/j.tcs.2005.10.031
https://doi.org/10.1016/j.tcs.2005.10.031
https://doi.org/10.1137/050645427
https://doi.org/10.1137/050645427
https://doi.org/10.1002/mana.19780860120
https://doi.org/10.1137/1.9781611974331.ch3
https://doi.org/10.1137/1.9781611974331.ch3
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/S0304-3975(02)00403-6
https://doi.org/10.1016/j.ic.2007.01.008
https://doi.org/10.1016/j.ic.2007.01.008
https://doi.org/10.1007/11549345_47
https://doi.org/10.1007/s00224-013-9465-0
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-40313-2_53

Graph-Walking Automata 29

20. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961). https://doi.org/10.1147/rd.53.0183

21. Lange, K., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J.
Comput. Syst. Sci. 60(2), 354–367 (2000). https://doi.org/10.1006/jcss.1999.1672

22. Martynova, O.: Personal Communication, April 2019
23. Morita, K.: A deterministic two-way multi-head finite automaton can be converted

into a reversible one with the same number of heads. In: Glück, R., Yokoyama, T.
(eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36315-3 3

24. Muscholl, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-
walking automata. Inf. Process. Lett. 99(1), 33–39 (2006). https://doi.org/10.
1016/j.ipl.2005.09.017

25. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2),
281–295 (1999). https://doi.org/10.1006/jagm.1999.1043

26. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

27. Rollik, H.: Automaten in planaren graphen. Acta Inform. 13, 287–298 (1980).
https://doi.org/10.1007/BF00288647

28. Sipser, M.: Halting space-bounded computations. Theoret. Comput. Sci. 10, 335–
338 (1980). https://doi.org/10.1016/0304-3975(80)90053-5

29. Thomas, W.: On logics, tilings, and automata. In: Albert, J.L., Monien, B.,
Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54233-7 154

https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1006/jcss.1999.1672
https://doi.org/10.1007/978-3-642-36315-3_3
https://doi.org/10.1007/978-3-642-36315-3_3
https://doi.org/10.1016/j.ipl.2005.09.017
https://doi.org/10.1016/j.ipl.2005.09.017
https://doi.org/10.1006/jagm.1999.1043
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/BF00288647
https://doi.org/10.1016/0304-3975(80)90053-5
https://doi.org/10.1007/3-540-54233-7_154

Contributed Papers

Enumerated Automata Implementation
of String Dictionaries

Robert Bakarić, Damir Korenčić, and Strahil Ristov(B)

Department of Electronics, Ruđer Bošković Institute,
Bijenićka 54, 10000 Zagreb, Croatia

{robert.bakaric,damir.korencic,ristov}@irb.hr

Abstract. Over the last decade a considerable effort was invested into
research on implementing string dictionaries. String dictionary is a data
structure that bijectively maps a set of strings to a set of integers, and
that is used in various index-based applications. A recent paper [18]
can be regarded as a reference work on the subject of string dictionary
implementations. Although very comprehensive, [18] does not cover the
implementation of a string dictionary with the enumerated determinis-
tic finite automaton, a data structure naturally suited for this purpose.
We compare the results for the state-of-the-art compressed enumerated
automaton with those presented in [18] on the same collection of data
sets, and on the collection of natural language word lists. We show that
our string dictionary implementation is a competitive variant for dif-
ferent types of data, especially when dealing with large sets of strings,
and when strings have more similarity between them. In particular, our
method presents as a prominent solution for storing DNA motifs and
words of inflected natural languages. We provide the code used for the
experiments.

Keywords: String dictionary · Enumerated DFA ·
Recursive automaton · LZ trie · DNA indexing

1 Introduction

A string dictionary is an abstract data structure that stores a set of strings from
a corpus and maps them to a set of unique integer identifiers in a bijective man-
ner. Conceptually, a string dictionary can be regarded as an invertible minimal
perfect hashing. String dictionaries are used widely, and while the most obvious
application is the indexing of a corpus, there exist a variety of diverse areas of
usage that include natural language processing, information retrieval, database
management, web graphs, internet routing and bioinformatics. In general, string
dictionaries are used wherever it is beneficiary to replace a complex string with
a single number. A very comprehensive list of applications can be found in [18].

Supported in part by Croatian Science Foundation grant No. IP-2018-01-7317 and
European Regional Development Fund [KK.01.1.1.01.0009 - DATACROSS].
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 33–44, 2019.
https://doi.org/10.1007/978-3-030-23679-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_3

34 R. Bakarić et al.

The relevant parameters of a string dictionary implementation are the size,
the look-up time, and the construction time. In order of importance, string
dictionaries should be compact, allow for a fast look-up, and shouldn’t take
too long to construct. Recently, there has been an increased interest in research
on implementation of string dictionaries [2,4,15,18]. The most comprehensive
and up-to-date paper is [18], where the performances of various methods and
data structures have been analyzed. In particular, hashing, front coding, FM-
index and compressed tries are combined with Huffman statistical codes, Re-
Pair grammar compression and/or bit-level data compression methods. However,
although impressively wide in coverage, [18] does not include considerations of
one data structure, the enumerated deterministic finite automaton (EDFA), that
appears to be a natural embodiment of a string dictionary.

Deterministic finite automata (DFA) are the best representations of simple
lexicons [9], and the enumeration is a simple modification that produces the full
functionality of a string dictionary. Consequently, compressed enumerated DFA
is a straightforward candidate for implementation of string dictionaries.

In this paper we present the analysis of the LZ trie implementation of a
compressed automaton as a string dictionary. LZ trie is the state-of-the-art in
DFA compression, and we show experimentally that enumerated LZ trie (ELZT)
is a viable alternative to other string dictionary implementation methods. In
particular, ELZT emerges as the best choice for the sets of strings with a high
similarity between the strings. The examples of such string sets are natural
language lexicons and collections of DNA segments.

The paper is organized as follows. In the next section we present the relevant
work on string dictionaries, in Sect. 3 we describe the enumerated automaton, in
Sect. 4 we give a short overview of the LZ trie automata compression, in Sect. 5
we describe the experiments, present the results, and provide a link to the code,
in Sect. 6 we give some final remarks on possible usage of compressed automaton
as a string dictionary, and we conclude in Sect. 7.

2 String Dictionary

String dictionary is defined as a data structure on a set S of n strings stringi for
i = 1, . . . , n that bijectively maps stringi to i, and, inversely, i to stringi. Using
the terminology of [18], we call the mapping operations locate and extract.

– locate(stringi) returns unique i if stringi is in S, and 0 otherwise
– extract(i) returns stringi if 1 ≤ i ≤ n

It follows that locate(extract(i)) = i and extract(locate(stringi)) = stringi.
String dictionaries can be implemented in several different ways. The most obvi-
ous are arrays - combined with binary search or hash addressing, tries, and lists
organized in buckets. Various less specialized data structures exist that have
locate and extract as a part of their functionality. In fact, any data structure
that can support rank and select operations is regarded as a string dictionary

Enumerated Automata Implementation of String Dictionaries 35

[1,3,11,13,20]. Different tree implementations, in particular, can support locate
and extract among other functionalities [1,3,20].

Such, more universal, data structures, where rank and select are only part
of the functionality, are, as a rule, larger and slower than necessary. On the
other hand, specialized approaches focus on the size and the look-up speed of a
string dictionary, and a fast construction is advantageous. Several papers deal
exclusively with the optimal implementation of a static string dictionary [2,4,
15,18]. We focus on the static string dictionaries since they can be optimized for
space, and in most of the applications the set of stored strings does not change
very often.

Martínez-Prieto et.al. in [18] provide a very comprehensive survey of possi-
ble string dictionary implementations, together with some novel solutions. They
describe the details of various combinations of data structures and data com-
pression methods, and provide extensive experimental results on eight different
data sets. Fundamental data structures that are used are hash tables, lists, and
compressed tries, combined with statistical compression, front coding, grammar
compression, succinct data structures, and bit-sequence compression. Different
methods are shown to be best suited for different parameters of the string dic-
tionary usage. In particular, compressed tries are, in general, the most efficient
method regarding the compression factor, but are slower to search than com-
pressed hashing dictionaries. Some of the implementations can support prefix,
suffix and substring search, but they may not be optimal concerning the size
and/or the speed. With regard to this, the authors of [18] have, for each type
of the experimental data, chosen one implementation as the preferred one. In
all cases that is a front coded dictionary with bucket headers compressed with
Hu-Tucker codes, and the rest of the buckets compressed with either Re-Pair
grammar compression [16] or with Huffman coding. We refer the reader to [18]
for many details of these implementations. Front coded dictionaries are regarded
as the favorite method because they achieve among the best compression ratios,
while the speed of the look-up is also among the best of the tested implemen-
tations. The compressed trie implementation, that in most cases produced the
best compression ratio, has the disadvantage of being much slower to search.

In [18], when using tries, the associations between strings and their ID num-
bers are achieved by storing the ID numbers in leaves. In this way each path
in the trie leads to a unique label. We will present the results obtained with
compressed EDFA, where a different approach of path annotation is employed,
that often leads to a better compression while still allowing for a competitive
look-up speed.

3 Enumerated Deterministic Finite Automaton

A deterministic finite automaton is defined as a quintuple A = (Q,Σ , δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is a start state,
F ⊆ Q is a set of accepting states, and δ : Q × Σ ⇒ Q is a transition function.
A DFA stores, or recognizes, a finite set of words, and is easy to implement in a

36 R. Bakarić et al.

compact manner while supporting a fast look-up. It is a data structure of choice
for storing word lists in various applications.

We define the enumerated automaton as an acyclic deterministic finite
automaton with the property that an integer Ni is associated with each state
qj , where Ni is the number of accepting states that can be reached by traversing
the state qj . Besides with the states, depending on the implementation, Ni can
also be associated with the transitions δj in the automaton. In that case, Ni is
the number of different paths that extend the current transition and lead to an
accepting state. A very basic example of the enumerated DFA with numbers asso-
ciated with transitions is presented in Fig. 1. This layout is in accordance with
the linked list implementation of automata transitions. That is the method we
use in our compressed EDFA data structure, described in the following section.
During construction, every transition δj is assigned a counter Cj that counts
the number of words, accepted by the automaton, that use δj . For example,
in the automaton in Fig. 1 three words use transition δ(q0, a), two words use
transition δ(q1, b), and transitions δ(q2, c) and δ(q1, c) are both used by a single
word. When storing a set of words in a finite state recognizer, the alphabetical
ordering of the input is customary and often implied when dealing with static
string dictionaries.

The locate and extract functions are executed by using a counter Cnt when
traversing the automaton. To perform locate(stringi), Cnt is initialized to 1
and incremented while traversing the path that accepts stringi. When passing
through an accepting state Cnt is incremented by 1, and on each branching in
the automaton Cnt is incremented by the values Cj stored in the transitions
that are skipped. In that manner, at the point when stringi is accepted Cnt has
the value i, which is the ordinal number of stringi in the sorted input string set.
In the example on Fig. 1, when string abc is accepted the value of Cnt is 2 since
Cnt was incremented by 1 when traversing q2, and when ac is accepted Cnt = 3
because it was incremented by 2 when skipping a transition out of q1. Of course,
Cnt can be initialized to 0 and then the final accepting states would also have
to be counted in.

To perform extract(i), Cnt is set to i, and then decremented as the automa-
ton is traversed from the start state. In each state outgoing transitions are visited
sequentially. In each transition δi, the value of the associated integer Ci is com-
pared with the current value of Cnt. Depending on the result, the traversal of
states and transitions continues in the following manner:

– If Cj > Cnt, δj is followed to the next state. If the next state is accepting,
Cnt is decremented by 1;

– If Cj < Cnt, δj is skipped and Cnt is decremented by Cj ;
– If Cj == Cnt, δj is followed to the next state. If the next state is accepting,

Cnt is decremented by 1. If at that point Cnt == 0, the concatenation of
labels on the path from start state to the current state produces stringi.

Using the example of the automaton in Fig. 1, the first case would apply
with Cnt = 2 (abc) and transition δ(q0, a). The second case would apply with

Enumerated Automata Implementation of String Dictionaries 37

Cnt = 3 (ac) and transition δ(q1, b). Finally, with the initial Cnt = 3, after
skipping transition δ(q1, b), Cnt is decremented by 2 and the third case is applied
with Cnt = 1 and transition δ(q1, c), i.e., b is skipped and ac is accepted.

Enumerated automaton is a well known concept. It has been introduced in
[21] as a hashing transducer, and again in [17] where it was called a numbered
automaton. Subsequently, it has often been proposed as an integrated part in
more complex applications [5,6,22,25]. A detailed description of the method,
with the examples, can be found in [9], in the section on perfect hashing. Bear-
ing in mind its relative triviality, it is somewhat surprising that EDFA hasn’t yet
been mentioned in the context of string dictionary. Enumerated automaton is
practically synonymous with string dictionary, apart from substring search facil-
ity supported by some implementations addressed in [18]. It would appear that
enumerated automaton is not well known outside the field of automata research.

q0 q1 q2 q3
δ(q0, a)|3 δ(q1, b)|2 δ(q2, c)|1

δ(q1, c)|1

Fig. 1. A very simple enumerated automaton with numbers in transitions, recognizing
language (ab, abc, ac).

EDFA has the functionality of the minimal perfect hashing function and, at
the same time, its inverse. This property can be conserved both in the minimized
automaton and in the compressed versions. Deterministic automata are, in gen-
eral, amenable to implementations with efficient data structures that enable fast
look-up and good compression. Although compressing the automaton naturally
slows the look-up, this effect does not have to be very pronounced. In the next
chapter we will describe the state-of-the-art method for compressing DFAs that
we have used for our implementation of the string dictionary.

4 LZ Trie Implementation of EDFA

Minimization of DFA is a well researched procedure that leads to a very com-
pact recognizer of a finite language, as the minimal automaton has no redun-
dant states [9]. A few authors have explored the possibility of further automata
compression by merging not only the states but also any repeated substruc-
ture in the automaton [8,14,24,26]. This approach has been named a recursive
automaton in [14]. A recursive deterministic finite automaton (RDFA) is defined
as A = (Q,Σ , δ, r, q0, F), where Q is a finite set of states, Σ is a finite alphabet
of symbols , q0 ∈ Q is a start state, F ⊆ Q is a set of accepting states, and
δ : Q × Σ ⇒ Q and r : Q ⇒ Q are partial transition functions. The difference
from ordinary DFA is the function r : Q ⇒ Q that denotes “recursive” transitions
in the automaton. These transitions are called recursive because they act as the

38 R. Bakarić et al.

calls to the part of the structure itself, i.e., they are directed to a previous path
in the automaton. After traversing the defined length of the addressed path, the
recursive procedure returns to the point of the original recursive transition. A
recursive transition can address a well formed subautomaton, or it can be used
to “recycle” only a part of a state [9].

The best RDFA implementation regarding the compression factor is LZ trie1

described in [22]. LZ trie method compresses the initial trie automaton using
a general LZ paradigm of replacing the repeated parts of the structure with
(shorter) pointers. The states are implemented with linked lists, as a result,
the original trie and the derived compressed format can be regarded as a Mealy
recognizer, an automaton that has accepting transitions instead of states. LZ trie
is a succinct data structure where the compression is extended to the level of
using the optimal number of bits for each component, and that supports look-up
without decompression.

Although LZ trie is the state-of-the-art in DFA compression, the original
construction algorithm [22] was inconveniently slow for large inputs. For this
reason different approaches to reducing the size of automata were proposed in
[10] as a better trade-off between the size and the time needed for the construc-
tion. In that paper Daciuk and Weis presented the work on space optimization
of automata implementations from Jan Daciuk’s fsa package [7]. Incidentally,
they have also included the experiments with the enumerated versions of the
automata. The increase in the size of the enumerated automaton, compared to
the ordinary compressed automaton, is reported to be 23% on the average. For
LZ trie, the average increase in the size of the enumerated automaton is 11% for
the data sets from [18], and 38% for natural language word lists, as presented
in Tables 1 and 2, respectively. Five data sets from Table 2 are the same as in
[10], and, although the differences in the sizes of the enumerated and ordinary
compressed automata are larger with LZ trie, the actual sizes of the enumerated
automata are smaller. In this work we focus on the compression factor, for this
reason, and for the lack of space, we have not included analysis of the data struc-
tures from [10] in our experiments. Nonetheless, when all parameters of string
dictionary usage are considered, some of the automata methods in [10] might
have a potential to be competitive to those suggested in [18].

Finally, a new algorithm for LZ trie construction, that works faster even than
the solutions presented in [10], was published in [23], along with the open source
code. We have augmented that software to include enumeration, and this was
used in the experiments to produce enumerated LZ trie (ELZT).

1 There exists a certain ambiguity in the literature regarding usage of the term LZ trie.
As employed in [22], and in this paper, the term denotes a specific data structure
(and the corresponding method of construction) - a trie compressed with a variant of
the LZ method; while in [19] LZTrie denotes a trie of phrases used in LZ compression
procedure. This inconsistency is due to the simultaneous publication process of the
two papers.

Enumerated Automata Implementation of String Dictionaries 39

5 Experiments and Results

We have compared ELZT with the methods highlighted in [18] on the same data
sets and on the same computer. These results are shown in Table 1. Additionally,
in Table 2 we present the results of the experiments on a collection of natural
language word lists. Such data sets are frequent in natural language processing,
but haven’t been included in the test data in [18]. The hardware configuration
we have used for the experiments is 3.6GHz Intel Xeon Gold 5122 processor with
256GB RAM. The LZT software we have used for the construction of LZ trie and
ELZT can be found at https://github.com/dkorenci/lzt. To obtain the results
for methods proposed in [18], we have used their libCSD software published
at https://github.com/migumar2/libCSD. Incidentally, this software does not
produce a compressed file as the output of the XBW implementation. We have
obtained the sizes reported in Tables 1 and 2 by printing out the values returned
by XBW::size(). Compressed sizes are given as the percentage of the original
size. Look-up time is calculated as the average between the time needed for
the locate and extract operations. In the case of front coding and ELZT both
operations are of approximately equal speed, and in the case of XBW extract is,
on the average, about 50% slower than locate. Times for the extract and locate
operations were measured on a randomized inputs of 10000 words/IDs using the
published software from [18] and this paper. We have emphasized in bold the
best results regarding compression.

5.1 Datasets from [18]

Table 1 summarizes results for the eight datasets that were used as test data in
[18]. The detailed description of the datasets can be found in [18], we give here
a short overview:

Geo. names consists of 5.5 M geographic terms; Words is a 25.6 M words
dictionary of web pages; Word seqs., English (36.7 M) and Spanish (39.2 M), are
two sides of the phrase table of a parallel English-Spanish corpus; URIs consists
of 26.9 M different URIs; URLs consists of 18.5 M different URLs; Literals
consists of 27.6 M different literals from a DBpedia dataset; DNA consists of 9.2
M DNA segments, each twelve nucleotides long.

The results in Table 1 are given as follows. The authors of [18] have singled
out Hu-Tucker front coding implementation as the best compromise between
the size and the look-up speed. Furthermore, following the same criterion, they
suggest the bucket size in the range from 2 to 32. Smaller values yield faster look-
up, while larger bucket sizes lead to a better compression. We report the results
with the largest recommended value since we are predominantly interested in
compression. The results for this implementation are presented in the “front
coding” section of Table 1. The best compression results for different datasets
were obtained with different methods for coding of the buckets: rp denotes Re-
Pair compression, and huff denotes Huffman coding. The smaller bucket size
would lead to a faster look-up speed (in some cases doubling it) and a faster
construction, but the increase in the dictionary size would be large. For example,

https://github.com/dkorenci/lzt
https://github.com/migumar2/libCSD

40 R. Bakarić et al.

with the bucket size of 2, the increase in dictionary size is ×2 for geonames
and ×6 for URIs datasets.

We also give the results for XBW, a compressed trie representation [12], that
in all cases produces the most compact string dictionaries of all methods in [18].
In particular, the results are presented for the XBW-rrr variant proposed in
[18] as the best for compression. (And, as it appears, this is the only variant
available in libCSD software.) XBW method produces smaller dictionaries but
it has much worse look-up time than the front coding implementations, in one
case up to hundred times slower. Front coding is a good overall compromise
between size and speed. In the cases where Huffman coding of the bucket strings
leads to better compression than Re-Pair, the front coding method excels in the
speed of construction.

Results for the enumerated and ordinary LZ trie are obtained using the com-
pression algorithm from [23]. We give the sizes for the plain compressed LZ trie
(i.e., without enumeration) as they are relevant for the approach described in
Sect. 6.1. ELZT produces smallest dictionaries in half of the cases, and it appears
that this method works better with larger inputs. It should be mentioned that,
same as reported in [18], we haven’t been able to produce XBW variant for
Literals dataset with libCSD software. Enumerated LZ trie has the advantage
of a faster lookup than XBW. On the other hand, the look-up speed is up to
twenty times slower than with front coding. On the average, construction time is
considerably lower than with other implementations, except for Huffman coded
variant of front coding. The one exception, Literals dataset, indicate that the
datasets proposed in [18] indeed cover a wide variety of data types.

5.2 Natural Language Word Lists

Table 2 presents results for six files that store lists of natural language word
forms. SOWPODS is the scrabble tournament word list - it is the largest list of
English words that we have been able to find. The rest of the files are a selection
of natural language word lists used in [10]. They are available at https://github.
com/dweiss/paper-fsa-compression.

The best front coding method for all datasets, regarding the compressed
dictionary size, is the plain front coding (without Hu-Tucker) with Re-Pair com-
pressed strings in buckets. The results for this implementation, with the bucket
size set to 32, are given in Table 2. Interestingly, the compression with the rest of
the front coding implementations is much worse. Obviously, coding of the bucket
headers is more efficient with longer strings.

Again, for all datasets, the XBW variant produces the smallest dictionaries of
all the methods from [1]. Overall, the ELZT is the most compact implementation
for all word lists except for English. This is probably due to the fact that English
word forms have less inflection than the rest of the included languages. It is
noteworthy that with English the performance of ELZT again improves with a
larger dataset.

https://github.com/dweiss/paper-fsa-compression
https://github.com/dweiss/paper-fsa-compression

Enumerated Automata Implementation of String Dictionaries 41

Table 1. Comparison of the results for datasets from [18] obtained with the best
overall method from [18] (front coding), the best method regarding the compression
factor from [18] (XBW), and with ELZT. LZT is the compressed automaton without
enumeration. Construction time is given in seconds.

Geo.
names

Words Word
seq.(en)

Word
seq.(sp)

URIs URLs Literals DNA

Size (MB) 81.6 257.1 983.3 1127.9 1311.9 1372.1 1590.6 114.1

Front coding Compressed size 28.5% 31.3% 13.1% 13.1% 6.4% 10.2% 10.8% 12.6%
Bucket coding rp huff rp rp huff rp rp huff
Construction time 101 4 3598 7031 4 9567 974 1
Look-up time (µs) 5 3 5 5 3 9 12 2

XBW Compressed size 22.2% 21.7% 9.7% 9.4% 2.7% 8.2% – 9.8%
Construction time 200 456 2246 2686 290 2963 – 100
Look-up time (µs) 49 36 94 104 297 151 – 25

ELZT Compressed size 30.9% 31.7% 12% 11.4% 1.4% 6.9% 8.4% 4.6%
Construction time 49 168 397 445 63 312 1814 14
Look-up time (µs) 59 51 76 75 60 113 87 14

LZT size 27.9% 28.0% 10.9% 10.3% 1.2% 6.0% 7.6% 4.0%

5.3 Discussion

Compared to front coding, the sizes of ELZT implemented dictionaries vary from
approximately the same to several times smaller. The look-up speed is an order
of magnitude slower, and the construction time is better in most cases, except
when blindingly fast Huffman codes are used. The Huffman variant is not very
efficient regarding compression, except in one of the tested cases. Compared to
XBW, ELZT compression is from 50% worse to 100% better, the average look-up
speed is slightly better, and the construction process is much faster.

It can be observed that the relative compression efficiency of ELZT improves
with the increased size of the input. Presumably, strings in larger sets are more
similar to each other, and it is known that LZ trie is very efficient with similar
strings [22].

The main shortcoming of ELZT is a lower look-up speed than with the front
coding method. However, both implementations allow for a fast look-up and the
difference may not be observable in practice. Furthermore, in real life scenarios
most of the queries are performed on skewed distributions of entries - often only
a small fraction of the corpus is queried for most of the time. In such cases, a
cached list of queries could lead to a reduced number of searches in the dictionary
and the differences in look-up speed may become unnoticeable. As a result, we
believe that in the majority of applications the compression factor may be the
most important parameter of string dictionary implementation.

Several implementations from [18] support prefix and suffix search, and FM
index and XBW support substring search, too. With ELZT the prefix search is
implied, and the suffix search is trivially solved by building the automaton from
inverted strings. In principle, substring search can be implemented with rotated
strings, but the size of ELZT in that case probably wouldn’t be competitive.

42 R. Bakarić et al.

Table 2. Results for natural language word lists. FC denotes plain front coding with
additional Re-Pair coding of the buckets. XBW is the best compression method from
[18]. LZT is the compressed automaton without enumeration. Construction time is
given in seconds.

SOWPODS English French Polish German Russian

Size (MB) 2.71 0.70 2.48 17.05 2.73 9.13

Word count 267751 74317 221376 1365467 219862 808310

FC Compressed size 24% 26.6% 19.4% 18.1% 20.3% 19.7%
Construction time 0.2 0.1 0.1 0.7 0.1 0.4
Look-up time (µs) 1 1 3 3 2 2

XBW Compressed size 15.1% 19.9% 11.1% 8.7% 10.5% 9.6%
Construction time 2 0.5 1.5 11.5 1.4 5.2
Look-up time (µs) 22 20 27 35 29 32

ELZT Compressed size 19.1% 26.5% 6.8% 3.2% 9.8% 4.5%
Construction time 0.4 0.1 0.2 1.5 0.3 0.8
Look-up time (µs) 16 20 27 33 27 22

LZT size 14.9% 21.1% 5.0% 2.1% 7.1% 3.0%

6 Additional Considerations

6.1 Run-Time Enumeration

If the storage space is critical, instead of the enumerated version, a plain com-
pressed LZ trie can be used to emulate string dictionary. The enumeration can
be performed in the run-time by traversing all paths of the automaton, counting
the traversals for each transition, and storing the results in a separate table. LZT
uses constant size coding, therefore only a table of size O(T) is needed, where T
is the number of transitions in the automaton.

This can be done at the expense of the run-time memory, and the time needed
for the initialization. The time overhead approximately equals the time required
for listing of all the words in the memory, which is much faster than the look-up.
For large datasets, a few extra minutes should be enough for the initialization.
The sizes of LZ tries are given in Tables 1 and 2.

With the variable size coding, as used in some automata implementations in
[10], the additional processing would be necessary for mapping the positions of
states to the counter values in the table.

6.2 Compressing a Two-Part Dictionary

A dictionary in the everyday sense consists of two parts, an entry and an “expla-
nation”. A typical example is the natural language translation table. The two
sides of such a dictionary can be stored in respective string dictionaries, while
ID-to-ID mappings connecting both sides are stored separately. If there is a
relation between the ordering of the data in both sides, as is often the case in
natural language processing, the ID-to-ID table can be efficiently compressed.

Enumerated Automata Implementation of String Dictionaries 43

The advantages and the details of such a system are described in [22] on the
example of a French phonetic lexicon. This is a compelling case of string dictio-
nary usage, and we have implemented and published the code for this method
as a separate part of the LZT software package.

7 Conclusion

Efficient implementations of string dictionaries have received an increased atten-
tion recently. However, none of the involved researchers has so far considered the
enumerated automaton implementation that has been known for almost three
decades. We amend this quirky omission and show how EDFA compares with
other implementations. Based on the performed experiments we can conclude
that ELZT, our variant of a compressed EDFA, is a competitive data structure
for universal string dictionary usage, and particularly for storing DNA segments
and word forms of inflected natural languages.

Acknowledgment. We are grateful to Miguel Martínez-Prieto for kindly providing
data sets used in [18].

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Blelloch, G.E., Halperin, D. (eds.) ALENEX 2010, pp. 84–97. SIAM, Philadel-
phia (2010). https://doi.org/10.1137/1.9781611972900.9

2. Arz, J., Fischer, J.: LZ-compressed string dictionaries. In: DCC 2014, pp. 322–331.
IEEE (2014). https://doi.org/10.1109/DCC.2014.36

3. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Brisaboa, N.R., Cánovas, R., Claude, F., Martínez-Prieto, M.A., Navarro, G.: Com-
pressed string dictionaries. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011.
LNCS, vol. 6630, pp. 136–147. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20662-7_12

5. Daciuk, J., van Noord, G.: Finite automata for compact representation of language
models in NLP. In: Watson, B.W., Wood, D. (eds.) CIAA 2001. LNCS, vol. 2494,
pp. 65–73. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36390-4_6

6. Daciuk, J., van Noord, G.: Finite automata for compact representation of tuple
dictionaries. Theor. Comput. Sci. 313(1), 45–56 (2004)

7. Daciuk, J.: Experiments with automata compression. In: Yu, S., Păun, A. (eds.)
CIAA 2000. LNCS, vol. 2088, pp. 105–112. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44674-5_8

8. Daciuk, J., Piskorski, J.: Gazetteer compression technique based on substructure
recognition. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) IIPWM
2006. AINSC, vol. 35, pp. 87–95. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-33521-8_9

9. Daciuk, J., Piskorski, J., Ristov, S.: Natural language dictionaries implemented as
finite automata. In: Martín-Vide, C. (ed.) Mathematics, Computing, Language,
and Life: Frontiers in Mathematical Linguistics and Language Theory, vol. 2, pp.
133–204. World Scientific & Imperial College Press, London (2010)

https://doi.org/10.1137/1.9781611972900.9
https://doi.org/10.1109/DCC.2014.36
https://doi.org/10.1007/978-3-642-20662-7_12
https://doi.org/10.1007/978-3-642-20662-7_12
https://doi.org/10.1007/3-540-36390-4_6
https://doi.org/10.1007/3-540-44674-5_8
https://doi.org/10.1007/3-540-44674-5_8
https://doi.org/10.1007/3-540-33521-8_9
https://doi.org/10.1007/3-540-33521-8_9

44 R. Bakarić et al.

10. Daciuk, J., Weiss, D.: Smaller representation of finite state automata. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011.
LNCS, vol. 6807, pp. 118–129. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22256-6_12

11. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On searching com-
pressed string collections cache-obliviously. In: PODS 2008, pp. 181–190. ACM,
New York (2008). https://doi.org/10.1145/1376916.1376943

12. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled
trees for optimal succinctness, and beyond. In: FOCS 2005, pp. 184–196. IEEE
Computer Society (2005). https://doi.org/10.1109/SFCS.2005.69

13. Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Trans. Algo-
rithms 7(1), 10:1–10:21 (2010). https://doi.org/10.1145/1868237.1868248

14. Georgiev, K.: Compression of minimal acyclic deterministic FSAs preserving the
linear accepting complexity. In: Mihov, S., Schulz, K.U. (eds.) Proceedings Work-
shop on Finite-State Techniques and Approximate Search 2007, pp. 7–13 (2007)

15. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions.
ACM J. Exp. Algorithmics 19(1), 3.4:1.1–3.4:1.20 (2014)

16. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE
88(11), 1722–1732 (2000). https://doi.org/10.1109/5.892708

17. Lucchesi, C.L., Kowaltowski, T.: Applications of finite automata representing large
vocabularies. Softw. Pract. Exp. 23(1), 15–30 (1993)

18. Martínez-Prieto, M.A., Brisaboa, N., Cánovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Inf. Syst. 56(C), 73–108 (2016)

19. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discret. Algorithms 2(1),
87–114 (2004). https://doi.org/10.1016/S1570-8667(03)00066-2

20. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Eppstein, D. (ed.) Proceedings of SODA
2002, pp. 233–242. ACM/SIAM, Philadelphia (2002)

21. Revuz, D.: Dictionnaires et lexiques: méthodes et algorithmes. Ph.D. thesis, Insti-
tut Blaise Pascal, Paris, France (1991)

22. Ristov, S.: LZ trie and dictionary compression. Softw. Pract. Exp. 35(5), 445–465
(2005). https://doi.org/10.1002/spe.643

23. Ristov, S., Korenčić, D.: Fast construction of space-optimized recursive automaton.
Softw. Pract. Exp. 45(6), 783–799 (2014). https://doi.org/10.1002/spe.2261

24. Ristov, Strahil, Laporte, Eric: Ziv Lempel compression of huge natural language
data tries using suffix arrays. In: Crochemore, Maxime, Paterson, Mike (eds.) CPM
1999. LNCS, vol. 1645, pp. 196–211. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48452-3_15

25. Skibiński, P., Grabowski, S., Deorowicz, S.: Revisiting dictionary-based compres-
sion. Softw. Pract. Exp. 35(15), 1455–1476 (2005). https://doi.org/10.1002/spe.
678

26. Tounsi, L., Bouchou, B., Maurel, D.: A compression method for natural language
automata. In: FSMNLP 2008, pp. 146–157. IOS Press, Amsterdam (2009)

https://doi.org/10.1007/978-3-642-22256-6_12
https://doi.org/10.1007/978-3-642-22256-6_12
https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1145/1868237.1868248
https://doi.org/10.1109/5.892708
https://doi.org/10.1016/S1570-8667(03)00066-2
https://doi.org/10.1002/spe.643
https://doi.org/10.1002/spe.2261
https://doi.org/10.1007/3-540-48452-3_15
https://doi.org/10.1007/3-540-48452-3_15
https://doi.org/10.1002/spe.678
https://doi.org/10.1002/spe.678

New Approaches for Context
Sensitive Flash Codes

Gilad Baruch1, Shmuel T. Klein1, and Dana Shapira2(B)

1 Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
gilad.baruch@biu.ac.il, tomi@cs.biu.ac.il

2 Deparment of Computer Science, Ariel University, 40700 Ariel, Israel
shapird@g.ariel.ac.il

Abstract. Rewriting codes for flash memory enable the multiple usage
of the same storage space, under the constraint that 0-bits can be changed
into 1-bits, but not vice versa. Context sensitive rewriting codes extend
this idea by incorporating also information gathered from surrounding
bits. Several new and better context sensitive rewriting codes based on
automata are presented and analyzed. Empirical simulations show a good
match with the theoretical results.

1 Introduction

One of the most popular storage media today is flash memory [1,2], and they
are ubiquitous in our computers, cell phones and many other devices we use
on a daily basis. Flash memory has many distinctive features that differ from
those of the magnetic memory used so far, in particular, writing zeros or ones is
not symmetrical: changing a 0 into a 1 is cheap and can be performed for each
individual bit, whereas the switch from 1 to 0 is only possible by erasing entire
blocks (of size 0.5 MB or more), and is considered as being so expensive that one
tries to avoid it, or at least, delay it as much as possible.

This technical difficulty gave rise to the development of so-called rewriting
codes, see, for example, [3,8], which try to reuse the same storage space, after a
block of bits has already been used to encode some data in what we shall call a
first round of encoding. When new data should be encoded in a second round ,
the question is how to use the same bits again, without having to erase the entire
block before rewriting. The problem can be generalized to three or more writing
rounds, all with the same constraint of changing only 0s to 1s.

In fact, Rivest and Shamir [9] suggested a simple way to use 3 bits of memory
to encode two rounds of the four possible values of 2 bits long before flash memory
became popular. They called these special codes Write-Once Memory (wom),
and we shall refer to the Rivest-Shamir code below as rs-wom.

To measure the efficiency of a given rewriting code, we define a compression
ratio, referred to as sum-rate in the rewriting codes literature, as the number of
provided information bits divided by the number of actually used storage bits.
The number of information bits is in fact the information content of the data,
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 45–57, 2019.
https://doi.org/10.1007/978-3-030-23679-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_4

46 G. Baruch et al.

whereas the number of storage bits depends on the way the data is encoded. For
a standard binary encoding, information and storage bits are equivalent, giving
a baseline of 1. For rewriting codes, we use the combined number of storage bits
of all (two or more) writing rounds, thus the above mentioned rs-wom-code
yields a ratio of 4

3 = 1.333. For two rounds, the theoretical best possible ratio is
log 3 = 1.585, see [10], and the best ratio achieved so far is 1.493 [11].

Many rewriting codes, and rs-wom in particular, treat each encoded element
independently of those preceding it. A new paradigm of context sensitive rewrit-
ing codes was introduced in [6] and extended and analyzed in [7], suggesting
to use a Fibonacci encoding in the first round. Such a binary encoding has the
property that it contains no adjacent 1-bits [5], which means that every 1-bit
must be followed by a zero. This can then be exploited in a second round to store
new information in these 0-bits, which can be located using their context. The
resulting compression ratio, though, was only 1.19 in the best case and 1.145 at
average, which is inferior even to the simple rs-wom.

The present work introduces several new context sensitive rewriting codes
and shows their performance either analytically or by means of empirical tests.
They improve the previously known codes but still do not always outperform
rs-wom. The main contribution is the development of the new methods them-
selves, showing several techniques how the Fibonacci based rewriting codes can
be extended. We did, so far, not succeed in improving the best state-of-the-art
compression ratio, but other researchers might find some new variants that do,
following similar ideas as those to be presented below.

The next section recalls some details of the Fibonacci wom codes. Section 3
presents enhanced context sensitive flash codes. Experimental results are pre-
sented in Sect. 4, and Sect. 5 concludes.

2 Fibonacci wom Codes

Any integer can be represented as a binary string in many different ways. The
standard representation uses the powers of 2 as basis elements, whereas Fibonacci
codes are based on the famous Fibonacci sequence, defined by Fi = Fi−1 + Fi−2

for i ≥ 1, and the boundary conditions F0 = 1 and F−1 = 0.
Any integer x can be decomposed into a sum of distinct Fibonacci numbers,

and can therefore be represented by a binary string crcr−1 · · · c2c1 of length r,
called its Fibonacci or Zeckendorf representation [12], such that x =

∑r
i=1 ciFi.

The representation of x will be unique if one starts with the largest Fibonacci
number Fr smaller or equal to x and then continues recursively with x − Fr.
For example, 77 = 55 + 21 + 1 = F9 + F7 + F1 so its binary Fibonacci repre-
sentation would be 101000001. As a result of this encoding procedure, there are
never consecutive Fibonacci numbers in any of these sums, or, equivalently, the
corresponding binary representation does not contain adjacent 1s.

Fibonacci wom codes are constructed in three stages. In the first step, the n
bits of the block are transformed into a block of size r = 1.44n by considering
the n bits as the standard binary representation of some integer and recoding

New Approaches for Context Sensitive Flash Codes 47

this integer into its Fibonacci representation. The resulting block will be longer,
since more bits are needed, but generally also sparser, because of the property
of prohibiting adjacent 1s. When the data is not needed anymore and can be
overwritten, the next essential step is to fill in a maximal number of 1-bits
without violating the non-adjacency property of the Fibonacci encoding. This
means that in a run of zeros of odd length 2i + 1, every second zero is turned
on, and this is true also for a run of zeros of even length 2i, except that for the
even length, the last bit is left as zero, since it is followed by a 1. As a result of
this filling strategy, the data block still does not have any adjacent 1s, but the
lengths of the 1-limited zero-runs are now either 1 or 2, and the length of the
leading run is either 0 or 1.

Finally, in the third step new data is encoded in the bits immediately to the
right of every 1-bit. Since it is known that these positions contained only zeros
at the end of step 2, they can be used at this stage to record new data, and their
location can be identified. It has been shown that the compression efficiency of
the Fibonacci wom code is 1.194, 1.028, and 1.145, in the best, worst and average
cases. In the following sections we show how the compression performance can
be improved by extending the above idea.

3 Enhanced Context Sensitive Flash Codes

3.1 Fibonacci + 2 −→ 1

The storage penalty incurred by passing from the standard binary representation
to the Fibonacci representation is a factor of logφ 2 = 1.44, for any block size
n, where φ = 1.618 is the golden ratio obtained by taking the ratio of two
consecutive Fibonacci numbers Fk+1/Fk and letting k → ∞. Thus each of the
n bits in the first round represents only 1

1.44 of a data bit of the original data.
The best case of the wom code suggested in [7] occurs when every second bit

in the Fibonacci representation is a 1, in which case n
2 data bits can be written

in the second round, giving a total compression ratio of

1
n

(
1

1.44
n +

1
2
n

)

= 1.194. (1)

The following simple method achieves the same ratio, but not only on a
single best case input, but for all possible outcomes of the first writing round,
which, as before, is based on writing the data in its Fibonacci representation.
The second step, however, treats every non-overlapping pair of successive bits
separately. There are only three kinds of possible pairs: 00, 01 and 10. If one
wishes to write 0, the pair is left unchanged, that is, 00, 01 and 10 all represent
the value 0 in the second round. In case one wishes to output a 1, the pair is
overwritten by the pair 11.

Each bit in the second round is thus encoded using 2 of the n bits, which
again yields the same compression ratio as in (1).

48 G. Baruch et al.

3.2 Ternary + 2 −→ 1

A further improvement may be based on the awareness that the above method
does not take advantage of the fact that the pair 01 is never followed by 10,
suggesting to relax the requirements of the Fibonacci representation used in the
first round. Instead of prohibiting the appearance of the substring 11 altogether,
which is equivalent to using a Fibonacci encoding, we forbid the occurrence of
the pattern 11 only at odd indices in the string (indices are numbered starting
with 0), but allow 11 to appear at even indices. In other words, if we parse the
string in pairs and therefore consider only pairs starting at even indices, 01 may
be followed by 10, since in this case the 11 formed by the concatenation of 01
and 10 occurs at an odd index and is therefore permitted. In fact, using this
encoding, every number is now represented in a ternary code using the symbols
00, 01 and 10.

In the second round, the bit stream is parsed into pairs of bits just as in the
second round of the Fibonacci + 2 → 1 method of the previous subsection, so
that the second round again adds 1

2 to the compression ratio. To calculate the
improved contribution of the first round, note that a string of k trits (ternary
digits) can be used to store numbers between 0 and 3k −1 in ternary representa-
tion. If each trit is encoded by two bits, an n-bit number in binary representation
uses log(3

n
2) = n

2 log2 3 = 1.58n
2 = 0.792n bits in the first round. The total com-

pression ratio is thus

1
n

(

0.792n +
1
2
n

)

= 1.292. (2)

3.3 Fibonacci + Lookahead

We revert back to the Fibonacci encoding for the first round, and suggest a
different way to exploit our knowledge that 01 is not followed by 10. The idea
is to consider a lookahead technique to the currently processed bit, and act
according to both its value and the value of the new bits we wish to write.
Denote the value of the currently processed bit by C.

As above, if it is a 1-bit that needs to be written in the second round, the
following pair of bits, whose value is either 00, 01 or 10, is turned into 11. If, on
the other hand, we wish to write a 0-bit, then if C = 0, this single bit suffices
for the encoding. If C = 1, it must be followed by a zero, so the pair 10 can be
used to encode the 0 value. Decoding of the second round is according to the
automaton of Fig. 1.

As example, assume that in the first round we are interested in storing the
value 112. The corresponding Fibonacci representation, 1001000010, appears on
the top line of Fig. 2. Suppose the new data to be stored is the number 38 in its
standard binary form, that is 100110, presented on the second line. The third
line of Fig. 2 are the bits that are actually stored in the second round.

As a decoding example, consider the binary stream output of the second writ-
ing round, 1101011110, of Fig. 2. Following the decoding automaton of Fig. 1,

New Approaches for Context Sensitive Flash Codes 49

0

1 0

1

0

1

0

Fig. 1. Fibonacci + lookahead decoding automaton.

Fig. 2. Fibonacci + lookahead encoding example.

the input is parsed as 11 0 10 11 11 0, in which spaces are inserted for clarity,
and the decoded output is 1 0 0 1 1 0, as expected.

In the worst case, every bit to be written in the second round will require
two bits, either because a 1 is to be written, or because the currently seen pair
is 10, so we get a ratio of 1.19 as already shown.

For the average case, we need to know the distribution of the pairs 00, 01
and 10 in a Fibonacci encoded strings. Denote them by p00, p01 and p10, respec-
tively. Consider the parsing into pairs of an infinite stream of bits that has been
generated under the Fibonacci constraint that no adjacent 1’s appear. If we shift
the parsing by a single bit, all 10 pairs turn into 01 pairs and vice versa. On
the other hand, such a shift should not affect the overall probabilities of the
occurrences of the different pairs, so we may conclude that p01 = p10. However,
since every 1-bit is followed by 0, p10 is equal to p1, the probability of a single 1,
which has been shown in [4] to be p1 = 1

2

(
1 − 1√

5

)
= 0.2764. We can thus also

derive p00 = 1 − 2p1 = 0.447.
To evaluate the average compression ratio, we assume that the data we wish

to write has a 1-bit density of q, with 0 < q ≤ 1
2 . For random data, q = 1

2 , which
is not unrealistic, as this will be the case for most compressed or encrypted files.
If q > 1

2 , we may just encode the 1’s complement of the data.
The decoding of the second round is done by iterations processing either a

single or a pair of bits. We first need to know the probability of the event F ,
that the first bit of a given decoding iteration is a 0-bit. This will be evaluated
by conditioning on the bits written in the preceding iteration. Let G stand for
the event that the last bit written in the previous iteration of the second round
was a 0. We have that

50 G. Baruch et al.

P (F) = P (F |G)P (G) + P (F |G)P (G).

But G occurs if and only if the bit written in the previous iteration was a 0, so
we know that P (G) = 1 − q and P (G) = q.

If at the end of the second round, the previous bit was a 0, this was also true
at the end of the first round, since 1s can not be turned into zeros. Therefore,
the event F |G is equivalent to having seen a 0-bit after a 0-bit in the Fibonacci
encoding, and using our previous notation, we get that the probability p0-0 of
this event is

p0-0 = P (F |G) =
p00

p00 + p01
=

1 − 2p1
1 − p1

=
1

√
5 1

2

(
1 + 1√

5

) =
1

√
5+1
2

=
1
φ

= 0.618.

P (F |G) is the probability of writing now a zero bit knowing that the last
bit written in the previous iteration of the second round was a 1. We thus know
that the bit value written in the second round was a 1 and has been encoded by
overwriting either 00, 01 or 10 by the pair 11. Denote by R the value of the bit
pair which has been overwritten. If R = 01, the following bit must be a zero, so
the probability P (F |G ∧ (R = 01)) = 1. In the other cases, R = 00 and R = 10,
and the last bit written was a 0, we thus get P (F |G∧(R = 00∨R = 10)) = p0-0,
the probability of writing a 0 after a 0. Putting it together, we derive

P (F) = p0-0(1 − q) +
(
p01 · 1 + (p10 + p00)p0-0

)
q = 0.618 + 0.105 q.

To calculate the expected number of bits E(N) to be written in the second
round, note that we write a single bit only if the current bit was a 0 at the
end of the first round, and we wish to write a 0-bit. Denote this event as Y ,
then we have P (Y) = P (F)(1 − q). In fact, F has been defined relative to the
second round, but as mentioned, a zero in some bit position at the end of the
second round implies that this bit was also a 0 at the end of the first round.
If Y does not occur, two bits will be written, so the expected number of bits
is P (Y) + 2(1 − P (Y)) = 2 − P (Y), and substituting the values above, we get

E(N) = 2 − (0.618 + 0.105 q)(1 − q) = 0.105 q2 + 0.513 q + 1.382.

This yields as average compression ratio 1/(logφ 2)+1/E(N), and in particular,
for q = 1

2 , we get 1.295, and for q → 0, the ratio approaches 1.418, which is
better than rs-wom.

3.4 Fibonacci + 3 −→ 2

We now extend the methods by treating larger blocks. Instead of encoding single
bits by pairs, we aim at encoding bit-pairs by triplets, as done in the rs-wom
code. Each such triplet is interpreted as one of the four possible bit pairs: 00, 01,
10 or 11, and is transformed into another bit triplet representing the following
bit pair to be written in the second round.

New Approaches for Context Sensitive Flash Codes 51

The first round of rs-wom encodes the four possible pair values by either
000, 001, 010 or 100. We use again the standard Fibonacci encoding, which
yields one more possible triplet: 101. For the second round, the data is parsed
into packages of three consecutive bits, and the translation from the given to
the newly generated triplet is done according to graph given in Fig. 3. We use a
color code to help the reader, where red, blue, yellow and green nodes represent
the pairs 00, 01, 10 and 11. To enable viewing the differences on non-colored
output, we also label the nodes with the initials R, B, Y and G of their colors.
Any permutation could be used to match colors and pairs, as long as it is fixed
throughout.

The nodes on the left hand side of Fig. 3 represent the possible triplets result-
ing from the Fibonacci encoding of the first round. A transformation from triplet
x to triplet y is indicated by a directed edge (x, y), and all these transformations
are according to the flash memory constraint that a 0 can be turned into a 1, but
not a 1 into a 0. The white node, representing 000, has four outgoing edges, one
to each color. The yellow node, representing 100, has only three outgoing edges,
to the three colors which differ from yellow. Thus if we want to represent the
yellow pair, the corresponding triplet is left unchanged, which is similar to the
second round encoding of rs-wom. Similarly, the green and blue nodes, repre-
senting 010 and 001, have also only three outgoing edges, to their complementing
colors.

101

100

000

001

010

110

111

011

inspect 1, 2, 3 more bits

Y

Y

G

G

B

B

R

Fig. 3. Transitions for 3 → 2
encoding. (Color figure online)

001

010

011

100

110

111

1011

10100

101010

101011

101

0

0

0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1 Y

Y

Y

Y

B

B

B

G

G

R

Fig. 4. Decoding automaton for the second round of
Fibonacci + 3 → 2 encoding. (Color figure online)

If the input triplet is 101, it needs a special treatment, which is why the
corresponding node appears as an octagon in Fig. 3 rather than as a circle. The
problem is that it is the sole possible triplet having only a single 0-bit, so there
are only two options for encoding in the second round: either leave the triplet as
101, or transform it into 111. To overcome this difficulty, since we need 4 options

52 G. Baruch et al.

to be encoded, we inspect and use some of the consecutive bits. Consider the
following cases:

1. If the color we wish to encode is red, 101 is turned into 111;
2. otherwise (green, yellow or blue), denote the three bits immediately following

the triplet 101 as b1, b2 and b3. Since 101 ends with a 1-bit, we have b1 = 0.
(a) If the color we wish to encode is green, set b1 ← 1;
(b) otherwise (yellow or blue), leave b1 as zero. If the color we wish to encode

is yellow, inspect the following bit b2, which can be either 0 or 1. If b2 = 0,
leave it and use this to indicate that yellow has been chosen. If b2 = 1,
then we know that b3 = 0. Therefore
i. If the color we wish to encode is yellow, leave b3 = 0;
ii. otherwise (blue), turn b3 ← 1.

Note that if we see 101 at the end of the second round, its origin is either
(1) a 101 triplet already at the end of the first round, or (2) it may have been
obtained from a transformation of 100 or 001 to encode the color green. In both
cases, we need to inspect the following bits. For case (2), only one more bit is
necessary, for case (1), we need one, two or three additional bits.

The decoding automaton corresponding to this encoding can be seen in Fig. 4.
The initial state is the gray node at the root of the tree, and the back edges from
the leaves to the initial state have been omitted. The special node 101 and the
path leading to it are emphasized. We omit here the analysis of this method,
but bring empirical test results in the next section.

A further extension of this 3 → 2 approach to deal with even larger blocks
can be to conceive a 5 → 3 method that will process input blocks of 5 bits, and
interpret them as bit triplets, representing the 8 encoding possibilities. Only 13
of the 32 possible 5-bit strings comply with the Fibonacci constraint of avoiding
adjacent 1s, and one can derive an according transition graph similar to the one of
Fig. 3, but treating eight colors. There is again a special case, the 5-tuple 10101,
which is the only one with just two zeros. It can thus only produce 4 possibilities
for the second round, and we need, as above, an alternative treatment for this
case. We omit the details of this variant from the present discussion.

3.5 2.5-Ary + Lookahead

The following variant generalizes the Fibonacci approach for the first round and
can then be combined with any of the suggested encodings for the second round,
2 → 1, 3 → 2 or lookahead . The idea is to enforce the non-adjacency property
of 1-bits by simply inserting a 0-bit after each 1-bit. In other words, we encode,
in the first round, a 0 by itself, but a 1 by the pair 10. The output is then a
bit sequence with the same property as the Fibonacci encoding, but we gain the
additional property that there is no need to handle entire blocks, and the data
can be processed as a stream, similar to the rs-wom code.

This first round can then be combined with any of the above mentioned
schemes for the second round, and we present the best combination, using the

New Approaches for Context Sensitive Flash Codes 53

lookahead method described in Sect. 3.3 in the second round. That is, if a 1 bit
is to be written in the second round, the following pair of bits is turned into 11,
and if a 0 bit is to be written, it is encoded as 0 if the following bit is already a
0 and as 10 if the following bit is a 1.

Since the ternary approach processes 2 bits to get 3 values and a binary
approach processes one bit to get 2 values, the current method which processes
one or two bits to get 2 values is some compromise, so we call it 2.5-ary. At first
sight, this 2.5-ary approach seems to be disadvantageous, because the storage
overhead incurred by passing from the standard binary representation to this
variant is a factor of 1.5 for an evenly distributed bit-stream, instead of only
1.44 for the Fibonacci encoding. However, the probability of a 1 bit may vary,
and it is not necessarily equal to 1

2 as for random, compressed or encrypted
data. A case in point would be the mnist database1 of handwritten digits that
is commonly used in the Machine Learning and Computer Vision communities;
the average 1-bit probability in mnist is about 0.11.

For evenly distributed inputs the worst case is, again, when every bit to be
written in the second round requires two bits and the ratio is 1

n

(
1
1.5n + 1

2n
)

=
1.167. However, the situation is much better for the average case.

The compression ratio is evaluated as a function of two parameters: the
probabilities of a 1-bit in the input stream of the first round, pf , and in the
input stream of the second round, ps. We need, however, also the probability
poutf at the output of the first round. The number of 1s at the output of the
first round remains the same as for its input, but the expected length of the
encoding has changed: by substituting a 1 by two bits and a 0 by a single bit,
the expected expansion was by a factor of 1(1−pf)+2pf = 1+pf , so we conclude
that poutf = pf

1+pf
, and the contribution of the first round to the compression ratio

of the 2.5-ary method is 1
1+pf

.
As to the second round, two bits are overwritten for writing a 1-bit, and

when writing a 0-bit in the second round, two bits are overwritten only in case
10 is encountered, and just a single bit otherwise. This sums up to an expected
number of bits Ns written in the second round of

E(Ns) = 2 ps + (1 − ps)
(
2poutf + 1 (1 − poutf)

)
= 2 ps + (1 − ps)

(
1 + 2pf
1 + pf

)

.

The compression ratio of the 2.5-ary+lookahead method is thus 1
1+pf

+ 1
E(Ns)

.
For example, if we assume random data with pf = ps = 1

2 , we get 2
3 + 3

5 = 1.267.
However, if the data of both rounds is taken from the mnist dataset with pf =
ps = 0.11, the achieved compression ratio is 1.735.

4 Experimental Results

We have run the following simulation tests to check our theory. For each value
i, 1 ≤ i ≤ 50, we have randomly generated 100 independent bitvectors with
1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

54 G. Baruch et al.

probability q = i
100 for the occurrence of a 1-bit. The number of bits in each of

the vectors was set as 1000
1.44 = 694. Considering each vector as a binary number of

694 bits, each number was transformed into its Fibonacci encoding, simulating
a 1000 bit output of a first encoding round. We then applied the various second
round encodings of the previous section, again on randomly generated data, and
recorded the actual number of written bits. The numbers were then averaged for
each value of q, which yields the results plotted in Fig. 5 for values of q ∈ [0.01, 1

2].
The figure also includes the curve of the theoretical performance of lookahead ,
in bold, which shows a good match with the simulated values. The curve is the
inverse of a quadratic function, but it looks, for the given range, almost as a
straight line.

Fig. 5. Compression ratio as function of 1-bit probability.

Table 1 compares the analytically derived probabilities with the empirical
occurrence probabilities on the simulated data. The first columns show the prob-
abilities of a 1-bit, and of the pairs 00, 01 and 10, the next two columns give
the performance of the 2 → 1 methods, and the last column gives the average
compression ratio for q = 1

2 for the lookahead method. The similarity of the two
lines of the table supports the accuracy of the model assumed in our analysis.

Table 1. Comparing theoretic and simulated probabilities and compression ratios.

1 01 10 00 Fib2–1 Ter2–1 FibLook

Theoretic 0.2764 0.2764 0.2764 0.447 1.194 1.292 1.295

Simulated 0.2759 0.2758 0.2761 0.448 1.194 1.291 1.293

The performance has also been tested on some real, not randomly generated,
data. We took the first bits of each of the six categories of the Pizza & Chili

New Approaches for Context Sensitive Flash Codes 55

Corpus2 and partitioned them into 100 blocks so as to let each block produce
a string of 600 storage bits in a first round encoding. For rs-wom, each block
thus consisted of 400 data bits, for Fibonacci encoding, a block was of length
417 data bits and for ternary, 474 data bits (=300 trits). The bits immediately
following those used for the first round were then considered as the data to be
written in the second round, and we counted the number of these data bits that
could be encoded. Table 2 summarizes the results.

Table 2. Comparing theoretic and real data compression ratios.

1-bits RS Fib2–1 Ter2–1 FibLook Fib3–2

Theoretic 1.333 1.194 1.292 1.311 1.326

Real data 0.426 1.333 1.192 1.290 1.307 1.322

The column headed 1-bits gives the average 1-bit density within the test
data. The row Real data brings the empirical compression ratio for the different
methods, and one can see that they very closely match the theoretical values, as
if the data had been randomly generated. The Theoretic value for the Fib3 → 2
method appears in italics, because it has not been analytically derived, but
obtained by simulation with q = 0.426.

Fig. 6. Compression ratio of 2.5-ary+ lookahead as a function of the 1-bit probabilities
in the first and second rounds.

Figure 6 is a 3-D plot illustrating the compression ratios for the 2.5-ary+look-
ahead method of Sect. 3.5. To derive it, we randomly generated data with the
desired probabilities for the first and second rounds and checked the resulting

2 http://pizzachili.dcc.uchile.cl/texts.html.

http://pizzachili.dcc.uchile.cl/texts.html

56 G. Baruch et al.

compression performance. Each pair of probabilities (pf , ps) was tested 100 times
and the results were averaged. The input probabilities are given on the x- and
y-axes, and the corresponding compression ratios appear according to the scale
on the z-axis. The wireframe corresponds to state of the art compression ratio,
z = 1.493, and the black bold line crossing the surface is its intersection with
the plane defined by x = y, corresponding to a scenario in which pf = ps, that
is, the probabilities of a 1-bit are identical in both rounds.

5 Conclusion

We have presented several new techniques for extending context sensitive rewrit-
ing codes. Their performances are better than those of the methods of [7], but
are still below the best known alternatives in the state of the art. Contrarily
to other rewriting codes that are designed to yield a good compression ratio
regardless of the 1-bit density of the input stream, some of the new methods
presented herein take advantage of a possible non-uniformity of the input data,
as may be the case for certain applications. Therefore, even though some of the
compression ratios calculated above are higher than 1.493 and even than the
information-theoretic upper bound of 1.585, we obviously do not claim having
improved on the state of the art, since another model has been used.

It should, however, be noticed, that our challenge here is different from a
situation that arises quite often in the development of new algorithms, where
much effort is invested to improve a given technique, known to be currently
the best. We do not try to ameliorate the performance of one of the state of
the art methods, but suggest altogether different approaches. We thus see our
contribution in the development of the techniques themselves. Being independent
from the currently better state of the art methods, similar ideas to those we
suggested may possibly lead to improved performances that could be better
than the presently best known ones.

References

1. Assar, M., Nemazie, S., Estakhri, P.: Flash memory mass storage architecture. US
Patent 5,388,083, issued Feb. 7 1995 (1995). https://patentscope.wipo.int/search/
en/detail.jsf?docId=WO1994023369

2. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-
put. Surv. 37(2), 138–163 (2005). https://doi.org/10.1145/1089733.1089735

3. Jiang, A., Bohossian, V., Bruck, J.: Rewriting codes for joint information storage
in flash memories. IEEE Trans. Inf. Theory 56(10), 5300–5313 (2010)

4. Klein, S.T.: Should one always use repeated squaring for modular exponentiation?
Inf. Process. Lett. 106(6), 232–237 (2008). https://doi.org/10.1016/j.ipl.2007.11.
016

5. Klein, S.T., Ben-Nissan, M.K.: On the usefulness of Fibonacci compression codes.
Comput. J. 53(6), 701–716 (2010). https://doi.org/10.1093/comjnl/bxp046

6. Klein, S.T., Shapira, D.: Boosting the compression of rewriting on flash memory.
In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) DCC 2014,
pp. 193–202. IEEE (2014)

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1994023369
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1994023369
https://doi.org/10.1145/1089733.1089735
https://doi.org/10.1016/j.ipl.2007.11.016
https://doi.org/10.1016/j.ipl.2007.11.016
https://doi.org/10.1093/comjnl/bxp046

New Approaches for Context Sensitive Flash Codes 57

7. Klein, S.T., Shapira, D.: Context sensitive rewriting codes for flash memory. Com-
put. J. 62(1), 20–29 (2019). https://doi.org/10.1093/comjnl/bxy020

8. Kurkoski, B.M.: Rewriting codes for flash memories based upon lattices, and an
example using the E8 lattice. In: ACTEMT 2010, pp. 1861–1865. IEEE (2010).
https://doi.org/10.1109/GLOCOMW.2010.5700264

9. Rivest, R.L., Shamir, A.: How to reuse a ‘write-once’ memory. Inf. Control 55(1–3),
1–19 (1982). https://doi.org/10.1016/S0019-9958(82)90344-8

10. Shpilka, A.: New constructions of WOM codes using the Wozencraft ensemble.
IEEE Trans. Inf. Theory 59(7), 4520–4529 (2013)

11. Yaakobi, E., Kayser, S., Siegel, P.H., Vardy, A., Wolf, J.K.: Codes for write-once
memories. IEEE Trans. Inf. Theory 58(9), 5985–5999 (2012)

12. Zeckendorf, E.: Représentation des nombres naturels par une somme des nombres
de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège 41, 179–182 (1972)

https://doi.org/10.1093/comjnl/bxy020
https://doi.org/10.1109/GLOCOMW.2010.5700264
https://doi.org/10.1016/S0019-9958(82)90344-8

Dolev-Yao Theory with Associative
Blindpair Operators

A. Baskar1(B), R. Ramanujam2, and S. P. Suresh3

1 BITS Pilani, K K Birla Goa Campus, Goa, India
abaskar@goa.bits-pilani.ac.in

2 Institute of Mathematical Sciences, Chennai, India
3 CMI and CNRS UMI 2000 ReLaX, Chennai, India

Abstract. In the context of modeling cryptographic tools like blind sig-
natures and homomorphic encryption, the Dolev-Yao model is typically
extended with an operator over which encryption is distributive. The
intruder deduction problem has a non-elementary upper bound when the
extended operator is an Abelian group operator. Here we show that the
intruder deduction problem is DEXPTIME-complete when we restrict
the operator to satisfy only the associative property. We propose an
automata-based analysis for the upper bound and use the reachability
problem for alternating pushdown systems to show the lower bound.

1 Introduction

In the use of logic as a tool for analyzing security of communication protocols,
cryptography is abstracted using a term algebra. In these Dolev-Yao style mod-
els [11] for cryptographic protocols we use a term algebra containing operations
like pairing, encryption, signatures, hash functions, and nonces to build terms
that are sent as messages in the protocol. The adversary against a protocol
is modeled as a powerful intruder who can control the entire network, and can
encrypt and decrypt at will; however, the cryptographic means used are assumed
to be perfect. Therefore, while the intruder may not have access to actual private
keys possessed by the “honest” participants, he has access to the structural pat-
terns of terms that may be derived from the ones sent by the participants. Since
these models are used for algorithmic analysis, the following intruder deduction
problem is of basic interest: given a finite set of terms X and a term t, is there
a way for the intruder to derive t from X?

In the basic Dolev-Yao model, the main operators are pairing and encryption,
but these two do not interact with each other, in the sense that the encryption
of a paired term is no different from that of any other term. The Dolev-Yao
model abstracts away from the details of the encryption schemes used. However,
the scheme used by participants would be known to the intruder, who can well
make use of this information. In Dolev-Yao theory, the terms {t}k and {t′}k′

S. P. Suresh—Partially supported by an Infosys Grant.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 58–69, 2019.
https://doi.org/10.1007/978-3-030-23679-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_5

Dolev-Yao Theory with Associative Blindpair Operators 59

are assumed to be distinct, unless t = t′ and k = k′. However, this is in general
not true of cryptographic schemes such as the RSA. The algebraic properties
of the encryption operator may well dictate the use of an equational theory to
which the intruder has access. In such a context, interaction between encryption
and other operators may be important. The reader is referred to the excellent
survey [10] for studies of this kind.

One way of studying such interaction is by considering an extension of the
Dolev-Yao term algebra with additional operators that interact in some specific
way with encryption. For instance, [12] study an Abelian group operator + such
that {t1 + · · · + tn}k = {t1}k + · · · + {tn}k, i.e. encryption is homomorphic over
+. They employ a very involved argument and prove the intruder deduction
problem in the general case to be decidable with a non-elementary upper bound.
They also give a dexptime algorithm in the case when the operator is xor, and
a ptime algorithm in the so-called binary case.

In this paper, we study an associative blind pair operator + in which encryp-
tion is distributive. This operator satisfies two equations {t+ t′}k = {t}k +{t′}k

and (t1 + t2) + t3 = t1 + (t2 + t3). We show the intruder deduction problem for
the Dolev-Yao term algebra with this extended operator is decidable in expo-
nential time. The standard strategy consists of two steps. The first step is to
prove the so-called locality property [6,8,13], if t is derivable from X, then
there is a special kind of derivation (a normal derivation) π such that every
term occurring in π comes from S(X ∪ {t}), where S is a function mapping a
finite set of terms to another finite set of terms. Typically S is the subterm
function st, but in many cases it is a minor variant. The second step is using
the locality property to provide a decision procedure for the intruder deduction
problem.

Our system does not have an obvious locality property, so we cannot follow
the standard route to decidability. The first contribution of this paper is to show
a way of working around this difficulty by proving a weak locality property: we
define a function S which maps every finite set of terms X to an infinite set of
terms S(X). We then prove all terms occurring in a normal derivation of t from
X are from S(X ∪ {t}), and the set of terms in S(X ∪ {t}) are derivable from
X is regular. This facilitates an automaton construction and yields a decision
procedure for checking whether t is derivable from X. The second contribution is
to settle the complexity of the intruder deduction problem by proving dexptime-
hardness by reduction from the reachability problem for alternating pushdown
systems.

In [1], generic decidability results are given for the intruder deduction prob-
lem for convergent subterm theories and locally stable equational theories. Later
in [9], similar results have been attained for monoidal theories. But our system
does not belong to any of these subclasses. In [7], a generic procedure for the
intruder deduction problem (deducibility) is given for arbitrary convergent equa-
tional theories. This procedure might not terminate but whenever it terminates
it gives the correct answer. For the blind signature theory, this procedure ter-
minates and it is implemented in polynomial time. But the modeling of blind

60 A. Baskar et al.

signatures using the associative blind pair operator is different and hence the
results in this paper. In [2], Dolev-Yao model is extended with an operator which
is associative, commutative and idempotent but this operator doesn’t interact
with the encryption operator.

In earlier work in [5], we proposed similar system described in this paper,
but we imposed a restriction on the blind pair operator: one of the components
in the blind pair is always of the form n or {n}k where n is an atomic term
and the only rule that involves distributing an encryption over a blind pair is
the derivation of [{t}k, n] from [t, {n}inv(k)] and k. This restricted system also
satisfies a locality property and using that we get a ptime algorithm. It turns
out that the considered restriction well suffices for the use of blind signatures in
applications like voting protocols. In [6], the blind pair operator proposed did not
have associativity property and the intruder deduction problem is DEXPTIME-
complete but the operator might not satisfy associative property. The strategy
is used here is similar to [3].

In Sect. 2, we present the basic definitions related to the Dolev-Yao system
with the blind pair operator which is associative and in which encryption dis-
tributes. In Sect. 3, we prove a normalization result and a weak subterm property.
Section 4 contains details of an automaton-based dexptime decision procedure
for the intruder deduction problem. Section 5 contains the dexptime [4] com-
plexity lower bound. Please refer [4] for detailed proofs.

2 The Dolev-Yao Framework and the Intruder Deduction
Problem

Assume a set of basic terms B, containing the set of keys K. Let inv be a function
on K such that inv(inv(k)) = k. The set of terms T is defined to be:

T ::= m | (t1, t2) | {t}k | t1 + t2 . . . + tl

where m ∈ B, k ∈ K, and {t, t1, . . . , tl} ⊆ T .

Definition 1. The set of subterms of t, st(t), is the smallest Y ⊆ T such that

– t ∈ Y ,
– if (t1, t2) ∈ Y , then {t1, t2} ⊆ Y ,
– if t1 + t2 + · · · + tl ∈ Y , then {ti + ti+1 . . . + tj |1 ≤ i ≤ j ≤ l} ⊆ Y , and
– if {t}k ∈ Y , then {t, k} ⊆ Y .

The set of subterms of X, st(X), is
⋃

t∈X st(t) and its size is at most
(
∑

t∈X |t|)2.

For simplicity, we assume henceforth that all terms are normal. These are terms
which do not contain a subterm of the form {t1 + t2}k. For a term t, we get
its normal form by “pushing encryptions over blind pairs, all the way inside.”
Formally, it is defined as follows:

Dolev-Yao Theory with Associative Blindpair Operators 61

Definition 2. The normal form of a term t, denoted by t↓, is defined induc-
tively as follows.

– m↓= m for m ∈ B,
– (t1, t2)↓= (t1↓, t2↓),
– (t1 + t2)↓= t1↓ +t2↓,

– {t}k↓=

{
{t1}k↓ +{t2}k↓, if t = t1 + t2, for some t1 and t2;
{t↓}k, otherwise.

Fig. 1. Deduction system.

The rules for deriving new terms from existing terms are given in Fig. 1. The
rules on the left column is referred as synth-rules as the conclusion of the rules
contain its premises as subterms. The rules on the right column is referred as
analz-rules as the conclusion of the rules are subterms of the left hand premise.

We like to emphasize that the subtle difference between the analz-rules for
the pair operator (t0, t1) and blind pair operator t0 + t1. If we have (t0, t1) then
we can derive t0 using split0 rule and t1 using split1 rule. But to derive t0 from
t0 + t1 using blindsplit1 rule, we also need t1 (and similarly to derive t1 from
t0 + t1 using blindsplit0 rule, we also need t0).

Definition 3. A derivation or a proof π of a term t from a set of terms X
is a tree

– whose nodes are labeled by sequents of the form X � t′ for some t′ ∈ T and
connected by one of the analz-rules or synth-rules in Fig. 1,

– whose root is labeled X � t, and
– whose leaves are labeled by Ax rule in Fig. 1.

We use X � t to denote that there is a proof of t from X. For a set of terms X,
cl(X) = {t | X � t} is the closure of X.

62 A. Baskar et al.

Example 1. Let X = {a + b, {b}k, k, inv(k)} and t to be a, then the following
derivation shows that X � t.

Ax
X � a + b

Ax
X � k

encrypt
X � {a}k + {b}k

Ax
X � {b}k

blindsplit
X � {a}k

Ax
X � inv(k)

decrypt
X � a

Example 2. For the same X and t, we show a different derivation for X � t.

Ax
X � a + b

Ax
X � {b}k

Ax
X � inv(k)

decrypt
X � b

blindsplit
X � a

Definition 4. The intruder deduction problem is the following: given a
finite set X ⊆ T and t ∈ T , determine whether X � t.

3 Weak Locality Property

As we have mentioned earlier, our derivation system lacks the locality property
but we prove a weak locality property in this section and use it to solve the
intruder deduction problem. Even if there are derivations of X � t with out
the weak locality property, there will be one derivation of X � t with the weak
locality property. Such a derivation will not have a few patterns (for example split
rule will not be applied immediately after a pair rule). If any such pattern occurs,
we argue there is a way to get rid of it without changing the final conclusion
of the derivation. This is achieved by providing a set of transformation rules
which dictate how to replace forbidden derivations by acceptable derivations.
We formalize these concepts below.

Definition 5. A transformation rule is a pair of proofs (π1, π2) such that the
roots of π1 and π2 are the same. Any subproof that matches a pattern of π1 is
meant to be replaced by the π2. A proof π is a normal proof if transformation
rules in Fig. 2 cannot be applied to π. The first two transformation rules in
Fig. 2 are from [6] and the last two transformation rules are included to handle
the associative property of the blind pair operator. We have listed only a few
transformation rules here and please refer [4] for all the rules.

The derivation provided in Example 1 is not a normal proof as we can apply
transformation rule in the third row of Fig. 2 (for blindsplit rule which is followed
by the decrypt rule). On the other hand, the derivation provided in Example 2
is a normal proof as no transformation rules can be applied.

Lemma 1. For a given X ∪ {t} ⊆ T , if X � t, then there is a normal proof
for X � t.

Dolev-Yao Theory with Associative Blindpair Operators 63

Fig. 2. Transformation rules for the associative case.

If a proof for X � t is not a normal proof, then we apply the transform rules in
Fig. 2 as long as possible. But it is not clear whether this procedure will terminate
and eventually lead to a normal proof. We define a measure for every proof such
that application of transformation rule reduces the measure of the proof. This
will immediately lead to that the above procedure terminates.

For every proof π, we define a measure, d(π), recursively as follow:

– if the last rule of π is an Ax rule, d(π) = 1,
– if π has only one immediate subproof π′ then d(π) = d(π′) + 1, and
– if π has immediate subproofs π′ and π′′ and r is the last rule of π, then

d(π) =

⎧
⎪⎨

⎪⎩

d(π′) + d(π′′) + 2, if r = blindpair;
2d(π′)+d(π′′), if r = encrypt or decrypt;
d(π′) + d(π′′) + 1, otherwise.

The above definition might look cryptic at first: for instance why the
encrypt/decrypt rule increases the measure exponentially. We are using the
subproof δ twice on the right hand sides of the first three transformations. So
additive increase will not help our objective: the measure should decrease after
applying the transformation rules. But fortunately the encrypt/decrypt rule on
the left hand side builds on a bigger subproof whereas the encrypt/decrypt rule
on the right hand side builds on smaller subproofs. We make use of this obser-
vation and define the measure such that repeating δ on right hand side will still
decrease the measure of the proof.

64 A. Baskar et al.

We introduce a bit of notation first to conveniently state the weak locality
lemma. We say that a proof π of X � t is purely synthetic if either it ends in
an application of the blindpair or pair rules, or it ends in an application of the
encrypt rule and t↓ is not a blind pair. A keyword is an element of K∗. Given
a term t and a keyword x = k1 · · · kn, we use {t}x to denote {· · · {t}k1 · · · }kn

.

Lemma 2. Let π be a normal proof of t from X, and let δ be a subproof of π
with root labeled r. Then for every u occurring in δ, the following hold:

1. Either u ∈ st(r), or there are p ∈ st(X) and keyword x such that u = {p}x,
2. if δ is not a purely synthetic proof, then there exist p ∈ st(X) and keyword x

such that u = {p}x, and
3. If the last rule of δ is the decrypt or split rule with the left side premise X � r1,

then r1 ∈ st(X).

4 Blind Pair as an Associative Operator: Upper Bound

Fix a finite set of terms X0 and a term t0. Let Y0 denotes st(X0 ∪ {t0}) and
K0 = Y0 ∩ K. In this section, we address the question of whether there exists
a normal proof of t0 from X0. The weak locality property (Lemma 2) provides
a key to the solution – every term occurring in such a proof is of the form {p}x

for p ∈ Y0 and x ∈ K∗
0 .

For every p ∈ Y0, define Lp = {x ∈ K∗
0 | X0 � {p}x}. It is easy to see that

Lp satisfies the following equations:

if x ∈ Lp and x ∈ Lp′ then x ∈ Lp+p′ ,

if x ∈ Lp and x ∈ Lp+p′ , then x ∈ Lp′ ,

if x ∈ Lp′ and x ∈ Lp+p′ , then x ∈ Lp

kx ∈ Lp iff x ∈ L{p}k
,

if x ∈ Lp and ε ∈ Lk, then xk ∈ Lp, and
if the empty string ε ∈ L{p}k

and ε ∈ Linv(k), then ε ∈ Lp.

If p, p′, p + p′ are considered as states and x is accepted from p as well as p′,
then we want x is to be accepted from p + p′. To capture this we need an and
edge (labeled with ε) from p and p′ to p+p′. This suggests the construction of an
alternating automaton A such that checking X � {t}x is equivalent to checking
whether there is an accepting path of x from t in A. First we recall the definition
of alternating automaton and other related notions.

Definition 6. An alternating automaton is A = (Q,Σ, ↪→, F), where Q is a
finite set of states, Σ is a finite alphabet, ↪→⊆ Q×(Σ∪{ε})×2Q is the transition
relation, and F ⊆ Q is the set of final states.

For q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q, we use q
a

↪→ C to denote the fact that
(q, a, C) ∈↪→. For ease of notation, we also write q

a
↪→ q′ to mean q

a
↪→ {q′}.

Dolev-Yao Theory with Associative Blindpair Operators 65

Given C ⊆ Q, and x ∈ Σ∗, we use the notation q
x⇒A,i C iff

– C = {q}, x = ε, and i = 0, or
– there is a transition q

a
↪→ {q1, . . . , qn} of A, y ∈ Σ∗, and i1, . . . , in ≥ 0 such

that i = i1 + · · · + in + 1 and x = ay and for all j ∈ {1, . . . , n}, qj
y⇒A,ij Cj

such that C = C1 ∪ · · · ∪ Cn.

For C = {q1, . . . , qm} and C ′ ⊆ Q, we use the notation C
x⇒A,i C ′ to mean

that for all j ≤ m, there exist ij such that qj
x⇒A,ij Cj, and i = i1+· · ·+im, C ′ =

C1 ∪ · · · ∪ Cm. We also say q
x⇒A C and C

x⇒A C ′ to mean that there is some
i such that q

x⇒A,i C and C
x⇒A,i C ′, respectively.

We say a word x has an accepting run from q iff q
x⇒A C such that C ⊆ F .

For a given q, is the set of words accepted by A with q as initial state.

L(A, q) = {x ∈ Σ∗ | q
x⇒A C such that C ⊆ F}

We typically drop the subscript A if it is clear from the context which alter-
nating automaton is referred to.

Now we construct an alternating automaton A such that Lp = L(A, p) for
each p ∈ Y0. The states of the automaton are terms from Y0, and the transition
relation is a direct transcription of the equations in 1. For instance there is an
edge labeled k from t to {t}k, and there is an edge labeled ε from t to the set
{t + t′, t′}. We introduce a final state f and introduce an ε-labeled edge from t
to f whenever ε ∈ Lt.

Definition 7. Let A0 be given by (Q,Σ, ↪→0, F) where Q = Y0 ∪ {f} (f �∈ Y0),
Σ = K0, F = {f}, and ↪→0 be the smallest subset of Q × (Σ ∪ {ε}) × 2Q that
satisfies the following:

– if t ∈ Y0, k ∈ K0 such that {t}k↓∈ Y0, then t
k

↪→0 {t}k↓.
– if t, t′, t′′ ∈ Y0 such that t is the conclusion of a blindpair or blindspliti rule

with premises t′ and t′′, then t
ε

↪→0 {t′, t′′}.
– if t ∈ X0, then t

ε
↪→0 {f}.

– if k ∈ X0 ∩ K0, then f
k

↪→0 {f}.

There is one issue in this automaton A0: if kx ∈ Lt then x ∈ L{t}k
. These

cannot be represented directly by a transition in the automaton. Thus we define
a revised automaton that has an edge labeled ε from {t}k to q whenever the
original automaton has an edge labeled k from t to q. In fact, it does not suffice
to stop after revising the automaton once. The procedure has to be repeated till
no more new edges can be added.

Thus we define a sequence of alternating automata A1,A2, . . . ,Ai, . . ., each
of which adds transitions to the previous one, as given by the below definition.

Definition 8. For each i > 0,Ai is given by (Q,Σ, ↪→i, F) where ↪→i is the
smallest subset of Q × (Σ ∪ {ε}) × 2Q such that:

66 A. Baskar et al.

1. if q
a⇒i−1 C, then q

a
↪→i C.

2. if {t}k↓∈ Y0 and t
k⇒i−1 C, then {t}k↓

ε
↪→i C.

3. if k ∈ K0 and k
ε⇒i−1 {f}, then f

k
↪→i {f}.

4. if Γ ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules of Fig. 1
(unary or binary) whose set of premises is (exactly) Γ and conclusion is t,
then the following holds:

if u
ε⇒i−1 {f} for every u ∈ Γ, then t

ε
↪→i {f}.

We use ↪→i for ↪→Ai
and ⇒i for ⇒Ai

Lemma 3. 1. For all i ≥ 0 and all a ∈ Σ ∪{ε}, the relation a⇒i is constructible
from ↪→i in time 2O(d), where d = |Q|.

2. For all i ≥ 0 and all a ∈ Σ, the relation
a

↪→i+1 is constructible from ⇒i in
time 2O(d).

3. There exists d′ ≤ d2 · 2d such that for all i ≥ d′, q ∈ Q, a ∈ Σ ∪ {ε}, and
C ⊆ Q, q

a
↪→i C if and only if q

a
↪→d′ C.

Theorem 1 (Soundness). For any i, any t ∈ Y0, and any keyword x, if t
x⇒i

{f}, then X0 � {t}x↓.

Theorem 2 (Completeness). For any t ∈ Y0 and any keyword x, if X0 �
{t}x↓, then there exists an i ≥ 0 such that t

x⇒i {f}.

The number of subterms is O(n2) if X0, t0 is of size O(n). So we have to
iterate the saturation procedure at most 2n2

(the number of subsets of states)
times.

Theorem 3. Given a finite X0 ⊆ T and t0 ∈ T , checking whether X0 � t0 is
solvable in time O(2n2

) where n =
∑

t∈X0
|t| + |t0|.

5 Blind Pair as an Associative Operator: Lower Bound

In this section, we reduce the reachability problem of alternating pushdown sys-
tems to the intruder deduction problem. The reduction is similar to the reduction
in [6] with a few modifications.

Definition 9. An alternating pushdown system (APDS) is a triple P =
(P, Γ,Δ), where

– P is a finite set of control locations,
– Γ is a finite stack alphabet, and
– Δ ⊆ (P × Γ ∗) × 2(P×Γ ∗) is a set of transition rules.

We write transitions as (a, x) ↪→ {(b1, x1), . . . , (bn, xn)}. A configuration is a
pair (a, x) where a ∈ P and x ∈ Γ ∗. Given a set of configurations C, a configu-
ration (a, x), and i ≥ 0, we say that (a, x) i⇒P C iff:

Dolev-Yao Theory with Associative Blindpair Operators 67

– (a, x) ∈ C and i ≥ 0, or
– there is a transition (a, y) ↪→ {(b1, y1), . . . , (bn, yn)} of P, z ∈ Γ ∗, and

i1, . . . , in ≥ 0 such that i = i1+ · · ·+ in and x = yz and for all j ∈ {1, . . . , n},
(bj , yjz)

ij⇒P C.

We use (a, x)⇒P C to denote (a, x) i⇒P C for some i.

Theorem 4 ([14]). The reachability problem for alternating pushdown
systems, which asks, given an APDS P and configurations (s, xs) and (f, xf),
whether (s, xs) ⇒P (f, xf), is dexptime-complete.

We reduce this problem to the problem of checking whether X � t in our proof
system, given X ⊆ T and t ∈ T . We use {c}x ∧ {b1}y1 ∧ · · · ∧ {bn}yn

Ass=⇒ {b}y,
called associative rewrite terms, to denote the following term

{b1}y1 + {c}x + {b2}y2 + {c}x + · · · + {c}x + {bn}yn
+ {c}x + {b}y + {c}x +

{b1}y1 + {c}x + {b2}y2 + {c}x + · · · + {c}x + {bn}yn

where c, b1, . . . , bn, b be set of basic terms and let x, y1, . . . , yn, y be keywords.

Definition 10. Suppose P = (P, Γ, ↪→) is an APDS, and (s, xs) and (f, xf) are
two configurations of P. The rules in ↪→ are numbered 1 to l.

We define a set of terms X such that (s, xs) ⇒P (f, xf) iff X � {s}xse.

– P ∪ C is taken to be a set of basic terms, where C = {c1, . . . cl},
– Γ ∪ {e, d} is taken to be a set of keys, such that e, d �∈ Γ , and none of the

keys in Γ ∪ {e} is an inverse of another,
– X1 = {{f}xfe} ∪ {{c}d | c ∈ C}.
– X2 = {{ci}d ∧ {b1}x1 ∧ · · · ∧ {bn}xn

Ass=⇒ {a}x | (a, x) ↪→P {(b1, x1), . . . ,
(bn, xn)} is the i th rule of ↪→}, and

In the rest of the section, we assume X = X1 ∪ X2 ∪ Γ ∪ {e}.

Lemma 4. If {c}d∧{b1}y1 ∧· · ·∧{bn}yn

Ass=⇒ {b}y is an associative rewrite term
in X2 and z ∈ Γ ∗ such that for all i ≤ n : X � {bi}yize, then X � {b}yze.

We can encrypt {c}d using the keys in ze to derive X � {c}dze. Using blindsplit
rule on associative rewrite term, we can derive X � {b}yze.

Using the above lemma we can prove if (a, x) ⇒i {(f, xf)}, then X � {a}xe.

Lemma 5. For all configurations (a, x) and all i ≥ 0, if (a, x) ⇒i {(f, xf)}
then X � {a}xe.

To prove the converse of Lemma 5, we have to prove some properties of the
normal proof of X � {a}xe. First, we make some observations about the normal
proof π of X � {a}xe. There are no pair, split, decrypt rules in π. This is easy to
see from the set X and the conclusion. Most importantly, there are no blindpair
rules in π. Since the conclusion is not a blindpair term, the transformation rules
in Fig. 1 eliminate the blindpair rules.

68 A. Baskar et al.

Lemma 6. Let π be a normal proof of X � {a}xe, for a ∈ P and x ∈ Γ ∗. Then
any term u occurring in π is of the form {p}w, for p ∈ st(X) and w ∈ Γ ∗ ∪Γ ∗e.

The following lemma constrains the structure of rules that occur in any normal
proof of X � {a}xe. This lemma is weaker than its counterpart in [6] as the right
side premise of blindsplit may be a blindpair term.

Lemma 7. Let π be a normal proof of X � {a}xe, for a ∈ P and x ∈ Γ ∗. Let δ
be a subproof of π with root labeled r.

1. If the last rule of δ is an encrypt rule, then r = {p}w for some p ∈ X and
keyword w ∈ Γ ∗ ∪ Γ ∗e.

2. If the last rule of δ is a blindsplit rule, then r = {p}we, where p ∈ st(X) and
w ∈ Γ ∗.

We now state an important property of normal proofs from rewrite systems
– namely that whenever the “conclusion” of a rewrite term is provable, all the
“premises” are provable too. The proof of the lemma is given in appendix.

Lemma 8. Let π be a normal proof of X � {a}xe, for a ∈ P and x ∈ Γ ∗. Then
either {a}xe ∈ X1 or there is a rewrite term {cm}d∧{b1}y1∧· · ·∧{bn}yn

Ass=⇒ {a}y

in X2, and z ∈ Γ ∗ such that x = yz, for all i ≤ n, {bi}yize occurs in π.

Lemma 9. For any configuration (a, x), if there is a normal proof of X � {a}xe,
then (a, x) ⇒P (f, xf).

Proof. By Lemma 8, X � {a}xe means that either {a}xe ∈ X1 or there is an
associative rewrite term {c}d ∧{b1}y1 ∧ · · · ∧ {bn}yn

Ass=⇒ {a}y in X2, and z ∈ Γ ∗

such that x = yz and for all i ≤ n, {bi}yize occurs in π.
In the first case ({a}xe ∈ X1), a = f and x = xf , and it follows that

(a, x) ⇒P (f, xf). In the second case, by induction hypothesis, (bi, yiz) ⇒P
(f, xf), for all i ≤ n. Combined with (a, y) ↪→ {(b1, y1), . . . , (bn, yn)}, it follows
that (a, x) = (a, yz) ⇒P (f, xf).

Theorem 5. Given a finite X ⊆ T and a term t ∈ T , checking whether X � t
is dexptime-hard.

6 Discussion

The techniques of our paper do not seem to extend to the system with Abelian
group operators, nor for slightly weaker systems where + is associative and
commutative, or when + is a (not necessarily commutative) group operator and
the term syntax allows terms of the form −t. The decidability results in [12]
are driven by a set of normalization rules whose effect is drastically different
from ours. Our rules ensure that the “width” of terms occurring in a normal
proof of X � t is bounded by X ∪ {t}. But their normalization rules ensure that
the encryption depth of terms occurring in a normal proof of X � t is bounded

Dolev-Yao Theory with Associative Blindpair Operators 69

by X∪{t}. But the width of terms, represented by coefficients in the +-terms, can
grow unboundedly. The rest of their decidability proof is an involved argument
using algebraic methods. But the relationships between the two techniques need
to be studied in more depth and might be useful to solve weaker systems and
the system with an Abelian group operators. We leave this for future work.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006). https://doi.org/10.1016/j.
tcs.2006.08.032

2. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Satisfiability of general
intruder constraints with and without a set constructor. J. Symbolic Comput. 80,
27–61 (2017). https://doi.org/10.1016/j.jsc.2016.07.009

3. Baskar, A.: Decidability results for extended Dolev-Yao theories. Ph.D. thesis,
Chennai Mathematical Institute (2011)

4. Baskar, A., Ramanujam, R., Suresh, S.: Dolev-Yao theory with associative blind-
pair operators, Technical report (2019). http://www.cmi.ac.in/∼spsuresh/pdfs/
ciaa19-tr.pdf

5. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting
protocols. In: Samet, D. (ed.) TARK 2007, pp. 62–71 (2007). https://doi.org/10.
1145/1324249.1324261

6. Baskar, A., Ramanujam, R., Suresh, S.P.: A dexptime-complete Dolev-Yao theory
with distributive encryption. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS,
vol. 6281, pp. 102–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15155-2 11

7. Ciobâca, S., Delaune, S., Kremer, S.: Computing knowledge in security protocols
under convergent equational theories. J. Autom. Reason. 48(2), 219–262 (2012).
https://doi.org/10.1007/s10817-010-9197-7

8. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and inse-
curity decision in presence of exclusive or. In: LICS 2003, pp. 271–280. IEEE Com-
puter Society (2003). https://doi.org/10.1109/LICS.2003.1210067

9. Cortier, V., Delaune, S.: Decidability and combination results for two notions of
knowledge in security protocols. J. Autom. Reason. 48(4), 441–487 (2012). https://
doi.org/10.1007/s10817-010-9208-8

10. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. J. Comput. Secur. 14(1), 1–43 (2006). http://content.
iospress.com/articles/journal-of-computer-security/jcs244

11. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory
29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

12. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational the-
ory of Abelian groups with distributive encryption. Inf. Comput. 205(4), 581–623
(2007). https://doi.org/10.1016/j.ic.2006.10.008

13. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions
and composed keys is NP-complete. Theor. Comput. Sci. 299(1–3), 451–475 (2003).
https://doi.org/10.1016/S0304-3975(02)00490-5

14. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternat-
ing pushdown systems with an application to the computation of certificate chains.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer,
Heidelberg (2006). https://doi.org/10.1007/11901914 13

https://doi.org/10.1016/j.tcs.2006.08.032
https://doi.org/10.1016/j.tcs.2006.08.032
https://doi.org/10.1016/j.jsc.2016.07.009
http://www.cmi.ac.in/~spsuresh/pdfs/ciaa19-tr.pdf
http://www.cmi.ac.in/~spsuresh/pdfs/ciaa19-tr.pdf
https://doi.org/10.1145/1324249.1324261
https://doi.org/10.1145/1324249.1324261
https://doi.org/10.1007/978-3-642-15155-2_11
https://doi.org/10.1007/978-3-642-15155-2_11
https://doi.org/10.1007/s10817-010-9197-7
https://doi.org/10.1109/LICS.2003.1210067
https://doi.org/10.1007/s10817-010-9208-8
https://doi.org/10.1007/s10817-010-9208-8
http://content.iospress.com/articles/journal-of-computer-security/jcs244
http://content.iospress.com/articles/journal-of-computer-security/jcs244
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1016/j.ic.2006.10.008
https://doi.org/10.1016/S0304-3975(02)00490-5
https://doi.org/10.1007/11901914_13

Semi-linear Lattices and Right One-Way
Jumping Finite Automata

(Extended Abstract)

Simon Beier and Markus Holzer(B)

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{simon.beier,holzer}@informatik.uni-giessen.de

Abstract. Right one-way jumping automata (ROWJFAs) are an
automaton model that was recently introduced for processing the input
in a discontinuous way. In [S. Beier, M. Holzer: Properties of right
one-way jumping finite automata. In Proc. 20th DCFS, number 10952
in LNCS, 2018] it was shown that the permutation closed languages
accepted by ROWJFAs are exactly those with a finite number of posi-
tive Myhill-Nerode classes. Here a Myhill-Nerode equivalence class [w]L
of a language L is said to be positive if w belongs to L. Obviously, this
notion of positive Myhill-Nerode classes generalizes to sets of vectors of
natural numbers. We give a characterization of the linear sets of vec-
tors with a finite number of positive Myhill-Nerode classes, which uses
rational cones. Furthermore, we investigate when a set of vectors can
be decomposed as a finite union of sets of vectors with a finite number
of positive Myhill-Nerode classes. A crucial role is played by lattices,
which are special semi-linear sets that are defined as a natural way to
extend “the pattern” of a linear set to the whole set of vectors of natural
numbers in a given dimension. We show connections of lattices to the
Myhill-Nerode relation and to rational cones. Some of these results will
be used to give characterization results about ROWJFAs with multiple
initial states. For binary alphabets we show connections of these and
related automata to counter automata.

1 Introduction

Semi-linear sets, Presburger arithmetic, and context-free languages are closely
related to each other by the results of Ginsburg and Spanier [10] and Parikh [14].
More precisely, a set is semi-linear if and only it is expressible in Presburger
arithmetic, which is the first order theory of addition. These sets coincide with
the Parikh images of regular languages, which are exactly the same as the Parikh
images of context-free languages by Parikh’s theorem that states that the Parikh
image of any context-free language is semi-linear. Since then semi-linear sets
and results thereof are well known in computer science. Recently, the interest on
semi-linear sets has increased significantly. On the one hand, there was renewed

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 70–82, 2019.
https://doi.org/10.1007/978-3-030-23679-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_6

Semi-linear Lattices and Right One-Way Jumping Finite Automata 71

interest in equivalence problems on permutation closed languages [12] which
obviously correspond to their Parikh-image, and on the other hand, it turned out
that semi-linearity is the key to understand the accepting power of jumping finite
automata, an automaton model that was introduced in [13] for discontinuous
information processing. Roughly speaking, a jumping finite automaton is an
ordinary finite automaton, which is allowed to read letters from anywhere in the
input string, not necessarily only from the left of the remaining input. Moreover,
semi-linear sets were also subject to descriptional complexity considerations in [3]
and [5].

The tight relation between semi-linear sets and jumping automata is not
limited to this automaton model, but also turns over to right one-way jumping
automata (ROWJFAs), which were introduced in [4], as shown in [1,2]. This
device moves its head from left-to-right starting from the leftmost letter in the
input, reads and erases some symbols, while it jumps over others, and when it
reaches the end of the input word, it returns to the beginning and continues
the computation, which is executed deterministically. Most questions on formal
language related problems such as inclusion problems, closure properties, and
decidability of standard problems concerning ROWJFAs were answered recently
in one of the papers [1,2,4]. One of the main results on these devices was a char-
acterization of the induced language family that reads as follows: a permutation
closed language L belongs to ROWJ, the family of all languages accepted by
ROWJFAs, if and only if L can be written as the finite union of Myhill-Nerode
equivalence classes. Observe, that the overall number of equivalence classes can
be infinite. This result nicely contrasts the characterization of regular languages,
which requires that the overall number of equivalence classes is finite.

In this paper we try to improve the understanding of the Myhill-Nerode
equivalence relation given by a subset of N

k as defined in [9]. For a subset S ⊆ N

and the induced Myhill-Nerode relation, an equivalence class is called positive if
the vectors of the class lie in S. We characterize in which cases linear sets have
only a finite number of positive equivalence classes in terms of rational cones,
which are a special type of convex cones that are important objects in differ-
ent areas of mathematics and computer science like combinatorial commutative
algebra, geometric combinatorics, and integer programming. A special type of
semi-linear sets called lattices is introduced. Their definition is inspired by the
mathematical object of a lattice which is of great importance in geometry and
group theory, see [6]. These lattices are subgroups of R

k that are isomorphic
to Z

k and span the real vector space R
k. Our semi-linear lattices are defined

like linear sets, but allowing integer coefficients for the period vectors, instead
of only natural numbers. However our lattices are still, per definition, subsets
of N

k. Lattices have only one positive Myhill-Nerode class and can be decom-
posed as a finite union of linear sets with only one positive Myhill-Nerode class.
We give a characterization of the lattices that can even be decomposed as a finite
union of linear sets with linearly independent period sets and only one positive
Myhill-Nerode class and again get a connection to rational cones. That is why
we study these objects in more detail and show that the set of vectors with only

72 S. Beier and M. Holzer

non-negative components in a linear subspace of dimension n of R
k spanned by

a subset of N
k always forms a rational cone spanned by a linearly independent

subset of N
k if and only if n ∈ {0, 1, 2, k}. This result has consequences for

the mentioned decompositions of lattices. We show when a subset of N
k can be

decomposed as a finite union of those subsets that have only a finite number
of positive Myhill-Nerode classes. That result heavily depends on the theory of
lattices.

The obtained results on lattices are applied to ROWJFAs generalized to
devices with multiple initial states (MROWJFAs). This slight generalization is
in the same spirit as the one for ordinary finite automata that leads to multiple
entry deterministic finite automata [7]. We show basic properties of MROWJFAs
and inclusion relations to families of the Chomsky hierarchy and related fami-
lies. A connection between the family of permutation closed languages accepted
by MROWJFAs (the corresponding language family is referred to pMROWJ)
and lattices is shown. This connection allows us to deduce a characterization of
languages in pMROWJ from our results about lattices and decompositions of
subsets of N

k. We also investigate the languages accepted by MROWJFAs and
related languages families for the special case of a binary input alphabet and
get in some cases different or stronger results than for arbitrary alphabets. We
can show that each permutation closed semi-linear language (these are exactly
the languages accepted by jumping finite automata) over a binary alphabet is
accepted by a counter automaton. Furthermore, each language over a binary
alphabet accepted by a ROWJFA is also accepted by a realtime deterministic
counter automaton. Our results for lattices lead to a characterization, which
is stronger than the one for arbitrary alphabets, of the languages over binary
alphabets in pMROWJ: these are exactly the languages that are a finite union
of permutation closed languages accepted by ROWJFAs, which are characterized
by positive Myhill-Nerode classes as stated above.

2 Preliminaries

We use ⊆ for inclusion and ⊂ for proper inclusion of sets. For a binary rela-
tion ∼ let ∼+ and ∼∗ denote the transitive closure of ∼ and the transitive-
reflexive closure of ∼, respectively. In the standard manner, ∼ is extended
to ∼n, where n ≥ 0. Let Z be the set of integers, R be the set of real num-
bers, and N (R≥0, respectively) be the set of integers (real numbers, respec-
tively) which are non-negative. Let k ≥ 0. For the set T ⊆ {1, 2, . . . , k} with
T = {t1, t2, . . . , t�} and t1 < t2 < · · · < t� we define πk,T : N

k → N
|T | as

πk,T (x1,x2, . . . ,xk) = (xt1 ,xt2 , . . . ,xt|T |). The elements of R
k can be partially

ordered by the ≤-relation on vectors. For vectors x and y with x,y ∈ R
k we

write x ≤ y if all components of x are less or equal to the corresponding com-
ponents of y. For a set S ⊆ R

k let span(S) be the intersection of all linear
subspaces of R

k that are supersets of S. This vector space is also called the
linear subspace of R

k spanned by S. For a linear subspace V of R
k let dim(V)

be the dimension of V . For a finite S ⊆ Z
k the rational cone spanned by S is

Semi-linear Lattices and Right One-Way Jumping Finite Automata 73

cone(S) = {∑
xi ∈S λi · xi | λi ∈ R≥0 } ⊆ R

k. A linearly independent rational
cone in R

k is a set of the form cone(S) for a linearly independent S ⊆ Z
k.

Each rational cone is a finite union of linearly independent rational cones, see
for example [15].

For a c ∈ N
k and a finite P ⊆ N

k let L(c, P) = { c+
∑

xi ∈P λi ·xi | λi ∈ N }
and La(c, P) = { c +

∑
xi ∈P λi · xi | λi ∈ Z } ∩ N

k. By definition, L(c, P) ⊆
La(c, P). The vector c is called the constant vector whereas the set P is called
the set of periods of L(c, P) and of La(c, P). Sets of the form L(c, P), for a
c ∈ N

k and a finite P ⊆ N
k, are called linear subsets of N

k, while sets of the
form La(c, P) are called lattices. A subset of N

k is said to be semi-linear if it is
a finite union of linear subsets. For a c ∈ N

k, n ≥ 0, and x1,x2, . . . ,xn ∈ N
k

we have that La (c, {x1,x2, . . . ,xn}) is equal to the set of all y ∈ N
k such that

there exists λ1, μ1, λ2, μ2, . . . , λn, μn ∈ N with c +
∑n

i=1 λixi = y +
∑n

i=1 μixi ,
which is a Presburger set. Since the Presburger sets are exactly the semi-linear
sets by [10], every lattice is semi-linear. In order to explain our definitions we
give an example.

Example 1. Consider the vector c = (4, 4) and the period vectors p1 = (1, 2) and
p2 = (2, 0). A graphical presentation of the linear set L(c, P) with P = {p1,p2}
is given on the left of Fig. 1. The constant vector c is drawn as a dashed arrow
and both periods p1 and p2 are depicted as solid arrows. The dots indicate the
elements that belong to L(c, P). The lattice La(c, P) is drawn in the middle of
Fig. 1. Again, the constant vector is dashed, while both periods are solid arrows.
Since now integer coefficients are allowed, there are new elements compared
to L(c, P) that belong to La(c, P). On the right of Fig. 1 it is shown that La(c, P)
can be written as a linear set by using the constant vector 0 and the three
period vectors drawn as solid arrows, that is, La(c, P) = L(0, {p1,p2,p3}), where
p3 = (0, 2).
�

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 1. The linear set L(c, P) with c = (4, 4) and P = {p1,p2}, where p1 = (1, 2)
and p2 = (2, 0) drawn on the left. The black dots indicate membership in L(c, P). The
lattice set La(c, P) is depicted in the middle. Here the black dots refer to membership
in La(c, P). On the right a representation of La(c, P) as a linear set is shown. The
constant vector 0 is not shown and the period vectors are drawn as solid arrows.

74 S. Beier and M. Holzer

An important result about semi-linear sets is that each semi-linear set can be
written as a finite union of linear sets with linearly independent period sets [8]:

Theorem 2. Let k ≥ 0 and S ⊆ N
k be a semi-linear set. Then, there is m ≥ 0,

vectors c1, c2, . . . , cm ∈ N
k, and linearly independent sets P1, P2, . . . , Pm ⊆ N

k

such that S =
⋃m

i=1 L(ci , Pi).

Now, we recall some basic definitions from formal language theory. Let Σ be
an alphabet. Then Σ∗ is the set of all words over Σ, including the empty word λ.
For a language L ⊆ Σ∗ define the set perm(L) = ∪w∈L perm(w), where perm(w)
= { v ∈ Σ∗ | v is a permutation of w }. A language L is called permutation closed
if L = perm(L). The length of a word w ∈ Σ∗ is denoted by |w|. For the number
of occurrences of a symbol a in w we use the notation |w|a. If Σ is the ordered
alphabet Σ = {a1, a2, . . . , ak}, the Parikh-mapping ψ : Σ∗ → N

k is the function
defined by w
→ (|w|a1 , |w|a2 , . . . , |w|ak

). The set ψ(L) is called the Parikh-image
of L. A language L ⊆ Σ∗ is called semi-linear if its Parikh-image ψ(L) is a
semi-linear set.

Let M be a monoid, i.e., a set with an associative binary operation and an
identity element. For a subset L ⊆ M let ∼L be the Myhill-Nerode equivalence
relation on M . So, for two elements v, w ∈ M , we have v ∼L w if, for all u ∈ M ,
the equivalence vu ∈ L ⇔ wu ∈ L holds. For w ∈ M , we call the equivalence
class [w]∼L

positive if w ∈ L. For k ≥ 0 and M = N
k the equivalence relation ∼L

will be written as ≡L, because that is the notation of this relation on N
k in [9].

If L ⊆ Σ∗ is a permutation closed language and v, w ∈ L we have v ∼L w if and
only if ψ(v) ≡ψ(L) ψ(w). So, the language L is regular if and only if N

|Σ|/ ≡ψ(L)

is finite.
Let REG, DCF, CF, and CS be the families of regular, deterministic

context-free, context-free, and context-sensitive languages. Moreover, we are
interested in families of permutation closed languages. These language fami-
lies are referred to by a prefix p. E.g., pREG denotes the language family of all
permutation closed regular languages. Let JFA be the family of all languages
accepted by jumping finite automata, see [13]. These are exactly the permutation
closed semi-linear languages.

A right one-way jumping finite automaton with multiple initial states
(MROWJFA) is a tuple A = (Q,Σ,R, S, F), where Q is the finite set of states, Σ
is the finite input alphabet, Σ ∩ Q = ∅, R is a partial function from Q × Σ to Q,
S ⊆ Q is the set of initial or start states, and F ⊆ Q is the set of final states. A
configuration of A is a string in QΣ∗. The right one-way jumping relation, sym-
bolically denoted by �A or just � if it is clear which MROWJFA we are referring
to, over QΣ∗ is defined as follows. Let p, q ∈ Q, a ∈ Σ, w ∈ Σ∗. If R(p, a) = q,
then we have paw � qw. In case R(p, a) is undefined, we get paw � pwa. So, the
automaton jumps over a symbol, when it cannot be read. The language accepted
by A is

LR(A) = { w ∈ Σ∗ | ∃s ∈ S, f ∈ F : sw �∗ f } .

We say that A accepts w ∈ Σ∗ if w ∈ LR(A) and that A rejects w otherwise.
Let MROWJ be the family of all languages that are accepted by MROWJFAs.

Semi-linear Lattices and Right One-Way Jumping Finite Automata 75

Furthermore, in case the MROWJFA has a single initial state, i.e., |S| = 1, then
we simply speak of a right one-way jumping automaton (ROWJFA) and refer
to the family of languages accepted by ROWJFAs by ROWJ. Obviously, by
definition we have ROWJ ⊆ MROWJ. We give an example of a ROWJFA:

q0 q1 q2 q3
b

a

b

a

Fig. 2. The ROWJFA A.

Example 3. Let A be the ROWJFA A = ({q0, q1, q2, q3}, {a, b}, R, q0, {q3}),
where the set R consists of the rules q0b → q1, q0a → q2, q2b → q3, and q3a → q2.
The automaton A is depicted in Fig. 2. To show how ROWJFAs work, we give
an example computation of A on the input aabbba:

q0aabbba � q2abbba �2 q3bbaa �3 q2abb �2 q3ba �2 q2b � q3

That shows aabbba ∈ LR(A). Analogously, one can see that every word that
contains the same number of a’s and b’s and that begins with an a is in LR(A).
On the other hand, no other word can be accepted by A, interpreted as an
ROWJFA. So, we get LR(A) = {w ∈ a{a, b}∗ | |w|a = |w|b }. Notice that this
language is non-regular and not closed under permutation.
�

The following characterization of permutation closed languages accepted by
ROWJFAs is known from [2].

Theorem 4. Let L be a permutation closed language. Then, the language L is
in pROWJ if and only if the Myhill-Nerode relation ∼L has only a finite number
of positive equivalence classes.

3 Lattices, Linear Sets, and Myhill-Nerode Classes

Because of Theorem 4 a permutation closed language is in ROWJ if and only if
the Parikh-image has only a finite number of positive Myhill-Nerode equivalence
classes. In this section we will study these kind of subsets of N

k. Linear sets and
lattices will play a key role in our theory. We will investigate decompositions of
subsets of N

k as finite unions of such subsets that have only a finite number of
positive equivalence classes. This will lead to characterization results about the
language class pMROWJ in the next section.

76 S. Beier and M. Holzer

3.1 Connections Between Linear Sets and Rational Cones

It was pointed out in [11] that “rational cones in R
d are important objects

in toric algebraic geometry, combinatorial commutative algebra, geometric com-
binatorics, integer programming.” In the following we will see how rational cones
are related to the property of linear sets to have only a finite number of positive
Myhill-Nerode equivalence classes. The following property is straightforward.

Lemma 5. For k ≥ 0, vectors c,d ∈ N
k, and a finite set P ⊆ N

k the
map L(c, P) → L(d, P) given by x
→ x − c + d induces a bijection from
L(c, P)/ ≡L(c,P) to L(d, P)/ ≡L(d,P).
�

Next, we define two properties of subsets of N
k which involve rational cones.

Let k ≥ 0 and S ⊆ N
k. Then, the set S has the linearly independent rational

cone property if span(S) ∩ (R≥0)
k = cone(T), for some a linearly independent

T ⊆ N
k. The set S has the own rational cone property if S is finite and it holds

span(S) ∩ (R≥0)
k = cone(S).

A linear set has only a finite number of positive Myhill-Nerode equivalence
classes if and only if the period set has the own rational cone property:

Theorem 6. Let k ≥ 0 and P ⊆ N
k be finite. Then,

∣
∣L(0, P)/ ≡L(0,P)

∣
∣ < ∞ if

and only if P has the own rational cone property.
�
For linear sets with linearly independent periods we even get a stronger

equivalence than in Theorem 6:

Corollary 7. For k ≥ 0 and a linearly independent P ⊆ N
k the following three

conditions are equivalent:

1.
∣
∣L(0, P)/ ≡L(0,P)

∣
∣ < ∞

2.
∣
∣L(0, P)/ ≡L(0,P)

∣
∣ = 1

3. The set P has the own rational cone property.
�

3.2 Decompositions of Lattices

Lattices defined as subsets of R
k play an important rule in geometry, group

theory, and cryptography, see [6]. Our lattices defined as subsets of N
k are a

natural way to extend “the pattern” of a linear set to N
k. Using lattices we can

give a characterization in which cases arbitrary subsets of N
k can be decomposed

as a finite union of subsets with only a finite number of positive Myhill-Nerode
classes in the next subsection. This result, in turn, will enable us to prove a
characterization result about MROWJFAs in the next section. In this subsection,
we will show some decomposition results about lattices: it will turn out that
lattices can be decomposed as a finite union of linear sets which have only one
positive Myhill-Nerode equivalence class. Since each semi-linear set is the finite
union of linear sets with linearly independent period sets by Theorem2, we will
investigate in which cases lattices can even be decomposed as a finite union
of linear sets that have linearly independent period sets and only one positive

Semi-linear Lattices and Right One-Way Jumping Finite Automata 77

Myhill-Nerode equivalence class (or only a finite number of positive Myhill-
Nerode equivalence classes).

For k ≥ 0, c,y ∈ N
k, a finite P ⊆ N

k, and x ∈ La(c, P) the vector x+y is in
La(c, P) if and only if y ∈ La(0, P). This gives us that each lattice has only one
positive Myhill-Nerode equivalence class. On the other hand, each lattice is a
finite union of linear sets that have only one positive Myhill-Nerode equivalence
class:

Proposition 8. Let k ≥ 0, c ∈ N
k, and P ⊆ N

k be finite. Then, there is a
natural number m > 0, c1, c2, . . . , cm ∈ N

k, and a finite Q ⊆ N
k such that

La(c, P) =
⋃m

i=1 L(ci , Q) and
∣
∣L(0, Q)/ ≡L(0,Q)

∣
∣ = 1.
�

The linearly independent rational cone property is connected to the property
of lattices to be a finite union of linear sets that have linearly independent period
sets and only finitely many positive Myhill-Nerode equivalence classes:

Theorem 9. For k ≥ 0, c ∈ N
k, and a finite P ⊆ N

k the following three
conditions are equivalent:

1. There is an m > 0, vectors c1, c2, . . . , cm ∈ N
k, and linearly independent

Q1, Q2, . . . , Qm ⊆ N
k such that La(c, P) =

⋃m
i=1 L(ci , Qi) and for all i ∈

{1, 2, . . . ,m} it holds
∣
∣L(0, Qi)/ ≡L(0,Qi)

∣
∣ < ∞.

2. There is an m > 0, vectors c1, c2, . . . , cm ∈ N
k, and a linearly independent

Q ⊆ N
k such that La(c, P) =

⋃m
i=1 L(ci , Q) and

∣
∣L(0, Q)/ ≡L(0,Q)

∣
∣ = 1.

3. The set P has the linearly independent rational cone property.
�
Because of Theorem 9 it is worthwhile to investigate the linearly indepen-

dent rational cone property more. Intuitively one might think that this property
always holds, but it turns out that this is only the case in dimension k ≤ 3:

Theorem 10. Let k ≥ 0 and n ∈ {0, 1, . . . , k}. Then, the condition that each
S ⊆ N

k with dim (span(S)) = n has the linearly independent rational cone
property holds if and only if n ∈ {0, 1, 2, k}.
�

Thus, for k ≥ 0 and n ∈ {0, 1, . . . , k}, the condition that for all vectors c ∈ N
k

and finite sets P ⊆ N
k with dim (span(P)) = n we get a decomposition of the

set La(c, P) as in Theorem 9 is equivalent to the condition n ∈ {0, 1, 2, k}.

3.3 A Decomposition Result About Subsets of N
k

Having the decompositions of lattices from Subsect. 3.2, we now turn to a
decomposition result about arbitrary subsets of N

k. To state the result, we will
work with quasi lattices: let k ≥ 0 and S ⊆ N

k. The set S is a quasi lat-
tice if there is a y ∈ N

k, an m ≥ 0, vectors c1, c2, . . . , cm ∈ N
k, and finite

subsets P1, P2, . . . , Pm ⊆ N
k such that the set {z ∈ S | z ≥ y } is equal

to {z ∈ ⋃m
j=1 La(cj , Pj) | z ≥ y }.

We can identify a pattern of two linear sets formed by three vectors that
gives a sufficient condition for the property of a subset of N

k to not be a quasi
lattice:

78 S. Beier and M. Holzer

Lemma 11. Let k ≥ 0 and S ⊆ N
k such that there are vectors u,v,w ∈ N

k

with πk,{j}(v) > 0, for all j ∈ {1, 2, . . . , k} with L(u, {v}) ∩ S = ∅ and moreover
L(u + w, {v,w}) ⊆ S. Then, the set S is not a quasi lattice.
�

We call subsets of N
k that allow a pattern as in the above lemma anti-lattices:

let k ≥ 0 and S ⊆ N
k. If there are vectors u,v,w ∈ N

k with πk,{j}(v) > 0 for
all j ∈ {1, 2, . . . , k} so that L(u, {v}) ∩ S = ∅ and L(u + w, {v,w}) ⊆ S, the
set S is called an anti-lattice. semi-linear set is a quasi lattice if and only if it is
not an anti-lattice:

Proposition 12. Let k ≥ 0 and S ⊆ N
k be a semi-linear set. Then, the set S

is a quasi lattice if and only if S is not an anti-lattice.
�
It follows that each subset of N

k which has only a finite number of positive
Myhill-Nerode equivalence classes is a quasi lattice:

Corollary 13. For a k ≥ 0 and a subset S ⊆ N
k with |S/ ≡S | < ∞ the set S

is a quasi lattice.
�
Quasi lattices are related to the property of a subset S ⊆ N

k to be a finite
union of subsets of N

k that have only a finite number of positive Myhill-Nerode
equivalence classes, which holds exactly if S is a finite union of linear sets that
have only one positive Myhill-Nerode equivalence class:

Theorem 14. For a k ≥ 0 and a subset S ⊆ N
k the following three conditions

are equivalent:

1. There is an m ≥ 0 and subsets S1, S2, . . . , Sm ⊆ N
k such that S =

⋃m
j=1 Sj

and for each j ∈ {1, 2, . . . ,m} we have
∣
∣Sj/ ≡Sj

∣
∣ < ∞.

2. There is an m ≥ 0 and linear sets L1, L2, . . . , Lm ⊆ N
k such that S =

⋃m
j=1 Lj

and for each j ∈ {1, 2, . . . ,m} we have
∣
∣Lj/ ≡Lj

∣
∣ = 1.

3. For all subsets T ⊆ {1, 2, . . . , k} and vectors x ∈ N
|T | it holds that the set

πk,{1,2,...,k}\T ({z ∈ S | πk,T (z) = x }) is a quasi lattice.
�
In dimension k ≤ 3 we can strengthen the second condition of Theorem 14,

while we can weaken the third condition in dimension k ≤ 2:

Corollary 15. For a k ∈ {0, 1, 2, 3} and a subset S ⊆ N
k the conditions from

Theorem14 are equivalent to the following condition. There is a number m ≥ 0,
vectors c1, c2, . . . , cm ∈ N

k, and linearly independent sets P1, P2, . . . , Pm ⊆ N
k

such that it holds S =
⋃m

j=1 L(cj , Pj) and for each j ∈ {1, 2, . . . ,m} we have
∣
∣L(0, Pj)/ ≡L(0,Pj)

∣
∣ = 1. For a k ∈ {0, 1, 2} and a subset S ⊆ N

k the conditions
from Theorem14 are equivalent to the condition that S is a semi-linear set and
a quasi lattice.
�

4 Right One-Way Jumping Finite Automata
with Multiple Initial States

In this section we investigate MROWJFAs. To get results about these devices
we use results from Subsect. 3.3.

Semi-linear Lattices and Right One-Way Jumping Finite Automata 79

4.1 Results for Arbitrary Alphabets

First, some basic properties are given. Directly from the definition of
MROWJFAs we get that the unary languages in MROWJ are exactly the
unary regular languages and that MROWJ consists exactly of the finite unions
of languages from ROWJ. However, it is not clear that every language from
pMROWJ is a finite union of languages from pROWJ. From [2] we know that
a∗ and the language {w ∈ {a, b}∗ | |w|a = |w|b } are in ROWJ, but the union of
these two sets is not in ROWJ. Together with the properties of ROWJ shown
in [2] and [4], this gives us: we have REG ⊂ ROWJ ⊂ MROWJ and also
pREG ⊂ pROWJ ⊂ pMROWJ. The family MROWJ is incomparable to
DCF and to CF. Each language in MROWJ is semi-linear and contained in the
complexity classes DTIME(n2) and DSPACE(n). We get pMROWJ � CF
and pMROWJ ⊆ JFA ⊂ pCS. The letter-bounded languages contained in
MROWJ are exactly the regular letter-bounded languages.

Now, we will study the language class pMROWJ in more detail. The foun-
dation for this will be the next result.

Theorem 16. The Parikh-image of each language in pMROWJ is a quasi
lattice.
�

Because the Parikh-image of {w ∈ {a, b}∗ | |w|a �= |w|b } is an anti-lattice,
this language is not in MROWJ. Thus, we have pMROWJ ⊂ JFA and that
the family pMROWJ is incomparable to pDCF and to pCF.

To get more detailed results about pMROWJ, we define the language oper-
ation of disjoint quotient of a language L ⊆ Σ∗ with a word w ∈ Σ∗ as follows:

L/dw = { v ∈ Σ∗ | vw ∈ L,∀a ∈ Σ : (|v|a = 0 ∨ |w|a = 0) }
= (L/w) ∩ { a ∈ Σ | |w|a = 0 } ∗.

From Theorem 4 we get that the family pROWJ is closed under the oper-
ations of quotient with a word and disjoint quotient with a word. Let Σ be an
alphabet, Π ⊆ Σ, and L ⊆ Σ∗ be in MROWJ. Then, it is easy to see that L∩Π∗

is also in MROWJ. Thus, we get that if pMROWJ is closed under the opera-
tion quotient with a word, then pMROWJ is also closed under disjoint quotient
with a word.

Theorem 4 gives a characterization of the language class pROWJ in terms
of the Myhill-Nerode relation. The next Corollary is a result in the same spirit
for the language class pMROWJ. Theorems 4, 14, and 16 give us a character-
ization of all languages L for which each disjoint quotient of L with a word is
contained in pMROWJ:

Corollary 17. For an alphabet Σ and a permutation closed language L ⊆ Σ∗

the following conditions are equivalent:

1. For all w ∈ Σ∗ the language L/dw is in pMROWJ.
2. There is an n ≥ 0 and L1, L2, . . . , Ln ⊆ Σ∗ with L1, L2, . . . , Ln ∈ pROWJ

and L =
⋃n

i=1 Li.

80 S. Beier and M. Holzer

3. There is an n ≥ 0 and permutation closed languages L1, L2, . . . , Ln ⊆ Σ∗

such that L =
⋃n

i=1 Li and for all i ∈ {1, 2, . . . , n} the language Li has only
a finite number of positive Myhill-Nerode equivalence classes.

4. There is an m ≥ 0 and linear sets L1, L2, . . . , Lm ⊆ N
|Σ| such that ψ(L) =⋃m

j=1 Lj and for each j ∈ {1, 2, . . . ,m} we have
∣
∣Lj/ ≡Lj

∣
∣ = 1.

5. For all subsets T ⊆ {1, 2, . . . , |Σ|} and vectors x ∈ N
|T | it holds that the set

π|Σ|,{1,2,...,|Σ|}\T

({z ∈ ψ(L) | π|Σ|,T (z) = x })
is a quasi lattice.
�

For ternary alphabets we can weaken the first condition of the previous corol-
lary, by the fact that the family JFA is closed under the operation of disjoint
quotient, and strengthen its fourth condition by Corollary 15:

Corollary 18. For an alphabet Σ with |Σ| = 3 and a permutation closed lan-
guage L ⊆ Σ∗ the following two conditions are equivalent:

1. For all unary w ∈ Σ∗ the language L/dw is in pMROWJ.
2. There is a number m ≥ 0, vectors c1, c2, . . . , cm ∈ N

3, and linearly indepen-
dent sets P1, P2, . . . , Pm ⊆ N

3 such that ψ(L) =
⋃m

j=1 L(cj , Pj) and for each
j ∈ {1, 2, . . . ,m} we have

∣
∣L(0, Pj)/ ≡L(0,Pj)

∣
∣ = 1.
�

From Theorem 4 and Corollary 17 we get that the condition that each lan-
guage from pMROWJ is a finite union of languages from pROWJ is equiva-
lent to the condition that the family pMROWJ is closed under the operation of
quotient with a word and to the condition that the family pMROWJ is closed
under the operation of disjoint quotient with a word.

Consider an alphabet Σ and a language L ⊆ Σ∗. If for all w ∈ Σ∗ the lan-
guage L/dw is in pMROWJ, then the language L is contained in the complexity
class DTIME(n), as the next result shows:

Lemma 19. Let Σ be an alphabet, n > 0, and L1, L2, . . . , Ln ⊆ Σ∗ be in
pROWJ. Then, there is a one-way (n · |Σ|)-head DFA with endmarker accept-
ing

⋃n
j=1 Li.
�

4.2 Results for Binary Alphabets

Now, we will investigate MROWJ and related language families for binary
alphabets. It turns out that for some problems we get different or stronger results
than for arbitrary alphabets. From the next theorem it follows that for binary
alphabets pCF = JFA, whereas for arbitrary alphabets it holds pCF ⊂ JFA.

Theorem 20. Each permutation closed semi-linear language over a binary
alphabet is accepted by a counter automaton.
�

For binary alphabets we have pROWJ ⊂ pDCF, while for arbitrary alpha-
bets pROWJ is incomparable to pDCF and to pCF:

Proposition 21. Each language over a binary alphabet in pROWJ is accepted
by a realtime deterministic counter automaton.
�

Semi-linear Lattices and Right One-Way Jumping Finite Automata 81

For the family pMROWJ we get the following results. Notice that for arbi-
trary alphabets pMROWJ and pCF are incomparable.

Corollary 22. For binary alphabets it holds that pROWJ ⊂ pMROWJ, that
pMROWJ is incomparable to pDCF, and that pMROWJ ⊂ JFA = pCF.
�

If the languages do not need to be closed under permutation, we get for
binary alphabets the same inclusion relations between ROWJ, MROWJ, and
DCF as for arbitrary alphabets:

Lemma 23. For binary alphabets ROWJ ⊂ MROWJ. The families ROWJ
and MROWJ are both incomparable to DCF over binary alphabets.
�

Theorems 4 and 16, Proposition 12, and Corollary 15 imply a characterization
of the languages in pMROWJ over a binary alphabet, which is stronger than
the statement for arbitrary alphabets in Corollary 17, because we do not need
to consider disjoint quotients of a language with a word here.

Corollary 24. Let Σ be an alphabet with |Σ| = 2 and L ⊆ Σ∗ be a permutation
closed language. Then, the following conditions are equivalent:

1. Language L is in pMROWJ.
2. There is an n ≥ 0 and L1, L2, . . . , Ln ⊆ Σ∗ with L1, L2, . . . , Ln ∈ pROWJ

and L =
⋃n

i=1 Li.
3. There is an n ≥ 0 and permutation closed languages L1, L2, . . . , Ln ⊆ Σ∗

such that L =
⋃n

i=1 Li and for all i ∈ {1, 2, . . . , n} the language Li has only
a finite number of positive Myhill-Nerode equivalence classes.

4. There is a number m ≥ 0, vectors c1, c2, . . . , cm ∈ N
2, and linearly indepen-

dent sets P1, P2, . . . , Pm ⊆ N
2 such that ψ(L) =

⋃m
j=1 L(cj , Pj) and for each

j ∈ {1, 2, . . . ,m} we have
∣
∣L(0, Pj)/ ≡L(0,Pj)

∣
∣ = 1.

5. The Parikh-image of L is a semi-linear set and a quasi lattice.
6. The Parikh-image of L is a semi-linear set and not an anti-lattice.
�

From Corollary 24 it follows that each language from pMROWJ over a
binary alphabet is a finite union of permutation closed languages accepted by a
realtime deterministic counter automaton.

5 Conclusions

We have investigated ROWJFAs with multiple initial states and showed inclusion
and incomparability results of the induced language family by using results on
semi-linear sets and generalizations thereof. In order to complete the picture of
these new language family it remains to study closure properties and decision
problems for these devices and moreover to investigate nondeterministic variants
of ROWJFAs in general.

82 S. Beier and M. Holzer

References

1. Beier, S., Holzer, M.: Decidability of right one-way jumping finite automata. In:
Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 109–120. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 9

2. Beier, S., Holzer, M.: Properties of right one-way jumping finite automata. In:
Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 11–23.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3 2

3. Beier, S., Holzer, M., Kutrib, M.: On the descriptional complexity of operations
on semilinear sets. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, G. (eds.) AFL 2017.
EPTCS, vol. 252, pp. 41–55. Debrecen, Hungary (2017). https://doi.org/10.4204/
EPTCS.252.8

4. Chigahara, H., Fazekas, S., Yamamura, A.: One-way jumping finite automata.
Int. J. Found. Comput. Sci. 27(3), 391–405 (2016). https://doi.org/10.1142/
S0129054116400165

5. Chistikov, D., Haase, C.: The taming of the semi-linear set. In: Chatzigiannakis,
I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol.
55, pp. 128:1–128:13 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.128

6. Conway, J., Horton, S., Neil, J.A.: Sphere Packings, Lattices and Groups,
Grundlehren der Mathematischen Wissenschaften, vol. 290, 3rd edn. Springer, New
York (1999). https://doi.org/10.1007/978-1-4757-6568-7

7. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9(1),
1–19 (1974). https://doi.org/10.1016/S0022-0000(74)80034-6

8. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. Am. Math.
Soc. 113, 333–368 (1964). https://doi.org/10.2307/1994067

9. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Am. Math. Soc. 17(5),
1043–1049 (1966). https://doi.org/10.1090/S0002-9939-1966-0201310-3

10. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966). https://doi.org/10.2140/pjm.1966.16.285

11. Gubeladze, J., Michalek, M.: The poset of rational cones. Pac. J. Math. 292(1),
103–115 (2018). https://doi.org/10.2140/pjm.2018.292.103

12. Haase, C., Hofman, P.: Tightening the complexity of equivalence problems for
commutative grammars. In: Ollinger, N., Vollmer, H. (eds.) STACS 2016. LIPIcs,
vol. 47, pp. 41:1–41:14 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.41

13. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012). https://doi.org/10.1142/S0129054112500244

14. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://
doi.org/10.1145/321356.321364

15. Studený, M.: Convex cones in finite-dimensional real vector spaces. Kybernetika
29(2), 180–200 (1993). http://www.kybernetika.cz/content/1993/2/180

https://doi.org/10.1007/978-3-319-98654-8_9
https://doi.org/10.1007/978-3-319-94631-3_2
https://doi.org/10.4204/EPTCS.252.8
https://doi.org/10.4204/EPTCS.252.8
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.4230/LIPIcs.ICALP.2016.128
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1016/S0022-0000(74)80034-6
https://doi.org/10.2307/1994067
https://doi.org/10.1090/S0002-9939-1966-0201310-3
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.2140/pjm.2018.292.103
https://doi.org/10.4230/LIPIcs.STACS.2016.41
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
http://www.kybernetika.cz/content/1993/2/180

Z-Automata for Compact and Direct
Representation of Unranked

Tree Languages

Johanna Björklund1, Frank Drewes1(B), and Giorgio Satta2

1 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{johanna,drewes}@cs.umu.se

2 Department of Information Engineering, University of Padua, Padua, Italy
satta@dei.unipd.it

Abstract. Unranked tree languages are valuable in natural language
processing for modelling dependency trees. We introduce a new type of
automaton for unranked tree languages, called Z-automaton, that is tai-
lored for this particular application. The Z-automaton offers a compact
form of representation, and unlike the closely related notion of stepwise
automata, does not require a binary encoding of its input. We estab-
lish an arc-factored normal form, and prove the membership problem of
Z-automata in normal form to be in O(mn), where m is the size of the
transition table of the Z-automaton and n is the size of the input tree.

1 Introduction

Unranked tree languages (UTLs) have been studied since the 60s, most notably
as a formal model for the document markup language XML [1,5]. The present
work is motivated by their use as a representation for dependency trees, a model
for natural language syntax widespread in natural language processing [7]. A
dependency tree for a sentence is, simply put, an unranked tree structure whose
nodes are the lexical items of the sentence and whose arcs represent binary gram-
matical relations such as subject, direct object, modifier, and so on; see Fig. 1 for
an example. As an alternative to the traditional phrase structure trees generated
by context-free grammars, dependency trees are more flexible in the design of
statistical syntactic models, and provide a better trade-off between expressiv-
ity and computational efficiency. Here we focus on projective dependency trees,
roughly speaking, trees whose arcs do not cross each other when drawn in the
semi-plane above the input sentence. While the analysis of phrase structure trees
by bottom-up tree automata, regular and context-free tree grammars, and tree-
adjoining grammars is standard, no similarly convenient devices are commonly
used for dependency trees. This article takes a first step in this direction.

Computer Science literature contains a number of formalisms for representing
UTLs [3,8]. The best known is probably the unranked tree automaton (UTA) of
Brüggemann-Klein, Murata, and Wood [1]. The transitions in a UTA are sim-
ilar to those in a bottom-up tree automaton, but the domain of the transition
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 83–94, 2019.
https://doi.org/10.1007/978-3-030-23679-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_7

84 J. Björklund et al.

The quick brown fox jumped over the lazy dog .

det

amod

amod nsubj

root

det

amod

prep-over

Fig. 1. The dependency analysis assigned by the Stanford parser to the sentence ‘The
quick brown fox jumped over the lazy dog.’

function consists of pairs of an input symbol and a regular language of states.
Unfortunately, as shown in [11], UTA do not yield unique minimal determinis-
tic UTA. Moreover, even when the string languages are represented by DFAs,
the minimization problem is NP-complete. Martens and Niehren [10] therefore
propose stepwise tree automata (STA) which process binarized encodings of
unranked tree automata. Bottom-up (bu-) deterministic stepwise automata have
the advantage of having a canonical form, and being more succinct than bu-
deterministic tree automata over the first-child next-sibling encoding. Nonethe-
less, stepwise automata are not natural devices for linguistic purposes, since the
binary encoding obfuscates the syntactic representation. There are also logic
formalisms for (weighted) unranked tree languages. In [4], Droste and Vogler
provide a weighted monadic second order logic for unranked trees and introduce
the notion of weighted UTA. Again, the theories of ranked and unranked tree
languages differ, this time in that weighted UTA and a syntactically restricted
weighted MSO-logic for unranked trees have the same expressive power in case
the semiring is commutative, but not in general.

As an alternative to these formalisms, we propose Z-automata. In its canoni-
cal computations, a Z-automaton visits the input tree bottom-up in an order
resembling a zed-shaped motion, alternating horizontal moves and vertical
moves. Z-automata have the same expressive power as UTA and STA. They
combine the best aspects of both: The representation is arguably as natural
as UTA, and as compact as STA. To our knowledge, Z-automata are also the
first formal device for dependency trees using latent variables. Our long-term
objective is to provide transducers that translate dependency syntactic trees
into graph-based structures, representing the semantics of the input sentence.
The use by Z-automata of rules whose left-hand sides may refer to components
at differing tree depths make the formalism more appropriate as a basis for
syntax-semantic translation, similarly to the tree transducers developed in [9].

2 Preliminaries

General Notation. The set of natural numbers is denoted by N, and N+ = N\{0}.
For n ∈ N the set {1, . . . , n} is abbreviated to [n]. In particular, [0] = ∅. The set
of all strings over a set S is written S∗, ε is the empty string, S+ = S∗ \ {ε},

Z-Automata for Unranked Tree Languages 85

and 2S is the powerset of S. Given a string w, we write [w] for the set of its
elements, i.e., the smallest set S such that w ∈ S∗. Given a string s and a set of
strings S, we denote by s · S the set {ss′ | s′ ∈ S}.

Trees. Let Σ be an alphabet. We define the set TΣ of (unranked) trees over Σ
as usual. It is the smallest set such that, for all f ∈ Σ and t1, . . . , tn ∈ TΣ

(n ∈ N), we have f(t1, . . . , tn) ∈ TΣ . In particular f(), which we abbreviate
by f , is in TΣ . (This is the base case of the inductive definition.)

A ranked alphabet Σ is an alphabet additionally equipped with a function
#: Σ → N. For f ∈ Σ, the value #(f) is called the rank of f . For any n ≥ 0, we
denote by Σn the set of all symbols of rank n from Σ. If Σ is ranked, then TΣ

is restricted so that f(t1, . . . , tn) ∈ TΣ only if n = #(f). Thus, in this case TΣ

becomes a set of ranked trees.
In both cases, the nodes of a tree are identified by their Gorn addresses,

which are strings in N∗
+: the root has the address ε, and if α is the address of a

node in ti then iα is the address of that node in f(t1, . . . , tn). The label of node α
in t is denoted by t(α), and the set of all nodes of t is N(t). For Σ′ ⊆ Σ, the set
of all nodes α ∈ N(t) with t(α) ∈ Σ′ is denoted by NΣ′(t). A node α ∈ N(t) is
a leaf if α1 /∈ N(t), and is internal otherwise. The size of t is |t| = |N(t)|.

We denote a subset {α1, . . . , αk} of the set of nodes of a tree t as (α1, . . . , αk)
if we wish to indicate that α1, . . . , αk are listed in lexicographic order.

Let � /∈ Σ be a special symbol. A context is a tree c ∈ TΣ∪{�} such that c con-
tains exactly one occurrence of �, and this occurrence is a leaf. Given such a con-
text and a tree t, we let c[t] denote the tree obtained from c by replacing � with t.
Formally, c[t] = t if c = �, and otherwise c[t] = f(s1, . . . , si−1, si[t], si+1, . . . , sn),
where c = f(s1, . . . , sn) and si ∈ TΣ∪{�} is the context among s1, . . . , sn. For
contexts c �= �, the notation c[t] is extended in the obvious way to c[t1, . . . , tk]
for trees t1, . . . , tk (k ∈ N). It yields the tree obtained by inserting the string
of subtrees t1, . . . , tk at the position marked by � (which is indeed a tree as we
only use it if c �= �). To be precise, if c = f(s1, . . . , sn) with n > 0 and si is the
context among s1, . . . , sn, then

c[t1, . . . , tk] =
{

f(s1, . . . , si−1, t1, . . . , tk, si+1, . . . , sn), if si = �;
f(s1, . . . , si−1, si[t1, . . . , tk], si+1, . . . , sn), otherwise.

Ranked Tree Automata. A ranked bottom-up tree automaton (TA) is a tuple
A = (Q,Σ,R, F) where Q is a finite set of states, Σ is a ranked input alphabet,
R is a finite set of transition rules, and F ⊆ Q is a set of accepting (final)
states. Each transition rule is a triple of the form f(q1, . . . , qn) → q where
q1, . . . , qn, q ∈ Q, f ∈ Σ, and #(f) = n. The TA is deterministic if all distinct
transition rules have distinct left-hand sides.

Let t ∈ TΣ∪Q. A transition rule f(q1, . . . , qn) → q is applicable to t, if t
can be written as t = c[f(q1, . . . , qn)]. If so, then there is a computation step
t →A t = c[q]. A tree t ∈ TΣ is accepted, or recognized, by A if there is a string
of computation steps t →∗

A q, for some q ∈ F . The language accepted by A,
denoted L(A), is the set of all trees in TΣ that A accepts.

86 J. Björklund et al.

3 Z-Automata

A Z-automaton is a quadruple A = (Σ,Q,R, F) consisting of

– a finite input alphabet Σ;
– a finite set Q of states which is disjoint with Σ;
– a finite set R of transition rules, each of the form s → q consisting of a

left-hand side s ∈ TΣ∪Q and a right-hand side q ∈ Q;
– a finite set F ⊆ Q of accepting states.

Let t ∈ TΣ∪Q. A transition rule s → q is applicable to t, if t can be written as
t = c[f(t1, . . . , tn)], such that s = f(t1, . . . , tk) for some k ≤ n. If so, then there
is a computation step t →A t = c[q(tk+1, . . . , tn)]. A tree t ∈ TΣ is accepted, or
recognized, by A if there is a sequence of computation steps t →∗

A q, for some
q ∈ F . The language accepted by A, denoted L(A), is the set of all trees in TΣ

that A accepts. The automaton A is deterministic if there do not exist distinct
transition rules s → q and t → p in R such that s → q is applicable to t. We note
that this condition is sufficient to guarantee that if a node n in the input tree is
processed by some rule s → q ∈ R, then there is no competing rule t → p ∈ R
that could also have been applied to process n.

Example 1. Let A = (Q,Σ,R, f), where Σ = {a, b, c}, Q =
⋃

x∈Σ{px, qx}, F =
{px | x ∈ Σ}, and R is given as follows, where x and y range over Σ:

x(y) → qx x(py) → qx

qx(y) → qx qx(py) → qx

x(x, y) → px x(px, y) → px x(x, py) → px x(px, py) → px

qx(x, y) → px qx(px, y) → px qx(x, py) → px qx(px, py) → px .

The language recognized by A is the set of all unranked trees over the alpha-
bet Σ, in which the second-to-last child of every internal node carries the same
label as the node itself.

The state px is used to mark a node originally labelled x, whose subtree
have successfully been checked. The first transition rule of the table lets us start
the processing by selecting a left-most arc between a leaf labelled y ∈ Σ and its
parent labelled x ∈ Σ, removing the leaf and turning the label x of the parent into
qx to remember its label. The second transition rule of the first line is similar,
for the recursive case where the leaf represents an already processed subtree.
The second line just steps through the children of a node labelled qx, allowing
to skip them one by one if they are leaves with labels in Σ ∪ {py | y ∈ Σ}. Line
three allows us to nondeterministically replace a node α labelled x and its two
leftmost children by px if these children are leaves and the label of the first child
matches x. Line four is similar, but for qx instead of x. Thus, these transition
rules “guess” that there are no more children to the right. Should the guess be
wrong, the automaton will not be able to complete the processing of the subtree
rooted at α, because px is a leaf wherever it occurs in a transition rule in R.

Figure 2 shows an accepting computation of A on an input tree. The compu-
tation starts by processing the right-most subtree. Intuitively, the states labelling

Z-Automata for Unranked Tree Languages 87

Fig. 2. A sample computation of the Z-automaton A of Example 1. The automaton
accepts all unranked trees over the alphabet {a, b, c}, in which every internal node has
the same label as its second-to-last child.

an internal node α, take the role of internal states in a computation of a string
automaton processing the children of α. As this subtree is well-formed with
respect to L(A) and its root is labelled by a, it is eventually labelled by pa.
At this point, the computation must also process the left subtree, before it can
continue upwards. As also this subtree is well-formed and its root is labelled a,
it eventually results in the state pa. In the final step of the computation, the
automaton replaces the remaining structure by pa, thus accepting the tree.

Using one additional state rx for each x ∈ Σ, and a new accepting state p,
an alternative set of transition rules exploits that we can turn individual input
symbols into states:

x → px x → qx

qx(py) → qx qx(px) → rx rx(py) → px rx(py) → p .

These transition rules are in fact in a particular normal form, that simplifies
many of the upcoming arguments.

88 J. Björklund et al.

Definition 1 (Arc-Factored Normal Form). Let A = (Σ,Q,R, F) be a
Z-automaton. A transition rule is in arc-factored normal form if its left-hand
side is in Σ ∪ Q(Q), and A is in arc-factored normal form if every transition
rule in R is in arc-factored normal form.

We shall now show that every Z-automaton can indeed be transformed into
arc-factored normal form. As can be expected, this makes a larger number of
states and transition rules necessary to recognize the same language. To make
this precise, let us say that the size of a transition rule r is the size of its left-hand
side, denoted by |r|. The size of A is |A| =

∑
r∈R |r|.

Theorem 1. Every Z-automaton A = (Σ,Q,R, F) can effectively be trans-
formed into a Z-automaton B in arc-factored normal form such that L(B) =
L(A) and |B| ≤ 4|A|2. If A is deterministic then |B| ≤ 4|A|.
Proof. We transform A in three steps:

In the first step, we remove transition rules of the form p → q with p, q ∈ Q.
We do this by the usual procedure: simply replace R by the set of all transition
rules t → q′ such that t → q is in R, t /∈ Q, and q →∗

A q′. Clearly, this does
not affect the set of trees accepted by A, and it increases the size of A at most
quadratically. If, however, A is deterministic, then we only need to replace t → q
by t → q′ for q →∗

A q′ where q′ is such that there is no rule q′ → q′′ in R (if
such q′ exists). As there is at most one such q′, in this case the size of A does
not increase at all.

In the second step, we add a transition rule f → qf for every symbol f ∈ Σ,
where qf is a fresh state added to Q. Furthermore, we replace f by qf in the
left-hand side of every ordinary transition rule in R of size larger than 1. Clearly,
this does not affect the language recognized by A. Of course, the introduction of
new states and transition rules can be restricted to those symbols which actually
occur in a left-hand side, which means that at most |A| transition rules are added.

The third and final step is slightly more technical, and easiest to describe in
an iterative manner. However, the intuition is rather straightforward: instead of
consuming an entire left-hand side s ∈ TQ in one step, the arcs are consumed
one by one, using auxiliary states.

Formally, as long as A is not in arc-factored normal form, select any transition
rule s → q such that |s| > 2. Then s has the form c[q1(q2, t1, . . . , tn)] for some
context c, states q1, q2, and trees t1, . . . , tn (n ≥ 0). We decompose the transition
rule into one that consumes q1(q2), resulting in a new state q1;2, and one that
consumes c[q1;2(t1, . . . , tn)]. Thus, the first of these transition rules is in arc-
factored normal form and the second is of size one less than the original transition
rule. Let n be the type of q1 and α its address in s (i.e., α is the address of �

in c). Then the first transition rule is q1(q2) → q1;2. The second transition rule
is c[q1;2(t1, . . . , tn)] → q.

It should be clear that this procedure of splitting the original transition
rule s → q into two does not change the language recognized by A. Moreover,∑

r∈R, |r|>2 |r| is reduced by one each time a transition rule is split in this way.

Z-Automata for Unranked Tree Languages 89

Thus, the process terminates and yields a Z-automaton in arc-factored normal
form of size ≤ 4|A|2 or, if A is deterministic, of size ≤ 4|A|.
�

Once the automaton is in arc-factored normal form, we can use the standard
powerset construction to make it deterministic.

Lemma 1. There is an algorithm that turns a Z-automaton A into a determin-
istic Z-automaton B in arc-factored normal form such that L(A) = L(B).

Proof (sketch). Let A = (Σ,Q,R, F) be a Z-automaton. Without loss of gener-
ality, we may assume that A is in arc-factored normal form. For t ∈ Σ ∪ Q(Q),
let R(t) = {q ∈ Q | (t → q) ∈ R}. We let B = (Σ, 2Q, R1 ∪ R2, F

′), where

R1 =
⋃

f∈Σ

{f → R(f)},

R2 =
⋃

P1,P2⊆Q

{P1(P2) →
⋃

p1∈P1,p2∈P2

R(p1(p2))},

and F ′ = {P ⊆ Q | P ∩ F �= ∅}. Clearly, B is in arc-factored normal form, and
hence also deterministic because transition rules in arc-factored normal form
violate the determinism requirement only if their left-hand sides are equal.

It is furthermore straightforward to verify that A and B are language equiv-
alent, which completes the proof sketch.
�

Naturally, the determinisation according to the previous lemma may take
exponential time, simply because the size of the output Z-automaton B has
exponentially many states.

4 Equivalence to Stepwise Tree Automata

As we shall see, Z-automata accept the same family of unranked regular tree
languages as unranked tree automata [1] and stepwise automata [2]. The latter
operates on binary encodings of the input tree. This encoding makes use of
an auxiliary symbol @, used as a binary operator over trees, that extends the
tree t1 in its first argument by adding the tree t2 in its second argument as the
right-most direct child of the root of t1. A sample encoding is shown in Fig. 3.

Definition 2 (Binary Encoding). Given an (unranked) alphabet Σ, we
denote by Σ@ the alphabet Σ ∪ {@}, viewed as a ranked alphabet in which the
symbols in Σ are taken to have rank 0, and the symbol @ to have rank 2. For
every tree t = f(t1, . . . , tn) ∈ TΣ, the function tree@(t) : TΣ → TΣ@ is given by

tree@(t) =
{

f, if n = 0;
@(tree@(f(t1, . . . , tn−1)) , tree@(tn)), otherwise.

We extend tree@ to tree languages: for all L ⊆ TΣ, tree@(L) = {tree@(t) | t ∈ L}.

90 J. Björklund et al.

a

c

acb

a

aa

@

@

a@

c@

bc

@

@

a@

aa

a

Fig. 3. The input tree t over the alphabet {a, b, c} used in Example 1 and its binary
encoding tree@(t).

It is not difficult to check that tree@ is a bijection between TΣ and TΣ@ .
A stepwise tree automaton is simply a ranked bottom-up tree automaton

that receives as inputs binary encodings of unranked trees.

Definition 3 (Stepwise Automaton [2]). A stepwise tree automaton (STA)
M = (Q,Σ,R, F) is a ranked bottom-up tree automaton over Σ@. Consequently,
every transition rule in R is of the form a → q or @(p, p′) → q where a ∈ Σ is
a symbol of rank 0, and q, p, p′ ∈ Q.

In their arc-factored normal form, Z-automata can be understood as a syn-
tactic variation of stepwise tree automata, and these in turn are bottom-up
(ranked) tree automata. This link between the devices means that Z-automata
can be firmly grounded on the well-developed theory of regular tree languages.

Definition 4 (Related Automata). A Z-automaton A = (Σ,Q,R, F) in arc-
factored normal form and an STA MA = (Q,Σ@, P,Q), are related if

– a → q ∈ P if and only if a → q ∈ R, for every a ∈ Σ and q ∈ Q, and
– @(p, p′) → q ∈ P if and only if p(p′) → q ∈ R, for every p, p′, q ∈ Q.

As can be expected, a Z-automaton and a stepwise tree automaton that are
related recognize the same language. For a given a Z-automaton or STA A with
state set Q, and a tree t, we denote by eval(A, t) = {q ∈ Q | t →∗

A q} the set of
states reached by A on input t.

Theorem 2. Let A = (Σ,Q,R, F) be a Z-automaton in arc-factored normal
form and MA = (Q,Σ@, P,Q) an STA, such that A and MA are related. Then
L(MA) = tree@(L(A)), and MA is deterministic if and only if A is.

Proof. Clearly, the automaton MA is deterministic if and only if A is. To prove
that L(MA) = tree@(L(A)), we show that eval(MA, tree@(t)) = eval(A, t) for
every tree t ∈ TΣ . We prove this by induction on the structure of the trees.
Let t = f(t1, . . . , tn) ∈ TΣ .

Z-Automata for Unranked Tree Languages 91

If q ∈ eval(A, t), then we have the following cases:

– If n = 0, then there is a transition rule f → q ∈ R, and by construction,
f → q ∈ P so q ∈ eval(MA, tree@(t)).

– If n = 1, then there is a p ∈ Q and a p′ ∈ eval(A, t1) such that f → p
and p(p′) → q ∈ R. By the induction hypothesis, eval(MA, tree@(t1)) =
eval(A, t1) and by construction, both f → p and @(p, p′) → q are in P ,
so q ∈ eval(MA, tree@(t)).

– If n > 1, then there is a p ∈ eval(A, f(t1, . . . , tn−1)) and a p′ ∈ eval(A, tn)
such that p(p′) → q ∈ R. By the induction hypothesis,

eval(MA, tree@(f(t1, . . . , tn−1))) = eval(A, f(t1, . . . , tn−1)) ,

and eval(MA, tree@(tn)) = eval(A, tn), and by construction @(p, p′) → q ∈ P ,
so again q ∈ eval(MA, tree@(t)).

The other direction is obtained by the reversed reasoning, using the same
three cases.
�

This bridge between Z-automata and STA has several immediate implica-
tions, summarised in Corollaries 1 and 2.

Corollary 1. For an unranked tree language L, the following are equivalent:

1. L is recognized by a Z-automaton.
2. L is recognized by a UTA.
3. tree@(L) is recognized by an STA.

Corollary 2. The following properties hold for Z-automata:

1. The family of tree languages accepted by Z-automata is closed under union,
intersection, and complement.

2. Deterministic Z-automata are an equally succinct representation of unranked
tree languages as deterministic STA, and exponentially more succinct than
deterministic UTA [11].

Item 2 of Corollary 2 means that given a deterministic Z-automaton A with
n states, a minimal deterministic UTA for L(A) may have O(2n) states. How-
ever, given a deterministic UTA B with m states, it is always possible to find a
deterministic Z-automaton for L(B) with O(m) states.

Theorem 3. For every Z-automaton A, there is a unique minimal deterministic
Z-automaton B in arc-factored normal form such that L(A) = L(B). If A is
deterministic, then B can be computed in time O(m log n), where m and n are
the size of the transition table and the number of states of A, respectively.

Proof. Let A = (Σ,Q,R, F) be a Z-automaton, which we may, without loss of
generality, assumed to be in arc-factored normal form. Let MA be the STA
related to A. We note that both can be viewed as ordered labelled hyper-
graphs with node set Q and hyperedge set R. A hyperedge corresponding to

92 J. Björklund et al.

r = (a → q) is labelled with a and incident with q. A hyperedge corresponding to
r = (@(p, p′) → q) or r = (p(p′) → q) is labelled with @ and incident with pp′q.
For each q ∈ F , there is an additional hyperedge labelled ‘!’ incident with q
(where ! /∈ Σ). Obviously, the hypergraph representations of A and AM are
isomorphic, and both automata are uniquely determined by the hypergraph.

Let B be the Z-automaton AN , where N is the result of minimizing the
stepwise tree automaton AM using the forward-bisimulation algorithm of [6],
which coincides with standard minimization on deterministic tree automata. For
binary trees, the time complexity of this algorithm is O(m log n). Since related
automata recognize the same language, have the same number of states, and
are either both deterministic, or both non-deterministic, we have that B is a
deterministic Z-automaton with the same number of states as AN , and such
that L(B) = L(N) = L(MA) = L(A).

Suppose that there is another deterministic Z-automaton C with strictly
fewer states than B recognizing the same language. In this case, the deterministic
stepwise tree automaton MC would be language equivalent to N , but have fewer
states. This is not possible by the correctness of the minimization algorithm
in [6]. Hence, B has a minimal number of states.

Finally assume that there is another deterministic Z-automaton C with the
same number of states as B that is, when viewed as a hypergraph, not isomorphic
to B. Then BM and CM are not isomorphic to each other, as they are isomor-
phic to B and C, respectively. This contradicts the uniqueness of the minimal
deterministic STA.

Hence, B is the unique minimal deterministic Z-automaton.
�

5 Left-to-Right Bottom-Up Derivations

The Z-automata semantics given in Sect. 3 allows transition rules to be applied
wherever they apply in an intermediate tree t. As we shall see, we can restrict
applications to the two lowest nodes along the left-most path of t, without loss
of expressive power.

Definition 5 (LRBU Derivation). Let A = (Σ,Q,R, F) be a Z-automaton
in arc-factored normal form, and let s ∈ TΣ. A computation is left-to-right-
bottom-up (LRBU) if, in every step t →A t′ of the computation, one of the
following holds. If α is the left-most leaf of t, then either

1. t(α) ∈ Σ and the transition rule is applied at node α or
2. t(α) ∈ Q and the transition rule is applied at the parent of α.

We let Llrbu(A) = {t ∈ TΣ | t →∗
A qby an LRBU computation for aq ∈ F}.

Note that, in the second case above, the transition rule applied to the parent
of α can either be of the form a → q or of the form p(p′) → q.

Theorem 4. For every Z-automaton A in arc-factored normal form, we have
L(A) = Llrbu(A).

Z-Automata for Unranked Tree Languages 93

Proof. Let A = (Σ,Q,R, F) be a Z-automaton in arc-factored normal form, and
let t ∈ TΣ . We show that A has an accepting computation on t if and only if
it has an accepting LRBU computation on t. The ‘if’ direction is trivial. The
‘only if’ direction is proved by induction on the structure of t. We argue that
every computation of A ending in a state q ∈ Q can be turned into an LRBU
computation ending in the same state.

If |t| = 1 then this is trivially true because the computation already is LRBU.
If |t| ≥ 2, then t can be obtained from two trees s, s′ ∈ TΣ by adding s′ as the
rightmost child of the root of s. Since t is accepted by A, there is an accepting
computation π of A on t. This computation, restricted to the transition rule
applications at nodes in s and s′ in the obvious way, yields subcomputations
s →∗

A p and s′ →∗
A p′, for some p, p′ ∈ Q. Since the computation accepts t, its

last step is of the form p(p′) →A q for a state q ∈ F . By the induction hypothesis,
there are LRBU computations μ and μ′ on s and s′, respectively, that accomplish
the same. We can thus construct an accepting LRBU computation on t by first
applying μ to t, then μ′ to the subtree s′ of t, and finally the transition rule
p(p′) → q to the remaining tree p(p′).
�

From Theorems 4, 5 follows:

Theorem 5. The membership problem for Z-automata in arc-factored normal
form is in O(mn), where m is the number of transition rules and n is the size
of the input tree.

Proof (Sketch). Let A = (Σ,Q,R, F) be a Z-automaton in arc-factored normal
form. To decide whether an input tree t ∈ TΣ is in L(A), the automaton is
applied to t by performing LRBU computations on t. At every step, it uses on-
the-fly subset construction to check what transition rules in R are applicable
at the last two nodes of the leftmost path of the intermediate tree. The time
needed to consume one edge of t is thus in O(|R|), and there are |t| = n edges
to consume.
�

6 Conclusion

We have introduced a new type of automaton for unranked tree languages, the
Z-automaton, and shown it to be equivalent to the UTA and STA. Z-automata
offer a more compact form of representation than UTA, and avoid the binary
encoding used by STA. We have also provided a normal form and a standard
left-to-right bottom-up (LRBU) mode of derivations that although syntactically
more restrictive, retain the expressive power of the original device.

Given the close relation between Z-automata, STA, and bottom-up ranked
tree automata, we expect the majority of the results pertaining to the latter
models to carry over. However, in some situations, the time and space complex-
ities may be affected. A further investigation in this direction is left for future
work, as is the study of logical characterizations.

94 J. Björklund et al.

Acknowledgment. We thank the reviewers for carefully reading the manuscript. In
particular, we thank one reviewer who pointed out a flaw in the original version of
Theorem 1.

References

1. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge lan-
guages over unranked alphabets: version 1. Techcial report HKUST-TCSC-2001-0,
The Hong Kong University of Science and Technology (2001). http://repository.
ust.hk/ir/Record/1783.1-738

2. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-4 8

3. Comon, H., et al.: Tree automata techniques and applications. http://www.grappa.
univ-lille3.fr/tata. Accessed 12 Oct 2007

4. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory Com-
put. Syst. 48(1), 23–47 (2011). https://doi.org/10.1007/s00224-009-9224-4

5. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984).
https://arxiv.org/abs/1509.06233

6. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization
of tree automata. Theor. Comput. Sci. 410(37), 3539–3552 (2009). https://doi.org/
10.1016/j.tcs.2009.03.022. Preliminary version. In: CIAA 2007

7. Kübler, S., McDonald, R., Nivre, J.: Dependency Parsing. Morgan and Claypool
Publishers, New York (2009). https://doi.org/10.2200/S00169ED1V01Y200901HL
T002

8. Libkin, L.: Logics for unranked trees: an overview. Log. Methods Comput. Sci.
2(3), 1–31 (2006). https://doi.org/10.2168/LMCS-2(3:2)2006

9. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down
tree transducers. SIAM J. Comput. 39(2), 410–430 (2009). https://doi.org/10.
1137/070699160

10. Martens, W., Niehren, J.: Minimizing tree automata for unranked trees. In: Bier-
man, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 232–246. Springer,
Heidelberg (2005). https://doi.org/10.1007/11601524 15

11. Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata
for unranked trees. J. Comput. System Sci. 73(4), 550–583 (2007). https://doi.org/
10.1016/j.jcss.2006.10.021

http://repository.ust.hk/ir/Record/1783.1-738
http://repository.ust.hk/ir/Record/1783.1-738
https://doi.org/10.1007/978-3-540-25979-4_8
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/s00224-009-9224-4
https://arxiv.org/abs/1509.06233
https://doi.org/10.1016/j.tcs.2009.03.022
https://doi.org/10.1016/j.tcs.2009.03.022
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.2168/LMCS-2(3:2)2006
https://doi.org/10.1137/070699160
https://doi.org/10.1137/070699160
https://doi.org/10.1007/11601524_15
https://doi.org/10.1016/j.jcss.2006.10.021
https://doi.org/10.1016/j.jcss.2006.10.021

A Benchmark Production Tool for
Regular Expressions

Angelo Borsotti1, Luca Breveglieri1(B), Stefano Crespi Reghizzi1,2,
and Angelo Morzenti1

1 Politecnico di Milano, 20133 Milan, Italy
angelo.borsotti@mail.polimi.it,

{luca.breveglieri,stefano.crespireghizzi,angelo.morzenti}@polimi.it
2 CNR-IEIIT, 20133 Milan, Italy

Abstract. We describe a new tool, named REgen, that generates reg-
ular expressions (RE) to be used as test cases, and that generates also
synthetic benchmarks for exercising and measuring the performance of
RE-based software libraries and applications. Each group of REs is ran-
domly generated and satisfies a user-specified set of constraints, such as
length, nesting depth, operator arity, repetition depth, and syntax tree
balancing. In addition to such parameters, other features are chosen by
the tool. An RE group may include REs that are ambiguous, or that
define the same regular language but differ with respect to their syn-
tactic structure. A benchmark is a collection of RE groups that have
a user-specified numerosity and distribution, together with a represen-
tative sample of texts for each RE in the collection. We present two
generation algorithms for RE groups and for benchmarks. Experimental
results are reported for a large benchmark we used to compare the per-
formance of different RE parsing algorithms. The tool REgen and the
RE benchmark are publicly available and fill a gap in supporting tools
for the development and evaluation of RE applications.

Keywords: Regular expression generation ·
Benchmark for regular expressions · Regular expression tool

1 Introduction

Regular expressions (RE) are a widely applied language definition model. Actu-
ally the term RE refers not only to the Kleene formal model, but also to pro-
gramming notations like that of the Java.regexp library, which we generically call
technical RE [2]. Many algorithms and software libraries using REs, referred to
as RE SW, continue to be developed for many purposes, e.g., string matching,
text editing, code inspection, intrusion detection, etc. Our focus is on those RE
SW that not just recognize regular sets of strings, but also assign them a struc-
ture, i.e., do parsing. Quite often, the REs in such applications are ambiguous,
therefore a string can be parsed in many different ways.
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 95–107, 2019.
https://doi.org/10.1007/978-3-030-23679-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_8

96 A. Borsotti et al.

The development and evaluation of RE SW would benefit from using large
collections of REs, but surprisingly we could not find any available one, which
we needed for measuring the performance of different RE parsing algorithms,
including our own [1]. This motivated the design and implementation of a new
tool, called REgen, to produce customizable RE collections, as well as string
samples of the corresponding regular languages. By using the tool, we synthe-
sized a large RE benchmark, described in Sect. 4, that we used for an objective
comparison of RE parsing algorithms. However, REgen is not biased towards a
specific RE SW and is planned as a general-purpose customizable tool.

Related Work. We briefly consider two research directions, and why they
could not be exploited here. First, string generation programs driven by a given
context-free (CF) grammar have been used, at least since the ’80s, to produce
input data for testing compilers, e.g., [3], and other software systems, e.g., [7].
Such generator algorithms are typically guided by simple criteria, such as the
minimal coverage criterion, ensuring that all CF rules are used to produce a
minimal set of strings. Of course, most produced strings, though syntactically
correct, are illegal input data for the SW system under test; they may help debug-
ging, but they are not intended for evaluating SW execution performance. In
practice, compiler evaluation relies on big hand-written language-specific bench-
marks, e.g., SPEC for the C language. Our tool is also driven by a CF grammar,
namely the meta-grammar of REs, but it essentially differs because REgen has a
meta-level and a terminal level. At meta-level, each output string is a generated
RE (GRE), and is used at terminal level to drive the text generation component
of REgen, which creates a set of generated texts (GT).

Second, our project objectives differ from those of more theoretical research
on RE enumeration, although enumeration algorithms may seem to address sim-
ilar requirements as our meta-language level. The RE enumeration procedure
in [5] is actually targeted at enumerating regular languages rather than REs,
thus it carefully avoids generating two equivalent REs, whereas for a tool like
ours, generating also equivalent GREs is acceptable and even desirable, e.g., to
evaluate how the structure of equivalent REs impacts on SW performance.

Paper Contributions. The design of a new tool for generating REs and the
corresponding texts raised various technical questions for which existing systems
did not offer ready solutions. Since the range of RE SW is ill-defined and open, we
decided that our tool should be customizable, so that the future users of REgen
will be able to match the features of the GRE benchmarks, with the typical
properties of the REs occurring in, say, a code inspection versus a web searching
application. For instance, the REs used in text searching typically have a very
small nesting level for the star (more generally, repetition) operator. Unfortu-
nately, we could not find any established classification of REs oriented towards
their application domains, and we had to examine the following question: how to
select a not too large set of parameters that would allow to classify REs accord-
ing to flexible empirical criteria. We started from the classical parameters such as
RE length and star (better, repetition) depth, then we added and experimented
others, later described in the paper, such as the maximal arity of an operator (or

A Benchmark Production Tool for Regular Expressions 97

and dot). Other parameters specify that certain combinations of operations are
forbidden. Another interesting structural parameter is whether the RE tree is
balanced or not; we found that it is better to separate the generation algorithms
for the two cases. Clearly, the RE parameters we have identified and included in
the current tool are just a well-thought initial model, which is open to revision
and tuning to better adjust to unanticipated use cases.

The main output of our research is the specification and implementation of
the REgen tool, which actually includes two generator levels, GRE and GT.
The GRE generator is the innovative and major component, while the GT gen-
erator is indispensable but more traditional. More precisely, the tool consists
of three parts. Part one outputs a single GRE compliant with user-specified
or default parameter values, thus, by repeated application with fixed values, it
generates a random group of GREs that fulfill identical constraints. Part two
repeatedly applies Part one, each time with stepping parameter values, and thus
outputs a random collection of GRE groups, to be called a benchmark, which
has user-specified features. Part three works on a given GRE and produces a
representative sample of GTs, with a user-specified length and numerosity.

By using REgen, a large RE benchmark has been created, and we report the
main measurements of the GREs and GTs, and the tool execution times. More-
over, we have further analyzed the GREs for the following important properties
that are not controlled by the current input parameters: the ambiguity of GREs,
and how many GREs present in the benchmark define nondisjoint languages.

The Java code of REgen and the benchmark are available at the URL http://
github.com/FLC-project/REgen, and they will hopefully serve software devel-
opers and formal language researchers.

Paper Organization. Section 2 contains the basic definitions of GREs and
their operators and abstract syntax trees, followed by the input parameters that
constrain tree shape and contents. Section 3 outlines the generation algorithms.
Section 4 presents some quantitative aspects of the benchmark generated. The
Conclusion hints to future developments.

2 Basic Definitions

The notions we use are standard in formal language theory. First, we define the
RE family to be considered. A generated RE (GRE) is a string over an alphabet
Ω = M � Σ, where set M contains the metasymbols and set Σ, called the text
alphabet, contains the terminals that may occur in a generated text (GT). The
GRE structure is better represented by an abstract syntax tree (AST). Table 1
and the examples in Fig. 1 should give a sufficient idea of the language of GREs,
denoted LGRE, and also of the ASTs. To denote a GRE we use letters such as
e, f , e1, . . . ; the empty string is ε. Notice that rule 5 in Table 1 defines the
repetition operation, which contains rules 5.1, 5.2 and 5.3 as special cases.

Definition 1 (AST). Let e ∈ LGRE , the corresponding AST, denoted eT , has
the structure and node labels specified in Table 1. ��

http://github.com/FLC-project/REgen
http://github.com/FLC-project/REgen

98 A. Borsotti et al.

Table 1. Components and rules of a GRE and the corresponding AST tree.

Rules defining GRE e Node label of the corresponding AST

1 e = ε Leaf node with label ε (empty string)

2 e = a ∈ Σ Leaf node with label a (terminal character)

3 e = e1 | e2 | . . . | ek k ≥ 2 Inner node with label “ | ” and k children

4 e = e1 · e2 · . . . · ek k ≥ 2 Inner node with label “ · ” and k children

5 e = ei,j1 0 ≤ i < j ≤ ∞ Inner node with label i, j and one child e1

5.1 e = e∗
1 same as e0, ∞

1 Inner node with label “ ∗ ” and one child e1

5.2 e = e+1 same as e1,∞1 Inner node with label “ + ” and one child e1

5.3 e = e?1 same as e0, 11 Inner node with label “ ? ” and one child e1

See the examples in Fig. 1. An internal node of an AST belongs to the types:

type =
{

non-unary

union |, concatenation ·,
unary

repetition (min . . . max)
}

As said, the iterators star “ ∗ ” and cross “ + ”, and the optionality operator
“ ? ”, are subcases of repetition nodes, with the values already shown in Table 1.

The language defined by a GRE e is denoted L (e) ⊆ Σ∗, and to prevent
confusion, its sentences are called generated texts (GT). The GREs e and f
(Fig. 1) are weakly equivalent since L (e) = L (f). Yet, since GRE f assigns to
the text a b a b a syntax tree (ST) different from the two trees assigned to the
same string by GRE e (in Fig. 1, middle right), the two GREs e and f are not
interchangeable when they are used for string matching or searching.

In Table 2 we list and describe the parameters and choices the user may enter,
to customize the collection of GREs produced by REgen; some parameters are
illustrated in Fig. 1 (bottom). The current selection of parameters tries to balance
the complication of having too many generation parameters and the flexibility
needed for tayloring GREs to specific applications.

3 The RE Generator

The goal of the RE generator is to produce a set of possibly very many GREs
that match the parameter values specified by the user or by default. This is
achieved through iteratively executing a procedure that generates random REs.
Such a procedure is designed to produce, with a very high probability, a distinct
RE at each invocation, so as to minimize the likelihood of discarding duplicates.

More precisely, the RE generator produces a set of ASTs, called a group, such
that for all ASTs in the same group, the primary parameters of Table 2 take the
same values, e.g., all ASTs are balanced or all are unbalanced. However, as it
would be detrimental that all ASTs have the same frontier length, we decided
that the number ϕ of leaves is not fixed, but that it ranges in the same interval.

A Benchmark Production Tool for Regular Expressions 99

Fig. 1. Top: GREs e and f (a and b are arbitrary terminals). Middle left: the ASTs
eT and fT of e and f . Middle right: the syntax trees in T (e) of the text a b a b, where
in the left ST the higher node “+ ” has two children, since there are two iterations.
Bottom: values of the main parameters of eT ; in the last row, the (parent, child) pairs
that do not occur in eT are listed as forbidden.

Thus, a group is qualified by the following parameter values. The text alpha-
bet Σ (thus its cardinality α = |Σ |) and the balance parameter β have fixed
values. The tree depth τ ranges over an interval (min and max may coincide),
and δ� has a fixed value, which specifies the interval [2 . . . δ�]; the case of δ| is
identical. In the GREs, we rule out the occurrence of immediately nested unary
operators, since they are idempotent (in an obvious sense) and it is unlikely that
any RE SW needs to discriminate between the sub-REs, say, (e)∗ and

(
(e)∗)?.

Though two ASTs in the same group have the same parameters, they may
differ for the choice of internal node types and labels. To produce a wider variety
of ASTs, the generator is repeatedly invoked with different parameter settings,
thus resulting in a set of groups, which we call a collection.

First, we describe at a high-level the RE generation algorithm, which is actu-
ally split into two parts for balanced and unbalanced trees.

100 A. Borsotti et al.

Table 2. Main GRE parameters to drive the generator.

primary parameters

text alphabet size α = |Σ |. The leaf labels of an AST are in set Σ ∪ { ε }.
frontier length ϕ ≥ 1. It is the number of AST leaves, including the ε ones.
tree depth τ ≥ 0. It is the maximal path length from AST root to frontier.
balanced or unbalanced β (boolean). It specifies whether in an AST all the

paths from root to frontier have the same length.

secondary parameters

associative-operator degree δ , δ| ≥ 2. They denote the max bounds on the
numbers of child nodes of a concatenation and a union node, respectively.
We set δ = max δ , δ| . In Fig. 1 their values are listed for each node.

repetition depth ρ ≥ 0. For a path from node to leaf, it specifies the number
of repetition nodes that occur on that path.

forbidden parent-child (relation) This binary relation in type× type specifies
the pairs of parent-child node types that must not occur in an AST.

Balanced Tree Generation Algorithm. First, we state and prove a property,
used in the algorithm, about the number of leaves in a balanced tree. In the
coming discussion, we set δ = max

(
δ�, δ|

)
.

Proposition 1 (relation between leaf number and operator degree).
Consider the root-to-leaf paths in a balanced tree. Define the (non-empty) set
{ 〈i, ni〉 | 1 ≤ i ≤ δ }, where ni ≥ 0 is the number of degree-i nodes on a given
such path; therefore, the tree depth is τ =

∑
1≤i≤δ ni. If such a set is the same on

all root-to-leaf paths, then the following relation holds for the tree leaf number:

ϕ = 1n1 · 2n2 · . . . · δ nδ =
∏

1≤i≤δ

ini

��
Proof. The proof is by induction on the tree depth τ .

Base Step. Consider the (elementary) tree with a single node, thus τ = 0 and
ϕ = 1. Then, ni = 0 for 1 ≤ i ≤ δ, and the above relation trivially holds.

Inductive Step. For any k with 1 ≤ k ≤ δ, consider k ≥ 1 trees t1, . . . , tk that
have equal depth τ ≥ 1 and the same set { 〈 i, ni 〉 | 1 ≤ i ≤ δ } of numbers
ni of degree-i nodes on any root-to-node path. By the inductive hypothesis, all
such trees have the same leaf number ϕ =

∏
1≤i≤δ ini . Build a (balanced) tree

t̂ with a new root of degree k ≥ 1 and append the trees t1, . . . , tk to this root.
For tree t̂, the set of the numbers n̂i of degree-i nodes on any root-to-node path,
i.e., { 〈 i, n̂i 〉 | 1 ≤ i ≤ δ }, is identical on all such paths, with n̂k = nk + 1

A Benchmark Production Tool for Regular Expressions 101

and n̂i = ni for every i �= k. By construction, the leaf number of t̂ is ϕ̂ = kϕ =
k ·1n1 ·. . .·δ nδ = 1n1 ·. . .·k ·k nk ·. . .·δ nδ = 1n1 ·. . .·k nk+1 ·. . .·δ nδ =

∏
1≤i≤δ i n̂i .

Thus, tree t̂ satisfies the above relation. ��
We outline the recursive procedure that builds an AST, in the top-down order:

1 Randomly generate a factorization of parameter ϕ according to Proposition 1,
i.e., generate a set of pairs 〈 node-number, degree-value 〉:
{

〈 i, ni 〉 | (1 ≤ i ≤ δ) ∧ (ni ≥ 0) ∧ (
τ =

∑

1≤i≤δ

ni

) ∧ (
ϕ =

∏

1≤i≤δ

ini
) }

(1)

2. In any order, build a child node, then recursively build the child subtrees.

As the algorithm recurs down on a root-to-leaf path, it carries over as a procedure
parameter the list of the degrees chosen for the nodes created on that path.

We discuss some special cases occurring in the preceding algorithm. Since
the range of values of the secondary parameters δ� and δ| is typically quite
restricted, for certain values of the primary parameter ϕ there may not be any
factorization (1); for instance, when ϕ = 69 = 3 × 23 and δ < 23. In such cases,
the following heuristics is applied: parameter ϕ is decreased by a few units, then
a balanced tree is built and is adjusted to the original value of ϕ by attaching
the few missing nodes to the tree bottom branches. Therefore, all the generated
ASTs are balanced and every root-to-leaf path comprises the same number of
nodes for any degree, except possibly for the two last tree levels. We note that
such adjustments are possible because an exact compliance with the parameter
values is not required for a benchmark generator. On the other hand, a formal
enumeration algorithm, e.g., [5], is subjected to much stricter requirements.

Unbalanced Tree Generation Algorithm. Unbalanced trees are also gener-
ated top-down, by means of a recursive procedure that combines the primary
parameters for the frontier length ϕ and tree depth τ , thus achieving a large vari-
ety of tree shapes. The procedure repeatedly executes the following two phases:

1. For an internal node, starting from the root, randomly elect one of the child
nodes as distinguished, which will be the root of the deepest subtree that has
the maximum number of leaves. The total leaf number N (initially N = ϕ for
the root of the whole tree) is partitioned, and a fixed fraction of leaves, equal
to

[
N
F

]
for a certain F , is assigned to such a child node, while the remaining

N − [
N
F

]
leaves are randomly distributed to the other siblings.

2. Iterate phase 1 at the next tree level. Notice that the number of leaves assigned
to the current distinguished child node decreases with the distance of the node
from the root, according to a geometric progression.

To satisfy the tree depth parameter τ , the equality F = τ
√

ϕ must hold. The
maximum node degree δ must agree with F as well, hence also with the fron-
tier length ϕ and the tree depth τ from which F derives, to ensure that the
distinguished child node is assigned a leaf number greater than all those of the
other siblings. Since the number of siblings is at most δ − 1 and in total they

102 A. Borsotti et al.

have N − [
N
F

]
leaves, for the above condition to be satisfiable, this (properly

rounded) inequality must hold: N
F >

(
N − N

F

)
/ (δ − 1). It follows δ > F . This

constraint is easily satisfied in all the practical cases. For instance, with ϕ = 100
and τ = 5, it holds F = 2.512, and the maximum node degree is constrained to
δ > 2. Therefore, all the generated ASTs have one or more root-to-leaf paths of
the desired length, and all the other paths are shorter. Moreover, the degree of
all the nodes is within the limit δ.

Fig. 2. Sample REs in two GRE groups identified by their primary parameters. The
ASTs are simplified to show only the levels and highlight the balanced (top) vs. unbal-
anced (bottom) structure.

Group Production. As said, the GREs of a group are obtained by repeatedly
invoking the random generation procedure with fixed primary parameter values.
Due to randomness, it may happen that two identical GREs are produced, and
a check is performed to avoid duplicates in the same group. We have experi-
mentally found that duplications occur in a negligible number of cases and do
not affect the generation speed. Figure 2 shows a few GREs with their ASTs,
generated for two groups identified by the listed parameter values.

In the current version of REgen, the RE generator does not have any way to
enforce that the generated RE is ambiguous or not. Such a control, if required,
is currently performed off-line by another part of the tool, see later. We have
found that a significant portion of GREs is ambiguous, typically about 60%.

A Benchmark Production Tool for Regular Expressions 103

Printing GREs as Formulas. The ASTs must be eventually converted into
a textual form suitable for the intended RE SW. We do not describe the simple
conversion, and just comment on the introduction of parentheses into a GRE.
Parentheses serve two purposes: to enforce an operator evaluation priority and,
for technical REs such as Posix, also to identify the sub-REs that have to be
matched with the source text (this use is known as capturing). When converting
an AST into a formula, REgen always prints the priority parentheses. In addi-
tion, if a sub-RE has to be “captured”, an embracing parenthesis pair is printed,
even if it is unnecessary for priority. To know when, the new boolean parameter
capturing is affixed to all the internal AST nodes.

3.1 Benchmark Production

In our setting, a (synthetic) benchmark is a large set of GREs, each one accom-
panied by a set of texts. More precisely, a benchmark is structured as one or
more collections of groups, each group being a randomly generated set of REs
that have the same user-specified primary parameters.

Since benchmarks can be generated for different and unforeseen RE SW, it
would be unwise to fix any general properties for benchmarks. The case of a
benchmark of broad interest, used to evaluate RE parsing SW, is described in
detail in Sect. 4. The benchmark comprises many groups of GREs of increasing
length, and each GRE is accompanied by a set of texts of increasing length.
The wide range of GRE lengths allowed us to measure and plot the time an
RE parsing algorithm takes to “compile” an RE, as a function of its length.
Moreover, the text parsing time depends on both the text length and the RE
length; to compare such times, our benchmark contains a large and diversified
corpus of GREs and texts.

Notice that generating a few short REs and texts is simple, but doing so for
long and significantly different REs and texts may run into time and memory
limits. The naive approach based on enumerating REs by increasing length,
and then selecting the few of them that fit the given criteria, is too slow to be
feasible. In other words, an ideal requirement for an efficient generator is that
only the REs that fit the benchmark objectives be generated, thus avoiding the
production of REs that would be later discarded. Our tool approaches such an
ideal and produces tolerably few unfit REs.

Text Generation Algorithm. Given an RE e, our tool randomly computes
one or more generated texts GT x ∈ L (e) by two simple procedures. The first
procedure has two parameters, the RE e and the length
 of the text to be
generated, and it produces just one GT x with length |x | ≈
. The second
procedure is used to generate many GTs organized into a finite collection C =
{ G1, G2, . . . , Gg } of text groups, i.e., Gi ⊂ L (e), each group containing about
the same number of texts. The length of the text increases from one group to the
next, as specified by one of the input parameters, which are the following: the
RE e, the number g of groups, the group size |Gi |, and the step s > 0. Then,
each GT group comprises GTs with approximately the following lengths:

104 A. Borsotti et al.

∀x ∈ G1 |x | ∈ [0 . . . s] ∀i ≥ 2 ∀x ∈ Gi |x | ∈ [
(i − 1) · s + 1 . . . i · s

]

In this way, a user can customize the text lengths of a GT collection and so
produce groups that include a statistically significant sample of texts within
specified length intervals. Concerning the GT generation algorithm, it suffices to
say that it operates in two phases:

1. Given a GRE e, encoded by the AST, the generator tabulates, for each subtree
corresponding to a sub-RE ej , the min and max lengths of a text in L (ej).

2. For each length
, the GTs are top-down recursively computed by visiting
their inner nodes and, for each node, by randomly partitioning the text length
and distributing the resulting parts to its child nodes; details are omitted.

Last, notice that the GT collection is neither intended nor guaranteed to cover
all the possible choices of the given RE, since REgen is not a test case generator
for verifying SW systems. However, since the GTs are randomly generated, the
benchmark can be dimensioned to be statistically significant.

4 Experimental Results

By using REgen, we have generated a large benchmark, which we needed for a
related project, where we had developed a new deterministic parsing algorithm
for ambiguous REs [1]. We wanted to objectively compare its speed against other
existing algorithms, such as the RE2 library. The few collections of REs we could
find, though too small for such a purpose, provided an initial indication of the
kind of REs to be considered for a benchmark. Since the RE parsers are not
biased towards specific uses of REs, we needed to exert them on an RE mix
covering large intervals of essentially all the parameters listed in Table 2.

Some relevant features of such a benchmark are shown in Table 3 and are
commented below. There are two collections of ten groups, one unbalanced and
the other balanced, and each group contains one hundred GREs. The group
parameters, which control the GRE generation, have the following values. The
frontier length ϕ ranges from 1 to 100, increasing by 10 in each group; the depth
τ ranges from 2 to 5; the repetition depth (in particular the star and cross
depths) is limited only by τ ; and the operator arity δ is unlimited. The fol-
lowing operator pairs are forbidden for parent-child nodes: (‘ | ’, ‘ | ’), (‘ · ’, ‘ · ’)
and (unary, unary). The text letters are taken from the alphanumeric alphabet
(62 characters). The benchmark size in terms of GREs, which is of 2, 000 REs
totalizing about 280, 000 characters, is much larger than any existing collection.

Next, we look at other properties. Through an external ambiguity detection
algorithm [1], we analyzed the GREs. In Table 3, the ambiguous row counts
the number of ambiguous GREs, with the rather surprising result that 59%
unbalanced and 67% balanced GREs are ambiguous. Of course, having a large
percentage of ambiguous REs was very desirable for evaluating the parsers.

In each collection, we also checked the presence of GREs defining the same
language, and we found almost none of them. A plausible explanation is that the

A Benchmark Production Tool for Regular Expressions 105

Table 3. Benchmark for the performance evaluation of RE parsing algorithms.

Applies to Benchmark feature Collection 1 Collection 2

Generated
regular
expression
(GRE)

Balancing Unbalanced Balanced

Total number of GREs 1, 000 1, 000

N. of groups of GREs 10 10

N. of ambiguous GREs 596 677

N. of weakly equiv. GREs 6 2

N. of overlapping GREs 544 666

N. of discarded GREs 0 486

Total GRE length 125, 165 char 154, 436 char

Gen. text (GT) Number of texts 99, 730 99, 820

Total GT length 45, 081, 981 char 45, 155, 166 char

GRE+GT CPU generation time 33 s 37 s

generated corpus, though large, is very small compared to the huge generation
space, so that the generation algorithms effectively produce random GREs. On
the other hand, the number of GREs that define non-disjoint languages is much
higher: 54% unbalanced and 66% balanced GREs define a language that overlaps
the language of another GRE in the same collection.

In the row discarded, the unbalanced generator always ends successfully,
whereas the balanced one creates 49% GREs that fail to have the required
frontier length ϕ. This is plausibly due to the length constraint imposed by
Proposition 1 for a given depth. This notwithstanding, collection generation is
fast (see below). Then, we comment the results for GTs. We wanted to plot the
execution times of different parsing algorithms on texts of length in 1 . . . 100.
Moreover, to improve measurement accuracy, the number of GTs in each length
class must be uniform and sufficiently large. Initially, this was problematic, since
the density function [8] of regular languages for most GREs is a high-order poly-
nomial or exponential. Therefore, for a given GRE, the population of shorter
GTs was often scarce. To increase the number of short texts, we gathered the
GTs of identical length coming from different GREs present in the benchmark,
thus obtaining an adequate and uniform number of GTs for all the lengths.

REgen is fast enough for a practical use. Table 3 reports the CPU time1 to
generate the benchmark, including both GREs and GTs, but excluding the time
for testing GRE ambiguity and language disjointness, performed off-line.

Based on such an experience, we anticipate that it will be easier and faster
to generate customized benchmarks for RE applications more specialized than
RE parsing. For instance, REs for text or pattern searching are typically simpler
and have a low nesting operator degree, in particular for repetition operators.

1 On an AMD Athlon dual-core processor with 2.00 GB RAM and 2.20 GHz clock.

106 A. Borsotti et al.

5 Conclusion

Since no previous work on RE generation systems was available, in order to
make a well-thought design of REgen we initially considered a wide range of
RE parameters. Then, we experimented with tool prototypes for different input
parameters, and we compared the generation times and the sensitivity of the
generated GRE corpus to various parameters. Eventually, we selected the param-
eters listed in this paper. With such a selection, REgen is capable of producing
a satisfactory variety of GREs, and is fast. Yet the current choice is by no means
final, and further experience will be important. We hope that this tool and the
benchmark will serve the scientific and technical communities.

Future Developments. The percentage of ambiguous GREs in the benchmark
is likely to be significant for some RE SW, such as those for searching, but
currently it is not an input parameter to REgen. To add it to the parameters,
we need to study how to efficiently incorporate an ambiguity test, such as [6],
into the RE generator. A different possibility would be to incorporate an NFA
generation algorithm (see [4] and its references) into REgen, and then to compute
one or more REs for the language recognized. At last, a promising parameter for
a future investigation is the RE density function [8]. By using the formal results
in that paper, one might engineer a generator to produce GREs with specified
density functions, say, polynomial. Yet the interplay between GRE density and
ambiguity remains to be clarified: in our setting, it seems more appropriate to
define for an RE a density function representing, for any length value, the number
of syntax trees, instead of the number of texts as done in [8].

References

1. Borsotti, A., Breveglieri, L., Crespi Reghizzi, S., Morzenti, A.: From ambiguous
regular expressions to deterministic parsing automata. In: Drewes, F. (ed.) CIAA
2015. LNCS, vol. 9223, pp. 35–48. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22360-5 4

2. Câmpeanu, C., Salomaa, K., Yu, S.: Regex and extended regex. In: Champarnaud,
J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 77–84. Springer, Heidel-
berg (2003). https://doi.org/10.1007/3-540-44977-9 7

3. Celentano, A., Crespi Reghizzi, S., Della Vigna, P., Ghezzi, C., Granata, G.,
Savoretti, F.: Compiler testing using a sentence generator. Softw. Pract. Exp. 10,
897–918 (1980). https://doi.org/10.1002/spe.4380101104

4. Héam, P.-C., Joly, J.-L.: On the uniform random generation of non deterministic
automata up to isomorphism. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 12

5. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In:
Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol.
3317, pp. 2–22. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30500-2 2

6. Sulzmann, M., Lu, K.Z.M.: Derivative-based diagnosis of regular expression ambi-
guity. Int. J. Found. Comput. Sci. 28(5), 543–562 (2017)

https://doi.org/10.1007/978-3-319-22360-5_4
https://doi.org/10.1007/978-3-319-22360-5_4
https://doi.org/10.1007/3-540-44977-9_7
https://doi.org/10.1002/spe.4380101104
https://doi.org/10.1007/978-3-319-22360-5_12
https://doi.org/10.1007/978-3-540-30500-2_2
https://doi.org/10.1007/978-3-540-30500-2_2

A Benchmark Production Tool for Regular Expressions 107

7. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley, Boston (2007)

8. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with
polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 494–503. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55808-
X 48

https://doi.org/10.1007/3-540-55808-X_48
https://doi.org/10.1007/3-540-55808-X_48

New Algorithms for Manipulating
Sequence BDDs

Shuhei Denzumi(B)

The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8656, Japan
denzumi@mist.i.u-tokyo.ac.jp

Abstract. Sequence binary decision diagram (SeqBDD) is a data struc-
ture to represent and manipulate sets of strings. This is a variant of zero-
suppressed binary decision diagram (ZDD) that manipulates combinato-
rial sets. Nowadays, binary decision diagrams (BDDs) and its family have
been recognized as an important data structure to manipulate discrete
structures. SeqBDD has some set manipulation operations inherited from
ZDD, but the number of the operations is not enough to deal with a wide
variety of requests in string processing area. In this paper, we propose
50 new algorithms for manipulating SeqBDDs. We divide the operations
into three categories and list up them. We also analyzed the time and
space complexities of some new algorithms.

Keywords: Manipulation algorithm · Operation ·
Sequence binary decision diagram · Data structure · Complexity

1 Introduction

Constructing indices that store sets of strings in compact space is a fundamental
problem in computer science, and have been extensively studied in the decades
[4,8–10,12,19]. Examples of compact string indices include: tries [1,9], finite
automata and transducers [10,13]. By the rapid increase of massive amounts of
sequential data such as biological sequences, natural language texts, and sensing
data stream, these compact string indices have attracted much attention and
gained more importance in many string processing applications [9,12]. In such
applications, an index not only has to compactly store sets of strings for search-
ing , but also has to efficiently manipulate them with various set operations.
For example, the most basic operations are union, intersection, difference, and
concatenation. Minimal acyclic deterministic finite automata (minimal ADFAs)
[9,10,13] are one of such index structures that fulfill the above requirements
based on finite automata theory, and have been used in many sequence process-
ing applications [15,19]. However, the algorithms to manipulate them is compli-
cated because of the multiple branching of the underlying directed acyclic graph
structure.

To overcome this problem, Loekito et al. [14] proposed sequence binary deci-
sion diagrams (SeqBDDs), which is a compact representation of finite sets of
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 108–120, 2019.
https://doi.org/10.1007/978-3-030-23679-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_9

New Algorithms for Manipulating Sequence BDDs 109

strings along with algorithms for manipulation operations. A SeqBDD is a
vertex-labeled graph structure, which resembles an acyclic DFA in binary form
(left-child, right-sibling representation [6]) with associated minimization rules
for sharing siblings as well as children that are different from ones for a mini-
mal ADFA. Due to these minimization rules, a SeqBDD can be more compact
than an equivalent ADFA [11]. Novel features of the SeqBDDs are their abilities
to share equivalent subgraphs and reuse results of intermediate computation
between different multiple SeqBDDs. These characteristics allow us to avoid
redundant generation of vertices and computation. In 2014, SeqDD, a variant
of SeqBDD, was proposed by Alhakami, Ciardo and Chrobak [2]. However, they
did not propose manipulating algorithms.

SeqBDD is a member of decision diagram family. Binary decision diagram
(BDD) [5] is proposed by Bryant to manipulate Boolean functions. There are
some studies about relationships between BDDs and Automata [7,17]. The
most fundamental operations for string sets, such as union, intersection, and
difference, are implemented by the almost same algorithms on zero-suppressed
BDD (ZDD) [18] which is a variant of BDD and manipulates sets of combi-
nations. ZDD has much more operations to manipulate sets of combinations.
Since SeqBDD can be said as a child of ZDD, it inherits some operations from
ZDD. However, it is not enough to manipulate sets of combinations because we
can define much more operations for string sets than sets of combinations due
to the differences between combinations and strings. SeqBDD did not have even
fundamental operations such as concatenation. Size of a combination is bounded
by the size of the universal set, but length of a string is not bounded by the size
of the alphabet. A combination does not have order between its elements, but a
string has order between its symbols. For example, a combination {a, b, c} equals
to {b, c, a}, {c, b, a}, and {a, b, c, b, a}, but a string abc is not equal to bca, cba,
and abcba. In addition, we can distinguish substrings such as prefixes, suffixes,
substrings, and subsequences even though they are the same as string. In this
paper, we propose 50 new operations on SeqBDD. Almost all algorithms can
be implemented as simple recursive algorithms. The collection of manipulation
operations will be useful to implement various string applications on the top of
SeqBDDs. The organization of this paper is as follows. In Sect. 2, we introduce
our notation and data structures, operations, and techniques used throughout
this paper. In Sect. 3, we propose new operations and analyze their complexities.

2 Preliminary

Let Σ = {a, b, . . .} be a countable alphabet of symbols. We assume that the
symbols of Σ are ordered by a precedence ≺Σ such as a ≺Σ b ≺Σ · · · in a
standard way. Let s = a1 · · · an, n ≥ 0, be a string over Σ. For every i = 1, . . . , n,
we denote by α[i] = ai the i-th symbol of α. We denote by |α| = n the length of
α. The empty string , a string of length zero, is denoted by ε. We denote by Σ∗

the set of all strings of length n ≥ 0. For two strings α and β, we denote the
concatenation of α and β by α · β or αβ. If ζ = αβγ for some possibly empty

110 S. Denzumi

Attribute Terminal Nonterminal
zero null zero(v)
one null one(v)
label label(v)
val value(v) null

Fig. 1. The attribute values for a ver-
tex v.

label(v)

id(v)
(value(v)=null)

Nonterminal
vertex v

0-edge 1-edge

0-terminal vertex 0

id(0)=0
(value(0)=0)

0

1-terminal vertex 1

id(1) = 1
(value(1)=1)

1 0-child
zero(v)

1-child
one(v)

Fig. 2. The 0-terminal, 1-terminal and
nonterminal vertices.

strings α, β, and γ, we refer to α, β, and γ as a prefix , factor , and suffix of ζ,
respectively. For a string ζ of length n and 1 ≤ i1 < i2 < · · · < ik ≤ n, we refer
to ζ[i1]ζ[i2] · · · ζ[ik] as a subsequence of ζ. A reverse of ζ is ζR = ζ[|ζ|] · · · ζ[1].

A language on an alphabet Σ is a set L ⊆ Σ∗ of strings on Σ. A finite lan-
guage of size m ≥ 0 is just a finite set L = {α1, . . . , αm} of m strings on Σ. A
finite language L is referred to as a string set. We define the cardinality of L by
|L| = m, the total length of L by ||L|| =

∑
α∈L |α|, and the maximal string length

of L by maxlen(L) = max{ |α| | α ∈ L }. The empty language of cardinality 0 is
denoted by ∅. For languages L,M ⊆ Σ∗, we define the following binary opera-
tions, called Boolean set operations: the union L ∪ M , the intersection L ∩ M ,
the difference L\M , the symmetric difference L ⊕ M = (L\M) ∪ (M\L), the
concatenation L · M = { αβ |α ∈ L, β ∈ M } as usual.

2.1 Sequence Binary Decision Diagrams

In this subsection, we give the SeqBDD, introduced by Loekito et al. [14], as our
graphical representation of a finite language. Then, we show its canonical form.
A vertex v in a SeqBDD is represented by a structure with the attributes id ,
label , zero, one, and value. We have two types of vertices, called nonterminal and
terminal vertices, both of which are represented by the same type of struct, but
the attribute values for a vertex v depend on its vertex type, as given in Fig. 1.
A graphical explanation of the correspondence between the attribute values and
the vertex type is given in Fig. 2.

Definition 1 (Sequence BDD) [14]. A sequence binary decision diagram (a
SeqBDD) is a multi-rooted, vertex-labeled, directed graph G = (V,E) with R ⊆ V
satisfying the following:

– V is a vertex set containing two types of vertices known as terminal and
nonterminal vertices. Each has certain attributes, id, label , zero, one, and
value. The respective attributes are shown in Fig. 1.

– There are two types of terminal vertices, called 1-terminal and 0-terminal
vertices, respectively. A SeqBDD may have at most one 0-terminal and at
most one 1-terminal: (1) A terminal vertex v has as an attribute value(v) ∈

New Algorithms for Manipulating Sequence BDDs 111

{0, 1}, indicating whether it is a 1-terminal or a 0-terminal, denoted by 1 or
0, respectively. v has an attribute label(v) = � the special null symbol � �∈ Σ,
which is larger than any symbol in Σ, i.e., c ≺Σ � for any c ∈ Σ. The equality
=Σ and the strict total order ≺Σ are defined on Σ ∪ {�}; (2) A nonterminal
vertex v has as attributes a symbol label(v) ∈ Σ called the label, and two
children, one(v) and zero(v) ∈ V , called the 1-child and 0-child. We refer to
the pair of corresponding outgoing edges as the 1-edge and 0-edge from v. We
define the attribute triple for v by triple(v) = 〈label(v), zero(v), one(v)〉. For
distinct vertices u and v, id(u) �= id(v) holds.

– We assume that the graph is acyclic in its 1- and 0-edges. That is, there
exists some partial order ≺V on vertices of V such that v ≺V zero(v) and
v ≺V one(v) for any nonterminal v.

– Furthermore, we assume that the graph must be ordered in its 0-edges, that
is, for any nonterminal vertex v, if zero(v) is also nonterminal, we must
have label(v) ≺Σ label(zero(v)), where ≺Σ is the strict total order on symbols
of Σ ∪ {�}. The graph is not necessarily ordered in its 1-edges.

– R is a set of roots. All vertices in V are reachable from at least one vertex
in R.

For any vertex v in a SeqBDD G, the subgraph rooted by v is defined as the
graph consisting of v and all its descendants. A SeqBDD is called single-rooted
if it has exactly one root, and multi-rooted otherwise. We define the size of the
graph rooted by a vertex v, denoted by |v|, as the number of its nonterminals
reachable from v. By definition, the graph consisting of a single terminal vertex, 0
or 1, is a SeqBDD of size zero. A graph G is called single-rooted . In this paper, we
identify a single-rooted SeqBDD and its root vertex name. Multi-rooted graphs
are useful in the shared SeqBDD environment described in Subsect. 2.2.

Now, we give the semantics of a SeqBDD.

Definition 2 (The Language Represented by a Single-Rooted Seq
BDD). In a single-rooted SeqBDD G, a vertex v in G denotes a finite language
LG(v) on Σ defined recursively as:

1. If v is a terminal vertex, LG(v) is the trivial language defined as: (i) if
value(v) = 1, LG(v) = {ε}, and (ii) if value(v) = 0, LG(v) = ∅.

2. If v is a nonterminal vertex, LG(v) is the finite language LG(v) = (label(v) ·
LG(one(v))) ∪ LG(zero(v)).

For example, the SeqBDD in Fig. 3 represents languages L(r1) = {aaba, aabc,
aac, abba, abbc, abc, acc, adc, bba, bbc, bc, cc, dc} and L(r2) = {abba, abbc,
abc, acc, adc, bbba, bbbc, bbc, bcc, bdc, cc, dc}.

We write L(v) for LG(v) if the underlying graph G is clearly understood.
Moreover, if G is a SeqBDD with the single root r ∈ R, we write L(G) for LG(r).
We say that G is a SeqBDD for L if L = L(G).

112 S. Denzumi

a a

a b b

b c

a c d

1 0

r1 r2

Fig. 3. An example of a SeqBDD in a shared environment. Nonterminal vertices are
drawn as cercles with their labels. Terminal vertices are drawn as squares with their
values. 1-edges and 0-edges are drawn as solid arrows and dotted arrows, respectively.

2.2 Shared SeqBDDs

We can use a multi-rooted SeqBDD G as a persistent data structure for storing
and manipulating a collection of more than one set of strings on an alphabet Σ.
In an environment, we can create a new subgraph by combining one or more
existing subgraphs in G in an arbitrary way. As an invariant, all subgraphs
in G are maintained as minimal. A shared SeqBDD environment is a 4-tuple
E = (G,R, uniqtable, memocache) consisting of a multi-rooted SeqBDD G with
a vertex set V , a root vertex set R, and two hash tables uniqtable and memocache,
explained below. If two tables are clearly understood from context, we identify E
with the underlying graph G by omitting tables.

The first table uniqtable, called the unique vertex table, assigns a nonterminal
vertex v = uniqtable(a, v0, v1) of G to a given triple τ = 〈a, v0, v1〉 of a symbol
and a pair of vertices in G. This table is maintained such that it is a function
from all triples τ to the nonterminal vertex v in G such that triple(v) = τ . If
such a node does not exist, uniqtable returns null . When we want to get a vertex
with a certain attribute triple 〈a, v0, v1〉, we first check whether such a vertex
already exists or not by querying the uniqtable. If such a vertex exists, we use the
vertex returned from the uniqtable. Otherwise, we create a new vertex with the
attribute triple and register it to the uniqtable. The operation Getvertex(a, v0, v1)
executes this process. Due to this process, we can avoid generating redundant
equivalent vertices. Consequently, the SeqBDD is kept minimal even though it
is multi-rooted.

The second table memocache, called the operation cache, is used for a user to
memorize the invocation pattern “op(x1, . . . , xk)” of a user-defined operation op

New Algorithms for Manipulating Sequence BDDs 113

and the associated return value u = op(v1, . . . , vk), where each vi, i = 1, . . . , n
is an argument of the operation. An argument can be a symbol, a natural
number, or an existing vertex in G. We assume that the hash tables uniqtable
and memocache are global variables in E , and initialized to the empty tables
when E is initialized.

Figure 3 shows that two SeqBDDs rooted by r1 and r2 share their equiva-
lent subgraphs. In a shared environment, we can deal with multiple SeqBDDs
in minimal form by using uniqtable, and reuse computational results of opera-
tions for some vertex when we want to execute the same operation for the same
vertex by referring memocache. For example, assume that we compute Card(r1),
Card(v) is called for each descendant of r1 during the recursive process. (Note
that |L(v)| = |L(zero(v))|+ |L(one(v))|.) If we compute Card(r2) after obtaining
the result of Card(r1), during the computation of the cardinality of r2, we need
to continue recursive calls Card(zero(v)) and Card(one(v)) only at each nonter-
minal vertex v that is a descendant of r2 but not a descendant of r1 because the
memocache remembers the result Card(v).

2.3 Operations

We view a symbolic manipulation program as executing a sequence of commands
that build up representations of languages and that determine various properties
about them. For example, suppose we wish to construct the representation of the
language computed by a data mining program. At this point, we can test various
properties of the language, such as to list some member, to list all members, and
to test some string for membership.

Here, we will present algorithms to perform basic operations on sets of strings
represented as SeqBDD. Table 1 summarizes operations of SeqBDDs. This table
contains some new operations. Rev, LRotate, and RRotate are new ones and can
be used to find palindromes and Lyndon words [16]. These basic operations can
be combined to perform a wide variety of operations on sets of strings. We can
construct a SeqBDD that represents a given language in O(||L||) time. Aoki et
al. proposed a more efficient algorithm to construct a SeqBDD representing a
set of reversed strings [3]. Our algorithms utilize techniques commonly used in
BDD and ZDD algorithms such as ordered traversal, table look-up, and vertex
encoding. As the table shows, most of the algorithms have time complexity
proportional to the size of the SeqBDDs being manipulated. Hence, as long as
the languages of interest can be represented by reasonably small SeqBDD such
that used for speech recognition [19], our algorithms are quite efficient.

These algorithms are implemented as simple recursive algorithms. Such style
of algorithms are commonly used on other decision diagrams because it has the
following nice properties:

– Speeding up by memoization: Sharing intermediate results between different
execution of operations for SeqBDDs rooted by different vertices.

114 S. Denzumi

Table 1. SeqBDD basic operations.

Name Output Time & space

complexity

0 The 0-terminal vertex O(1)

1 The 1-terminal vertex O(1)

Getvertex(a, v0, v1) A SeqBDD vertex r such that

label(r) = a, zero(r) = v0, one(v) = v1

O(1)

Build(α) A SeqBDD vertex r such that L(r) = {α} O(|α|)
Onset(u, a) A SeqBDD vertex r such that L(r) = {α|aα ∈ L(u)} O(|Σ|)
Offset(u, a) A SeqBDD vertex r such that

L(r) = {bα|bα ∈ L(u), b �= a}
O(|Σ|)

Member(u, α) α ∈ L(v)? O(|Σ||α|)
AddStr(v, α) A SeqBDD vertex r such that L(r) = L(v) ∪ {α} O(|Σ||α|)
DelStr(v, α) A SeqBDD vertex r such that L(r) = L(v)\{α} O(|Σ||α|)
Union(u, v) A SeqBDD vertex r such that L(r) = L(u) ∪ L(v) O(|u||v|)
Intersection(u, v) A SeqBDD vertex r such that L(r) = L(u) ∩ L(v) O(|u||v|)
Difference(u, v) A SeqBDD vertex r such that L(r) = L(u)\L(v) O(|u||v|)
SymDiff(u, v) A SeqBDD vertex r such that L(r) = L(u) ⊕ L(v) O(|u||v|)
Equal(u, v) L(u) = L(v)? O(1)

IsSubset(u, v) L(u) ⊆ L(v)? O(|u||v|)
Count(u) the number of nodes |u| O(|u|)
Card(u) |L(u)| O(|u|)
TotalLen(u)

∑
α∈L(u) |α| O(|u|)

MinLen(u) minα∈L(u){|α|} O(|u|)
MaxLen(u) maxα∈L(u){|α|} O(|u|)
Print1(v) Some string of L(v) O(maxlen(L(v)))

PrintAll(v) L(v) O(|L(v)|maxlen(L(v)))

Random(u) A string α ∈ L(u) chosen uniformly at random O(|u|)
All1() {a|a ∈ Σ} O(|Σ|)
Alln() A SeqBDD vertex r such that

L(r) = {a1 · · · an|a1, . . . , an ∈ Σ}
O(n|Σ|)

HeadRemove(u) {α|a ∈ Σ, aα ∈ L(u)} O(22|u|)

TailRemove(u) {α|a ∈ Σ, αa, ∈ L(u)} O(|u|)
Rev(u) A SeqBDD vertex r such that L(r) = {αR|α ∈ L(u)} N/A

LRotate(u) A SeqBDD vertex r such that

L(r) = {αa|aα ∈ L(u), a ∈ Σ} ∪ (L(u) ∩ {ε})
O(|u|2)

RRotate(u) A SeqBDD vertex r such that

L(r) = {aα|αa ∈ L(u), a ∈ Σ} ∪ (L(u) ∩ {ε})
N/A

– Easy implementation: From a long history of research of automata, we can
find a more efficient algorithm for each operation. However, implementing
the best algorithms is generally difficult. Simple algorithms are valuable to
make libraries in order to accept various requests for manipulation on sets of
strings.

New Algorithms for Manipulating Sequence BDDs 115

Therefore, implementing various operations in a simple recursive manner is
important to obtain the above properties even though there are more efficient
problem-specific algorithms.

3 SeqBDD Manipulation Operations

In this section, we list up new SeqBDD operations. We categorize the algorithms
into the following three groups:

– Combination: Combine multiple SeqBDDs.
– Enumeration: Enumerate all strings that satisfy some condition.
– Retrieval: Retrieve strings which satisfy some conditions from a given set.

All of the following algorithms use uniqtable and memocache as global vari-
ables. We can define operations not included in the following tables, but we only
consider operations that we can provide their algorithms.

3.1 Combination Operations

Combination operations are listed in Table 2. Basic Boolean set operations are
in the table of basic operations. Concat, OverlapConcat, LDiv, RDiv, CDiv, LRem,
RRem, and CRem are algebraic operations. These operations can be used to
construct SeqBDDs for given regular languages and decompose SeqBDDs into
several languages. LExistDiv, RExistDiv, CExistDiv, LExistRem, RExistRem, and
CExistRem is variants of LDiv, RDiv, CDiv, LRem, RRem, and CRem that can
be obtained by switching the quantifiers from ∀ to ∃ in the definition of oper-
ations. PrefAssign, SuffAssign, and FactAssign construct SeqBDDs by replacing
prefixes, suffixes, and factors of L(u) that is included in L(v) by the language
L(w), respectively. Separate computes all factors of L(u) that can be obtained
by considering strings in L(v) as delimiters of strings in L(u).

3.2 Enumeration Operations

Enumeration operations are listed in Table 3. For given a string α ∈ Σ∗, we define
Prefix(α) is the set of all prefixes of α, Suffix(α) is the set of all suffixes of
α, Factor(α) is the set of all factors of α, and Subseq(α) is the set of all subse-
quence of α. Also, we define PropPrefix(α) = Prefix(α)\{α}, PropSuffix(α)
= Suffix(α)\{α}, PropFactor(α) = Factor(α)\{α}, and PropSubseq(α) =
Subseq(α)\{α}. We use “?” as a wild card in the algorithm HammDistWild and
EditDistWild. Pref, Suff, Fact, Subseq. PropPref, PropSuff, PropFact, PropSubseq
construct SeqBDDs that can be used as indices. HammDist, EditDist, HammDis-
tWild. EditDistWild are applied to approximate indices and matching problems.
These algorithms are useful to generate all candidates to be processed explicitly.

116 S. Denzumi

Table 2. SeqBDD combination operations.

Name Output Time & space complexity

Concat(u, v) A SeqBDD vertex r such that

L(r) = {αβ|α ∈ L(u), β ∈ L(v)}
O(|u|222|v|)

OverlapConcati,j,k (u, v) A SeqBDD vertex r such that

L(r) = {αβγ|αβ ∈ L(u), βγ ∈ L(v),

|α| ≥ i, |β| ≥ j, |γ| ≥ k}

N/A

LDiv(u, v) A SeqBDD vertex r such that

L(r) = {γ|∀β ∈ L(v), βγ ∈ L(u)}
O(|v|22|u|)

RDiv(u, v) A SeqBDD vertex r such that

L(r) = {α|∀β ∈ L(v), αβ ∈ L(u)}
O(|u||v|)

CDiv(u, v) A SeqBDD vertex r such that

L(r) = {αγ|∀β ∈ L(v), αβγ ∈ L(u)}
O(22|u||v|)

LRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), ∃β ∈ L(v), ζ �= βγ, ∀γ ∈ Σ∗}

O(|u||v|322|u|)

RRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), ∃β ∈ L(v), ζ �= αβ, ∀α ∈ Σ∗}

O(|u||v|22|u|)

CRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), ∃β ∈ L(v), ζ �= αβγ, ∀α, γ ∈ Σ∗}

N/A

LExistDiv(u, v) A SeqBDD vertex r such that

L(r) = {γ|∃β ∈ L(v), βγ ∈ L(u)}
O(|v|22|u|)

RExistDiv(u, v) A SeqBDD vertex r such that

L(r) = {α|∃β ∈ L(v), αβ ∈ L(u)}
O(|u||v|)

CExistDiv(u, v) A SeqBDD vertex r such that

L(r) = {α0 · · · αn|∃β1, . . . , βn ∈
L(v), α0β1α1 · · · βnαn ∈ L(u),

L(v) ∩ Factor(αi) = ∅, i = 0, . . . , n}

N/A

LExistRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), β ∈ L(v), ζ �= βγ, ∀γ ∈ Σ∗}

O(|v|22|u|)

RExistRem(u, v) A SeqBDD vertex r such that L(r) = {ζ|ζ ∈
L(u), β ∈ L(v), ζ �= αβ, ∀α ∈ Σ∗}

O(|u||v|)

CExistRem(u, v) A SeqBDD vertex r such that

L(r) = {ζ|ζ ∈ L(u), β ∈ L(v), β �∈ Factor(ζ)}
N/A

PrefAssign(u, v, w) A SeqBDD vertex r such that

L(r) = {ζγ|∃β ∈ L(v), βγ ∈ L(u), ζ ∈ L(w), or

β ∈ L(v), ζγ ∈ L(u), β �∈ Prefix(ζγ)}

O(|v|22|u||w|)

SuffAssign(u, v, w) A SeqBDD vertex r such that

L(r) = {αζ|∃β ∈ L(v), αβ ∈ L(u), ζ ∈ L(w), or

β ∈ L(v), αζ ∈ L(u), β �∈ Suffix(αζ)}

O(|v|22|u||w|)

FactAssign(u, v, w) A SeqBDD vertex r such that

L(r) = {α0ζα1 · · · ζαn|(∃β1, . . . , βn ∈ L(v),

α0β1α1 · · · βnαn ∈ L(u), L(v) ∩ Factor(αi) =

∅, i = 0, . . . , n, ζ1, . . . , ζn ∈ L(w)), or

(β ∈ L(v), α0 ∈ L(u), β �∈ Factor(α0))}

O(|v|22|u||w|)

Separate(u, v) A SeqBDD vertex r such that

L(r) = {αi|∃β1, . . . , βn ∈
L(v), α0β1α1 · · · βnαn ∈ L(u),

L(v) ∩ Factor(αi) = ∅, i = 0, . . . , n

α0 ∈ L(u), β ∈ L(v), β �∈ Factor(α0), i = 0}.

N/A

New Algorithms for Manipulating Sequence BDDs 117

Table 3. SeqBDD enumeration operations.

Name Output Time & space
complexity

Pref(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Prefix(α).

O(|u|)

Suff(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Suffix(α).

O(|u|2)

Fact(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Factor(α).

O(|u|2)

Subseq(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) Subseq(α).

O(22|u|)

PropPref(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropPrefix(α).

O(|u|)

PropSuff(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropSuffix(α).

O(|u|2)

PropFact(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropFactor(α).

O(|u|2)

PropSubseq(u) A SeqBDD vertex r such that
L(r) =

⋃
α∈L(u) PropSubseq(α).

O(22|u|)

HammDist(u, d) A SeqBDD vertex r consists of strings
within Hamming distance d from α ∈ L(u).

N/A

EditDist(u, d) A SeqBDD vertex r consists of strings
within edit distance d from α ∈ L(u).

N/A

HammDistWild(u, d) A SeqBDD vertex r consists of strings
within Hamming distance d from α ∈ L(u)
allowing use of wild cards.

N/A

EditDistWild(u, d) A SeqBDD vertex r consists of strings
within edit distance d from α ∈ L(u)
allowing use of wild cards.

N/A

3.3 Retrieval Operations

Retrieval operations are listed in Table 4. Shorter, Longer, Just, Shortest, and
Longest derive languages consisting of strings of desired length. ExistPref, Exist-
Suff, ExistFact, and ExistSubseq retrieve strings that have some string in L(v) as
their prefixes, suffixes, factors, and subsequences, respectively. PrefMaximal, Suff-
Maximal, FactMaximal, SubseqMaximal, PrefMinimal, SuffMinimal, FactMinimal,
and SubseqMinimal can find maximal or minimal strings among their prefixes,
suffixes, factors, and subsequences, respectively.

3.4 Complexity Analyses

In this subsection, we describe how the complexities in the above tables are cal-
culated. For basic set operations such as Union, Intersection, and Difference for

118 S. Denzumi

Table 4. SeqBDD retrieval operations.

Name Output Time & space
complexity

Shorter(u, l) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), |α| ≤ l}.

O(l|u|)

Longer(u, l) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), l ≤ |α|}.

O(l|u|)

Just(u, l) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), l = |α|}.

O(l|u|)

Shortest(u) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), |α| = minβ∈L(u){|β|}}.

O(|u|)

Longest(u) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), |α| = maxβ∈L(u){|β|}}.

O(|u|)

ExistPref(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Prefix(α)}.

O(|u||v|)

ExistSuff(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Suffix(α)}.

O(|u||v|)

ExistFact(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Factor(α)}.

O(|u||v|)

ExistSubseq(u, v) A SeqBDD vertex r such that
L(r) = {α|α ∈ L(u), ∃β ∈ L(v), β ∈ Subseq(α)}.

O(|u|22|v|)

PrefMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Prefix(β)}.

O(|u|2)

SuffMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Suffix(β)}.

O(|u|3)

FactMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Factor(β)}.

O(|u|3)

SubseqMaximal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, α �∈ Subseq(β)}.

O(|u|22|u|)

PrefMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Prefix(α)}.

O(|u|3)

SuffMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Suffix(α)}.

O(|u|3)

FactMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Factor(α)}.

O(|u|4)

SubseqMinimal(u) A SeqBDD vertex r such that
L(r) = {α|α, β ∈ L(u), α �= β, β �∈ Subseq(α)}.

O(|u|222|u|2)

ComnPref(u) A SeqBDD vertex r such that
L(r) =

⋂
α∈L(u) Prefix(α).

O(|u|)

vertices u and v, its time and space complexities are O(|u||v|) because possible
function calls with different pair of vertices are at most O(|u||v|), and function
calls with the same arguments are processed in constant time thanks to the mem-
oization technique. As a result, the size of output SeqBDD is also O(|u||v|) [11].
Consequently, if we continue Union or Intersection k times for vertices reachable
from v, the complexity becomes O(|v|k+1). Note that each vertex in the resultant

New Algorithms for Manipulating Sequence BDDs 119

SeqBDD can be written as a combination of k + 1 vertices of v’s descendants. If
the number of repetition k is not fixed, each vertex in the output SeqBDD can
be written as combination of all v’s descendants. Therefore, complexity becomes
O(22|v|) in such cases. Note that the size of output SeqBDD is O(2|v|). If each
output vertex can be written as a result of computing |v| vertices combined by j

non-commutative operations, its complexity is O(
∑|v|

i=1 ji−1i!). The complexi-
ties in the tables are obtained from the above observations. For operations with
more complicated algorithms, we could not calculate complexities and the time
& space complexity columns of such operations are N/A.

4 Conclusion

In this paper, we proposed 50 new algorithms for manipulating SeqBDDs. All
of our algorithms are written as recursive algorithms with memoization. Due to
intermediate results sharing caused by memoization technique, the total com-
putation time of multiple executions of the same operation will be faster when
dealing with multi-rooted SeqBDD in a shared environment. For future work,
we implement the algorithms proposed in this paper. The complexity analyses
can be improved. We should consider combining our algorithms with existing
problem-specific efficient algorithms. We will be able to define more operations
and give algorithms for them.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Boston (1974)

2. Alhakami, H., Ciardo, G., Chrobak, M.: Sequence decision diagrams. In: Moura,
E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 149–160. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11918-2 15

3. Aoki, H., Yamashita, S., Minato, S.: An efficient algorithm for constructing a
sequence binary decision diagram representing a set of reversed sequences. In:
Hong, T., et al. (eds.) Proceedings of 2011 IEEE International Conference on
Granular Computing, pp. 54–59. IEEE Computer Society (2011). https://doi.org/
10.1109/GRC.2011.6122567

4. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.:
The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci.
40, 31–55 (1985). https://doi.org/10.1016/0304-3975(85)90157-4

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C–35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.
1676819

6. Bubenzer, J.: Minimization of acyclic DFAs. In: Holub, J., Ždárek, J. (eds.) Pro-
ceedings of Prague Stringology Conference 2011, pp. 132–146. Czech Technical
University (2011). http://www.stringology.org/event/2011/p12.html

7. Champarnaud, J.M., Pin, J.E.: A maxmin problem on finite automata. Discrete
Appl. Math. 23(1), 91–96 (1989). https://doi.org/10.1016/0166-218X(89)90037-1

8. Crochemore, M.: Transducers and repetitions. Theoret. Comput. Sci. 45(1), 63–86
(1986). https://doi.org/10.1016/0304-3975(86)90041-1

https://doi.org/10.1007/978-3-319-11918-2_15
https://doi.org/10.1109/GRC.2011.6122567
https://doi.org/10.1109/GRC.2011.6122567
https://doi.org/10.1016/0304-3975(85)90157-4
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
http://www.stringology.org/event/2011/p12.html
https://doi.org/10.1016/0166-218X(89)90037-1
https://doi.org/10.1016/0304-3975(86)90041-1

120 S. Denzumi

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

10. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.: Incremental construction of min-
imal acyclic finite state automata. Comput. Linguist. 26(1), 3–16 (2000). https://
doi.org/10.1162/089120100561601

11. Denzumi, S., Yoshinaka, R., Arimura, H., Minato, S.: Sequence binary decision dia-
gram: minimization, relationship to acyclic automata, and complexities of Boolean
set operations. Discrete Appl. Math. 212, 61–80 (2016). https://doi.org/10.1016/
j.dam.2014.11.022

12. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)

14. Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining
frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010). https://doi.org/
10.1007/s10115-009-0252-9

15. Lucchesi, C.L., Kowaltowski, T.: Applications of finite automata representing large
vocabularies. Softw. Pract. Exp. 23(1), 15–30 (1993). https://doi.org/10.1002/spe.
4380230103

16. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215
(1954)

17. Michon, J.-F., Champarnaud, J.-M.: Automata and binary decision diagrams. In:
Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp.
178–182. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48057-9 15

18. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Dunlop, A.E. (ed.) Proceedings of 30th Design Automation Conference, pp.
272–277. ACM Press (1993). https://doi.org/10.1145/157485.164890

19. Mohri, M., Moreno, P., Weinstein, E.: Factor automata of automata and applica-
tions. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 168–179.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9 17

https://doi.org/10.1162/089120100561601
https://doi.org/10.1162/089120100561601
https://doi.org/10.1016/j.dam.2014.11.022
https://doi.org/10.1016/j.dam.2014.11.022
https://doi.org/10.1007/s10115-009-0252-9
https://doi.org/10.1007/s10115-009-0252-9
https://doi.org/10.1002/spe.4380230103
https://doi.org/10.1002/spe.4380230103
https://doi.org/10.1007/3-540-48057-9_15
https://doi.org/10.1145/157485.164890
https://doi.org/10.1007/978-3-540-76336-9_17

A Simple Extension to Finite Tree
Automata for Defining Sets of Labeled,

Connected Graphs

Akio Fujiyoshi1 and Daniel Pr̊uša2(B)

1 Department of Computer and Information Sciences, Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

akio.fujiyoshi.cs@vc.ibaraki.ac.jp
2 Faculty of Electrical Engineering, Czech Technical University,

Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic
prusapa1@fel.cvut.cz

Abstract. This paper introduces spanning tree automata (ST
automata) usable for defining sets of labeled, connected graphs. The
automata are simply obtained by extending ordinary top-down finite
tree automata for labeled, ordered trees. It is shown that ST automata
can define any finite set of labeled, connected graphs, and also some
subclasses of infinite sets of graphs that can represent the structure of
chemical molecules. Although the membership problem for ST automata
is NP-complete, an efficient software was developed which supports a
practical use of ST automata in chemoinformatics as well as in other
fields.

Keywords: Automata theory · Tree automaton · Graph automaton ·
NP-completeness · Chemoinformatics

1 Introduction

Formal grammars, finite automata and regular expressions are powerful tools for
defining sets of strings over a finite alphabet [10,11]. For defining sets of labeled,
ordered trees, we have tree grammars and finite tree automata as well [2,4,8,13].
How about for defining sets of graphs? Monadic second-order logic (MSOL) has
been studied for describing graph properties [6]. There are many studies of graph
grammars [14]. As for practical tools like context-free grammars and regular
expressions, however, there is no common idea. This paper suggests the use of
finite tree automata with a simple extension for defining sets of graphs.

Simple but powerful tools for defining a set of labeled, connected graphs has
been requested in the field of chemoinformatics [3]. Pharmaceutical companies
and research laboratories have to claim their intellectual property on chemical

A. Fujiyoshi—Supported by JSPS KAKENHI Grant Number JP18H01036.
D. Pr̊uša—Supported by the Czech Science Foundation grant 19-21198S.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 121–132, 2019.
https://doi.org/10.1007/978-3-030-23679-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_10

122 A. Fujiyoshi and D. Pr̊uša

structures of new medicine by applying for patents. Chemical structure formu-
las of molecules are labeled, connected graphs, where vertices are labeled as
the name of atoms and edges are labeled as the type of bonds. To protect the
intellectual property of new medicine, not only the exact chemical structure of
new medicine but also similar chemical structures must be explicitly claimed
in a patent application because a chemical compound with a similar chemical
structure usually has a similar chemical property. The most popular way for this
purpose is using a Markush structure. A Markush structure is a graphical dia-
gram with expressions in a natural language commonly used in patent claims,
firstly used in January, 1923. Because of the limitation of its expressive power,
the range of a Markush structure often becomes too broad and contains many
unrelated chemical compounds [15]. However, a substitutable method has not
been invented so far, and Markush structures are continuously used for almost
100 years.

This paper introduces spanning tree automata (ST automata) for defining
sets of labeled, connected graphs. ST automata are simply obtained by extend-
ing ordinary top-down finite tree automata for labeled, ordered trees. The idea
behind this extension is based on a very simple fact: “Any connected graph with
cycles becomes a tree if we break all cycles.” As shown in Fig. 1, by choosing an
edge from each cycle and inserting two virtual vertices at the middle of the edges,
a tree is obtained. We call this tree an extended spanning tree. An ST automaton
may be viewed as a finite tree automaton that accepts extended spanning trees
instead of labeled, connected graphs.

Fig. 1. Obtaining an extended spanning tree.

The goal of the paper is to demonstrate that the proposed ST automata
(defined in Sect. 3) are a practical tool which can be applied to describe and
analyse structures important for chemoinformatics and other fields. It is shown
that ST automata can define any finite set of labeled, connected graphs (Sect. 4).
The ability to define infinite sets of graphs is strengthened after introducing a
variant of ST automata working over breadth-first search spanning trees only
(Sect. 5). Although the membership problem for ST automata is NP-complete,
we were able to develop an implementation efficient enough to find subgraphs
accepted by an ST automaton in graphs induced by real data. The implementa-
tion extends the algorithm in [7] proposed for finding a spanning tree accepted

Extended Finite Tree Automata Defining Sets of Graphs 123

by a finite tree automaton in a graph of treewidth 2. A report on the newly
developed software and performed experiments is available in Sect. 6.

2 Preliminaries

A graph is an ordered pair G = (V,E), where V is a finite set of vertices, and E
is a set of unordered pairs of distinct vertices, called edges. An edge {u, v} ∈ E
is written as uv or vu. A vertex u ∈ V is adjacent to another vertex v ∈ V if
an edge uv is in E. For v ∈ V , we define N(v) = {u | u ∈ V and u is adjacent
to v}, and |N(v)| is called the degree of v.

For vertices u, v ∈ V , a path of length n ≥ 0 from u to v is a sequence of
vertices v1, . . . , vn+1 where u = v1, v = vn+1, for all 1 ≤ i ≤ n, vi is adjacent
to vi+1, and v1, v2, . . . , vn+1 are all distinct except that v1 may equal to vn+1.
The distance between u, v ∈ V in G, denoted dG(u, v), is the length of a shortest
path from u to v. A cycle is a path of positive length from v to v for some v ∈ V .
Graph G is acyclic if there is no cycle in G. Graph G is connected if there is a
path from u to v for any pair of distinct vertices u, v ∈ V .

A tree is a connected, acyclic graph. A vertex of a tree is called a node. A
rooted tree is a pair (T, r) such that T is a tree, and r is a node of T . The node r
is called the root. In a rooted tree, we assume that the edges have a natural
direction away from the root. The parent of a node v is the node adjacent to v
on the path from the root to v. Note that every node except the root has a
unique parent. The children of a node v are the nodes whose parent is v. A node
without any children is called a leaf.

Let Σ be a finite set of vertex labels, and let Γ be a finite set of edge labels.
A vertex labeling of G is a function σ : V → Σ, and a edge labeling of G is
a function γ : E → Γ . A labeled graph over Σ and Γ is a quadruple G =
(V,E, σ, γ). In this paper, we assume every graph to be connected and labeled,
and a graph implies a labeled, connected graph unless otherwise stated. We
use letters in Roman alphabet A, a,B, b, C, c, . . . for vertex labels and numerical
digits 1, 2, 3, . . . for edge labels.

Let G = (V,E, σ, γ) be a graph over Σ and Γ , and let B ⊆ E be a subset of
edges such that T = (V,E � B) is a tree. B is called a set of non-tree edges. An
extended spanning tree of G decided by B is a tree T = (V ′, E′, σ′, γ′) over Σ
and Γ defined as follows:

– V ′ = V ∪{bu, bv | b = uv ∈ B}, where bu and bv are new vertices not included
in V , called virtual vertices for a non-tree edge b.

– E′ = (E � B) ∪ {ubu, vbv | b = uv ∈ B}.
– σ′ : V ′ → Σ is such that, for each v ∈ V , σ′(v) = σ(v), and, for each

v ∈ V ′
� V , σ′(v) is set to undefined.

– γ′ : E′ → Γ is such that, for each e ∈ E, γ′(e) = γ(e), and, for each
b = uv ∈ B, γ′(ubu) = γ′(vbu) = γ(b).

124 A. Fujiyoshi and D. Pr̊uša

Fig. 2. (1) The graph G, (2) the extended spanning tree decided by B1, and (3) the
extended spanning tree decided by B2.

Example 1. Let G = (V,E, σ, γ) be a graph over Σ = {a, b}, Δ = {1, 2, 3}, where

V ={v1, v2, v3, v4, v5, v6},

E ={v1v2, v1v4, v1v5, v2v3, v3v4, v5v6},

σ ={(v1, a), (v2, b), (v3, a), (v4, b), (v5, b), (v6, a)}, and
δ ={(v1v2, 1), (v1v4, 2), (v1v5, 3), (v2v3, 2), (v3v4, 1), (v5v6, 3)}.

For the graph G, B1 = {v1v2} and B2 = {v3v4} are two of the sets of non-tree
edges. The graph G and the extended spanning trees decided by B1 and B2 are
illustrated in Fig. 2.

3 Spanning Tree Automata for Labeled, Connected
Graphs

A spanning tree automaton is defined as an extension of the well-known nonde-
terministic top-down finite tree automaton for labeled, ordered trees [4]. Instead
of graphs, an ST automaton deals with their extended spanning trees.

3.1 Definitions

A spanning tree automaton (ST automaton) is a 6-tuple A = (Q,Σ, Γ, q0, P,R)
where:

– Q is a finite set of states,
– Σ is an alphabet of vertex labels,
– Γ is an alphabet of edge labels,
– q0 ∈ Q is the initial state,
– P is a set of unordered pairs of states, called acceptable state matchings, and
– R is a finite set of transition rules of the form

Extended Finite Tree Automata Defining Sets of Graphs 125

q(f(c1, c2, . . . , cn)) → f(q1(c1), q2(c2), . . . , qn(cn))

where n ≥ 0, f ∈ Σ, q, q1, q2, . . . , qn ∈ Q, and c1, c2, . . . , cn ∈ Γ . The num-
ber n is called the width of a transition rule. When n = 0, we write q(f) → f
instead of q(f()) → f().

Let A = (Q,Σ, Γ, q0, P,R) be an ST automaton, let G = (V,E, σ, γ) be a graph,
let T = (V ′, E′, σ′, γ′) be an extended spanning tree of G decided by a set of
non-tree edges B, and let r ∈ V be a vertex of G. A state mapping on T is a
function μ : V ′ → Q. A state mapping μ on the rooted tree (T, r) is acceptable
by A if the following conditions hold:

– μ(r) = q0, i.e., a state mapped to the root is always the initial state,
– for each node v ∈ V ′ with n (n > 0) children v1, v2, . . . , vn, if σ(v) = f ,

μ(v) = q, γ(vv1) = c1, γ(vv2) = c2, . . . , γ(vvn) = cn, and μ(v1) = q1,
μ(v2) = q2, . . . , μ(vn) = qn, then R contains the following transition rule:

q(f(c1, c2, . . . , cn)) → f(q1(c1), q2(c2), . . . , qn(cn)),

– for each leaf v ∈ V , if σ(v) = f and μ(v) = q, then R contains the following
transition rule:

q(f) → f,

– and for each b = uv ∈ B, {μ(bu), μ(bv)} ∈ P , i.e., the states mapped to the
virtual vertices for b must be in acceptable state matchings.

The graph G is accepted by A if an extended spanning tree T decided by some
set of non-tree edges B exists, a state mapping μ on T exists, a vertex r ∈ V
exists, and μ on (T, r) is acceptable by A.

The set of graphs defined by an ST automaton A is the set accepted by A.

Example 2. A = (Q,Σ, Γ, q0, P,R) is an example of an ST automaton, where
Q = {q0, q1, q2, q3}, Σ = {a, b}, Γ = {1, 2, 3}, P = {{q1, q1}, {q1, q2}}, and R
consists of transition rules:

q0(a(1, 2, 3)) → a(q1(1), q2(2), q3(3)) , q1(a(2)) → a(q2(2)) ,

q2(b(1)) → b(q1(1)) , q3(b(3)) → b(q3(3)) , q3(a) → a .

Consider the graph G and its non-tree edge set B1 in Example 1. Let G′ be
the extended spanning tree of G decided by B1. Consider the following state
mapping μ on G′:

μ ={(v1, q0), (v2, q2), (v3, q1), (v4, q2), (v5, q3), (v6, q3), (v1v2v1 , q1), (v1v2v2 , q1)} .

The state mapping μ on (G′, v1) is illustrated in Fig. 3. The graph G is accepted
by A because μ on (G′, v1) is acceptable by A. Note that the pair of states
mapped to the virtual vertices for v1v2 is {q1, q1}, and it is in P .

126 A. Fujiyoshi and D. Pr̊uša

Fig. 3. The state mapping μ on (G′, v1).

(a) (b)

Fig. 4. Chemical structural formulas of (a) benzene and (b) cycloalkanes.

3.2 Examples of Spanning Tree Automata

Example 3. We present two ST automata defining a set of chemical structural
formulas. One defines the chemical structural formula of benzene as illustrated
in Fig. 4a, and the other defines the cycloalkanes as illustrated in Fig. 4b. In
a chemical structural formula, carbon atoms are implied to be located at the
vertices of line segments, and hydrogen atoms attached to carbon atoms are
omitted.

We set Σ = {C} and Γ = {1, 2}, where the vertex label C stands for a
carbon atom, and the edge labels 1 and 2 stand for a single bond and a double
bond, respectively.

The following is an ST automaton that defines a chemical structural formula
of benzene: A = (Q,Σ, Γ, q0, P,R), where Q = {q0, q1, q2, q3, q4, q5, q6}, P =
{{q6, q6}} and R consists of transition rules:

q0(C(1, 2)) → C(q1(1), q6(2)) , q1(C(2)) → C(q2(2)) , q2(C(1)) → C(q3(1)) ,

q3(C(2)) → C(q4(2)) , q4(C(1)) → C(q5(1)) , q5(C(2)) → C(q6(2)) .

The following is an ST automaton that defines chemical structural formulae
of the cycloalkanes: A = (Q,Σ, Γ, q0, P,R), where Q = {q0, q1, q2, q3}, P =
{{q3, q3}} and R consists of transition rules:

q0(C(1, 1)) → C(q1(1), q3(1)) , q1(C(1)) → C(q2(1)) ,

q2(C(1)) → C(q2(1)) , q2(C(1)) → C(q3(1)) .

Extended Finite Tree Automata Defining Sets of Graphs 127

4 Properties of Spanning Tree Automata

Lemma 1. For any graph G there is an ST automaton A defining the set {G}.
Proof. Suppose that G = (V,E, σ, γ), a graph over Σ and Γ , is given. Let B be a
set of non-tree edges of G, and let G′ = (V ′, E′, σ′, γ′) be the extended spanning
tree of G decided by B. Choose any vertex r ∈ V for the root.

We can construct an ST automaton A = (Q,Σ, Γ, q0, P,R) as follows:

– Q = {v̂ | v ∈ V } ∪ {p̂ | p ∈ B},
– q0 = r̂,
– P = {{p̂, p̂} | p ∈ B}, and
– for each v ∈ V , R has the following transition rule:

v̂(f(c1, c2, . . . , cn)) → f(q1(c1), q2(c2), . . . , qn(cn))

where v has n children v1, v2, . . . , vn in the rooted tree (G′, r), f = σ(v), and,
for 1 ≤ i ≤ n, if vi = pv for some p = uv ∈ B, then ci = γ(uv) and qi = p̂,
otherwise ci = γ(vvi) and qi = v̂i.

An acceptable state mapping μ on (G′, r) can be obtained as follows: For
v ∈ V , μ(v) = v̂, and, for p = uv ∈ B, μ(pu) = μ(pv) = p̂.

Clearly, the ST automaton A precisely defines the set {G}. �	
Lemma 2. The class of sets of graphs accepted by ST automata is effectively
closed under union.

Proof. Let A = (Q,Σ, Γ, q0, P,R) and A′ = (Q′, Σ′, Γ ′, q′
0, P

′, R′) be ST
automata. We may assume that Q ∩ Q′ = ∅. We consider an ST automaton
A′′ = (Q′′, Σ′′, Γ ′′, q′′

0 , P ′′, R′′) defined as follows:

– Q′′ = Q ∪ Q′ ∪ {q′′
0}, where q′′

0 is a new state,
– Σ′′ = Σ ∪ Σ′,
– Γ ′′ = Γ ∪ Γ ′,
– P ′′ = P ∪ P ′, and
– R′′ = R ∪ R′ ∪ {r′′ | r ∈ R ∪ R′, q0 or q′

0 appears on the left-hand side of r,
and r′′ is obtained by replacing q0 or q′

0 on the left-hand side of r with q′′
0}.

Clearly, a graph G is accepted by A′′ if and only if G is accepted by either A
or A′. �	
Theorem 1. For any finite set of graphs, we can construct an ST automaton
that defines it.

Proof. The theorem clearly follows from Lemmas 1 and 2. �	
Because the membership problem for ST automata includes the graph iso-

morphism problem, it is at least GI-hard. Its NP-completeness is obtained by the
reduction from the Hamiltonian cycle problem with vertex degree at most 3 [9].
When a graph with degree at most 3 has a Hamiltonian cycle, (1) the graph
has no vertex of degree 0 or 1, (2) for each vertex of degree 2, both edges con-
nected to the vertex belong to the Hamiltonian cycle, and (3) for each vertex of
degree 3, two edges connected to the vertex belong to the Hamiltonian cycle but
the remaining edge does not and is adjacent to another vertex of degree 3.

128 A. Fujiyoshi and D. Pr̊uša

Theorem 2. The membership problem for ST automata is NP-complete.

Proof. Consider the ST automaton A = (Q,Σ, Γ, q0, P,R), where Q =
{q0, q1, q2}, Σ = {a}, Γ = {1}, P = {{q1, q1}, {q2, q2}} and R consists of transi-
tion rules:

q0(a(1, 1)) → a(q1(1), q1(1)) , q0(a(1, 1, 1)) → a(q1(1), q1(1), q2(1)) ,

q1(a(1)) → a(q1(1)) , q1(a(1, 1)) → a(q1(1), q2(1)) .

It is clear that A accepts a graph with degree at most 3 that has a Hamilto-
nian cycle. Since the Hamiltonian cycle problem with vertex degree at most 3 is
NP-hard, this problem is also NP-hard.

On the other hand, given a graph G, we can nondeterministically obtain a
set of non-tree edges B, an extended spanning tree G′ decided by B, a state
mapping μ on G′, a vertex r ∈ V , and check if μ on (G′, r) is acceptable by A
in polynomial time. Thus the problem is in the class NP. �	

5 Breadth-First Search Spanning Tree Automata

ST automata can define some infinite sets of graphs, like the set of chemical
structural formulas of cycloalkanes shown in Example 3. On the other hand, it
is not difficult to find infinite sets of graphs impossible for any ST automaton to
define. For example, there is no ST automaton accepting any set of graphs where
the graph maximum degree is not bounded. This might not seem too restrictive
as vertex degrees of chemical structures are usually bounded. However, there
is a more limiting restriction which comes from the observation that if an ST
automaton A accepts a graph whose number of minimum cycles is greater than
the number of acceptable state matchings of A, then some pairs of virtual vertices
are mapped in the same state matching. Consequences are demonstrated by the
following example.

Example 4. The set of chemical structural formulas for benzene and acenes,
shown in Fig. 5, cannot be defined by any ST automaton.

Fig. 5. Chemical structural formulas for benzene and acenes.

There is no limit for the number of minimum cycles of the defined graphs.
From this reason, for any ST automaton A, there is a graph G in the defined
set such that its number of minimum cycles exceeds the number of acceptable

Extended Finite Tree Automata Defining Sets of Graphs 129

state matchings of the automaton. If two pairs of virtual vertices (uvu, uvv) and
(sts, stt) are mapped to the same state matching, and u, v, s, t are all distinct,
then another graph obtained from G by removing the edges uv and st and adding
the new edges ut and vs is accepted by A. However, the newly obtained graph
is not a chemical structural formula for an acene anymore.

To handle chained structures like acenes by ST automata, we introduce a
variant of the automata working over extensions of breadth-first search (BFS, [5])
spanning trees only. A breadth-first search spanning tree automaton (BFS-ST
automaton) is a six-tuple A = (Q,Σ, Γ, q0, P,R) where the components have the
same meaning as in the case of the ST automaton defined in Subsect. 3.1.

A graph G = (V,E, δ, γ) is accepted by A if G has a BFS spanning tree T =
(V,ET) rooted in a vertex r (i.e., for all v ∈ V , it holds that dG(r, v) = dT (r, v))
such that the pair (T ′, r), where T ′ is the extended spanning tree decided by E�

ET , is accepted by A for some state mapping μ.
We give a characterization of a certain family of infinite sets of graphs

accepted by BFS-ST automata, which includes the set of graphs representing
benzene and acenes. The idea behind the family is (1) to take a word w from a
regular language, (2) to substitute graphs for symbols of w (where occurrences
of the same symbol are substituted by isomorphic graphs), and (3) to combine
neighboring graphs by merging some of their predefined pairs of vertices. A
detailed description of this construction follows.

Let Σ and Γ be finite sets of vertex and edge labels, respectively. We
say that C = (V,E, σ, γ,V +,V −) is a graph component over (Σ,Γ) if C ′ =
(V,E, σ, γ) is a labeled, connected graph over Σ, and Γ , V + and V − are
non-empty vectors of distinct elements of V , there is no edge in E connect-
ing a pair of vertices from V −, and there is an integer d ≥ 1 such that
∀u ∈ V +,∀v ∈ V − : d′

C(u, v) ∈ {d, d + 1}. An example of graph components is
given in Fig. 6.

Let L be a regular language over an alphabet Σ1. Let FIRST(L) ⊆ Σ1 be
the set of symbols that begin a word from L, and FOLLOW(L, a) ⊆ Σ1 be the
set of symbols b ∈ Σ1 for which there is a word in L in which b follows after a.

A component substitution function π is a function assigning to each symbol
of Σ1 a graph component over (Σ,Γ). Let π(a) = Ca = (Va, Ea, σa, γa,V

+
a ,V −

a)
for each a ∈ Σ1. We say π is compatible with L iff for all a ∈ Σ1, b ∈
FOLLOW(L, a), it holds that |V −

a | = |V +
b |, and, for all a ∈ FIRST(L), it holds

that |V +
a | = 1. Note that |v| denotes the dimension of a vector v.

For a π compatible with L, we define G(L, π) to be the set of graphs G(w, π)
where w = a1 . . . an, with ai ∈ Σ1, is a non-empty word from L and the graph
G(w, π) = (V,E, σ, γ) is constructed as follows. Let Ci = (Vi, Ei, σi, γi,V

+
i ,V −

i)
be a graph component isomorphic to π(ai). Assume that Vi ∩ Vj = ∅ for all
1 ≤ i < j ≤ n. Treat vectors of distinct elements as sets and define a mapping

ν :
n⋃

i=1

Vi →
n⋃

i=1

Vi �

n−1⋃

i=1

V −
i

130 A. Fujiyoshi and D. Pr̊uša

4
−3

2+
1
−

Ca

5
+ 4

3
1
+

6
−

2
−

Cb

4
+ 3

2 −
1
+

Cc

Fig. 6. Graph components Cs = (Vs, Es, σs, γs,V
+
s ,V −

s), s ∈ {a, b, c}, where it holds
that V +

a = (2), V −
a = (1, 4), V +

b = (1, 5), V −
b = (2, 6), V +

c = (1, 4) and V −
c = (2).

Vertices of the sets V +
s and V −

s are distinguished by symbols + and −, respectively.
We define γs : Es → {0, 1} where labels 0 and 1 represent single and double bonds,
respectively.

fulfilling: if v is the j-th component of V −
i , where i < n, then ν(v) equals the

j-th component of V +
i+1, otherwise ν(v) = v. Then, V =

⋃n
i=1 Vi �

⋃n−1
i=1 V −

i =
{ν(v) | v ∈ ⋃n

i=1 Vi}, E = {{ν(u), ν(v)} | {u, v} ∈ ⋃n
i=1 Ei}, and σ(ν(v)) =

σi(v), γ({ν(u), ν(v)}) = γi({u, v}) for all v ∈ Vi, {u, v} ∈ Ei, i = 1, . . . , n.

Example 5. Let L be a regular language over Σ1 = {a, b, c} defined by the regular
expression ab∗c. Let π : Σ1 → {Ca, Cb, Cc} be a component substitution function
such that π(a) = Ca, π(b) = Cb, π(c) = Cc where the graph components are
those shown in Fig. 6. Observe that π is compatible with L. Then, G(L, π) is a
set of graphs that represent benzene and acenes.

Theorem 3. For any regular language L over Σ1 and any component substitu-
tion function π : Σ1 → C, where C is a set of graph components over (Σ,Γ) and
π is compatible with L, there is a BFS-ST automaton A accepting G(L, π).

We omit the proof of this theorem because of lack of space.

6 Implementation and Experiments

For practical use of ST automata, a search software which for a given dataset of
graphs finds subgraphs accepted by an ST automaton was developed. It allows
to search for acceptable subgraphs of the maximum or minimum size. The source
code of the software, written in the C++ programming language, is available on
the web site: http://apricot.cis.ibaraki.ac.jp/CBGfinder/.

The graphset-subgraph matching algorithm used in the software is an exten-
sion of the algorithm described in [7], which was designed to find a spanning
tree accepted by a finite tree automaton in an input graph of treewidth 2. The
new algorithm was developed based on the original one with the following exten-
sions: (1) It searches for graphs defined by ST or BFS-ST automata instead of
spanning trees defined by tree automata. (2) It is optionally able to search for
subgraphs and induced subgraphs (defined by an ST or BFS-ST automaton) in
a given input graph. (3) There is no limit on the input graph treewidth.

The algorithm is dynamic programming based and works in a bottom-up
manner to construct an acceptable state mapping. Partial solutions established

http://apricot.cis.ibaraki.ac.jp/CBGfinder/

Extended Finite Tree Automata Defining Sets of Graphs 131

Fig. 7. Longest aromatic cycles detected by the search software. Three samples of
input molecules are shown on the left. All parts of the found longest aromatic cycles
are highlighted by the dashed line segments on the right.

over subgraphs are combined to reach a global solution. For a graph G = (V,E)
and an ST automaton A, the maximum number of partial solutions over a sub-
graph is T = (r · 2width · tw)tw, where tw is the treewidth of G, r is the number
of transition rules of A, and width is the maximum width of a transition rule. It
can be derived that the space complexity is O(|E| · T), and the time complexity
is O(|E|·T 2 ·log(T)). Note that these estimates are theoretical upper bounds, the
actual space consumptions and running times are typically lower due to pruning
many of the partial solutions that do not extend to larger ones.

To demonstrate a practical usage of the software, an evaluation was con-
ducted to find the longest aromatic cycle of each molecule stored in the ChEMBL
database. ChEMBL is a database of bioactive drug-like small molecules main-
tained by the European Bioinformatics Institute. 635,933 molecules are stored in
ChEMBL version 8. Among them, 87 molecules containing a fullerene structure
are excepted because their treewidth is too big. The number of atoms (bonds) of
a molecule varies from 1 (0) to 878 (895) and is 32.02 (34.46) on average. An ST
automaton defining the set of aromatic cycles was used.

As a result, among 635,846 molecules, 580,354 molecules were accepted with
largest aromatic cycles detected, and 55,492 molecules without aromatic cycles
were rejected. The evaluation was finished in 353.4 s in total (0.55 ms per item on
average). The molecule which took the longest time (0.028 s) was the rightmost
one in Fig. 7. The specification of the machine used for the experiment is as
follows: Intel core i5-5200U (2.20GHz) CPU, 8 GB RAM, and Microsoft Windows
7 (64Bit) OS.

The software can be used not only for chemoinformatics but also for various
NP-hard graph problems such as subgraph isomorphism, travelling salesman,
longest path, feedback vertex set, Steiner tree, and so on.

To demonstrate this, we briefly report on the Third Parameterized Algo-
rithms and Computational Experiments Challenge (PACE 2018) competi-
tion [12], in which the software participated in Track B. The task was to com-
pute an optimal Steiner tree of a given graph within a given time limit on the
same public environment. For this competition, a well-known speed-up tech-
nique [1] was implemented. The software correctly solved 49 out of 100 com-
petition instances, despite it is not fully optimized for this particular task (for
comparison, the best five participating systems solved 92, 77, 58, 52 and 52
instances, respectively).

132 A. Fujiyoshi and D. Pr̊uša

7 Conclusions

We introduced ST automata defining sets of labeled, connected graphs. We
demonstrated that they are suitable for detection of chemical structures in
molecules, which was confirmed by experiments. As a future work, regular
expressions for the automata should be considered. It would also be beneficial
to identify broader subclasses of sets of graphs defined by BFS-ST automata.

References

1. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008

2. Brainerd, W.S.: Tree generating regular systems. Inf. Control 14(2), 217–231
(1969). https://doi.org/10.1016/S0019-9958(69)90065-5

3. Brown, N.: Chemoinformatics-an introduction for computer scientists. ACM Com-
put. Surv. 41(2), 8:1–8:38 (2009). https://doi.org/10.1145/1459352.1459353

4. Comon, H., et al.: Tree automata techniques and applications (2007). http://tata.
gforge.inria.fr/. Accessed 12 Oct 2007

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009). http://mitpress.mit.edu/books/introduc
tion-algorithms

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of Mathematics and its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

7. Fujiyoshi, A.: A practical algorithm for the uniform membership problem of labeled
multidigraphs of tree-width 2 for spanning tree automata. Int. J. Found. Comput.
Sci. 28(5), 563–582 (2017). https://doi.org/10.1142/S012905411740007X

8. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory Com-
put. Syst. 33(1), 59–83 (2000). https://doi.org/10.1007/s002249910004

9. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-
lems. Theoret. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-
3975(76)90059-1

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

11. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University
Press, Princeton (1951)

12. PACE 2018. https://pacechallenge.org/2018/steiner-tree/
13. Rounds, W.C.: Mapping and grammars on trees. Math. Syst. Theory 4(3), 257–287

(1970). https://doi.org/10.1007/BF01695769
14. Rozenberg, G., Ehrig, H., Engels, G., Kreowski, H., Montanari, U. (eds.): Hand-

book of Graph Grammars and Computing by Graph Transformations, Volume 1–3.
World Scientific (1997–1999)

15. Sibley, J.F.: Too broad generic disclosures: a problem for all. J. Chem. Inf. Comput.
Sci. 31(1), 5–9 (1991). https://doi.org/10.1021/ci00001a002

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1145/1459352.1459353
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1142/S012905411740007X
https://doi.org/10.1007/s002249910004
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://pacechallenge.org/2018/steiner-tree/
https://doi.org/10.1007/BF01695769
https://doi.org/10.1021/ci00001a002

Composition Closure of Linear Weighted
Extended Top-Down Tree Transducers

Zoltán Fülöp1 and Andreas Maletti2(B)

1 Department of Foundations of Computer Science, University of Szeged,
Árpád tér 2, Szeged 6720, Hungary

fulop@inf.u-szeged.hu
2 Department of Mathematics and Computer Science, Universität Leipzig,

PO Box 100 920, 04009 Leipzig, Germany
maletti@informatik.uni-leipzig.de

Abstract. Linear weighted extended top-down tree transducers with
regular look-ahead and with weights from a semiring are formal mod-
els that are used in syntax-based statistical machine translation. The
composition hierarchies of some restricted versions of such weighted tree
transducers (also without regular look-ahead) are considered. In par-
ticular, combinations of the restrictions of ε-freeness (all rules consume
input), nondeletion, and strictness (all rules produce output) are consid-
ered. The composition hierarchy is shown to be finite for all but one ε-free
variant of these weighted transducers over any commutative semiring.

1 Introduction

Linear extended top-down tree transducers (l-xt) were introduced (under a dif-
ferent name) and investigated already in [1]. We present them in the framework
of synchronous grammars [3] since in syntax-based statistical machine transla-
tion these transducers are applied, and since we utilize some results of [6,14].
An l-xt M has a finite set of states and finitely many rules of the form 〈�, q, r〉,
where q is a state and the left- and right-hand side � and r are trees, which
may also contain state-labeled leaves such that each state in r also occurs in �.
Linearity requires that each state occurs at most once both in � and in r. In
particular, in ε-rules the left-hand side � and in non-strict rules the right-hand
side r is just a state. The semantics of M is defined by means of synchronous
rewriting using the derivation relation ⇒. It is defined over sentential forms,
which are triples (ξ, L, ζ) consisting of trees ξ and ζ with state-labeled leaves
and a set L of links. A link is a pair (u, v) of positions pointing to occurrences of
the same state in the trees ξ and ζ, respectively. A rule 〈�, q, r〉 can be applied to
a sentential form (ξ, L, ζ) if there is a link (u, v) ∈ L such that u and v point to
an occurrence of the state q. In this case we write (ξ, L, ζ) ⇒ (ξ′, L′, ζ ′), where

Z. Fülöp—Supported by NKFI grant K 108 448 and by grant 20391-3/2018/FEKUS-
TRAT of the Ministry of Human Capacities, Hungary.
A. Maletti—Partially supported by the DFG research training group 1763 ‘QuantLA’.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 133–145, 2019.
https://doi.org/10.1007/978-3-030-23679-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_11

134 Z. Fülöp and A. Maletti

the sentential form (ξ′, L′, ζ ′) is obtained by replacing the linked occurrences of
q in ξ and ζ by � and r, respectively. In addition, L is updated to include links
induced by occurrences of the same state in � and r. The initial sentential form
is (q0, {(ε, ε)}, q0), in which q0 is the initial state of M , and we apply derivation
steps until no occurrences of linked states remain. Any remaining (unlinked)
state occurrence in the input tree t can then be replaced by an arbitrary tree.
An instance of t is obtained by replacing all state occurrences and I(t) is the set
of all instances of t. The tree transformation induced by M consists of all pairs
(t′, u) such that (q0, {(ε, ε)}, q0) ⇒∗ (t, ∅, u) and t′ ∈ I(t). In order to increase
their expressive power, l-xt can be equipped with regular look-ahead [4], which
restricts the instances I(t) such that an unlinked occurrence of a state q can only
be replaced by an element of a given regular tree language c(q). We abbreviate
‘l-xt with regular look-ahead’ by l-xtR.

Weighted l-xtR, abbreviated by l-wxtR, are able to express quantitative prop-
erties of the tree transformations [7,13,14,16]. In an l-wxtR a weight from a
semiring K is associated to each rule, and these rule weights are multiplied in
a derivation. Provided that several derivations exist, these derivation weights
are summed up. In this manner, an l-wxtR M assigns a weight ‖M‖K(t, u) ∈ K

to each pair (t, u) of trees. It turned out that both l-wxt and l-wxtR over the
probabilistic semiring can serve as formal models of tree transformations which
are used in syntax-based statistical machine translation [10,12].

We focus on the composition closure of l-wxt and l-wxtR without ε-rules (�εl-
wxt and �εl-wxtR, respectively) and some of their restricted subclasses because
compositions of weighted tree transformations induced by them can be defined in
terms of finite sums. Our motivation is that complex systems are often specified
in terms of compositions of simpler tree transformations [17], which are easier
to develop, train, and maintain [12]. More precisely, let C be a class of weighted
tree transformations (e.g. the class of all weighted tree transformations induced
by �εl-wxtR). The composition hierarchy of C is C ⊆ C2 ⊆ C3 ⊆ · · · , where Cn

denotes the n-fold composition of C. It is either infinite (i.e., Cn
� Cn+1 for all

n) or finite (i.e., Cn = Cn+1 for some n). In the latter case, the minimal such n
is interesting since all compositions can be reduced to this length.

The additional standard restrictions we consider are strictness (‘s’), which
requires that the right-hand side r is not a single state, and nondeletion (‘n’),
which means that each state in the left-hand side � occurs also in the right-hand
side r, in both cases for each rule 〈�, q, r〉 of the �εl-wxtR. Thus, for instance
�εsl-wxtR abbreviates the expression ‘strict �εl-wxtR’. The class of all weighted
tree transformations induced by certain kind of �εl-wxtR is denoted by typeset-
ter letters so for instance �εsl-WXTR(K) stands for the set of all weighted tree
transformations computable by �εsl-wxtR over the semiring K. We consider the
composition hierarchies of the classes �εnsl-WXT(K), which is also investigated
in [15], and �εsl-WXT(K), �εsl-WXTR(K), �εl-WXTR(K), and �εl-WXT(K). As main
result we show that the composition hierarchies of these classes collapse at lev-
els 2, 2, 2, 3, and 4, respectively, for an arbitrary commutative semiring K (cf.
Theorem16). We achieve our results by lifting the results [1, Theorem 6.2] and

Composition Closure of Linear Weighted Extended Tree Transducers 135

[6, Theorems 26, 31, 33, 34], where it is shown that the corresponding hierarchies
in the unweighted cases collapse at the same levels. To this end, we decompose an
�εl-wxtR into a weighted relabeling that handles all weights and nondeterminism,
and a Boolean functional unambiguous �εl-wxtR (cf. Lemma 12). Moreover, we
show that we can compose any such relabeling to the right of any l-wxtR (cf.
Lemma 13). These two constructions together will allow us to take all �εl-wxtR in a
composition chain into a particularly simple normal form (cf. Theorem14). After
some additional technical tailoring, we can utilize the mentioned results [1,6] and
lift them to the corresponding weighted devices over any commutative semiring.

2 Preliminaries

We let N = {0, 1, 2, . . . } and [n] = {i ∈ N | 1 ≤ i ≤ n} for every n ∈ N.
For sets S and T , we let 2S = {S′ | S′ ⊆ S}, and we identify S = {s} with
the element s. Moreover, TS = {f | f : S → T}, and |S| is the cardinality
of S. For every R ⊆ S × T , we let dom(R) = {s | ∃t ∈ T : (s, t) ∈ R} and
range(R) = {t | ∃s ∈ S : (s, t) ∈ R}. The composition of R with R′ ⊆ T × U is
R ; R′ = {(s, u) | ∃t ∈ T : (s, t) ∈ R, (t, u) ∈ R′}. Given n ∈ N, we let Sn be the
n-fold Cartesian product of S with itself and S∗ =

⋃
n∈N

Sn is the set of all
words over S. The length |w| of w ∈ Sn is n. The empty word () is also denoted
by ε. The concatenation of v, w ∈ S∗ is v.w or vw.

A ranked alphabet (Σ, rk) consists of a nonempty, finite set Σ and rk: Σ → N,
which we omit whenever it is obvious. We let Σ(n) = {σ ∈ Σ | rk(σ) = n} for
every n ∈ N. In the following, Σ, Δ, and Γ are arbitrary ranked alphabets. Let V
be a set with V ∩ Σ = ∅. The set TΣ(V) of Σ” trees indexed by V is defined in the
usual way, and we let TΣ = TΣ(∅). If t ∈ TΣ(V) is given as t = σ(t1, . . . , tn), then
we often omit the obvious quantification that n ∈ N, σ ∈ Σ(n), and t1, . . . , tn ∈
TΣ(V). The map pos: TΣ(V) → 2(N

∗) assigning positions is inductively defined
for all t ∈ TΣ(V) by pos(t) = {ε} if t ∈ V and pos(t) = {ε} ∪ {i.w | i ∈ [n], w ∈
pos(ti)} if t = σ(t1, . . . , tn). The size |t| of a tree t ∈ TΣ(V) is |pos(t)|. The label
of t at w ∈ pos(t) is t(w) and the subtree of t rooted at w is t|w. For every set
D ⊆ Σ ∪ V of labels, we let posD(t) = {w ∈ pos(t) | t(w) ∈ D}. The tree t is
linear (resp. nondeleting) in V ′ ⊆ V if |posv(t)| ≤ 1 (resp., |posv(t)| ≥ 1) for
every v ∈ V ′. We let T lin

Σ (V) be the set of all trees of TΣ(V) that are linear in
V . Moreover, var(t) = {v ∈ V | posv(t) �= ∅}. We use the countably infinite set
X = {xi | i ∈ N} and Xn = {xi | i ∈ [n]} for every n ∈ N. For every n ∈ N, we
define the set CΣ(Xn) = {t ∈ T lin

Σ (Xn) | var(t) = Xn} of n-contexts and the set
ĈΣ(Xn) = {t ∈ CΣ(Xn) | the order of variables in t is x1, . . . , xn} of straight
n-contexts. Let X ′ ⊆ X and θ : X ′ → TΣ . Each such mapping θ extends to a
mapping (·)θ : TΣ(X) → TΣ(X) such that for all t ∈ TΣ(X) we have tθ = t if
t ∈ X \X ′, tθ = θ(t) if t ∈ X ′, and tθ = σ(t1θ, . . . , tnθ) if t = σ(t1, . . . , tn). Given
t ∈ TΣ(X) and t1, . . . , tn ∈ TΣ , we write t[t1, . . . , tn] for tθ, where θ : Xn → TΣ

is given by θ(xi) = ti for every i ∈ [n]. Moreover, for every t ∈ TΣ and k ∈ N,
let

136 Z. Fülöp and A. Maletti

decomp(t) =
⋃

n∈N

{
(c, t1, . . . , tn) ∈ ĈΣ(Xn) × (TΣ)n | t = c[t1, . . . , tn]

}

and substk(t) =
{
(u, θ) ∈ T lin

Σ (Xk) × (TΣ)var(u) | t = uθ
}
. Note that both

decomp(t) and substk(t) are finite sets.
As weight structures we use commutative semirings [9,11]. Formally, a com-

mutative semiring is an algebraic structure K = (K,+, ·, 0, 1) such that (K,+, 0)
and (K, ·, 1) are commutative monoids, · distributes over finite sums, and for all
a ∈ K we have a · 0 = 0. Given a mapping f : S → K, it is Boolean if
range(f) ⊆ {0, 1}, and its support supp(f) is supp(f) = {s ∈ S | f(s) �= 0}. Any
map L : TΣ → K is a weighted tree language.

We will often utilize the Boolean semiring B = ({0, 1},∨,∧, 0, 1), which is
used to model the unweighted case, and the semiring N = (N,+, ·, 0, 1). For the
rest of this contribution, let K = (K,+, ·, 0, 1) be a commutative semiring.

A weighted tree automaton is a tuple A = (Q,Σ,Q0,wt), in which Q is a finite
set of states, and Q0 ⊆ Q is a set of initial states, Σ is a ranked alphabet of input
symbols, and wt: (

⋃
n∈N

Qn × Σ(n) × Q) → K is a weight assignment to transi-
tions. It is Boolean if the weight assignment ‘wt’ is Boolean, and it is (bottom-
up) deterministic if q = q′ for all (q1, . . . , qn, σ, q), (q1, . . . , qn, σ, q′) ∈ supp(wt).
The semantics ‖A‖K : TΣ → K of A is ‖A‖K(t) =

∑
q∈Q0

‖A‖q
K
(t) for every

t ∈ TΣ , where the map ‖A‖q
K
: TΣ → K is inductively defined for every

q ∈ Q and tree t = σ(t1, . . . , tn) by ‖A‖q
K
(t) =

∑
q1,...,qn∈Q wt(q1, . . . , qn, σ, q) ·

∏n
i=1 ‖A‖qi

K
(ti). A weighted tree language L : TΣ → K is (K-)regular if there

exists a weighted tree automaton A such that L = ‖A‖K. The class of all such
regular weighted tree languages is denoted by REGΣ(K). For a Boolean deter-
ministic weighted tree automaton A the weighted tree languages ‖A‖K and ‖A‖q

K

for all q ∈ Q are obviously Boolean. The regular weighted tree languages are
closed under the weighted relabelings [7, Theorem 5.3], which we introduce next.

A weighted tree transformation is a mapping τ : TΣ(V) × TΔ(V) → K.
The domain ‘dom(τ)’ and range ‘range(τ)’ for a weighted tree transformation
τ : TΣ(V) × TΔ(V) → K are simply defined by dom(τ) = dom(supp(τ)) and
range(τ) = range(supp(τ)). The transformation τ is functional (resp., finitary),
if {u | (t, u) ∈ supp(τ)} contains at most one element (resp., is finite) for every
t ∈ TΣ(V). For a functional τ , its support supp(τ) is a partial function.

A weighted relabeling is a mapping ν : Σ×Δ → K such that ν(σ, δ) = 0 for all
σ ∈ Σ and δ ∈ Δ with rk(σ) �= rk(δ). Each weighted relabeling ν : Σ × Δ → K
extends to a finitary weighted tree transformation ν : TΣ(V) × TΔ(V) → K,
which is given as follows: for all variables v, v′ ∈ V , trees t = σ(t1, . . . , tn) ∈
TΣ(V), and u = δ(u1, . . . , uk) ∈ TΔ(V), we define ν(v, u) = ν(t, v′) = 0 and

ν(v, v′) =

{
1, if v = v′;
0, otherwise,

ν(t, u) =

{
ν(σ, δ) · ∏n

i=1 ν(ti, ui) , if n = k;
0, otherwise.

Note that the weighted tree transformation ν is finitary. Since ν and ν coincide
on Σ(0) × Δ(0), we will not distinguish carefully between them and use just ν

Composition Closure of Linear Weighted Extended Tree Transducers 137

for both. In fact, for all t ∈ TΣ(V), u ∈ TΔ(V), and each (c′, u1, . . . , un) ∈
decomp(u)

ν(t, u) =
∑

(c,t1,...,tn)∈decomp(t)

ν(c, c′) ·
n∏

i=1

ν(ti, ui) . (1)

There is actually at most one decomposition of t in (1) that yields a non-zero
weight for the sum (since the shapes of c and c′ and similarly ti and ui need to
coincide for all i ∈ [n]). The analogous property holds provided that a decom-
position of t is given. The class of all weighted tree transformations induced by
weighted relabelings is denoted by WREL(K).

Given a finitary weighted tree transformation τ : TΣ × TΔ → K and a
weighted tree language L : TΔ → K, we can define the pre-image τ−1(L) : TΣ →
K of L via τ for every t ∈ TΣ by

(
τ−1(L)

)
(t) =

∑
u∈TΔ

τ(t, u) · L(u). Given
another weighted tree transformation τ ′ : TΔ × TΓ → K, we define the compo-
sition τ ; τ ′ : TΣ × TΓ → K of τ followed by τ ′ for every t ∈ TΣ and v ∈ TΓ as(
τ ;τ ′)(t, v) =

∑
u∈TΔ

τ(t, u) ·τ ′(u, v). Given classes C, C′ of tree transformations,
we let C ; C′ = {τ ; τ ′ | τ ∈ C, τ ′ ∈ C′}. We also write τ ; L instead of τ−1(L) for
a weighted relabeling τ and a weighted tree language L : TΔ → K.

Theorem 1 ([7, Theorem 5.1]). For every weighted relabeling τ ∈ WREL(K) of
type τ : TΣ × TΔ → K and regular weighted tree language L ∈ REGΔ(K), the
weighted tree language τ−1(L) is again regular [i.e., τ−1(L) ∈ REGΣ(K)].

3 Transformational Model

A linear weighted extended top-down tree transducer with regular look-ahead (for
short: l-wxtR) over K [14] is a tuple M = (Q,Σ,Δ, q0, R,wt, c), in which

– Q is a finite set of states, and q0 ∈ Q is an initial state,
– Σ and Δ are ranked alphabets of input and output symbols, respectively,
– R ⊆ T lin

Σ (Q) × Q × T lin
Δ (Q) is a finite set of rules such that var(r) ⊆ var(�)

and {�, r} �⊆ Q for every rule 〈�, q, r〉 ∈ R,
– wt: R → K is a weight assignment to the rules, and
– c : Q → REGΣ(K) is a regular weighted look-ahead for each state.

To save parentheses, we will write cq instead of c(q) for every state q ∈ Q.
Next, we recall some common restrictions of the general model that have

already been discussed in [7]. The l-wxtR M is

– ε-free (resp., strict), if � /∈ Q (resp., r /∈ Q) for every rule 〈�, q, r〉 ∈ R,
– nondeleting, if var(�) = var(r) for every rule 〈�, q, r〉 ∈ R,
– Boolean, if ‘wt’ and cq are Boolean for every state q ∈ Q,
– an l-wxt (i.e., without look-ahead) if cq(t) = 1 for every state q ∈ Q and tree

t ∈ TΣ , and
– an l-wtR (i.e., non-extended) if posΣ(�) = {ε} for every rule 〈�, q, r〉 ∈ R.

138 Z. Fülöp and A. Maletti

Next we recall the semantics of an l-wxtR M = (Q,Σ,Δ, q0, R,wt, c), which
is the weighted tree transformation ‖M‖q

K
: TΣ × TΔ → K defined inductively

for every t ∈ TΣ and u ∈ TΔ by

‖M‖q
K
(t, u) =

∑

(�,t1,...,tn)∈decomp(t)
(r,θ)∈substn(u)

q1,...,qn∈Q
ρ=〈�[q1,...,qn],q,r[q1,...,qn]〉∈R

wt(ρ) ·
(∏

xi∈var(r)

‖M‖qi

K
(ti, xiθ)

)

·
(∏

xi∈var(�)\var(r)
cqi(ti)

)

. (2)

Using our remarks about decomp(t) and substn(u), all sets used in the index of
the sum are finite, so the sum has only finitely many summands. Since we have
〈�[q1, . . . , qn], q, r[q1, . . . , qn]〉 ∈ R, we know that � /∈ Q or r /∈ Q. Consequently,
|ti| < |t| or |xiθ| < |u| for every i ∈ [n] with xi ∈ var(r), which proves that
the recursion is well-founded. Besides the rule weight wt(ρ), we multiply the
weights ‖M‖qi

K
(ti, xiθ) of the recursive processing of those subtrees ti that are

further processed. The subtrees that are not further processed contribute their
look-ahead weight cqi(ti). The semantics ‖M‖K : TΣ × TΔ → K is then given
for every t ∈ TΣ and u ∈ TΔ by ‖M‖K(t, u) = ‖M‖q0

K
(t, u). For nondeleting

l-wxtR the rightmost product in (2) yields 1, hence nondeleting l-wxtR and
nondeleting l-wxt are equally expressive. An l-wxtR M is functional if ‖M‖K is
functional. We note that each l-wxtR M that is ε-free or functional induces a
finitary ‖M‖K. Next we relate l-wxtR over the semiring N and l-wxtR over K.
For this, we recall that N is the initial commutative semiring, so there exists
a unique homomorphism [9,11] from N to K, i.e., a mapping h : N → K with
h(0) = 0, h(1) = 1, h(n + n′) = h(n) + h(n′), and h(n · n′) = h(n) · h(n′) for all
n, n′ ∈ N.

Lemma 2. Let M = (Q,Σ,Δ, q0, R,wt, c) be an l-wxtR over the semiring N of
nonnegative integers, and let h : N → K be the unique semiring homomorphism
from N to K. Then h(‖M‖N(t, u)) = ‖M ′‖K(t, u) for all (t, u) ∈ TΣ × TΔ, where
M ′ = (Q,Σ,Δ, q0, R,wt′, c′) is the l-wxtR over the semiring K with wt′(ρ) =
h(wt(ρ)) and (c′)q(t) = h(cq(t)) for all ρ ∈ R, q ∈ Q, and t ∈ TΣ .

We abbreviate the properties of l-wxtR as follows: ‘�ε’ = ε-free, ‘s’ = strict,
‘n’ = nondeleting, ‘B’ = Boolean, ‘f’ = functional. We use these shorthands
with the stems ‘l-wxtR’,
‘l-wxt’, ‘l-wtR’, and ‘l-wt’ to talk about an l-wxtR, l-wxt, l-wtR, or l-wt that
additionally has the abbreviated properties attached as a prefix. For example,
Bnl-wxt stands for “Boolean nondeleting l-wxt”. We use the same abbrevia-
tions with the stem (i.e., the material behind the hyphen) in typesetter letters
(and the semiring K in parentheses) for the corresponding classes of induced
weighted tree transformations. For instance, nl-WXT(K) stands for the set of all
weighted tree transformations computable by nl-wxt.

Utilizing the bimorphism characterizations of [7, Section 4] and the closure of
the regular tree languages under linear homomorphisms [8, Theorem II.4.16], we
easily obtain that both the domain as well as the range of each such transducer
are regular, which we utilize without explicit mention.

Composition Closure of Linear Weighted Extended Tree Transducers 139

Lemma 3. For every τ ∈ l-WXTR(B) both dom(τ) and range(τ) are regular.

Finally, we recall the results for the composition hierarchies of the unweighted
tree transformation classes, which we lift to the weighted case in Sect. 5.

Theorem 4 (see [1, Theorem 6.2] and [6, Theorems 26, 31, 33, 34]).

�εnsl-WXT(B)3 = �εnsl-WXT(B)2 (3a)

�εsl-WXT(B)3 = �εsl-WXT(B)2 (3b)

�εl-WXT(B)5 = �εl-WXT(B)4 (3c)

�εsl-WXTR(B)3 = �εsl-WXTR(B)2 (3d)

�εl-WXTR(B)4 = �εl-WXTR(B)3 (3e)

Additionally, the classes of (3b) and (3d) as well as (3c) and (3e) coincide.

4 Faithful Representation

In this section, we deal with the question in which cases unweighted trans-
ducers faithfully represent certain Boolean weighted transducers (note that
the weighted tree transformation induced by a Boolean l-wxtR might not be
Boolean). Moreover, we consider for which such transducers M another such
transducer M ′ exists, which induces a partial function ‖M ′‖B ⊆ ‖M‖B with the
same domain as ‖M‖B. We start with the definition of unambiguous l-wxtR. To
this end, we reinterpret Boolean l-wxtR over the semiring K, which anyway
only use the neutral elements 0 and 1, as Boolean l-wxtR over the semiring N

of nonnegative integers by identifying the neutral elements 0 and 1 in K and N.
Thus, given a Boolean l-wxtR M (over K), we write ‖M‖N for its semantics in
the semiring of nonnegative integers. We also reinterpret M over the Boolean
semiring B and write ‖M‖B. Over the Boolean semiring B, we sometimes iden-
tify mappings f : S → {0, 1} with their support supp(f) and vice versa, so
‖M‖B : TΣ × TΔ → {0, 1} is identified with ‖M‖B ⊆ TΣ × TΔ for a Boolean
l-wxtR M .

Definition 5. Let M = (Q,Σ,Δ, q0, R,wt, c) be a Boolean l-wxtR over K and
L ⊆ TΣ . We say that M is unambiguous on L if ‖M‖N(t, u) ∈ {0, 1} for every
(t, u) ∈ L × TΔ (i.e., the mapping ‖M‖N restricted to L × TΔ is Boolean). In
the case of L = TΣ , we also say that M is unambiguous.

Lemma 6. Let M = (Q,Σ,Δ, q0, R,wt, c) be a Boolean l-wxtR over K that is
unambiguous on L ⊆ TΣ . Then ‖M‖K(t, u) = ‖M‖B(t, u) for all (t, u) ∈ L×TΔ.

Next we consider how Boolean weighted tree transformations behave under
composition. We will identify another restriction, functionality, that is required
for the faithful representation via unweighted composition.

Lemma 7. Let τ : TΣ × TΔ → K and τ ′ : TΔ × TΓ → K be Boolean weighted
tree transformations. If τ is functional, then τ ; τ ′ = supp(τ) ; supp(τ ′).

140 Z. Fülöp and A. Maletti

With this knowledge we are now ready to state the main lemma of this
section. Given Boolean transducers that additionally obey certain functional-
ity and unambiguity restrictions, the computation inside the Boolean semiring
faithfully represents the computation in the semiring K. We recall that the neu-
tral element of composition is the identity mapping idTΣ

= {(t, t) | t ∈ TΣ} of
the correct set TΣ , whose range is clearly TΣ .

Lemma 8. Let n ≥ 1 be an integer and Mi = (Qi, Σi, Σi+1, q
0
i , Ri,wti, ci) be a

Boolean l-wxtR for every i ∈ [n]. If (i) Mi is unambiguous on

range(‖M1‖K ; · · · ; ‖Mi−1‖K)

and (ii) ‖M1‖K ; · · · ; ‖Mi−1‖K is functional for every i ∈ [n], then

‖M1‖K ; · · · ; ‖Mn‖K = ‖M1‖B ; · · · ; ‖Mn‖B .

We identify a weighted tree transformation over B with its support for the
rest of this section. A uniformizer [2] of a tree transformation τ ⊆ TΣ × TΔ

is a partial function f : TΣ → TΔ such that f ⊆ τ and dom(f) = dom(τ). In
other words, a uniformizer of τ is a maximal partial function contained in τ .
We start with a simple proposition that shows how uniformizers behave under
composition.

Lemma 9 ([2, Lemma 24]). Let n ≥ 1 be an integer, Σ1, . . . , Σn+1 be ranked
alphabets, and τi ⊆ TΣi

× TΣi+1 and fi : TΣi
→ TΣi+1 be tree transformations

for all i ∈ [n]. If

1. range(τj) ⊆ dom(τj+1) for all 1 ≤ j ≤ n − 1 and
2. fi is a uniformizer for τi for all i ∈ [n],

then f = f1 ; · · · ; fn is a uniformizer for τ = τ1 ; · · · ; τn and dom(τ) = dom(τ1).
If additionally τ is functional, then f = τ .

Finally, we need two results from the theory of unweighted tree transducers.
The first statement establishes the existence of uniformizers of tree transforma-
tions induced by �εl-wxtR over B.

Lemma 10 (variant of [5, Lemma]). For every w ⊆ {n, s}, each tree trans-
formation of w�εl-WXTR(B) has a uniformizer in w�εfl-WXTR(B).

The second statement builds also on [5, Lemma], which essentially says that
functional top-down tree transducers can be determinized provided that they
have regular look-ahead. We utilize the same idea to prove a corresponding
lemma, where we use unambiguity instead of determinism. The lemma shows
that we can remove ambiguity from a functional l-wxtR over B. We use the
shorthand ‘u’ to abbreviate ‘unambiguous’.

Lemma 11. wfl-WXTR(B) = wful-WXTR(B) for all w ⊆ {�ε, n, s}.

Composition Closure of Linear Weighted Extended Tree Transducers 141

5 Main Results

We start with a construction that shows that a weighted relabeling can be sepa-
rated from an ε-free l-wxtR that handles all the weights and the nondeterminism
leaving a Boolean functional ε-free l-wxtR that is also unambiguous.

Lemma 12. For all w ⊆ {n, s}
w�εl-WXTR(K) ⊆ WREL(K) ; w�εBful-WXTR(K)
w�εl-WXT(K) ⊆ WREL(K) ; w�εBful-WXT(K) .

Proof. Let M = (Q,Σ,Δ, q0, R,wt, c) be an arbitrary ε-free l-wxtR. Since we
also need access to the transitions of a weighted tree automaton computing the
regular look-ahead, let A = (Q′, Σ,Q′

0,wt) be a weighted tree automaton such
that Q ⊆ Q′ and ‖A‖q

K
= cq for every q ∈ Q (e.g., we can take the disjoint union

of the weighted tree automata computing cq for all q ∈ Q). Let P = R∪supp(wt)
be the set of all rules and transitions used in M and A. We first construct the
ranked alphabet (Σ′, rk′) consisting of the symbols Σ′ = Σ ∪ (Σ × P) such that
rk′(σ) = rk(σ) and rk′(〈σ, ρ〉) = rk(σ) for every σ ∈ Σ and ρ ∈ P . Next, we
construct the weighted relabeling ν : Σ×Σ′ → K as follows: ν(σ, σ′) = δσσ′ and

ν(σ, 〈σ′, ρ〉) =
{

δσσ′ · wt(ρ), if ρ ∈ R;
δσσ′ · wt(ρ), if ρ ∈ supp(wt)

for all σ, σ′ ∈ Σ and ρ ∈ P , where δσσ′ is the usual Kronecker delta. In
other words, the relabeling either (i) keeps the symbol or (ii) keeps the input
symbol, but annotates a rule or transition and charges the corresponding weight.
Intuitively, the relabeling annotates the rules and transitions to be executed,
but the relabeling does not ensure that the annotation can actually be executed
at the annotated position. This check and the execution are performed by the
Boolean ε-free l-wxtR M ′ = (Q,Σ′,Δ, q0, R

′,wt′, c), to which the Boolean
weighted tree automaton A′ = (Q′, Σ′, Q′

0,wt
′) is associated via cq = ‖A′‖q

K
for

every state q ∈ Q. We set

– ρ′ =
〈〈�(ε), ρ〉(�|1, . . . , �|rk(σ)), q, r

〉 ∈ R′ and wt′(ρ′) = 1 for every rule ρ =
〈�, q, r〉 ∈ R,

– wt′(q′
1, . . . , q

′
n, 〈σ, ρ〉, q′) = 1 for every ρ = (q′

1, . . . , q
′
n, σ, q′) ∈ supp(wt), and

– no additional rules are in R′ and wt′(ρ) = 0 for all other transitions ρ.

Note that �(ε) ∈ Σ in the first item because M is ε-free. Hence M ′ is ε-free.
Moreover, A′ is deterministic and both M ′ and A′ are Boolean because cq =
‖A′‖q

K
is also Boolean. So the constructed l-wxtR M ′ is Boolean and ε-free.

Moreover, it inherits the properties ‘nondeleting’ and ‘strict’ from M . If M
has trivial look-ahead c, then we set c to the trivial look-ahead for TΣ′ for
the statements on l-wxt. Finally, it is straightforward to establish that M ′ is
functional and unambiguous as it can at most execute the annotated rules and
transitions (and can perform this in at most one fashion).

142 Z. Fülöp and A. Maletti

It remains to prove that ‖M‖K = ν ; ‖M ′‖K, for which we first prove that
‖M‖q

K
= ν ; ‖M ′‖q

K
for every q ∈ Q and ‖A‖q′

K
= ν ; ‖A′‖q′

K
for every q′ ∈ Q′.

These proofs can be found in the appendix.

We prove that we can compose any such relabeling to the right of any l-wxtR.

Lemma 13. For all w ⊆ {n, s}
w�εl-WXTR(K) ; WREL(K) ⊆ w�εl-WXTR(K)
w�εl-WXT(K) ; WREL(K) ⊆ w�εl-WXT(K) .

Proof. Let M = (Q,Σ,Δ, q0, R,wt, c) be an ε-free l-wxtR and ν : Δ × Δ′ → K
be a weighted relabeling. We construct the l-wxtR M ′ = (Q,Σ,Δ′, q0, R′,wt′, c)
such that 〈�, q, r′〉 ∈ R′ and wt′(〈�, q, r′〉) =

∑
〈�,q,r′′〉∈R wt(〈�, q, r′′〉) · ν(r′′, r′)

for every translation rule 〈�, q, r〉 ∈ R and r′ ∈ TΔ′(Q) with ν(r, r′) �= 0. No
additional rules are in R′. Since the left-hand sides and the shape of the right-
hand sides remains the same, it is clear that M ′ inherits the properties ‘ε-free’,
‘nondeleting’, and ‘strict’ directly from M . Since the look-ahead coincides these
results also hold for l-wxt.

It remains to prove that ‖M‖K ; ν = ‖M ′‖K, which we prove again with the
help of ‖M‖q

K
;ν = ‖M ′‖q

K
for every q ∈ Q. The proof details are in the appendix.

We now have the two ingredients that allow us to normalize composition
chains of ε-free l-wxtR.

Theorem 14. For all n ≥ 1 and w ⊆ {n, s}
w�εl-WXTR(K)n ⊆ WREL(K) ; w�εBful-WXTR(K)n

w�εl-WXT(K)n ⊆ WREL(K) ; w�εBful-WXT(K)n .

Proof. We prove the statements by induction on n. For n = 1, they are proved
in Lemma12. Suppose that the property holds for n ≥ 1. Then using Lem-
mas 12 and 13 and the induction hypothesis in sequence we obtain

w�εl-WXTR(K)n+1 ⊆ w�εl-WXTR(K)n ; WREL(K) ; w�εBful-WXTR(K)

⊆ w�εl-WXTR(K)n ; w�εBful-WXTR(K) ⊆ WREL(K) ; w�εBful-WXTR(K)n+1

and the same reasoning proves the statement also for l-wxt.

Finally, we compose a weighted relabeling to the left of an ε-free l-wxtR to
eliminate the weighted relabeling again.

Lemma 15. WREL(K) ; w�εl-WXTR(K) ⊆ w�εl-WXTR(K) for all w ⊆ {n, s}.
Proof. Let ν : Σ ×Σ′ → K be a weighted relabeling, M = (Q,Σ′,Δ, q0, R,wt, c)
be an arbitrary ε-free l-wxtR. The ε-free l-wxtR M ′ = (Q,Σ,Δ, q0, R

′,wt′, c) is
given by 〈�′, q, r〉 ∈ R′ and wt′(〈�′, q, r〉) = ∑

〈�′′,q,r〉∈R ν(�′, �′′) ·wt(〈�′′, q, r〉) for
every rule ρ = 〈�, q, r〉 ∈ R and �′ ∈ TΣ(Q) with ν(�′, �) �= 0. No additional rules

Composition Closure of Linear Weighted Extended Tree Transducers 143

are in R′. In addition, we let cq = ν ; cq for every q ∈ Q, which is regular by
Theorem1. Obviously, the constructed l-wxtR M ′ is ε-free, and it inherits the
properties ‘nondeleting’ and ‘strict’ from M .

To prove that ν ; ‖M‖K = ‖M ′‖K, we first prove that ν ; ‖M‖q
K
= ‖M ′‖q

K
for

every q ∈ Q. Both proofs can be found in the appendix.

Now we are ready to state and prove our main results.

Theorem 16.

�εnsl-WXT(K)3 = �εnsl-WXT(K)2 (4a)

�εsl-WXT(K)3 = �εsl-WXT(K)2 (4b)

�εl-WXT(K)5 = �εl-WXT(K)4 (4c)

�εsl-WXTR(K)3 = �εsl-WXTR(K)2 (4d)

�εl-WXTR(K)4 = �εl-WXTR(K)3 (4e)

Additionally, the classes of (4b) and (4d) as well as (4c) and (4e) coincide.

Proof. All the right-to-left inclusions are trivial. The left-to-right inclusions are
shown as follows. To prove (4a), let τ ∈ �εnsl-WXT(K)3 be of type τ : TΣ × TΔ →
K. According to Theorem14 there exist a weighted relabeling ν : Σ × Σ′ → K
and τ ′ : TΣ′ × TΔ → K such that τ = ν ; τ ′ and τ ′ ∈ �εnsBful-WXT(K)3. Since
the composition of functional weighted tree transformations is naturally again
functional, we can apply Lemma8 to obtain that τ ′ ∈ �εnsful-WXT(B)3. Using
(3a), we obtain τ ′ ∈ �εnsl-WXT(B)2. Let τ ′ = τ ′

1 ; τ
′
2 with τ ′

1, τ
′
2 ∈ �εnsl-WXT(B).

Next we restrict the range of τ ′
1 to the regular tree language dom(τ ′

2). In this way,
we obtain the tree transformation τ ′′

1 ∈ �εnsl-WXT(B). Clearly, τ ′′
1 ; τ ′

2 = τ ′
1 ; τ

′
2.

Using Lemma 10 we additionally obtain uniformizers f ′′
1 , f ′′

2 ∈ �εnsfl-WXT(B) for
τ ′′
1 and τ ′

2, respectively. Since τ ′ is functional, we fulfill all the requirements
of Lemma 9 and we can conclude that f ′′

1 ; f ′′
2 = τ ′′

1 ; τ ′
2 = τ ′

1 ; τ ′
2 = τ ′. Hence

τ ′ ∈ �εnsfl-WXT(B)2. With the help of Lemma11 we obtain τ ′ ∈ �εnsful-WXT(B)2,
which immediately also yields τ ′ ∈ �εnsBful-WXT(K)2 by Lemma8. Finally, we
utilize Lemma15 to show that τ = ν ; τ ′ ∈ �εnsl-WXT(K)2 as desired.

This approach works in the same manner for (4d) and (4e). However, instead
of (3a), we use the results (3d) and (3e), respectively.

To prove (4b) we proceed in the same manner as in case (4a) and obtain that
τ = ν ; τ ′, where ν is a weighted relabeling and τ ′ ∈ �εsful-WXT(B)3. Then we
use

�εsl-WXT(B)3 = �εnsl-WXT(B) ; �εsl-WXTR(B)
from [6, Theorem 20], and again as in the proof of case (4a) we obtain the
statement τ ′ ∈ �εnsBful-WXT(K) ; �εsBful-WXTR(K). It is well-known that regular
look-ahead can be simulated by a nondeleting, strict, and linear weighted top-
down tree transducer. Thus, we obtain that τ ′ is an element of

�εnsBful-WXT(K) ; �εsBful-WXTR(K) ⊆�εnsl-WXT(K) ; nsl-WT(K) ; �εsl-WXT(K)

⊆�εnsl-WXT(K) ; �εsl-WXT(K) ⊆�εsl-WXT(K)2,

144 Z. Fülöp and A. Maletti

where the second inclusion is due to [13, Theorem 8]. Then by Lemma15 we
obtain that τ ∈ �εsl-WXT(K)2.

Finally, for (4c) we also proceed as usual: τ = ν ; τ ′, where ν is a weighted
relabeling and τ ′ ∈ �εful-WXT(B)5. We continue with

�εl-WXT(B)5 = �εl-WXT(B)4 ⊆�εl-WXTR(B)4 ⊆ l-WTR(B) ; �εsl-WXTR(B)2 ,

where the first equality is by (3c) and the second inclusion is due to [6, Theo-
rem 24]. Continuing on as before, we arrive at

τ ′ ∈ Bful-WTR(K) ; �εsBful-WXTR(K)2 .

Removing the regular look-ahead with the constructions already mentioned, we
obtain

τ ′ ∈ nsl-WT(K) ; l-WT(K) ; �εsl-WXT(K)2 ⊆�εl-WXT(K)4

and then by Lemma15 we conclude that τ ∈ �εl-WXT(K)4. The final equalities
between the classes of (4b) and (4d) as well as (4c) and (4e) follow directly from
the presented arguments.

References

1. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput.
Sci. 20(1), 33–93 (1982). https://doi.org/10.1016/0304-3975(82)90098-6

2. Benedikt, M., Engelfriet, J., Maneth, S.: Determinacy and rewriting of functional
top-down and MSO tree transformations. J. Comput. Syst. Sci. 85, 57–73 (2017).
https://doi.org/10.1016/j.jcss.2016.11.001

3. Chiang, D.: An introduction to synchronous grammars. In: Calzolari, N., Cardie,
C., Isabelle, P. (eds.) Proceedings of 44th Annual Meeting ACL. Association for
Computational Linguistics (2006). Part of a tutorial given with Kevin Knight.
https://www3.nd.edu/∼dchiang/papers/synchtut.pdf

4. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Syst.
Theory 10(1), 289–303 (1977). https://doi.org/10.1007/BF01683280

5. Engelfriet, J.: On tree transducers for partial functions. Inf. Process. Lett. 7(4),
170–172 (1978). https://doi.org/10.1016/0020-0190(78)90060-1

6. Engelfriet, J., Fülöp, Z., Maletti, A.: Composition closure of linear extended top-
down tree transducers. Theory Comput. Syst. 60(2), 129–171 (2017). https://doi.
org/10.1007/s00224-015-9660-2

7. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fund.
Inform. 111(2), 163–202 (2011). https://doi.org/10.3233/FI-2011-559

8. Gécseg, F., Steinby, M.: Tree Automata, 2nd edn. Akadémiai Kiadó, Budapest
(1984). https://arxiv.org/abs/1509.06233

9. Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht
(1999). https://doi.org/10.1007/978-94-015-9333-5

10. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3),
391–427 (2008). https://doi.org/10.1162/coli.2008.07-051-R2-03-57

11. Hebisch, U., Weinert, H.J.: Semirings - Algebraic Theory and Applications in Com-
puter Science. Series in Algebra. World Scientific, Singapore (1998). https://doi.
org/10.1142/3903

https://doi.org/10.1016/0304-3975(82)90098-6
https://doi.org/10.1016/j.jcss.2016.11.001
https://www3.nd.edu/~dchiang/papers/synchtut.pdf
https://doi.org/10.1007/BF01683280
https://doi.org/10.1016/0020-0190(78)90060-1
https://doi.org/10.1007/s00224-015-9660-2
https://doi.org/10.1007/s00224-015-9660-2
https://doi.org/10.3233/FI-2011-559
https://arxiv.org/abs/1509.06233
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1162/coli.2008.07-051-R2-03-57
https://doi.org/10.1142/3903
https://doi.org/10.1142/3903

Composition Closure of Linear Weighted Extended Tree Transducers 145

12. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30586-6 1

13. Lagoutte, A., Maletti, A.: Survey : weighted extended top-down tree transducers
part III—composition. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations
in Computer Science. LNCS, vol. 7020, pp. 272–308. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24897-9 13

14. Maletti, A.: The power of weighted regularity-preserving multi bottom-up tree
transducers. Int. J. Found. Comput. Sci. 26(7), 987–1005 (2015). https://doi.org/
10.1142/S0129054115400109

15. Maletti, A.: Compositions of tree-to-tree statistical machine translation models. In:
Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 293–305. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53132-7 24

16. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down
tree transducers. SIAM J. Comput. 39(2), 410–430 (2009). https://doi.org/10.
1137/070699160

17. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted
tree transducers. In: Hajič, J., Carberry, S., Clark, S., Nivre, J. (eds.) Proceed-
ings of 48th Annual Meeting ACL, pp. 1058–1066. Association for Computational
Linguistics (2010). http://www.aclweb.org/anthology/P10-1108

https://doi.org/10.1007/978-3-540-30586-6_1
https://doi.org/10.1007/978-3-642-24897-9_13
https://doi.org/10.1142/S0129054115400109
https://doi.org/10.1142/S0129054115400109
https://doi.org/10.1007/978-3-662-53132-7_24
https://doi.org/10.1137/070699160
https://doi.org/10.1137/070699160
http://www.aclweb.org/anthology/P10-1108

A General Architecture of Oritatami
Systems for Simulating Arbitrary

Finite Automata

Yo-Sub Han1, Hwee Kim2, Yusei Masuda3, and Shinnosuke Seki3,4(B)

1 Department of Computer Science, Yonsei University,
50 Yonsei-Ro, Seodaemum-Gu, Seoul 03722, Republic of Korea

2 Department of Mathematics and Statistics, University of South Florida,
4202, E. Fowler Ave., Tampa, FL 33620, USA

3 Department of Computer and Network Engineering,
University of Electro-Communications,

1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
s.seki@uec.ac.jp

4 École Normale Supérieure de Lyon,
46 allée d’Italie, 69007 Lyon, France

Abstract. In this paper, we propose an architecture of oritatami sys-
tems with which one can simulate an arbitrary nondeterministic finite
automaton (NFA) in a unified manner. The oritatami system is known
to be Turing-universal but the simulation available so far requires 542
bead types and O(t4 log2 t) steps in order to simulate t steps of a Turing
machine. The architecture we propose employs only 329 bead types and
requires just O(t|Q|4|Σ|2) steps to simulate an NFA with a state set Q
working on a word of length t over an alphabet Σ.

1 Introduction

Transcription (Fig. 1) is a process in which from a template DNA sequence, its
complementary RNA sequence is synthesized by an RNA polymerase letter by
letter. The product RNA sequence (transcript) is folding upon itself into a struc-
ture while being synthesized. This phenomenon called cotranscriptional folding
has proven programmable by Geary, Rothemund, and Andersen in [6], in which
they programmed an RNA rectangular tile as a template DNA sequence in the
sense that the transcript synthesized from this template folds cotranscriptionally
into that specific RNA tile highly probably in vitro. As cotranscriptional folding

This work is supported primarily by JSPS-NRF Bilateral Program No. YB29004 to
Han and Seki, the Basic Science Research Program (NRF-2018R1D1A1A09084107)
to Han, JSPS KAKENHI Grant-in-Aids for Young Scientists (A) No. 16H05854 and
for Challenging Research (Exploratory) No. 18K19779 to Seki, and JST Program to
Disseminate Tenure Tracking System, MEXT, Japan No. 6F36 to Seki.
Kim is also supported by NIH R01GM109459, NSF’s CCF01526485, DMS-1800443, the
Southeast Center for Mathematics and Biology, and the NSF-Simons Research Center
for Mathematics of Complex Biological Systems (DMS-1764406, 594594).

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 146–157, 2019.
https://doi.org/10.1007/978-3-030-23679-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_12

Simulation of Arbitrary NFAs by Oritatami Systems 147

Fig. 1. RNA origami, a novel self-assembly technology by cotranscriptional folding [6].
RNA polymerase (orange complex) attaches to an artificial template DNA sequence
(gray spiral) and synthesizes the complementary RNA sequence (blue sequence), which
folds into a rectangular tile while being synthesized. (Color figure online)

has turned out to play significant computational roles in organisms (see, e.g.,
[10]), a next step is to program computation in cotranscriptional folding.

Oritatami is a mathematical model proposed by Geary et al. [4] to under-
stand computational aspects of cotranscriptional folding. This model has recently
enabled them to prove that cotranscriptional folding is actually Turing universal
[5]. Their Turing-universal oritatami system ΞTU adopts a periodic transcript1

whose period consists of functional units called modules. Some of these modules
do computation by folding into different shapes, which resembles somehow com-
putation by cotranscriptional folding in nature [10]. Being thus motivated, the
study of cotranscriptional folding of shapes in oritatami was initiated by Masuda,
Seki, and Ubukata in [9] and extended independently by Domaine et al. [2] as well
as by Han and Kim [7] further. In [9], an arbitrary finite portion of the Heighway
dragon fractal was folded by an oritatami system ΞH . The Heighway dragon can
be described as an automatic sequence [1], that is, as a sequence producible by
a deterministic finite automaton with output (DFAO) in an algorithmic man-
ner. The system ΞHD involves a module that simulates a 4-state DFAO AHD

for the Heighway dragon. The Turing-universal system was not embedded into
ΞHD in place for this module primarily because it may fold into different shapes
even on inputs of the same length and secondly because it employs unnecessarily
many 542 types of abstract molecules (bead) along with an intricate network of
interactions (rule set) among them. Their implementation of the DFAO module
however relies on the cycle-freeness of AHD too heavily to be generalized for
other DFAs; let alone for nondeterministic FAs (NFAs).

In this paper, we propose an architecture of oritatami system that allows for
simulating an arbitrary NFA using 329 bead types. In order to run an NFA over
an alphabet Σ with a state set Q on an input of length t, it takes O(t|Q|4|Σ|2)
steps. In contrast, the system ΞTU requires O(t4 log2 t) steps to simulate t steps
of a Turing machine. A novel feature of technical interest is that all the four
modules of the architecture share a common interface ((2) in Sect. 3).

2 Preliminaries

Let B be a set of types of abstract molecules, or beads, and B∗ be the set of
finite sequences of beads including the empty sequence λ. A bead of type b ∈ B

1 A periodic transcript is likely to be able to be transcribed from a circular DNA [3].

148 Y.-S. Han et al.

is called a b-bead. Let w = b1b2 · · · bn ∈ B∗ be a sequence of length n for some
integer n and bead types b1, . . . , bn ∈ B. For i, j with 1 ≤ i, j ≤ n, let w[i..j]
refer to the subsequence bibi+1 · · · bj of w; we simplify w[i..i] as w[i].

The oritatami system folds its transcript, which is a sequence of beads, over
the triangular grid graph T = (V,E) cotranscriptionally based on hydrogen-
bond-based interactions (h-interaction for short) which the system allows for
between beads of particular types placed at the unit distance. When beads form
an h-interaction, we say informally they are bound. The i-th point of a directed
path P = p1p2 · · · pn in T is referred to as P [i], that is, P [i] = pi. A (finite)
conformation C is a triple (P,w,H) of a directed path P in T, w ∈ B∗ of
the same length as P , and a set of h-interactions H ⊆ {{i, j} ∣

∣ 1 ≤ i, i+2 ≤
j, {P [i], P [j]} ∈ E

}
. This is to be interpreted as the sequence w being folded

in such a manner that its i-th bead is placed at the i-th point of the path P
and the i-th and j-th beads are bound iff {i, j} ∈ H. A symmetric relation
R ⊆ B × B called rule set governs which types of two beads can form an h-
interaction between. An h-interaction {i, j} ∈ H is valid with respect to R, or
R-valid, if (w[i], w[j]) ∈ R. A conformation is R-valid if all of its h-interactions
are R-valid. For α ≥ 1, a conformation is of arity α if it contains a bead that
forms α h-interactions and none of its beads forms more. By C≤α, we denote the
set of all conformations of arity at most α.

An oritatami system grows conformations by elongating them according to
its own rule set R. Given an R-valid finite conformation C1 = (P,w,H), we say
that another conformation C2 is its elongation by a bead of type b ∈ B, written as
C1

R−→b C2, if C2 = (Pp,wb,H ∪ H ′) for some point p not along the path P and
possibly-empty set of h-interactions H ′ ⊆ {{i, |w| + 1} ∣

∣ 1 ≤ i < |w|, {P [i], p} ∈
E, (w[i], b) ∈ R

}
. Observe that C2 is also R-valid. This operation is recursively

extended to the elongation by a finite sequence of beads as: C
R−→

∗
λ C for any

conformation C; and C1
R−→

∗
wb C2 for conformations C1, C2, a finite sequence

of beads w ∈ Σ∗, and a bead b ∈ Σ if there is a conformation C ′ such that
C1

R−→
∗
w C ′ and C ′ R−→b C2.

A finite oritatami system is a tuple Ξ = (R,α, δ, σ, w), where R is a rule set,
α is an arity, δ ≥ 1 is a parameter called delay, σ is an R-valid initial confor-
mation of arity at most α called seed, upon which its finite transcript w ∈ B∗

is to be folded by stabilizing beads of w one at a time so as to minimize energy
collaboratively with its succeeding δ−1 nascent beads. The energy of a confor-
mation C = (P,w,H), denoted by ΔG(C), is defined to be −|H|; that is, more
h-interactions make a conformation more stable. The set F(Ξ) of conformations
foldable by this system is recursively defined as: the seed σ is in F(Ξ); and pro-
vided that an elongation Ci of σ by the prefix w[1..i] be foldable (i.e., C0 = σ),
its further elongation Ci+1 by the next bead w[i+1] is foldable if

Ci+1 ∈ arg min
C∈C≤αs.t.

Ci
R−→w[i+1]C

min
{

ΔG(C ′)
∣
∣
∣ C

R−→
∗
w[i+2...i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

Simulation of Arbitrary NFAs by Oritatami Systems 149

Fig. 2. Growth (folding) of a spacer of glider shape (g-spacr). The rule set R to fold
this is {(579, 584), (580, 589), (581, 588), (582, 587), (583, 586), (585, 590), (586, 590)}.
(Color figure online)

We say that the bead w[i+1] and the h-interactions it forms are stabilized (not
nascent any more) according to Ci+1. Note that an arity-α oritatami system
cannot fold any conformation of arity larger than α. The system Ξ is determin-
istic if for all i ≥ 0, there exists at most one Ci+1 that satisfies (1). An oritatami
system is cyclic if its transcript admits a period shorter than the half of itself.

Example 1 (g-spacer). Let us provide an example of deterministic oritatami sys-
tem that folds into a glider motif, which will be used as a component called
g-spacer in Sect. 3. Consider a delay-3 oritatami system whose transcript w is a
repetition of 579−580− · · · −590 and rule set R is as captioned in Fig. 2. Its seed,
colored in red, can be elongated by the first three beads w[1..3] = 579−580−581
in various ways, only three of which are shown in Fig. 2 (left). The rule set R
allows w[1] to be bound to 584, w[2] to 589, and w[3] to 588, but 584-bead
is not around. In order for both w[2] and w[3] to be thus bound, the nascent
fragment w[1..3] must be folded as bolded in Fig. 2 (left). According to this most
stable elongation, the bead w[1] = 579 is stabilized to the east of the previous
580-bead. Then w[4] = 582 is transcribed. It is capable of binding to a 587-bead
but no such bead is reachable, and hence, this newly-transcribed bead cannot
override the “bolded” decision. Therefore, w[2] is also stabilized according to
this decision along with its bond with the 589-bead. The next bead w[5] = 583
cannot override the decision, either, and hence, w[3] is stabilized along with its
bond with the 588-bead as shown in Fig. 2 (right).

3 Architecture

We shall propose an architecture of a nondeterministic cyclic oritatami system Ξ
that simulates at delay 3 an NFA A = (Q,Σ, q0, Acc, f), where Q is a finite set of
states, Σ is an alphabet, q0 ∈ Q is the initial state, Acc ⊆ Q is a set of accepting
states, and f : Q × Σ → 2Q is a nondeterministic transition function. What the
architecture actually simulates is rather its modification A$ = (Q ∪ {qAcc}, Σ ∪
{$}, q0, {qAcc}, f ∪f$), where f$: (Q∪{qAcc})×(Σ∪{$}) → 2Q∪{qAcc} is defined
over Σ exactly same as f , and moreover, f$(q, $) = {qAcc} for all q ∈ Acc. Note
that w ∈ L(A) iff w$ ∈ L(A$). For the sake of upcoming arguments, we regard
the transition function f ∪f$ rather as a set of transitions {f1, f2, . . . , fn}, where

150 Y.-S. Han et al.

Fig. 3. Encoding of the initial state q0 = 01 on the horizontal arm of Γ -shaped seed.
(Color figure online)

fk is a triple (ok, ak, tk), meaning that reading ak in the state ok (origin) causes
a transition to tk (target). Note that n = O(|Q|2|Σ|).

The architecture assumes that each state q is uniquely assigned with an n-bit
binary sequence, whose i-th bit from most significant bit (MSB) is referred to
as q[i]. It also assumes a unique m-bit binary sequence for each letter a ∈ Σ,
whose 	-th bit from MSB is referred to as a[], where m = �log |Σ|	.

3.1 Overview

Seed. The seed of Ξ is of Γ shape (Fig. 3). Below its horizontal arm is encoded
the initial state q0 in the following format:

⊙n
k=1

(
xfk

→ (630 → 625 →)3zq0[k] → (630 → 625 →)3
)
624 → 623, (2)

where z0 = 96 → 91 → 90 → 85 → 84 → 79, z1 = 96 → 95 → 94 → 93 → 92 →
79, and for some bead types b, c ∈ B, the arrow b → c (resp. ↗,↖,←,↙,↘)
implies that a c-bead is located to the eastern (resp. north-eastern, north-
western, western, south-western, and south-eastern) neighbor of a b-bead. Note
that the seed and Module 4, which we shall explain soon, initialize all the vari-
ables f1, . . . , fn to N by having a sequence xN of bead types be exposed to the
corresponding positions xf1 , · · · , xfn

, where xN = z0 while xY = z1, which is
not used here but shall be used later. An input word u = b1b2 · · · is encoded on
the right side of its vertical arm (see [8], which is an arXiv version of this paper,
for its illustration as well as for other figures omitted due to space constraint) as:

|u|⊙

j=1

(
(ysp ↙)2|f |−1⊙m

�=1

(
ybi[�] ↙ ysp ↙)

(ysp ↙)2+2|f |
)

, (3)

where ysp = y1 = 501 ↙ 502 ↙ 503 ↙ 504 ↙ 505 ↙ 506 and y0 = 501 ↙ 502
↙ 503 ↙ 504 ↙ 507 ↙ 508.

The first period of the transcript of Ξ starts folding at the top left corner
of the seed, or more precisely, as to succeed its last bead 540 circled in blue in
Fig. 3. It folds into a parallelogram macroscopically by folding in a zigzag manner
microscopically (zig (↪→) and zag (←↩) are both of height 3) while reading the
current (initial) state q0 from above and the first letter b1 from left, and outputs
one of the states in f(q0, b1), say q1, nondeterministically below in the format
(2). All the states in f(q0, b1) are chosen equally probably. The folding ends at
the bottom left corner of the parallelogram. The next period likewise reads the

Simulation of Arbitrary NFAs by Oritatami Systems 151

state q1 and next letter b2, and outputs a state in f(q1, b2) nondeterministically
below the parallelogram it has folded. Generally speaking, for i ≥ 2, the i-th
period simulates a nondeterministic transition from the state qi−1, output by
the previous period, on the letter bi.

Modules. One period of the transcript is semantically factorized into four func-
tional subsequences called modules. All these modules fold into a parallelogram
of width Θ(n) and of respective height 6 × 2n, 6 × 2m, 6 × 2, and 6 × 2n (recall
one zigzag is of height 6); that is, the first module makes 2n zigzags, for example.
These parallelograms pile down one after another. One period thus results in a
parallelogram of width and height both Θ(n). Their roles are as follows:

Module 1 extracts all the transitions that originate at the current state;
Module 2 extracts all the transitions that read the current letter among

those chosen by Module 1;
Module 3 nondeterministically chooses one state among those chosen by

Module 2, if any, or halts the system otherwise;
Module 4 outputs the chosen state downward.

In this way, these modules filter candidates for the next transition, and impor-
tantly, through a common interface, which is the format (2).

3.2 Implementation

Let us assume that the transcript has been folded up to its (i−1)-th period
successfully into a parallelogram, which outputs the state qi−1 below, and the
next period reads the letter bi. See Figs. 4, 6, 8, and 11 for an example run.

Bricks. All the modules (more precisely, their transcripts) consist of functional
submodules. Each submodule expects several surrounding environments. A con-
formation that the submodule takes in such an expected environment is called
a brick [5]. On the inductive assumption that all the previous submodules have
folded into a brick, a submodule never encounters an unexpected environment,
and hence, folds into a brick. Any expected environment exposes 1-bit informa-
tion b below and a submodule enters it in such a manner that its first bead is
placed either 1-bead below y (starting at the top) or 3-beads below y (at the
bottom). Hence, in this paper, a brick of a module X is denoted as X−hy, where
h ∈ {t,b} indicates whether this brick starts at the top or bottom and y is the
input from above.

Spacers and Turners. The transcript of a zig or a zag is a chain of submodules
interleaved by a structural sequence called a spacer. A spacer keeps two con-
tinuous submodules far enough horizontally so as to prevent their interference.
We employ spacers that fold into a parallelogram (p-spacer) or glider (g-spacer,
Fig. 2) of height 3. They start and end folding at the same height (top or bot-
tom) in order to propagate 1-bit of information. The spacer and its 1-bit carrying
capability are classical, found already in the first oritatami system [4].

152 Y.-S. Han et al.

1011

0011

1000

1111

f2/100

f3/101
f4/100

f1/101 1 0 1 1

Current state qi−1

f1

f2

f3

f4

f1 = Nf2 = Y f3 = Y f4 = Y

Fig. 4. Example run of the proposed architecture. (Left) A 4-state FA with 4 transitions
f1, f2, f3, f4 to be simulated, which is obtained from a 3-state FA with the 2 transitions
f2 and f4 in the way explained in the main text, that is, by adding a new accepting
sink state 0011 and transitions f1, f3 on the special letter $, encoded as 101. (Right)
Outline of the flow of 1-bit information of whether each of the transitions originates
from the current state 1011 or not through Module 1.

Fig. 5. The four bricks of A1, that is, A1−0b, A1−1b, A1−0t, and A1−1t.

After a zig is transcribed a structural submodule called turner. Its role is to
fold so as to guide the transcript to the point where the next zag is supposed to
start. Likewise, a zag is followed by a turner for the next zig. Some turners play
also a functional role.

Module 1 (origin state checker; see Fig. 4) folds into 2n zigzags. Recall that all
the n variables f1, f2, . . . , fn have been set to N by the seed or Module 4 in
the previous period. The (2k−1)-th zigzag checks whether the origin ok of the
k-th transition fk is equal to qi−1 or not, and if so, it sets the variable fk to Y .
Every other zigzag (2nd, 4th, and so on) just formats these variables as well as
the z-variables (for the current state in (2)) using two submodules Pzig and Pzag

(their bricks are illustrated in [8]); this is a common feature among all the four
modules. The transcript for such a formatting zig (resp. zag) is a chain of 2n
instances of Pzig (resp. Pzag), unless otherwise noted.

The transcript for the (2k−1)-th zig is semantically represented as
�n

j=1(A
′Aok[j]) for submodules A′, A0, A1. The zig starts folding at the bottom.

The n instances of A′ propagate f1, . . . , fn downward using the four bricks, all

Simulation of Arbitrary NFAs by Oritatami Systems 153

of which end folding at the same height as they start. See Fig. 5 for the four
bricks of A1; for those of A0 as well as of A′, see [8]. Aok[j] checks whether
ok[j] = qi−1[j] or not when it starts at the bottom; it ends at the bottom if
these bits are equal, or top otherwise. Starting at the top, it certainly ends at
the top. In any case, it propagates qi−1[j] downward. The zig thus ends at the
bottom iff ok = qi−1. The succeeding turner admits two conformations to let the
next zag start either at the bottom if ok = qi−1, or top otherwise.

The transcript for the next zag is B2n−2k+1B′B2k−2 for submodules B, whose
blocks are illustrated in [8], and B′. It is transcribed from right to left so that
B′ can read fk. B′ is in fact just a g-spacer shown in Fig. 2. This glider exposes
below the bead-type sequence 590-585-584-579 if it starts folding at the bottom,
or 588-587-582-581 otherwise; the former and latter shall be formatted into xY

and xN , respectively, by the next zigzag.
The variables f1, . . . , fn are updated in this way and output below in the

format (2) along with the current state qi−1, which is not used any more though.

f1 = Nf2 = Y f3 = Y f4 = Y

1

0

0

b
i
=

100

f1 = Nf2 = Y f3 = Nf4 = Y

Fig. 6. Example run of the ori-
tatami system constructed accord-
ing to the proposed architecture in
order to simulate the FA in Fig. 4.
Here Module 2 filters transitions
f2, f3, f4 chosen by Module 1 fur-
ther depending on whether each of
them reads the letter 100 or not;
thus f3 is out.

Module 2 (input letter checker; see Fig. 6)
folds into 2m zigzags; recall m = �log |Σ|	.
The 	-th bit of the input letter bi is read
by the turner between the (2	−2)-th zag and
(2	−1)-th zig and the bit lets this zig start at
the top if it is 0, or bottom if it is 1. Recall
that fk reads ak for all 1 ≤ k ≤ n. The 	-th
bit of these letters is encoded in the transcript
for the (2	−1)-th zig as Ca1[�]Ca2[�] · · · Can[�]

using submodules C0 and C1. All the bricks
of C0 and C1 start and end at the same
height, as suggested in Fig. 7; thus propagat-
ing bi[] throughout the zig. Starting at the
top (i.e., bi[] = 0), C0 takes the brick C0−Nt

if it reads N from above or C0−Yt if it reads
Y ; these bricks output N and Y downward,
respectively; thus propagating the x-variables
downward. On the other hand, if it starts at
the bottom (i.e., bi[] = 1), C0 certainly takes C0−∗b and outputs N downward.
C1 propagates what it reads downward by the bricks C1−Nb, C1−Yb (see [8]) if
bi[] = 1 while it outputs N downward by C1−∗t if bi[] = 0. Functioning in this
way, the submodules Ca1[j], . . . , Can[j] compare the letters that f1, . . . , fn read
with bi and filter those with unmatching j-th bit out. The next zag propagates
the result of this filtering downward using B’s.

Module 3 (nondeterministic choice of the next transition; see Fig. 8) folds into
just 2 zigzags. Each transition fk = (ok, ak, tk) has been checked whether ok =
qi−1 in Module 1 and whether ak = bi in Module 2, and the variable fk is set
to Y iff fk passed both the checks, that is, proved valid. The first zig marks
the valid transition with smallest subscript by setting its variable to Y ′ using
a submodule D. This submodule was invented in [9] for the same purpose, and

154 Y.-S. Han et al.

Fig. 7. The three bricks of C0, that is, C0−∗b, C0−Nt, and C0−Yt.

f1 = N f2 = Y f3 = N f4 = Y

D D D D

f1 = N f2 = Y f3 = N f4 = Y

Nondeterministic choice

f1 = N f2 = Y f3 = N f4 = Y

E E E E

Pzig Pzig Pzig Pzig Pzig Pzig Pzig Pzig

Pzag Pzag Pzag Pzag Pzag Pzag Pzag Pzag

N 0 Y 0 N 0 N 0

f1 = N f2 = Y f3 = N f4 = Y

E E E E

Pzig Pzig Pzig Pzig Pzig Pzig Pzig Pzig

Pzag Pzag Pzag Pzag Pzag Pzag Pzag Pzag

N 0 N 0 N 0 Y 0

Fig. 8. Example run of Module 3, in which the transitions that have proved valid in
Modules 1 and 2 (f2 and f4 here) are chosen nondeterministically.

hence, we just mention a property that its four bricks (see [8]) ensure this zig to
end at the bottom if none of the transition has proven valid. In that case, the
succeeding turner is geometrically trapped as in Fig. 9 and the system halts.

The transcript for the first zag consists of n instances of a submodule E.
The five bricks of E are shown in Fig. 10. The zag starts folding at the bottom.
When an E starts at the bottom and reads Y from above, it folds into the brick
E−YbY or E−YbN in Fig. 10 nondeterministically, which amounts to choosing
the corresponding valid transition or not. Observe that E−YbY ends at the top,
notifying the succeeding E’s that the decision has been already made. When
starting at the top, E takes no brick but E−∗t, which outputs N no matter what
it reads. The brick E−Y′b and Y ′ (marked Y) prevent the oritatami system from
not choosing any valid transition; that is, if an E starts at the bottom (meaning
that none of the valid transitions has been chosen yet) and reads Y ′ from above,
it deterministically folds into E−Y′b, which outputs Y .

Simulation of Arbitrary NFAs by Oritatami Systems 155

Fig. 9. Turner from the first zig of Module 3 to the first zag. (Left) It is trapped
geometrically in the pocket of the previous turner and halts the system if it starts
folding at the bottom. (Right) It is not trapped and lets the next zag be transcribed.

Fig. 10. The five bricks of E: (Top) E−Nb and E−Y′b; (Bottom) E−∗t, E−YbY, and
E−YbN. Note that E−YbY and E−YbN are chosen nondeterministically and equally
probably.

The transcript of the next zig differs from that of normal formatting zig in
that every other instance of Pzig is replaced by a spacer. This replacement allows
the n instances of Pzag responsible for the z-variables to take their “default” brick
Pzag−0b, which outputs 0. This is a preprocess for Module 4 to set these variables
to the target state of the transition chosen.

Module 4 (outputting the target state of the transition chosen; see Fig. 11) folds
into 2n zigzags. Its (2k−1)-th zig checks whether fk was chosen or not, and if it
was, the next zag sets zqi[j] to tk[j] (recall tk is the target of fk).

The transcript for the (2k−1)-th zig is represented semantically as

(A′A′)k−1A1A
′(A′A′)n−k. (4)

Observe that the sole A1 is positioned so as to read the 1-bit of whether fk was
chosen or not. The zig starts at the bottom. Since A′ always start and end at the
same height, the A1 starts at the bottom. It ends at the bottom if it reads Y , or
top otherwise (Fig. 5). The succeeding turner is functional, which lets the next

156 Y.-S. Han et al.

N 0 Y 0 N 0 N 0

A1 A A A A A A A

G0 G0 B G0 B G1 B G1

A A A1 A A A A A

B G1 G0 G0 B G0 B G0

A A A A A1 A A A

B G0 B G0 G0 G1 B G1

Pzig Pzig Pzig Pzig Pzig Pzig Pzig Pzig

Pzig Pzig Pzig Pzig Pzig Pzig Pzig Pzig

Pzag Pzag Pzag Pzag Pzag Pzag Pzag Pzag

Pzag Pzag Pzag Pzag Pzag Pzag Pzag Pzag

N 1 N 0 N 0 N 0

Fig. 11. Example run of Module 4 (due to the space shortage, the last 3 zigzags
are omitted). Here the transition f2 has been chosen so that only the corresponding
(2×2−1)-th zig ends at the bottom. As a result, only the 3rd zag outputs the hardcoded
target state 1000 below. All the succeeding zigzags propagate 1000 downward.

zag start at the bottom if the previous zig has ended at the bottom, or at the
top otherwise. In this way, the (2k−1)-th zag starts at the bottom iff Module 3
has chosen fk.

The transcript for the (2k−1)-th zag is represented semantically as
(⊙k+1

j=n(Gtk[j]B)
)
Gtk[k]G0

(⊙1
j=k−1(Gtk[j]B)

)
. (5)

All the bricks of submodules G0 and G1 (see [8]) start and end at the same
height; thus propagating the 1-bit of whether fk was chosen or not (bottom
means chosen) through this zag. Note that this transcript is transcribed from
right to left so that these G0’s and G1’s read z-variables. G0 and G1 just copy
what they read downward if they start at the top, that is, in all zags but the
one corresponding to the chosen transition. In the “chosen” zag, they rather
output 0 and 1 downward, respectively. Comparing (4) with (5), we can observe
that below the sole instance of A0 is transcribed an instance of G0. This G0

plays a different role from other G0’s in the zag. The A1 above outputs Y or N
depending on whether fk was chosen or not. If it outputs Y , then the (2k−1)-th
zag starts at the bottom as just mentioned, and the sole brick of G0 that starts

Simulation of Arbitrary NFAs by Oritatami Systems 157

at the bottom outputs 0 = N . Otherwise, G0 just propagates its output 0 = N
downward. In this way, all the x-variables are initialized to N for the sake of
succeeding period.

3.3 Verification

Using a simulator developed for [9], we have checked for each submodule that
it folds as expected in all the expected environments. An expected environ-
ment can be described in terms of bricks of surrounding submodules. Folding
of a submodule into a brick in an environment causes a transition to another
environment for the next submodule. Such transitions combine all the expected
environments together into one closed system called brick automaton, whose ver-
tices are expected environments described in terms of surrounding bricks. The
automaton is too large to be included here; see [8].

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Demaine, E.D., et al.: Know when to fold ’Em: self-assembly of shapes by folding in
Oritatami. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 19–36.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 2

3. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA Origami
structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp.
1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 1

4. Geary, C.W., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that
fold greedily during transcription. In: MFCS 2016. LIPIcs, vol. 58, pp. 43:1–43:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

5. Geary, C.W., Meunier, P., Schabanel, N., Seki, S.: Proving the Turing universality
of Oritatami co-transcriptional folding. In: Hsu, W., Lee, D., Liao, C. (eds.) ISAAC
2018. LIPIcs, vol. 123, pp. 23:1–23:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.23

6. Geary, C.W., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804
(2014). https://doi.org/10.1126/science.1253920

7. Han, Y.-S., Kim, H.: Construction of geometric structure by Oritatami system. In:
Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 173–188. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 11

8. Han, Y., Kim, H., Masuda, Y., Seki, S.: A general architecture of Oritatami systems
for simulating arbitrary finite automata (2019). http://arxiv.org/abs/1904.10174

9. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly
of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS,
vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94812-6 22

10. Watters, K., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional fold-
ing of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12), 1124–
1133 (2016). https://doi.org/10.1038/nsmb.3316

https://doi.org/10.1007/978-3-030-00030-1_2
https://doi.org/10.1007/978-3-319-11295-4_1
https://doi.org/10.4230/LIPIcs.ISAAC.2018.23
https://doi.org/10.1126/science.1253920
https://doi.org/10.1007/978-3-030-00030-1_11
http://arxiv.org/abs/1904.10174
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1038/nsmb.3316

Descriptional Complexity of Power and
Positive Closure on Convex Languages

Michal Hospodár(B)

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com

Abstract. We study the descriptional complexity of the k-th power and
positive closure operations on the classes of prefix-, suffix-, factor-, and
subword-free, -closed, and -convex regular languages, and on the classes
of right, left, two-sided, and all-sided ideal languages. We show that the
upper bound kn on the nondeterministic complexity of the k-th power in
the class of regular languages is tight for closed and convex classes, while
in the remaining classes, the tight upper bound is k(n− 1) + 1. Next we
show that the upper bound n on the nondeterministic complexity of the
positive closure operation in the class of regular languages is tight in all
considered classes except for classes of factor-closed and subword-closed
languages, where the complexity is one. All our worst-case examples are
described over a unary or binary alphabet, except for witnesses for the
k-th power on subword-closed and subword-convex languages which are
described over a ternary alphabet. Moreover, whenever a binary alphabet
is used for describing a worst-case example, it is optimal in the sense
that the corresponding upper bounds cannot be met by a language over a
unary alphabet. The most interesting result is the description of a binary
factor-closed language meeting the upper bound kn for the k-th power.
To get this result, we use a method which enables us to avoid tedious
descriptions of fooling sets. We also provide some results concerning the
deterministic state complexity of these two operations on the classes of
free, ideal, and closed languages.

1 Introduction

The nondeterministic state complexity of a regular language is the smallest num-
ber of states in any nondeterministic finite automaton (with a unique initial
state) recognizing this language. The nondeterministic state complexity of a
regular operation is the number of states that are sufficient and necessary in the
worst case to accept the language resulting from this operation, considered as a
function of the nondeterministic state complexities of the operands.

The nondeterministic state complexity of basic regular operations such as
union, intersection, concatenation, and positive closure, has been investigated by

Research supported by VEGA grant 2/0132/19 and grant APVV-15-0091.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 158–170, 2019.
https://doi.org/10.1007/978-3-030-23679-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_13

Descriptional Complexity of Lk and L+ on Convex Languages 159

Holzer and Kutrib [13]. The binary witnesses for complementation and reversal
were described by Jirásková [19]. The k-th power operation on nondeterministic
automata was studied by Domaratzki and Okhotin [10]. The nondeterminis-
tic state complexity of operations on prefix-free and suffix-free languages was
examined by Han et al. [11,12] and by Jirásková et al. [20,22]. The results of
these papers were improved and new results on nondeterministic complexity
were obtained in a series of papers by Mlynárčik et al. In [21], complementation
on prefix-free, suffix-free, and non-returning languages was investigated. Com-
plementation on factor-free, subword-free, and ideal languages was considered in
[25], basic operations (intersection, union, concatenation, Kleene star, reversal,
complementation) on closed and ideal languages in [15], and basic operations
on free and convex languages in [16]. The results of these papers were summa-
rized in the journal version [18]. Let us mention that the (deterministic) state
complexity in all above mentioned classes were considered by Brzozowski et al.
for basic operations [2–4] and by Čevorová for the second power, the square
operation [6,7].

In this paper, we investigate the nondeterministic state complexity of the
k-th power and positive closure operations on subclasses of convex languages.
For both operations and all considered subclasses, we provide a tight upper
bound on its nondeterministic state complexity. Except for two cases in which
our witnesses are ternary, all the witnesses are described over a binary or unary
alphabet. Moreover, whenever a binary alphabet is used, it is always optimal
in the sense that the corresponding upper bound cannot be met by any unary
language.

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages
and automata theory. For details and all the unexplained notions, the reader
may refer to [14,29,30]. Let Σ be a finite non-empty alphabet of symbols. Then
Σ∗ denotes the set of strings over the alphabet Σ including the empty string ε.
A language is any subset of Σ∗.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, s, F)
where Q is a finite non-empty set of states, Σ is a finite non-empty input alphabet,
s ∈ Q is the initial state, F ⊆ Q is the set of final (or accepting) states, and
· : Q × Σ → 2Q is the transition function which can be extended to the domain
2Q×Σ∗ in the natural way. The language accepted (or recognized) by the NFA A
is defined as L(A) = {w∈Σ∗ | s·w ∩ F �= ∅}. An NFA is a (partial) deterministic
finite automaton (DFA) if |q · a| ≤ 1 for each q in Q and each a in Σ.

We say that (p, a, q) is a transition in NFA A if q ∈ p ·a. We also say that the
state q has an in-transition on symbol a, and the state p has an out-transition
on symbol a. An NFA is non-returning if its initial state does not have any
in-transitions, and it is non-exiting if each its final state does not have any
out-transitions. To omit a state in an NFA means to remove it from the set of
states and to remove all its in-transitions and out-transitions from the transition
function. To merge two states means to replace them by a single state with all
in-transitions and out-transitions of the original states.

160 M. Hospodár

Let A = (Q,Σ, ·, s, F) be an NFA and X,Y ⊆ Q. We say that X is reachable
in A if there is a string w in Σ∗ such that X = s · w. Next, we say that Y is
co-reachable in A if Y is reachable in the reversed automaton AR obtained from
A by reversing all the transitions, and by swapping the roles of the initial and
final states.

The nondeterministic state complexity of a regular language L, denoted
nsc(L), is the smallest number of states in any NFA for L. To provide lower
bounds on nondeterministic state complexity, we use the fooling set method
described below. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is called
a fooling set for a language L if for each i, j in {1, 2, . . . , n}, (1) xiyi ∈ L, and
(2) if i �= j, then xiyj /∈ L or xjyi /∈ L.

Lemma 1 (cf. [1, Lemma 1]). Let F be a fooling set for a regular language L.
Then every NFA for L has at least |F| states. 	

A slightly modified definition of the fooling set results in the notion of a fool-
ing set for an automaton (cf. [17]).

Definition 2 ([17, Definition 2]). A set of pairs {(Xi, Yi) | i = 1, 2, . . . , n} is
called a fooling set for an NFA A if for each i, j in {1, 2, . . . , n},
(1) Xi is reachable and Yi is co-reachable in A,
(2) Xi ∩ Yi �= ∅, and
(3) if i �= j, then Xi ∩ Yj = ∅ or Xj ∩ Yi = ∅.

A fooling set for an NFA A of size n exists if and only if a fooling set for the
language L(A) exists. The next lemma provides a useful way to to get a lower
bound on the size of nondeterministic finite automata.

Lemma 3 (Greater-Smaller Lemma). Let n ≥ m ≥ 2. Let A be an NFA
with the state set {1, 2, . . . , n} and {(Xi, Yi) | i = 1, 2, . . . ,m} be a set of pairs
of subsets of the state set of an NFA A such that for each i in {1, 2, . . . ,m}
(1) Xi is reachable and Yi is co-reachable in A,
(2) i ∈ Xi ∩ Yi, and
(3) Xi ⊆ {i, i + 1, . . . , n} and Yi ⊆ {1, 2, . . . , i}.
Then every NFA for L(A) has at least m states.

Proof. Since Xi is reachable, there is a string xi which sends the initial state of A
to the set Xi. Since Yi is co-reachable, there is a string yi which is accepted by A
from every state in Yi and rejected from every other state. Since Xi ∩ Yi = {i},
the string xiyi is in L(A). Let i �= j. Without loss of generality, we have i > j.
Then Xi∩Yj = ∅, so xiyj is not in L(A). Thus the set {(Xi, Yi) | i = 1, 2, . . . ,m}
is a fooling set for A, so the set {(xi, yi) | i = 1, 2, . . . ,m} is a fooling set for L(A).
Hence every NFA for L(A) has at least m states by Lemma 1. 	

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a prefix of w, x is a factor of w,
and v is a suffix of w. If w = u0v1u1 · · · vnun, where ui, vi ∈ Σ∗, then v1v2 · · · vn
is a subword of w. A prefix v (suffix, factor, subword) of w is proper if v �= w.

Descriptional Complexity of Lk and L+ on Convex Languages 161

A language L is prefix-free if w ∈ L implies that no proper prefix of w is
in L; it is prefix-closed if w ∈ L implies that each prefix of w is in L; and it
is prefix-convex if u,w ∈ L and u is a prefix of w imply that each string v
such that u is a prefix of v and v is a prefix of w is in L. Suffix-, factor-, and
subword-free, -closed, and -convex languages are defined analogously. A language
is a right (respectively, left, two-sided, all sided) ideal if L = LΣ∗ (respectively,
L = Σ∗L,L = Σ∗LΣ∗, L = L � Σ∗ where L � Σ∗ is the language obtained
from L by inserting any number of symbols to any string in L). Notice that the
classes of free, closed, and ideal languages are subclasses of convex languages.

It is known that if a language is prefix-free, then every minimal NFA for it
is non-exiting, and if a language is suffix-free, then every minimal NFA for it is
non-returning [11,12]. Next, if a language is a right (left) ideal, then it is accepted
by a minimal NFA such that its unique final (initial) state has a loop on each
symbol and no other out-transitions (in-transitions) [18, Proposition 12]. Finally,
an NFA with all states final accepts a prefix-closed language, for an NFA A if
every string which is accepted from any state of A is also accepted from the
initial state of A then L(A) is suffix-closed, and if a language is prefix-closed
and suffix-closed, then it is factor-closed [18, Proposition 13].

3 Results on Nondeterministic State Complexity

In this section, we examine the nondeterministic state complexity of the k-th
power and positive closure on subclasses of convex languages. To get upper
bounds, we use automata characterizations of languages in considered classes.
To get lower bounds, we use the fooling set method given by Lemma1 or, in the
case of binary factor-closed languages, its simplification given by Lemma 3.

The nondeterministic state complexity of the k-th power on regular languages
is kn if k ≥ 2 and n ≥ 2 [10, Theorem 3]. The next theorem shows that there is
a smaller upper bound for the classes of free and ideal languages.

Theorem 4 (Power on free and ideal languages: Upper bounds). Let n
and k be positive integers. Let L be a prefix-free or suffix-free, or right or left
ideal language accepted by an NFA with n states. Then Lk is accepted by an NFA
with at most k(n − 1) + 1 states.

Proof. We may assume that an NFA for a prefix-free language L is non-exiting
and has a unique final state. To get an NFA for Lk, we take k copies of a minimal
NFA for L and we merge the final state in the j-th copy with the initial state in
the (j + 1)-th copy. The initial state of the resulting NFA is the initial state in
the first copy, and its unique final state is the final state in the k-th copy.

Now consider right ideals. We may assume that an NFA for a right ideal L has
a loop on each symbol in its unique final state which has no other out-transitions.
The construction of an NFA for Lk is the same as for prefix-free languages.

If L is suffix-free, then we may assume that a minimal NFA for L is non-
returning. To get an NFA for Lk, we take k copies of a minimal NFA for L. For
each symbol a and every final state p in the j-th copy with 1 ≤ j ≤ k − 1, we
make the state p non-final and add the transitions (p, a, q) whenever there is a

162 M. Hospodár

transition on a to q from the initial state in the (j + 1)-th copy. Next, we omit
the unreachable initial state of the (j + 1)-th copy.

Finally, we may assume that a minimal NFA for a left ideal language L has
a loop on each symbol in its initial state which has no other in-transitions. The
construction of an NFA for Lk is the same as for suffix-free languages except
that we add a loop on each symbol in p.

In all four cases, we get an NFA for Lk with k(n − 1) + 1 states. 	

Theorem 5 (Power: Lower bounds). Let k ≥ 2 and n ≥ 2.

(a) There exists a unary subword-free language L accepted by an n-state NFA
such that every NFA for Lk has at least k(n − 1) + 1 states.

(b) There exists a unary all-sided ideal language L accepted by an n-state NFA
such that every NFA for Lk has at least k(n − 1) + 1 states.

(c) There exists a ternary subword-closed language L accepted by an n-state
NFA such that every NFA for Lk has at least kn states.

(d) There exists a binary factor-closed language L accepted by an n-state NFA
such that every NFA for Lk has at least kn states.

Proof.

(a) Let L = {an−1}, which is accepted by an n-state NFA. We have Lk =
{ak(n−1)} and the set {(ai, ak(n−1)−i) | 0 ≤ i ≤ k(n − 1)} is a fooling set
for Lk. By Lemma 1, every NFA for Lk has at least k(n − 1) + 1 states.

(b) Let L = {ai | i ≥ n − 1}, which is accepted by an n-state NFA. We have
Lk = {ai | i ≥ k(n − 1)} and the same set as above is a fooling set for Lk.

(c) Let L = {b∗aic∗ | 0 ≤ i ≤ n−1}. For each j with 1 ≤ j ≤ k, consider the set
of pairs Fj = {((ban−1c)j−1bai, an−1−ic(ban−1c)k−j) | 0 ≤ i ≤ n − 1}. We
have (ban−1c)k ∈ Lk. Next Lk ⊆ (b∗a∗c∗)k, and moreover, no string with
more than k(n − 1) occurrences of a is in Lk. Thus the set

⋃k
j=1 Fj is a

fooling set for Lk of size kn, so every NFA for Lk has at least kn states by
Lemma 1.

(d) Let L be the set of strings over {a, b} whose every factor in a∗ is of length
at most n−1. Since every factor of every string in L is also in L, L is factor-
closed. The language L is accepted by the partial DFA A shown in Fig. 1.
Consider the kn-state partial DFA D consisting of k copies of A connected
through the transition on a going from the last state of the j-th copy to
the second state of the (j + 1)-th copy; an example for k = 3 is shown in

1A 2 . . . n − 1 n
a a a a

b
b

b b

Fig. 1. A binary factor-closed witness for the k-th power meeting the bound kn.

Descriptional Complexity of Lk and L+ on Convex Languages 163

Fig. 2. The partial DFA D accepts the language Lk. Now we prove that D is a
minimal NFA for Lk. For i = 1, 2, . . . , kn, let Xi = {i} and Yi = {1, 2, . . . , i}.
Notice that each set Xi with i /∈ {jn + 1 | 1 ≤ j ≤ k − 1} is reachable in D
by a string in a∗; each set Xi with i ∈ {jn + 1 | 1 ≤ j ≤ k − 1} is reachable
in D by a string in a∗b; each set Yi with i /∈ {jn | 1 ≤ j ≤ k − 1} is co-
reachable in D since it is reachable in DR by a string in a∗; each set Yi with
i ∈ {jn | 1 ≤ j ≤ k − 1} is co-reachable in D since it is reachable in DR by
a string in a∗b. Moreover, we have i ∈ Xi ∩ Yi, Xi ⊆ {i, i + 1, . . . , kn}, and
Yi ⊆ {1, 2, . . . , i}, so the sets Xi and Yi satisfy the conditions of Lemma3
(Greater-Smaller Lemma). Hence D is a minimal NFA for Lk, which proves
the lower bound kn. 	

The next theorem shows that two symbols are necessary to meet the

bound kn.

Theorem 6 (Power on unary convex languages). Let L be a unary convex
language accepted by an NFA with n states. Then Lk is accepted by an NFA with
k(n−1)+1 states. There exists a unary closed language L accepted by an n-state
NFA such that every NFA for Lk has at least k(n − 1) + 1 states.

Proof. If L is infinite, then L = {ai | i ≥ n − 1}, so Lk = {ai | i ≥ k(n − 1)}.
If L is finite, then the length of the longest string in L is at most n − 1, so
the length of the longest string in Lk is at most k(n − 1). In both cases, the
language Lk is accepted by an NFA with k(n − 1) + 1 states. For the lower
bound, consider the subword-closed language L = {ai | 0 ≤ i ≤ n − 1}. Then we
have Lk = {ai | 0 ≤ i ≤ k(n − 1)}, and hence nsc(Lk) = k(n − 1) + 1. 	

Now we consider the operation of positive closure. The upper bound on non-
deterministic state complexity of positive closure on regular languages is n [13,
Theorem 9] since we can get an NFA for L+ from an NFA for L by adding the
transition (q, a, s) whenever there is a transition (q, a, f) for a final state f . The

D 1 2 . . . n − 1 n

n + 1 n + 2 . . . 2n − 1 2n

2n + 1 2n + 2 . . . 3n − 1 3n

a a a a

a

a a a a

a

a a a a

b
b

b
b

b
b

b b

b
b

b b

Fig. 2. A partial DFA for L(A)3 where A is shown in Fig. 1.

164 M. Hospodár

next theorem shows that this upper bound is tight in all the classes of free and
ideal, so also convex languages, and on the classes of prefix-closed and suffix-
closed languages. It also proves that the positive closure of every factor-closed
language is of complexity one, cf. [15, Theorem 8].

Theorem 7 (Positive closure on factor-closed languages: Upper
bound). Let L be a factor-closed language. Then L+ is accepted by a one-
state NFA. 	

Since every subword-closed language is also factor-closed, the upper bound 1
on nondeterministic state complexity of positive closure holds also for subword-
closed languages, and it is met by {ε}. For other subclasses, the regular upper
bound n holds, and the next theorem provides the matching lower bounds.

Theorem 8 (Positive closure: Lower bounds). There exists

(a) a unary subword-free (so, subword-convex) language L
(b) a unary all-sided ideal language L
(c) a binary prefix-closed language L
(d) a binary suffix-closed language L

accepted by an n-state NFA such that every NFA for L+ has at least n states.

Proof.

(a) Let L = {an−1}, which is accepted by an n-state NFA. We have L+ =
{ak(n−1) | k ≥ 1} and the set {(ai, an−1−i) | 0 ≤ i ≤ n − 1} is a fooling set
for L+ of size n. By Lemma 1, every NFA for L+ has at least n states.

(b) Let L = {ai | i ≥ n − 1}, which is accepted by an n-state NFA. We have
L+ = L and the same set as above is a fooling set for L+ of size n.

(c) Let L be the language accepted by the NFA shown in Fig. 3. Notice that
each state of this NFA is final, hence L is prefix-closed. Consider the set
of pairs of strings F = {(ai, an−1−ib) | 0 ≤ i ≤ n − 1} of size n. We have
aian−1−ib = an−1b. Since the string an−1b is in L, it is in L+. Let 0 ≤ i <
j ≤ n − 1. Then aian−1−jb is not in L+. Hence the set F is a fooling set
for L+ of size n.

1 2 . . . n
a a a

b

Fig. 3. A binary prefix-closed witness NFA for positive closure meeting the bound n.

Descriptional Complexity of Lk and L+ on Convex Languages 165

(d) Let L be the language accepted by the NFA shown in Fig. 4. Notice that
only strings beginning with a are accepted from non-initial states, and for
every aw accepted from a non-initial state we have w ∈ L, hence L is suffix-
closed. Since the initial state is a unique final state, we have L = L+.
Consider the set of pairs of strings F = {(bai, an−1−i) | 0 ≤ i ≤ n − 1}
of size n. We have baian−1−i = ban−1, which is in L+. Let 0 ≤ i < j ≤ n−1.
Then baian−1−j is not in L+. Hence the set F is a fooling set for L+ of
size n. 	

1 2 3 . . . n

a

a a a

a

b

Fig. 4. A binary suffix-closed witness NFA for positive closure meeting the bound n.

4 Results on Deterministic State Complexity

The (deterministic) state complexity of a regular language L, sc(L), is the small-
est number of states in any DFA for L. The deterministic state complexity of
square on convex languages was considered by Čevorová [6,7] who obtained tight
upper bounds in all subclasses of free, ideal, and closed languages. We use some
of her results in the proof of the following theorem.

Theorem 9. Let n ≥ 2. Let L be a language over Σ with sc(L) ≤ n. Then

(a) if L is prefix-free, then sc(Lk) ≤ k(n − 2) + 2, and this bound is met by
a unary subword-free language;

(b) if L is left ideal, then sc(Lk) ≤ k(n−1)+1, and this bound is met by a unary
all-sided ideal language;

(c) if L is right ideal, then sc(Lk) ≤ n + (k − 1)2n−2, and this bound is met
if |Σ| ≥ 2;

(d) if L is factor-closed, then sc(Lk) ≤ k(n − 1) + 1, and this bound is met by
a binary subword-closed language. 	

The upper bound for concatenation on suffix-closed languages is (m−1)n+1

[4, Theorem 3(2)], which implies the upper bound on square (n − 1)n + 1 and
on the k-th power (n − 1)nk−1 + 1. However, the actual state complexity of
square is 1

2 (n2 +n)−1 [7, Theorem 3.12]. The ternary witness from [7] gives the
resulting complexity 16 with n = 5, k = 2, 25 with n = 5, k = 3, and 38 with
n = 5, k = 4. It is possible that Čevorová’s witness does not work for k ≥ 3.
Since we do not know the upper bound, this problem remains open.

Now we are going to examine the positive closure on DFAs accepting free,
ideal, and closed languages. Since ε ∈ L implies L+ = L∗, the known results on
Kleene star on closed languages [4,8] hold also for positive closure.

166 M. Hospodár

Theorem 10. Let n ≥ 2. Let L be a language over Σ with sc(L) ≤ n. Then

(a) If L is prefix-free, then sc(L+) ≤ n, and the bound is met by binary subword-
free language.

(b) If L is suffix-free, then sc(L+) ≤ 2n−2 +1, and the bound is tight if |Σ| ≥ 2.
(c) If L is right or left ideal, then sc(L+) ≤ n, and the bound is met by a unary

all-sided ideal language.
(d) If L is prefix-closed, then sc(L+) ≤ 2n−2+1, and the bound is tight if |Σ| ≥ 2.
(e) If L is suffix-closed, then sc(L+) ≤ n, and the bound is tight if |Σ| ≥ 2.
(f) If L is factor-closed, then sc(L+) ≤ 2, and the bound is met by a unary

subword-closed language.

Proof.

(a) We may assume that the DFA A for L has a unique final state f which
goes to the non-final sink state d on each symbol. To get the DFA for L+,
it is enough to replace each transition (f, a, d) by (f, a, s · a) where s is the
initial state and · is the transition function of A. The resulting DFA has n
states and this upper bound is met by the language b∗an−2 if n ≥ 4, cf. [23,
Lemmas 3, 4].

(b) We may assume that the DFA A for L is non-returning and has a non-final
sink state. To get a non-returning NFA for L+, omit this sink state and then
add the transitions (f, a, s · a) for each final state f of A and each symbol a
in Σ. Then the subset automaton corresponding to this NFA has at most
2n−2 +1 reachable and pairwise distinguishable states. This gives the upper
bound. Cmorik’s witness for star in [9, Theorem 3] meets this upper bound;
notice that his proof works for positive closure as well.

(c) We have L ⊆ L+, and if L is right or left ideal, then L+ ⊆ L. Therefore we
have L = L+. The unary all-sided ideal an−1a∗ meets the upper bound n.

(d) If L is prefix-closed, then ε ∈ L, so L+ = L∗. Hence this case is covered by
the result on star on prefix-closed languages from [8, Theorem 13].

(e) Similarly as in case (d), this case is covered by the result on star on suffix-
closed languages from [4, Theorem 4(2)].

(f) By Theorem 7, we have L+ = Γ ∗ for some Γ with ∅ ⊆ Γ ⊆ Σ. This gives
the upper bound 2, which is met by the unary subword-closed language {ε}.

	

It follows from [5, Proposition 5] that the upper bound for positive closure on

prefix-convex languages is 2n−2 +2n−3, and it is met by a language defined over
a five-letter alphabet. Similarly, [28, Theorem 2] shows that the upper bound
2n−1 + 2n−2 − 1 for positive closure in the general case of regular languages
is met by a quaternary suffix-convex language. The results from the theorem
above provide the lower bound n for positive closure on the classes of factor-,
and subword-convex languages. The upper bounds in these classes remain open.

Descriptional Complexity of Lk and L+ on Convex Languages 167

Table 1. Nondeterministic complexity of the k-th power and positive closure.

Class\Operation Lk |Σ| L+ |Σ|
prefix-, suffix-, factor-, subword-free k(n − 1) + 1 1 n 1

right, left, two-sided, all-sided ideal k(n − 1) + 1 1 n 1

prefix-, suffix-closed kn 2 n 2

factor-closed kn 2 1 1

subword-closed kn 3 1 1

unary closed k(n − 1) + 1 1

prefix-, suffix-, factor-convex kn 2 n 1

subword-convex kn 3 n 1

unary convex k(n − 1) + 1 n

regular kn 2 [10] n 1 [13]

unary regular k(n − 1) + 1 ≤ · ≤ kn [10] n [13]

Table 2. Deterministic complexity of the k-th power and positive closure. We have
(n − k)2(k−1)(n−k) ≤ ◦ ≤ n2(k−1)n.

Class\Operation Lk |Σ| L+ |Σ|
prefix-free k(n − 2) + 2 1 n 2

suffix-free ? 2n−2 + 1 2

factor-, subword-free k(n − 2) + 2 1 n 2

unary free k(n − 2) + 2 n − 1

right ideal n + (k − 1)2n−2 2 n 1

left, two-sided, all-sided ideal k(n − 1) + 1 1 n 1

prefix-closed ? 2n−2 + 1 2

suffix-closed ? n 2

factor-, subword-closed k(n − 1) + 1 2 2 1

unary closed k(n − 2) + 2 2

regular ◦ 6 [10] 2n−1 + 2n−2 − 1 1 [31]

unary regular k(n − 1) + 1 [26] (n − 1)2 [31]

168 M. Hospodár

5 Conclusions

We investigated the nondeterministic state complexity of the k-th power and
positive closure in the subclasses of convex languages. We considered the classes
of prefix-, suffix-, factor-, and subword-free, -closed, and -convex languages, and
the classes of right, left, two-sided, and all-sided ideals. We found the exact
complexities of both operations in each of the above mentioned classes.

We also considered the deterministic state complexity of these operations in
the classes of prefix-, suffix-, factor-, and subword-free and -closed languages,
and the classes of right, left, two-sided, and all-sided ideals. For positive closure,
we found the exact complexities on each of the classes, and for the k-th power,
we only left open the cases of suffix-free and prefix- and suffix-closed languages.

Tables 1 and 2 provide an overview of our results and they also display the
sizes of alphabet used to describe the witness languages. For describing the
witness languages for the k-th power on subword-closed and subword-convex
languages, we used a ternary alphabet. All the remaining witness languages are
described over a binary or unary alphabet. Moreover, whenever a binary alphabet
is used, it is always optimal in the sense that the corresponding upper bound
cannot be met by any unary language.

References

1. Birget, J.: Intersection and union of regular languages and state complex-
ity. Inf. Process. Lett. 43(4), 185–190 (1992). https://doi.org/10.1016/0020-
0190(92)90198-5

2. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-,
factor-, and subword-free regular languages. Acta Cybernet. 21(4), 507–527 (2014).
https://doi.org/10.14232/actacyb.21.4.2014.1

3. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36–52 (2013). https://doi.org/10.1016/j.tcs.2012.10.055

4. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theory Comput. Syst. 54(2), 277–292 (2014). https://doi.org/10.1007/s00224-013-
9515-7

5. Brzozowski, J.A., Sinnamon, C.: Complexity of left-ideal, suffix-closed and suffix-
free regular languages. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2017. LNCS, vol. 10168, pp. 171–182. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53733-7 12

6. Čevorová, K.: Square on ideal, closed and free languages. In: Shallit and Okhotin
[27], pp. 70–80. https://doi.org/10.1007/978-3-319-19225-3 6

7. Čevorová, K.: Square on closed languages. In: Bordihn, H., Freund, R., Nagy, B.,
Vaszil, G. (eds.) NCMA 2016. books@ocg.at, vol. 321, pp. 121–130. Österreichische
Computer Gesellschaft (2016)

8. Čevorová, K., Jirásková, G., Mlynárčik, P., Palmovský, M., Šebej, J.: Operations
on automata with all states final. In: Ésik, Z., Fülöp, Z. (eds.) Proceedings of 14th
International Conference on Automata and Formal Languages, AFL 2014. EPTCS,
vol. 151, pp. 201–215 (2014). https://doi.org/10.4204/EPTCS.151.14

https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.14232/actacyb.21.4.2014.1
https://doi.org/10.1016/j.tcs.2012.10.055
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1007/978-3-319-53733-7_12
https://doi.org/10.1007/978-3-319-53733-7_12
https://doi.org/10.1007/978-3-319-19225-3_6
https://doi.org/10.4204/EPTCS.151.14

Descriptional Complexity of Lk and L+ on Convex Languages 169

9. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-25929-6 9

10. Domaratzki, M., Okhotin, A.: State complexity of power. Theor. Comput. Sci.
410(24–25), 2377–2392 (2009). https://doi.org/10.1016/j.tcs.2009.02.025

11. Han, Y., Salomaa, K.: Nondeterministic state complexity for suffix-free regular lan-
guages. In: McQuillan and Pighizzini [24], pp. 189–196. https://doi.org/10.4204/
EPTCS.31.21

12. Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic oper-
ations for prefix-free regular languages. Fund. Inform. 90(1–2), 93–106 (2009).
https://doi.org/10.3233/FI-2009-0008

13. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003). https://doi.org/10.
1142/S0129054103002199

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

15. Hospodár, M., Jirásková, G., Mlynárčik, P.: Nondeterministic complexity of opera-
tions on closed and ideal languages. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016.
LNCS, vol. 9705, pp. 125–137. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40946-7 11

16. Hospodár, M., Jirásková, G., Mlynárčik, P.: Nondeterministic complexity of oper-
ations on free and convex languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017.
LNCS, vol. 10329, pp. 138–150. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2 12

17. Hospodár, M., Jirásková, G., Mlynárčik, P.: A survey on fooling sets as effective
tools for lower bounds on nondeterministic complexity. In: Böckenhauer, H.-J.,
Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Alti-
tudes. LNCS, vol. 11011, pp. 17–32. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98355-4 2

18. Hospodár, M., Jirásková, G., Mlynárčik, P.: Nondeterministic complexity in sub-
classes of convex languages. Theor. Comput. Sci. (2019). https://doi.org/10.1016/
j.tcs.2018.12.027

19. Jirásková, G.: State complexity of some operations on binary regular languages.
Theor. Comput. Sci. 330(2), 287–298 (2005). https://doi.org/10.1016/j.tcs.2004.
04.011

20. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In:
McQuillan and Pighizzini [27], pp. 197–204. https://doi.org/10.4204/EPTCS.31.
22

21. Jirásková, G., Mlynárčik, P.: Complement on prefix-free, suffix-free, and non-
returning NFA languages. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.)
DCFS 2014. LNCS, vol. 8614, pp. 222–233. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-09704-6 20

22. Jirásková, G., Olejár, P.: State complexity of intersection and union of suffix-free
languages and descriptional complexity. In: Bordihn, H., Freund, R., Holzer, M.,
Kutrib, M., Otto, F. (eds.) NCMA 2009. books@ocg.at, vol. 256, pp. 151–166.
Österreichische Computer Gesellschaft (2009)

23. Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-free
languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp.
226–237. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08846-4 17

https://doi.org/10.1007/978-3-642-25929-6_9
https://doi.org/10.1007/978-3-642-25929-6_9
https://doi.org/10.1016/j.tcs.2009.02.025
https://doi.org/10.4204/EPTCS.31.21
https://doi.org/10.4204/EPTCS.31.21
https://doi.org/10.3233/FI-2009-0008
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1007/978-3-319-40946-7_11
https://doi.org/10.1007/978-3-319-40946-7_11
https://doi.org/10.1007/978-3-319-60134-2_12
https://doi.org/10.1007/978-3-319-60134-2_12
https://doi.org/10.1007/978-3-319-98355-4_2
https://doi.org/10.1007/978-3-319-98355-4_2
https://doi.org/10.1016/j.tcs.2018.12.027
https://doi.org/10.1016/j.tcs.2018.12.027
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.4204/EPTCS.31.22
https://doi.org/10.4204/EPTCS.31.22
https://doi.org/10.1007/978-3-319-09704-6_20
https://doi.org/10.1007/978-3-319-09704-6_20
https://doi.org/10.1007/978-3-319-08846-4_17

170 M. Hospodár

24. McQuillan, I., Pighizzini, G. (eds.): DCFS 2010, EPTCS, vol. 31 (2010). https://
doi.org/10.4204/EPTCS.31

25. Mlynárčik, P.: Complement on free and ideal languages. In: Shallit and Okhotin
[27], pp. 185–196. https://doi.org/10.1007/978-3-319-19225-3 16

26. Rampersad, N.: The state complexity of L2 and Lk. Inf. Process. Lett. 98(6),
231–234 (2006). https://doi.org/10.1016/j.ipl.2005.06.011

27. Shallit, J., Okhotin, A. (eds.): DCFS 2015. LNCS, vol. 9118. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19225-3

28. Sinnamon, C.: Complexity of proper suffix-convex regular languages. In:
Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 324–338. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94812-6 27

29. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

30. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-3-642-59136-5 2

31. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.4204/EPTCS.31
https://doi.org/10.4204/EPTCS.31
https://doi.org/10.1007/978-3-319-19225-3_16
https://doi.org/10.1016/j.ipl.2005.06.011
https://doi.org/10.1007/978-3-319-19225-3
https://doi.org/10.1007/978-3-319-94812-6_27
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Partitioning a Symmetric Rational
Relation into Two Asymmetric

Rational Relations

Stavros Konstantinidis1(B), Mitja Mastnak1, and Juraj Šebej1,2

1 Saint Mary’s University, Halifax, NS, Canada
s.konstantinidis@smu.ca, mmastnak@cs.smu.ca

2 Institute of Computer Science, Faculty of Science, P. J. Šafárik University,
Košice, Slovakia

juraj.sebej@gmail.com

Abstract. We consider the problem of partitioning effectively a given
symmetric (and irreflexive) rational relation R into two asymmetric ratio-
nal relations. This problem is motivated by a recent method of embed-
ding an R-independent language into one that is maximal R-independent,
where the method requires to use an asymmetric partition of R. We solve
the problem when R is realized by a zero-avoiding transducer (with some
bound k): if the absolute value of the input-output length discrepancy
of a computation exceeds k then the length discrepancy of the compu-
tation cannot become zero. This class of relations properly contains the
recognizable, the left synchronous, and the right synchronous relations.
We leave the asymmetric partition problem open when R is not zero-
avoiding. We also show examples of total word-orderings for which there
is a relation R that cannot be partitioned into two asymmetric rational
relations with respect to the given word-orderings.

Keywords: Asymmetric relations · Transducers ·
Synchronous relations · Word orderings

1 Introduction

The abstract already serves as the first paragraph of the introduction.
The structure of the paper is as follows. The next section contains basic

concepts about relations, word orderings and transducers. Section 3 contains the
mathematical statement of the rational asymmetric partition problem and its
motivation. Section 4 presents the concept of a C-copy of a transducer t, which
is another transducer containing a copy c of the states of t, for each c ∈ C. A
C-copy of t, for appropriate C, produces a transducer realizing one asymmetric
part of the relation of t. Section 5 deals with the simple case where the transducer
is letter-to-letter (Proposition 10). Section 6 introduces zero avoiding transduc-
ers t with some bound k ≥ 0 and shows a few basic properties: the minimum
k is less than the number of states of t (Proposition 17); every left (or right)
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 171–183, 2019.
https://doi.org/10.1007/978-3-030-23679-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_14

172 S. Konstantinidis et al.

synchronous relation is realized by some zero-avoiding transducer with bound
0 (Proposition 19). Section 7 shows a construction, from a given input-altering
transducer s, that produces a certain C-copy α(s) of s realizing the set of all
pairs in R(s) for which the input is greater than the output with respect to the
radix total order of words (Theorem24). This construction solves the rational
asymmetric partition problem when the given relation is realized by a zero-
avoiding transducer. Section 8 discusses a variation of the problem, where we
have a certain fixed total word ordering [>] and we want to know whether there
is a rational symmetric S such that not both of S ∩ [>] and S ∩ [<] are rational
(Proposition 26). This section also offers as an open problem the general rational
asymmetric partition problem (that is when the given R is not zero-avoiding).
The last section contains a few concluding remarks.

2 Basic Terminology and Notation

We assume the reader is familiar with basic concepts of formal languages:
alphabet, words (or strings), empty word λ, language (see e.g., [4,6]). We shall
use a totally ordered alphabet Σ; in fact for convenience we assume that
Σ = {0, 1, . . . , q − 1}, for some integer q > 0. If a word w is of the form w = uv
then u is called a prefix and v is called a suffix of w. We shall use x/y to denote
the pair of words x and y. A (binary word) relation R over Σ is a subset of Σ∗×Σ∗,
that is, R ⊆ Σ∗×Σ∗. We shall use the infix notation xRy to mean that x/y ∈ R;
then, x/Ry means x/y /∈ R.
The domain domR of R is the set {x | x/y ∈ R}. The inverse R−1 of R is the
relation {y/x | x/y ∈ R}.

Word Orderings. Let x, y, z be any words in Σ∗. A relation R is called irreflex-
ive, if x/Rx; reflexive, if xRx for all x ∈ domR; symmetric, if xRy implies yRx;
transitive, if “xRy and yRz” implies xRz. A relation A is called asymmetric,
if xAy implies y/Ax. In this case, A must be irreflexive and we have that

A ∩ A−1 = ∅ and A ⊆ (Σ∗ × Σ∗) \ {w/w : w ∈ Σ∗}.

A total asymmetry is an asymmetric relation A such that either uAv or vAu, for
all words u, v with u �= v. We shall use the notation ‘[>]’ for an arbitrary total
asymmetry, as well as the notation ‘[>α]’ for a specific total asymmetry where α
is some identifying subscript. Then, we shall write u > v to indicate that u/v ∈
[>]. Moreover, we shall write [<] (and [<α]) for the inverse of [>] (and [<α]). A
total strict ordering [<] is a total asymmetry that is also transitive. Examples of
this are the radix ‘[<r]’ and the lexicographic ‘[<l]’ ordering. The lexicographic
ordering is the standard dictionary order, for example, 112 <l 12 <l 3. The radix
ordering is the standard integer ordering when words are viewed as integers and
no symbol of Σ is interpreted as zero: 3 <r 12 <r 112. In both of these orderings,
the empty word is the smallest one. �	

Partitioning a Symmetric Rational Relation into Two Asymmetric Ones 173

A path P of a labelled (directed) graph G = (V,E) is a string of consecutive
edges, that is, P ∈ E∗ and is of the form

P = (q0, α1, q1)(q1, α2, q2) · · · (q�−1, α�, q�),

for some integer � ≥ 0, where each qi ∈ V , each αi is a label, and each
(qi−1, αi, qi) ∈ E. The empty path is denoted by λ. We shall use the follow-
ing shorthand notation for the above path: P = 〈qi−1, αi, qi〉�

i=1.

Transducers ([1,7,9]). A transducer is a quintuple1 t = (Q,Σ,E, I, F) such
that (Q,E) is a labelled graph with labels of the form x/y, for some x, y ∈
Σ ∪ {λ}, and I, F ⊆ Q with I �= ∅. The set of vertices Q is also called the set
of states of t. The set of edges E is also called the set of transitions of t. In a
transition e = (p, x/y, q) of t, p is called the source state of e, and q is called the
destination state of e. The sets I, F are called the initial and final states of t,
respectively. The label of a path 〈qi−1, xi/yi, qi〉�

i=1 is the pair x1 · · · x�/y1 · · · y�.
We write label(P) to denote the label of a path P . In particular, label(λ) = λ/λ.
A computation of t is a path P of t such that, either P is empty, or the first
state of P is in I. We write Comput(t) to denote the set of all computations
of t. The computation P is called accepting if, either P = λ and I ∩ F �= ∅,
or P �= λ and the last state of P is in F . We write AccComput(t) to denote
the set of accepting computations of t. The relation realized by t is the set
R(t) = { label(P) | P ∈ AccComput(t)}. If R(t) is irreflexive then t is called
input-altering. If R(t) ⊆ [>], for some total asymmetry [>], then t is called
input-decreasing (with respect to [>]). If t, s are transducers then: t−1 denotes
the inverse of t such that R(t−1) = R(t)−1; ts denotes a transducer such that
R(ts) = R(t)R(s); t ∨ s denotes a transducer such that R(t ∨ s) = R(t) ∪ R(s).

3 Statement and Motivation of the Main Problem

Let I be an irreflexive relation. An asymmetric partition of I is a partition {A,B}
of I such that A,B are asymmetric. If I is rational, then a rational asymmetric
partition of I is an asymmetric partition {A,B} of I such that A,B are rational.

Remark 1. If I is any irreflexive relation and [>] is any total asymmetry then
{I ∩ [>], I ∩ [<]} is an asymmetric partition of I. As any asymmetric A is
irreflexive, we also have that {A∩ [>], A∩ [<]} is an asymmetric partition of A.
If S is a symmetric and irreflexive relation and {A,B} is an asymmetric partition
of S then B = A−1.

The Rational Asymmetric Partition Problem. Which symmetric-and-
irreflexive rational relations have a rational asymmetric partition?

1 In general, t has an input and an output alphabet, but here these are equal.

174 S. Konstantinidis et al.

Remark 2. Any relation R that is not irreflexive cannot have an asymmetric
partition; otherwise, R would contain a pair u/u, which cannot be an element
of any asymmetric relation. We also note the following: If A is any rational
asymmetric relation then {A,A−1} is a rational asymmetric partition of A ∪ A−1.

Motivation for the Above Problem. For a relation R and language L, we
say that L is R-independent, [8,10], if “uRv, u ∈ L, v ∈ L” implies u = v. It is
a fact that L is R-independent, if and only if it is (R ∪ R−1)-independent—of
course (R ∪R−1) is always symmetric. The concept of R-independence provides
tools for studying code-related properties such as prefix codes and error-detecting
languages (according to R). In [5], for a given input-altering transducer t and
regular language L that is R(t)-independent, the authors provide a formula for
embedding L into a maximal R(t)-independent language, provided that t is
input-decreasing with respect to [>r]. Of course then, R(t) is asymmetric. Thus,
to embed an S-independent language L into a maximal one, where S is symmet-
ric, it is necessary to find a transducer t such that S = R(t) ∪ R(t−1) and R(t)
is asymmetric.

4 Multicopies of Transducers

In this section we fix a finite nonempty set C, whose elements are called copy
labels. Let S be any set and let c ∈ C. The copy c of S is the set Sc = {sc | s ∈ S}.

Definition 3. Let t = (Q,Σ, T, I, F) be a transducer. A C-copy of t is any
transducer t′ = (Q′, Σ, T ′, I ′, F ′) satisfying the following conditions.

1. Q′ = ∪c∈CQc, I ′ ⊆ ∪c∈CIc, F ′ ⊆ ∪c∈CF c.
2. T ′ ⊆ {

(pc, x/y, qd) | c, d ∈ C, (p, x/y, q) ∈ T
}
. If e′ = (pc, x/y, qd) ∈ T ′

then the edge (p, x/y, q) of t is called the edge of t corresponding to e′ and is
denoted by corr(e′).

For each edge e of t, we define the set of edges of t′corresponding to e to be the
set Corr(e) = {e′ | e = corr(e′)}.

Example 4. The transducer α0(s) in Fig. 1 is a C-copy of s, where C = {λ,A,R}.
It has three copies of the states of s. We have that

Corr(q1, 0/1, q2) = {(qλ
1 , 0/1, qR

2), (qA
1 , 0/1, qA

2), (qR
1 , 0/1, qR

2)}.

Each edge (p, x/y, q) of s has corresponding edges in α0(s) of the form
(pc, x/y, qd) such that the source state pc is in the copy c (initially, c = λ)
and the destination state qd is in the copy d, where possibly d = c. Edges of
α0(s) with source state in the copies A,R have a destination state in the same
copy. On the other, an edge of α0(s), with some label x/y, whose source state
is in the copy λ has a destination state in the copy λ if x = y; in the copy A if
x >r y; and in the copy R if x <r y. As α0(s) has final states only in the copy A,
it follows that for any u/v ∈ R(α0(s)) we have that u >r v and u/v ∈ R(s). This
example is useful when solving the rational asymmetric partitioning problem for
letter-to-letter transducers—see Sect. 5.

Partitioning a Symmetric Rational Relation into Two Asymmetric Ones 175

Remark 5. Let t be a transducer and let t′ be a C-copy of t. We note that (i) To
define the edges of a C-copy of t, it is sufficient to specify the sets Corr(e), for
all edges e of t. (ii) If t′ has a state that is both initial and final then so does t;
thus, if λ ∈ AccComput(t′) then λ ∈ AccComput(t) and λ/λ ∈ R(t).

Definition 6. Let t′ be a C-copy of a transducer t, and let P ′ = 〈e′
i〉�

i=1 ∈
Path(t′) − {λ}. For each edge e′

i of P ′, let ei = corr(e′
i). Then the string 〈ei〉�

i=1

is a path of t and is called the (unique) path of t corresponding to P ′ and is
denoted by corr(P ′). Conversely, if P = 〈ei〉�

i=1 is a path of t, then we define
the set of paths of t′ corresponding to P to be the set of all paths of t′ of the
form 〈e′

i〉�
i=1, where each e′

i ∈ Corr(ei); this set is denoted by Corr(P) . We also
define corr(λ) = λ and Corr(λ) = {λ}.
Lemma 7. If t′ is a C-copy of a transducer t, then R(t′) ⊆ R(t).

5 Asymmetric Partition of Letter-to-Letter Transducers

A transducer t is called letter-to-letter, [7], if all its transition labels are of the
form σ/τ , where σ, τ ∈ Σ. Here we provide a solution to the asymmetric parti-
tion problem for letter-to-letter transducers in Proposition 10, which is based on
Construction 8 below. We note that this construction is a special case of the more
general construction for zero-avoiding transducers in Sect. 7, but we present it
separately here as it is simpler than the general one.

Construction 8. Let s = (Q,Σ, T, I, F) be a letter-to-letter transducer. Let
C = {λ,A,R}. We construct a transducer α0(s) = (Q′, Σ, T ′, I ′, F ′), which is
a C-copy of s, as follows. First, Q′ = Qλ ∪ QA ∪ QR, I ′ = Iλ and F ′ = FA.
Then, T ′ is defined as follows.

T ′ = {(pc, σ/τ, qc) | (p, σ/τ, q) ∈ T, c ∈ {A,R}}
∪ {(pλ, σ/σ, qλ) | (p, σ/σ, q) ∈ T}
∪ {(pλ, σ/τ, qA) | (p, σ/τ, q) ∈ T, σ >r τ}
∪ {(pλ, σ/τ, qR) | (p, σ/τ, q) ∈ T, σ <r τ}.

Explanation. The transducer α0(s) includes two exact copies of s: one whose
states are the A copies of Q, and one whose states are the R copies of Q; α0(s)
also includes a sub-copy of s which contains a λ copy of Q and only transitions
with labels of the form σ/σ. Any computation P ′ of α0(s) starts at an initial state
iλ and continues with states in the λ copy of Q as long as transition labels are of
the form σ/σ. If a transition label is σ/τ with σ >r τ then the computation P ′

continues in the A copy and never leaves that copy. As final states are only in
the A copy, we have that P ′ is accepting if and only if corr(P ′) is accepting and
label(P ′) = u/v such that u is of the form xσy1 and v of the form xτy2 with

176 S. Konstantinidis et al.

s : q1 q2 q3 q4 q5 q6

1/0

0/1

0/0

0/1
0/0

1/1

1/0

0/1

1/0, 0/1

1/1

1/0, 0/1

1/0, 0/1

α0(s) : qλ
1 qλ

2 qλ
3 qλ

4 qλ
5 qλ

6

qA
1 qA

2 qA
3 qA

4 qA
5 qA

6

qR
1 qR

2 qR
3 qR

4 qR
5 qR

6

0/0

0/0 1/1 1/1

1/0

0/1

0/0

0/1
0/0

1/1

1/0

0/1

1/0, 0/1

1/1

1/0, 0/1

1/0, 0/1

1/0

1/
0 1/0

0/1

1/01/0

1/0

0/1

0/0

0/1
0/0

1/1

1/0

0/1

1/0, 0/1

1/1

1/0, 0/1

1/0, 0/1
0/10/

1
0/1 0/10/1

Fig. 1. Construction 8 applied to transducer s to get transducer α0(s).

σ >r τ and |u| = |v|. Note that, in the computation P ′, if a transition label is
σ/τ with σ <r τ and the current state is in the λ copy, then P ′ would continue
in the R copy of α0(s), which has no final states, so P ′ would not be accepting.

Remark 9. In fact the R copy of s is not necessary as it has no final states. It
was included to make the construction a little more intuitive.

Using Lemma 7 and based on the above explanation, we have the following
proposition—it is a special case of the main result in Sect. 7.

Proposition 10. Let s be any input-altering letter-to-letter transducer. Let
t1 = α0(s) and t2 =

(
α0(s−1)

)−1. Then {R(t1),R(t2)} is a rational asymmetric
partition of R(s).

6 Discrepancies of Computations and Zero-Avoiding
Transducers

Here we introduce the concept of a zero-avoiding transducer with some bound
k ∈ N0, which relates to length discrepancies of the computations of the trans-
ducer. We show that the minimum bound k is less than the number of states of
the transducer. We also show that the zero-avoiding relations contain properly
all left and right synchronous relations. Thus, they also include all recognizable
relations and all relations of bounded length discrepancy [7].

Partitioning a Symmetric Rational Relation into Two Asymmetric Ones 177

Definition 11. Let u, v ∈ Σ∗, let t be a transducer and let P =
〈qi−1, xi/yi, qi〉�

i=1 ∈ Path(t). The length discrepancy of the pair u/v is the
integer d(u/v) = |u| − |v|. The length discrepancy of P is the integer d(P) =
d(x1x2 · · · x�/y1y2 · · · y�). The maximum absolute length discrepancy of P is the
integer

dmax(P) = max
Q∈Prefix(P)

{|d(Q)|} .

Remark 12. We have that d(λ/λ) = 0 and dmax(λ) = 0. Moreover, if P1P2 is a
path of t, then d(P1P2) = d(P1) + d(P2).

Definition 13. A transducer t is called zero-avoiding, if there is an integer k ≥ 0
such that the following condition is satisfied:

for any P ∈ Comput(t), if dmax(P) > k then d(P) �= 0.

In this case, t is called zero-avoiding with bound k. It is called zero-avoiding with
minimum bound k, if it is zero-avoiding with bound k but not with bound k − 1.2

Remark 14. The fact that t is zero-avoiding does not imply that every trim
transducer realizing R(t) is zero-avoiding. For example, (0/λ + λ/0)∗ can be
realized by a zero-avoiding transducer with bound 0 as well as by a trim trans-
ducer that is not zero-avoiding3. In a zero-avoiding transducer with bound k, if
a computation P has length discrepancy >k, or <−k, then any continuation of
P cannot have zero as its length discrepancy.

Remark 15. Let t = (Q,Σ, T, I, F) be a transducer. For any path P of t there is
a unique path P−1 of t−1 whose labels are the inverses of the labels in P . Thus,
d(P−1) = −d(P) and |d(P−1)| = |d(P)|. This implies that if t is zero-avoiding
with some bound k then also t−1 is zero-avoiding with bound k.

Remark 16. Let s = (Q,Σ, T, I, F) be a transducer and let t = (Q′, Σ, T ′, I ′, F ′)
be a C-copy of s. Let P ′ be a computation of t, and let P = corr(P ′); then P
and P ′ have exactly the same sequence of labels in their transitions. Thus we
have: (i) dmax(P ′) = dmax(P); (ii) if s is zero-avoiding with some bound k then
also t is zero-avoiding with the same bound k.

Proposition 17. Let t be an n-state transducer, for some integer n ≥ 1. If t is
zero-avoiding with minimum bound k then k < n.

Proposition 18. Let t be an n-state transducer, for some integer n ≥ 1. The
following statements are equivalent: (i) t is not zero-avoiding. (ii) t has a com-
putation P with dmax(P) ≥ n and d(P) = 0. (iii) t has a computation P of the
form P = BC1AC2D such that C1, C2 are cycles with d(C1)d(C2) < 0.

2 This is well-defined: if t is zero-avoiding with bound k then it is also zero-avoiding
with bound k′ for all k′ > k.

3 Further explanations of claims will be given in a journal version of this paper.

178 S. Konstantinidis et al.

Relating Left (right) Synchronous and Zero-Avoiding Relations. A nat-
ural question arising is how zero-avoiding relations are related to the well-known
left (or right) synchronous relations. A relation R is called left synchronous, [7],
if it is a finite union of relations, each of the form S(A × {λ}) or S({λ} × A),
where A is a regular language and S is realized by a letter-to-letter transducer.
The concept of a right synchronous relation is symmetric: via finite unions of
relations of the form (A × {λ})S or ({λ} × A)S.

The proof of the below proposition uses the above definition of left syn-
chronous relation as well as the equivalent definition in [2,3].

Proposition 19. The classes of left synchronous relations and right syn-
chronous relations are proper subsets of the class of zero-avoiding relations with
bound 0.

Zero-Avoiding Relations are Not Closed Under Intersection: One con-
siders the intersection of the zero-avoiding relations (0/0)∗(λ/1)∗ and (λ/0)∗

(0/1)∗.

7 Asymmetric Partition of Zero-Avoiding Transducers

We present here a solution to the asymmetric partition problem for any relation
realized by a zero-avoiding transducer s with some bound k (Construction 21
and Theorem 24). The required asymmetric relation is realized by a C-copy α(s)
of s, where C is shown in (1) further below. In fact R(α(s)) = (R(s) ∩ [>r]);
thus, u/v ∈ R(α(s)) implies u >r v. The set of states of α(s) is Q′ = ∪c∈CQc.
The reason why all these copies of Q are needed is to know at any point during
a computation P ′ of α(s) whether dmax(P ′) has exceeded k.

Meaning of States of α(s) in Construction 21. A state qc of α(s) has the
following meaning. Let P ′ ∈ Comput(α(s)) ending with qc and having some
label win/wout. Then, qc specifies which one of the following mutually exclusive
facts about P ′ holds.

– qc = qλ means: win = wout.
– qc = q+u means: win = woutu, for some word u with 1 ≤ |u| ≤ k, so win >r

wout.
– qc = q−u means: wout = winu, for some word u with 1 ≤ |u| ≤ k, so win <r

wout.
– qc = qA� means: win = xσy, wout = xτz, σ >r τ , � = |y| − |z| = d(P ′), and

−k ≤ � ≤ k. Note that the A in qA� is a reminder of σ >r τ and indicates that
P ′ could be the prefix of an Accepting computation Q′ having d(Q′) ≥ 0, in
which case w′

in >r w′
out where w′

in/w′
out is the label of Q′.

Partitioning a Symmetric Rational Relation into Two Asymmetric Ones 179

– qc = qR� means: win = xσy, wout = xτz, σ <r τ , � = |y| − |z| = d(P ′), and
−k ≤ � ≤ k. Note that the R in qR� is a reminder of σ <r τ and indicates
that P ′ could be the prefix of a Rejecting computation Q′ having d(Q′) ≤ 0,
in which case w′

in <r w′
out where w′

in/w′
out is the label of Q′.

– qc = qA means: dmax(P ′) > k and d(P ′) = |win| − |wout| > 0.
– qc = qR means: dmax(P ′) > k and d(P ′) = |win| − |wout| < 0.

Final States in Construction 21. Based on the meaning of the states and
the requirement that the label win/wout of an accepting computation P ′ of α(s)
satisfies win >r wout, the final states of α(s) are shown in (2) further below.
Let f be any final state of s. State fA of α(s) is final because, if P ′ ends in fA,
we have d(P ′) > 0, which implies win >r wout. On the other hand, state fR is
not final because any computation P ′ of α(s) ending in fR has d(P ′) < 0, which
implies win <r wout. State fR�, with � > 0, is final because any computation P ′

of α(s) ending in fR� has |win| − |wout| = � > 0, so win >r wout. On the other
hand, state fR�, with � ≤ 0, is not final because any computation P ′ of α(s)
ending in fR� has |win| − |wout| = � ≤ 0, and win <r wout. �	
Example 20. The transducer α(s) consists of several modified copies of s (see
Fig. 2a) such that, for any P ∈ Comput(s) with label win/wout there is at least
one corresponding computation of α(s) with the same label win/wout which goes
through copies of the same states appearing in P . The initial states of α(s) are
in the copy Qλ, where any computation involving only states in Qλ has equal
input and output labels. For a transition e = (p, 1/λ, q) of s, e′ = (pλ, 1/λ, q+1)
is a transition of α(s) corresponding to e, where the transition e′ starts at the
copy Qλ of Q and goes to the copy Q+1 of Q (see Fig. 2b). In a computation
of α(s) that ends in the copy Q+1, the input label is of the form x1 and the
output label is of the form x. Then, Fig. 2c shows all possible transitions from
state p+1 to other states of α(s), which could be in the same or different copies
of Q. �	

A λ/λ-free transducer is a transducer that has no label λ/λ. Using tools from
automata theory, we have that every transducer realizes the same relation as
one of a λ/λ-free transducer.

Construction 21. Let s = (Q,Σ, T, I, F) be a λ/λ-free and zero-avoiding
transducer with some bound k. The transducer α(s) = (Q′, Σ, T ′, I ′, F ′) is a
C-copy of s as follows. The set C is

{λ,A,R} ∪ {+u,−u | u ∈ Σ∗, 1 ≤ |u| ≤ k} ∪ {A�,R� | � ∈ Z, −k ≤ � ≤ k} (1)

We have Q′ = ∪c∈CQc, I ′ = Iλ,

F ′ = FA ∪ FA0 ∪ (∪1≤|u|≤k F+u
) ∪ (k⋃

�=1

(FA� ∪ FR�)
)

(2)

180 S. Konstantinidis et al.

Fig. 2. Sketch of a transducer α(s) which is the result of Construction 21 on some
transducer s. We use Σ = {0, 1} and k = 2. Notice that 0 in Q+0 is the string 0 and 0
in QA0 is the number zero (length discrepancy).

The set T ′ of transitions is defined next. More specifically, for each transi-
tion (p, x/y, q) ∈ T , with x/y ∈ {σ/τ, σ/λ, λ/τ | σ, τ ∈ Σ}, we define the
set Corr(p, x/y, q). For each state pc ∈ Q′ the transition (pc, x/y, qd) is in
Corr(p, x/y, q), where qd depends on pc and x/y as follows.

If pc = pλ:
if x/y = σ/σ then qd = qλ;
if x/y = σ/τ and σ >r τ then qd = qA0;
if x/y = σ/τ and σ <r τ then qd = qR0;
if x/y = σ/λ, then qd = q+σ if k > 0, and qd = qA if k = 0;
if x/y = λ/τ , then qd = q−τ if k > 0, and qd = qR if k = 0.

Partitioning a Symmetric Rational Relation into Two Asymmetric Ones 181

If pc = p+u:
if x/y = σ/λ and |u| < k then qd = q+uσ;
if x/y = σ/λ and |u| = k then qd = qA;
if x/y = λ/τ and u[0] = τ then qd = qu[1..];
if x/y = λ/τ and u[0] >r τ then qd = qA� where � = |u[1..]|;
if x/y = λ/τ and u[0] <r τ then qd = qR� where � = |u[1..]|;
if x/y = σ/τ and u[0] = τ then qd = q+u[1..]σ;
if x/y = σ/τ and u[0] >r τ then qd = qA� where � = |u|;
if x/y = σ/τ and u[0] <r τ then qd = qR� where � = |u|.

If pc = p−u:
if x/y = σ/λ and u[0] = σ then qd = q−u[1..];
if x/y = σ/λ and u[0] >r σ then qd = qR� where � = |u[1..]|;
if x/y = σ/λ and u[0] <r σ then qd = qA� where � = |u[1..]|;
if x/y = λ/τ and |u| < k then qd = q−uτ ;
if x/y = λ/τ and |u| = k then qd = qR;
if x/y = σ/τ and u[0] = σ then qd = q−u[1..]τ ;
if x/y = σ/τ and u[0] >r σ then qd = qR� where � = |u|;
if x/y = σ/τ and u[0] <r σ then qd = qA� where � = |u|.

If pc = pX� with X ∈ {A,R}:
if x/y = σ/λ and � < k then qd = qX(�+1);
if x/y = σ/λ and � = k then qd = qA;
if x/y = λ/τ and � > −k then qd = qX(�−1);
if x/y = λ/τ and � = −k then qd = qR;
if x/y = σ/τ then qd = qX�.

If pc ∈ {pA, pR}: qd = qc. �

Remark 22. The transitions of α(s) have been defined so that the meaning of
the states is preserved. Note that any transition of α(s) with source state pA

has a destination state of the form qA. This is because both s and α(s) are
zero-avoiding with bound k, so any computation P ′ of α(s) ending at pA has
dmax(P ′) > k and d(P ′) > 0 and, moreover, any computation Q′ of α(s) having
P ′ as prefix will be such that dmax(Q′) > k and d(Q′) > 0. For similar reasons,
any transition of α(s) with source state pR has a destination state of the form qR.

Lemma 23. Let s be a λ/λ-free and zero-avoiding transducer. The transducer
α(s) in Construction 21 is such that R

(
α(s)

)
= R(s) ∩ {u/v : u >r v}.

The below theorem solves effectively the rational asymmetric partition prob-
lem for every irreflexive relation realized by some zero-avoiding transducer.

Theorem 24. Let s be any input-altering and zero-avoiding transducer with
some bound k ≥ 0. Let t1 = α(s) and let t2 =

(
α(s−1)

)−1, where α(s) is
the transducer produced in Construction 21. Then, {R(t1),R(t2)} is a rational
asymmetric partition of R(s).

Now we have the following consequence of Theorem 24 and Proposition 19.

182 S. Konstantinidis et al.

Corollary 25. Every left synchronous and every right synchronous irreflexive
rational relation has a rational asymmetric partition.

8 An Unsolved Case and a Variation of the Problem

Recall that Theorem 24 solves the rational asymmetric partition problem for any
irreflexive relation realized by some zero-avoiding transducer. The main open
question is the following.

Open Question. Does there exist any rational irreflexive relation that has no
rational asymmetric partition? If this turns out to be difficult, what about adding
a restriction to the rational irreflexive relation (being symmetric or other)?
We also offer a more specific open question. Consider the rational symmetric
relation: R = R1 ∪ R−1

1 ∪ R2 ∪ R−1
2 , where

R1 = {(0a1i0j1b/0i1c0j1d) | a, b, c, d, i, j ∈ N} and

R2 = {(0a1i0j1b/0c1i0d1j) | a, b, c, d, i, j ∈ N}.

The more specific question is the following: Does there exist a rational asymmet-
ric relation A such that A ∪ A−1 = R ?

We note the following facts about R: (i) R1 ∩ R2 = {(0a1i0j1b, 0i1i0j1j) |
a, b, i, j ∈ N} is not rational. (ii) Also non rational are: R1 ∩ R−1

1 , R1 ∩ R−1
2 ,

R2 ∩ R−1
1 , R1 ∩ R−1

1 , R−1
1 ∩ R−1

2 , R1 ∩ R−1
1 . (iii) Also non-rational is the inter-

section R1 ∩ R−1
1 ∩ R2 ∩ R−1

2 .

Lemma 23 implies that every zero-avoiding and irreflexive-and-symmetric ratio-
nal relation S has a rational partition according to the order [>r]; that is,
{S ∩ [>r], S ∩ [<r]} is a rational partition of S. A question that arises here
is whether there are examples of irreflexive-and-symmetric rational S for which
at least one of S ∩ [>], S ∩ [<] is not rational, where [>] is a fixed total asymme-
try. The question would be answered if we find an asymmetric rational A such
that at least one of S ∩ [>], S ∩ [<] is not rational, where S = A ∪ A−1.

The Rational Non-partition Problem for a Fixed Asymmetry. Let [>]
be a fixed total asymmetry. Is there an asymmetric rational relation A such that
at least one of (A∪A−1)∩ [>] and (A∪A−1)∩ [<] is not rational? If the answer
is yes, then A is called a rational non-partition witness for [>]; else, A is called a
rational partition witness for [>].

Proposition 26. There are asymmetric rational relations A,B such that (i) A
is a rational non-partition witness for [>r] and a rational partition witness for
[>l]; (ii) B is a rational non-partition witness for both [>r] and [>l].

Partitioning a Symmetric Rational Relation into Two Asymmetric Ones 183

9 Conclusions

Motivated by the embedding problem for rationally independent languages, we
have introduced the rational asymmetric partition problem. Our aim was to find
the largest class of rational relations that have a rational asymmetric partition.
In doing so we introduced zero-avoiding transducers. These define a class of
rational relations that properly contain the left and right synchronous relations
and admit rational asymmetric partitions. Whether all rational relations admit
such partitions remains open.

Acknowledgement. We thank Jacques Sakarovitch for looking at this open problem
and offering the opinion that it indeed appears to be non trivial.

References

1. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart
(1979)

2. Carton, O.: Left and right synchronous relations. In: Diekert, V., Nowotka, D. (eds.)
DLT 2009. LNCS, vol. 5583, pp. 170–182. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02737-6 13

3. Choffrut, C.: Relations over words and logic: a chronology. Bull. Eur. Assoc. Theor.
Comput. Sci. EATCS 89, 159–163 (2006)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

5. Konstantinidis, S., Mastnak, M.: Embedding rationally independent languages into
maximal ones. J. Autom. Lang. Comb. 21, 311–338 (2016)

6. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1.
Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5

7. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

8. Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année). LNM, vol. 586,
pp. 180–188. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0087133

9. Yu, S.: Regular languages. In: Rozenberg, Salomaa [6], pp. 41–110. https://doi.
org/10.1007/978-3-642-59136-5 2

10. Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing, Taichung (2005)

https://doi.org/10.1007/978-3-642-02737-6_13
https://doi.org/10.1007/978-3-642-02737-6_13
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/BFb0087133
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

Partial Derivatives of Regular
Expressions over Alphabet-Invariant

and User-Defined Labels

Stavros Konstantinidis1(B), Nelma Moreira2, João Pires2, and Rogério Reis2

1 Saint Mary’s University, Halifax, NS, Canada
s.konstantinidis@smu.ca

2 CMUP and DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{nam,rvr}@dcc.fc.up.pt

Abstract. We are interested in regular expressions that represent word
relations in an alphabet-invariant way—for example, the set of all word
pairs u, v where v is a prefix of u independently of what the alphabet
is. This is the second part of a recent paper on this topic which focused
on labelled graphs (transducers and automata) with alphabet-invariant
and user-defined labels. In this paper we study derivatives of regular
expressions over labels (atomic objects) in some set B. These labels can
be any strings as long as the strings represent subsets of a certain monoid.
We show that one can define partial derivative labelled graphs of type B
expressions, whose transition labels can be elements of another label set
X as long as X and B refer to the same monoid. We also show how to use
derivatives directly to decide whether a given word pair is in the relation
of a regular expression over pairing specs. Set specs and pairing specs
are useful label sets allowing one to express languages and relations over
large alphabets in a natural and compact way.

Keywords: Alphabet-invariant expressions · Regular expressions ·
Partial derivatives · Algorithms · Monoids

1 Introduction

We are interested in regular expressions whose alphabet is not of fixed car-
dinality, or whose alphabet is even unknown. Consider the alphabet Γ =
{0, 1, . . . , n − 1}, where n is variable, and the 2D regular expressions1
(
0/0 + · · · + (n − 1)/(n − 1)

)∗(0/e + · · · + (n − 1)/e
)∗

, (1)
(
0/0 + · · · + (n − 1)/(n − 1)

)∗ (
r0 + · · · + rn−1

) (
0/0 + · · · + (n − 1)/(n − 1)

)∗

(2)

1 These are expressions for word relations.

Research supported by NSERC (Canada) and by FCT project UID/MAT/00144/2019
(Portugal).

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 184–196, 2019.
https://doi.org/10.1007/978-3-030-23679-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_15

Partial Derivatives of Regular Expressions 185

where e represents the empty string, and each ri is the sum of all i/j with j �= i
and i, j ∈ Γ . The first expression has O(n) symbols and represents the prefix
relation, that is, all word pairs (u, v) such that v is a prefix of u. The second
regular expression has O(n2) symbols and represents all word pairs (u, v) such
that the Hamming distance of u, v is 1. We want to be able to use special labels
in expressions such as those in the expression below.

(∀/=)∗ (∀/∀�=)
(∀/=)∗. (3)

The label (∀/=) represents the set {(a, a) | a ∈ Γ} and the label (∀/∀�=) rep-
resents the set {(a, a′) | a, a′ ∈ Γ, a �= a′} (these labels are called pairing specs).
This expression has only a fixed number of symbols. Similarly, using these special
labels, the expression (1) can be written as

(∀/=)∗(∀/e)∗. (4)

Note that the new regular expressions are alphabet invariant as they contain no
symbol of the intended alphabet Γ .

The present paper is the continuation of the recent paper [10] on the topic
of labelled graphs (e.g., automata, transducers) and regular expressions whose
labels are strings such that each string represents a subset of a specific monoid.
The intention is to define algorithms that work directly on regular expressions
and graphs with special labels, without of course having to expand these labels to
sets of monoid elements. Thus, for example, we would like to have an algorithm
that computes whether a pair (u, v) of words is in the relation represented by
either of the expressions (3) and (4). While the first paper [10] focused on labelled
graphs, the present paper focuses on derivatives of regular expressions over any
desirable set of labels B. An expression with special labels in this work can be
considered to be a syntactic version of a regular expression over some monoid
M in the sense of [16].

Paper Structure and Main Results. The next section discusses alphabets Γ
of non-fixed size and provides a summary of concepts from [10]. In particular,
a label set B is a nonempty set such that each β ∈ B is simply a nonempty
string that represents a subset I(β) of a monoid denoted by monB. Section 3
defines the set of partial derivatives PD(r) of any type B regular expression r,
where monB is a graded monoid. As in [1], partial derivatives are defined via
the concept of linear form n(r) of r. Here we define partial derivatives ∂x(r) of
r with respect to x ∈ X, where X is a second label set (which could be B) such
that monX = monB. Theorem 1 says that the set PD(r) of partial derivatives
of r is finite. Section 4 defines the type X graph âPD(r) corresponding to any
given type B regular expression r and shows (Theorem 2) that âPD(r) and r
have the same behaviour. We note that the states of âPD(r) are elements of
PD(r) and the transitions of âPD(r) are elements of X. Section 5 uses deriva-
tives to decide whether a given word pair is in the relation represented by a
regular expression involving pairing specs, without constructing the associated
transducer (Theorem 3).

186 S. Konstantinidis et al.

2 Terminology and Summary of Concepts from [10]

The set of positive integers is denoted by N. Then, N0 = N ∪ {0}. An
alphabet space Ω is an infinite and totally ordered set whose elements are called
symbols. We shall assume that Ω is fixed and contains the digits 0, 1, . . . , 9
and the letters a, b, . . . , z, which are ordered as usual, as well as the following
special symbols: ∀, ∃, /∃, =, �=, /, e, ⊕, �.

As usual we use the term string or word to refer to any finite sequence of
symbols. The empty string is denoted by ε. Let g ∈ Ω and w be a string. The
expression |w|g denotes the number of occurrences of g in w, and the expression
alphw denotes the set {g ∈ Ω : |w|g > 0}, that is, the set of symbols that occur
in w. For example, alph(1122010) = {0, 1, 2}.

An alphabet is any finite nonempty subset of Ω. In the following definitions
we shall consider alphabets Σ,Δ as well as an alphabet Γ , called the alphabet
of reference, and we assume that Γ contains at least two symbols and no special
symbols and that Γ is not of fixed size (it is unbounded). Let Σ,Δ be alphabets.
A (binary word) relation of type [Σ,Δ] is a subset R of Σ∗ × Δ∗.

2.1 Set Specifications and Pairing Specifications

Set specs are intended to represent nonempty subsets of the alphabet Γ . These
can be used as labels in automata-type objects (labelled graphs) and regular
expressions defined in subsequent sections.

Definition 1. A set specification, or set spec for short, is any string of one of
the three forms ∀, ∃w, /∃w, where w is any sorted nonempty string containing
no repeated symbols and no special symbols. The set of set specs is denoted by
SSP.

Definition 2. Let Γ be an alphabet of reference and let F be a set spec. We
say that F respects Γ , if the following restrictions hold when F is of the form
∃w or /∃w: “w ∈ Γ ∗ and 0 < |w| < |Γ |.” In this case, the language L(F) of F
(with respect to Γ) is the subset of Γ defined as follows: L(∀) = Γ, L(∃w) =
alphw, L(/∃w) = Γ \ alphw. The set of set specs that respect Γ is denoted as
SSP[Γ] = {α ∈ SSP | α respects Γ}.

Now we define expressions for describing certain finite relations that are
subsets of

(
(Γ ∪ {ε}) × (Γ ∪ {ε})

) \ {(ε, ε)}.

Definition 3. A pairing specification, or pairing spec for short, is a string of one
the five forms e/G, F/e, F/G, F/=, F/G�=, where F,G are set specs. The set of
pairing specs is denoted by PSP. A pairing spec is called alphabet invariant if it
contains no set spec of the form ∃w, /∃w. The alphabet invariant pairing specs
are e/∀,∀/e,∀/∀,∀/=,∀/∀�=.

Definition 4. Let Γ be an alphabet of reference and let p be a pairing spec.
We say that p respects Γ , if any set spec occurring in p respects Γ . The set of

Partial Derivatives of Regular Expressions 187

pairing specs that respect Γ is denoted as PSP[Γ] = {p ∈ PSP : p respects Γ}.
The relation R(p) described by p (with respect to Γ) is the subset of Γ ∗ × Γ ∗

defined as follows.
R(e/G) = {(ε, y) | y ∈ L(G)}; R(F/e) = {(x, ε) | x ∈ L(F)};
R(F/G) = {(x, y) | x ∈ L(F), y ∈ L(G)}; R(F/=) = {(x, x) | x ∈ L(F)};
R(F/G�=) = {(x, y) | x ∈ L(F), y ∈ L(G), x �= y}.

2.2 Label Sets and Their Monoid Behaviours

We shall use the notation εM for the neutral element of the monoid M . If S, S′ are
any two subsets of M then, as usual, we define SS′ = {mm′ | m ∈ S, m′ ∈ S′},
Si = Si−1S and S∗ = ∪∞

i=0S
i, where S0 = {εM} and the monoid oper-

ation is denoted by simply concatenating elements. We shall only consider
finitely generated monoids M where each m ∈ M has a canonical (string) repre-
sentation m. Then, we write M = {m | m ∈ M}.

Example 1. We shall consider two standard monoids. (i) The free monoid Γ ∗

whose neutral element is ε. The canonical representation of a nonempty word
w is w itself and that of ε is e, that is, ε = e. (ii) The monoid Σ∗ × Δ∗ (or
Γ ∗ ×Γ ∗) whose neutral element is (ε, ε). The canonical representation of a word
pair (u, v) is u/v. In particular, (ε, ε) = e/e.

A label set B is a nonempty set of nonempty strings (over Ω). A
label behaviour is a mapping I : B → 2M , where M is a monoid. Thus,
the behaviour I(β) is a subset of M . We shall consider label sets B with
fixed behaviours, so we shall denote by monB the monoid of B via its fixed
behaviour.

We shall make the convention that for any label sets B1, B2 with fixed
behaviours I1, I2, if monB1 = monB2 then I1(β) = I2(β), for all β ∈ B1 ∩ B2.
With this convention we can simply use a single behaviour notation I for all label
sets with the same behaviour monoid, that is, we shall use I for any B1, B2 with
monB1 = monB2. This convention is applied in the example below: we use L
for the behaviour of both the label sets Σ and SSP[Γ].

Example 2. We shall use the following label sets and their fixed label behaviours.

1. Σ with behaviour L : Σ → 2Σ∗
such that L(g) = {g}, for g ∈ Σ. Thus,

monΣ = Σ∗.
2. SSP[Γ] with behaviour L : SSP[Γ] → 2Γ ∗

, as specified in Definition 2. Thus,
mon SSP[Γ] = Γ ∗.

3. [Σ,Δ] = {x/y | x ∈ Σ ∪ {e}, y ∈ Δ ∪ {e}} \ {e/e} with behaviour R() such
that R(x/e) = {(x, ε)}, R(e/y) = {(ε, y)}, R(x/y) = {(x, y)}, for any x ∈ Σ
and y ∈ Δ. Thus, mon[Σ,Δ] = Σ∗ × Δ∗.

4. PSP[Γ] with behaviour R : PSP[Γ] → 2Γ ∗×Γ ∗
as specified in Definition 4.

Thus, monPSP[Γ] = Γ ∗ × Γ ∗.
5. If B1, B2 are label sets with behaviours I1, I2, respectively, then [B1, B2] is

the label set {β1/β2 | β1 ∈ B1, β2 ∈ B2} with behaviour and monoid such
that I(β1/β2) = I1(β1) × I2(β2) and mon[B1, B2] = monB1 × monB2.

188 S. Konstantinidis et al.

For any monoid of interest M and m ∈ M , M is a label set such that
monM = M and I(m) = {m}. Thus, I(εM) = {εM}. Also, as monPSP[Γ] =
monΓ ∗ × Γ ∗ = Γ ∗ × Γ ∗ and the behaviour of PSP is denoted by R, we have
R((0, 1)) = R(0/1) = {(0, 1)} = R(∃0/∃1).

2.3 Labelled Graphs, Automata, Transducers

Let B be a label set with behaviour I. A type B graph is a quintuple ĝ =(
Q,B, δ, I, F

)
such that Q is a nonempty set whose elements are called states;

I ⊆ Q is the nonempty set of initial, or start states; F ⊆ Q is the set of
final states; δ is a set, called the set of edges or transitions, consisting of triples
(p, β, q) such that p, q ∈ Q and β ∈ B ∪ {εmonB}. The set of labels of ĝ is the
set Labels(ĝ) = {β | (p, β, q) ∈ δ}. We shall use the term labelled graph to mean
a type B graph as defined above, for some label set B. The labelled graph is
called finite if Q and δ are both finite. In the sequel, a labelled graph will be
assumed to be finite. A path P of ĝ is a sequence of consecutive transitions, that
is, P = 〈qi−1, βi, qi〉�

i=1 such that each (qi−1, βi, qi) is in δ. The path P is called
accepting, if q0 ∈ I and q� ∈ F . If � = 0 then P is empty and it is an accepting
path if I ∩ F �= ∅.

Definition 5. Let ĝ =
(
Q,B, δ, I, F

)
be a labelled graph, for some label set B

with behaviour I. We define the behaviour I(ĝ) of ĝ as the set of all m ∈ monB
such that there is an accepting path 〈qi−1, βi, qi〉�

i=1 of ĝ with m ∈ I(β1) · · · I(β�).
The expansion exp ĝ of ĝ is the labelled graph

(
Q,monB, δexp, I, F

)
such that

δexp = {(p,m, q) | ∃ (p, β, q) ∈ δ : m ∈ I(β)}.

Lemma 1. For each labelled graph ĝ, we have that I(ĝ) = I(exp ĝ).

Example 3. Let Σ,Δ, Γ be alphabets. An automaton, or ε-NFA, is a labelled
graph â = (Q,Σ, δ, I, F). If Labels(â) ⊆ Σ then â is called an NFA. The lan-
guage L(â) is the behaviour of â. An automaton with set specs is a labelled
graph b̂ = (Q,SSP[Γ], δ, I, F). The language L(b̂) is the behaviour of b̂. A
transducer (in standard form) is a labelled graph t̂ = (Q, [Σ,Δ], δ, I, F). The
relation R(t̂) realized by t̂ is the behaviour of t̂. A transducer with set specs is
a labelled graph ŝ = (Q,PSP[Γ], δ, I, F). The relation R(ŝ) realized by ŝ is the
behaviour of ŝ.

2.4 Regular Expressions over Label Sets

We extend the definition of regular expressions to include set specs and pairing
specs, respectively. We start off with a definition that would work with any label
set (called set of atomic formulas in [16]).

Definition 6. Let B be a label set with behaviour I such that no β ∈ B contains
the special symbol �. The set REGB of type B regular expressions is the set of
strings consisting of the 1-symbol string � and the strings in the set Z that is
defined inductively as follows: (i) εmonB is in Z. (ii) Every β ∈ B is in Z. (iii)

Partial Derivatives of Regular Expressions 189

If r, s ∈ Z then (r + s), (rs), (r∗) are in Z. The behaviour I(r) of a type B
regular expression r is defined inductively as follows.

– I(�) = ∅ and I(εmonB) = {εmonB};
– I(β) is the subset of monB already defined by the behaviour I on B;
– I(r + s) = I(r) ∪ I(s); I(rs) = I(r)I(s); I(r∗) = I(r)∗.

Example 4. Using Σ as a label set, we have that REGΣ is the set of ordinary
regular expressions over Σ. For the label set [Σ,Δ], we have that REG[Σ,Δ] is
the set of rational expressions over Σ∗ ×Δ∗ in the sense of [16]. The expressions
(3) and (4) are examples of type PSP[Γ] regular expressions.

3 Partial Derivatives of Type B Regular Expressions

Here we consider any label set B with some behaviour I such that no β ∈ B
contains the special symbol �, and we define the partial derivatives of a type B
regular expression r w.r.t. an element x ∈ X, where X is also a label set such
that monB = monX. The intention is that further below (Sect. 4) one can define
the labelled graph corresponding to r such that the states are partial derivatives
of r (type B regular expressions) and the transition labels are in X.

Derivative based methods for the manipulation of regular expressions have
been widely studied [1,3–5,7,11,12]. In recent years, partial derivative automata
were defined and characterised for several kinds of expressions. Not only they
are in general more succinct than other equivalent constructions but also for
several operators they are easily defined (e.g. for intersection [2] or tuples [8]).
The partial derivative automaton of an ordinary (type Σ) regular expression
was introduced independently by Mirkin [12] and Antimirov [1]. Champarnaud
and Ziadi [6] proved that the two formulations are equivalent. Lombardy and
Sakarovitch [11] generalised these constructions to weighted regular expressions,
and recently Demaille [8] defined derivative automata for multitape weighted
regular expressions.

Without further mention, the operator I as well as the operators n, c, ↓2, πi, π
defined below are extended in a union-respecting way, i.e φ(S) = ∪s∈Sφ(s) for
any operator φ.

Our Assumptions About the Label Set B and the Monoid monB:

∀β ∈ B : I(β) �= ∅ (5)
∀β ∈ B : I(β) �= {εmonB}. (6)

Moreover we shall assume that monB is a graded monoid, [15, p. 383]. For our
purposes, we only need the following implication of this assumption.

∀m1,m2 ∈ monB : m1m2 = εmonB −→ m1 = m2 = εmonB . (7)

The size of an expression r is inductively defined as follows:
‖ � ‖ = 0, ‖εmonB‖ = 0, ‖β‖ = 1

190 S. Konstantinidis et al.

‖r + s‖ = ‖r‖ + ‖s‖, ‖rs‖ = ‖r‖ + ‖s‖, ‖r∗‖ = ‖r‖.

We define the constant part c : REGB → {εmonB ,�} by c(r) = εmonB if εmonB ∈
I(r), and c(r) = � otherwise. For a set R of regular expressions, c(R) = εmonB

if and only if there exists r ∈ R such that c(r) = εmonB .

The Second Label Set X. The linear form n(r) of a regular expression r,
defined below, is a set of pairs (x, r′), in which case r′ is a partial derivative of
r with respect to x ∈ X. The label set X is such that monX = monB. When
the following condition (8) is satisfied, the partial derivative graph of r can be
defined (Sect. 4) and will have as states the partial derivatives of r, including r,
and transitions (r1, x, r2) when (x, r2) ∈ n(r1).

∀β ∈ B : I(β) = I(c(β)) ∪ I(n(β)). (8)

Some Notation. Let β ∈ B and let r, r′, s, s′,z ∈ REGB \ {�} such that
I(s) �= {εmonB}, I(s′) �= {εmonB}, I(z) = {εmonB}. The binary operation �
between any two expressions in REG B \ {�} is defined as follows: r � z =
z � r = r and s � s′ = ss′. For any S̃ ⊆ X × (REG B \ {�}), we define I(S̃) =⋃

(x,s)∈S̃ I(x)I(s) and

�S̃ = ∅, S̃s′ = { (x, s � s′) | (x, s) ∈ S̃ }, s′S̃ = { (x, s′ � s) | (x, s) ∈ S̃ }.

For any R ⊆ REGB \ {�}, we also define �R = ∅, Rs′ = { s � s′ | s ∈
R }, s′R = { s′ � s | s ∈ R }.

Definition 7. A linear form (of type (X,B)) of a regular expression is defined
inductively as follows:

n(�) = ∅, n(εmonB) = ∅,

n(β) = a chosen finite nonempty subset of X × {εmonB},

n(r + r′) = n(r) ∪ n(r′), n(rr′) = n(r)r′ ∪ c(r) n(r′), n(r∗) = n(r)r∗.

Example 5. The default linear form: X = B and ∀β ∈ B : n(β) = {(β, εmonB)}.
Trivially, this n satisfies condition (8). The expanding linear form: when

I(β) ⊆ Φ, X = Φ, ∀β ∈ B : n(β) = {(m, εmonB) | m ∈ I(β)},

where Φ is a finite set of generators of monB. Again, the expanding linear form
satisfies condition (8). For example, if B = SSP[Γ] then Φ = Γ and, for any set
spec F , n(F) = {(f, e) | f ∈ L(F)}. ��
For any x ∈ X and any r ∈ REGB, the set of partial derivatives of r w.r.t. x is
∂x(r) = {r′ | (x, r′) ∈ n(r)}. For all r, r′ ∈ REGB \ {�} and x ∈ X, one can
confirm that

∂x(�) = ∂x(εmonB) = ∅, ∂x(r + r′) = ∂x(r) ∪ ∂x(r′),
∂x(rr′) = ∂x(r)r′ ∪ c(r)∂x(r′), ∂x(r∗) = ∂x(r)r∗.
As in the case of ordinary derivatives, [1], the following result explains how

the behaviour of the linear form of r relates to the behaviour of r.

Partial Derivatives of Regular Expressions 191

Lemma 2. Let the linear form n satisfy condition (8). For all r ∈ REGB, we
have I(r) = I(c(r)) ∪ I(n(r)).

Next we explain how to iterate n(r) to obtain the set of derivatives of the
regular expression r. We start with defining the operator

π0(r) = ↓2(n(r)),

where ↓2(s, t) = t is the standard second projection on pairs of objects. We can
iteratively apply the operator π0 on any expression x ∈ π0(r). The set of all the
resulting expressions is denoted by π(r), and iteratively defined by

πi(r) = π0(πi−1(r)) (i ∈ N), π(r) =
⋃

i∈N0

πi(r).

Let PD(r) = π(r) ∪ {r} be the set of partial derivatives of r.

Example 6. Consider the case of the default linear form and the type PSP[Γ]
regular expression r = (∀/=)∗(∀/e)∗. We have

n((∀/=)∗) = n(∀/=)(∀/=)∗ = {(∀/=, e/e)}(∀/=)∗ = {(∀/=, (∀/=)∗)}
n((∀/e)∗) = n(∀/e)(∀/e)∗ = {(∀/e, e/e)}(∀/e)∗ = {(∀/e, (∀/e)∗)}.

As (ε, ε) ∈ R((∀/=)∗), we have n(r) = n((∀/=)∗)(∀/e)∗ ∪ n((∀/e)∗) =
{(∀/=, r), (∀/e, (∀/e)∗)}. Then, π0(r) = {r, (∀/e)∗}, π1(r) = π0(r) ∪
π0((∀/e)∗) = π0(r), π(r) = {r, (∀/e)∗}.

Example 7. Consider the type SSP[Γ] regular expression r = (∀∗)(∃b) and the
case of the expanding linear form n such that n(F) = {(f, e) | f ∈ L(F)}, for
any set spec F , and X = Γ = {a, b, . . . , z}. We have

n(∀∗) = n(∀)(∀∗) = (Γ × {e})(∀∗) = Γ × {∀∗} and n(∃b) = {(∃b, e)}.

Also, as ε ∈ L(∀∗), we have n(r) = n(∀∗)(∃b) ∪ n(∃b) = Γ×{r} ∪ {(b, e)}. Then,
π0(r) = {r, e}, π1(r) = π0(r), π(r) = π0(r), ∂a(r) = {r, e} and ∂b(r) = {r}.

Theorem 1. Suppose that partial derivatives are defined based on some type
(X,B) linear form. For all r ∈ REGB, |π(r)| ≤ ‖r‖ and |PD(r)| ≤ ‖r‖ + 1.

4 The Partial Derivative Graph of a Regular Expression

Here we consider a label set B to be used for type B regular expressions r and
a label set X that will be used to define the type X labelled graph âPD(r), such
that monB = monX and condition (8) is satisfied for all β ∈ B—recall that
n(β) ⊆ X × {εmonB}. The objective is to prove that the behaviour of âPD(r) is
exactly I(r)—see Theorem 2. This is analogous to the case of ordinary regular
expressions [1,12]. Thus, to decide whether a given m ∈ monB is in I(r), one
computes âPD(r) and then tests whether âPD(r) accepts m. This test depends
on the particular monoid monB [10].

192 S. Konstantinidis et al.

Fig. 1. The transducer t̂px is alphabet invariant and realizes all (u, v) such that v is a
prefix of u. The automaton âPD(r) accepts all words in {a, b, . . . , z}∗ ending with b.
The transducer âPD(s) realizes all (u, v) such that v is a prefix of u and Γ = {a, b}.

Definition 8. The type X partial derivative graph of a type B regular expression
r is the labelled graph âPD(r) =

(
PD(r),X, δPD, {r}, λ(r)

)
, where λ(r) = { r1 ∈

PD(r) | c(r1) = εmonB } and δPD = { (r1, x, r2) | r1 ∈ PD(r) ∧ (x, r2) ∈ n(r1) }.

Theorem 2. Suppose that partial derivatives are defined based on some type
(X,B) linear form. For any r ∈ REGB, we have that I(âPD(r)) = I(r).

Example 8. Consider again the regular expression r = (∀/=)∗(∀/e)∗ over
PSP[Γ] representing all word pairs (u, v) such that v is a prefix of u. We
compute the partial derivative graph âPD(r) using the default linear form for
X = B = PSP[Γ]. In Example 6, we computed n(r) = {(∀/=, r), (∀/e, (∀/e)∗)}
and π(r) = {r, (∀/e)∗}. Using the linear forms n(r) and n((∀/e)∗), we see that
the partial derivative graph âPD(r) is exactly the transducer t̂px in Fig. 1.

Example 9. Consider again the type SSP[Γ] regular expression r = (∀∗)(∃b) of
Example 7, representing all words ending with b. The partial derivative graph
âPD(r) is the automaton in Fig. 1.

Corollary 1. Consider the default linear form for X = B = [Σ,Δ]. For any
type [Σ,Δ] regular expression r, the type [Σ,Δ] partial derivative graph âPD(r)
is a transducer (in standard) form such that R(r) = R(âPD(r)).

Example 10. Let Σ = Δ = {a, b} and let n be the default linear form for X =
B = [Σ,Δ]. The type [Σ,Δ] expression s = (a/a+b/b)∗(a/e+b/e)∗ represents
all (u, v) such that v is a prefix of u. Let s1 = (a/a+b/b)∗ and s2 = (a/e+b/e)∗.
Then, n(s1) = {(a/a, r1), (b/b, r1)}, n(s2) = {(a/e, s2), (b/e, s2)}, n(r) =
{(a/a, r), (b/b, r), (a/e, s2), (b/e, s2)}. The graph âPD(s) is shown in Fig. 1.

5 2D Regular Expressions

By 2D regular expressions we mean type B regular expressions with monB =
Σ∗ × Δ∗ (or monB = Γ ∗ × Γ ∗). We want a direct algorithm to decide if (u, v)

Partial Derivatives of Regular Expressions 193

belongs to R(r), without constructing the transducer âPD(r) and then testing
whether âPD(r) accepts (u, v). To this end, we shall define partial derivatives
∂ψ(β), where ψ ∈ X, a little differently. Due to space limitation we shall deal
only with the case of X = {F/e, e/F | F ∈ SSP[Γ]} and1 B = PSP�=∅[Γ]. See
[14] for the case of X = {x/e, e/y | x ∈ Σ, y ∈ Δ} and B = [Σ,Δ].

Consider the monoid Σ∗ × Δ∗ with set of generators {(x, ε), (ε, y) | x ∈
Σ ∧ y ∈ Δ} and set of equations { (x, ε)(ε, y) .= (x, y), (ε, y)(x, ε) .= (x, y) | x ∈
Σ ∧ y ∈ Δ }. The partial derivatives of this section are related to the quotient
of relations R ⊆ Σ∗ × Δ∗, by word pairs. But now one needs to take in account
the above equations. For instance, for x ∈ Σ and y ∈ Δ, we have

(x, ε)−1
R = { (ε, y)w | (x, y)w ∈ R}, (ε, y)−1

R = { (x, ε)w | (x, y)w ∈ R}.

Quotients can be extended appropriately: For θ a pair as above and ω a
concatenation of such pairs, (ε, ε)−1

R1 = R1, (ωθ)−1
R1 = θ−1(ω−1R1). For

R1 ⊆ (Σ∗ × {ε}) ∪ ({ε} × Δ∗), we have R1
−1R2 =

⋃
θ∈R1

θ−1R2.
The partial derivatives of any p ∈ PSP�=∅[Γ] are defined w.r.t. elements in

X = {F/e, e/F | F ∈ SSP[Γ]} are as follows.

∂e/F (G/e) = ∂F/e(e/G) = ∅,

∂e/F (e/G) = ∂F/e(G/e) = {e/e} if L(F) ∩ L(G) �= ∅,

∂e/F (G/C) = {G/e} if L(F) ∩ L(C) �= ∅,

∂e/F (G/=) = {(F ∩ G)/e} if L(F) ∩ L(G) �= ∅,

∂e/F (G/C �=) =

{
{(G ∩ /∃b)/e} if L(F ∩ C) = {b} ∧ L(G) \ {b} �= ∅,

{G/e} if |L(F ∩ C)| ≥ 2,

∂F/e(G/=) = {e/(F ∩ G)} if L(F) ∩ L(G) �= ∅,

∂F/e(G/C �=) =

{
{e/(C ∩ /∃b)} if L(F ∩ G) = {b} ∧ L(C) \ {b} �= ∅,

{e/C} if |L(F ∩ G)| ≥ 2.

For each case above, if the conditions do not hold then the set of partial
derivatives is ∅. Above we have used the operation ∩ between any two set specs,
defined in [10] in a natural way, e.g., ∃035 ∩ ∃1358 = ∃35, /∃035 ∩ ∃1358 = ∃18.

Partial derivatives ∂F/e(r) and ∂e/F (r) of any r ∈ REG PSP�=∅[Γ] are defined
as in Sect. 3, except for the concatenation rs. Let ϕ be either of F/e, e/F :

∂ϕ(�) = ∂ϕ(e/e) = ∅, ∂ϕ(r + s) = ∂ϕ(r) ∪ ∂ϕ(s), ∂ϕ(r∗) = ∂ϕ(r)r∗,
∂F/e(rs) = ∂F/e(r)s ∪ cin(r)∂F/e(s), ∂e/F (rs) = ∂e/F (r)s ∪ cout(r)∂e/F (s);

where cin is the constant-input part defined such that cin(e/e) = e/e, cin(e/F) =
e/F , and cin(p) = � for all other pairing specs p. Moreover for F ∈ SSP[Γ] and
r, s ∈ REG PSP�=∅[Γ],

1 Because of condition (5), here we consider labels in PSP �=∅[Γ], that is, only those
labels p ∈ PSP[Γ] for which R(p) �= ∅.

194 S. Konstantinidis et al.

cin(rs) = cin(r) cin(s), cin(�s) = cin(r�) = cin(�) = �,

cin(r + s) = cin(r) + cin(s), cin(� + s) = cin(s), cin(r + �) = cin(r),
cin(r∗) = (cin(r))∗, cin(�∗) = e/e.

The constant-output part is analogous except that cout(F/e) = F/e.

Lemma 3. For all r ∈ REG PSP�=∅[Γ], we have R(cin(r)) = R(r) ↓ {ε}
and R(cout(r)) = R(r) ↑ {ε}. Moreover R(cin(cout(r))) = R(c(r)) =
R(cout(cin(r))).

Theorem 3. For all (u, v) with u = x1 · · · xn and v = y1 · · · ym, we have that
(u, v) ∈ R(r) if and only if c(∂∃x1/e,...,∃xn/e, e/∃y1,...,e/∃ym

(r)) = e/e.

Remark 1. It can be shown that ∂∃x/e and ∂e/∃y commute on any r; thus, we
have that c(∂∃x1/e,...,∃xn/e, e/∃y1,...,e/∃ym

(r)) = c(∂∃x1/e, e/∃y1,∃x2/e,e/∃y2,...(r)).

Example 11. Consider the word pair (aaba, aaaa) and the type PSP�=∅[Γ] regular
expression r = (∀/=)∗(∀/∀�=)(∀/=)∗. We confirm that (aaba, aaaa) ∈ R(r) by
showing that there is r1 ∈ ∂∃a/e,∃a/e,∃b/e,∃a/e,∃e/a,∃e/a,∃e/a,∃e/a(r) such that
(ε, ε) ∈ R(r1). Note that the only information about the alphabet is that it
contains the letters a and b. We shall compute only the necessary derivatives
that lead to such an r1.

First we have: ∂∃a/e((∀/=)∗) = {(e/∃a)(∀/=)∗}, ∂∃a/e(∀/∀�=) = {e//∃a},

cin((∀/=)∗) = e/e, cin(∀/∀�=) = �.

Let r1 = (∀/=)∗ and r2 = (∀/∀�=). Then

∂∃a/e(r) = ∂∃a/e(r1)r2r1 ∪ cin(r1)∂∃a/e(r2r1)

= {(e/∃a)r} ∪ ∂∃a/e(r2)r1 ∪ cin(r2)∂∃a/e(r1)

= {(e/∃a)r, (e//∃a)r1}.

∂∃a/e((e/∃a)r) = (e/∃a)∂∃a/e(r) = {(e/∃a)(e/∃a)r} ∪ · · ·
∂∃b/e

(
(e/∃a)(e/∃a)r)

= {(e/∃a)(e/∃a)(e//∃b)r1} ∪ · · ·
∂∃a/e

(
(e/∃a)(e//∃b)r1

)
= {(e/∃a)(e/∃a)(e//∃b)(e/∃a)r1} ∪ · · ·

∂e/∃a

(
(e/∃a)(e/∃a)(e//∃b)(e/∃a)r1

)
= {(e/∃a)(e//∃b)(e/∃a)r1} ∪ · · ·

∂e/∃a

(
(e/∃a)(e//∃b)(e/∃a)r1

)
= {(e//∃b)(e/∃a)r1} ∪ · · ·

∂e/∃a

(
(e//∃b)(e/∃a)r1

)
= {(e/∃a)r1} ∪ · · ·

∂e/∃a

(
(e/∃a)r1

)
= {r1} ∪ · · · Thus, (ε, ε) ∈ R(r1).

6 Concluding Remarks

Label sets can have any desired format as long as one provides their monoidal
behaviour. Using the elements of a label set B we can build type B regular expres-
sions, which can have a significantly reduced size when the alphabet of reference
is large. At this broad level, we were able to obtain a few basic results on partial

Partial Derivatives of Regular Expressions 195

derivatives of these expressions. Already FAdo [9] includes implementations of
partial derivative (PD) algorithms for ordinary (1D) regular expressions and of
type [Σ,Δ] regular expressions. We are currently implementing PD algorithms
for type SSP[Γ] and PSP[Γ] expressions.

A research direction is to investigate the efficiency of the two approaches
to the regular expression r membership (word) problem: directly or via build-
ing âPD(r). Solving the regular expression membership problem directly for 2D
expressions required a modified definition of partial derivatives (PDs). So another
research direction is to find a good way to generalize the definition of linear form
n such that n(β) is a finite nonempty subset of X × B ∪ {εmonB} and n(rs) is
defined appropriately to include both the original and the modified PDs.

Acknowledgement. We are grateful to the reviewers of CIAA 2019 for their con-
structive suggestions for improvement. We have applied most of these suggestions, and
we plan to apply the remaining ones in the journal version where more pages are
allowed. The idea of using special labels on automata to denote sets is also explored in
[13] with different objectives.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average com-
plexity of partial derivative automata for semi-extended expressions. J. Autom.
Lang. Comb. 22(1–3), 5–28 (2017). https://doi.org/10.25596/jalc-2017-005

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity
of partial derivative automata: an analytic combinatorics approach. Internat. J.
Found. Comput. Sci. 22(7), 1593–1606 (2011)

4. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)
5. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21254-3 13

6. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fund. Inform. 45(3), 195–205 (2001)

7. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002). https://doi.
org/10.1016/S0304-3975(01)00267-5

8. Demaille, A.: Derived-term automata of multitape expressions with composition.
Sci. Ann. Comput. Sci. 27(2), 137–176 (2017). https://doi.org/10.7561/SACS.
2017.2.137

9. FAdo: Tools for formal languages manipulation. http://fado.dcc.fc.up.pt/.
Accessed Mar 2019

10. Konstantinidis, S., Moreira, N., Reis, R., Young, J.: Regular expressions and
transducers over alphabet-invariant and user-defined labels. CoRR abs/1805.01829
(2018). http://arxiv.org/abs/1805.01829

11. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theoret. Comput. Sci. 332(1–3), 141–177 (2005). https://doi.org/10.1016/j.tcs.
2004.10.016

https://doi.org/10.25596/jalc-2017-005
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1016/S0304-3975(01)00267-5
https://doi.org/10.1016/S0304-3975(01)00267-5
https://doi.org/10.7561/SACS.2017.2.137
https://doi.org/10.7561/SACS.2017.2.137
http://fado.dcc.fc.up.pt/
http://arxiv.org/abs/1805.01829
https://doi.org/10.1016/j.tcs.2004.10.016
https://doi.org/10.1016/j.tcs.2004.10.016

196 S. Konstantinidis et al.

12. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 51–57 (1966)

13. Newton, J.: Representing and computing with types in dynamically typed lan-
guages. Ph.D. thesis, Sorbonne Université, Paris, France, November 2018

14. Pires, J.: Transducers and 2D regular expressions. Master’s thesis, Departamento
de Ciência de Computadores, Faculdade de Ciências da Universidade do Porto,
Porto, Portugal (2018)

15. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Berlin
(2009)

16. Sakarovitch, J.: Automata and rational expressions. CoRR abs/1502.03573 (2015).
http://arxiv.org/abs/1502.03573

http://arxiv.org/abs/1502.03573

Input-Driven Multi-counter Automata

Martin Kutrib(B), Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,andreas.malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. The model of deterministic input-driven multi-counter auto-
mata is introduced and studied. On such devices, the input letters
uniquely determine the operations on the underlying data structure that
is consisting of multiple counters. We study the computational power of
the resulting language families and compare them with known language
families inside the Chomsky hierarchy. In addition, it is possible to prove
a proper counter hierarchy depending on the alphabet size. This means
that any input alphabet induces an upper bound which depends on the
alphabet size only, such that k + 1 counters are more powerful than k
counters as long as k is less than this bound. The hierarchy interestingly
collapses at the level of the bound. Furthermore, we investigate the clo-
sure properties of the language families. Finally, the undecidability of the
emptiness problem is derived for input-driven two-counter automata.

1 Introduction

Multi-counter automata are finite state automata equipped with multiple coun-
ters which can be incremented, decremented, and tested for zero. It is well known
that general one-way deterministic two-counter automata are computationally
universal, that is, they can simulate Turing machines [17]. However, the latter
simulation may need an unbounded amount of space. Hence, deterministic space-
bounded as well as time-bounded multi-counter automata have been considered
in [7] where, in particular, the case when the available time is restricted to real-
time is studied. The authors establish in this case an infinite and strict counter
hierarchy as well as positive and negative closure results. The generalization
to multi-counter automata that may work nondeterministically as well as may
use two-way motion on the input tape has been done in [8]. Since one-counter
automata can be seen as a special case of pushdown automata, multi-counter
automata may be considered a special case of multi-pushdown automata intro-
duced in [6].

A recently introduced restriction to pushdown automata which turned out to
provide nice closure properties and decidability questions is the requirement to
work in an input-driven way. This means that input-driven pushdown automata
are ordinary pushdown automata where the actions on the pushdown store are
dictated by the input symbols. In particular, if an input symbol forces the
machine to pop a symbol from the empty pushdown store, the computation
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 197–208, 2019.
https://doi.org/10.1007/978-3-030-23679-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_16

198 M. Kutrib et al.

continues with empty pushdown store. This variant of pushdown automata has
originally been introduced in 1980 by Mehlhorn [16] and further investigations
have been done in 1985 by von Braunmühl and Verbeek [5]. The results of both
papers comprise the equivalence of nondeterministic and deterministic models
and the proof that the membership problem is solvable in logarithmic space.
The model has been revisited under the name of visibly pushdown automata in
2004 [1]. Complexity results on the model are summarized in the survey [18]. An
input-driven variant of one-counter automata has been introduced in [2] and two
recent papers [9,12] examine algebraic and logical aspects of input-driven counter
automata. The above-mentioned generalization to multi-pushdown automata in
terms of input-driven devices is described in [15] where several additional restric-
tions are put on the general model in order to obtain manageable models with
positive closure properties and decidable questions. Finally, we mention that the
computational power of input-driven automata using the storage medium of a
stack and a queue, respectively, have been investigated in [3,13].

In this paper, we will introduce and investigate the model of input-driven
multi-counter automata which are basically the input-driven variant of the real-
time multi-counter automata discussed in [7]. It should be noted that this model
is different from the model of “input-driven pushdown automata with counters”
recently introduced by Ibarra [11]. This model is basically an input-driven push-
down automaton with additional reversal-bounded counters (see also [10]), where
the input symbols govern the behavior on the pushdown store, but not necessar-
ily on the counters. In contrast, our model has a counter update function which
solely depends on the input alphabet. The paper is organized as follows. In the
next section we introduce the necessary notations on multi-counter automata
and their input-driven versions. In Sect. 3 we study the computational capacity
of input-driven multi-counter automata and their relation to the language fam-
ilies of the Chomsky hierarchy. Then, a hierarchy on the number of counters is
established that interestingly depends on the size of the input alphabet. This
means that every alphabet size n determines a bound f(n) such that k coun-
ters with 1 ≤ k < f(n) are less powerful that k + 1 counters, but any number
of counters larger than f(n) is as powerful as f(n) counters. Sections 4 and 5
are devoted to investigating the closure properties of and decidability questions
for input-driven multi-counter automata. The main result in the latter section
is that already two input-driven counters are sufficient to obtain that all usu-
ally studied decidability questions are undecidable, whereas all but one of the
questions is decidable for input-driven one-counter automata.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ and the reversal of a word w by wR. For the length of w we
write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

Let k ≥ 0 be a natural number. A (one-way) deterministic k-counter automa-
ton (DCA(k)) is a finite automaton having a single read-only input tape. In addi-
tion, it is equipped with k counters. At the outset of a computation the counter

Input-Driven Multi-counter Automata 199

automaton is in the designated initial state, the counters are set to zero, and
the head of the input tape scans the leftmost input symbol. Dependent on the
current state, the currently scanned input symbol, and the information whether
the counters are zero or not, the counter automaton changes its state, increases
or decreases the counters or leaves the counters unchanged, and moves the input
head one square to the right. The automata have no extra output tape but the
states are partitioned into accepting and rejecting states.

A counter automaton is called input-driven if the input symbols currently
read define the next action on the counters. To this end, we assume that each
input symbol is associated with actions to be applied to the counters. Let Σ be
the input alphabet. Then α : Σ → {−1, 0, 1}k gives these actions, where the ith
component α(x)i of α(x), for 1 ≤ i ≤ k and x ∈ Σ, is added to the current
value of counter i. The subtraction is in natural numbers, that is, decreasing a
counter value 0 gives counter value 0. This behavior is in line with the definition
of input-driven pushdown automata that may pop from the empty pushdown
store leaving the pushdown store empty. For any x ≥ 0 we define the function
sg(0) = ⊥ and sg(x) = + for x ≥ 1.

An input-driven counter automaton with k ≥ 0 counters (IDCA(k)) is a
system M = 〈Q,Σ, k, q0, F, α, δ〉, where Q is the finite set of internal states, Σ
is the finite set of input symbols, k ≥ 0 is the number of counters, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, α : Σ → {−1, 0, 1}k is the
counter update function, and δ : Q × Σ × {+,⊥}k → Q is the partial transition
function that determines the successor state dependent on the current state, the
current input symbol, and the current statuses of the counters (+ indicates a
positive value and ⊥ a zero).

A configuration of an IDCA(k) M = 〈Q,Σ, k, q0, F, α, δ〉 is a (k + 2)-tuple
(q, w, c1, c2, . . . , ck), where q ∈ Q is the current state, w ∈ Σ∗ is the unread
part of the input, and ci ≥ 0 is the current value of counter i, 1 ≤ i ≤ k. The
initial configuration for input w is set to (q0, w, 0, 0, . . . , 0). During the course of
its computation, M runs through a sequence of configurations. One step from a
configuration to its successor configuration is denoted by �. Let q, q′ ∈ Q, a ∈ Σ,
w ∈ Σ∗, and ci ≥ 0, 1 ≤ i ≤ k. We set

(q, aw, c1, c2, . . . , ck) � (q′, w, c1 + α(a)1, c2 + α(a)2, . . . , ck + α(a)k)

if and only if δ(q, a, sg(c1), sg(c2), . . . , sg(ck)) = q′ (recall that the subtraction is
in natural numbers). As usual, we define the reflexive and transitive closure of �
by �∗.

The language accepted by the IDCA(k) M is the set L(M) of words for which
there exists some computation beginning in the initial configuration and halting
in a configuration in which the whole input is read and an accepting state is
entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, 0, 0, . . . , 0) �∗ (q, λ, c1, c2, . . . , ck)
with q ∈ F, ci ≥ 0 for 1 ≤ i ≤ k }.

200 M. Kutrib et al.

So, an input-driven k-counter automaton is a realtime device since it cannot
perform stationary moves. It halts within n steps on inputs of length n. For each
counter Ci, the definitions imply the partition of the input alphabet into the sets
Σ

(i)
D , Σ

(i)
R , and Σ

(i)
N that control the actions increase or drive (D), decrease or

reverse (R), and leave unchanged or neutral (N) of counter Ci. Such a partition
is called a signature.

The family of all languages which can be accepted by some device X is denoted
by L (X).

To clarify our notion we continue with an example.

Example 1. The language L = {abbā3b̄b̄a5bbā7b̄b̄ · · · a4n+1b | n ≥ 0} is non-
semilinear and accepted by the IDCA(2) M = 〈Q,Σ, 2, q0, F, α, δ〉 with state set
Q = {q0, q1, q2, q3, q4}, final states F = {q2}, counter update function defined
by α(a) = (−1, 1), α(b) = (0, 1), α(ā) = (1,−1), α(b̄) = (1, 0), and transition
function

1. δ(q0, a,⊥,⊥) = q1
2. δ(q1, b,⊥,+) = q2
3. δ(q2, b,⊥,+) = q3

4. δ(q3, ā,⊥,+) = q3
5. δ(q3, ā,+,+) = q3
6. δ(q3, b̄,+,⊥) = q4

7. δ(q4, b̄,+,⊥) = q1
8. δ(q1, a,+,⊥) = q1
9. δ(q1, a,+,+) = q1

The IDCA(2) M uses its second counter to store the number of consecu-
tive a’s. The following two b’s are used to increment the counter by two in
order to match the number of ā’s in the following block. The comparison is
made by decreasing the second counter on ā’s. Simultaneously, the first counter
is increased to store the number of ā’s for the verification of the next block
length. The addition of two is done while reading two symbols b̄’s. Similarly the
length of an ā block is compared with the length of the following a block. These
comparisons are done alternately.

The correct format of the input is checked in the states.
Finally, the total length of an accepted input is (2n + 2)2 − 2 and, thus, the

language is not semilinear. �

3 Computational Capacity

We start the investigation of the computational capacity of input-driven counter
automata by considerations on unary languages. Example 1 shows that even
two counters are sufficient to push the power of input-driven counter automata
beyond the edge of semilinearity and, thus, context-freeness. However, to this
end non-unary witness languages have to be used. In fact, for unary languages
any number of counters does not help to accept a non-regular language.

Proposition 2. Any unary language accepted by some IDCA is regular.

Proof. Let M = 〈Q, {a}, k, q0, F, α, δ〉 be an IDCA(k) accepting a unary lan-
guage L(M) ⊆ a∗. If k = 0, then M is a finite automaton and the accepted
language is regular. If k > 0, the signature of any counter Ci, 1 ≤ i ≤ k, consists

Input-Driven Multi-counter Automata 201

of one singleton and two empty sets. If Σ
(i)
R or Σ

(i)
N is non-empty then M will

never increase counter Ci from its initial value zero. So, counter Ci is useless
and can be omitted. If Σ

(i)
D is non-empty then counter Ci is never decreased to

zero once it has been increased to one. This fact can be remembered in the state
such that counter Ci can be omitted in this case either. In this way all counters
can be omitted and we end up in a finite automaton that accepts L(M). �

Clearly, any regular language is accepted by some IDCA(0). So, for any k ≥ 0
the family of unary languages accepted by IDCA(k) coincides with the family
of regular languages. Moreover, any IDCA can be simulated by a deterministic
linear bounded automaton in a straightforward way. This implies that the family
of languages accepted by IDCA is included in the family of deterministic context-
sensitive languages. The inclusion is even strict, since the (deterministic) (linear)
context-free language { an$an | n ≥ 0 } is not accepted by any IDCA.

Lemma 3. Language L = { an$an | n ≥ 0 } is not accepted by any IDCA.

Proof. Contrarily assume that there is some IDCA(k) M = 〈Q,Σ, k, q0, F, α, δ〉
that accepts L.

We give evidence that the counters cannot help. Let Ci, 1 ≤ i ≤ k, be a
counter. If a ∈ Σ

(i)
R or a ∈ Σ

(i)
N then M will increase counter Ci at most once

on reading the $. This fact can be remembered in the state and counter Ci can
be omitted.

If a ∈ Σ
(i)
D and n ≥ 2 then counter Ci is never decreased to zero once two a’s

have been read from the input. This fact can be remembered in the state as well
such that counter Ci can be omitted in this case either.

In this way all counters can be omitted and we end up in a finite automaton
that accepts L. This is a contradiction since L is not regular. �

The next corollary summarizes the relationships with the linguistic families
of the Chomsky hierarchy.

Corollary 4. Let k ≥ 1 be an integer. Then the family of regular languages is
strictly included in L (IDCA(k)) which, in turn, is strictly included in the family
of deterministic context-sensitive languages.

For k ≥ 2, the family L (IDCA(k)) is incomparable with the family of (deter-
ministic) (linear) context-free languages.

Next, we turn to examine the power of the number of counters.

Lemma 5. Let Σ be an m-symbol alphabet and k = 3m − 2m+1 + 1. Then any
IDCA(k + i), i ≥ 1, can be simulated by an IDCA(k).

Proof. Let i ≥ 1 and M = 〈Q,Σ, k + i, q0, F, α, δ〉 be an IDCA(k + i).
The proof of Proposition 2 revealed that a counter whose signature does

not associate an increase and a decrease operation with some alphabet symbol
can safely be omitted. So, any useful signature has non-empty sets ΣR and
ΣD. There are 3m different signatures of Σ. From these, 2m signatures have an

202 M. Kutrib et al.

empty set ΣR. Another 2m signatures have an empty set ΣD. Moreover, there
is exactly one signature with both sets ΣR and ΣD empty. Therefore, there are
at most 3m − 2m+1 + 1 different useful signatures.

Clearly, if two counters of M have the same signature, one of them can be
omitted. The same is true for a counter with a useless signature. We conclude
that at least i counters can be removed from M without affecting the language
accepted. �

In particular, Lemma5 shows that any counter hierarchy for IDCA necessar-
ily collapses at a level that is solely determined by the alphabet size. Next, we
turn to show that, in fact, these hierarchies exist.

Theorem 6. Let m ≥ 2 be an integer. For 1 < k ≤ 3m −2m+1+1, the family of
languages accepted by IDCA(k−1) over an alphabet of size m is strictly included
in the family of languages accepted by IDCA(k) over an alphabet of size m.

Proof. Let Σ = {a1, a2, . . . , am} be some alphabet of size m ≥ 2. The proof of
Lemma 5 showed that there are kmax = 3m −2m+1+1 different useful signatures
Si =

(
Σ

(i)
D , Σ

(i)
R , Σ

(i)
N

)
, 1 ≤ i ≤ kmax. For each signature Si language Li ⊆ Σ∗ is

defined as

Li = {w1w2w3 | w1 ∈ (
Σ

(i)
D

)+
, w2 ∈ (

Σ
(i)
N

)∗
, w3 ∈ (

Σ
(i)
R

)+
, |w3| = |w1| + 1 }.

First, we show that, for any subset I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , kmax},
language LI =

⋃
i∈I(Li)+ is accepted by some IDCA(k) M . To this end, the

counter update function α of M associates signature Sij
with counter Cj ,

for ij ∈ I. In this way, when starting with counter value zero, for any input
factor w1w2w3 from Lij

, counter Cj is incremented to |w1| while M processes
the prefix w1 of the factor. On w2 the value of counter Cj is unchanged. Since
|w3| = |w1| + 1, counter Cj is decremented to value zero for the first time
when only one input symbol of the factor is left. The next transition of M on
counter value zero drives M into an accepting state while the value of counter Cj

remains zero. Therefore, M accepts if the input has been processed entirely. Oth-
erwise it repeats the process for the next input factor from Lij

. Moreover, since
((

Σ
(ij)
D

)+(
Σ

(ij)
N

)∗(
Σ

(ij)
R

)+)+

is regular, M can determine in its states whether

the input has the format of all words in (Lij
)+. Since M has as many counters

as languages are joined to LI , an input can be accepted if and only if it belongs
to LI .

Second, we show that, for any subset I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , kmax},
language LI is not accepted by any IDCA(k − 1). In contrast to the assertion
assume that there is some subset I = {i1, i2, . . . , ik} and some IDCA(k − 1)
M = 〈Q,Σ, k − 1, q0, F, α, δ〉 that accepts LI . Since LI is the union of k lan-
guages which in turn are defined by k signatures, but M has only k−1 counters,
there is at least one of the joined languages, say (Lj)+, whose underlying sig-
nature Sj =

(
Σ

(j)
D , Σ

(j)
R , Σ

(j)
N

)
does not appear as the signature of any of the

counters.

Input-Driven Multi-counter Automata 203

In order to obtain a contradiction, we next turn to construct an input word
ϕ ∈ (Lj)+ that fools all counters of M simultaneously. To this end, let

Σ
(j)
D = {x1, x2, . . . , xp}, Σ

(j)
N = {y1, y2, . . . , yq}, and Σ

(j)
R = {z1, z2, . . . , zr}.

The word ϕ is the concatenation of r words u1, u2, . . . , ur from Lj that are
as follows. Let c > r + 2 be a fixed constant. Then

ui = (x1x2 · · · xp)czc·p+1
i , for 1 ≤ i ≤ r − 1.

So, the length of ui is 2 · c · p + 1. Now we set cr = (r − 1)(2 · c · p + 1) + p + |Q|
and s = (p + 1) · cr, and define

ur = (x1x2 · · · xp)cry2·s
1 y22·s

2 · · · y2q·s
q zcr·p+1

r .

Next we determine how the counters of M evolve on input ϕ = u1u2 · · · ur

that belongs to L(M). To this end, we distinguish three cases dependent on the
signatures of the counters.

Case 1. Let Σ
(j)
N �⊆ Σ

(i)
N for some counter Ci.

To determine how counter Ci evolves on input ϕ we consider the greatest
index � from {1, 2, . . . , q} such that y� /∈ Σ

(i)
N .

The length of the prefix of ϕ up to but not including the factor y2�·s
� from ur

is (r−1)(2·c·p+1)+cr ·p+2·s+22 ·s+· · ·+2�−1 ·s < s+2·s+22 ·s+· · ·+2�−1 ·s =
(2� − 1) · s. Therefore, after processing the prefix, the value of counter Ci is at
most (2� − 1) · s.

If y� ∈ Σ
(i)
R then the value of counter Ci is decremented to zero after pro-

cessing the following factor y2�·s
� . Furthermore, since � has been chosen to be

the greatest index, the value of counter Ci remains zero until the first symbol zr

appears in the input. Dependent on whether zr belongs to Σ
(i)
D or Σ

(i)
N ∪Σ

(i)
R the

value of counter Ci increases on the remaining input suffix zcr·p+1
r or remains

zero. In both cases the status of counter Ci does not change on the last cr · p
input symbols.

If y� ∈ Σ
(i)
D then the value of counter Ci is at least 2� · s after processing the

following factor y2�·s
� . Furthermore, since � has been chosen to be the greatest

index, the value of counter Ci does not change until the first symbol zr appears
in the input. Moreover, since cr · p + 1 < 2� · s the status of counter Ci does not
change on the last cr · p input symbols.

Case 2. Let Σ
(j)
N ⊆ Σ

(i)
N and Σ

(j)
D �⊆ Σ

(i)
D for some counter Ci.

The length of the prefix u1u2 · · · ur−1 of ϕ is (r − 1)(2 · c · p + 1). Therefore,
after processing the prefix, the value of counter Ci is at most (r −1)(2 · c ·p+1).
Since there is at least one symbol from {x1, x2, . . . , xp} that does not belong
to Σ

(i)
D , the value of counter Ci increases by at most cr · (p − 1) on process-

ing the following factor (x1x2 · · · xp)cr . This gives a counter value of at most
(r − 1)(2 · c · p + 1) + cr · (p − 1) = cr − p − |Q| + cr · p − cr = cr · p − p − |Q|.

204 M. Kutrib et al.

Dependent on whether zr belongs to Σ
(i)
D ∪Σ

(i)
N or Σ

(i)
R the value of counter Ci

increases or remains unchanged, or decreases by cr ·p+1 on the remaining input
suffix zcr·p+1

r . In the former case, clearly, the status of counter Ci does not change
on the last cr · p input symbols. In the latter case the counter is decreased to
zero after processing at most cr · p − p − |Q| input symbols zr. So, the status of
counter Ci does not change on the last p + |Q| + 1 input symbols.

Case 3. Let Σ
(j)
N ⊆ Σ

(i)
N and Σ

(j)
D ⊆ Σ

(i)
D for some counter Ci.

In this case we know that at least one of the inclusions is strict and obtain
Σ

(i)
R ⊂ Σ

(j)
R . Let � be the greatest index from {1, 2, . . . , r} such that z� /∈ Σ

(i)
R .

Since counter Ci increases on all input factors x1x2 · · · xp by p, after pro-
cessing the prefix (x1x2 · · · xp)c of u� if � < r or (x1x2 · · · xp)cr of ur if � = r,
the counter value is at least c · p in the former and at least cr · p in the latter
case. Since z� /∈ Σ

(i)
R , the value does not decrease on suffix zc·p+1

� of u� if � < r

or zcr·p+1
� of ur if � = r.
If � = r this implies immediately that the status of counter Ci does not

change on the last cr · p input symbols.
If � < r, the value of counter Ci is at least c · p after processing factor

u� of ϕ. The value increases by c · p and subsequently possibly decreases by
c ·p+1 on each of the remaining r− �−1 factors u�+1, u�+2, . . . , ur−�−1. Finally,
on the prefix (x1x2 · · · xp)cr of ur it increases by cr · p. At that time its value
is at least c · p − (r − � − 1) + cr · p. Recall that p, r ≥ 1 since Sj is useful.
Since Σ

(j)
N ⊆ Σ

(i)
N , it decreases by at most cr ·p+1 on the remaining input suffix.

By c · p − (r − � − 1) + cr · p > c · p − r + cr · p > (r + 2) · p − r + cr · p > 2 + cr · p
we conclude that counter Ci is not decremented to zero on the suffix and, thus,
the status of counter Ci does not change on the last cr · p input symbols. This
concludes Case 3.

Cases 1 to 3 show that the status of all counters of M at least do not change
on the last p + |Q| ≥ 1 + |Q| input symbols. Since these input symbols are all
the same, that is, they are zr, automaton M enters some state at least twice
when processing this suffix. Let zn

r with 1 ≤ n ≤ |Q| drive M from some state q
to state q when processing this suffix. Define ϕ′ to be the word ϕ with n sym-
bols zr chopped off. Since ϕ is accepted we conclude that ϕ′ is accepted as well.
However, ϕ′ does not belong to (Lj)+.

Since L(M) = LI , it remains to be shown that ϕ′ does not belong to any of
the languages (Li)+ with i ∈ I = {i1, i2, . . . , ik} and i �= j.

Assume there is such an i such that ϕ′ ∈ (Li)+. We consider the structure
of all words in (Li)+. It follows that x1 ∈ Σ

(i)
D and zr ∈ Σ

(i)
R .

Case 1. Let there be some xt ∈ {x2, x3, . . . , xp} that does not belong to Σ
(i)
D .

Since the symbol after xp is x1 ∈ Σ
(i)
D this implies that a prefix of x1x2 · · · xp

belongs to (Li)+. If this prefix is proper, the prefix (x1x2 · · · xp)2 of ϕ′ shows
that ϕ′ cannot belong to (Li)+. Therefore, the prefix is not proper and we
conclude that the word x1x2 · · · xp itself belongs to (Li)+. However, in this case
the prefix (x1x2 · · · xp)czc·p+1

1 x1x2 · · · xp of ϕ′ implies that ϕ′ is in a wrong format
if z1 ∈ Σ

(i)
N and cannot belong to (Li)+ if z1 ∈ Σ

(i)
D ∪ Σ

(i)
R .

Input-Driven Multi-counter Automata 205

Case 2. We have Σ
(i)
D ⊇ Σ

(j)
D . Since all symbols z ∈ {z1, z2, . . . , zr−1} have

predecessor symbol xp ∈ Σ
(i)
D and successor symbol x1 ∈ Σ

(i)
D in ϕ′, they must

belong either to Σ
(i)
R or to Σ

(i)
D .

If there is some 1 ≤ t < r − 1 such that zt ∈ Σ
(i)
D and zt+1 ∈ Σ

(i)
R then the

number c ·p+1 of symbols zt+1 does not match one plus the number of symbols
from Σ

(i)
D appearing directly before the zt+1. So, ϕ′ does not belong to (Li)+ in

this case. We conclude that if there is some zt ∈ Σ
(i)
D , for 1 ≤ t ≤ r − 1, then

all z ∈ {zt, zt+1, . . . , zr−1} belong to Σ
(i)
D . Since in the suffix ur of ϕ′ there are

less than cr · p + 1 symbols zr ∈ Σ
(i)
R but cr · p symbols from Σ

(i)
D , at least one

of the symbols from {y1, y2, . . . , yq} must belong to Σ
(i)
R in order to make ϕ′

belong to (Li)+. Since any y from {y1, y2, . . . , yq} appears more frequently than
the length of its prefix from ϕ′, the word ϕ′ does not belong to (Li)+ in this
case as well. So, we have {z1, z2, . . . , zr−1} ⊆ Σ

(i)
R .

Case 3. We have Σ
(i)
D ⊇ Σ

(j)
D and Σ

(i)
R ⊇ Σ

(j)
R . So, the prefix u1u2 · · · ur−1

of ϕ′ belongs to (Li)+. Now, if there is some yt ∈ {y1, y2, . . . , yq} that does
not belong to Σ

(i)
N then a straightforward calculation shows that the suffix

(x1x2 · · · xp)cry2·s
1 y22·s

2 · · · y2q·s
q zcr·p+1−n

r does not belong to (Li)+. So, ϕ′ does
not belong to (Li)+ either. This concludes Case 3.

Cases 1 to 3 show that in any case ϕ′ does not belong to (Li)+. The contra-
diction implies that ϕ′ does not belong to LI which in turn is a contradiction to
the assumption that LI is accepted by M . �

4 Closure Properties

Here we are interested in the closure properties of the language families accepted
by input-driven counter automata. However, the results for ordinary k-counter
automata are complemented by deriving closure under complementation which,
in turn, yields non-closure under intersection. The results are summarized in
Table 1.

Table 1. Closure properties of the language families discussed. Symbols ∪c, ∩c, and ·c
denote union, intersection, and concatenation with compatible signatures. Such oper-
ations are not defined for non-input-driven devices and are marked with ‘—’.

∪ ∩ ∪c ∩c · ·c ∗ hl.p. REV

REG yes yes yes — — yes — yes yes yes

L (IDCA(k)) yes no no yes yes no no no no no

L (IDCA) yes yes yes yes yes no no no no no

L (DCA(k)) yes no no — — no — no no no

L (DCA) yes yes yes — — no — no no no

206 M. Kutrib et al.

We say that two signatures Σ = ΣD ∪ ΣR ∪ ΣN and Σ̂ = Σ̂D ∪ Σ̂R ∪ Σ̂N

are compatible if the symbols shared by both alphabets have the same effect on
the counters. That is, if

⋃
j∈{D,R,N}(Σj \ Σ̂j)∩ Σ̂ and

⋃
j∈{D,R,N}(Σ̂j \ Σj) ∩ Σ

are empty. Two input-driven counter automata M and M ′ have compatible
signatures, if for any counter of M there is a counter of M ′ with compatible
signature, and vice versa.

Since the devices under consideration are deterministic and are working in
realtime, the closure of the accepted language families under complementation
can be derived.

Proposition 7. Let k ≥ 0. The families of languages accepted by DCA(k),
IDCA(k), and IDCA are closed under complementation.

The property of working input-driven suggests to consider closure properties
for the cases where the languages are accepted by devices having compatible
signatures.

Proposition 8. Let k ≥ 0. The family of languages accepted by IDCA(k) is
closed under union and intersection with compatible signatures.

If we drop the restriction of compatible signatures then multi-counter
automata accept language families that are still closed under union and inter-
section.

Proposition 9. The family of languages accepted by IDCA is closed under
union and intersection.

We conclude the investigation of closures under Boolean operations by stress-
ing that the restriction to compatible signatures is a serious one. If we drop that
restriction for a fixed number of counters, the positive closure property gets lost.

Proposition 10. Let k ≥ 1. The family of languages accepted by IDCA(k) is
neither closed under union nor under intersection.

We conclude the section with the investigation of the closure properties under
the operations concatenation, iteration, reversal, and length-preserving homo-
morphism. We use {ambn | 0 ≤ n ≤ m}, which may leave an unbounded amount
of garbage in the counters, as basic witness language to show the non-closures.

Proposition 11. Let k ≥ 1. The families of languages accepted by IDCA(k) and
IDCA are not closed under concatenation with compatible signatures, iteration,
reversal, and length-preserving homomorphism.

5 Decidability Problems

In this section we turn to explore the decidability problems of emptiness, finite-
ness, universality, inclusion, equivalence, and regularity for IDCA(k) with k ≥ 0

Input-Driven Multi-counter Automata 207

counters. Since IDCA(0) are deterministic finite automata, all decidability ques-
tions mentioned are decidable. If k = 1, we obtain one-counter machines which
are special cases of deterministic pushdown automata. Since emptiness, finite-
ness, universality, equivalence, and regularity is decidable for such automata, we
obtain these decidability results for IDCA(1) as well. Finally, the decidability of
inclusion for IDCA(1) with compatible signatures is shown in [14]. However, it
is shown in [14] as well that the inclusion problem for IDCA(1) becomes unde-
cidable if the signatures are not necessarily compatible.

The complexity of the equivalence problem for DCA(1) is known to be NL-
complete [4]. So, it is in NL for IDCA(1) as well. Moreover, since the emptiness
problem for deterministic finite automata is already NL-hard, and the emptiness
problem easily reduces to the equivalence problem, the latter is NL-complete for
IDCA(1).

The inclusion problem for deterministic input-driven pushdown automata
with compatible signatures is P-complete [18]. From the NL-hardness of the
equivalence problem for IDCA(1) the NL-hardness of the inclusion problem fol-
lows. The constructions for the closure under complementation and intersection
together with the fact that the emptiness problem for IDCA(1) is in NL yields
an NL algorithm for the inclusion problem for IDCA(1). So, the inclusion prob-
lem for IDCA(1) is NL-complete.

Now, we consider the case of IDCA with at least two counters. It turns out
that in this case undecidability results can be obtained, since it is possible to
utilize the undecidability of the halting problem for two-counter machines shown
by Minsky [17].

Theorem 12. Let k ≥ 2 and M be an IDCA(k). Then it is undecidable whether
or not L(M) is empty as well as whether or not L(M) is finite.

The closure under complementation relates the questions of emptiness and
universality, whereas inclusion and equivalence questions can be reduced to uni-
versality questions.

Corollary 13. Let k ≥ 2 and M be an IDCA(k) over some input alphabet Σ.
Then it is undecidable whether or not L(M) = Σ∗.

Proof. Due to Proposition 7 it is possible for an IDCA(2) M to construct an
IDCA(2) M ′ accepting the complement L(M). Hence, the question of whether
L(M) = Σ∗ is equivalent to L(M ′) = L(M) = ∅. Since the latter question is
undecidable due to Theorem12 we obtain the claim of the theorem. �

Corollary 14. Let k ≥ 2 and M and M ′ be two IDCA(k) with compatible
signatures. Then it is neither decidable whether or not L(M) ⊆ L(M ′) nor
whether or not L(M) = L(M ′).

Finally, we obtain that the regularity problem is undecidable as well.

Theorem 15. Let k ≥ 2 and M be an IDCA(k). Then it is undecidable whether
or not M accepts a regular language.

The undecidability results obtained obviously hold also for the stronger vari-
ants of IDCA as well as for the corresponding non-input-driven counter machines.

208 M. Kutrib et al.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) STOC
2004, pp. 202–211. ACM (2004). https://doi.org/10.1145/1007352.1007390

2. Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown lan-
guages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
420–431. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142 34

3. Bensch, S., Holzer, M., Kutrib, M., Malcher, A.: Input-driven stack automata. In:
Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
28–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33475-7 3

4. Böhm, S., Göller, S., Jančar, P.: Equivalence of deterministic one-counter automata
is NL-complete. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013,
pp. 131–140. ACM (2013). https://doi.org/10.1145/2488608.2488626

5. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Topics in the Theory of Computation, Mathematics Studies, vol. 102,
pp. 1–19, North-Holland (1985). https://doi.org/10.1007/3-540-12689-9 92

6. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7, 253–292 (1996). https://
doi.org/10.1142/S0129054196000191

7. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter
languages. Math. Syst. Theory 2, 265–283 (1968). https://doi.org/10.1007/
BF01694011

8. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci. 7, 311–324 (1978). https://doi.org/10.1016/0304-
3975(78)90020-8

9. Hahn, M., Krebs, A., Lange, K.-J., Ludwig, M.: Visibly counter languages and the
structure of NC1. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9235, pp. 384–394. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48054-0 32

10. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25, 116–133 (1978). https://doi.org/10.1145/322047.322058

11. Ibarra, O.H.: Visibly pushdown automata and transducers with counters. Fund.
Inform. 148, 291–308 (2016). https://doi.org/10.3233/FI-2016-1436

12. Krebs, A., Lange, K., Ludwig, M.: Visibly counter languages and constant depth
circuits. In: Mayr, E.W., Ollinger, N. (eds.) STACS 2015. LIPIcs, vol. 30, pp. 594–
607 (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.594

13. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B., Wendlandt, M.: Determinis-
tic input-driven queue automata: finite turns, decidability, and closure properties.
Theor. Comput. Sci. 578, 58–71 (2015)

14. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown, counter, and
stack automata. Fund. Inform. 155, 59–88 (2017). https://doi.org/10.3233/FI-
2017-1576

15. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. Int. J.
Found. Comput. Sci. 27, 215–234 (2016)

16. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

17. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Ann. Math. 74, 437–455 (1961). 2nd S

18. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45, 47–67 (2014). https://doi.org/10.1145/2636805.2636821

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/11672142_34
https://doi.org/10.1007/978-3-642-33475-7_3
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.1007/3-540-12689-9_92
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1007/BF01694011
https://doi.org/10.1007/BF01694011
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1007/978-3-662-48054-0_32
https://doi.org/10.1007/978-3-662-48054-0_32
https://doi.org/10.1145/322047.322058
https://doi.org/10.3233/FI-2016-1436
https://doi.org/10.4230/LIPIcs.STACS.2015.594
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1145/2636805.2636821

Two-Dimensional Pattern Matching
Against Basic Picture Languages

Frantǐsek Mráz1, Daniel Pr̊uša2(B), and Michael Wehar3

1 Faculty of Mathematics and Physics, Charles University,
Prague, Czech Republic

frantisek.mraz@mff.cuni.cz
2 Faculty of Electrical Engineering, Czech Technical University,

Prague, Czech Republic
daniel.prusa@fel.cvut.cz

3 Temple University, Philadelphia, PA, USA
michael.wehar@temple.edu

Abstract. Given a two-dimensional array of symbols and a picture lan-
guage over a finite alphabet, we study the problem of finding rectangular
subarrays of the array that belong to the picture language. We formu-
late four particular problems – finding maximum, minimum, any or all
match(es) – and describe algorithms solving them for basic classes of pic-
ture languages, including local picture languages and picture languages
accepted by deterministic on-line tessellation automata or deterministic
four-way finite automata. We also prove that the matching problems can-
not be solved for the class of local picture languages in linear time unless
the problem of triangle finding is solvable in quadratic time. This shows
there is a fundamental difference in the pattern matching complexity
regarding the one-dimensional and two-dimensional setting.

Keywords: Two-dimensional pattern matching · Picture languages ·
Local picture languages · Two-dimensional finite-state automata

1 Introduction

The string pattern matching for a text is an intensively studied and well under-
stood task. The problem of searching for a matching substring described by a
set of strings or a regular expression has very efficient implementations and
a wide applicability [2]. The problem extends to higher dimensions. In this
extended setting, the situation is clear if we search for a fixed pattern – sev-
eral algorithms have been proposed to solve this task, considering either exact
or approximate matching [4,11]. An algorithm solving the two-dimensional (2D)
matching against a finite set of equally sized patterns has been described in [20].
In addition, results involving equally sized patterns generated by an extension

D. Pr̊uša—Supported by the Czech Science Foundation grant 19-09967S.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 209–221, 2019.
https://doi.org/10.1007/978-3-030-23679-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_17

210 F. Mráz et al.

of the regular matrix grammar [18] have recently been presented [8]. On the
other hand, the research of the problem of finding rectangular subpictures of
arbitrary sizes that belong to a picture language, specified by a two-dimensional
recognizing system, is limited. Few simple two-dimensional matching problems
of this type are popular enough to be given in algorithms courses or as program-
ming interview questions (e.g., in a binary matrix, find a maximum subrectangle
filled/surrounded by ones [13]), however, a more systematic study is missing.

We aim to fill this gap and address the 2D matching against a picture
language without considering any size restrictions on matches. We define four
problems, varying in the required output. We show how these problems can be
solved for local picture languages [7] and two incomparable classes of picture lan-
guages presented as possible generalizations of the regular languages, namely the
classes of picture languages accepted by the deterministic four-way automaton
(4DFA) [5] and deterministic on-line tessellation automaton (2DOTA) [9], which
is closely related to the class of deterministic recognizable languages (DREC) [3].
These models allow the design of 2D pattern matching algorithms faster than
a brute force solution. However, unlike in the one-dimensional setting, they are
not linear with respect to the area of input pictures. We derive a conditional
lower bound which prevents us from designing linear-time matching algorithms
even in the case of the very basic local picture languages.

The paper is structured as follows. Section 2 recalls notations from the theory
of picture languages. Section 3 defines four variants of the matching problem and
demonstrates by examples that solving the problems is of practical importance
even in the case of patterns specified by simple picture languages. The complexity
of the tasks is studied for local picture languages in Sect. 4 – an upper bound
is established, a conditional non-linear lower bound is derived, and a subclass
with linear-time complexity is identified. Results on matching against picture
languages accepted by 4DFA and 2DOTA are reported in Sect. 5. The paper
concludes with Sect. 6, which discusses achieved results and open problems.

2 Preliminaries

We use the common notation and terms on picture languages [7]. A picture P
over a finite alphabet Σ is a 2D array of symbols from Σ. If P has m rows and
n columns, it is of size m × n and of area mn. Rows of P are indexed from 1 to
m, columns of P are indexed from 1 to n. In graphical visualizations, position
(1, 1) is associated with the top-left corner. The symbol in the i-th row and j-th
column of P is referred by P (i, j). For integers 1 ≤ i ≤ k ≤ m and 1 ≤ j ≤ � ≤ n,
P (i, j : k, �) denotes the non-empty subpicture of P of size (k− i+1)×(�−j +1)
whose top-left and bottom-right corner is in P at coordinate (i, j) and (k, �),
respectively. For a ∈ Σ, |P |a is the number of occurrences of symbol a in P .
The empty picture of size 0 × 0 is denoted by Λ. The set of all pictures over Σ
of size m × n is denoted by Σm,n and the set of all non-empty pictures over Σ
is Σ+,+ =

⋃∞
i=1

⋃∞
j=1 Σi,j . For j ≥ 1, we also write Σ+,j =

⋃∞
i=1 Σi,j and

Σj,+ =
⋃∞

i=1 Σj,i. A picture language is a subset of Σ∗,∗ = Σ+,+ ∪ {Λ}.

Two-Dimensional Pattern Matching Against Basic Picture Languages 211

Let # be the background symbol not contained in any considered alphabet.
For a picture P ∈ Σm,n, we define its boundary picture P̂ over Σ ∪ {#} of
size (m+2)× (n+2), which fulfils P̂ (2, 2 : m+1, n+1) = P and P̂ (i, j) = # iff
i ∈ {1,m + 2} or j ∈ {1, n + 2}. We also define partial border pictures, namely
P̂ t,b, P̂ l,t,b and P̂ r,t,b, where the rows and columns of #’s are located only at
the borders prescribed by the super scripts (l, r, t and b stands for the left, right,
top and bottom border, respectively). See Fig. 1 for examples. For k, � ∈ N, let
Bk,�(P) denote the set of all subpictures of P which are of size k × �. For a
set of pictures L, define Bk,�(L) =

⋃
P∈L Bk,�(P). A tile is a square picture of

size 2×2. A picture language L ⊆ Σ∗,∗ is called a local picture language if there
is a finite set of tiles Θ over Σ ∪ {#} such that L = {P ∈ Σ∗,∗ | B2,2(P̂) ⊆ Θ },
that is, P ∈ L iff all tiles that are subpictures of P̂ belong to Θ. This fact is
expressed as L = L(Θ). The family of local picture languages is denoted as LOC.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

0 0 1 0 1

1 1 1 0 0

1 0 0 0 0

(a)

#

#

#

#

#

#

#

#

#

#

0 0 1 0 1

1 1 1 0 0

1 0 0 0 0

(b)

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

0 0 1 0 1

1 1 1 0 0

1 0 0 0 0

(c)

Fig. 1. For a picture P over {0, 1} of size 3 × 5, there is its (a) boundary picture P̂ ,
(b) partial boundary picture P̂ t,b and (c) partial boundary picture P̂ r,t,b.

The deterministic four-way finite automaton (4DFA) [5] is a generalization
of the two-way finite automaton. It is a bounded automaton whose head moves
in four directions, represented by the set of head movements {U,D,L,R} where
the elements stand for up, down, left and right, respectively. Formally, it is a
tuple A = (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is an input alphabet,
δ : Q×(Σ∪{#}) → Q×{U,D,L,R} is a transition function, q0 ∈ Q is the initial
state and F ⊆ Q is a set of accepting states. A picture P ∈ Σ∗,∗ is accepted by A
if starting at the top-left corner of P in the initial state q0, the automaton A
reaches an accepting state from F while not leaving P̂ .

The deterministic two-dimensional on-line tessellation automaton (2DOTA)
[9] is a restricted 2D cellular automaton. Formally, it is a tuple A = (Q,Σ, δ, F),
where Q is a finite set of states, Σ is an input alphabet, δ : (Q ∪ {#}) × Σ ×
(Q ∪ {#}) → Q is a transition function and F ⊆ Q is a set of accepting states.
For an input picture P ∈ Σm,n, we define PA ∈ Qm,n by the recurrent formula:
PA(i, j) = δ(qL, P (i, j), qU) where

qL =
{

, if j = 1;
PA(i, j − 1), otherwise, and qU =

{
, if i = 1;

PA(i − 1, j), otherwise.

PA represents final states of the cells. A accepts P if PA(m,n) ∈ F .

212 F. Mráz et al.

3 Background

3.1 Examples of Two-Dimensional Pattern Matching

2D patterns emerge in many domains like spreadsheets, timetables, discrete
maps, board games, crosswords or other puzzles. Useful queries over such data
can be specified by means of basic picture languages as demonstrated in Fig. 2
where the first two tasks involve matching against local picture languages and the
third task involves matching against a picture language in L(2DOTA) ∩ L(4DFA).

Java C++ Ruby Pearl
Miller x x x
Smith x x
Taylor x x

(a)

1 2 3 4 5 6
Miller x x x x
Smith x x x
Taylor x x x x

(b)

x

x
x

x x
x

x

(c)

Fig. 2. Examples of (binary) 2D pattern matching tasks and their solutions. (a) In
a table listing employees programming skills, find two employees who know the same
two programming languages. (b) In a lab occupancy timetable, find a pair of employees
that share the lab for the maximum number of consecutive time slots. (c) In a grid
map with resources, find a smallest rectangular area covering at least 3 resources.

3.2 Task Formulations

Let L be a picture language over Σ. For P ∈ Σ∗,∗, let M(P,L) = {(i, j : k, �) |
P (i, j : k, �) ∈ L} be the set of rectangular areas in P whose content equals a
picture from L. We define the following two-dimensional pattern matching tasks.

1. Problem MMAX(L): Given an input P ∈ Σ∗,∗, output some R ∈ M(P,L)
with the maximum area. Return NO if M(P,L) is empty.

2. Problem MMIN(L): Given an input P ∈ Σ∗,∗, output some R ∈ M(P,L)
with the minimum area. Return NO if M(P,L) is empty.

3. Problem MANY(L): Given an input P ∈ Σ∗,∗, output any R ∈ M(P,L).
Return NO if M(P,L) is empty.

4. Problem MALL(L): Given an input P ∈ Σ∗,∗, output the set {(k, �) | ∃ i, j :
(i, j : k, �) ∈ M(P,L)}, i.e., list the bottom-right corners of all matches.

Our goal is to study time complexity of the stated matching problems for
picture languages from families LOC, L(2DOTA) and L(4DFA). For such picture
languages, the membership problem is decidable in time linear in the area of
input pictures, hence the brute force approach to the pattern matching yields a
trivial cubic upper bound (given an input P ∈ Σm,n, each of Θ(m2n2) subpic-
tures in P is checked for a match in O(mn) time). We will study existence of
more efficient algorithms. On the other hand, it is not promising to consider more
powerful (but non-deterministic) families such as REC [7], for which the mem-
bership problem is NP-complete, and this hardness is inherited by the matching
tasks.

Two-Dimensional Pattern Matching Against Basic Picture Languages 213

3.3 One-Dimensional Pattern Matching

We show that all the matching problems defined in the previous section can be
solved in linear time for regular (string) languages and string inputs.

Theorem 1. Let L be a regular (string) language. Problems MMAX(L),
MMIN(L), MANY(L) and MALL(L) can be solved in time linear in the length
of the input string.

Proof. Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton accepting
the language L = L(A) ⊆ Σ∗, where Q is a finite set of states, Σ is a finite
alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a set of accepting states and
δ : Q×Σ → Q is the transition function of A, which extends to δ : Q×Σ∗ → Q
in the standard way. We will sketch an algorithm solving MMAX(L), i.e., which
for a given string w = a1 · · · an, with a1, . . . , an ∈ Σ, returns either NO if no
non-empty subword of w belongs to L or a pair of integers (is, ie) such that

aisais+1 · · · aie ∈ L and ie − is = max
1≤s≤e≤n

{e − s | asas+1 · · · ae ∈ L},

that is, aisais+1 · · · aie is a subword of w of maximal length belonging to L.
The algorithm will compute a sequence of arrays A0, . . . , An indexed by Q

such that for t = 0, . . . , n either At(q) = +∞ when there is no suffix u of a1 · · · at

such that δ(q0, u) = q or Pt(q) = i ∈ N and u = ai · · · at is the longest suffix of
a1 · · · at such that δ(q0, u) = q. Note that we adopt ai · · · at = λ whenever i > t.

For t = 0, we put A0(q0) = 1 and A0(q) = +∞, for all q ∈ Q � {q0}.
From At, the array At+1 can be obtained in the following way. For all states
q ∈ Q, set At+1(q) to +∞ if δ(p, at) �= q, for all p ∈ Q, otherwise set At+1(q) to
min{At(p) | δ(p, at) = q}. Additionally, if At+1(q0) = +∞, replace +∞ by t+2.

Then, the maximal length of a subword of a1 · · · an which belongs to L can
be extracted as max

{
t − At(q) | q ∈ F, t = 1, . . . , n

}
. It is also easy to extract

the starting and ending position of such a subword.
The time complexity of the above algorithm is O(n · |Q|) = O(n). The algo-

rithm is easily adaptable to solve the other matching problems, too. �

4 Matching Against Local Picture Languages

4.1 General Algorithm

The following lemma gives an equivalent characterization of pictures belonging
to a given picture language. Its purpose is to simplify the proof of Theorem2.

Lemma 1. Let Θ be a finite set of tiles over Σ ∪ {#} and

LS = {P ∈ Σ+,1 |P ∈ L(Θ)}, LL = {P ∈ Σ+,2 |B2,2(P̂ l,t,b) ⊆ Θ},

LR = {P ∈ Σ+,2 |B2,2(P̂ r,t,b) ⊆ Θ}, LI = {P ∈ Σ+,3 |B2,2(P̂ t,b) ⊆ Θ}.

A non-empty picture P ∈ Σm,n is in L(Θ) if and only if either P ∈ LS or n ≥ 2,
P (1, 1 : m, 2) ∈ LL, P (1, n − 1 : m,n) ∈ LR, and, for all i = 1, . . . , n − 2,
P (1, i : m, i + 2) ∈ LI.

214 F. Mráz et al.

Proof. The validity of the lemma is obvious in the case of one-column pictures.
In the case a picture P ∈ Σm,n with more columns, the validity follows from the
observation that each 2× 2 subpicture of P̂ is contained in P̂ l,t,b(1, 1 : m+2, 3),
P̂ r,t,b(1, n : m + 2, n + 2), or in P̂ t,b(1, i : m + 2, i + 2) for some i ∈ {1, . . . , n}.
Since the allowed tiles in pictures from LL, LR and LI coincide with Θ, the
lemma statement has been proved. �

Theorem 2. Let Θ be a finite set of tiles over Σ∪{#} and L = L(Θ). There are
algorithms solving problems MMAX(L), MMIN(L), MANY(L) and MALL(L) in
time O(mn min{m,n}) for pictures of size m × n.

Proof. Let P ∈ Σm,n be an input. Assume, w.l.o.g., m ≤ n. We give an algorithm
solving MMAX(L), which is easily modifiable to solve the other problems.

The algorithm processes all rows of P . For a row r, it detects maximum
matching subpictures of P that have their bottom row located in r. There are
two phases. The first phase assigns to each cell of P at coordinates (i, j), i ≤ r,
a subset of the four-marker set {S, L, R, I}, based on the following criteria:

– A cell is marked as single (S) iff P (i, j : r, j) ∈ LS,
– a cell is marked as left (L) iff j < n and P (i, j : r, j + 1) ∈ LL,
– a cell is marked as right (R) iff j > 1 and P (i, j − 1 : r, j) ∈ LR, and
– a cell is marked as inner (I) iff 1 < j < n and P (i, j − 1 : r, j + 1) ∈ LI.

To compute the markers, it suffices to use a finite-state device equipped by a
scanning window of size 3 × 3. This device processes each column of P . For a
column j, it starts at cell (r, j) and moves up to cell (1, j).

Within the second phase, the algorithm iterates through rows i = 1, . . . , r.
In the i-th row, it searches for a longest continuous subsequence of markers
described by the regular expression S+LI∗R. By Theorem 1, this is done in time
O(n). If such a longest subsequence starts at cell (i, j) and ends at cell (i, k), then
Pi,r = P (i, j : r, k) is a matching subpicture of maximum area for a given i and r.
The result is then Pi,r with maximum area when considered all 1 ≤ i ≤ r ≤ m.

For each row r, both phases are done in time O(mn), hence the algorithm
finishes in time O(m2n). �

4.2 Nonlinear Conditional Lower Bound

Background: Triangle Finding is a classical algorithmic problem that is solv-
able in polynomial time. Formally, the problem can be stated as follows. Given
an undirected graph G = (V,E), do there exist vertices a, b, c ∈ V such that
{a, b}, {b, c}, {c, a} ∈ E?

There is an efficient reduction from Triangle Finding to Boolean Matrix Mul-
tiplication (see [10]) meaning that Triangle Finding can be solved in time O(nω)
where n = |V | and ω < 2.373 denotes the matrix multiplication constant [21].
However, it is currently unknown if Triangle Finding can be solved in time O(n2).

Efficient reductions known as fine-grained reductions (see [22]) have been
introduced to provide conditional lower bounds. In particular, the existence of

Two-Dimensional Pattern Matching Against Basic Picture Languages 215

a fine-grained reduction from Triangle Finding to a problem X establishes a
conditional lower bound such that X cannot be solved more efficiently unless
Triangle Finding can be solved more efficiently.

Conditional lower bounds based on Triangle Finding are known for sev-
eral classical problems in formal language theory such as Context-Free Gram-
mar Parsing [1,12], NFA Length Acceptance [15], and Two DFA Intersection
Non-Emptiness [14].

Local Picture Language: We show that there is a local picture language L
over a ternary alphabet such that MANY(L) cannot be solved in time O(mn)
unless there is an algorithm solving Triangle Finding in time O(n2). This result
suggests that matching against simple picture languages is a fundamentally
harder task than matching against string regular languages (see Theorem1).

Let Lcorn2 be a picture language over Σ = {0, 1, 2} such that Lcorn2 contains
a picture P ∈ Σ∗,∗ if and only if P has at least two rows and two columns, the
top-right corner of P contains symbol 2 and the other corners contain symbol 1.
This picture language is local. It is yielded by the set of tile templates

#
1 ,

1
,

1 #
,

#
2 # ,

#
X Y

,
X
Y

,
X Y
,

X #
Y # ,

X Y
Z T

where X,Y,Z, T are symbols of Σ.

Theorem 3. MANY(Lcorn2) cannot be solved in time O(mn) unless Triangle
Finding can be solved in time O(n2).

Proof. We give a fine-grained reduction from Triangle Finding to MANY(Lcorn2).
Let a graph G = (V,E) be given. Let the set of vertices be V = {vi | i ∈

{1, . . . , n}}. We construct a picture P ∈ {0, 1, 2}n,n such that G contains a
triangle if and only if P has a subpicture which is in Lcorn2.

Define P such that for all i and j, P (i, j) = 2 if i = j, P (i, j) = 1 if i �= j
and {vi, vj} ∈ E, and P (i, j) = 0 otherwise. Since 2’s are only present along the
diagonal of the picture, we have that there is a subpicture within P where the
upper right corner is 2 and the other corners are 1 if and only if there are numbers
i, j, and k with i < j < k such that P (j, j) = 2, P (j, i) = 1, P (k, i) = 1, and
P (k, j) = 1. For this subpicture, P (j, j) is upper right corner, P (j, i) is upper
left corner, P (k, i) is lower left corner, and P (k, j) is lower right corner.

Let numbers i, j, and k such that i < j < k be given. We have that
P (j, j) = 2, and P (j, i) = P (k, i) = P (k, j) = 1 iff {vi, vj} ∈ E, {vj , vk} ∈ E,
and {vk, vi} ∈ E by the definition of P . Therefore, there exist i, j, and k with
i < j < k such that P (j, j) = 2, P (j, i) = P (k, i) = P (k, j) = 1 iff there exist i,
j, and k with i < j < k such that {vi, vj} ∈ E, {vj , vk} ∈ E, and {vk, vi} ∈ E.
It follows that G contains a triangle iff MANY(Lcorn2) has a solution for P .

Since P can be efficiently constructed in time O(n2), we have a fine-grained
reduction from Triangle Finding to MANY(Lcorn2). Therefore, if we could solve

216 F. Mráz et al.

MANY(Lcorn2) in O(n2) time for n by n pictures, then we would be able to solve
Triangle Finding in O(n2) time for graphs with at most n vertices. �

Remark 1. Let h : {0, 1, 2} → {0, 1} be a homomorphism such that h(0) = 00,
h(1) = 11, and h(2) = 10. The picture language h(Lcorn2) still encodes Triangle
Finding. It is no longer a local picture language, however, it is accepted by
a 2DOTA and a 4DFA, hence the conditional non-linear lower bound extends to
L(2DOTA) and L(4DFA) over binary alphabets. It is an open problem if there is
a binary local picture language that can be used to encode Triangle Finding.

4.3 Matching in Linear Time

In this section we present two types of linear time matching algorithms for
selected local picture languages: (1) The binary local picture language Lcorn =
π(Lcorn2) where π : {0, 1, 2} → {0, 1} is a projection such that π(0) = 0 and
π(1) = π(2) = 1. (2) A subclass of local picture languages called border-unaware
local picture languages.

Lemma 2. MANY(Lcorn) is solvable in time O(mn) for pictures of size m × n.

Proof. It is shown in [19] that every m by n Boolean matrix M is in one to
one correspondence with a bipartite graph G = (V1 ∪ V2, E) with disjoint sets
of vertices V1 and V2, such that |V1| = m and |V2| = n, corresponding to the
rows and columns of M , respectively. There is an edge (i, j) ∈ E if and only
if M(i, j) = 1. Further, it is shown that M has a 2 by 2 (scattered) submatrix
of 1’s if and only if G has a K2,2 subgraph (i.e. a four cycle).

Detecting if a graph contains a four cycle is solvable in time quadratic in
the number of vertices [17,23]. A slight improvement can be made for bipartite
graphs to time O(mn). Therefore, MANY(Lcorn) is solvable in time O(mn). �

Definition 1 (Border-unaware local picture language). A local picture
language L = L(Θ) over Σ is called border-unaware if it holds

L � ({Λ} ∪ Σ1,+ ∪ Σ+,1) = {P ∈ Σ∗,∗ | B2,2(P) �= ∅ ∧ B2,2(P) ⊆ (Θ ∩ Σ2,2)}.

We define the class of border-unaware picture languages (bu-LOC) which is
a proper subclass of LOC1. One of the simplest non-empty picture languages
over Σ = {0, 1} in bu-LOC is Luni = {P | P ∈ {1}+,+}, consisting of all non-
empty (uniform) pictures of 1’s. The problem MMAX(Luni) is known as a search
for a largest uniform rectangular area in a 0-1 matrix. It can be solved in time
linear in the matrix area using the algorithm finding a largest rectangular area
in a histogram [13]. We will utilize this fact in the proof of Theorem4.

Let a histogram of n values be represented as a one-dimensional array H of
length n where each H(i) ∈ N is the height of the histogram bar at position
i ∈ {1, . . . , n}. For 1 ≤ k ≤ � ≤ n, let Rk,� = (� − k + 1)min{H(i) | k ≤ i ≤ �}
denote the largest area of a rectangle that is covered by the bars from k to �.
1 E.g. the local picture languages Lcorn and Lcorn2 are not in bu-LOC.

Two-Dimensional Pattern Matching Against Basic Picture Languages 217

Lemma 3 ([13, Chapter 2]). Given a histogram H with n bars, there is an
algorithm running in time O(n) that finds positions k ≤ � such that Rk,� ≥ Ri,j

for all 1 ≤ i ≤ j ≤ n.

Theorem 4. Let L ∈ bu-LOC. The problems MMAX(L), MMIN(L), MANY(L)
and MALL(L) are solvable in time O(mn) for each input of size m × n.

Proof. Let L = L(Θ) ∈ bu-LOC where Θ ⊆ (Σ ∪ {#})2,2. Let P ∈ Σm,n be an
input picture.

To find one-row and one-column matching subpictures in P , each row/column
of P is processed independently in time linear in its length (see Theorem 1).

To find matching subpictures of sizes k × �, k, � ≥ 2, the task becomes trivial
for MMIN(L), MANY(L) and MALL(L) since it suffices to locate subpictures
of P of size 2 × 2 that belong to Θ ∩ Σ2,2.

To solve MMAX(L), the dynamic programming technique is used to compute
matrix M of size (m − 1) × (n − 1) where

M(i, j) = max{k | (k = 0) ∨ (2 ≤ k ≤ i ∧ P (i − k + 1, j : i, j + 1) ∈ L)}.

The matrix is obtained in time O(mn). Finally, the algorithm from Lemma3 is
applied to each row of M to return a largest subpicture of P which is in L. �

5 Matching Against Picture Languages Accepted by
2DOTA and 4DFA

Theorem 5. Let L be a picture language accepted by a 2DOTA. There are algo-
rithms solving problems MMAX(L), MMIN(L), MANY(L) and MALL(L) in time
O(m2n2) for pictures of size m × n.

Proof. Let L = L(A) for some 2DOTA A and let P be a picture of size m × n
in which we search for subpictures from L. To solve all four matching problems,
run A over each subpicture P (s, t : m,n) where 1 ≤ s ≤ m and 1 ≤ t ≤ n.
If PA(s, t : m,n)(k, �) is an accepting state for some 1 ≤ k ≤ m − s + 1,
1 ≤ � ≤ n− t+1, then P (s, t : s+k − 1, t+ �− 1) is in L. Since there are Θ(mn)
subpictures P (s, t : m,n) and each of them is processed by A in O(mn) time,
all the matching problems are solved in O(m2n2) time. �

Theorem 6. Let L be a picture language accepted by a 4DFA. There are algo-
rithms solving problems MMAX(L), MMIN(L), MANY(L) and MALL(L) in time
O(m2n2 min{m,n}) for pictures of size m × n.

Proof. Let L = L(A) where A = (Q,Σ, δ, q0, F) is a 4DFA. Assume that when-
ever A enters a border cell storing #, then it returns back to the closest cell of
the input picture in the next computation step.

Let P ∈ Σm,n. Assume, w.l.o.g., n ≤ m. Given a coordinate (s, t) in P and
� ∈ N such that t ≤ � ≤ n, there is a procedure finding in O((m − s + 1)(� −
t + 1)) = O(mn) time those k ∈ {s, . . . , m} for which P (s, t : k, �) ∈ L. This
implies that all the matching problems can be solved in O(m2n3) time.

218 F. Mráz et al.

The procedure is as follows: Iterate through rows s, . . . , m. For a processed
row r, let Pr = P (s, t : r, �). Compute a mapping δr : {1, . . . , � − t + 1} × Q →
({1, . . . , � − t + 1} × Q)∪{acc, rej,down} with values based on the computation
of A over P̂r. Let A be in a state q and let its head scan the j-th cell of the
bottom row of Pr, storing a ∈ Σ. Distinguish three situations: (1) The transition
specified by δ(q, a) moves the head of A down to the bottom border of P̂r. We
define δr(j, q) = down. (2) The transition specified by δ(q, a) does not move the
head of A down and the successive computation of A visits the bottom row of
Pr again. Let this happen for the first time in a j′-th cell of the bottom row
of Pr, when A is in a state q′. We define δr(j, q) = (j′, q′). (3) The transition
specified by δ(q, a) moves the head of A up and the successive computation of A
never returns back to the bottom row of Pr. The automaton A either accepts
(we define δr(j, q) = acc) or rejects by entering a rejecting state or a cycle (we
define δr(j, q) = rej).

The initial mapping δs for picture Ps of size 1× (�− t+1) is easily computed
in time O(� − t). Assuming δr is computed for some r, we show how to compute
δr+1 in time O(� − t), based on another mapping σr : {1, . . . , � − t + 1} ×
Q → ({1, . . . , � − t + 1} × Q) ∪ {acc, rej} defined as follows: (1) Assume the
computation of A which started in a state q with the head scanning the j-th
cell of the bottom row of Pr never enters the bottom row of P̂r. If A accepts, we
define σr(j, q) = acc, if it does not accept, we define σr(j, q) = rej. (2) Assume
the computation of A enters the bottom row of P̂r for the first time within a j′-th
column of Pr, in a state q′. We define σr(j, q) = (j′, q′).

To derive values of δr+1, assume A in a state q scans the j-th cell of the
bottom row of Pr+1 containing a ∈ Σ. If δ(q, a) = (p,U), then δr+1(j, q) =
σr(j, p). If δ(q, a) = (p,D), then δr+1(j, q) = down. If δ(q, a) = (p,L) then
δr+1(j, q) equals (j − 1, p) for j > 1 and (δ(p,#), j) for j = 1. The case δ(q, a) =
(p,R) is handled analogously.

To compute σr, use an auxiliary 2D Boolean array B indexed by elements of
{1, . . . , � − t + 1} × Q, with all cells initially set to false. Moreover, use a stack
S. Execute the following procedure.

for each (j, q) ∈ {1, . . . , � − t + 1} × Q do
while σr(j, q) not defined do

S.push(j, q);
if B(j, q) = false then

B(j, q) := true;
if δr(j, q) ∈ {acc, rej} then

σr(j, q) := δr(j, q);
else if δr(j, q) = down then

(p, d) := δ(q, Pr(r − s + 1, j)); σr(j, q) := (j, p);
else

(j, q) := δr(j, q);
else // a cycle detected

σr(j, q) := rej;
while S not empty do

(i, p) := S.pop; σr(i, p) := σr(j, q);

Two-Dimensional Pattern Matching Against Basic Picture Languages 219

Each pair (j, q) is accessed O(1) times, hence the procedure runs in time
O(|Q|(� − t + 1)) = O(� − t).

Finally, we describe how the algorithm checks whether Pr ∈ L(A) for r =
s, . . . , m. Let Cr be the configuration in which A reaches the bottom row of
Pr from the initial configuration for the first time (note that Cs is the initial
configuration and Cr need not exist for r > s). Given Cr and σr, there is a
procedure (similar to one iteration of the pseudocode main while loop) running
in time O(� − t) that decides whether Pr ∈ L(A) and computes Cr+1. �

6 Conclusions

We have studied four matching problems for 2D inputs and patterns defined by
picture languages. We have demonstrated that even patterns definable via basic
picture languages are of practical importance and involve non-trivial matching
algorithms, which are unlikely to work in linear time even in the case of LOC
family. The upper bounds on the time complexity of the matching problems
established for the considered families of picture languages are summarized bel-
low.

bu-LOC LOC L(2DOTA), DREC L(4DFA)

O(mn) O(mnmin{m,n}) O(m2n2) O(m2n2 min{m,n})

Note that DREC is the closure of L(2DOTA) under rotation, hence it shares the
time complexity with L(2DOTA).

One can ask what matching algorithms can be found for families of picture
languages defined by more powerful deterministic finite-state systems such as
the deterministic one-marker four-way automaton [5], Sudoku-determinism [6],
or deterministic sgraffito automaton [16]. However, since the upper bound estab-
lished for L(4DFA) is close to the trivial cubic upper bound, we cannot propose
very efficient algorithms for the more powerful families without improving the
matching algorithm for L(4DFA). It is thus an important open problem to deter-
mine how tight the upper bound is for L(4DFA).

References

1. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are
optimal, so is Valiant’s parser. In: Guruswami, V. (ed.) FOCS 2015, pp. 98–117.
IEEE Computer Society (2015). https://doi.org/10.1109/FOCS.2015.16

2. Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.)
Algorithms and Complexity, Handbook of Theoretical Computer Science, vol. A,
pp. 255–300. The MIT Press, Cambridge (1990)

https://doi.org/10.1109/FOCS.2015.16

220 F. Mráz et al.

3. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-
determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki,
J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73208-2 7

4. Baeza-Yates, R., Régnier, M.: Fast two-dimensional pattern matching. Inf. Process.
Lett. 45(1), 51–57 (1993). https://doi.org/10.1016/0020-0190(93)90250-D

5. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT 1967, pp.
155–160. IEEE Computer Society (1967). https://doi.org/10.1109/FOCS.1967.6

6. Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recog-
nizable picture languages. In: Loos, R., Fazekas, S., Mart́ın-Vide, C. (eds.) LATA
2007, pp. 175–186. Report 35/07, Tarragona (2007)

7. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

8. Han, Y.-S., Pr̊uša, D.: Template-based pattern matching in two-dimensional arrays.
In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 79–92.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7 7

9. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessel-
lation acceptors. Inf. Sci. 13(2), 95–121 (1977). https://doi.org/10.1016/0020-
0255(77)90023-8

10. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: Hopcroft, J.E.,
Friedman, E.P., Harrison, M.A. (eds.) STOC 1977, pp. 1–10. ACM (1977). https://
doi.org/10.1145/800105.803390

11. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987). https://doi.org/10.1147/rd.312.0249

12. Lee, L.: Fast context-free grammar parsing requires fast Boolean matrix multipli-
cation. J. ACM 49(1), 1–15 (2002). https://doi.org/10.1145/505241.505242

13. Morgan, C.: Programming from Specifications. Prentice Hall International Series
in Computer Science, 2nd edn. Prentice Hall, Upper Saddle River (1994)

14. de Oliveira Oliveira, M., Wehar, M.: Intersection non-emptiness and hardness
within polynomial time. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol.
11088, pp. 282–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98654-8 23

15. Potechin, A., Shallit, J.: Lengths of words accepted by nondeterministic finite
automata. CoRR abs/1802.04708 (2018). http://arxiv.org/abs/1802.04708

16. Pr̊uša, D., Mráz, F., Otto, F.: Two-dimensional Sgraffito automata. RAIRO Theor.
Inf. Appl. 48, 505–539 (2014). https://doi.org/10.1051/ita/2014023

17. Richards, D., Liestman, A.L.: Finding cycles of a given length. In: Alspach, B.,
Godsil, C. (eds.) Annals of Discrete Mathematics (27): Cycles in Graphs, North-
Holland Mathematics Studies, vol. 115, pp. 249–255, North-Holland (1985)

18. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972)

19. Sun, X., Nobel, A.B.: On the size and recovery of submatrices of ones in a random
binary matrix. J. Mach. Learn. Res. 9(Nov), 2431–2453 (2008)

20. Toda, M., Inoue, K., Takanami, I.: Two-dimensional pattern matching by two-
dimensional on-line tessellation acceptors. Theor. Comput. Sci. 24, 179–194 (1983).
https://doi.org/10.1016/0304-3975(83)90048-8

21. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
STOC 2012, pp. 887–898. ACM, New York (2012). https://doi.org/10.1145/
2213977.2214056

https://doi.org/10.1007/978-3-540-73208-2_7
https://doi.org/10.1016/0020-0190(93)90250-D
https://doi.org/10.1109/FOCS.1967.6
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-319-59108-7_7
https://doi.org/10.1016/0020-0255(77)90023-8
https://doi.org/10.1016/0020-0255(77)90023-8
https://doi.org/10.1145/800105.803390
https://doi.org/10.1145/800105.803390
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1145/505241.505242
https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/978-3-319-98654-8_23
http://arxiv.org/abs/1802.04708
https://doi.org/10.1051/ita/2014023
https://doi.org/10.1016/0304-3975(83)90048-8
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056

Two-Dimensional Pattern Matching Against Basic Picture Languages 221

22. Williams, V.V.: Hardness of easy problems: basing hardness on popular conjectures
such as the strong exponential time hypothesis (invited talk). In: Husfeldt, T.,
Kanj, I.A. (eds.) IPEC 2015. LIPIcs, vol. 43, pp. 17–29. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.IPEC.2015.17

23. Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM J. Discrete Math.
10(2), 209–222 (1997). https://doi.org/10.1137/S0895480194274133

https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.1137/S0895480194274133

Decision Problems for Restricted Variants
of Two-Dimensional Automata

Taylor J. Smith(B) and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{tsmith,ksalomaa}@cs.queensu.ca

Abstract. A two-dimensional finite automaton has a read-only input
head that moves in four directions on a finite array of cells labelled by
symbols of the input alphabet. A three-way two-dimensional automa-
ton is prohibited from making upward moves, while a two-way two-
dimensional automaton can only move downward and rightward.

We show that the language emptiness problem for unary three-
way nondeterministic two-dimensional automata is NP-complete, and
is in P for general-alphabet two-way nondeterministic two-dimensional
automata. We show that the language equivalence problem for two-way
deterministic two-dimensional automata is decidable. This is the first
known positive decidability result for the equivalence problem on two-
dimensional automata over a general alphabet. We show that there exists
a unary three-way deterministic two-dimensional automaton with a non-
regular column projection, and we show that the row projection of a
unary three-way nondeterministic two-dimensional automaton is always
regular.

Keywords: Decision problem · Language emptiness ·
Language equivalence · Three-way automata ·
Two-dimensional automata · Two-way automata

1 Introduction

A two-dimensional automaton is a generalization of a one-dimensional finite
automaton that operates on two-dimensional input words; that is, on arrays or
matrices of symbols from an alphabet Σ. The two-dimensional automaton model
was originally introduced by Blum and Hewitt [2].

In the one-dimensional case, we may consider either one-way or two-way
automaton models. The one-way model is the classical definition of a finite
automaton, while the two-way model allows the input head of the automaton to
move both leftward and rightward within the input word. It is well-known that
both one-way and two-way automata recognize the regular languages.

Smith and Salomaa were supported by Natural Sciences and Engineering Research
Council of Canada Grant OGP0147224.

c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 222–234, 2019.
https://doi.org/10.1007/978-3-030-23679-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-23679-3_18

Decision Problems for Restricted Variants of Two-Dimensional Automata 223

Table 1. Decidability results for two-dimensional automaton models. Decidable prob-
lems are marked with ✓, undecidable problems are marked with ✗, and unknown results
are marked with a ? symbol. New decidability results presented in this paper are cir-
cled. Decision problems for which we provide a complexity bound are indicated by ✓∗.
Decision problems for which we provide a complexity bound for the unary case are
indicated by ✓†.

2DFA-4W 2NFA-4W 2DFA-3W 2NFA-3W 2DFA-2W 2NFA-2W

Membership ✓ ✓ ✓ ✓ ✓ ✓

Emptiness ✗ ✗ ✓ ✓† ✓∗ ✓∗

Universality ✗ ✗ ✓ ✗ ✓ ✗a

Equivalence ✗ ✗ ? ✗ ✓ ✗a

a Following the submission of this paper, the authors proved that the equiv-
alence and universality problems for two-way nondeterministic two-dimensional
automata are undecidable. These results will be added to an expanded version of
this paper.

The input head of a two-dimensional automaton can move in four direc-
tions, where the direction is specified by the transition function. In this paper,
we focus on restricted variants of the two-dimensional automaton model. Such
restrictions arise from limiting the movement of the input head of the automaton.
If we prevent the input head from moving upward, then we obtain a three-way
two-dimensional automaton. If we further prevent the input head from moving
leftward, then we obtain a two-way two-dimensional automaton. The three-way
two-dimensional automaton model was introduced by Rosenfeld [15]. The two-
way two-dimensional automaton model was introduced by Dong and Jin [3], but
a similar model was used by Anselmo et al. in an earlier paper [1].

The emptiness problem for four-way two-dimensional automata is undecid-
able [17], while the same problem is known to be decidable for three-way deter-
ministic two-dimensional automata [8,13]. Decision problems for two-way two-
dimensional automata have not been considered much in the literature. Since a
two-way two-dimensional automaton moves only right and down, it cannot visit
any symbol of the input word more than once. However, the equivalence problem
for two-way two-dimensional automata is, perhaps, not as simple as one might
expect, because the automata tested for equivalence can visit the input word
using a very different strategy and the computations may partially overlap.

Our results are as follows. Using an old result by Galil [4], we show that decid-
ing emptiness of unary three-way nondeterministic two-dimensional automata
is NP-complete, while emptiness of two-way nondeterministic two-dimensional
automata over general alphabets can be decided in polynomial time. As the
main result, we show that equivalence of two-way deterministic two-dimensional
automata over general alphabets is decidable. We also consider row and column
projection languages of two-way and three-way two-dimensional automata.

Table 1 lists a selection of known decidability results for various two-dimensio-
nal automaton models. Note that almost no problems are decidable for four-way

224 T. J. Smith and K. Salomaa

two-dimensional automata since neither the emptiness nor universality problems
are decidable for that model. More details about the two-dimensional automaton
model and associated problems can be found in survey articles by Inoue and
Takanami [9] and Kari and Salo [11], as well as in a recent survey by the first
author [16].

2 Preliminaries

A two-dimensional word consists of a finite array, or rectangle, of cells labelled
by a symbol from a finite alphabet. The cells around the two-dimensional word
are labelled by a special boundary marker #. We denote the number of rows
(resp., columns) of a two-dimensional word W by |W |R (resp., |W |C).

We begin by defining the deterministic two-dimensional automaton model,
also known as a four-way deterministic two-dimensional automaton. A two-
dimensional automaton has a finite state control and is capable of moving its
input head in four directions within a two-dimensional input word: up, down,
left, and right (denoted U , D, L, and R, respectively). The squares around the
input word are labelled by the boundary symbol # and, by remembering the
direction of the last move, the input head can move back into the word from
the boundary. We assume that the machine accepts by entering a designated
accept state qaccept, and the machine halts and accepts when it enters qaccept.
Other equivalent definitions are possible and the precise mode of acceptance is
not important unless one considers questions like state complexity. Without loss
of generality, we can assume that the input head begins its computation in the
upper-left corner of the input word.

Definition 1 (Deterministic Two-Dimensional Automaton). A deter-
ministic two-dimensional finite automaton (2DFA-4W) is a tuple (Q,Σ, δ, q0,
qaccept), where Q is a finite set of states, Σ is the input alphabet (with # �∈ Σ
acting as a boundary symbol), δ : (Q\{qaccept})× (Σ ∪{#}) → Q×{U,D,L,R}
is the partial transition function, and q0, qaccept ∈ Q are the initial and accepting
states, respectively.

We can modify a two-dimensional automaton to be nondeterministic (2NFA-
4W) in the usual way by changing the transition function to map to the power
set 2Q×{U,D,L,R}.

By restricting the movement of the input head, we obtain the aforementioned
restricted variants of the two-dimensional automaton model.

Definition 2 (Three-Way Two-Dimensional Automaton). A three-way
two-dimensional automaton (2DFA-3W/2NFA-3W) is a tuple (Q,Σ, δ, q0, qaccept)
as in Definition 1, where the transition function δ is restricted to use only the
directions {D,L,R}.
Definition 3 (Two-Way Two-Dimensional Automaton). A two-way two-
dimensional automaton (2DFA-2W/2NFA-2W) is a tuple (Q,Σ, δ, q0, qaccept) as
in Definition 1, where the transition function δ is restricted to use only the
directions {D,R}.

Decision Problems for Restricted Variants of Two-Dimensional Automata 225

Both the two-way and three-way automaton variants can be either determin-
istic or nondeterministic, depending on their transition function δ. The power
of the two-way two-dimensional automaton model was discussed and compared
to related automaton models by Dong and Jin [3]. The fact that upward and
leftward movements are prohibited means that the input head can never return
to a row if it moves down or to a column if it moves right. Thus, the two-way
two-dimensional automaton is a “read-once” automaton, in the sense that it
cannot visit any symbol twice.

A two-way deterministic two-dimensional automaton cannot visit all symbols
of an input word that has at least two rows and two columns. The same applies
to a given computation of a two-way nondeterministic two-dimensional automa-
ton; however, different computations of a nondeterministic automaton have the
ability to visit all squares. In fact, it is known that a two-way nondeterministic
two-dimensional automaton cannot be simulated by a three-way deterministic
two-dimensional automaton.

Proposition 1 (Dong and Jin [3], Kari and Salo [11]). The recognition
power of the two-way nondeterministic two-dimensional automaton model and
the three-way deterministic two-dimensional automaton model are incomparable.

3 Language Emptiness

The language emptiness problem for three-way two-dimensional automata is
decidable [8,13]. Using a result by Galil [4], we show that deciding emptiness of
unary three-way two-dimensional automata is NP-complete. Galil [4] has shown
that deciding emptiness of two-way one-dimensional automata is in NP. Note
that decidability of emptiness is not obvious because the tight bound for con-
verting a unary two-way deterministic one-dimensional automaton to a one-way
nondeterministic one-dimensional automaton is superpolynomial [14].

Theorem 1. The emptiness problem for unary three-way nondeterministic two-
dimensional automata is NP-complete.

Proof. Let A be a unary three-way nondeterministic two-dimensional automaton
with n states. We restrict the input head of A to operate only on the first row of
the input word by replacing all downward moves with “stay-in-place” moves. Call
the resulting two-way one-dimensional automaton A′. By doubling the number
of states of A′, we can eliminate “stay-in-place” moves.

Now, L(A) �= ∅ if and only if L(A′) �= ∅. Emptiness of unary two-way one-
dimensional automata can be decided in NP [4]. Furthermore, a unary two-way
one-dimensional automaton is a special case of a unary three-way two-
dimensional automaton, and it is known that emptiness for the former class
is NP-hard [4]. ��

226 T. J. Smith and K. Salomaa

In the general alphabet case, the emptiness problem for two-way determin-
istic one-dimensional automata is PSPACE-hard [6], and it follows that the
same applies to deterministic three-way two-dimensional automata. Emptiness
of deterministic and nondeterministic three-way two-dimensional automata is
decidable [13]; however, the known decision algorithm does not operate in poly-
nomial space. The question of whether emptiness of deterministic or nonde-
terministic three-way two-dimensional automata over general alphabets is in
PSPACE remains open.

3.1 Two-Way Two-Dimensional Automata

The emptiness problem for two-way nondeterministic two-dimensional automata
is known to be decidable, and the proof of decidability also acts as a trivial proof
that the problem is in NP: simply have the automaton guess an accepting compu-
tation. It turns out that the problem can be solved in deterministic polynomial
time.

Theorem 2. The emptiness problem for two-way nondeterministic two-
dimensional automata is in P.

Proof. We can check language emptiness of a two-way nondeterministic two-
dimensional automaton A via the following procedure:

1. Beginning in the initial state of A, q0, compute the set of states reachable
from q0. Denote this set by Qreachable.

2. If qaccept appears in Qreachable, halt. Otherwise, continue.
3. For each q ∈ Qreachable, repeat as long as new states get added to Qreachable:

(a) Compute the set of states reachable from q. Denote this set by Q′
reachable.

(b) If qaccept appears in Q′
reachable, halt. Otherwise, continue.

(c) Add all states in Q′
reachable to Qreachable if they do not already occur in

that set.
4. Halt.

If the procedure reaches step 4, then qaccept was not encountered up to that point
and, therefore, the language of A is empty. Otherwise, the procedure encountered
qaccept, so there exists a sequence of alphabet symbols on which the input head
of A can transition from q0 to qaccept.

At each stage of the procedure, the set of reachable states is computed by
considering all possible transitions on all alphabet symbols from the current
state. Since A is a two-way two-dimensional automaton, the input head of A
cannot visit the same cell of the input word more than once, which means that
at each step both downward and rightward moves on each alphabet symbol are
possible. If A has n states, then step 3 is repeated at most n times, which means
that the algorithm terminates in polynomial time. ��

Decision Problems for Restricted Variants of Two-Dimensional Automata 227

4 Language Equivalence

Language equivalence is known to be undecidable for four-way deterministic
two-dimensional automata [2], as well as for three-way nondeterministic two-
dimensional automata [8]. The equivalence problem for two-way two-dimensional
automata can be expected to be decidable, but turns out to be perhaps not as
straightforward as one might initially assume.

To obtain the main result of this section, we use a technical lemma (Lemma 1)
roughly based on the following idea. Suppose that we have a pair of two-way
deterministic two-dimensional automata A and B, where A has an accepting
computation CA and B has a rejecting computation CB on some sufficiently
large input word W . Intuitively speaking, our lemma uses a pumping property
to reduce the dimension of W by finding repeated states in CA and CB. To
do this, we have to be careful to avoid cases where reducing the size of the
input word would force the computations to overlap (in parts where they did
not originally overlap) because in such a situation there would be, in general, no
guarantee that the underlying symbols in the overlapping parts match.

Lemma 1. Let A and B be two-way deterministic two-dimensional automata
with m and n states, respectively. Denote z = m · n · |Σ|2 + 1 and f(z) =
z2 ·(z2+z−1). If L(A)−L(B) �= ∅, then L(A)−L(B) contains a two-dimensional
word with at most f(z) rows and f(z) columns.

Proof. Consider a two-dimensional word W ∈ L(A) − L(B) and suppose that
|W |C > f(z). Let CA (resp., CB) denote an accepting computation of A (resp.,
a rejecting computation of B) on W . Without loss of generality, we can assume
that CA accepts (resp., CB rejects) when entering a cell containing the border
marker; that is, each computation reads through all columns or all rows of the
input word. If the original automata are allowed to accept/reject inside the input
word, then they can be easily modified to equivalent automata that accept/reject
only at border markers. (Note that a two-way two-dimensional automaton cannot
enter an infinite loop.)

We show that L(A)−L(B) either (i) contains a word with strictly fewer than
|W |C columns and no more than |W |R rows, or (ii) contains a word with no
more than |W |C columns and strictly fewer than |W |R rows.

If CA and CB share at least z positions in W , then two of these shared
positions must have been reached via the same states of A and B on the same
alphabet symbol. These shared positions can be identified and removed to pro-
duce a word in L(A) − L(B) of strictly smaller dimension. (See Fig. 1a.)

Otherwise, CA and CB share fewer than z positions in W . Then, there exists
some subword Z in W consisting of z · (z2 +z −1) consecutive complete columns
of W where CA and CB do not intersect.

If CA and CB do not enter the subword Z, then we can reduce the dimension
of W without affecting either of the computations CA and CB, and a similar
reduction is easy to do if only one of CA and CB enters the subword Z.

If CA and CB enter the subword Z, then without loss of generality, assume
that within the subword Z, CA is above CB and CA continues to the last row

228 T. J. Smith and K. Salomaa

of Z. It is possible for CB to finish earlier if it rejects at the bottom border
of W . If neither CA nor CB visit all columns of Z, then we can directly reduce
the number of columns of W .

If CA contains a vertical drop of at least z steps within Z, or if CA finishes
at least z positions higher than CB within Z—which can occur only when Z
consists of the last columns of W—then the number of rows of W can be strictly
reduced without affecting either of the computations CA and CB. If such a
scenario occurs in the jth column of W , then CA contains two cells (i1, j) and
(i2, j) where i1 < i2 and where the cells are reached by the same states on
the same alphabet symbol, and both states and symbol are matched by CB on
rows i1 and i2. Thus, we can reduce the number of rows of W by i2 − i1. (See
Fig. 1b.) This involves moving the remainder of the computation CB to the left
and adding new cells in the input word to guarantee that the input word is a
rectangle. Note that moving the remainder of CB to the left cannot force it to
overlap with CA.

Now, we know that CA is above CB within Z and the vertical distance
between the two computations by the end is at most z. Denote by maxZ the
maximal vertical difference of CA and CB at any fixed column in Z. We consider
two cases:

1. Suppose maxZ ≥ z2 + z. Suppose that the leftmost value of maximal vertical
difference occurs at column k within Z. Since, at the end, the vertical differ-
ence of CA and CB is at most z, and since CA cannot contain a vertical drop
of more than z steps, then there must exist z “designated” columns between
k and the last column of Z where the vertical difference between CA and CB
either monotonically decreases or stays the same. (See Fig. 1c.)
At two of these “designated” columns, say k1 and k2, the states of CA and
CB and the corresponding alphabet symbols coincide, and we can continue
the computation CA (resp., CB) from column k1 in the same way as from
column k2.
Note that this transformation is not possible when the vertical distance in
the “designated” columns is not monotonically decreasing, since if we move
CA and CB so that the computations continue from column k1 in the same
way as from column k2, the computations could be forced to overlap and we
can no longer guarantee a matching of alphabet symbols. (See Fig. 1d.)

2. Suppose maxZ ≤ z2 + z − 1. Then Z consists of z · (z2 + z − 1) columns, so
there must exist z columns where the vertical difference between CA and CB
is the same. The choice of z implies that, in two of these columns, the states
of CA and CB and the corresponding alphabet symbols coincide. Thus, we
can strictly reduce the number of columns of W without affecting either of
the computations CA and CB.

Altogether, the previous cases establish a method for reducing the number
of columns of W when |W |C > f(z). The method for reducing the number of
rows of W when |W |R > f(z) is completely analogous. ��

Decision Problems for Restricted Variants of Two-Dimensional Automata 229

×
×

qA, qB

b

×
×

×
×

qA, qB

b

×

CA

CB

(a) Removing shared computations

qA, b

qB, b’

(i1, j)

(i2, j)

CA

CB

(b) Removing rows within vertical drop

k

maxZ ≥
z2 + z

≤ z
CA

CB

(c) Removing columns after row removal

k1 k2

CA

CB

(d) Situation with non-removable columns

Fig. 1. Illustrations depicting various scenarios in Lemma 1.

Lemma 1 gives a brute-force algorithm to decide equivalence for two-way
deterministic two-dimensional automata by checking all input words up to a
given dimension, and the algorithm depends only on the two automata in ques-
tion. As a consequence of the existence of such an algorithm, we obtain the
following result.

Theorem 3. The equivalence problem for two-way deterministic two-
dimensional automata over a general alphabet is decidable.

Lemma 1 also decides the inclusion problem and it follows that inclusion of
two-way deterministic two-dimensional automata is decidable.

However, the brute-force algorithm given by Lemma 1 is extremely inefficient.
The question of whether there exists a more efficient decidability procedure
remains open.

Note that a two-way deterministic two-dimensional automaton cannot visit a
symbol in the input word more than once, so we can reduce the number of states
of such an automaton in a manner analogous to reducing states in a one-way
deterministic one-dimensional automaton: mark pairs of states (qi, qj) as distin-
guishable if one of qi and qj is final and the other is not, then iteratively mark
pairs of states as distinguishable if both states reach a previously-marked pair on

230 T. J. Smith and K. Salomaa

some transition on the same alphabet symbol and in the same direction (down-
ward or rightward). Such an algorithm runs in polynomial time; however, it is
easy to see that a state-minimal two-way deterministic two-dimensional automa-
ton need not be unique. Therefore, it is unclear whether a state minimization
approach can be used to decide the equivalence problem.

Another hard open problem is to determine whether or not equivalence of
three-way deterministic two-dimensional automata is decidable.

5 Row and Column Projection Languages

The row projection (resp., column projection) of a two-dimensional language L
is the one-dimensional language consisting of the first rows (resp., first columns)
of all two-dimensional words in L.

General (four-way) deterministic two-dimensional automata can recognize
that the input word has, for example, exponential or doubly-exponential side-
length [10], which implies that the row or column projections, even in the unary
case, need not be context-free.

Kinber [12] has shown that the numbers of rows and columns of unary two-
dimensional words in a language recognized by a three-way deterministic two-
dimensional automaton are connected by certain bilinear forms.

Here, we consider the row and column projection languages of unary lan-
guages recognized by three-way two-dimensional automata, and we get differing
regularity results for the row and column projection languages, respectively.

Theorem 4. Given a unary three-way nondeterministic two-dimensional auto-
maton A, the row projection language of L(A) is regular.

Proof. The same argument as in the proof of Theorem 1 applies here. Construct
a two-way nondeterministic one-dimensional automaton B to simulate the com-
putation of A and replace downward moves with “stay-in-place” moves. ��

For the column projection operation, however, we are not guaranteed to have
regularity even with unary three-way deterministic two-dimensional automata.
As a counterexample, we use the following unary language:

Lcomposite = {am | m > 1 and m is not prime}.

Clearly, Lcomposite is nonregular since its complement is nonregular. The non-
regularity of Lcomposite plays a key role in the following lemma.

Lemma 2. There exists a unary three-way deterministic two-dimensional
automaton C such that the column projection language of L(C) is equal to
Lcomposite.

Proof. We construct the automaton C as follows. Given an input word of dimen-
sion m × n, C first verifies that m > 1; that is, that the input word has more
than one row. Then, moving in a diagonal manner from the upper-left symbol

Decision Problems for Restricted Variants of Two-Dimensional Automata 231

of the input word, the input head of C travels rightward and downward until it
reaches the boundary symbol of row n. From there, the input head moves back
onto the word, then travels leftward and downward until it reaches the boundary
symbol of row 2n.

The automaton C accepts the input word if, after making at least two sweeps
across the input word, the input head reaches the lower-left or lower-right corner
of the input word after completing its current sweep.

The input head of C is able to detect when it has reached the lower-left or
lower-right corner of the input word in the following way:

– If the input head reads # following a leftward move, make a downward move
followed by a rightward move and check that both symbols read are #. If so,
accept. Otherwise, if the second symbol read is not #, continue.

– If the input head reads # following a rightward move, make a downward move
followed by a leftward move and check that both symbols read are #. If so,
accept. Otherwise, if the second symbol read is not #, continue.

– If the input head reads # following a downward move, reject.

Following this construction, we see that L(C) consists of words of dimension
m×n where m > 1 and m is a multiple of n, and the column projection language
of L(C) consists of all strings of length at least 2 that do not have prime length;
that is, Lcomposite. The computation of C is completely deterministic. ��

Using Lemma 2, we obtain the main result pertaining to column projection
languages.

Theorem 5. Given a unary three-way deterministic two-dimensional automa-
ton A, the column projection language of L(A) is not always regular.

Remark 1. In a classical work, Greibach used the language Lcomposite to show
that one-way nondeterministic checking stack automata can recognize nonregular
unary languages [5].

Ibarra et al. [7] introduced the notion of an accepting run of a two-way
automaton. An accepting run is, roughly speaking, a sequence of states that
the automaton enters during the course of some accepting computation. They
showed that the set of accepting runs of a two-way automaton can be nonregular.

The proof of Lemma 2 provides an example where the set of accepting
runs of a unary two-way nondeterministic automaton is not regular. Using the
automaton C from Lemma 2, simulate the computation of C with a two-way one-
dimensional automaton B as in Theorem 4. Then, the set of accepting runs of B
will not be regular because the number of “stay-in-place” moves is guaranteed to
be a composite number. Note that, although C is deterministic, the simulating
two-way one-dimensional automaton B will be nondeterministic because it has
to guess when C has reached the last row and when the computation should
accept.

232 T. J. Smith and K. Salomaa

5.1 Two-Way Two-Dimensional Automata over General Alphabets

As opposed to the three-way case, we can establish regularity results for both
the row projection and column projection languages of two-way nondeterministic
two-dimensional automata. Furthermore, we no longer require that the automa-
ton has a unary alphabet.

Theorem 6. Given a two-way nondeterministic two-dimensional automaton A,
the row projection language of L(A) is regular.

Proof. Let A be a two-way nondeterministic two-dimensional automaton. Con-
struct a one-way nondeterministic one-dimensional automaton B (with “stay-in-
place” moves) to recognize the row projection language of L(A) as follows:

1. Use B to nondeterministically simulate rightward moves of A.
2. Simulate state changes of A after a downward move via a “stay-in-place”

move, and nondeterministically guess the alphabet character that A reads on
the next row.

3. After A makes the first downward move, begin simulating rightward moves of
A by moving right but nondeterministically selecting an alphabet character
for the simulated transition of A. After this point, B ignores its own input.

Note that, after A makes a downward move, it can never return to the previous
row. Therefore, we do not care about the remaining contents of the previous
row.

From here, B must count the number of rightward moves it simulates and
check that there exists an accepting computation of A where the number of
rightward moves and the length of the remaining input to B are equal.

Since the row projection language of A is recognized by a nondeterministic
one-dimensional automaton, it is regular. ��

As opposed to the three-way case, the handling of rows and columns for two-
way two-dimensional automata is symmetric: a row or column is read one way
and cannot be returned to after a downward or rightward move, respectively.
Using a completely analogous construction as in the proof of Theorem 6, we
obtain a similar result for column projection languages.

Theorem 7. Given a two-way nondeterministic two-dimensional automaton A,
the column projection language of L(A) is regular.

6 Conclusion

In this paper, we considered decision problems for three-way and two-way two-
dimensional automata. We showed that the language emptiness problem is NP-
complete for unary three-way nondeterministic two-dimensional automata and in
P for two-way nondeterministic two-dimensional automata over a general alpha-
bet. We also proved that the language equivalence problem is decidable for two-
way deterministic two-dimensional automata. Lastly, we investigated the row

Decision Problems for Restricted Variants of Two-Dimensional Automata 233

projection and column projection operations and found that the resulting lan-
guages are regular for two-way nondeterministic two-dimensional automata over
a general alphabet. In the three-way case, only the row projection of a unary
two-dimensional language is regular.

As mentioned throughout this paper, some open problems remain in this area
of study. For three-way two-dimensional automata, it is unknown whether the
general-alphabet emptiness problem belongs to PSPACE. A positive result would
imply that the problem is PSPACE-complete. For two-way two-dimensional
automata, it could be interesting to investigate whether an efficient algorithm
exists to decide the equivalence problem in the deterministic case (possibly by
using a state minimization approach). Table 1 in Sect. 1 lists a selection of decid-
ability questions for various two-dimensional automaton models that remain
unresolved, and for most problems listed as decidable in Table 1, exact complex-
ity bounds have not yet been determined.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular expres-
sions for two-dimensional languages over one-letter alphabet. Theor. Comput. Sci.
340(2), 408–431 (2005). https://doi.org/10.1016/j.tcs.2005.03.031

2. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Miller, R.E. (ed.)
SWAT 1967, pp. 155–160 (1967). https://doi.org/10.1109/FOCS.1967.6

3. Dong, J., Jin, W.: Comparison of two-way two-dimensional finite automata and
three-way two-dimensional finite automata. In: Yang, X. (ed.) CSSS 2012, pp.
1904–1906 (2012). https://doi.org/10.1109/CSSS.2012.474

4. Galil, Z.: Hierarchies of complete problems. Acta Inf. 6(1), 77–88 (1976). https://
doi.org/10.1007/BF00263744

5. Greibach, S.: Checking automata and one-way stack languages. J. Comput. Syst.
Sci. 3(2), 196–217 (1969). https://doi.org/10.1016/S0022-0000(69)80012-7

6. Hunt III, H.B.: On the time and tape complexity of languages I. In: Aho, A.V.
(ed.) STOC 1973, pp. 10–19 (1973). https://doi.org/10.1145/800125.804030

7. Ibarra, O.H., Dang, Z., Li, Q.: Accepting runs in a two-way finite automation. Inf.
Comput. 260, 1–8 (2018). https://doi.org/10.1016/j.ic.2018.03.002

8. Inoue, K., Takanami, I.: A note on decision problems for three-way two-dimensional
finite automata. Inf. Process. Lett. 10(4–5), 245–248 (1980). https://doi.org/10.
1016/0020-0190(80)90151-9

9. Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. Inf. Sci.
55(1–3), 99–121 (1991). https://doi.org/10.1016/0020-0255(91)90008-I

10. Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional
automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory
Is Forever. LNCS, vol. 3113, pp. 134–144. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27812-2 13

11. Kari, J., Salo, V.: A survey on picture-walking automata. In: Kuich, W., Rahonis,
G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 183–
213. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24897-9 9

12. Kinber, E.B.: Three-way automata on rectangular tapes over a one-letter alphabet.
Inform. Sci. 35, 61–77 (1985). https://doi.org/10.1016/0020-0255(85)90041 6

https://doi.org/10.1016/j.tcs.2005.03.031
https://doi.org/10.1109/FOCS.1967.6
https://doi.org/10.1109/CSSS.2012.474
https://doi.org/10.1007/BF00263744
https://doi.org/10.1007/BF00263744
https://doi.org/10.1016/S0022-0000(69)80012-7
https://doi.org/10.1145/800125.804030
https://doi.org/10.1016/j.ic.2018.03.002
https://doi.org/10.1016/0020-0190(80)90151-9
https://doi.org/10.1016/0020-0190(80)90151-9
https://doi.org/10.1016/0020-0255(91)90008-I
https://doi.org/10.1007/978-3-540-27812-2_13
https://doi.org/10.1007/978-3-540-27812-2_13
https://doi.org/10.1007/978-3-642-24897-9_9
https://doi.org/10.1016/0020-0255(85)90041_6

234 T. J. Smith and K. Salomaa

13. Petersen, H.: Some results concerning two-dimensional Turing machines and finite
automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 374–382. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60249-6 69

14. Pighizzini, G.: Two-way finite automata: old and recent results. Fund. Inf. 126(2–
3), 225–246 (2013). https://doi.org/10.3233/FI-2013-879

15. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Com-
puter Science and Applied Mathematics. Academic Press, New York (1979)

16. Smith, T.J.: Two-dimensional automata. Technical report 2019–637, Queen’s Uni-
versity, Kingston (2019)

17. Taniguchi, K., Kasami, T.: Some decision problems for two-dimensional nonwriting
automata. Trans. Inst. Electron. Comm. Engrs. Jpn. 54–C(7), 578–585 (1971)

https://doi.org/10.1007/3-540-60249-6_69
https://doi.org/10.3233/FI-2013-879

Streaming Ranked-Tree-to-String
Transducers

Yuta Takahashi1(B), Kazuyuki Asada2, and Keisuke Nakano2

1 The University of Electro-Communications, Chofu, Japan
takahashi@ipl.cs.uec.ac.jp

2 Tohoku University, Sendai, Japan
{asada,ksk}@riec.tohoku.ac.jp

Abstract. Streaming tree transducers with single-use restriction
(STTsurs) were introduced by Alur and D’Antoni as an analyzable, exe-
cutable, and expressive model for transforming unranked ordered trees
in a single pass. The equivalence problem of STTsurs is decidable because
their class is as expressive as the class of MSO-definable tree transforma-
tions. In this paper, we present streaming ranked-tree-to-string transduc-
ers (SRTSTs), based on STTsurs: SRTSTs are released from the single-
use restriction while their input and output are restricted to ranked trees
and strings, respectively. We show that the expressiveness of SRTSTs
coincides with that of deterministic top-down tree transducers with reg-
ular look-ahead (yDTRs), whose equivalence problem is known to be
decidable. Our proof is done by constructing equivalent transducers in
both directions.

Keywords: Ranked trees · Streaming transducers · Expressiveness ·
Equivalence

1 Introduction

1Streaming tree transducers with single-use restriction (STTsurs) were intro-
duced in [1] which can characterize MSO-definable tree transformations in a
single path. An STTsur defines a function over unranked ordered trees (and
forests), which are encoded as nested words. A nested word is a string over sym-
bols tagged with open/close brackets. An STTsur reads an input nested word
from left to right in a single path. Here each state is equipped with a visi-
bly pushdown stack and a finite number of variables that store output chunks.
An STTsur updates variables and a stack that stores stack symbols along with
updated values of variables.

Intuitively, the single-use restriction is a restriction that variables are updated
in a manner that ensures that each value of a variable contributes at most once
to the eventual output without duplication (see [1] for the definition). Due to this
restriction, the class of STTsurs equals that of MSO-definable tree transducers.
1 The full version (with full proofs) is found in: http://www.riec.tohoku.ac.jp/∼asada/.
c© Springer Nature Switzerland AG 2019
M. Hospodár and G. Jirásková (Eds.): CIAA 2019, LNCS 11601, pp. 235–247, 2019.
https://doi.org/10.1007/978-3-030-23679-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23679-3_19&domain=pdf
http://www.riec.tohoku.ac.jp/~asada/
https://doi.org/10.1007/978-3-030-23679-3_19

236 Y. Takahashi et al.

The equivalence problem of transducers is an important topic in formal lan-
guage theory. One of the remarkable results is that the equivalence of MSO-
definable tree transducers is decidable [7]. Furthermore, in [1] the decidability
of the equivalence problem for STTsurs was proved without using the result for
MSO-definable transducers, with better complexity.

In this paper, we propose streaming ranked-tree-to-string transducers
(SRTSTs) as a model of transformations from ranked trees to strings. The def-
inition of SRTSTs is based on that of STTsurs but released from the single-
use restriction. In addition, the input and output of SRTSTs are restricted to
ranked trees and strings, respectively, while those of STTsurs are both unranked
trees. SRTSTs with single-use restriction (SRTSTsurs) (which are nothing but
STSTsurs [1] whose input is restricted to ranked trees) have the same expressive
power as MSO-definable ranked-tree-to-string transducers (see the full version);
and SRTSTs are more expressive than SRTSTsurs. Streaming transducers with-
out single-use restriction were not studied in [1].2

Deterministic top-down tree-to-string transducers with regular look-ahead
(yDTRs) [4] are a classical model for structural-recursive tree-to-string trans-
formation. A yDTR defines a transformation from ranked trees to strings
by mutually recursive functions with regular look-ahead. The equivalence of
yDTRshad been a long-standing open problem [5], that was recently solved by
Seidl et al. [11,12]. For a subclass of yDTR, the notion of finite copying for
top-down tree transducers was introduced in [8]. Intuitively, a yDTR is finite
copying (yDTR

fc), if each subtree of an input is copied at most a bounded num-
ber of times. The expressiveness of yDTR

fcs coincides with that of MSO-definable
tree-to-string transducers [6], thereby yDTR

fc and SRTSTsur are equi-expressive.
In this paper, we characterize the class of SRTSTs in terms of yDTRs. Our

contributions are:

(i) SRTSTs and yDTRs are equi-expressive,
(ii) bottom-up SRTSTs and SRTSTs are equi-expressive, and
(iii) the equivalence problem for SRTSTs is decidable.

Our main contribution is (i). In Sect. 4, we show how to construct equivalent
transducers for each direction. In the direction from yDTRs to SRTSTs,used we
construct the equivalent SRTST to be bottom-up one for every given yDTR,
which shows (ii). As an immediate corollary, (iii) is derived from (i) and the
decidability of the equivalence problem for yDTRs [12].

Related Work. There is a subclass of yDTRs besides yDTR
fcs, called yDTseqs,

which are restricted to non-copying and order-preserving on input variables
occurring in right-hand sides of rules. yDTseqs are equi-expressive to determinis-
tic nested word-to-word transducers [13], which is a subclass of SRTSTsurs hence
their equivalence problem is known to be decidable.

2 In the current paper, notions with (resp. without) single-use restriction are written
by words with (resp. without) the subscript sur such as STTsur (resp. STT). In [1],
STTsur and STSTsur are written just as STT and STST, respectively.

Streaming Ranked-Tree-to-String Transducers 237

As for streaming string-to-string transducers rather than tree-to-string ones,
copyless streaming string transducers (SSTcls) have been introduced in [2]. The
expressiveness of SSTcls coincides with that of MSO-definable string transducers.
Copyful streaming string transducers (SSTcfs) that are released from the copyless
restriction are studied in [9]. It is shown that SSTcfs and HDT0L systems are
equi-expressive.

Macro forest transducers that are richer than yDTRs have been translated
into streaming transducers to obtain efficient XML stream processors [10]. The
streaming model is rather informal and its expressiveness has not been studied.

2 Preliminaries

For n ∈ N, The Construction of we write [n] for the set {1, . . . , n}; in particular,
[0] = ∅. We use boldface letters such as t to denote tuples. For a k-tuple t, we
write |t| for the length k of t. For a set A and k ∈ N, Ak denotes the set of all
k-tuples of elements of A, and A(≤k) �

⋃k
i=0 Ai. For t = (a1, . . . , ak) ∈ Ak and

a ∈ A, we denote by t || a the (k + 1)-tuple (a1, . . . , ak, a). We write ε for the
empty string, and Dom(f) for the domain of definition of a partial function f .

A ranked alphabet is a pair of a finite set Σ and a function rankΣ : Σ → N;
the value rankΣ(σ) of a symbol σ is called the rank of σ. We define Σ(n) � {σ ∈
Σ | rankΣ(σ) = n}, and write σ also as σ(n) when σ ∈ Σ(n). The set of (ranked)
trees over Σ, denoted by TΣ , is the smallest set T such that if σ ∈ Σ(n) and
t1, . . . , tn ∈ T then σ(t1, . . . , tn) ∈ T . We use an English letter (mainly e) as
a metavariable ranging over rank-0 letters, i.e., leaves; a tree of the form e() is
written as e.

An alphabet is just a finite set. Let Σ be an alphabet. A tagged alphabet
Σ̂ consists of the call symbols 〈σ, and the return symbols σ〉, for all σ ∈ Σ.
A nested word over Σ is a finite sequence over Σ̂. We simply write 〈e〉 for a
nested word of the form 〈e e〉. A nested word w is called well-matched if all the
left and right angle brackets occurring in w are well-bracketed; and w is called
well-labeled if each matched pair of call and return symbols is labeled with the
same symbol in Σ. Any well-labeled nested word is well-matched. For example,
〈a b〉 〈a b〉 is well-matched but not well-labeled; 〈a a〉 〈b 〈a a〉 b〉 is well-labeled;
and 〈a a〉 〈b 〈b is not well-matched.

Let Σ be a ranked alphabet. A mapping from ranked trees to nested words
�−� : TΣ → Σ̂∗ is defined by �t� = 〈σ �t1� · · · �tn� σ〉 for t = σ(t1, . . . , tn) ∈ TΣ .
The set of ranked nested words, denoted by �TΣ�, is defined by

{
�t�

∣
∣ t ∈ TΣ

}
.

Ranked nested words respect ranks but well-labeled nested words do not nec-
essarily (furthermore, well-labeled nested words can express not just unranked
trees but even forests). For example, for σ(2) ∈ Σ, 〈σ σ〉 is well-labeled, but is
not a ranked nested word as σ() is not a ranked tree. Note that �−� is injective,
and �TΣ� is isomorphic to TΣ ; we write the converse function from ranked nested
words to ranked trees as 	−
 : �TΣ� → TΣ . In this paper, we are interested in
ranked nested words rather than well-labeled nested words.

238 Y. Takahashi et al.

Definition 1. A non-deterministic finite state bottom-up tree automaton
(NBTA) is a tuple (Π,Σ, θ) where: (i) Π is a finite set of states, (ii) Σ is a
ranked alphabet of input symbols, and (iii) θ :

⋃
n∈N

(Σ(n) × Πn) → 2Π is a
function called a transition function.

Let A = (Π,Σ, θ) be an NBTA. We extend θ to θ̂ : TΣ → 2Π by induction:
θ̂(σ(t1, . . . , tn)) �

⋃
π1∈θ̂(t1),...,πn∈θ̂(tn)

θ(σ, (π1, . . . , πn)). We say that a state π ∈
Π accepts a tree t ∈ TΣ if π ∈ θ̂(t). We denote by LA(π) the set of trees accepted
by π; we simply write L(π) for LA(π) when A is clear from the context. We
assume that LA(π) �= ∅ for all π ∈ Π. An NBTA A is called a deterministic
finite state bottom-up tree automaton (DBTA) if θ(σ, (π1, . . . , πn)) has exactly
one element for every σ ∈ Σ(n) and π1, . . . , πn ∈ Π. For a DBTA, we write
θ(σ, (π1, . . . , πn)) for its unique element. DBTAs and NBTAs recognize the same
class of tree languages known as regular tree languages [3]. We denote by REG
the set of all regular tree languages. REG is closed under union, intersection,
and complementation.

3 Transducers

We here define the two main notions to be compared: yDTR and SRTST.

3.1 Deterministic Top-Down Tree-to-String Transducers with
Regular Look-Ahead

A deterministic top-down tree-to-string transducer with regular look-ahead
(yDTR for short) works on ranked trees.

First we prepare the range of the right hand sides of transition rules of yDTRs.
We fix a set of input variables X = {x1, x2, . . . } and define Xn � {x1, . . . , xn}
for n ∈ N. Also, for a set Q and n ∈ N, we define Q(Xn) � {q(xi) | q ∈ Q, i ≤ n}
where q(xi) � (q, xi). For a finite set Q (of states), an alphabet Δ, and n ∈ N,
we define the set RhsQ,Δ(Xn) of expressions by τ ::= ε | aτ | q(xi)τ where a ∈ Δ

and q(xi) ∈ Q(Xn). The following definition of yDTR is taken from [12], except
that we adopt the style in [4] for regular look-ahead (i.e., we consider directly
regular tree languages rather than states of an NBTA).

Definition 2 (yDTR). A deterministic top-down tree-to-string transducer with
regular look-ahead (yDTR) is a tuple (Q,Σ,Δ, Init , R) satisfying the following
conditions:

– Q is a finite set of states.
– Σ is a ranked alphabet of input symbols.
– Δ is an alphabet of output symbols.
– Init ⊆ RhsQ,Δ(X1)× (REG \{∅}) is a finite set of initial sequences, and must

satisfy that, for any two distinct initial sequences (τ, L) and (τ ′, L′) in Init ,
L ∩ L′ = ∅. For L ∈ REG \ {∅}, τ such that (τ, L) ∈ Init is unique (if it
exists), and is denoted by Init(L).

Streaming Ranked-Tree-to-String Transducers 239

– R ⊆
⋃

n∈N
(Q × Σ(n) × RhsQ,Δ(Xn) × (REG \ {∅})n) is a finite set of

rules, and must satisfy that, for any two distinct rules (q, σ, τ, (L1, . . . , Ln))
and (q, σ, τ ′, (L′

1, . . . , L
′
n)) in R, Li ∩ L′

i = ∅ for some i ∈ [n]. A rule
(q, σ, τ, (L1, . . . , Ln)) is written as

q(σ(x1, . . . , xn)) → τ 〈L1, . . . , Ln〉 .

Here τ is uniquely determined (if it exists) from (q, σ, (L1, . . . , Ln)); hence we
call this rule a (q, σ, (L1, . . . , Ln))-rule, and denote τ by rhs(q, σ, (L1, . . . , Ln)).
We write q(e) → τ for q(e()) → τ 〈〉 when rankΣ(e) = 0.

We define the semantics of a yDTR, which transforms a tree in a top-down
manner. Let M = (Q,Σ,Δ, Init , R) be a yDTR, and we define a partial function
�M� : TΣ ⇀ Δ∗.

First, we define auxiliary partial functions �q�M : TΣ ⇀ Δ∗ (for q ∈ Q) and
�τ�M : T n

Σ ⇀ Δ∗ (for n ∈ N and τ ∈ RhsQ,Δ(Xn)), by simultaneous induction
on input trees. Let t = σ(t1, . . . , tn) ∈ TΣ and q ∈ Q. If there exist L1, . . . , Ln

and a (q, σ, (L1, . . . , Ln))-rule in R such that ti ∈ Li for all i ∈ [n], then �q�M(t)

is defined as

�q�M (σ(t1, . . . , tn)) � �rhs(q, σ, (L1, . . . , Ln))�M (t1, . . . , tn)

(if the r.h.s. is defined), and �q�M(t) is not defined otherwise. Here note that,
due to the condition on R, the tuple (L1, . . . , Ln) above is unique if exists. For
n ∈ N and τ ∈ RhsQ,Δ(Xn), �τ�M (t1, . . . , tn) is defined as follows:

�ε�M (t1, . . . , tn) � ε

�aτ ′�M (t1, . . . , tn) � a �τ ′�M (t1, . . . , tn)

�q′(xi)τ ′�M (t1, . . . , tn) � �q′�M (ti) �τ ′�M (t1, . . . , tn) .

Now let us define �M� : TΣ ⇀ Δ∗. For t ∈ TΣ , if there exists a pair (τ, L) ∈
Init such that t ∈ L and if �τ�M (t) is defined, then we define �M�(t) � �τ�M (t);
and �M�(t) is not defined otherwise. Again, note that such a pair (τ, L) is unique.
We denote by Dom(M) the domain of �M�.

In the above definition, regular look-ahead is realized by regular tree lan-
guages directly. As a finite representation for expressing regular tree languages,
we use an NBTA or a DBTA, switching the two styles conveniently. (Recall
that the two notions recognize the same class of languages, REG .) We call an
automaton used for regular look-ahead a regular look-ahead automaton. Given
a regular look-ahead automaton, we use states of the automaton instead of reg-
ular tree languages when we refer to initial sequences or rules (e.g., we write
rhs(q, σ, (π1, . . . , πn)) for rhs(q, σ, (L(π1), . . . ,L(πn)))).

The equivalence problem for yDTR is known to be decidable.

Theorem 3 (Corollary 8.1 in [12]). Given two yDTRs M1, M2, it is decid-
able whether �M1� = �M2�.

240 Y. Takahashi et al.

3.2 Streaming Ranked-Tree-to-String Transducers

A streaming ranked-tree-to-string transducer (SRTST for short) works on ranked
nested words. We first prepare some auxiliary definitions.

For a finite set Γ (of variables) and an alphabet Δ, the set E(Γ,Δ) of expres-
sions over Γ and Δ is defined by the following grammar: E ::= ε | aE | γE
where a ∈ Δ and γ ∈ Γ . Note that E(∅,Δ) = Δ∗.

Let Γ and Γ ′ be finite sets and Δ be an alphabet. We call a mapping ρ :
Γ → E(Γ ′,Δ) an assignment, and denote ρ by [γ1 := e1, . . . , γn := en] where
Γ = {γ1, . . . , γn} and ei = ρ(γi); in this notation, γi := ei may be omitted if
ei = γi. An assignment ρ is naturally extended to ρ : E(Γ,Δ) → E(Γ ′,Δ):
for e ∈ E(Γ,Δ), ρ(e) is the expression over Γ ′ and Δ obtained by replacing
all occurrences of every variable γ in e with ρ(γ). We denote ρ(e) by eρ. The
set of all assignments over Γ , Γ ′ and Δ is denoted by A(Γ, Γ ′,Δ). An element
of A(Γ, ∅,Δ) (i.e., a function Γ → Δ∗) is called an evaluation function, and a
returned value of an evaluation function is called a variable value.

Given two assignments ρ1 : Γ1 → E(Γ ′
1,Δ) and ρ2 : Γ2 → E(Γ ′

2,Δ), the
assignment ρ1ρ2 : Γ1 → E((Γ ′

1 \ Γ2) ∪ Γ ′
2,Δ) is defined (as usual) as follows. For

γ ∈ Γ1, (ρ1ρ2)(γ) is an expression in E((Γ ′
1\Γ2)∪Γ ′

2,Δ) obtained by replacing all
occurrences of variable γ′

1 ∈ Γ ′
1∩Γ2 in ρ1(γ) ∈ E(Γ ′

1,Δ) with ρ2(γ′
1) ∈ E(Γ ′

2,Δ),
and keeping all occurrences of other variable γ′

1 ∈ Γ ′
1 \ Γ2 in ρ1(γ) ∈ E(Γ ′

1,Δ).
Given two assignments ρ1 : Γ1 → E(Γ,Δ) and ρ2 : Γ2 → E(Γ,Δ) where Γ1 and
Γ2 are disjoint, the assignment ρ1 � ρ2 : Γ1 � Γ2 → E(Γ,Δ) is defined by

ρ1 � ρ2 � [γ1 := ρ1(γ1), . . . , γn := ρ1(γn), γ′
1 := ρ2(γ′

1), . . . , γ
′
m := ρ2(γ′

m)]

where Γ1 = {γ1, . . . , γn} and Γ2 = {γ′
1, . . . , γ

′
m}.

We introduce the notion of an SRTST based on the definition of STTsur in [1].
The difference is as follows: an STTsur is restricted by single-use restriction (sur
for short), while an SRTST is not restricted; the input and output of an STTsur

are well-matched nested words, while the input and output of an SRTST are
ranked nested words and strings, respectively.

Definition 4. A streaming ranked-tree-to-string transducer (SRTST for short)
is a tuple (S,Σ,Δ, P, s0, Γ, F, δc, δr, ρc, ρr) where:

– S is a finite set of states,
– Σ is a ranked alphabet of input symbols,
– Δ is an alphabet of output symbols,
– P is a finite set of stack symbols,
– s0 ∈ S is an initial state,
– Γ is a finite set of variables,
– F : S ⇀ E(Γ,Δ) is a partial function called an output function,
– δc : S × Σ → S × P is a call state-transition function,
– δr : S × P × Σ → S is a return state-transition function,
– ρc : S × Σ → A(Γ, Γ,Δ) is a call variable-update function,
– ρr : S × P × Σ → A(Γ, Γ � Γ ,Δ) is a return variable-update function where

Γ is a “copy” of Γ , i.e., Γ � {γ | γ ∈ Γ} and each γ is a fresh symbol.

Streaming Ranked-Tree-to-String Transducers 241

We define the semantics of an SRTST, which transforms a tree (a
ranked nested word) in a top-down and bottom-up way. Let T =
(S,Σ,Δ, P, s0, Γ, F, δc, δr, ρc, ρr) be an SRTST. We define the set of configu-
rations of T , denoted by Ψ , as Ψ := S × (P × A(Γ, ∅,Δ))∗ × A(Γ, ∅,Δ). For
a configuration (s, Λ, α) ∈ Ψ , Λ is called the stack, and α is called the current
evaluation function. Let αΓ

ε � [γ := ε]γ∈Γ , which is called the emptyword eval-
uation function; we often omit the superscript Γ of αΓ

ε . We call (s0, ε, αΓ
ε) the

initial configuration. We define the transition function δ : Ψ × Σ̂ ⇀ Ψ over
configurations as follows:

Call transitions. For σ ∈ Σ, δ
(
(s, Λ, α), 〈σ

)
�

(
s′, (p, α′)Λ, αΓ

ε

)
where:

– (s′, p) � δc(s, σ): we invoke the state-transition function δc, which reads
〈σ in the state s,

– α′ � ρc(s, σ)α: we push (p, α′) on the stack Λ (rather than setting α′ as
the current evaluation function); α′ is almost ρc(s, σ) but each variable
γ in ρc(s, σ) is substituted for α(γ) (and α(γ) is discarded if γ does not
occur in ρc(s, σ)),

– we reset the current evaluation function α to the emptyword evaluation
function αΓ

ε .
Return transitions. For σ ∈ Σ, δ

(
(s, (p, β)Λ, α), σ〉

)
�

(
s′, Λ, α′) where:

– s′ � δr(s, p, σ): we invoke the state-transition function δr, which read σ〉
in the state s with the stack symbol p on the stack,

– we pop (p, β) from the stack,
– α′ � ρr(s, p, σ)(α�β) where β is the “copy” of β: i.e., β � [γ := β(γ)]γ∈Γ :

we replace α with α′, which is almost ρr(s, p, σ) but each variable γ in
ρr(s, p, σ) is substituted for α(γ) and each variable γ in ρr(s, p, σ) is sub-
stituted for β(γ) (and α(γ)/β(γ) is discarded if γ/γ does not occur in
ρc(s, σ)).

Now we define the meaning �T � : �TΣ� ⇀ Δ∗. First, the transition function
δ : Ψ × Σ̂ ⇀ Ψ naturally extends to δ∗ : Ψ × Σ̂∗ ⇀ Ψ by iterating δ. For a nested
word w ∈ Σ̂∗, we denote by c

w=⇒T c′ if δ∗(c, w) = c′; we omit the subscript T if it
is clear from the context. Note that for any configuration c and any well-matched
nested word w, δ∗(c, w) is always defined. For a ranked nested word w ∈ �TΣ�,
if (s0, ε, αΓ

ε) w=⇒ (s, ε, α) and if F (s) is defined then �T �(w) � F (s)α; otherwise
�T �(w) is undefined. We denote by Dom(T) the domain of �T �.

Example 5. We give an SRTST T : let S � {s?, sa, sb}; Σ � {f(2), a(0), b(0)};
Δ � {a, b}; P � {p?, pa, pb}; s0 � s?; Γ � {γ}; F (s) � γ for every s ∈ S;
δc(sd, σ) � (s?, pd) for every σ ∈ Σ and d ∈ {a, b, ?}; δr is defined by

δr(s, pd, σ) � sd, δr(sd, p?, σ) � sd, δr(s?, p?, f) � s?, δr(s?, p?, d) � sd,

for every s ∈ S, σ ∈ Σ, d ∈ {a, b}; ρc is defined by

ρc(s,f) � [γ := γ], ρc(s?,d) � [γ := d], ρc(sa,d) � [γ := γd], ρc(sb,d) � [γ := dγ],

242 Y. Takahashi et al.

Fig. 1. Transitions for �f(f(b, a), f(a, b))�.

for every s ∈ S and d ∈ {a, b}; and ρr is defined by

ρr(s, p?, f) � [γ := γ], ρr(s, pa, f) � [γ := γγ], ρr(s, p, a) � [γ := γ],
ρr(s, pb, f) � [γ := γγ], ρr(s, p, b) � [γ := γ],

for every s ∈ S and p ∈ P . Given t ∈ TΣ , �T �(�t�) recursively swaps the
two subtrees of the root if the leftmost leaf is b, and skip the swapping other-
wise; and then produces the leaves as the output. For instance, �T � transforms
�f(f(b, a), f(a, b))� as in Fig. 1, where for clarity we denote stacks with �−�.

4 SRTST and yDTR Are Equi-Expressive

We show the equi-expressiveness between SRTSTs and yDTRs, by giving effec-
tive constructions in the both directions. Then (only) the construction of a yDTR

from an SRTST is used to show the decidability of the equivalence of SRTST.
The both constructions are basically component-wise: the regular look-ahead
automaton of a yDTR M corresponds to the state-transition functions δc, δr of
an SRTST T ; rules of M correspond to the variable-update functions ρc, ρr of
T ; and Init of M corresponds to F of T .

4.1 The Construction of SRTST from yDTR

We construct a bottom-up SRTST T from a yDTR M ; an SRTST T is bottom-
up [1] if δc(s, σ) = (s0, p) for some p and ρc(s, p, σ) = [γ := γ]γ∈Γ for every s,
p and σ, (i.e., if in any call transition T always resets the state s to the initial
state and never change the evaluation function α being pushed on the stack).
The construction in the next lemma is inspired by the proof of the decidability
of the equivalence of yDTRs given in [11, Sections 3 and 4].

Lemma 6. For any yDTR M , there exists a bottom-up SRTST T such that
Dom(T) = �Dom(M)� and �T �(�t�) = �M�(t) for all t ∈ Dom(M).

Streaming Ranked-Tree-to-String Transducers 243

Proof. Let M = (Q,Σ,Δ, Init , R) be a yDTR and we assume that its regular
look-ahead is given by DBTA A = (Σ,Π, θ). Further, w.l.o.g., we can assume
that M satisfies the following conditions: (i) for any tree σ(t1, . . . , tn) and q ∈ Q,
σ(t1, . . . , tn) ∈ Dom(�q�M) iff there exists a (q, σ, (L1, . . . , Ln))-rule in R such
that ti ∈ Li for every i ∈ [n]; and (ii) Dom(M) =

⋃
(τ,π)∈Init L(π).

We define an equivalent SRTST T = (S,Σ,Δ, P, s0, Γ, F, δc, δr, ρc, ρr) as fol-
lows. (For its behavior, see also the explanation after the lemma.)

Let m = max({1} ∪ {rankΣ(σ) | σ ∈ Σ}), S = P = Π(≤m), and s0 = ().
We define Γ = Q(Xm), so that E(Γ,Δ) = RhsQ,Δ(Xm). We define the output
(partial) function F : S ⇀ E(Γ,Δ) as F ((π)) = Init(L(π)) ∈ RhsQ,Δ(X1).

The call state-transition function δc : S ×Σ → S ×P is defined by δc(π, σ) =
(s0,π). The return state-transition function δr : S × P × Σ → S is defined by
δr(π,π′, σ) = π′||θ(σ,π) for π,π′ ∈ Π(≤m) and σ ∈ Σ such that |π| = rankΣ(σ)
and |π′| �= m, and by δr(π,π′, σ) = s0 for the other case of arguments π,π′, σ.

The call variable-update function ρc : S × Σ → A(Γ, Γ,Δ) is defined by
ρc(π, σ) = [γ := γ]γ∈Γ . The return variable-update function ρr : S × P × Σ →
A(Γ, Γ � Γ ,Δ) is defined by

ρr(π,π′, σ) =
[
q(xk) := q(xk)

]
q∈Q, k≤|π ′|

�
[
q(x|π ′|+1) := rhs(q, σ,π)

]
q∈Q

�
[
q(xk) := ε

]
q∈Q, |π ′|+1<k≤m

for π,π′ ∈ Π(≤m) and σ ∈ Σ such that |π| = rankΣ(σ) and |π′| �= m, and by
ρr(π,π′, σ) = αε for the other case of arguments π,π′, σ. Above, the function
rhs :

⋃
n∈N

(Q × Σ(n) × Πn) → E(Γ,Δ) is defined by

rhs(q, σ,π) =

{
rhs(q, σ,π), if (q, σ,π)-rule is defined;
ε, otherwise,

where rhs(q, σ,π) ∈ RhsQ,Δ(Xn) ⊆ E(Γ,Δ). Above, ε in the definitions of ρr

and rhs are not used in the actual computation. We control “definedness” by
the determinism of the DBTA A and the above assumptions (i) and (ii) for M .

��

The construction of T is designed to behave for each input symbol as follows.
Let σ′(t′1, . . . , t

′
n′) be a subtree of an input tree, and t′i = σ(t1, . . . , tn).

Call symbol 〈σ : By the definitions of δc and ρc above, in general a call transi-

tion is (π′, Λ, β)
〈σ
=⇒ ((), (π′, β)Λ,αε). Suppose that T starts the computation

of t′i = σ(t1, . . . , tn). The computation so far for t′1, . . . , t
′
i−1 is recorded in

π′ and β and the further earlier computation is recorded in Λ. Then the call
transition by 〈σ saves the record (π′, β) to the stack.

Return symbol σ〉 : A return transition is basically of the following form:

(π, (π′, β)Λ,α)
σ〉
=⇒ (π′ || θ(σ,π), Λ, α′). Suppose that T is finishing the com-

putation of some child tree t′i = σ(t1, . . . , tn).

244 Y. Takahashi et al.

The state-transition function δr simulates the DBTA A as follows. In the
transition δr(π,π′, σ) = π′ || θ(σ,π), π = (π1, . . . , πn) is a tuple of A-states
and π1, . . . , πn accept t1, . . . , tn, respectively. Hence θ(σ,π) is an A-state
which accepts t′i = σ(t1, . . . , tn). Likewise, π′ is a tuple of A-states which
accept t′1, . . . , t

′
i−1, respectively. In this way, δr plays the role of regular look-

ahead, and each component of a state π of T (and of a stack symbol π′ on
a stack) represents a regular language of the look-ahead.
According to the definitions of the semantics of an SRTST and of ρr,

α′ = ρr(π,π′, σ)(α � β) = [q(xk) := β(q(xk))]q∈Q, k≤|π ′|
� [q(x|π ′|+1) := rhs(q, σ,π)α]q∈Q

� [q(xk) := ε]q∈Q, |π ′|+1<k≤m .

Here, variable values of α are the result of computation of t1, . . . , tn by M
(i.e., by every q ∈ Q), and hence rhs(q, σ,π)α is the result of computation of
t′i = σ(t1, . . . , tn) by q; note that q(x|π ′|+1) = q(xi). Likewise, β is the result
of computation of t′1, . . . , t

′
i−1 by M . In this way, T computes as M does, and

the result is recorded in the current evaluation function α of a configuration
(and evaluation function β on a stack).
Note that in our construction the finiteness of the width of trees is used for
the finiteness of sets S, P , and Γ , in both δr and ρr.

4.2 The Construction of yDTR from SRTST

For an SRTST T , s0, . . . , sn ∈ S, and nested words w1 . . . , wn, we write s0
w1==⇒

s1
w2==⇒ · · · wn==⇒ sn if (s0, Λ0, α0)

w1==⇒ (s1, Λ1, α1) · · · wn==⇒ (sn, Λn, αn) for some Λi

and αi (i = 0, . . . , n). We write s
〈σ
=⇒p s′ if δc(s, σ) = (s′, p), and s

σ〉
=⇒p s′ if

δr(s, p, σ) = s′.

Lemma 7. For any SRTST T , there exists a yDTR M such that Dom(M) =
	Dom(T)
 and �M�(w
) = �T �(w) for all w ∈ Dom(T).

Proof. Let T = (S,Σ,Δ, P, s0, Γ, F, δc, δr, ρc, ρr) be an SRTST. We define a
yDTR M = (Q,Σ,Δ, Init , R) with a regular look-ahead NBTA A = (Σ,Π, θ).

First we define a predicate vst (stands for valid state transition): for given(
(sc

n+1, σ, sn+1), (s1, σ1, s
r
1), . . . , (sn, σn, sr

n)
)

∈
⋃

n∈N
(S×Σ(n)×S)×(S×Σ×S)n,

vst((sc
n+1, σ

(n), sn+1), (s1, σ1, s
r
1), . . . , (sn, σn, sr

n)) if

sc
n+1

〈σ
=⇒p s1

〈σ1==⇒p1 s′
1, sr

1

σ1〉
==⇒p1 s2

〈σ2==⇒p2 s′
2, sr

2

σ2〉
==⇒p2 s3 · · ·

· · · sn
〈σn==⇒pn

s′
n, sr

n

σn〉
==⇒pn

sn+1

(1)

where s′
i ∈ S and p, pi ∈ P are given by the call-transitions in (1). Note that

vst((sc
1, σ

(0), s1)) iff sc
1

〈σ
=⇒p s1, when n = 0. Eq. (1) holds if we have

sc
n+1

〈σ
=⇒ s1

〈σ1==⇒ s′
1

w1==⇒ sr
1

σ1〉
==⇒ s2

〈σ2==⇒ s′
2

w2==⇒ sr
2

σ2〉
==⇒ s3 · · ·

· · · sn
〈σn==⇒ s′

n
wn==⇒ sr

n

σn〉
==⇒ sn+1

(2)

Streaming Ranked-Tree-to-String Transducers 245

for some well-matched wi. Conversely, to obtain (2) we need the condition vst

recursively for the parts si
〈σi==⇒ s′

i
wi=⇒ sr

i , which leads to the next definition. Note

that (1) and (2) extend with
σ〉
=⇒p s′ and

σ〉
=⇒ s′ for some unique s′, respectively.

States of NBTA. Let Π0 � ∅, and for i > 0,

Πi � Πi−1 ∪ {(sc, σ(n), sr) ∈ S × Σ × S | n ∈ N ∧
∃(π1, . . . , πn) ∈ (Πi−1)n. vst((sc, σ, sr), π1, . . . , πn)}.

Thus we have defined a chain: Π0 ⊆ Π1 ⊆ Π2 ⊆ · · · ⊆ S × Σ × S, and we
define the set of states as Π �

⋃
iΠi ⊆ S × Σ × S, which is finite. Then,

(sc
n+1, σ

(n), sn+1) ∈ Π iff the T -transition (2) exists.
Transition function of NBTA. The transition function θ :

⋃
n∈N

(Σ(n) × Πn)
→ 2Π is defined by

θ(σ(n), (π1, . . . , πn)) �
{
(sc, σ, sr) ∈ S×Σ×S

∣
∣ vst((sc, σ, sr), π1, . . . , πn)

}
.

This ensures that a tree σ(t1, . . . , tn) ∈ TΣ is accepted by an A-state (sc, σ, sr)

iff a transition sc 〈σ 	t1
···	tn

=========⇒ sr σ〉

=⇒ s′ exists; any t ∈ TΣ is accepted by at
least one state of A (though F (s′) is not necessarily defined).

Rules. We define Q = S × S × Γ . For every (sc, σ, sr) ∈ Π, γ ∈ Γ , and
π1, . . . , πn ∈ Π such that (sc, σ, sr) ∈ θ(σ, (π1, . . . , πn)), the following rule is
added in R:

(sc, sr, γ)(σ(x1, . . . , xn)) → W(π1, . . . , πn)(γ) 〈π1, . . . , πn〉

where W : Πn → A(Γ,Q(Xn),Δ) is defined from ρc and ρr as follows, and
note that W(π1, . . . , πn)(γ) ∈ E(Q(Xn),Δ) = RhsQ,Δ(Xn).
W.l.o.g., we assume that Q(Xn) ∩ (Γ � Γ) = ∅. For πi = (sc

i , σi, s
r
i) (i ∈ [n]),

let δc(sc
i , σi) = (si, pi). Then

W(π1, . . . , πn) � βr
n

(
ηn � (βc

n

(
· · ·

(
βr
1

(
η1 � (βc

1α
Γ
ε)

))
· · ·

)
)
)

(3)

where: αΓ
ε = [γ := ε]γ∈Γ ∈ A(Γ,Q(Xn),Δ)

βc
i � ρc(sc

i , σi) ∈ A(Γ , Γ,Δ)

ηi � [γ := (sc
i , s

r
i , γ)(xi)]γ∈Γ ∈ A(Γ,Q(Xn),Δ)

βr
i � ρr(sr

i , pi, σi) ∈ A(Γ, Γ � Γ ,Δ).

The intuition for the above rule is as follows. Recall that the computation
of T is top-down and bottom up, by call and return transitions, respectively.
Also recall that state-transition functions δc and δr are already simulated by
regular look-ahead, resulting πi = (sc

i , σi, s
r
i) (i ∈ [n]). In (3), βc

1 (with αΓ
ε)

corresponds to the call transition by the root σ1 of the leftmost subtree x1:

(
sc
1, Λ, αΓ

ε

) 〈σ1==⇒
(
s′
1,

(
p1, ρc(sc

1, σ1)αΓ
ε

)
Λ, αΓ

ε

)

246 Y. Takahashi et al.

where s′
1 and Λ are some state and stack, and the current evaluation function

before this transition is αΓ
ε because the configuration is just after the call

transition for the parent σ. Then, η1 is the recursive computation by T of the
subtree x1. And then βr

1

(
η1 � (βc

1α
Γ
ε)

)
corresponds to the return transition

(
sr
1,

(
p1, ρc(sc

1, σ1)αΓ
ε

)
Λ, η1

) σ1〉
==⇒

(
sc
2, Λ, βr

1

(
η1 � (βc

1α
Γ
ε)

))

where note that ρc(sc
1, σ1)αΓ

ε = ρc(sc
1, σ1)αΓ

ε = βc
1α

Γ
ε . Repeating this also for

the remaining sibling subtrees x2, . . . , xn, we obtain (3).
Initial sequences. Finally, we define Init in a similar way to R:

Init =
⋃

σ∈Σ

{ (
F (s′)βr

sr,p,σ

(
ηsr � (βc

σαΓ
ε)

)
, (s0, σ, sr)

) ∣
∣
∣

(s0, σ, sr) ∈ Π, s0
〈σ
=⇒p s1, sr σ〉

=⇒p s′ ∈ Dom(F)
}

where: (i) s0 is the initial state of T , and s1, s′, and p are given by the
transitions, (ii) βc

σ � ρc(s0, σ), (iii) ηsr � [γ := (s0, sr, γ)(x1)]γ∈Γ , and (iv)
βr

sr,p,σ � ρr(sr, p, σ).
The intuition is as follows. Let t = σ(t1, . . . , tn) be an input tree, and

(s0, ε, αΓ
ε)

〈σ
=⇒(s1, (p, ρc(s0, σ)αΓ

ε), αΓ
ε)

	t1

==⇒ · · ·

· · · 	tn

===⇒(s̃r, (p, ρc(s0, σ)αΓ

ε), η̃)
σ〉
=⇒ (s̃′, ε, ρr(s̃r, p, σ)(η̃ � (βc

σαΓ
ε)))

be the transition for �t�. Now t, s̃r, η̃, s̃′, and ρr(s̃r, p, σ) respectively cor-
respond to x1, sr, ηsr , s′, and βr

sr,p,σ = ρr(sr, p, σ) in the above definition.
Here ηsr involves �(s0, sr, γ)�M (t), which is computed as in Rules above. ��

4.3 Expressiveness and Decidability of Equivalence

Combining Lemmas 6 and 7, we can conclude:

Theorem 8. SRTSTs and yDTRs are equi-expressive.

Theorem 9. For all SRTST T , there exists a bottom-up SRTST T ′ such that
�T � = �T ′�. Thus, SRTSTs and bottom-up SRTSTs are equi-expressive.

The STTsur-version of Theorem 9 is given in [1, Theorem 3.7], where, though, it
was shown directly. As an immediate consequence of Lemma 7 and Theorem 3,
we have:

Theorem 10. Given SRTSTs T1 and T2, it is decidable whether �T1� = �T2�.

Concluding Remark. By dropping the condition of sur from STTsur, we obtain
the notion of an STT. We hope that our method can be applied to a similar result
to Theorem 8, modified from SRTST to a similar model to STT whose input and
output are ranked trees. If we further consider STT, whose input and output
are unranked trees, it is not clear what model we should compare STT with, to
solve the open problem of the decidability of the equivalence for STTs.

Streaming Ranked-Tree-to-String Transducers 247

Acknowledgments. We thank anonymous referees for useful comments. This work
was supported by JSPS KAKENHI Grant Numbers JP17K00007, JP17H06099,
JP18H04093, and JP18K11156.

References

1. Alur, R., D’Antoni, L.: Streaming tree transducers. J. ACM 64(5), 31:1–31:55
(2017)

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL 2011, pp. 599–610. ACM (2011)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007)

4. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Syst.
Theory 10(1), 289–303 (1976)

5. Engelfriet, J.: Some open questions and recent results on tree transducers and tree
languages. In: Formal Language Theory, pp. 241–286. Academic Press (1980)

6. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO
definable tree translations. Inform. Comput. 154(1), 34–91 (1999)

7. Engelfriet, J., Maneth, S.: The equivalence problem for deterministic MSO tree
transducers is decidable. Inform. Process. Lett. 100(5), 206–212 (2006)

8. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way
machines. J. Comput. Syst. Sci. 20(2), 150–202 (1980)

9. Filiot, E., Reynier, P.A.: Copyful streaming string transducers. In: Hague, M.,
Potapov, I. (eds.) Reachability Problems. LNCS, vol. 10506, pp. 75–86. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67089-8 6

10. Nakano, K., Mu, S.-C.: A pushdown machine for recursive XML processing. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 340–356. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11924661 21

11. Seidl, H., Maneth, S., Kemper, G.: Equivalence of deterministic top-down tree-to-
string transducers is decidable. In: FOCS 2015, pp. 943–962. IEEE (2015)

12. Seidl, H., Maneth, S., Kemper, G.: Equivalence of deterministic top-down tree-to-
string transducers is decidable. J. ACM 65(4), 21:1–21:30 (2018)

13. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of deterministic
nested word to word transducers. In: FCT 2009. LNCS, vol. 5699, pp. 310–322.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03409-1 28

https://doi.org/10.1007/978-3-319-67089-8_6
https://doi.org/10.1007/11924661_21
https://doi.org/10.1007/978-3-642-03409-1_28

Author Index

Asada, Kazuyuki 235

Bakarić, Robert 33
Baruch, Gilad 45
Baskar, A. 58
Beier, Simon 70
Björklund, Johanna 83
Borsotti, Angelo 95
Breveglieri, Luca 95

Crespi Reghizzi, Stefano 95

Denzumi, Shuhei 108
Drewes, Frank 83

Fujiyoshi, Akio 121
Fülöp, Zoltán 133

Han, Yo-Sub 146
Holzer, Markus 70
Hospodár, Michal 158

Kim, Hwee 146
Klein, Shmuel T. 45
Konstantinidis, Stavros 171, 184
Korenčić, Damir 33
Kutrib, Martin 197

Malcher, Andreas 197
Maletti, Andreas 133

Maneth, Sebastian 3
Mastnak, Mitja 171
Masuda, Yusei 146
Moreira, Nelma 184
Morzenti, Angelo 95
Mráz, František 209

Nakano, Keisuke 235

Okhotin, Alexander 10

Pires, João 184
Průša, Daniel 121, 209

Ramanujam, R. 58
Reis, Rogério 184
Ristov, Strahil 33

Salomaa, Kai 222
Satta, Giorgio 83
Šebej, Juraj 171
Seki, Shinnosuke 146
Shapira, Dana 45
Smith, Taylor J. 222
Suresh, S. P. 58

Takahashi, Yuta 235

Wehar, Michael 209
Wendlandt, Matthias 197

	Preface
	Organization
	Abstracts of Invited Talks
	Large Scale Sorting in Distributed Data Processing Systems
	Alternation in Two-Way Finite Automata
	Deciding Equivalence of Tree Transducers by Means of Precise Abstract Interpretation
	Contents
	Invited Talks
	Static Garbage Collection
	1 Macro Tree Transducers
	2 Productive Macro Tree Transducers
	3 Applications
	References

	Graph-Walking Automata: From Whence They Come, and Whither They are Bound
	1 Introduction
	2 Graphs
	3 Automata
	4 To Find the Minotaur
	5 Tracing Back the Footsteps
	6 Reversible Computation
	7 Closure Properties and State Complexity
	8 Decision Problems
	9 Variants of Graph-Walking Automata
	10 Graph Exploration Algorithms
	11 Conclusion
	References

	Contributed Papers
	Enumerated Automata Implementation of String Dictionaries
	1 Introduction
	2 String Dictionary
	3 Enumerated Deterministic Finite Automaton
	4 LZ Trie Implementation of EDFA
	5 Experiments and Results
	5.1 Datasets from MartinezspsPrieto:2016:PCS:2869182.2869496
	5.2 Natural Language Word Lists
	5.3 Discussion

	6 Additional Considerations
	6.1 Run-Time Enumeration
	6.2 Compressing a Two-Part Dictionary

	7 Conclusion
	References

	New Approaches for Context Sensitive Flash Codes
	1 Introduction
	2 Fibonacci wom Codes
	3 Enhanced Context Sensitive Flash Codes
	3.1 Fibonacci + 2-3mu1
	3.2 Ternary + 2-3mu1
	3.3 Fibonacci + Lookahead
	3.4 Fibonacci + 3-3mu2
	3.5 2.5-Ary + Lookahead

	4 Experimental Results
	5 Conclusion
	References

	Dolev-Yao Theory with Associative Blindpair Operators
	1 Introduction
	2 The Dolev-Yao Framework and the Intruder Deduction Problem
	3 Weak Locality Property
	4 Blind Pair as an Associative Operator: Upper Bound
	5 Blind Pair as an Associative Operator: Lower Bound
	6 Discussion
	References

	Semi-linear Lattices and Right One-Way Jumping Finite Automata (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Lattices, Linear Sets, and Myhill-Nerode Classes
	3.1 Connections Between Linear Sets and Rational Cones
	3.2 Decompositions of Lattices
	3.3 A Decomposition Result About Subsets of Nk

	4 Right One-Way Jumping Finite Automata with Multiple Initial States
	4.1 Results for Arbitrary Alphabets
	4.2 Results for Binary Alphabets

	5 Conclusions
	References

	Z-Automata for Compact and Direct Representation of Unranked Tree Languages
	1 Introduction
	2 Preliminaries
	3 Z-Automata
	4 Equivalence to Stepwise Tree Automata
	5 Left-to-Right Bottom-Up Derivations
	6 Conclusion
	References

	A Benchmark Production Tool for Regular Expressions
	1 Introduction
	2 Basic Definitions
	3 The RE Generator
	3.1 Benchmark Production

	4 Experimental Results
	5 Conclusion
	References

	New Algorithms for Manipulating Sequence BDDs
	1 Introduction
	2 Preliminary
	2.1 Sequence Binary Decision Diagrams
	2.2 Shared SeqBDDs
	2.3 Operations

	3 SeqBDD Manipulation Operations
	3.1 Combination Operations
	3.2 Enumeration Operations
	3.3 Retrieval Operations
	3.4 Complexity Analyses

	4 Conclusion
	References

	A Simple Extension to Finite Tree Automata for Defining Sets of Labeled, Connected Graphs
	1 Introduction
	2 Preliminaries
	3 Spanning Tree Automata for Labeled, Connected Graphs
	3.1 Definitions
	3.2 Examples of Spanning Tree Automata

	4 Properties of Spanning Tree Automata
	5 Breadth-First Search Spanning Tree Automata
	6 Implementation and Experiments
	7 Conclusions
	References

	Composition Closure of Linear Weighted Extended Top-Down Tree Transducers
	1 Introduction
	2 Preliminaries
	3 Transformational Model
	4 Faithful Representation
	5 Main Results
	References

	A General Architecture of Oritatami Systems for Simulating Arbitrary Finite Automata
	1 Introduction
	2 Preliminaries
	3 Architecture
	3.1 Overview
	3.2 Implementation
	3.3 Verification

	References

	Descriptional Complexity of Power and Positive Closure on Convex Languages
	1 Introduction
	2 Preliminaries
	3 Results on Nondeterministic State Complexity
	4 Results on Deterministic State Complexity
	5 Conclusions
	References

	Partitioning a Symmetric Rational Relation into Two Asymmetric Rational Relations
	1 Introduction
	2 Basic Terminology and Notation
	3 Statement and Motivation of the Main Problem
	4 Multicopies of Transducers
	5 Asymmetric Partition of Letter-to-Letter Transducers
	6 Discrepancies of Computations and Zero-Avoiding Transducers
	7 Asymmetric Partition of Zero-Avoiding Transducers
	8 An Unsolved Case and a Variation of the Problem
	9 Conclusions
	References

	Partial Derivatives of Regular Expressions over Alphabet-Invariant and User-Defined Labels
	1 Introduction
	2 Terminology and Summary of Concepts from KMRY:2018c
	2.1 Set Specifications and Pairing Specifications
	2.2 Label Sets and Their Monoid Behaviours
	2.3 Labelled Graphs, Automata, Transducers
	2.4 Regular Expressions over Label Sets

	3 Partial Derivatives of Type B Regular Expressions
	4 The Partial Derivative Graph of a Regular Expression
	5 2D Regular Expressions
	6 Concluding Remarks
	References

	Input-Driven Multi-counter Automata
	1 Introduction
	2 Preliminaries
	3 Computational Capacity
	4 Closure Properties
	5 Decidability Problems
	References

	Two-Dimensional Pattern Matching Against Basic Picture Languages
	1 Introduction
	2 Preliminaries
	3 Background
	3.1 Examples of Two-Dimensional Pattern Matching
	3.2 Task Formulations
	3.3 One-Dimensional Pattern Matching

	4 Matching Against Local Picture Languages
	4.1 General Algorithm
	4.2 Nonlinear Conditional Lower Bound
	4.3 Matching in Linear Time

	5 Matching Against Picture Languages Accepted by 2DOTA and 4DFA
	6 Conclusions
	References

	Decision Problems for Restricted Variants of Two-Dimensional Automata
	1 Introduction
	2 Preliminaries
	3 Language Emptiness
	3.1 Two-Way Two-Dimensional Automata

	4 Language Equivalence
	5 Row and Column Projection Languages
	5.1 Two-Way Two-Dimensional Automata over General Alphabets

	6 Conclusion
	References

	Streaming Ranked-Tree-to-String Transducers
	1 Introduction
	2 Preliminaries
	3 Transducers
	3.1 Deterministic Top-Down Tree-to-String Transducers with Regular Look-Ahead
	3.2 Streaming Ranked-Tree-to-String Transducers

	4 SRTST and yDTR Are Equi-Expressive
	4.1 The Construction of SRTST from yDTR
	4.2 The Construction of yDTR from SRTST
	4.3 Expressiveness and Decidability of Equivalence

	References

	Author Index

