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Chapter 1
Between Hype and Hope, on the Cutting 
Edge of Precision Cancer Medicine

Sameek Roychowdhury and Eliezer M. Van Allen

The concept of precision cancer medicine emerged with a National Academics of 
Science report in 2011 describing the need and opportunity to classify human dis-
ease through a precision taxonomy. This new taxonomy would be based on the 
availability of genomics data and other sources of big data to enable a more precise 
diagnosis and management of human disease. Since cancer is characterized by 
somatic and germline genetic changes, precision medicine has taken a natural direc-
tion that has included clinical oncology. This text includes contributions from lead-
ing researchers in the emerging and changing field of precision cancer medicine.

The discovery and characterization of biomarkers and their inherent biology has 
been dependent on clinical observations and concurrent technologies to study can-
cer biology. While next generation sequencing (NGS) technologies has been the 
main accelerator for the identification of biomarker targets or vulnerabilities and the 
development of matching therapies, there were early examples that predated 
NGS. This includes the estrogen receptor in breast cancer where patients with meta-
static breast cancer serendipitously benefited from hormone deprivation with 
oophorectomy. Subsequent biomarkers were discovered through early approaches 
for chromosome analysis including cytogenetics to identify and classify hemato-
logic malignancies such as acute promyelocytic leukemia (t,15;17 translocation 
involving the retinoic acid receptor) and chronic myeloid leukemia (BCR-ABL1 
translocation or Philadelphia chromosome). The development of polymerase chain 
reaction, FISH, and microarray were concurrent with the discoveries of the 
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Epidermal Growth Factor Receptor (EGFR) mutations in lung cancer and HER2 
(ERBB2) amplification in breast cancer, which are sensitive to corresponding 
targeted therapies. However, what these technologies in the laboratory lacked was 
the scalability, affordability, and speed needed to characterize thousands of patients 
in the clinic for individualized or precision cancer care.

Around 2010, next generation sequencing technologies accelerated large-scale 
projects to study the most common cancer types through international efforts includ-
ing The Cancer Genome Atlas and International Cancer Genome Consortium. These 
efforts helped to identify the landscape of genomic, epigenetic, and transcriptomic 
alterations in cancer. Advances in technology and drug development have acceler-
ated the time between “target discovery” to “first patient treated in a clinical trial” 
(Fig. 1.1). Further, these studies described the vast inter-patient genomic heteroge-
neity that exists in each cancer type. This illustrated the need for individualized 
characterization of each patient’s cancer in the clinic and that there is no routine 
cancer.

In 2011, there were early efforts to bring NGS approaches to patient care in real-
time and this has led to new questions being addressed through clinical and research 
efforts:

•	 How do we characterize one person’s cancer?
•	 Should we get new biopsies? Does cancer change over time?
•	 Should we sequence the whole genome, the exome, targeted exome, or RNA?

Microscopy
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Fig. 1.1  Technology advances precision oncology. This timeline compares advances in genomic 
technologies and drug development timelines for novel targets in cancer
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•	 What is the best way to analyze this data? Which algorithm is better?
•	 How do we interpret somatic findings of unknown significance?
•	 How do we develop and deliver clinical grade diagnostics? What are ideal posi-

tive and negative controls? How many?
•	 What constitutes a proper analytic validation of an assay?
•	 Are all commercial and academic tests the same quality for point mutations? 

Amplifications? Fusions?
•	 Where do store this data? How do we share this data?
•	 How do we report these results to physicians? What should reports look like?
•	 How do we connect genomic results to eligible therapies or clinical trials?
•	 How should we design clinical trials for patients with rare mutations?
•	 How do we develop and approve new therapies for patients with rare 

mutations?
•	 How can we learn from rare patients with an exceptional response to therapy?
•	 How do connect genomics data to the electronic medical record?
•	 How do interpret and manage germline findings?
•	 How do connect genomics data to clinical outcomes?
•	 How does genomics influence immunotherapy?
•	 How can we use genomics to study drug resistance?
•	 How do we speed up genomic testing in the clinic?
•	 How do we educate our physician workforce?
•	 Can we connect genomics data to prognosis for indolent and aggressive cancer 

subtypes?
•	 Can we use liquid biopsy from the blood instead of tumor tissue?
•	 What is the concordance of somatic alterations in blood and tumor tissue?
•	 How do we study clonal hematopoiesis?
•	 How do get more patients on clinical trials? Or
•	 How do we characterize patients with no driver mutations or quite genomes?
•	 How do we bring genomics to health care sites where resources are scarce?
•	 Why are only 10% of patients who undergo genomic testing able to receiving 

matching targeted therapies?

There are many answers and ongoing efforts to address these questions. 
Importantly, there are patients living longer, benefiting from therapy, and even cured 
thanks to precision cancer medicine approaches. This textbook covers a range of 
topics from basic science to clinical application for patient care to help describe 
these solutions and the new problems we need to solve to deliver precision cancer 
medicine.

1  Between Hype and Hope, on the Cutting Edge of Precision Cancer Medicine
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Chapter 2
Molecular Diagnostics in Cancer: 
A Fundamental Component of Precision 
Oncology

Wendy Yang and Michael F. Berger

Keywords  Pathology · Molecular Diagnostics · Precision Oncology · Biomarkers · 
Diagnosis · Prognosis · Disease Monitoring · Next-Generation Sequencing · Liquid 
Biopsy

Precision oncology embodies the targeted and rational treatment of cancer accord-
ing to the specific molecular alterations underlying an individual patient’s disease. 
It is now well-established that cancer is primarily a genetic disease caused by inher-
ited and acquired genomic aberrations [1]. Each cancer carries a unique set of 
“driver” genomic aberrations that work together to promote cancer initiation and 
maintenance. It is also understood that cancer genomes are inherently unstable, and 
the accumulation of new driver genomic aberrations can lead to cancer progression 
and drug resistance [2]. The promise of precision oncology postulates that each 
cancer can be treated more effectively, and even possibly cured, through under-
standing and targeting key driver genomic aberrations. This requires first identify-
ing key oncogenic genomic aberrations in cancer cells, enabled via molecular 
diagnostics, to guide the rational selection of molecular therapeutic agents specifi-
cally targeting these alterations. Thus, cancer molecular diagnostics are a funda-
mental and integral component of precision oncology.

2.1  �History of Molecular Diagnostics in Cancer

At the beginning of the twentieth century, following remarkable advancements in 
physics and chemistry, biology became the “new frontier” in searching for a funda-
mental understanding of the empirical world. The term “molecular biology” was 
coined in the 1930’s [3] only as a theoretical concept reflecting the hope that under-
standing life at its most fundamental level could be explained in physical and 
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chemical terms. The birth of molecular biology as a coherent discipline occurred in 
the 1950’s, when Francis Crick and James Watson proposed the duplex model of 
DNA biopolymers [4, 5] leading to the central dogma of molecular biology describ-
ing the flow of genetic information among the three biopolymers from DNA to 
RNA to protein. The genes or genetic codes stored in the sequences of DNAs, are 
expressed by first transcribing DNAs to RNAs, and then translating RNAs to the 
final functional products of the genes: proteins [6–9]. By definition, molecular diag-
nostics represent the application of molecular biology to medical testing and encom-
pass the analysis of biomarkers in any of the three biopolymers by using a collection 
of molecular biology techniques. However, despite the biological significance of 
proteins, progress of protein-based molecular technologies has significantly lagged 
behind that of nucleic acid-based methodologies due to the technical difficulties of 
working with proteins that are structurally and functionally far more complex. Thus, 
current routine molecular diagnostics are mostly limited to nucleic-acid based test-
ing, which will be the focus of this chapter. Historically, the field of molecular 
diagnostics was born out of molecular genetic research laboratories investigating 
human hereditary disease in the 1980’s, limited initially to the diagnosis of a few 
uncommon genetic diseases such as thalassemias [10–13]. In the 1990’s, the molec-
ular diagnostic field was dominated largely by high-volume molecular diagnostics 
of infectious diseases such as Chlamydia tracomatis and HIV [14]. Although inves-
tigations into cancer have always been a substantial component of molecular biol-
ogy research since the 1950’s, molecular diagnostics of cancer did not rise into 
prominence until decades later.

The beginning of precision oncology was marked by the emergence of two 
molecularly targeted therapies in the late 1990’s. Trastuzumab (Herceptin), a mono-
clonal antibody targeting the receptor tyrosine kinase HER2 (ErbB2) protein, was 
approved by the US Food and Drug Administration (FDA) in 1998 to treat patients 
with HER2 gene amplification-positive metastatic breast cancer [15]. Imatinib 
(Gleevec), a small molecule tyrosine kinase inhibitor (TKI), was approved by the 
FDA in 2001 to treat patients with chronic myelogenous leukemia (CML) in 2001 
[16]. The landmark “bench-to-bedside” story of imatinib as a treatment for CML 
actually began in the 1960’s and the 1970’s, when a small aberrant chromosome 
resulting from translocation between chromosomes 9 and 22, coined the Philadelphia 
chromosome, was discovered to be consistently linked to CML [17, 18]. This rear-
rangement produced the BCR-ABL fusion gene, homologous in sequence to a 
mouse retroviral oncogene ABL, with tyrosine kinase activity and cancer transform-
ing capability [19–23]. Molecular functional studies at that time also confirmed that 
the BCR-ABL fusion protein had tyrosine kinase activity and was oncogenic [24–
31]. In the mid 1990’s, imatinib was found to suppress the oncogenic tyrosine kinase 
activity of the BCR-ABL fusion protein in the laboratory [32]. Prior to imatinib, 
chronic phase CML (CP-CML) was a deadly fatal malignancy with inevitable pro-
gression to the acute leukemia phase (blast phase CML or BP-CML), yet it is now 
a manageable chronic condition in the majority of patients with long term sustained 
remission or possible cure. The remarkable success of imatinib in the treatment of 

W. Yang and M. F. Berger
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CML validated the promise of molecularly targeted therapies and brought the hope 
of curing all cancers through the precision oncology approach.

A key feature of cancer genomes, and a central challenge of molecular diagnos-
tics, is the multitude of different classes of genomic alterations that may occur and 
lead to dysregulation of cellular processes [2, 33]. Tumor genomic alterations may 
represent sequence variants and structural variants. Sequence variants include sin-
gle nucleotide variants (SNV) and small deletions or insertions (indels), spanning 
fewer than 50 base pairs. SNVs are the most common type of genetic alteration, 
typically representing >70% of all mutations in a given tumor [2]. Structural vari-
ants (SVs) include both copy number variants (CNVs) in which genomic regions 
are gained or lost, and copy neutral SVs in which the total copy number remains 
diploid. CNVs may represent broad chromosome-level gains and losses or more 
focal amplifications and deletions targeting individual genes. Copy neutral SVs 
include balanced inversions (a segment of DNA with its two ends flipped on a chro-
mosome), balanced translocations (a segment of DNA joined to a distant locus on 
another chromosome), and copy neutral-loss of heterozygosity (CN-LOH; duplica-
tion of one parental chromosome or chromosomal region and concurrent loss of the 
other allele) (Fig.  2.1). Unbalanced translocations, inversions, or LOH may also 
occur with additional loss or gain of genetic loci within the affected DNA region. 
Oncogenic genomic alterations not only involve protein coding regions but may 
also involve non protein-coding regions including cis-regulatory elements (i.e., pro-
moters or enhancers), genes for regulatory non-coding RNAs (e.g., miRNA, lnRNA) 
and some pseudogenes [33]. Additionally, epigenetic aberrations including aberrant 
gene silencing through DNA methylation or aberrant gene activation/silencing 
through histone modifications, may lead to dysregulation of cell signaling pathways 
that promote oncogenesis and tumor progression [2, 33].

The major focus of current cancer molecular diagnostics is the detection of key 
acquired (somatic) cancer driver mutations that arise during the lifetime of individu-
als. In contrast to inherited (germline) genomic alterations that are usually uni-
formly present in every cell of the body, cancer somatic mutations are only present 
in cancer cells and their detection is thus technically more challenging. First, while 
germline mutation testing has access to abundant fresh cells from peripheral blood 
or buccal swabs for extraction of high quality nucleic acids, tumor somatic mutation 
testing is often challenged by limited quantities of tumor tissue due to the small 
volume of biopsy samples, driven by the increased utilization of minimally invasive 
tissue sampling techniques. Somatic mutation testing also faces the challenge of 
suboptimal quality of tumor nucleic acids, which are usually extracted from tumor 
tissue routinely embedded in formalin fixed, paraffin embedded (FFPE) blocks. 
Formalin fixation is known to cause fragmentation and chemical modification of 
nucleic acids, leading to difficulty in amplifying DNA molecules and potential 
downstream sequencing artifacts [34, 35]. Although optimization of tumor nucleic 
acid extraction techniques have since enabled routine clinical DNA sequencing 
using tumor DNA from FFPE tumor specimens [36], clinical DNA methylation 
sequencing and RNA-seq using tumor nucleic acids extracted from FFPE samples 
have not yet been robustly established [37, 38]. Second, cancer cells containing 

2  Molecular Diagnostics in Cancer: A Fundamental Component of Precision Oncology
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somatic mutations are intermixed with background benign cells that do not harbor 
the mutations, leading to reduced mutant allele fractions (MAFs). The MAF of a 
cancer somatic mutation is equal to the number of somatic mutant alleles divided by 
the total number of both somatic mutant alleles and wild-type alleles in a mixed 
population of cancer cells and background benign cells. For a pure and genetically 
homogeneous diploid cancer cell population, somatic MAFs can either be 50% 
(heterozygous mutations) or 100% (homozygous mutations). However, low tumor 

Fig. 2.1  Types of genomic alterations
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purity, which is not uncommon in tumor specimens, can result in substantially lower 
somatic MAFs. In addition, somatic MAFs may be further reduced due to intra-
tumor genetic heterogeneity secondary to inherent cancer genomic instability and 
clonal evolution, with certain somatic mutations present in only a subset of cancer 
cells. For example, a sub-clonal somatic heterozygous mutation with 10% tumor 
purity and presence in only 40% of cancer cells will result in a low MAF of approxi-
mately 2%. Facing the challenges of limited tumor quantity and quality and low 
somatic MAFs due to low tumor purity and/or intra-tumoral genetic heterogeneity, 
tumor somatic mutation screening thus demands higher analytical sensitivity than 
that of germline mutation tests.

Prior to the implementation of a molecular test, thorough test validation is 
required to establish its performance characteristics such as analytical sensitivity, 
specificity, accuracy, and precision for detecting the intended alteration or class of 
alterations, compliant with the regulations and guidelines of regulatory agencies 
governing clinical laboratories such as Clinical Laboratory Improvement 
Amendments (CLIA) and College of American Pathologists (CAP) [39]. In addi-
tion, its clinical validity (the ability of the test to predict the presence or absence of 
the clinical condition that the test is developed to detect) and clinical utility (the 
value of the test to determine treatment or patient management) are also important 
considerations.

Various nucleic acid-based technologies have been used to detect genetic, epi-
genetic and gene expression alterations in molecular diagnostic labs, many of which 
were initially developed as molecular biology research tools. Until very recently, 
most molecular technologies used for routine clinical molecular oncology testing 
were low-throughput, owing to both their technical limitations and the clinical 

Transloca�on (between chromosome #1 and #2, arrows poin�ng at break-points):

Chromosome #1

+ 

Chromosome #2

Loss of heterozygosity (LOH)
Paternal Chromosome unimaternal LOH

Maternal Chromosome

unipaternal LOH

Fig. 2.1  (continued)
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necessity to test only a small number of biomarkers [40]. Some of these technolo-
gies are suitable for detecting structural variants (e.g., fluorescence in-situ hybrid-
ization (FISH) and reverse transcription-PCR (RT-PCR), while the others are 
suitable for detecting mutations (e.g., Sanger sequencing, quantitative polymerase 
chain reaction (PCR), and conventional PCR with or without using additional tech-
nologies (e.g., allele-specific hybridization, (capillary) gel electrophoresis) for sig-
nal detection [41]. Major milestones for the development of molecular technologies 
prior to the millennium are listed below in chronological order:

1960’s: Nucleic acid hybridization was first developed [10, 12]. Nucleic acid hybrid-
ization is one of the most basic molecular techniques in molecular biology 
research and diagnostics alike. Numerous methodologies have been developed 
based on hybridization of complementary strands of DNA and/or RNA.

1975–1977: The first generation Sanger DNA sequencing method was invented [42, 
43], which was further optimized and automated over the following decades [10, 
12]. It is based on selective incorporation of chain-terminating dideoxynucleo-
tides by DNA polymerase during in vitro DNA replication. Automated Sanger 
sequencing has long served as the gold standard in molecular diagnostics for 
detecting SNVs or small indels with single nucleotide resolution. While the read 
length of Sanger sequencing is relatively long (up to 1000 base pairs) it is only 
semi-quantitative with a limit of detection of MAF near 20%. Bisulfite sequenc-
ing, a variation of Sanger sequencing, can be used to identify DNA methylation 
[44].

1982: FISH was developed as a hybridization-based cytogenetic technique that uses 
fluorescent probes binding specifically to chromosomal regions with a high 
degree of sequence complementarity [45]. FISH was developed to significantly 
improve the resolution over that of classic banding karyotype, from millions of 
base pairs to thousands of base pairs. FISH is semi-quantitative and can be used 
to detect all SV forms.

1985–1986: PCR was developed, representing one of the most important and influ-
ential scientific advances in the twentieth century. It has revolutionized both 
molecular biology research and molecular diagnostics. PCR is able to rapidly 
generate millions of copies of a target DNA fragment from a very small amount 
of DNA, bringing dramatically improved sensitivity, specificity and speed to 
DNA-based molecular analysis. PCR is still the most widely used molecular 
technique in molecular diagnostics, with broad applications in DNA sequencing, 
allele-specific mutation detection, gene expression and DNA methylation detec-
tion. Further improvements and variations of PCR include:

•	 Quantitative PCR: Real-time PCR [46–48] and digital PCR [49–52], invented 
in the 1990’s, have extremely high sensitivity on the order of one mutant in 
105 copies and wide dynamic range. The high sensitivity and specificity of 
real-time PCR has made it the gold standard for gene detection with several 
US FDA-approved tests [53].

W. Yang and M. F. Berger
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•	 RT-PCR: RT-PCR uses reverse transcriptase to convert RNA to cDNA and 
thus enables the study of RNA expression using DNA-based methodology, 
because RNA is less stable than DNA. In addition, RT-PCR can be used to 
detect fusion gene transcripts (e.g., BCR-ABL in CML) [53].

Mid-1990’s: The DNA microarray was invented as a high throughput and quantita-
tive technology for measuring the abundance of genomic DNA or RNA tran-
scripts by hybridization to complementary DNA probes affixed to the surface of 
a slide [54]. Genome-wide copy number variants may be measured using chro-
mosomal microarrays (CMA) [55], including SNP microarrays [56, 57] and 
array comparative genomic hybridization (aCGH) [55, 58, 59]. Gene expression 
microarrays, in contrast, can be used to derive genome-wide expression profiles 
across all transcripts and identify gene expression signatures associated with 
tumor prognosis [60–65] or tumor sub-classification [66, 67].

2.2  �Clinical Applications of Molecular Diagnostics 
in Cancer Care

Cancer research has significantly advanced our understanding of the molecular 
pathogenesis of many cancer types. Consequently, a multitude of clinically mean-
ingful molecular alterations have been identified and catalogued, which not only 
dictate tumors’ innate aggressiveness and their clinical courses but are also potential 
therapeutic targets for molecularly targeted cancer drugs. For the last decade-and-a-
half, molecular diagnostics have experienced an unprecedented growth to become 
an integral part of current oncology practice, revolutionizing virtually all aspects of 
cancer care including the incorporation of molecular biomarkers into traditional 
cancer taxonomy for diagnosis and prognosis, selection of targeted therapies, post-
treatment disease monitoring, cancer prevention and early detection.

2.2.1  �Taxonomy and Molecular Biomarkers for Prediction 
of Therapy, Diagnosis, and Prognosis

The majority of cancer diagnoses are still currently classified using the traditional 
cancer taxonomy that is based on tumors’ sites of origin, as well as their histopa-
thology including tumor cell lineage origins and other microscopic morphologic 
features. However, there is a paradigm shift toward a clinical oncogenic-molecular-
biomarker based cancer taxonomy, accompanying the rapidly increasing impor-
tance of molecular diagnostics in the practice of oncology. The optimal clinical 
cancer taxonomy for the precision oncology practice should consist of distinctive 
tumor diagnoses, defined by specific profiles of key molecular cancer drivers, which 
not only can guide therapies by predicting efficacy of the drugs targeting the 

2  Molecular Diagnostics in Cancer: A Fundamental Component of Precision Oncology
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specific cancer drivers, but also enable the best prognostic stratifications to formu-
late the most appropriate cancer treatment strategies. The most salient examples of 
this paradigm shift are the new clinical molecular classifications and molecular re-
classifications in several general tumor types, still within the traditional cancer tax-
onomy’s framework of tumor site of origin, but conferring robust diagnostic, 
predictive and prognostic superiority.

For example, among hematological malignancies with their common tissue ori-
gin within the blood/lymphoid circulation system, CML was the first malignancy 
defined by its key molecular oncogenic driver (BCR-ABL) by the World Health 
Organization (WHO) in 2001. Except for the requirement for evidence of clinical 
chronicity and the cancer cell lineage origin restriction to myeloids, the diagnosis is 
otherwise independent of histopathology. The BCR-ABL fusion gene is not only the 
diagnostic biomarker of CML, but it also predicts the efficacy of TKIs as well as the 
prognosis of a well defined disease course. Further, in 2008, the WHO also created 
a new hematologic malignancy classification, including three myeloid-and-
lymphoid neoplasms with eosinophilia and rearrangements of PDGFa, PDGFb or 
FGFR1 respectively [18]. This new classification is so far the most radical example 
of the departure from the traditional cancer taxonomy, with each of its three malig-
nancies unrestricted to a cell lineage origin and potentially including neoplastic 
proliferations of either a lymphoid lineage or a myeloid lineage. Nevertheless, these 
histopathologically divergent disease entities within each malignancy are united by 
their similar underlying tyrosine kinase-driven oncogenic mechanisms, which may 
be targeted by imatinib or other TKIs and carry similar prognosis. The WHO has 
also re-classified acute myeloid leukemia (AML) with a large set of subtypes 
defined by recurrent cytogenetic abnormalities and recurrent somatic mutations 
[68], leading to significantly improved prognostic risk stratification and well defined 
treatment strategies to facilitate clinical decision making such as bone marrow 
transplant.

Among solid tumors, there is a strong growing consensus to re-classify gliomas, 
which are a group of tumors derived from glial cells located in the central nervous 
system, based on mutation status in the genes IDH1 and IDH2 rather than the exist-
ing histopathologic grading and diagnostic criteria. IDH-mutation-driven gliomas 
exhibit epigenetic dysregulation and genomic hypermethylation, which are biologi-
cally very different from IDH-wild-type gliomas. This re-classification has shown 
robust superiority in prognostic stratification, with IDH-mutant gliomas character-
ized by favorable prognosis with extended overall survival relative to the IDH-wide-
type counterparts, transcending the current WHO grading classification of gliomas 
[69].

Much more commonly, the incorporation of molecular biomarkers have led to 
the refinement of traditional tumor classifications, resulting in improved prediction 
of drug efficacy, better diagnostic algorithms, and superior prognostic 
stratification:
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2.2.1.1  �Predictive Biomarkers

In contrast to the molecular diagnostics of hereditary diseases, which relate largely 
to disease diagnosis, a major focus of cancer molecular diagnostics is on its predic-
tive value for guiding the selection of therapies. Since the characterization of the 
BCR-ABL fusion gene as a predictive biomarker for response to imatinib in CML, 
there has been a proliferation of genomic alterations that may predict response to 
molecularly targeted therapies that are either themselves the molecular targets or 
closely related to the molecular targets in the associated oncogenic pathways. Some 
common positive predictive biomarkers for targeted therapies include certain acti-
vating EGFR mutations for EGFR tyrosine kinase inhibitors (TKIs) and the EML4-
ALK fusion gene for ALK-targeted inhibitors in lung adenocarcinomas, oncogenic 
BRAF V600E/K mutations for BRAF inhibitors in melanomas and hairy cell leuke-
mia (HCL) [70], inactivating BRCA1 and BRCA2 mutations for PARP inhibitors in 
ovarian cancers, and a subset of activating mutations in certain exons of KIT and 
PDGFRA for imatinib and/or other TKIs in gastrointestinal stromal tumors (GISTs) 
[71]. Some common negative predictive biomarkers that confer resistance to tar-
geted therapies include oncogenic KRAS mutations for EGFR TKIs in lung adeno-
carcinomas and EGFR monoclonal antibodies in colon cancers [72], as well as a 
different subset of activating mutations in different exons of KIT gene or PDGFRA 
gene for imatinib and/or other TKIs in GISTs [71]. In addition, a few predictive 
biomarkers can be both a negative predictor of drug resistance for certain targeted 
therapy drugs, but also a positive predictor of drug responsiveness for other target 
therapy drugs. For example, the T315I mutation of the ABL kinase domain is pre-
dictive of drug resistance for all the first/second generation CML TKIs; but it is also 
predictive of drug responsiveness for ponatinib, a third generation TKI [73]. 
Similarly, in lung adenocarcinomas, T790 M mutation of EGFR is predictive of 
drug resistance to all first/second generation EGFR TKIs, but it is also predictive of 
drug responsiveness to osimertinib, a third generation EGFR TKI [74].

The impact of precision oncology has also further expanded into the arena of 
cancer molecularly targeted therapy testing with the advent of “basket” clinical tri-
als. This innovative clinical trial design enrolls patients with cancers across different 
anatomic sites and histopathology, on the basis of shared key oncogenic genomic 
alterations that are putative predictive biomarkers [70, 75]. Molecular diagnostics 
play a critical role in selecting the patient populations for basket clinical trials by 
screening the presence of specific putative predictive biomarkers.

In addition, some molecular biomarkers can predict responses to non-targeted 
therapy. Mismatch repair-deficiency confirmed by microsatellite instability testing 
in colorectal cancer is a predictive marker for resistance to 5-fluorouracil (5-FU)-
based chemotherapy and positive responsiveness to immunotherapy such as PD-1 
inhibitors [76].
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2.2.1.2  �Diagnostic Biomarkers

Incorporation of molecular biomarkers has contributed to the improvement of the 
diagnostic algorithms of many cancers. Molecular biomarkers have aided confident 
grouping of various histopathologically heterogeneous tumors with the same under-
lying tumor biology and clinical course into a single tumor type; and have also 
enabled confident differentiation between different cancer types. In addition, molec-
ular markers have been used to distinguish between a cancer recurrence and a new 
primary tumor, between a malignant tumor and a benign tumor, as well as between 
a malignancy and a non-neoplastic reactive condition, when there are overlapping 
histopathology precluding definitive diagnoses.

As an example in hematological malignancies, the BRAF V600E mutation can 
serve as a diagnostic biomarker to reliably differentiate HCL from other morpho-
logically similar mature B cell leukemias and lymphomas, including splenic mar-
ginal zone lymphoma and hairy cell leukemia variant [77]. In solid tumors, genomic 
alterations have brought much needed improvement on the diagnostic algorithms 
for the differential diagnoses of many sarcomas and salivary gland tumors that are 
well known to be diagnostically challenging based on histopathologic evaluations 
alone. The challenges include significant histopathologic heterogeneity within one 
single tumor type as well as significant histopathologic overlap between different 
tumor types that exhibit completely different biological and clinical behavior. For 
example, MDM2 and CDK4 amplifications are a hallmark for dedifferentiated lipo-
sarcoma, which is highly valuable for its diagnosis, as the sarcoma often presents 
with diverse variant histopathology or is poorly differentiated with no specific mor-
phologic features for a definitive diagnosis [71]. Detection of fusion events involv-
ing the MAML gene on chromosome 11q21 can be used to confirm the diagnosis of 
mucoepidermoid carcinoma of salivary gland tumors with diverse variant histopa-
thology, or to differentiate high grade mucoepidermoid carcinoma from other more 
aggressive high grade salivary gland tumors with overlapping histopathology [78].

In the clinical settings of peripheral blood myeloid cytosis or cytopenia, differ-
ential diagnosis of chronic myeloid neoplasms versus benign reactive conditions 
can be challenging due to significant histopathologic overlap between these entities. 
Since the WHO included particular recurrent somatic mutations in JAK2, MPL and 
KIT genes as part of the diagnostic criteria for a few myeloproliferative neoplasms 
in 2008, many additional somatic mutations in multiple cancer driver genes have 
been associated with various chronic myeloid neoplasms [79, 80]. Detection of 
more than one recurrent mutation in the appropriate clinical settings of peripheral 
cytopenia or cytosis, particularly at more than 10% MAF, can help to arrive at diag-
noses of myeloid neoplasms with higher confidence in challenging cases. In the 
clinical setting of peripheral lymphocytosis or enlarged lymph nodes, B cell or T 
cell clonality testing for the presence of clonal rearrangement of immunoglobulin 
genes and the T cell receptor gene may also help to differentiate between lymphoid 
neoplasms versus benign reactive conditions [81].

For pancreatic cysts with only cyst fluid aspirate and no tissue section for histo-
pathologic evaluation, differentiation between benign pancreatic cystic lesions that 
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only need monitoring versus cystic mucinous neoplasms with the potential to prog-
ress to pancreatic adenocarcinomas that may require surgery can be very challeng-
ing in the absence of molecular analysis. Mutations of KRAS, GNAS and RNF43 
are specific for mucinous neoplasms and can serve as effective diagnostic biomark-
ers. Incorporation of molecular analysis of mutations in TP53, PIK3CA and PTEN 
genes can further reveal high grade mucinous neoplasms [82].

Finally, molecular testing including tumor gene expression profiling (GEP) often 
serves as the last resort to predict the tissue site origins of cancers of unknown pri-
mary (CUPs), based on gene expression patterns retained from the normal tissues, 
when the conventional histopathologic evaluation and immunohistochemical work-
up of CUPs fail to do so [83, 84].

2.2.1.3  �Prognostic Biomarkers

Numerous molecular biomarkers with or without diagnostic or predictive values 
may provide additional prognostic information to improve existing cancer risk strat-
ification, resulting in the formulation of more tailored treatment strategies. For 
example, recurrent somatic mutations in ASXL1 and EZH2 in myelodysplastic syn-
dromes (MDSs) are valuable prognostic markers associated with shorter overall 
survival independent of the MD Anderson Lower-Risk Prognostic Scoring System 
(LR-PSS) [85, 86]. Inactivating mutations in B2M in Classical Hodgkin Lymphoma 
(CHL) is associated with lower stage of disease, younger age at diagnosis, and bet-
ter overall and progression-free survival [87]. While inactivating mutations of p53 
are unfavorable prognostic markers in many cancer types including breast cancer, 
osteosarcoma and leiomyosarcoma [71, 88, 89], mismatch repair-deficiency in 
colorectal cancer is a favorable prognostic biomarker. In addition to DNA altera-
tions, gene expression signatures have also been developed for risk stratification to 
inform decisions among different therapeutic interventions such as chemotherapy 
and radiation therapy. For example, the gene expression-based Oncotype DX test 
helps to determine whether a patient with early stage ER-positive breast cancer or 
ductal carcinoma in-situ (DCIS) would benefit from chemotherapy or radiation 
therapy, respectively [64, 65].

It is worth noting that predictive or prognostic biomarkers are not limited to 
somatic mutations, as some germline mutations can impact cancer therapy and 
prognosis similar to their somatic mutation counterparts. For example, germline 
inactivating BRCA mutations may also predict responsiveness to PARP inhibitors. 
Similarly, germline mutations of mismatch repair genes in colorectal cancer (i.e. 
Lynch syndrome) may also indicate favorable prognosis and predict drug resistance 
to 5-FU chemotherapy. In addition, there is some evidence that germline variants 
with pharmacogenomic significance may impact targeted cancer drug efficacy 
including imatinib for CML and tamoxifen for breast cancer [90–92].
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2.2.2  �Disease Monitoring

Various molecular analyses have also been deployed for post-treatment monitoring 
of leukemias to follow treatment response, acquired drug resistance, disease pro-
gression, minimal residual disease (MRD), and disease recurrence. For example, 
highly sensitive and quantitative RT-PCR to detect BCR-ABL fusion transcripts in 
peripheral blood is routinely used for post-treatment monitoring of CML. Treatment 
response is well defined by a grading system based not only on the absolute tumor 
load reduction, but also the dynamic speed of the reduction [73]. After 3 log reduc-
tion or major molecular response (MR3 or MMR), the molecular test is used to 
monitor potential acquired drug resistance or disease progression. Persistent rise in 
BCR-ABL fusion transcript level with loss of MMR will trigger sequencing analy-
sis to investigate acquired drug resistance mutations, and cytogenetic karyotyping 
to investigate new cytogenetic abnormalities indicative of disease progression. 
When a drug resistance mutation is confirmed by sequencing, the patient will be 
switched to a different TKI with known efficacy toward the specific mutation [93]. 
The molecular monitoring may continue indefinitely for potential relapse, even for 
some CML patients who may have achieved potential cure with sustained treatment-
free remission [94]. Studies involving MRD detection of acute promyelocytic leu-
kemia (APL) have also shown that pre-emptive chemotherapy at the time of 
molecular relapse improves survival compared to treatment at the point of hemato-
logical relapse with abnormal peripheral blood count [95, 96].

2.2.3  �Cancer Prevention and Early Detection

A significant fraction of cancers have a hereditary component, and genetic risk 
assessment for hereditary cancer is integral in the comprehensive care of today’s 
cancer patients. Detection of pathogenic germline variants in cancer predisposition 
genes such as BRCA1, BRAC2, ATM, TP53 and mismatch repair genes in cancer 
patients may initiate testing of blood-related family members at risk for developing 
cancer. Detection of germline cancer predisposition gene mutations in patients with 
no prior cancer history may dictate chemoprevention for cancer prevention or sup-
pression, more frequent surveillance for early cancer detection, as well as risk-
reduction prophylactic surgeries such as colectomy or mastectomy [97–99].

Cervical cancer has become the most preventable cancer due to cervical cancer 
screening in the past 50 plus years, using cervical cytology or Papanicolaou test 
[100–102]. With the more recent elucidation of causal agent for almost all cervical 
cancers being persistent infection of high risk human Papillomaviruses (HR-HPVs) 
[103], nucleic acid-based HR-HPV testing of cervical liquid cytology samples has 
become an integral part of cervical cancer screening in addition to cervical cytology 
test, or even in lieu of cervical cytology test, with higher sensitivity and lower cost 
[104–106].
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Sequencing analysis of peripheral blood, which is often performed as part of the 
paired analysis of tumors and patient-matched normal samples to enable unambigu-
ous detection of somatic mutations, may detect clonal hematopoiesis of indetermi-
nate potential (CHIP). CHIP is a clinical entity defined only recently, referring to 
detection of clonal somatic mutations in peripheral blood that are frequently associ-
ated with hematologic malignancies when there is no evidence of hematologic dis-
ease. It is associated with aging and occurs more often in older patients. In most 
cases, CHIP does not progress to hematologic malignancies. However, it is associ-
ated with an increased, albeit still low risk of progression to hematological malig-
nancies. With such uncertain clinical implications, closer monitoring of complete 
blood count with differential, particularly in CHIP patients with cytopenias, may be 
prudent [107, 108].

2.3  �Frontiers in Molecular Diagnostics of Cancer

2.3.1  �Current State-of-the-Art Nucleic-Acid-Based Analysis: 
Next-Generation Sequencing

The major technological advancement in the new millennium for both cancer 
research and cancer molecular diagnostics has been massively parallel “next gen-
eration” sequencing (NGS), which followed the completion of Human Genome 
Project in the early 2000’s. Using the then state-of-the-art automated Sanger 
sequencing technology, the sequencing of the first human genome spanned more 
than 10 years and cost more than a billion dollars. Stimulated by the unmet need for 
more powerful sequencing technologies, novel NGS platforms based on different 
chemistries were developed throughout the decade that followed [52, 109, 110]. 
Compared to Sanger sequencing technology, all NGS platforms exhibit ultra-high 
throughput and substantially lower cost per base (i.e., ~$0.02 per million bases for 
the Illumina Hiseq in 2016) [52], enabling a variety of nucleic acid-based applica-
tions including genome sequencing, gene expression profiling and transcriptome 
analysis via RNA-seq, and epigenetic analysis via methyl-seq, ChIP-seq or ATAC-
seq [52].

For the last 10 years, NGS has had a profound impact on cancer genomic research 
by enabling the complete characterization of entire cancer genomes at the single 
nucleotide resolution. After the first cancer genomes were reported in 2008 [111, 
112], tens of thousands of tumors have been comprehensively analyzed at the 
whole-genome or whole-exome scale, either by individual research groups or by 
large consortiums such as TCGA (The Cancer Genome Atlas) and ICGC 
(International Cancer Genome Consortium). The effort to map and analyze cancer 
genomes in a large-scale and a systematic fashion has led to the identification of 
significantly recurrently mutated genes and biological pathways, prompting novel 
hypotheses regarding cellular processes governing tumor initiation and progression 
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[2]. Precision oncology has thus experienced its most rapid growth in the past 
decade, accompanied by a deeper understanding of the complexity of cancer 
genomes with rapid proliferation of biological targets for novel therapies as well as 
new predictive, prognostic and diagnostic biomarkers for molecular diagnostics. 
There currently exist 57 FDA approved molecularly targeted cancer drugs (FDA 
website, last accessed 10/2016) [113], with many more in the pipeline, either at the 
clinical trial stage or the development stage.

By enabling simultaneous sequencing of multiple genomic regions in multiple 
samples in a single NGS run, the high-throughput sequencing capability of NGS is 
an advantageous technical attribute to not only minimize turn-around time and sig-
nificantly lower cost, but also to address the challenge of limited tumor sample 
volumes and ever expanding list of biomarkers for routine somatic tumor testing. 
Only a single input of relatively low quantity of tumor nucleic acids is required for 
screening all biomarkers in multiple genomic regions in one NGS run, in contrast to 
traditional Sanger sequencing requiring cumulatively larger amounts of input 
nucleic acids [40]. NGS is capable of detecting all classes of genomic alterations, 
including CNVs and SVs. Further, owing to its digitally quantitative nature, indi-
vidual DNA molecules are analyzed independently instead of as an ensemble, lead-
ing to high sensitivity for detecting mutations with low MAFs. The high sensitivity 
and the digitally quantitative nature of NGS are technical attributes particularly suit-
able for interrogation of cancer somatic mutations, as low MAFs due to low tumor 
purity and/or intra-tumoral genetic heterogeneity can often occur. RNA molecules 
can also be analyzed by RNA-Seq, following conversion of RNA to cDNA. Compared 
to cDNA microarrays, RNA-Seq enables digitally quantitative assessment of gene 
expression profiling with broader dynamic range and higher sensitivity, and offers 
the additional capabilities of detecting allele-specific expression, novel RNAs 
including splicing variants and gene fusion events and phasing mutations across 
fusion transcripts in highly complex cancer genomes [114–117].

The sequencing and signal detection platforms of NGS can generally be divided 
into two main categories: platforms that require clonal amplification of templates 
prior to sequencing and platforms enabling real-time sequencing of single DNA 
molecules. The two NGS platforms most widely used in clinical laboratories, manu-
factured by Illumina and Ion Torrent (Life Technologies), belong to the first cate-
gory and are based on “sequencing by synthesis” (SBS) chemistry [52, 109]. In the 
SBS approach, single-stranded DNA is used as a template for synthesizing a com-
plementary strand in a manner allowing the identity of the incorporated nucleotide 
to be detected. Because it is necessary to first clonally amplify each template mol-
ecule in order to enhance the signal to facilitate detection, the signal represents a 
consensus readout across multiple molecules, which may lead to errors due to 
dephasing as the reaction progresses. Thus, these methods typically only produce 
up to 200–400  bp short reads [52, 109, 118]. Furthermore, different platforms 
exhibit different characteristic errors: Illumina sequencing is predominated by sub-
stitution errors with an error rate on the order of 0.1%, while the Ion Torrent plat-
form is predominated by small insertion and deletion errors particularly at 
homopolymer sites, with an overall error rate closer to 1% [52, 109].
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Due to existing limitations in throughput, cost and accuracy, single molecule 
sequencing has not yet been widely adopted for molecular diagnostics. However, 
these platforms hold appealing technical advantages provided that the technology 
will continue to improve. Single molecule sequencing does not require any clonal 
amplification, thereby reducing sample preparation time and PCR amplification 
errors or bias. Much longer sequence reads can be achieved (~10,000 to ~350,000 bp) 
[52, 109, 117], which enable the detection of structural variants in complex cancer 
genomes and the phasing of mutations across multiple protein-coding exons [52, 
114, 119]. Examples of single molecule sequencing include the SMRT platform of 
Pacific Biosciences and the Nanopore platform of Oxford Nanopore Technologies. 
While the SMRT platform also utilizes SBS, the Nanopore technology directly 
detects the DNA composition of single-stranded DNA as it crosses through a nar-
row pore. Both technologies have shown abilities to directly detect DNA methyla-
tion. Both technologies currently harbor high error rates with single pass, although 
error rates may be reduced by sequencing to higher coverage (i.e., the number of 
DNA molecules sequenced from a given genomic region). For example, the SMRT 
platform can achieve lower error rates of 1% via higher coverage through circular 
consensus reads. Through further development and optimization, real time single 
molecule sequencing may significantly expand the clinical applications of NGS 
[52].

Efficient utilization of NGS technology is necessary to maximize throughput and 
minimize turnaround time in clinical laboratories. Two key innovations have enabled 
laboratories to leverage the ever-expanding data output of NGS instruments and 
increase the number of samples that can be analyzed in a single sequencing run. 
First, the development of sample-specific barcodes (i.e., 6–8 bp DNA sequences) 
enabled sequence libraries derived from different samples to be uniquely tagged and 
pooled together on the same sequencing instrument. Second, the development of 
target enrichment strategies allowed specific sub-genomic regions of interest to be 
captured and sequenced as an alternative to whole genome sequencing. There are 
two general categories of target enrichment: “hybridization capture” by annealing 
to complementary synthetic DNA or RNA probes, and multiplex-PCR-based 
“amplicon capture”. While amplicon capture approaches typically incur a shorter 
turnaround-time and require less input genomic DNA, hybridization capture can be 
extended to a larger fraction of the genome and enables the detection of CNVs and 
SVs in addition to sequence mutations. In general, hybridization capture also pro-
vides higher uniformity of sequence coverage than amplicon capture methods [120].

The technical innovations of NGS have considerably expanded the variety of 
options for clinical NGS applications. NGS-based diagnostic tests can be designed 
to target the genome at different scales including targeted gene panels, whole exome 
sequencing (WES) and whole genome sequencing (WGS). Gene panel-based tar-
geted sequencing includes both small amplicon capture-based “hotspot” panels tar-
geting only frequently mutated regions in 1–50 well-established cancer genes, and 
larger hybridization capture-based cancer gene panels that can target all exons of up 
to hundreds of cancer-associated genes as well as clinically relevant non-coding 
regions. WES and WGS are capable of revealing a far greater number of alterations 
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across a much larger genomic territory, though these primarily represent variants of 
uncertain significance (VUS) with no immediate clinical applications. Compared to 
smaller targeted gene panels, WES and WGS also incur higher cost and greater 
computational requirements for data storage and processing, which can negatively 
impact sequencing throughput for molecular diagnostics testing. Gene panels may 
also exhibit increased sensitivity for detecting clinically actionable alterations com-
pared to WES and WGS, owing to deeper sequence coverage in these most impor-
tant genomic regions [121]. Nevertheless, WES and WGS do significantly increase 
the breadth of genomic analysis and offer the greatest discovery potential, with 
WGS further facilitating the detection of translocations, inversions, and other struc-
tural alterations [40].

As NGS sequencing reactions are capable of generating hundreds of millions to 
billions of sequence reads, innovative computational tools and bioinformatic pipe-
lines are required for rapid and accurate NGS data processing to deliver timely 
reports to oncologists for cancer therapy guidance. The major steps in NGS bioin-
formatic pipelines include base calling to covert raw sequencing signals to sequence 
reads, alignment of sequence reads to the reference human genome, variant calling 
to detect candidate genomic alterations (including mutations, copy number altera-
tions, and structural rearrangements), variant filtering to eliminate spurious variant 
calls, and finally variant annotation according to the annotation guidelines from the 
Human Genome Variation Society (HGVS) [122] including standardized gene name 
(per HUGO nomenclature guidelines) [123], variant class, transcript isoform, and 
amino acid change if in a coding sequence. In addition to variant annotation, it is 
also recommended that the functional and clinical significance of variants, includ-
ing prognostic and therapeutic implications, should be interpreted. This may involve 
database and literature review for information on prevalence, biological signifi-
cance, and clinical predictive or prognostic implications. Cancer databases captur-
ing mutation recurrence and clinical annotations include COSMIC [124, 125], the 
cBioPortal for Cancer Genomics [126, 127], My Cancer Genome/DIRECT [128, 
129], Personalized Cancer Therapy [130, 131], TARGET [132], the Human Gene 
Mutation Database (HGMD) [133] and OncoKB [134].

2.3.2  �Liquid Biopsy

Traditional oncogenic mutation detection is based on the direct analysis of cancer 
tissue obtained by surgical resection or biopsy. However, body fluids of cancer 
patients, including blood, saliva, cerebrospinal fluid and urine, have been shown to 
contain cell-free tumor-derived nucleic acids as well as circulating tumor cells 
(CTC) harboring detectable cancer biomarkers. The term “liquid biopsy” refers to 
molecular diagnostics using body-fluid samples. For some cancer patients, surgical 
resection or biopsy of a tumor may not be feasible, either due to the location of the 
tumor or the inability of a patient to tolerate an invasive procedure. For example, in 
approximately 30% of lung cancer patients, clinicians are not able to obtain tumor 
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tissue by surgical biopsy or resection [135]. CTC and circulating tumor DNA 
(ctDNA) based assays represent easily accessible, minimally invasive means to not 
only detect but also follow the dynamic molecular makeup of a patient’s tumor lon-
gitudinally. These approaches also have the potential to more completely represent 
the full genetic heterogeneity of a patient’s disease compared to a single biopsy site 
[135]. Analyses of CTCs in blood and ctDNA in plasma are promising avenues for 
molecular diagnostics in cancer.

CTCs, which are extremely rare in individuals without malignancy, are present 
at a wide range of frequencies in patients with various metastatic carcinomas [136]. 
The detection and molecular characterization of circulating tumor cells (CTCs) are 
one of the most active areas of translational cancer research [137]. The enumeration 
of CTCs has been shown to be a key indicator of cancer diagnosis, prognosis, and 
response to therapy [138–140]. An FDA approved clinical CTC counting assay has 
been used for cancer prognosis and monitoring treatment response since 2004 [141]. 
However, a combination of CTC enumeration, molecular profiling at the DNA, 
RNA and protein level [137], and establishment of individual patient–based cell 
lines and xenograft models for drug sensitivity testing [142] may be critical to 
exploit the full potential of CTCs. There has been intense research in the field of 
CTCs to develop novel protocols for CTC capture and sequencing and to demon-
strate their clinical utility in cancer molecular diagnostics [137]. Due to the rarity of 
CTCs, limited purity of the isolated CTC populations and intra-tumoral genetic and 
epigenetic heterogeneity, molecular profiling of CTCs at single-cell resolution is 
required. Various technologies using a combination of whole genome amplification 
and NGS are able to detect CNVs and SNVs in a single cell [143]. These approaches 
have demonstrated the potential of CTC-based molecular analysis in molecular 
diagnosis [144, 145] and monitoring of cancer clonal evolution and intra-tumoral 
heterogeneity [146, 147]. However, CTC molecular profiling is currently largely 
limited to preclinical and academic studies.

For ctDNA, only a small amount of circulating cell-free DNA (cfDNA) is typi-
cally present in plasma (average ~17 ng/ml), of which only a tiny fraction may actu-
ally be derived from tumor [135]. This poses a significant challenge for mutation 
detection in cfDNA when the fraction of tumor-derived DNA in plasma may begin 
to approach the error rate of NGS. Technical advances have been made to increase 
the detection sensitivity by decreasing the background error rate though the use of 
unique molecular barcodes, including Safe-Seq and Duplex Sequencing [148, 149] 
as well as the newly developed CAPP-Seq, reaching a sensitivity of ~0.02% [150, 
151]. ctDNA analysis holds great promise as a less invasive alternative to tissue 
sequencing that may capture a wider spectrum of sub-clonal mutations. Furthermore, 
the minimally invasive nature of the ctDNA liquid biopsy allows repeated sampling 
and sequencing over time to facilitate the monitoring of response to therapy and the 
acquisition of drug resistance mutations. Repeated sampling and sequencing may 
help increase the sensitivity of ctDNA NGS by differentiating persistent rare muta-
tions versus random sequencing artifacts [152]. Studies have shown that analyses of 
ctDNA can be used to stratify and guide cancer target therapy, to determine tumor 
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prognosis, and to monitor treatment response, acquired drug resistance, minimal 
residual disease, and disease recurrence in real time.

Compared to ctDNA, CTCs may have the advantage of being more representa-
tive of the current tumor state, as they are viable tumor cells while ctDNA often 
originates from necrotic cells. CTCs may also provide information at the DNA, 
RNA and protein levels, while ctDNA can only capture genomic alterations [152]. 
However, some studies have shown that ctDNA is a biomarker with higher sensitiv-
ity than that of CTCs for detecting new mutations and disease progression [153]. 
ctDNA has also been proposed as a mechanism for screening and early detection of 
cancer, though the sensitivity and specificity may be affected by the presence of 
circulating non-tumor DNA containing somatic mutations arising from non-
malignant tissue or indicative of CHIP associated with aging [154]. While circulat-
ing RNA is too unstable to be used for clinical diagnostics, stable extracellular 
exosomes released by tumor cells contain mainly RNA, which may be analyzed to 
provide information about the tumor [135, 155, 156].

The integration of liquid biopsy-based molecular diagnostics to precision oncol-
ogy practice has begun, as the FDA approved the Cobas EGFR ctDNA mutation test 
in 2016 [157]. This ctDNA test is indicated as an alternative companion diagnostic 
to tumor tissue-based sequencing, aiming to inform the selection of molecularly 
targeted drugs for patients with non-small cell lung cancer. Liquid biopsy-based 
mutation profiling has thus officially entered the cancer molecular diagnostic arena 
and holds great potential in precision oncology.

2.3.3  �Current Challenges and Near Term Solutions

A trend observed in in-vitro diagnostics in general, and in cancer molecular diag-
nostics in particular, is the natural evolution of technology platforms toward greater 
levels of sensitivity, versatility as well as automation [10, 12]. This trend has char-
acterized the new era of clinical NGS with its gradual replacement of the traditional 
low-throughput nucleic acid-based methodologies with high-throughput technolo-
gies capable of interrogating cancer genomes at single base resolution from a lim-
ited amount of tumor DNA of variable quality that is extracted from either tissue or 
body fluid. NGS has become routine for clinical tumor genomic mutation screening 
and has been adapted for nucleic acid-based clinical interrogation of cancer tran-
scriptomes and epigenetics as well. The high complexity of NGS workflows and 
result-reporting has made its validation and implementation in clinical diagnostic 
labs challenging. Guidelines from regulatory agencies including College of 
American Pathologists (CAP), American College of Medical Genetics (ACMG) and 
the New  York State Department of Health, as well as publications from clinical 
laboratories, have recently provided much needed guidance [158, 159]. There are a 
variety of target NGS panels implemented in different molecular diagnostic labs, in 
terms of the numbers and the identities of the selected genes or gene regions, the 
indicated tumor types and the sample throughput. In addition to developing custom 
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target NGS panels, due to the significant investment requirement for the operational 
and bioinformatics infrastructure, many diagnostic labs have chosen to validate 
ready-made commercial target NGS panel solutions with or without modification to 
expedite the implementation of NGS testing [121].

Bioinformatics considerations continue to pose a significant challenge to clinical 
laboratories that have historically operated lower-throughput technologies requiring 
minimal computational support. Bioinformatics staff capable of managing and ana-
lyzing large, complex data sets are in high demand. Computational pipelines must 
be established during assay validation, including variant filtering algorithms that 
account for strand bias and minimum cut-offs for quality scores, depth of coverage, 
number of variant reads and MAF [40]. Manual review using tools such as Integrated 
Genome Viewer (IGV) is an important final step of variant filtering for excluding 
spurious variant calls. For variant interpretation and reporting, further improvement 
on data sharing of cancer somatic mutations is needed, due to the lack of a single 
centralized repository of cancer somatic mutations with de-identified patient infor-
mation [152]. The storage of large amounts of NGS data is another technical chal-
lenge and should follow the ACMG and AMP guidelines to retain at least raw data 
files so that the entire data analysis process can be repeated [158, 159].

Sequencing paired normal samples is essential for large scale tumor analysis, 
particularly WES and WGS, in order to make unambiguous tumor somatic mutation 
calls by filtering out germline variants. Sequencing both tumors and paired normal 
samples may reveal germline variants with clinical implications other than those 
directly related to the tumors. The disclosure of these “incidental” findings to the 
patients and its legal and ethical implications are an area of controversy. Recent 
guidelines from the ACMG and AMP have provided some guidance on dealing with 
the ethical challenge of reporting incidental findings, stressing the importance of 
informed consent from patients before testing [160, 161]. On the other hand, as 
discussed previously, some germline variants may have significant predictive and 
prognostic implications for cancer treatment, in the context of cancer predisposition 
genes as well as germline pharmacogenomics. The controversy on sequencing and 
reporting these germline variants may be clarified in the near future by continued 
active research in the area [152, 162].

The implementation of clinical NGS testing has also been hampered by the reim-
bursement challenges. The current reimbursement policies of Medicare and private 
insurance companies were written mostly for single-gene or biomarker molecular 
testing, prior to the advent of multi-gene high throughput NGS testing in the clinical 
labs [163]. However, progress on NGS reimbursement, albeit slow, has been made 
with some private insurance companies showing more rapid adaptation of their 
reimbursement policies to the NGS technology platforms. For example, insurance 
coverage for NantHealth’s Cancer GPS test, which includes tumor WGS, by Blue 
Cross was announced in 2016 [164, 165]. Despite all the challenges, NGS technol-
ogy is destined in the near future to revolutionize molecular diagnostics with an 
impact comparable to that of PCR [52].
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2.3.4  �Future Perspective

The remarkable success of imatinib in CML validated the promise of precision 
oncology early on; however, the vast majority of molecularly targeted therapies to 
date have only shown modest success by prolongation of life for months rather than 
years, and only in a subset of cancer patients. This reveals that our ability to effec-
tively treat patients with complex cancer genomes may be limited compared to 
CP-CML, which has only one single key oncogenic driver - the BCR-ABL fusion 
gene [166]. In order to enhance the sensitivity and specificity of identifying key 
molecular cancer drivers in complex cancer cells, a systems biology approach 
involving multi-omic interrogation of cancer genomes, epigenomes, transcrip-
somes, proteomes and metabolomes, has emerged in cancer research [167–169] and 
is starting to expand to the clinical testing arena [164, 165]. Recent technical 
advances in proteomics, including mass spectrometry and protein microarrays, have 
further enabled and propelled this systems biology approach in cancer research 
[170, 171]. The multi-modal interrogation of cancer cells can identify not only 
genomic alterations that are mainly static and often cryptic, but also molecular aber-
rations at the dynamic and complex functional genomic levels of both gene expres-
sion (epigenetic/RNA) and protein expression. The integration of multi-omic data 
has enabled identification of key molecular cancer drivers with more robust diag-
nostic, predictive and prognostic implications [172, 173], thus providing more com-
plete and precise molecular portraits of underlying cancer biology. We may no 
longer be naive about the daunting challenges to cure all cancers through precision 
oncology, but the promise and hope are still very real.
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3.1  �Introduction

Applied to cancer, the precision medicine model can dramatically improve patient 
care by matching the unique constellation of alterations seen in an individual cancer 
patient to therapies that have the best chance of successfully treating that patient. 
Executing this model requires that researchers successfully bridge knowledge 
gained in the laboratory with the patients seen in the clinic: Physicians must be able 
to rapidly and accurately perform clinical interpretation of patient genetic data in 
order to optimize the care they provide.

With the advent of next-generation sequencing technology, the amount of genetic 
data available to both physicians and researchers has rapidly increased. The first 
human genome was sequenced over a 13 year period through the efforts of a multi-
institutional project that cost over $3 billion dollars [1]. As of 2015, the cost of 
sequencing a single genome has dropped to $1245 [2], a cost comparable to many 
routine diagnostic tests, and the procedure can take as little as 26 hours from data 
acquisition to preliminary interpretation [3]. The use of more narrowly focused 
sequencing techniques, including whole-exome and targeted panel sequencing, 
allow for rapid acquisition of patient genetic data at even lower costs (Fig. 3.1).

As a result of these advances, patient genetic data are increasingly becoming 
available at the point of care, whether through targeted panels of commonly altered 
genomic locations, or by complete sequencing of the exome or genome. The broad-
ened availability of genetic information has potential implications for the treatment 
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of cancer patients, giving clinicians the ability to analyze the mutations and onco-
genic drivers that underlie a patient’s cancer and select therapeutics personalized to 
the set of mutations observed in a given patient.

However, the vast quantities of data produced per patient introduce new chal-
lenges. The genetic abnormalities present in cancer patients often result in dramati-
cally increased mutation rates, further obscuring the genetic landscape; in order to 
understand the fundamental determinants of a patient’s cancer, causal “driver” 
mutations must be identified and distinguished from “passenger” mutations that 
appear alongside driver mutations, but are not biologically relevant [4–6]. Once 
mutations of interest are identified, they must be linked to potentially effective ther-
apeutic options (which can vary dramatically depending on the cancer type and the 
specific mutations involved), prognostic information, and indicators of clinical trial 
eligibility in order to provide clinical benefit to the patient.

Achieving these goals requires a multi-pronged approach, combining manual 
review of patient tumor data with automated analyses that take advantage of cutting-
edge oncology research. The remainder of this chapter will explore the recent his-
tory of precision cancer developments from the perspective of the clinic, describe 
the current state of available technologies and techniques for bringing robust inter-
pretation of these data into the clinic, and provide an overview of the challenges 
faced both by clinicians and researchers in performing clinical interpretation of 
patient-specific cancer genomic data.

Fig. 3.1  The decreasing cost of whole-genome sequencing, from 2001 to 2015 (cost per genome 
on vertical axis) [2]. Cost reductions accelerated with the introduction of next-generation sequenc-
ing (NGS), a family of technologies that enable parallel sequencing
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3.2  �History

Far prior to the introduction of next-generation sequencing technologies, genetic 
information has been used to improve treatment of cancer patients. In 1988, an 
association was discovered between the presence of translocations in the RARα reti-
noic acid receptor gene and increased rates of remission after treatment with all-
trans retinoic acid (ATRA) [7]. The discovery in 1990 that BRCA1 and BRCA2 
alterations are associated with heritable breast and ovarian cancer [8] was quickly 
used to tailor how clinicians approach patients with these abnormalities, whether by 
encouraging increased screening and/or prophylactic mastectomy and salpo-
oophorectomy in high-risk patients [9]. Soon after, one of the first drugs directly 
targeting a genetic abnormality was developed; the connection between the 
“Philadelphia chromosome,” a genomic translocation creating the BCR-ABL fusion 
gene, and several forms of leukemia led to the creation of imatinib, a small molecule 
inhibitor that targets the mutated tyrosine kinase signaling molecule produced by 
the BCR-ABL gene. Imatinib vastly improves outcomes in patients with this abnor-
mality; the five-year survival rate of chronic myelogenous leukemia (CML) patients, 
the primary indication for imatinib, has increased from 31% in the early 1990s to 
63% in patients diagnosed between 2005 to 2011 [10]. Additional targeted therapies 
soon followed, including treatments for patients with BRAF-mutant metastatic mel-
anoma [11], and non-small-cell lung cancers with mutations in either EGFR [12] or 
ALK [13].

Each of these relationships between a genetic abnormality and a clinical action 
is an application of precision cancer medicine techniques; a discriminating feature 
was identified in a subset of patients with a certain cancer type, which was then used 
by clinicians to tailor their treatment plans to individual patients. The massive 
increase in genetic data enabled by modern sequencing technology holds vast 
potential for discovering additional genetic abnormalities linked to clinical actions. 
The availability of routine clinical whole-exome and whole-genome sequencing, 
deployed at multiple institutions [5, 14, 15], allow for more holistic approaches to 
genetic analysis. Rather than limit analyses to the presence of alterations at indi-
vidual genetic loci, global features that weigh exome- or genome-wide effects may 
also be interpreted. For example, the overall mutational burden of a patient’s tumor 
has been linked to clinically actionable information in the settings of bladder cancer 
[16], non-small cell lung cancer [17], and metastatic melanoma [18]. Analyses of 
the differing patterns of somatic mutations observed in cancer genomes have led to 
the identification of “mutational signatures” that reflect the mutational processes 
observed in a cancer [19]; the presence of these signatures has been linked to action-
able information in breast cancer [20], non-small cell lung cancer [12], bladder 
cancer [21], and esophageal adenocarcinoma [22] among others.

However, research into targeted therapeutics and prognostic associations is not 
sufficient; clinical interpretation efforts need to be made to match these discoveries 
with the patients that can benefit most from them. The field of oncology research 
moves far too rapidly for clinicians to feasibly be aware of the current state of 
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research at any given time; not only do new therapies frequently receive approval, 
but new indications are applied to existing therapies as discoveries are made, new 
clinical trials are created that may benefit subsets of patients who fulfil specific eli-
gibility criteria, and contemporary pre-clinical research may help guide treatment in 
patients who have failed all standard approved therapies. Molecular tumor boards 
have been the traditional approach to this problem, in which experts within various 
areas of clinical oncology at a hospital meet to discuss complex patient cases and 
recent research advances. While useful, tumor boards are limited by the areas of 
expertise and fields of research performed at the home institution, cannot provide a 
comprehensive landscape of the current body of literature applicable to each patient, 
and are often unable to meet clinically acceptable turnaround times [23]. In response, 
several approaches have been pursued towards automatic clinical interpretation. 
While clinicians are limited to manual review of a limited number of well-known 
alterations that have been previously validated, automated computational approaches 
are able to quickly review the entirety of a patient’s genetic landscape and draw 
from the vast body of current literature to make clinical suggestions. When provided 
with additional knowledge about the biological processes underpinning oncogene-
sis and progression, these tools can make more remote inferences, potentially sug-
gesting off-label or novel uses of therapies compatible with the patient’s genetic 
status.

3.3  �Current Developments

Current research into improved clinical interpretation involves three separate 
aspects: Acquisition, Analysis, and Action (Fig. 3.2).

Fig. 3.2  The acquisition-analyses-action workflow. Patient data are acquired via tissue sample 
sequencing, and input into clinical interpretation systems for analysis. Recommendations are made 
based on direct analysis of variants and more complex global feature analysis, and synthesized into 
a report of potential actions for review by clinicians
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3.3.1  �Acquisition

Acquisition involves the capture of tissue samples from a cancer patient, and the 
processing of these samples to produce genetic sequence data. In general, two kinds 
of tissue samples may be acquired: tumor samples, which are taken from the site of 
the neoplasm caused by the patient’s disease, and normal samples, which are taken 
from a patient’s healthy tissue. The decision to acquire a tumor sample, normal 
sample, or both kinds of samples from a patient determines the kinds of analyses 
that can be performed on the mutations present in the resulting sequence data.

Mutations may be divided into somatic and germline alterations. Somatic altera-
tions are those that occur during the lifetime of the patient. They are not passed 
down from a parent, and cannot be passed on to their descendants. In contrast, 
germline alterations are inherited from a parent, and can be passed on to progeny. 
Both types of alterations may lead to cancer, either by activating or increasing the 
expression of a proto-oncogene (a gene that encourages growth) to become an onco-
gene (a dysregulated pro-growth gene), or by disabling or reducing the expression 
of a tumor suppressor gene (a gene that normally restricts growth) (Fig. 3.3).

The acquisition of a tumor sample provides information on both the somatic 
alterations that are involved in the patient’s cancer and the patient’s germline altera-
tions. A normal sample primarily enables identification of germline alterations. 
Acquiring a tumor sample is of usually of primary importance, since it will reveal 
cancer-specific alterations that may suggest use of a targeted therapy or provide 
prognostic insight. However, acquiring a matched normal sample may reveal that 
some mutations identified in the tumor sample are in fact germline alterations, with 
separate implications for treatment selection and heritability counseling [24].

See the “Molecular Pathology” and “Liquid Biopsies” chapters for more infor-
mation on the acquisition of patient tissue samples.

Tumor Sample

Somatic Cancer-Related Alterations Germline Alterations
Acquired during patient’s lifetime. Acquired before birth.

(Originates in patient somatic cell.) (Originates in parental germ cell.)
Not passed to progeny. Can be passed to progeny.
Localized to disease site(s). Present in all patient cells.

Normal Sample

Fig. 3.3  Tumor samples contain both germline alterations and the somatic alterations that contrib-
ute to (or have occurred because of) a patient’s cancer. Normal samples primarily contain germline 
alterations that are present in nearly all of the patient’s cells. Sampling both tumor and normal 
tissue allows the determination of which alterations are somatic and thus more likely to contribute 
to the cancer state
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3.3.2  �Analysis

Once a patient’s genetic information has been obtained, the next step towards clini-
cal interpretation is analysis of the data. Usually, a pipeline of software is first used 
to identify specific kinds of alterations within the raw genetic data provided (includ-
ing point mutations [25], insertions/deletions [indels] [26], fusions [27, 28], and 
others). These data are often further annotated by algorithms that match additional 
information to the identified alterations, such as the predicted impact of an altera-
tion, information about the altered protein resulting from an alteration, and 
population-level statistics among others [29–31].

Clinical interpretation systems attempt to make therapeutic suggestions and 
prognostic estimates that build upon previously annotated alteration information. 
These systems annotate alteration data with information about clinical actionability, 
often extracted from cancer-specific databases (with a focus on clinically actionable 
assertions) or by performing independent analyses on sequencing data. Clinical 
interpretation systems range from taking disease-specific approaches (e.g., 
OncotypeDX [32], shown below, produces products specifically for analysis of 
breast, colon, and prostate cancer) to pan-cancer approaches (e.g., FoundationOne 
[33] and PHIAL [5], shown below). See “Challenges” below for a case study of 
PHIAL, a clinical interpretation system currently under development, and an exami-
nation of how it attempts to address several obstacles faced by clinical interpretation 
approaches in general.

3.3.3  �Action

“Clinical actionability” is vaguely defined, but generally refers to the potential of an 
assertion to change a physician’s treatment plan, or to provide prognostic informa-
tion about the severity or likely outcome of the disease. The primary intention of 
most clinical interpretation systems is to recommend a therapy targeted to the muta-
tions involved in an individual’s cancer, usually after non-targeted first-line thera-
pies have failed. These suggestions may involve the off-label use of a therapy (e.g., 
recommending a drug approved for a different cancer, but which blocks a pathway 
altered in several cancers), or the enrollment of the patient in an ongoing clinical 
trial. Information about the state of the patient (e.g., what treatments the patient has 
failed, or the stage of the cancer) may improve the ability of an interpretation sys-
tem to recommend better clinical actions tailored to the disease progress in a given 
patient (Table 3.1).
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3.3.4  �Case Study: PHIAL

PHIAL (Precision Heuristics for Interpreting the Alteration Landscape) is a compu-
tational algorithm developed to help bridge the gap between clinical research and 
the clinic, and serves as an example of a modern approach to performing rapid clini-
cal interpretation [5]. This algorithm operates on patient genetic sequence data that 
has been thoroughly investigated to detect several types of abnormalities (such as 
point mutations, indels, and fusions, among others). PHIAL performs multiple anal-
yses on the collected abnormalities in an attempt to discover new information that 
could influence how a clinician decides to treat a patient, or provide additional prog-
nostic information. It then ranks the information it has collected according to its 
relative importance and creates a report intended for use by physicians at the 
point-of-care.

A key component of PHIAL is its ability to search several oncology databases 
for additional information about genetic abnormalities and synthesize this informa-
tion to provide targeted treatment suggestions. One such database, TARGET (Tumor 
Alterations Relevant for GEnomics-driven Therapy), is co-developed alongside 
PHIAL to directly relate genetic alterations with potential treatment options accord-
ing to published research discoveries and clinical trial findings (Fig. 3.4).

Notably, TARGET curates not only clinically validated discoveries but also pre-
clinical findings of various likelihood to have biological relevance in cancer patients. 
TARGET uses a series of “predictive implication levels” to categorize assertions, 
allowing PHIAL to rank matching assertions by the comparative rigor of the aggre-
gated existing research into their potential effects (see Fig. 3.2). For example, the 

Aspect Examples

Acquisition Illumina HiSeq Mass-sequencing of many samples.

Illumina TruGenome Sequencing service for small numbers of samples.

Analyses FoundationOne Reports putative actionable alterations within 315
genes. Estimates immunotherapy response and
suggests clinical trial eligibility.

OncotypeDX Reports putative actionable alterations within small sets
of genes optimized for specific cancer types (breast,
colon, and prostate cancer).

PHIAL Reports putative actionable alterations with 307 genes.
Analyzes global features and attempts to identify novel
therapeutic applications.

Action Therapeutics E.g., imatinib, vemurafenib, trametinib, sorafenib,
gefitinib, etc.

Heritability
Counseling

E.g., BRCA1/BRCA2 (breast and ovarian cancer),
FANCA (Fanconi anemia).

Table 3.1  Examples of current techniques applied to fulfil several clinical interpretation unmet 
needs across the spectrum of precision cancer medicine

3  Clinical Interpretation



40

use of imatinib in a CML patient harboring the BCR-ABL fusion gene would be 
given an “FDA-Approved” predictive implication level due to imatinib’s status as 
an FDA-approved drug for patients in this setting, while the use of a molecule that 
has only been validated in mouse models would be given a “Level D” predictive 
implication level since it has not been tested in the clinic.

PHIAL also performs global feature analyses in order to make suggestions based 
on the overall “cancer state” of the patient, rather than individual alterations. One 
such global feature is the overall mutational burden of a given patient, which has 
been associated with differences in patient responses in several tumor types (includ-
ing metastatic melanoma [17], non-small cell lung cancer [34], and urothelial 
carcinoma [35]); PHIAL and TARGET record available information on how muta-
tional burden relates to actionability in various cancers, and PHIAL also reports 
when the observed mutational burden lies outside the norm for a patient’s type of 
cancer. Additionally, TARGET contains information about how the presence of cer-
tain mutational signatures, discussed above, relate to potential clinical actions; work 
is underway to enable PHIAL to derive and interpret mutational signatures using 
genetic data from a single patient.

This case study demonstrates the paradigm shift occurring in the field of clinical 
interpretation away from using single alterations to make clinical predictions and 
towards the synthetic use of multiple features to obtain a global view of a patient’s 
disease, leading to an ability to make more accurate predictions and suggest more 
precisely targeted therapies. As PHIAL moves from a heuristic system based on the 
detection of damaging alterations towards the use of global features such as muta-
tional burden and mutational signatures, it gains the ability to better model the 
underlying mutational processes occurring in a patient. In the future, PHIAL and 
similar systems could combine biological knowledge of the interplay observed in 
pathways associated with cancer with an accurate modeling of how these pathways 
are disrupted in individual patients to suggest novel uses of pre-existing drugs that 
could have a biological effect based on their mechanisms of action, or help guide 
cancer researchers by highlighting how pathways are disrupted across cohorts of 
patients within a cancer type. As the ability of these systems to more finely discrimi-
nate between disease processes improves, the categorization of cancer types may 

FDA-Approved

Level A

Validated association between the alteration
and an FDA-approved clinical action.

Alteration is or has been used as an eligibility
criterion for a clinical trial.

Limited early clinical evidence supports the
alteration-action relationship.

Level B assertion seen in a different tumor
type than studied (used by PHIAL).

Preclinical evidence supports the
alteration-action relationship.

Inferential evidence supports the
alteration-action relationship.

Level B

Level C

Level D

Level E

Fig. 3.4  The predictive implication levels used by TARGET to classify the likelihood of an 
alteration-action relationship’s clinical impact
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move from the current tissue-based ontology (e.g., breast cancer, bladder cancer, 
prostate cancer, etc.) to a feature-based ontology predicated upon recurring muta-
tional patterns.

3.4  �Challenges

Improving clinical interpretation promises many potential benefits; as cancer treat-
ment moves towards a precision medical model and drugs become more specifically 
targeted, it will become increasingly more important that patients are correctly 
assigned appropriate treatments. Achieving this goal requires that researchers and 
clinicians surmount several obstacles.

3.4.1  �Tissue Acquisition

In order to sequence patient genetic data, it is necessary to extract DNA and RNA 
from patient tissue samples. The quality of these samples correlates with sequenc-
ing accuracy; contaminated samples will result in high sequencing error and an 
inability to derive useful information from a sample.

The most common method of sample acquisition creates archival formalin-fixed 
paraffin-embedded (FFPE) tissue, which performs well at maintaining cell mor-
phology over long periods of time. However, the FFPE process severely degrades 
DNA and RNA, resulting in low purity samples and high rates of sequencing error. 
Fresh frozen samples are far better at maintaining the integrity of DNA and RNA, 
but have not achieved the same popularity as FFPE tissue; frozen samples are more 
difficult to acquire, and incur higher costs to archive compared to FFPE, which can 
be stored at room temperature.

To perform accurate clinical interpretation, it will be necessary for institutions to 
standardize their methods for acquiring tissue samples intended for genetic analy-
sis, and for researchers to optimize methods for extracting genetic information from 
impure samples. FFPE tissue has become more useful with the introduction of 
NGS; parallel sequencing allows higher coverage of targets of interest, providing 
more power to detect alterations despite the low quality of individual reads [22]. 
Alternative methods of sample acquisition may also further increase the number of 
patients who are able to undergo genetic testing (see “Liquid Biopsies”).

3.4.2  �Sequencing Approaches and Infrastructure

Generally, three approaches are taken in genetic sequencing: whole-genome 
sequencing (WGS), which determines the entire genetic sequence of an individual; 
whole-exome sequencing, which only provides the sequence of an individual’s 
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coding regions of DNA; and targeted panels, which only sequence certain pre-
determined genetic loci (generally of areas known to be frequently mutated in can-
cer and associated with clinical actions). More comprehensive sequencing methods 
(such as WGS) provide more information that may lead to clinical actions, particu-
larly when searching for large-scale alterations such as rearrangements and large-
scale deletions, but also demand higher costs. The sequencing of additional genetic 
information can provide additional important genetic information; for example, 
RNA sequencing can help identify expression level changes and increase confi-
dence in alteration detection. It is thus important that patients receive a level of 
sequencing that allows accurate clinical interpretation at a non-prohibitive cost that 
allows widespread adoption [36].

Access to sequencing infrastructure also factors into patient access to precision 
cancer medicine. The relatively high cost and specialized equipment required to 
perform high-quality genetic sequencing generally limits its use to large academic 
centers, limiting the ability of patients in medically underserved areas to receive 
targeted therapies. It is also vital that physicians receive accurate and contemporary 
education on how to use and interpret modern genetic tests. Oncology remains one 
of the most rapidly advancing fields in medicine, and it is challenging for clinicians 
to remain abreast of ongoing research and clinical trials that could benefit their 
patients. Additionally, the over-representation in genetic studies of individuals of 
European descent has resulted in a dearth of research on potential genetic differ-
ences that could alter drug response rates and outcome prognostics in patients of 
different ethnicities [37]. Researchers must seek to include a greater diversity of 
patient populations in future studies to ensure that as many patients as possible can 
receive targeted treatments.

3.4.3  �Clinical Adoption

No matter how accurate its predictions, a clinical interpretation system will not 
provide benefit to patients unless it successfully integrates itself into the clinic. 
Multiple factors can slow clinical adoption. Cost remains a potential deterrent, espe-
cially at institutions not located within major academic centers; while the price of 
capturing a genome, exome, or targeted gene panel from a patient has rapidly 
decreased in recent years, performing these procedures requires the use of special-
ized sequencing machines with high reagent and maintenance costs, reducing the 
likelihood that a non-academic center will have easy access to them. Clinician edu-
cation also presents a potential barrier. Although a major advantage of clinical inter-
pretation is its ability to rapidly provide information to clinicians about the most 
recent research relevant to their patients, it also requires that clinicians understand 
how to interpret the information generated by clinical interpretation systems and 
apply it in their practice. Doing so will require that researchers develop methods for 
meaningfully ranking actionability suggestions and emphasizing what is unique 
about a patient’s disease state and how that knowledge can be leveraged to provide 
clinical benefit.
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3.5  �Future Approaches

The field of clinical interpretation moves rapidly alongside oncology research, 
incorporating new discoveries and techniques for analyzing patients as they become 
available. New and less costly methods of acquiring patient samples allow for 
greater exploration of sequence data in more patients. Improved clinical interpreta-
tion systems allow clinicians to make greater use of patient data and make novel 
insights into potential actions they may take. New methods for curating alteration-
action relationship databases increase the potential impact of discoveries and the 
audience of patients that could benefit from them. Improved reporting of action 
suggestions increases the likelihood that clinicians will be able to act on the sugges-
tions made by interpretation systems and bring precision medicine into the clinic.

3.5.1  �Acquisition Improvements

Currently, FFPE sample acquisition is the most-used technique in the clinic. As 
described above, the FFPE process is not optimal for use in sequencing; techniques 
such as fresh tissue freezing prevent degradation of genetic information, and result 
in more accurate sequencing results. It is possible that wider acquisition of fresh 
frozen tissue will be encouraged among institutions as precision medicine tech-
niques supplant the exclusive use of histology in managing cancer patients. However, 
many advances have been made in adopting FFPE samples for use in genetic profil-
ing [5, 38, 39]; this approach not only allows institutions to continue to use standard 
FFPE procedures, but also enables researchers to make use of archived samples 
acquired before modern sequencing techniques existed [40]. Future developments 
will likely include research into new tissue sampling methods optimized for genetic 
profiling, as well as improved protocols for making the most use out of existing 
sampling methods.

3.5.2  �Analysis Improvements

Reduced sequencing costs will allow researchers and clinicians to use greater 
amounts of data to inform clinical decisions. Initially, only targeted panels com-
posed of genes well-known to be involved with cancer were sequenced and ana-
lyzed; while useful, these panels do not capture the full alteration landscape of each 
cancer patient, and thus limit their ability to make clinical suggestions. Panels also 
impair future cancer research; even if a patient’s data does not implicate a known 
therapeutic option at the time of sequencing, it may contribute to research that leads 
to the development of a future therapy. As sequencing costs continue to decrease, 
greater numbers of patients will have access to more comprehensive forms of 
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sequencing, such as WES and WGS. One approach to utilizing this increased quan-
tity of data is to develop pan-cancer clinical interpretation systems that draw from 
frequently updated databases of alteration-action associations (e.g., the pairing of 
the PHIAL clinical interpretation system with the TARGET database; see PHIAL 
case study above). However, it will soon become possible for interpretation systems 
to move beyond alteration-based prediction to feature-based prediction, in which 
exome- or genome-wide information is synthesized to make prediction. An early 
example of this approach lies in the use of mutational signatures [18] to classify 
cancers by the specific mutational processes that are taking place as they progress, 
rather than by the tissue type they appear in.

The acquisition of greater quantities of data per patient, combined with the 
greater number of patients from which samples may be acquired, will provide new 
opportunities for applying artificial intelligence approaches to clinical interpreta-
tion, particularly in the field of machine learning (ML) [41]. In ML, large quantities 
of data samples are collected and used to train algorithms to better classify novel 
data. In general, ML methods are divided into supervised and unsupervised tech-
niques. In supervised learning, large amounts of input training data are pre-classified 
by a researcher (e.g., a genetic sequence sample might be labeled as belonging to a 
patient with metastatic prostate cancer resistant to androgen deprivation therapy). 
An ML algorithm may then use this set of training data to “learn” a generalized 
approach to classifying new information not contained in the training set. In con-
trast, unsupervised learning involves the classification of data without the benefit of 
learning from pre-labeled data (e.g., classifying the cancer types corresponding to 
several genetic sequence samples with no accompanying clinical information). 
Several ML techniques have already been applied to cancer research and clinical 
interpretation [41–43].

Increased use of cancer-related databases will also improve clinical interpreta-
tion by providing clinical interpretation systems with additional information they 
may relate to patients. It is apparent that several kinds of databases will be needed 
to optimize precision medicine delivery.

Databases capturing population-level statistics on alteration prevalence will 
assist interpretation systems by helping determine which alterations are potentially 
deleterious and which are likely benign by filtering out variants that are relatively 
prevalent in normal populations [44, 45]. One such database, the Exome Aggregation 
Consortium (ExAC) [46], pursues this goal via a collection of over 60,000 exomes 
aggregated from multiple studies; its planned successor, the Genome Aggregation 
Database (gnomAD) [47], seeks to create an even larger database that includes 
genomic data.

There is a perhaps even greater need for databases that track the associations that 
have been discovered between genetic alterations and clinical actionability. 
TARGET, described above in the PHIAL Case Study, is one example of such a 
database; it chooses to focus on including a wide spectrum of alteration-action dis-
coveries, whether or not they have been clinically validated. Other databases, such 
as the Precision Oncology Knowledge Base (OncoKB) [48] and My Cancer Genome 
[49], also capture clinically actionable alteration information with more focus on 
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clinically validated information. All of these databases must stay current with the 
rapidly changing field of oncology and the massive quantity of new information that 
is released daily in newly published literature, a process termed biocuration. 
Currently, most databases pursue a manual curation approach, in which researchers 
and physicians periodically review current literature and add new findings to their 
database. This approach results in high-quality additions that are highly relevant to 
cancer and have a high likelihood of clinical applicability, but also inevitably creates 
a delay between new developments and the ability for clinical interpretation. Several 
research projects involve the development of methods to automatically curate new 
literature and extract information relevant to researchers. One such method, 
PubTator [50], assists biocuration efforts by attempting to automatically detect 
“bio-entities” (names of genes, diseases, species, chemicals [such as drugs], and 
mutations) in article abstracts. Methods that focus more specifically on cancer 
include EMU (extractor of mutations) [51], MutationFinder [52], and tmVar [53], 
all of which focus on identifying references to various genetic alterations within 
journal articles.

3.5.3  �Action Improvements

As precision oncology research develops, greater numbers of drugs targeted to spe-
cific genetic alterations or cancer stated will be developed. As the clinician’s arma-
mentarium grows, it is important that clinical interpretation systems accurately 
represent how precision therapies can help their patients. Thus, researchers develop-
ing clinical interpretation systems must focus not only on producing accurate results 
for patients, but also explore how to design intuitive user interfaces that display their 
results in a manner that enables accurate physician understanding.

This will be a particular important area to explore with regard to clinical trial 
matching. A cornerstone of precision medicine is the execution of trials with care-
fully defined inclusion and exclusion requirements that enable researchers to tease 
apart how a candidate drug affects patients with different alteration states. However, 
the rapid proliferation of these trials, combined with increasingly complex eligibil-
ity requirements, has resulted in an incomplete understanding on the behalf of indi-
vidual physicians about which of their patients could qualify for which trials. This 
is a particular important problem for patients that have failed all available standard 
therapies. Clinical interpretation systems could provide significant improvements in 
patient treatment by matching patient genetic information with clinical trials that 
could provide a benefit, and by providing clinicians an interface that allows them to 
quickly evaluate their patient’s suitability for the trial and enroll the patient.

Electronic medical records (EMR) systems offer a potential avenue through 
which clinical interpretation systems can present their findings in the context of a 
patient’s clinical history. They also have the opportunity to increase the amount of 
information available to researchers, allowing clinical interpretation systems to both 
provide insights to patients and bring new data back to the lab. The developments of 
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targeted therapies requires not only the acquisition of patient genetic data but also 
the ability to match that data to the phenotypes observed in patients. The additional 
clinic information stored in EMR systems could be a source of this information; 
however, innovators must be careful to preserve patient privacy as data are shared 
between individuals and institutions.

3.6  �Conclusion

Advances in computational biology techniques, alongside the acquisition of vast 
amounts of knowledge on cancer pathways and increased availability of genetic 
sequencing, have enabled the field of precision medicine to grow dramatically. 
Research insights hold new promise for patients who have few or no remaining 
standard treatment options, and new analysis techniques have the potential to mas-
sively increase the number of targeted therapies available to patients. However, 
rapid, accurate, and comprehensive clinical interpretation techniques are required to 
fulfill the promise of precision medicine to patients. Novel targeted therapies cannot 
make an impact unless physicians can unambiguously identify who will respond to 
them. As researchers make new discoveries in the biology of cancer, clinical inter-
pretation will be critical to giving their discoveries meaning in the clinic.
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4.1  �Introduction

Over the past decade, large-scale genomic surveys have uncovered a wide landscape 
of somatic alterations in cancers, both across different types and within histopatho-
logically identical sub-types. The contribution of this molecular heterogeneity 
towards clinical outcome (e.g. overall survival, response, toxicity) has become the 
focus of intense study and is undoubtedly an important component of precision 
cancer medicine. Importantly, as our understanding of cancer as a heterogeneous 
and complex disease continues to evolve, so do the approaches towards therapeutic 
discovery [1, 2]. Currently, multiple targeted therapies to matching genomic altera-
tions have been approved by the Food and Drug Administration (FDA) while many 
others are being evaluated in clinical trials. While the availability of cancer genomic 
testing in the clinic has led to opportunities in oncology such as drug target discov-
ery, it has also led to challenges including how to develop targeted therapies for 
small populations of patients.

Since many of the targetable alterations typically occur at low frequencies within 
a single tumor type, accrual of patients in clinical trials becomes a challenge. In this 
chapter, we outline the opportunities and challenges presented by precision medi-
cine and clinical trial implementation.
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4.2  �Target Discovery and Validation

Clinical implementation of precision medicine involves two broad approaches: gen-
otype to phenotype strategy where trials select for genomic alterations that may 
predict for response to therapy, and phenotype to genotype strategy where patients 
who had an exceptional response are retrospectively analyzed to identify molecular 
features associated with response. While cancer genomic testing has facilitated the 
identification of novel targets, it has also raised challenges for clinical implementa-
tion. The effectiveness of targeted therapy depends on matching with the right tar-
get; targets that are differentially expressed in tumor cells and provide growth and 
survival advantage as a driver mutation. While the mutational rates vary across dif-
ferent tumors, only a few represent driver mutations whereas most are passenger 
mutations that do not provide selective growth advantage. However, it is often chal-
lenging to ascertain the clinical significance of driver mutations that are potentially 
actionable through matching targeted therapies. While potential activation and 
actionability is often inferred based on the location of alterations (e.g. kinase 
domains), activation through mutations in non-kinase domains can also be observed 
(pleckstrin homology in AKT1) [3, 4]. Thus, for actionability, functional character-
ization of the mutation with alteration at the level of protein is important [5]. 
However, this information is often not available. Also, presence of concurrent muta-
tions can affect the response to targeted agents; this variability is often not captured 
in preclinical models. Thus, enrollment into clinical trials with matching targeted 
therapy is often predicated on limited preclinical data that the specific biomarker or 
variant predicts for response.

Currently, while there are numerous approved therapies that target gain-of-
function oncogenic mutations and are approved for clinical use, there is dearth of 
therapies that are effective against tumor suppressors. Thus, TP53 the most com-
monly mutated cancer gene is currently not actionable. Further, it has been chal-
lenging to develop drugs for certain oncogenes due to their structure. The RAS 
proteins (HRAS, KRAS, NRAS) belonging to the family of small GTPases are 
among the most commonly mutated oncogenes across multiple tumors [6]. However, 
efforts to develop direct inhibitors of have not been successful thus far.

To support precision medicine initiatives, the American Society of Clinical 
Oncology (ASCO) has launched the TAPUR (The Targeted Agent and Profiling 
Utilization Registry) study to evaluate the safety and efficacy of FDA approved 
targeted agents in patients with advanced cancers with matching actionable genomic 
alterations. Through collaborating pharmaceutical entities, the study provides 
molecularly targeted drugs to discern benefits beyond the approved indication and 
collects data on outcomes to develop hypotheses for future clinical trials [7].
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4.3  �Implications of Tumor Heterogeneity

Intratumor heterogeneity is a phenomenon in which somatic alterations vary across 
different clonal cell populations within the same tumor or across tumors from dif-
ferent foci in the same patient. Recent high-throughput sequencing studies have 
demonstrated have demonstrated molecular heterogeneity in several tumor types 
including clear cell renal cell carcinoma, lung adenocarcinoma, and acute myeloid 
leukemia [8–10]. Gerlinger et al. performed sequencing analysis to highlight the 
degree of molecular heterogeneity and the limitations of a single representative 
biopsy [9]. Multiple tissue biopsies from primary and metastatic sites revealed var-
ied tumor sub-clones and mutations suggesting that a biopsy and genomic profile 
from a single lesion or site may not be representative. The contributions of intratu-
mor heterogeneity towards the natural history of cancers, response to therapy, and 
risk of relapse / recurrence are areas of on-going investigation. Nonetheless, there 
are clear hypothetical implications for modern clinical trial design. For example, in 
cases where a particular biomarker varies spatially within a tumor, clinical studies 
based on that maker can be susceptible to cross-contamination as a result of tumor 
sampling biases. That is, whether an individual subject is labeled as biomarker-
negative or positive may be influenced by the ability of a biopsy to capture the rel-
evant clonal population within the tumor. Furthermore, the clinical relevance of a 
genomic alteration (and by proxy the treatment efficacy) can theoretically depend 
on the abundance of the alteration within the same tumor. Also, pretreatment of 
tumors with cytotoxic therapies can often lead increased genomic instability and 
alterations making interpretation of tumor evolution and heterogeneity an arduous 
task [11]. Despite the prevalence of mutations restricted to specific sites of metasta-
sis, it is expected that targeting the “truncal” mutations would likely lead to signifi-
cant tumor responses.

Molecular heterogeneity across patients with histopathologically identical tumor 
types raises important challenges for clinical trial design and targeted therapeutic 
development. Foremost among these is the observation that when analyzing 
unselected patient groups, the degree to which a treatment benefit can be detected is 
highly dependent on the prevalence of the presumed molecular target(s) within the 
study population. Sleiffer et al. modeled this phenomenon as it pertains to the anti-
human epidermal growth factor receptor 2 (HER2) agent trastuzumab and its use in 
breast cancer [2]. In a phase III study of 469 women with advanced HER2-positive 
breast cancer, treatment with trastuzumab plus chemotherapy combination was 
associated with improved progression-free survival compared to chemotherapy 
alone (hazard ratio, 0.51, 95% CI, 0.41 to 0.63) leading to FDA approval [12]. 
Interestingly, it was projected that the clinical study conducted in an unselected 
population (i.e., both HER2-positive and negative tumors) would require at least 
2500 patients in order to achieve 90% power with reduction in hazard ratio to 0.9. 
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Furthermore, at a fixed effect size of HR 0.4, the estimated number of patients 
required to detect benefit at 90% power varied substantially depending on the preva-
lence of HER2-positivity: from 7540 patients at 10% prevalence to 114 patients at 
80% prevalence. Thus, without biomarker selection approval of trastuzumab would 
not have been feasible. Altogether, clinical trials of anti-HER2-directed therapy in 
breast cancer exemplify a best-case scenario in which the drug mechanism is well 
known and a biomarker (e.g. HER2 amplification) exists to reliably identify a patient 
subpopulation that is predicted to benefit from treatment. As an additional conse-
quence, other subgroups of patients are able to avoid unnecessary treatment and/or 
harms. However, as the landscape of somatic tumor alterations grows ever complex, 
there is still a relative deficit of studies that examine the functional consequences of 
these alterations. Therefore, it seems more likely that investigators will encounter a 
scenario in which the mechanism of action is only partially defined and therefore 
the assumption of treatment benefit in various molecular subgroups cannot be made.

Intertumor molecular heterogeneity seems relevant not only to the development 
of targeted therapies, but also of novel immunotherapies. In a phase II study of 945 
patients with unresectable stage III or stage IV melanoma, treatment with the anti-
programmed death 1 (PD-1) check point inhibitor nivolumab was associated with 
improved progression free survival compared to treatment with anti-cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4) inhibitor alone [13]. However, sub-
group analyses showed that survival benefit was significantly higher in patients with 
tumors that had detectable expression of programmed cell death 1 ligand (PD-L1) 
as compared to those that did not (14.0 months vs. 5.3 months).

4.4  �Clinical Trial Paradigm

Advances in tumor genome analysis have created a fundamental shift in clinical 
trial paradigm. The classical clinical trial eligibility based on histopathology is 
being phased out in favor of enrollment based on molecular alteration. Due to 
increasing emphasis on biomarker and patient identification, clinical trials that inte-
grate genomic and proteomic approaches have increased noticeably. Molecular 
enrichment, in addition to identifying potential responders, helps avoid treatment of 
patients who are unlikely to be benefit from therapy. While, target enrichment can 
potentially limit accessible patient population and accrual, due to biomarker selec-
tion and matched targeted therapies studies can be designed with large treatment 
effects to compensate for reduction in numbers enhancing the probability of success 
of the clinical trial and drug approval.

Recognition of tumor heterogeneity and clonal tumor evolution has led to wide-
spread adoption of enrichment strategies and tumor tissue collection to assess cor-
relatives in clinical trials. Acquired resistance to targeted therapies with prolonged 
exposure invariably develops in most patients. Although mechanisms of resistance 
tend to vary across different targeted therapies there are often shared principles. 
Consequently, most clinical trials mandate pre-treatment biopsies to identify predic-
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tive biomarkers and post-progression biopsies after response to identify secondary 
mechanisms of resistance. This has enabled identification of secondary alterations 
in the target leading to the development of next generation of agents that are effec-
tive against gatekeeper mutations in alterations such as EGFR and ALK [14, 15]. 
Alternatively, characterization of alternative pathways for survival that bypasses the 
target (e.g. MET amplification and resistance to gefitinib), have led to efforts on 
identification of rational targeted therapy combinations to delay or overcome 
resistance.

Due to biomarker selection and notable tumor responses to matching therapies in 
susceptible populations, phase-1 trials often provide unequivocal evidence of clini-
cal activity and benefit. Consequently, a large confirmatory randomized clinical 
may not be obligatory for regulatory approval. Lately, this has led to the accelerated 
approval of novel targeted therapies based on activity observed in early phase trials 
[15–17].

4.5  �Enrichment and Adaptive Strategies

Genomic analyses have corroborated that cancer is a heterogeneous disease charac-
terized by varying degree of sensitivity and responses to treatment. Thus, it is essen-
tial to identify or enrich for subsets of patients who are likely to benefit from 
treatment. Enrichment is a biomarker-driven strategy that utilizes a priori knowl-
edge about the putative target of a study drug to select a subgroup of patients that is 
hypothesized to benefit (Fig. 4.1a). By definition, this approach depends upon the 
presence of a biomarker assay that can reliably discriminate between patient popu-
lations. Patients who are putatively treatment-sensitive are selected for enrollment, 
whereas treatment-resistant patients are excluded. Enrichment design offers some 
advantages. The sample size required for a well-powered study decreases as the 
sample is enriched for putative responders. Also it avoids exposure to the drug in 
populations who are unlikely to benefit. Target enrichment has been successfully 
implemented in several recent trials leading to approval of novel targeted therapies 
(e.g. vemurafenib for BRAF V600E mutated melanomas, trastuzumab for HER2 
amplified breast and gastric cancers). Interestingly, the initial evaluation of endo-
crine therapy was carried out in an unselected breast cancer population. However, 
due to the high prevalence of estrogen receptor positivity in breast cancer, clinical 
activity was discernable even in a non-enriched patient population. On the other 
hand, use of trastuzumab without enrichment for HER2 positivity, would not have 
been able to identify significant clinical efficacy.

Adaptive design strategies have become particularly useful in settings where a 
priori knowledge of predictive biomarker(s) for a given agent is either lacking or 
insufficient at the outset of a study (Fig. 4.1b). For example, a study may begin with 
an unselected patient population that is randomized into one or more treatment 
arms. Efficacy data and prospective biopsy data from this stage of analysis can be 
used to discover novel predictive biomarkers. An enriched phase III cohort can 
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thereafter be developed for additional testing in the treatment arm. Concurrently, 
treatment arms that lack promising efficacy data can be closed. Enrichment and 
adaptive strategies lend an appealing degree of agility to modern drug development 

Fig. 4.1  Enrichment and adaptive strategies for precision medicine trials. (a) Enrichment 
based on a prospectively identified biomarker to compare biomarker-guided therapy with conven-
tional therapy (b) Biomarker identification and population enrichment for expansion in larger 
cohort
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by enabling focused and hypothesis-driven investigation. However, this agility 
brings some important limitations-namely, that iterative biomarker-based patient 
selection decreases sample sizes and makes generalizability even more challenging. 
For common cancers, these limitations are readily overcome by expanding recruit-
ment. For rare cancers, these limitations may make enrichment / adaptive design 
less appealing.

4.6  �Umbrella or Master Trials

As discussed above, enrichment and adaptive-design can help accelerate investiga-
tion of individual therapeutic targets. Building upon these advancements, additional 
strategies such as umbrella and basket trials have emerged to facilitate systematic 
and large-scale investigation in an increasingly complex genomic landscape.

Umbrella studies provide a biomarker-integrated, histology-dependent frame-
work for clinical investigation of multiple therapeutic targets in a population of 
patients with identical tumor types. In the typical umbrella study design, standard-
ized biomarker profiling (e.g. multiplex gene panel sequencing) is used to define 
molecular subgroups of patients within the study population, which are then 
matched to particular arms of the overall study (Fig. 4.2a). Table 4.1 lists represen-
tative examples of the umbrella trial design.

The BATTLE-2 trial (BATTLE-2 Program: A Biomarker-Integrated Targeted 
Therapy Study in Previously Treated Patients With Advanced Non-Small Cell Lung 
Cancer) is a phase-2, multi-stage umbrella trial designed to evaluate the effects of 
targeted therapies in KRAS-mutated metastatic non small cell lung cancer (NSCLC). 
This study highlights some important advantages and limitations with the umbrella 
design [8]. Patients underwent tumor genome profiling and were randomly assigned 
to four hypothesis-driven treatment groups: (1) erlotinib, (2) erlotinib and MK-2206 
(Akt inhibitor), (3) MK-2206 plus AZD6244 (MEK inhibitor) or (4) sorafenib. In 
the first stage of the study, the primary end-point (disease control rate (DCR) at 
8 weeks) was compared across all four arms, with the first arm (erlotinib alone) 
serving as the reference group. A second stage was conceived whereby the efficacy 
data from the first stage would be used to identify predictive biomarkers for the four 
arms of treatment and therefore enrich their respective patient populations. While 
the intent of the first half was to perform prospective testing of biomarkers to iden-
tify predictive biomarkers to guide patient assignment for the second part, results 
from the first stage revealed overall modest activity without significant survival dif-
ference between the treatment arms yielding new predictive biomarkers. 
Consequently, stage two of the study was not pursued. Though, patients with mes-
enchymal tumors had improved survival when treated with MK-2206 and AZD6244 
when compared to those with epithelial tumors [18].

I-SPY2 (Investigation of Serial Studies to Predict Your Therapeutic Response 
with Imaging and Molecular Analysis) is an adaptive, phase-2 study of neoadjuvant 
therapy for high- risk clinical stage II or III breast cancer to identify novel targeted 
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Fig. 4.2  Umbrella and basket trial designs. (a) Umbrella or master trial – patients of similar 
tumor type are screened for biomarkers and allocated to matching targeted therapies. (b) Basket 
trial – patients across multiple tumor types are screened for molecular alteration of interest(s) and 
treated with matching targeted therapy (tumor agnostic)
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therapies in combination with standard chemotherapy to improve rates of pathologi-
cal complete response. Patients underwent adaptive randomization to either stan-
dard chemotherapy with an experimental regimen or standard chemotherapy alone. 
Ten clinically relevant biomarker signatures, based on HER2 status, hormone-
receptor status, and 70-gene profile (MammaPrint, Agendia) were used to assess 
efficacy. Therapies that meet pre-specified thresholds of efficacy are said to “gradu-
ate” for further evaluation. This study has identified two agents, veliparib in combi-
nation with carboplatin in triple negative, and neratinib in HER2 positive tumors as 
promising agents to be studied in phase-3 study [19, 20].

ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and 
Sequencing Trial) trial is planned to screen nearly 8000 patients with early stage 
non-small cell lung cancer to identify patients with alterations in EGFR or ALK 
genes. Patients with EGFR mutations would be enrolled on a randomized trial eval-
uating erlotinib, and patients with ALK fusions would be enrolled on a randomized 
trial evaluating crizotinib. The trial involves genomic analysis of primary tumor and 
at the time of relapse along with circulating tumor DNA.

The Lung-MAP (Lung Cancer Master Protocol) will screen approximately 1000 
patients with advanced squamous lung cancer who have progressed after one line of 
chemotherapy to identify actionable genomic alterations using a commercial tar-
geted gene panel (Foundation Medicine, Cambridge, MA) [21]. Subsequently, 
patients would be randomized to one of several phase-2/3 trials evaluating matching 
targeted therapies with a control arm of standard therapy. Patients without any 
genomic alterations of interest will be enrolled in the arm testing immunotherapy.

As exemplified by BATTLE-2 or I-SPY2, umbrella trial designs can provide the 
advantage of exploring multiple lines of novel therapy in parallel across a well-
characterized patient population. The design is agile, insofar as individual arms of 
the study can be selected or halted based upon interim efficacy data, thereby pro-
moting efficient investigation. These features can be particularly useful in uncom-
mon or rare cancer types. However, the logistical requirements of umbrella designs 
are non-trivial, including large sample size, centralized patient tracking, robust and 
high-throughput biomarker profiling.

Table 4.1  Umbrella trials

Trial Tumor type Design Clinical trial ID Reference(s)
BATTLE NSCLC Phase II/III NCT00409968 [34]

BATTLE-2 NSCLC Phase II/III NCT01248247 [18]
ALCHEMIST Adenocarcinoma lung Phase III NCT02194738 [35]
I-SPY2 Breast Phase II NCT01042379 [36]
Lung-MAP Lung Phase II NCT02154490 [21]
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4.7  �Basket Trials

Basket trials offer a similar framework for investigating multiple therapeutic targets 
in parallel, but differ from umbrella design in that it is histology-independent 
(Fig. 4.2b). Despite the increasingly complex spectrum of genomic alterations, clear 
patterns are emerging across different cancer types. Recognition of this has given 
rise to the hypothesis that molecularly defined tumors will respond to targeted ther-
apy against a common vulnerability regardless of tissue of origin. Since many of the 
actionable alterations typically occur at low frequencies within a single tumor type, 
accrual of patients in clinical trials becomes a challenge. For instance, in contrast to 
ERBB2 amplification, observed in approximately 20% of breast cancers, activating 
point mutations in ERBB2 are observed in only 1–2% of breast cancer patients [22]. 
Preclinical studies showed that these mutations while conferring resistance to lapa-
tinib were sensitive to neratinib, an irreversible ERBB2 inhibitor [22]. Consequently, 
a phase 2 study of neratinib, restricted to metastatic ERBB2-mutant breast cancer is 
currently underway [23]. While this standard approach is amenable for a common 
tumor type like breast cancer, it is not pragmatic for less common tumor types with 
rare genomic alterations. Thus, basket trials, where accrual is open to patients across 
multiple tumor types based on a specific genomic alteration (e.g BRAF, FGFR) 
instead of confining to a single tumor type, have been explored. While basket trials 
facilitate patient accrual, importantly they also help to assess whether different 
tumor subtypes harboring specific genomic alterations would indeed respond to tar-
geted inhibition. The presence of an actionable alteration does not guarantee 
response to a matching targeted therapy. For instance, BRAF mutant colon cancers 
do not show sensitivity to BRAF inhibition as melanomas with similar mutation 
[24]. This was demonstrated to be due to EGFR-mediated reactivation of MAP 
kinase pathway, and combined EGFR and BRAF inhibition was able to improve 
response [25]. Representative basket trials that are complete or in progress are listed 
in Table 4.2.

One of the largest basket trial endeavors launched to date is the NCI-MATCH 
(National Cancer Institute-Molecular Analysis for Therapy Choice) [26]. The trial 
was opened in August 2015 with the intention of screening 3000 patients harboring 
refractory solid tumors or lymphomas for enrollment into one of ten treatment arms 
based on molecular matching. Each treatment arm focuses on a molecular target 
(e.g. ALK, BRAF, PIK3CA, ERBB2) for which there was either an FDA-approved 
agent available or a novel agent identified in early-phase clinical studies (Table 4.3). 

Table 4.2  Basket trials

Trial Design Clinical trial ID Reference(s)

NCI-MATCH Phase II NCT02465060 [26]
NCI-Pediatric match Phase II NA [26]

NCI-MPACT Phase II NCT01827384 [28]
CUSTOM Phase II NA [29]
VE-BASKET Phase II NA [31]
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Table 4.3  FDA approved targeted therapies

Gene Alteration Cancer Agents

Biomarker 
selection 
required

BCL2 Deletion 17p CLL Venetoclax Yes
BCR-ABL Rearrangement CML, ALL Imatinib, Nilotinib, 

Dasatinib, Bosutinib, 
Ponatinib

Yes

BRAF Mutation Melanoma Vemurafenib, Dabrafenib, 
Trametinib, Cobimetinib

Yes

BRCA1/2 Mutation Ovary Olaparib Yes

CD20 Expression CLL, FL, NHL Rituximab, Obinutuzumab, 
Ofatumumab, Tositumomab, 
Ibritumomab tiuxetan

No

CD38 Expression Multiple myeloma Daratumumab No
CD52 Expression CLL Alemtuzumab No
CDK4/6 Amplification Breast Palbociclib No
cKIT Mutation GIST, 

Mastocytosis
Imatinib, Sunitinib, 
Regorafenib

Yes

COL1A1-
PDGFB

Rearrangement DFSP Imatinib Yes

EML4-ALK Rearrangement Lung Crizotinib, Ceritinib, 
Alectinib

Yes

EGFR Mutation, 
deletion

Lung Erlotinib, Gefitinib, Afatinib, 
Osimertinib

Yes

Expression Colon, head and 
neck, lung

Cetuximab, Panitumumab, 
Necitumumab

No

ERBB2 Amplification Breast, Gastrica Trastuzumab, Lapatinib, 
Pertuzumab, Ado-
trastuzumab emtansine

Yes

JAK1/2 Mutation Myelofibrosis, 
Polycythemia Vera

Ruxolitinib No

mTOR Mutation Breast, renal Everolimus, Temsirolimus No
PDGFRA Mutation GIST Imatinib, Sunitinib Yes
PML-RARa Rearrangement APL ATRA, arsenic trioxide Yes
RET Mutation Thyroid, lung Vandetanib, Cabozantinib, 

Lenvatinib
No

SMO and 
PTCH1

Mutation Basal cell Vismodegib, Sonidegib No

VEGF/ 
VEGFR

Expression Kidney, Colon, 
lung, gastric, 
cervix, ovary

Bevacizumab, Ramucirumab, 
Regorafenib, Ziv-aflibercept, 
Axitinib, Pazopanib, 
Sunitinib, Sorafenib

No

ALL acute lymphoblastic leukemia, APL Acute promyelocytic leukemia, ATRA all-trans retinoic acid, 
CDK4/6 cyclin dependent kinase, CLL chronic lymphocytic leukemia, CML Chronic myelogenous 
leukemia, COL1A1 collagen type I alpha 1, DFSP dermatofibrosarcoma protuberans, EGFR epider-
mal growth factor receptor, ERBB2 also known as HER2, FL follicular lymphoma, GIST gastrointes-
tinal stromal tumor, mTOR mammalian target of rapamycin, NHL non-hodgkin’s lymphoma, PDGFB 
platelet-derived growth factor B, PDGFR platelet-derived growth factor receptor, PTCH1 patched 1, 
RET rearranged during transfection, SMO smoothened, VEGFR vascular endothelial growth factor
aOnly trastuzumab is approved for use in gastric cancers
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After disease progression, patients who have more than one actionable alteration 
can potentially be eligible for another study that evaluates matching therapy to the 
second genomic abnormality.

The trial incorporates pre-treatment and post-treatment biopsies to evaluate 
mechanisms of acquired resistance. The study was briefly paused in November 
2015 for a pre-planned interim analysis, the results of which were reported in April 
2016 [27]. Of the 795 patients screened, 87% underwent successful biopsy and 
molecular profiling, which included colorectal, breast, pancreatic, and neuroendo-
crine cancers. It is notable that only 9% were found to have an actionable mutation 
that permitted matching into the one of the ten treatments arms. Nonetheless, the 
study showed that large-scale, high-throughput molecular profiling was feasible in 
such a way as to benefit both common and rare cancer types. The study has since 
re-opened with an expansion to include 14 additional treatment arms. 
Complementarily, the NCI-Pediatric MATCH will enroll children with advanced 
cancers who have progressed on standard therapy. As with the NCI-MATCH study, 
tumor genome sequencing will be used to identify children whose tumors harbor an 
actionable genomic abnormality and target with approved or investigational agent. 
This trial is planned to open for accrual in early 2017.

NCI-MPACT (Molecular Profiling-Based Assignment of Cancer Therapy) on the 
other hand seeks to determine if patients with a mutation in a certain pathway are 
more likely to benefit from a treatment that targets that pathway, as opposed to 
another treatment not targeting that pathway [28]. After tumor tissue analysis, eli-
gible patients are randomized 2:1 to a drug that targets the mutated pathway versus 
a drug that is not known to target the pathway. Patients who received treatment on 
non-targeted therapy arm will be allowed to cross over to a drug targeting the muta-
tion at progression. Currently agents that target the RAS, PI3K, and DNA repair 
pathways are being evaluated.

The CUSTOM (Molecular Profiling and Targeted Therapies in Advanced 
Thoracic Malignancies) trial was designed to evaluate multiple targeted therapies 
against matching molecular aberrations in NSCLC, small cell lung cancer and thy-
mic tumors [29]. Patients were enrolled into a standard-of-care treatment arm or one 
of the following five biomarker-enriched treatment groups: erlotinib for EGFR 
mutations; selumetinib for KRAS, NRAS, HRAS, or BRAF mutations; MK2206 
for PIK3CA, AKT, or PTEN alterations; lapatinib for ERBB2 alterations; and suni-
tinib for KIT or PDGFRA alterations. However, the study was not feasible due to 
limited patient accrual and lack of adaptive design.

Recently, a phase-2 basket trial of vemurafenib in BRAF V600 mutated non-
melanoma cancers, with the exception of papillary thyroid carcinoma and hairy cell 
leukemia, was reported [30]. Though the study enrolled 122 patients across various 
tumor cohorts clinically significant activity was observed in NSCLC, Langerhan’s cell 
histiocytosis, and Erdheim-Chester disease, suggesting that BRAF is an actionable 
oncogene only in selected tumors defined by histopathology. Basket trials for genomic 
alterations in FGFR, ALK, ROS1, and PI3K pathway activation are in progress.

Though basket trials have the potential to accelerate the discovery of targeted 
therapies it is unlikely that they would lead to direct regulatory drug approval. Due 
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to genomic variability across tumors, not all mutations are likely to be actionable 
across all tumors. While, they can help identify tumor type(s) with significant clini-
cal responses to pursue a subsequent biomarker enriched tumor specific clinical 
trial, interpreting treatment activity based on data from a small number of patients 
is a major challenge. While the observed responses might be notable, particularly 
for rare tumors with limited therapeutic options, it is difficult to make definitive 
inferences on clinical efficacy without a larger study, which may not be possible due 
to logistic issues. Nevertheless, the adaptive nature of basket trials allows to make 
rapid adjustments to incorporate emerging preclinical data to explore novel thera-
peutic combinations [30, 31].

4.8  �N of 1 Trial

While this method has been more frequently explored in the treatment of respiratory 
and musculoskeletal ailments, in oncology, such an approach could be utilized for 
rare cancers or genomic alterations with very low prevalence when randomized tri-
als are not feasible. The N of 1 trial approach allows patients to serve as their own 
controls. Patients with tumor genomic analysis are randomly assigned to matching 
targeted therapies or placebo in alternating sequence with an intervening washout 
period. Von Hoff et al. evaluated this approach in 86 patients with refractory meta-
static cancers who had molecular profiling performed [32]. Twenty seven percent of 
patients experienced longer progression free survival (PFS) on a regimen based on 
molecular profile compared to PFS with prior systemic therapy meeting the primary 
endpoint for the study (PFS ratio > 1.3 in 15% or more patients). Considering that 
meta-analysis involving over 30,000 patients has demonstrated that a precision 
medicine guided treatment strategy improves response rates and survival with less 
toxicity, N of 1 trial approach is rationale and practicable for select tumors [33].

4.9  �Conclusion

High-throughput genomic and proteomic techniques have enabled the identification 
of novel targets and matching therapies. While targeted therapies have transformed 
the approach to cancer care, their overall utility has been limited due to lack of sus-
tained responses and emergence of acquired resistance. Accordingly, intense efforts 
have been focused to identify rational targeted therapy combinations to delay or 
overcome resistance. With improvements in cost, time, and technology, a wider 
utilization of unbiased tumor profiling methods to increasingly define treatment 
approaches in future is anticipated. Therapy would be based more on genomic alter-
ations in a subset of patients with defined histopathology. Novel trial designs incor-
porating innovative statistical approaches will be required to enable treatment 
decisions based on small patient populations.
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Chapter 5
Resistance to Anti-Cancer Therapeutics

Jennifer A. Woyach

Keywords  Drug resistance · Chemotherapy · Targeted therapy · Precision 
medicine · Mutation · Tumor heterogeneity · DNA damage · Drug efflux

5.1  �Introduction

Resistance to anti-cancer agents is an issue that has plagued physicians and scien-
tists since the development of effective anti-cancer drugs. The scope of the problem 
of resistance is reflected in the consistently high death rate for advanced cancers, 
even in the era of molecularly targeted agents. Resistance can be differentiated into 
broad categories in a number of different ways. First, resistance can be either intrin-
sic to the cancer and present prior to the receipt of therapy, or it can be acquired as 
an adaptation to a previously effective therapy. While intrinsic resistance is often 
due to incomplete drug penetration or lack of reliance on the pathway being targeted 
and often affects multiple classes of drugs, acquired resistance is generally more 
complex and involves acquisition of specific mutations or specific adaptations of the 
cancer or the microenvironment to limit the effectiveness of one or a few classes of 
agents. As our tools to more effectively detect mechanisms of resistance expands, so 
does the complexity of the mechanisms underlying this issue.

In this review, we will discuss resistance in the context of specific therapies, and 
divide this broad topic into resistance to chemotherapeutic agents, and resistance to 
targeted therapies. While many resistance mechanisms affect both chemotherapeu-
tic and targeted agents, as the field moves toward more molecularly targeted thera-
pies, currently understood resistance mechanisms can help anticipate resistance 
toward new classes of agents and lead to the evolution of rational combination ther-
apies that may prevent or treat resistant disease.
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5.2  �Chemotherapy Resistance

5.2.1  �Introduction

Chemotherapy resistance can be intrinsic to tumor cells or can be acquired after 
exposure to therapy. Unfortunately, numerous mechanisms exist by which cancer 
cells can become resistant to therapy, and multiple mechanisms can exist in a single 
patient. Especially in solid tumors, tumor heterogeneity represents a mechanism of 
resistance in itself, but also can also lead to the evolution of multiple disparate 
mechanisms that can exert multi-drug resistance. Here I will describe some of the 
most common resistance mechanisms.

5.2.2  �Modulation of Drug Efflux from Cells

The classic mechanism of intrinsic chemotherapy resistance, primary to oral drugs, 
is through upregulation of drug efflux proteins. These proteins are members of the 
ATP-binding cassette (ABC) transporter family, and are responsible for drug efflux 
in normal cells, where they are present in the lining of the GI tract and blood brain 
barrier (Table 5.1). Multidrug resistance protein 1 (MDR1; also known as permea-
bility glycoprotein [P-gp]), is a member of this family, encoded by the ABCB1 
gene. This protein is often upregulated in cancer as an intrinsic abnormality, which 
can lead to reduced oral bioavailability of anti-cancer agents through excessive drug 
efflux [1–3]. Upregulation of MDR1 has also been shown to induce CYP3A4 
expression which can deactivate some anticancer drugs [4]. Although MDR1 is the 
primary drug efflux protein that has been found to be upregulated in cancer, other 
members of the ABC family have been shown to be present in cells that do not 
express MDR1, including multidrug resistance-associated protein 1 (MRP1), 
encoded by ABCC1 [5], and mitoxantrone resistance protein (MXR) [6].

In addition to intrinsic upregulation, MDR1 can be upregulated in response to 
therapy. A variety of drugs used throughout medicine can modulate MDR1, notably 
to cancer, both tamoxifen [7, 8] and retinoic acid [9] have been shown to upregulate 
MDR1, which can have negative repercussions for agents given concurrently. 
Interestingly, this phenomenon can be cell specific, such as in the case of doxorubicin 

Table 5.1  ABC family proteins known to be involved in drug resistance

Gene Symbol Alias Chromosomal Location

ABCA2 ABC2 9q34
ABCB1 MDR1, PgP 7p21
ABCC1 MRP1 16.13.1
ABCC3 MRP3 17q21.3
ABCG2 ABCP, MXR, BCRP 4q22
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in sarcoma, where the drug was shown to induce upregulation of MDR1 in lung 
tumor cells specifically, but not in normal adjacent lung tissue [10]. Multiple mech-
anisms likely exist for the activation of MDR1 post-therapy. It has been shown in 
ovarian cancer that the ABCB1 gene can be upregulated after therapy through 
acquisition of mutations resulting in gene fusions or translocations in addition to 
simple point mutations [11]. As well, demethylation of the ABCB1 promoter has 
been shown to upregulate MDR1, leading to a multi-drug resistant phenotype [12, 
13]. This diversity in mechanism of upregulation, and ubiquitous phenomenon of 
upregulation of MDR1 in response to therapy, has made predicting and overcoming 
this resistance mechanism extremely difficult.

5.2.3  �Intratumoral Heterogeneity and Cancer Stem Cells

All cancers, both solid and liquid, are heterogeneous to some degree, and in general, 
as cancers are treated, tumor heterogeneity increases. This is due both to natural 
genetic drift within the unstable tumor genome, and also specific abnormalities that 
are introduced as the result of agents which damage DNA. Within a tumor, therefore, 
there will likely exist some cells that have intrinsic drug resistance, and when treated, 
as the bulk of the tumor dies, the resistant clone can become dominant, leading to 
secondary drug resistance (Fig. 5.1) [14]. An increasing amount of data suggest that 
intrinsically resistant cells possess stem cell-like features (termed cancer stem cells) 
which may aid in the propagation of these resistant clones [15–17]. Through asym-
metric division, these stem cells continue to propagate both self-renewing and also 
more differentiated progeny, which leads to increased heterogeneity with multiple dif-
ferentiation stages present in a single tumor. After therapy, it has been shown that 

Fig. 5.1  Tumor Heterogeneity Leads to Resistance. Due to tumor heterogeneity, intrinsically 
chemoresistant cells can be present within a chemosensitive tumor. Following chemotherapy, 
resistant cells remain, and can lead to relapse
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cancer stem cell concentration increases, which both demonstrates the intrinsic resis-
tance of these cells and accounts for rapid growth in relapse [18, 19].

It has been suggested that the difference between cancer stem cells and non-stem 
cells is attributable to the process of the epithelial to mesenchymal transition (EMT) 
[20] that defines metastasis in solid tumors. During this transition, epigenetic and 
later genetic modifications occur, which results in the loss of epithelial characteris-
tics and gain of mesenchymal characteristics, including increased capacity for 
migration and invasion. This process, which is biased toward cells with stem-cell 
like characteristics, imparts a high degree of heterogeneity into the tumor, as certain 
cells are singled out for transition [21]. It has also been shown that cells resistant to 
therapy tend to have upregulation of genes common in stroma, which suggests that 
cells undergoing EMT are preferentially resistant to therapy [22].

5.2.4  �DNA Damage Checkpoint and Repair Mechanisms

Both normal and neoplastic cells have a complex mechanism to protect against 
DNA damage, which involves both detection of damage and response to damage 
including cell cycle arrest, DNA repair, or apoptosis, collectively referred to as 
DNA damage response (DDR) mechanisms. Mutations of genes involved in detec-
tion of DNA damage and DDR response, including ATM, are very common in can-
cer. When defects in specific DNA repair pathways are present such as this, the cell 
can be completely dependent upon a backup pathway, which can lead to sensitivity 
to specific classes of agents, but complete resistance against others. A notable exam-
ple of this is the cancer susceptibility genes BRCA 1 and 2 are representative genes. 
Although conferring susceptibility to cancer, by inactivating homologous recombi-
nation repair, BRCA 1 and 2 mutations confer relative sensitivity to DNA damaging 
chemotherapy agents. Conversely, reversion of BRCA1 or 2 to wild type through 
acquired mutation can be seen in cases of chemotherapy resistance [23–25].

5.2.5  �Genomic Complexity and Acquisition of Specific 
Mutations

Genomic instability, like tumor heterogeneity, is a hallmark of cancer itself, and 
becomes more prevalent with administration of chemotherapy. Chemotherapy resis-
tance can be mediated by the acquisition of specific mutations, and also by the 
general acquisition of mutations leading to a more complex genome.

General genomic evolution in cancer cells has been shown in some cases to be 
driven by chromosomal rearrangements. Unlike in a normal diploid cell, where two 
alleles would have to be mutated for many events to be physiologically relevant, in 
cancer cells the rates of mutation and consequences of mutation are much higher, 
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leading to the theory that large scale genetic changes are catalyzed by aneuploidy. 
Aneuploidy both can account for the high frequency of non-silent mutations that 
occurs in cancer cells, and also leads to more genetic changes by creating an unsta-
ble spindle apparatus during mitosis [26, 27]. This then can lead to widespread 
chromosomal changes that have been shown to lead to increasing drug resistance by 
activating alternative biochemical pathways of survival [28].

Further evidence that widespread genomic changes as the result of catastrophic 
chromosomic events can lead to drug-resistant phenotypes comes from disease spe-
cific examples. The mechanisms of these structural changes include chromothripsis, 
a one-time catastrophic DNA rearrangement [11, 29, 30], chromoplexy [31], where 
multiple DNA translocations and deletions arise in an interdependent manner, or 
variations of these with a less catastrophic phenotype. These mechanisms have been 
observed in multiple different tumors, and although each is fairly infrequent, 
together they are a significant mechanism of clonal evolution. In a variety of tumor 
types, it has been shown that higher genomic complexity is related to drug resis-
tance, and can explain the progression from drug-sensitive to drug-resistant pheno-
types in some cases [11, 32].

5.2.6  �Specific Gene Alterations

As well as widespread genomic alterations, acquisition of specific mutations can 
lead to resistance against single or multiple classes of drugs. I will outline some of 
the best described mutations here.

The tumor suppressor TP53 is the most common mutation in cancer. This gene 
regulates cell cycle, apoptosis, and metabolism-associated genes. Many mutations 
are dominant negative loss of function, which eliminates the tumor suppressor phe-
notype. However, some TP53 mutations can convert p53 from tumor suppressor to 
oncogene (reviewed in [33]). In a variety of malignancies, including ovarian, breast, 
and biliary cancers, this has been shown to be associated with resistance to chemo-
therapy, including microtubule stabilizers [34], platinum agents [35–37], and topoi-
somerase inhibitors [35, 36]. In some circumstances, resistance is associated with 
increased transcription of genes commonly associated with chemotherapy resis-
tance such as c-myc or MDR1.

Common antimetabolite agents that target the folate pathway include methotrex-
ate, 5-fluorouricil, and pemetrexed. Methotrexate exerts cytotoxicity via inhibition 
of dihydrofolate reductase (DHFR), a co-enzyme in DNA methylation. In a variety 
of cancers, DHFR can be upregulated in the presence of methotrexate to lead to 
resistance [38]. As well, inactivating mutations of the human reduced folate carrier 
(RFC) [39–43] and quantitative decrease in gene expression without known inacti-
vating mutations are alternative mechanisms [44]. Similarly, mutations of folylpoly-
gamma-gluatamate synthetase (FPGS) as well as aberrant splicing can decrease the 
intracellular retention of antifolates and lead to resistance [45–47]. The other anti-
folate metabolites can share mechanisms of resistance with methotrexate, however, 
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5-fluorouricil and pemetrexed act primarily through inhibition of thymidylate syn-
thetase (TS) which can also be altered through acquisition of mutations. The most 
common mechanism of resistance to 5-fluorouricil appears to be amplification of 
TS [48–52] which can be either an innate or acquired characteristic.

Drugs that inhibit DNA topoisomerase I and II are commonly used drugs in can-
cer therapy. In vitro, resistance to topoisomerase I inhibitors including topotecan 
and irinotecan has been linked to decreased expression of topoisomerase I [53] as 
well as mutations that lead to alteration in structure that disrupts the binding to the 
drug or alters the linker [54–56]. Similarly, topoisomerase II inhibitors, including 
doxorubicin and etoposide, can induce resistance through targeted gene alterations 
that either decrease topoisomerase II levels [57] or mutate binding sites [58, 59]. As 
well, alterations of genes that regulate topoisomerase II-induced DNA break forma-
tion or subsequent DNA repair have been shown to induce resistance in vitro [60].

The taxanes, which include paclitaxel and docetaxel, are microtubule-stabilizing 
drugs which are the backbone of therapy in a variety of cancers. Mechanisms of 
resistance to the taxanes have not been fully elucidated, but a variety of mechanisms 
have been proposed. From a genomic standpoint, alterations in protein kinesins, 
which work with microtubule associated proteins to direct cytokinesis, have been 
shown to lead to taxane resistance [61–63]. As well, mutations in beta tubulin have 
been shown to lead to resistance in a variety of cancers [64–66].

5.2.7  �Other Mechanisms of Chemotherapy Resistance

Numerous other mechanisms of chemoresistance have been reported, but are less 
common than the ones focused on previously. These include upregulation of anti-
apoptotic proteins [67, 68], tumor desmoplasia [11, 69] tissue hypoxia [70, 71], and 
autophagy (reviewed in [72]).

5.3  �Resistance to Targeted Therapies

Over the past decade, targeted therapies have moved to the forefront of treatment for 
many malignancies. While many of these therapies have been paradigm changing 
for their respective diseases, most cancers are able to eventually become resistant, 
especially to single agent therapies. This can either be due to mutations acquired 
during the course of therapy, minor resistant subpopulations that become dominant 
in the presence of drug, or intrinsic resistance mechanisms that induce primary 
resistance. Unlike chemotherapy resistance where mechanisms often confer resis-
tance to multiple drugs, with targeted therapies the mechanisms of resistance are 
often very specific. I will therefore discuss resistance to common individual classes 
of drugs, noting some mechanisms in common with chemotherapy resistance 
mechanisms.
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5.3.1  �BCR-ABL Inhibitors

The inhibitors of BCR-ABL, with the prototypical drug imatinib, were the first tar-
geted agents in wide use, and changed the natural history of chronic myelogenous 
leukemia (CML). While resistance to imatinib, and the second generation inhibitors 
nilotinib and dasatinib, are relatively uncommon, the most notable mechanism of 
resistance to these agents is the T315I mutation in ABL1, which is the gatekeeper 
residue for the fusion protein that disrupts drug binding [73]. Alternative mutations 
that alter drug binding through direct inhibition or alteration of the ATP-binding site 
or the catalytic domain, as well as upregulation of BCR-ABL can also lead to resis-
tance with imatinib [73–77]. Most mutations that confer resistance to imatinib can be 
overcome by the second generation inhibitors, except the T315I mutation [78, 79]. A 
third generation inhibitor, ponatinib, is effective even in the presence of T315I [80].

In addition to CML, imatinib is also commonly used to treat GIST tumors and 
mastocytosis due to inhibition of KIT, and chronic eosinophilic leukemia due to 
inhibition of PGFRα. Similar to CML, mutation of these targets is the most com-
mon mechanism of resistance [81, 82].

Besides mechanisms specific to BCR-ABL, upregulation of the MDR1 gene also 
confers resistance to imatinib in CML [83, 84].

5.3.2  �EGFR Inhibitors

Inhibitors of EGFR have been widely adopted in the treatment of patients with non-
small-cell lung cancer with activating mutations in EGFR. Resistance can appear 
relatively quickly, and the most common mechanism is acquisition of a gatekeeper 
mutation at T790M [85–87]. This mutation in most cases is a pre-existing minor 
clone that quickly develops dominance, and has been found in up to 80% of patients 
pre-treatment [88]. This mutation has even been found in germline, however that is 
relatively rare [89–91].

Amplification of alternative oncogenic pathways can also drive resistance to 
EGFR inhibitors. Amplification of the MET proto-oncogene has been observed in 
about 20% of resistant cases [92–94], and its ligand HGF can promote resistance as 
well [95]. Both of these alterations lead to maintenance of signaling through ERBB3 
and the PI3K pathway.

5.3.3  �BRAF-V600E Inhibitors

V600E mutations in BRAF are common in a variety of cancers, including mela-
noma and hairy cell leukemia. Small molecule inhibitors targeting this abnormality 
have shown great promise in these diseases, with about an 80% response rate in 
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melanoma, however resistance develops invariably. There are numerous mecha-
nisms for resistance, most commonly involving re-expression of signaling through 
the MAPK pathway [96]. BRAF specific abnormalities include amplification of 
BRAF [97] and aberrant splicing of RAF leading to dimerization in a RAS-
independent manner [98]. Non-RAF specific mechanisms are prevalent as well and 
include MEK1 activation [99], PDGFRB upregulation, N-RAS activating mutations 
[100], and loss of PTEN which leads to suppression of apoptosis via BIM down-
regulation [101].

Mechanisms of resistance to BRAF inhibitors in hairy cell leukemia have not 
been as clearly elucidated, but likely also involve reactivation of MAPK [102]. As 
well, in vitro, upregulation of MDR1 has been seen with BRAF inhibition in B cells, 
which may represent another mechanism [103].

5.3.4  �HER2 (ERBB2) Targeted Therapies

Therapies targeting HER2 include antibodies and tyrosine kinase inhibitors and are 
used in the approximately 25% of breast cancers that overexpress HER2. HER2 
inhibition in these cases has been shown to prolong survival, but resistance can 
develop during the course of initial therapy or in relapsed disease.

The antibody trastuzumab was the first HER2 targeting therapy developed 
(Fig. 5.2). While responses with combination therapy are excellent, especially in the 
neoadjuvant and adjuvant setting, response durations to single agent therapy tend to 
be short. There are several mechanisms of resistance to this drug that have been 
discovered in the preclinical setting and in many cases clinically as well. One mech-
anism involves over-expression of other members of the ERbB family, including 
EGFR and HER3/4. [104–107] As well, activation of PI3K/Akt through loss of 
PTEN [108, 109] or amplification of other signaling pathways that converge down-
stream with the HER2 pathway to upregulate PI3K/Akt, such as the IGF-I receptor 
[110–112] or MET [113], have been shown to be potential mechanisms of resis-
tance. Finally, mutations in HER2 itself which prevent antibody binding have been 
shown to be potential resistance mechanisms [114].

TKIs which target HER2 have been shown to be effective in patients who are 
resistant to trastuzumab, and thus have some differential mechanisms of resistance 
from trastuzumab, although the end result of upregulation of PI3K/AKT tends to be 
similar in most cases. In general, both proposed and proven mechanisms of resis-
tance include activation of compensatory pathways, HER2 amplification, and HER2 
gene mutations. HER2 inhibition by the TKI lapatinib induces upregulation of 
HER3 in vitro, which as mentioned previously can lead to resistance [115]. As well, 
similar to trastuzumab, MET can lead to resistance, as well as AXL, which has the 
potential to activate PI3K and bypass either trastuzumab or lapatinib [116]. 
Inhibition of IAPs, either directly or via mTOR upregulation has also been shown 
in vitro to lead to lapatinib resistance [117]. Finally, general kinome reprogramming 
has been observed in lapatinib resistance, leading to overexpression of multiple 
compensatory pathways [118].
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5.3.5  �ALK Inhibitors

Amplification of and activating mutations in ALK have been found in a number of 
cancers, and ALK inhibitors have been very effective for these types of tumors. 
Resistance tends to be mediated through ALK fusion gene amplifications or second-
ary mutations in ALK [119–121]. As well, activation of bypass signaling pathways 
including EGFR and c-KIT can be seen [120, 122]. The second generation ALK 
inhibitor ceritinib has been shown to be effective in patients resistant to crizotinib 
[123], and in  vitro is effective in the presence of most, but not all, crizotinib-
resistance mutations [124].

5.3.6  �Proteasome Inhibitors

Inhibitors of the proteasome are utilized in a number of malignancies, most notably 
in multiple myeloma, where bortezomib and carfilzomib are integral components of 
most treatment regimens. Bortezomib specifically binds to the β5 subunit of the 
proteasome. Mutations within the PSMβ5 gene which encodes this protein, that 
impair drug binding, is a common mechanism of resistance in preclinical models 
[125], however, this has yet to be confirmed in patients. As well, upregulation of 
PSMβ5 has been associated with resistance in both cellular models and in patients 
[126]. Similar to other targeted therapies and chemotherapies, IAPs are also 

Fig. 5.2  Mechanism of 
Trastuzumab
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implicated in resistance, where MCL1 overexpression has been linked to resistance 
to bortezomib [127]. Second generation inhibitors such as carfilzomib are effective 
in some patients resistant to bortezomib, suggesting that it can overcome some but 
likely not all resistance mechanisms.

5.3.7  �VEGF Inhibitors

Like other targeted therapies, VEGF inhibitors often promote excellent responses but 
then rapid development of resistance via multiple mechanisms. One common mecha-
nism is upregulation of compensatory angiogenic pathways including epidermal 
growth factor [128], platelet-derived growth factor [129], and fibroblast growth factors 
1 and 2 [130]. As well, the tumor microenvironment can promote both intrinsic and 
acquired resistance. One mechanism that has been seen in glioblastoma is induction of 
autophagy that is triggered by the tissue hypoxia that results from anti-angiogenic 
therapy, and leads to adaptive autophagy through HIF-1α/AMPK pathway signaling 
[131]. As well, in mouse models, hypoxia after anti-angiogenic therapy was shown to 
lead to infiltration by myeloid cells and acquisition of stem cell features [132].

5.3.8  �BTK Inhibitors

Inhibitors of Bruton’s Tyrosine Kinase (BTK) have revolutionized therapy for a 
number of B cell malignancies including CLL and mantle cell lymphoma. The 
mechanism of relapse appears to be disease-specific, with relapse in CLL and 
Waldenstrom’s macroglobulinemia are primarily mediated through acquisition of 
mutations in BTK or its immediate downstream target PLCG2 [133–136]. BTK 
C481S, the most common acquired mutation in BTK, reduces the binding affinity 
of ibrutinib for BTK and changes ibrutinib from an irreversible to a reversible inhib-
itor [133, 137]. The mutations identified in PLCG2 in CLL have all been demon-
strated to be potentially gain-of-function, allowing activation through the BCR even 
in the presence of inactive BTK [133, 138]. Clonal evolution has also been shown 
to be a hallmark of ibrutinib resistance in CLL. [139] In mantle cell lymphoma, 
these specific mutations are seen only rarely, and upregulation of PI3 kinase through 
kinome reprogramming appears to play a major role. [140]

5.4  �Conclusions

Drug resistance in cancer therapy is a very complex topic, and there is unfortunately 
not a simple solution. Understanding resistance mechanisms, however, may lead to 
development of rational next-line therapies. For example, the use of demethylating 
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agents in the case of methylation-induced 5-FU resistance, or BCL2 inhibitors after 
therapies which induce IAPs may selectively target resistant cells. As the impor-
tance of repeat tumor sampling becomes more widely accepted, and molecular tech-
niques for detection of resistance mechanisms improve, we have a greater ability to 
understand resistance mechanisms and even consider pre-emptive combination 
therapies. Although advanced heterogeneous cancers will likely be incurable for the 
forseeable future, as the armamentarium of targeted therapies and immune activat-
ing therapies increases, it becomes more of a realistic possibility that we can suc-
cessfully treat advanced cancers as a chronic disease and greatly extend quality life 
for our patients.
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6.1  �Introduction

Anecdotes of patients who experience unexpectedly profound and/or durable 
responses to a specific cancer treatment, inconsistent with the experience of the vast 
majority of patients who receive that same treatment, are replete within the scientific 
literature [1]. The relevance of such outlier responses has usually not been well 
defined; however, in the context of clinical trials of anti-cancer therapies in which 
only a minority of patients (or even a single patient) achieves a substantial response, 
durable responses can often have significant repercussions. The efficacy of such 
drugs is by definition interpreted based upon the response of the overall study popula-
tion, frequently leading to a failure of further drug development. Before the advent of 
Next Generation Sequencing (NGS), detailed analysis of patient responders was 
extremely challenging. Moreover, clinical trials of targeted therapies in large part 
initially adopted traditional histology-based eligibility criteria, leading to the accrual 
of patients whose tumors did not harbor the putative target inhibited by targeted 
agents. The phenotype of enhanced sensitivity to a drug observed within outlier cases 
or “exceptional responders” can now be interrogated using NGS to define their 
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genomic underpinnings and ultimately to use this information to inform the design of 
future clinical trials. Additionally, outlier responders represent a unique opportunity 
to identify new predictive biomarkers of exquisite sensitivity to targeted therapy (or 
traditional chemotherapy), delineating a subset of patients that could significantly 
benefit from these drugs as compared to the overall population. In contrast to other 
strategies to identify actionable targets, such as the large-scale analyses of The Cancer 
Genome Atlas (TCGA) [2], examination of exceptional responders represents a phe-
notype-to-genotype approach in an individual, outcome-driven context that has the 
potential to enhance our understanding of tumor biology, inform clinical trial design, 
identify novel therapeutic targets, salvage drugs deemed ineffective within a geneti-
cally undefined patient population, and define more precise subgroups of patients 
who may benefit from new or existing drugs. In this chapter, we will describe exam-
ples of how detailed genomic analysis of extreme responses to a variety of treatments 
has resulted in improved insight into the molecular pathogenesis of a specific disease 
subtype or uncovered putative therapeutic targets for further investigation.

6.2  �Initial Whole Genome Sequencing (WGS) 
of an Exceptional Responder in Urothelial Carcinoma

WGS was performed on an exceptional responder identified on a phase II trial of 
everolimus, an allosteric mTOR complex 1 (mTORC1) inhibitor, for the treatment 
of metastatic urothelial cancer [3]. This single-arm, non-randomized study enrolled 
45 patients with progressive, pre-treated metastatic urothelial cancer to receive 
everolimus 10 mg orally once daily [4]. The trial did not meet its primary endpoint 
of 2-month progression free survival rate of 70%, with 51% of patients being 
progression-free at 2  months. However, one patient experienced a durable near-
complete response, with a 94% reduction in size of target lesions. This patient still 
remains on therapy (6 years out), which is in stark contrast to the median PFS of 
2.6 months (95% confidence interval (CI), 1.8–3.5) and median overall survival of 
8.3 months (95% CI, 5.5–12.1) of the patients on study. One other patient achieved 
a partial response and 12 patients achieved minor tumor regression.

Whole-genome sequencing was performed on DNA obtained from the patient’s 
primary tumor and peripheral blood mononuclear cells. The tumor genome was 
structurally intact, and 140 non-synonymous mutations were identified in protein-
coding or non-coding RNA regions. Of these, two notable loss-of-function muta-
tions were identified. The first was a two base-pair deletion in the tuberous sclerosis 
complex 1 (TSC1) gene, which resulted in a frameshift truncation (c.1907_1908del, 
p.Glu636fs) of the protein product. The second was a nonsense mutation in the 
neurofibromatosis type 2 (NF2) gene, leading to a premature stop codon (c.863C > G, 
p.Ser288∗) [3]. Alterations in these genes have been shown to result in dysregulated 
mTORC1 signaling and sensitivity to rapamycin (an mTORC1 inhibitor which is an 
analog of everolimus) in preclinical models [5, 6]. Moreover, everolimus is FDA 
approved for the treatment of subependymal giant cell astrocytomas (SEGAs), 
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which are tumors that develop in individuals with tuberous sclerosis, an inheritable 
condition characterized by germline loss of function mutations in TSC1 or TSC2. In 
a single-arm study, 32% of patients experienced ≥50% shrinkage of SEGAs by 
6 months of therapy with a median response duration of approximately 8.8 months.

Following these findings, a separate cohort of 96 high-grade bladder cancers was 
sequenced for mutations in TSC1 and NF2 and identified 5 additional somatic muta-
tions in TSC1, but no additional mutations in NF2. These findings then guided labo-
ratory work to test the hypothesis that this patient’s unusual NF2 mutation was the 
potentiating factor in the setting of the TSC1 frameshift truncation that led to the 
exceptional response. Short hairpin RNA (shRNA)-knockdown of NF2 was per-
formed in RT-4, a TSC1-null human bladder cancer cell line, and resulted in 
increased sensitivity to rapamycin [3].

Furthermore, targeted exon capture sequencing was performed on tissue from 13 
additional patients from the everolimus trial. Four of the 13 patients had TSC1 
mutations, with three nonsense mutations and one missense variant of unknown 
functional consequence. Two of the patients with nonsense mutations had best over-
all responses of 17% and 24% tumor regression, and the patient with a missense 
mutation had 7% tumor regression. In contrast, eight of the nine TSC1 wild type 
patients had tumor progression (Fig. 6.1). The TSC1-mutant patients remained on 
treatment significantly longer than the wild-type patients (7.7 versus 2.0 months, 
p = 0.004) and had a significantly longer time to recurrence (4.1 versus 1.8 months; 
HR 18.5, CI 2.1–162, P = 0.001).

Notably, the trial’s pre-specified analysis for hotspot mutations in FGFR3, HRAS, 
PIK3CA, and BRAF did not identify any alterations in this patient or the other 
responder. Also, analysis of IHC for mTOR pathway markers and PTEN expression 
did not reveal any association with PFS4. This case brings up several issues: 1. Use 
of selective sequencing approaches or protein-based assays may not identify a pre-
dictive biomarker of response, 2. Targeted therapies used in the context of unselected 
patient populations are likely to fail if the target of response is present in only a 
minority of patients, 3. Such trials may ultimately lead to lack of development of a 
drug that, in the right genomic context, may result in meaningful clinical responses, 
and 4. Even in the right genomic context, the panoply of co-existing genomic altera-
tions within solid tumors likely modulates the degree of therapeutic efficacy of sin-
gle agent targeted therapies. The outlier approach may therefore potentially salvage 
investigational therapies for use in a subset of molecularly stratified patients even 
when the drug “fails” in the setting of a larger, unselected trial population (Fig. 6.2).

6.3  �Exceptional Response to mTOR Inhibitor Therapy 
and Pathway Convergence in Clonal Heterogeneity

Everolimus is FDA-approved for the treatment of metastatic renal cell carcinoma 
(RCC) following progression on first-line tyrosine kinase inhibition based upon a 
phase III study showing incremental improvements in median progression-free 
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survival [7, 8]. Long-term disease control with mTOR inhibition has been reported 
in RCC, even following rapid progression on multi-targeted tyrosine kinase inhibi-
tor therapy, suggesting that these outcomes are driven by sensitivity to drug rather 
than inherently slow growth kinetics of disease [9]. In order to delineate the molecu-
lar causes of these rare yet durable responses, targeted hybridization capture-based 
sequencing [10] was performed on five outlier metastatic RCC cases identified at a 
single center. These cases were selected based on extended disease control (ranging 
from 20 months to >45 months) with either temsirolimus (another mTORC1 inhibi-
tor approved for metastatic RCC) or everolimus. These disease control durations 
dramatically exceeded prior treatment duration on first-line sunitinib (2–14 months) 
[11]. The number of prior treatment regimens per patient ranged from 1–3 

Fig. 6.1  (a) Computed tomography images of the index patient demonstrating complete resolu-
tion of metastatic disease (arrows). (b) Somatic abnormalities in the outlier responder’s genome 
included (from outside to inside) copy number alterations; mutations at ~10-Mb resolution; regula-
tory, synonymous, missense, nonsense, nonstop, and frameshift insertion and deletion mutations 
(black, orange, red, green, and dark green); and intra- and interchromosomal rearrangements (light 
and dark blue). (c) Best overall response of 14 sequenced trial patients. Negative values indicate 
tumor shrinkage (red line, threshold for partial response). Gradient arrow, patient with rapid pro-
gression in bone
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(Table 6.1). Additionally, to explore the potential effects of intratumoral heteroge-
neity, DNA was extracted from morphologically distinct regions within each pri-
mary tumor and sequenced. In three of five patients, a potential genomic etiology 
for response was identified. In the first patient, analysis of the primary tumor 
revealed a previously unreported TSC1 frameshift truncation (c.932delC) in two 
spatially distinct regions of the primary tumor and a TSC1 nonsense mutation 
(Q527∗) in a third region. Copy number analysis demonstrated loss of heterozygos-
ity in chromosome 9, which contains TSC1, resulting in complete functional loss of 
the gene. Similarly, the second patient harbored a novel frameshift mutation in 
TSC1 (c.1738delAT) in all regions of the primary tumor as well as in a metastatic 
site with concurrent loss of heterozygosity, again resulting in functional loss of 
TSC1. Loss of the upstream regulator TSC1 results in mTORC1 hyperactivation 
and is the likely basis for exceptional sensitivity to therapy with temsirolimus in 

Fig. 6.2  Immunogenomics represents one of many factors that influence response to checkpoint 
blockade immunotherapy

Table 6.1  Patient characteristics

Fav favorable, Int intermediate, MSKCC Memorial Sloan-Kettering Cancer Center
aAt the time of first rapalog dose
bMotzer et al., J Clin Oncol 1999; 17:2530–40
cDiscontinued due to treatment toxicity
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these two cases. The third patient had a novel missense mutation in mTOR (Q2223K) 
in two regions of the primary tumor, and a novel TSC1 nonsense mutation (Q781∗) 
and loss of heterozygosity was noted in two other regions of the primary tumor. The 
mTOR mutation was located near the ATP-binding site of the catalytic PI3K-related 
kinase domain, and in  vitro work demonstrated that the mutation resulted in 
hyperactivity.

These findings emphasize the complex issue of intratumoral heterogeneity 
observed in RCC and other cancer types [12]; moreover, they exemplify the concept 
of convergence of diverse alterations upon a common phenotype—enhanced mTOR 
signaling output. These observations also provide a roadmap for the implementation 
of strategies such as sequential or combinatorial therapies in solid tumors. The evo-
lutionary reasons for the convergence of distinct clones are unknown, and a com-
plex area for future investigation. Furthermore, the inability to identify a genomic 
basis of durable rapalog sensitivity for the other two patients in this study highlights 
the limitations of contemporary exceptional responder analysis with next-generation 
sequencing. Examination at the DNA level alone may not be sufficient, as epigen-
etic alterations and mechanisms such as post-transcriptional or post-translational 
gene silencing may influence drug response.

6.4  �Concurrent mTOR Mutations and Sensitivity to mTOR 
Inhibition as a Component of Combination Therapy

Combinatorial treatment with targeted agents is an area of active clinical investiga-
tion. Based on suggestive preclinical data supporting the combination of mTOR 
inhibitors and angiogenesis inhibitors for cancer therapy [13], a phase I trial enrolled 
nine patients with advanced solid tumors progressing on standard therapies to treat-
ment with pazopanib and everolimus. While no responses were observed in other 
patients, one patient with platinum- and taxane-refractory urothelial carcinoma 
achieved a complete response lasting for 14 months. Whole genome sequencing 
revealed two concurrent mutations in mTOR (E2419K and E2014K), neither of 
which was previously described in human cancer [14]. Functional analysis demon-
strated that both mutations were activating, but do not affect the mTOR activation 
loop conformation or alter binding to everolimus. While intratumoral heterogeneity 
was not directly interrogated in this case, each mutation had an allelic fraction of 
approximately 50%, suggesting that the mutations were heterozygous throughout 
the tumor sample rather than occurring independently in different tumor subsets. No 
mutations related to pazopanib sensitivity were identified other than a PDGFRA 
alteration (p.Y102fs) with an allelic fraction of 2%. Additionally, greater than 100× 
higher doses of pazopanib (versus rapamycin) were required to overcome the effects 
of the mTOR mutations in vitro. These findings suggest that the exceptional response 
was derived from mTOR inhibition with everolimus against a likely clonal mTOR 
signaling-dependent tumor. Furthermore, this case emphasizes that analysis of 

M. Cheng and G. Iyer



89

exceptional responses to a combination therapy may reveal exceptional sensitivity 
to one component agent rather than direct sensitivity to the combination itself.

6.5  �Curative Response to Combination Therapy 
in the Context of a Hypomorphic RAD50 Mutation

Curative outcomes following progression on systemic treatment for metastatic solid 
tumors are rare. A particularly notable case involved a patient with metastatic inva-
sive small-cell cancer of the ureter, a rare histologic subtype with an especially poor 
prognosis. The patient achieved a complete response within 5 months of treatment 
with AZD7762, an ATP-competitive inhibitor of CHK1/2, in combination with 
weekly irinotecan, a topoisomerase I inhibitor, on a phase I clinical trial [15]. This 
complete response persisted at least 3 years following discontinuation of all sys-
temic treatments. Whole genome sequencing of pre-treatment tissue identified a 
clonal RAD50 L1237F mutation and there was concurrent focal heterozygous loss 
of the wild-type allele. RAD50 is a component of the multi-subunit nuclease Mre11 
complex, which is responsible for repair of double strand DNA breaks. Functional 
modeling demonstrated that this mutation results in an intact Mre11 complex, but 
reduced Rad50 protein levels and inability to activate the checkpoint kinase ATM, 
which is responsible for one of two primary signaling cascades that coordinate the 
DNA-damage response. This results in strong dependence on the remaining ATR 
pathway in the setting of irinotecan-induced DNA damage. Co-treatment with 
AZD7762 inhibits CHK1, an effector kinase of ATR, thus leading to a synthetic 
lethal interaction responsible for the patient’s curative outcome. Notably, neither the 
combination therapy nor the investigational agent AZD7762 as a single drug pro-
ceeded in development, as limited activity was observed in the unselected 68 solid 
tumor patients on this trial. Many examples relate a single mechanism of sensitivity 
to single-agent targeted therapy while the prior instance demonstrated exceptional 
response as a result of one component of a combination. However, this case high-
lights how exceptional responses can occur in the setting of combination treatment 
as a function of complex interactions between interrelated biological pathways [16].

6.6  �Analysis of Exceptional Responses to Treatment 
with Immunotherapy

Exceptional responders have primarily been studied in the setting of treatment with 
a targeted agent with activity against a specific molecular lesion or lesions. However, 
notable recent examples demonstrate how genomic profiling can elucidate the 
molecular etiology of an exceptional response to immunotherapy. A patient with 
chemotherapy-treated, recurrent endometrial adenocarcinoma involving 
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retroperitoneal and supraclavicular lymph nodes was enrolled on a phase I trial of 
pembrolizumab (an anti-PD-1 antibody) for PD-L1 expressing solid tumors. Shortly 
after initiating treatment, the patient’s lymphadenopathy improved and resultant 
lower extremity edema resolved. A partial response was documented on imaging at 
8  weeks from the start of treatment. This response was maintained for at least 
14 months, representing the first known case of endometrial cancer with a durable 
response to pembrolizumab in the setting of a clinical trial.

Targeted genomic tumor profiling [17] was performed on biopsy tissue from a 
supraclavicular lymph node metastasis as well as the primary hysterectomy speci-
men. A remarkably high mutation frequency was identified, with 32 likely patho-
genic variants in the primary tumor and 33 in the metastatic specimen. Twenty-eight 
of these alterations were shared between the two samples, including two mutations 
in the POLE gene, which encodes for the central catalytic subunit of DNA poly-
merase epsilon and is involved in nuclear DNA repair and replication. The first was 
a missense mutation in the exonuclease domain responsible for proofreading func-
tion (Val411Leu), and the second was a nonsense mutation (Arg114∗) resulting in 
inactivation of the wild-type allele [18]. Seven percent of endometrial cancers in the 
TCGA dataset have mutations in the POLE exonuclease domain, and demonstrate 
an ultramutated phenotype that is an order of magnitude greater than the microsatel-
lite instability (MSI) hypermutated group. Val411Leu represents one of two hotspots 
present in 76% of the POLE mutants [19]. POLE-mutant endometrial cancers dis-
play more antigenic neoepitopes, demonstrate enhanced tumor-infiltrating lympho-
cytes, have higher intratumoral CD8+ T-cell density, all suggestive of greater 
immunogenicity compared to non-POLE mutant endometrial cancers [20]. 
Importantly, these POLE-mutant tumors are largely microsatellite stable, and are 
not identified using currently approved IHC and PCR-based MSI assays [19].

A subsequent report described durable responses in two heavily pretreated meta-
static endometrial cancer patients to off-label nivolumab, another anti-PD-1 anti-
body [21]. In these cases, treatment selection was informed by genomic analysis 
performed after progression on salvage chemotherapeutic agents. The first patient 
had a POLE exonuclease mutation (Pro286Arg, the other hotspot identified by 
TCGA), and weak membranous PD-L1 expression in 5% of tumor cells. Treatment 
with nivolumab at 3 mg/kg biweekly resulted in marked clinical improvement and 
regression of her metastatic pelvic and intra-abdominal tumor deposits, meeting 
partial response criteria by RECIST.  This response was sustained for at least 
7  months following treatment initiation. Another patient underwent NGS testing 
that identified an MSH-6 mutation with a hypermutated phenotype. Tumor cells did 
not significantly express PD-L1. This patient was treated with nivolumab and 
achieved a partial response maintained for at least 9 months, with a concomitant 
improvement in performance status. These results prompted an investigator-initiated 
phase II study at the same institution evaluating pembrolizumab in chemotherapy-
refractory recurrent endometrial cancer with POLE-mediated ultramutator or MMR 
deficient hypermutator phenotypes (NCT02899793). Ultimately, observations such 
as the above have led to a landmark approval by the FDA of pembrolizumab for 
patients with microsatellite unstable tumors. Overall, these experiences are emblem-
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atic of how analysis of exceptional responders can contribute to the development of 
genomic biomarker-selected clinical trials, and synergize with insights gleaned 
from TCGA and other efforts.

6.7  �Analysis of Exceptional Responses to Treatment 
with Chemotherapy

Unusually deep responses have also been described in the setting of treatment with 
chemotherapy. Whole-exome sequencing was performed on pretreatment tissue 
from 50 muscle-invasive urothelial carcinoma patients who received cisplatin-based 
neoadjuvant chemotherapy prior to cystectomy. The genomic profiles of 25 patients 
who achieved downstaging to pT0/pTis at cystectomy were compared to 25 patients 
with residual pT2 or higher stage disease [22]. ERCC2, a nucleotide excision repair 
(NER) helicase, was identified as the only mutated gene significantly enriched in 
the pT0/pTis cohort (occurring in 36%, compared to ~12% of unselected muscle-
invasive bladder cases from TCGA). All ERCC2 presumed loss-of-function muta-
tions occurred in this group within or adjacent to helicase domains, similar to the 
clustering of germline mutations responsible for Xerderma pigmentosum (XP) and 
XP with combined Cockayne syndrome. In vitro work confirmed the sensitivity of 
ERCC2 mutant cells to cisplatin as well as UV-induced DNA damage, which is also 
mediated by NER. The allelic fraction of most (78%) ERCC2-mutant cases was 
<0.5, suggesting a haploinsufficient or dominant-negative effect of a heterozygous 
mutation in mediating sensitivity to cisplatin via deficiency in NER capacity. These 
results provide a potential genomic basis for identifying patients most likely to ben-
efit from cisplatin-based chemotherapy in urothelial carcinoma.

6.8  �Occult Biomarkers Identified by Outlier Analysis

Extreme outlier analyses can also identify novel biomarkers of response to targeted 
therapies, since the majority of cancer driver alterations are scattered across cancer 
types at low frequencies (the so-called “long tail” genes). A phase II trial of selu-
metinib, a non-ATP competitive MEK1/2 inhibitor, for patients with recurrent low 
grade serous (LGS) ovarian cancer reported a radiographic response rate of 15% 
[23]. The only complete response was observed in a patient with initial stage IIIC 
serous borderline (SB) ovarian cancer who recurred with metastatic LGS ovarian 
cancer. Despite progressing on multiple lines of prior therapy, she experienced a 
durable complete response of at least 5 years to treatment with selumetinib on the 
trial. Capture-based sequencing confirmed wild type BRAF and KRAS but identi-
fied a 15-bp in-frame deletion within MAP2K1 that resulted in a 5 amino acid dele-
tion in MEK1 adjacent to the negative regulatory helix [24]. In silico modeling 
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suggested that this truncation resulted in release of negative regulation of MEK1 
kinase activity. In vivo and in vitro work confirmed enhanced tumor growth with the 
mutation, and sensitivity to selumetinib. This MAP2K1 deletion was previously 
uncharacterized, and would not have been discovered by hotspot analysis. The 
results of the index patient led to sequencing of an additional 28 BRAF/RAS wild-
type SB/LGS patients, which did not reveal additional MEK1 mutations but identi-
fied occult MAPK pathway alterations in all but 5 tumors. These occult alterations 
included two truncating mutations in the RAS GAP NF1, a HER2 AYVM insertion 
(previously validated as oncogenic), an NRAS Q61R mutation, and two novel para-
centric BRAF fusions (MKRN1:BRAF and CUL1:BRAF). Notably, the patient 
with a CUL1:BRAF fusion achieved a durable complete response to combination 
treatment with a MEK inhibitor and paclitaxel. While such alterations may be 
genetic outliers, additional large scale unbiased sequencing efforts are necessary to 
define their frequency and relevance within cancer.

6.9  �Mechanisms of Acquired Resistance Following Initial 
Exceptional Response

While some curative outcomes have been reported, the majority of exceptional 
responders ultimately experience disease progression after an initial durable 
response. Understanding the mechanisms of this acquired resistance represents an 
important priority. A patient with metastatic anaplastic thyroid cancer who received 
everolimus on a phase II study testing the therapy for patients with radioiodine 
refractory thyroid cancer (NCT00936858) experienced a near complete response 
that was maintained for 18 months, in contrast to a median survival of 5 months in 
patients with this disease [25]. Whole exome sequencing was performed on pre-
treatment tumor (from thyroidectomy and neck dissection) and tumor tissue at the 
time of progression. An inactivating TSC2 (Q1178∗) mutation was identified in the 
pretreatment tumor, resulting in mTOR activation and sensitivity to everolimus. A 
FLCN R17fs mutation may also have contributed to mTOR activation. Sequencing 
of the resistant tumor revealed persistence of the previously identified mutations, 
but also identified a novel MTOR F2108 L mutation that was not present in the 
pretreatment tissue. This mutation was functionally confirmed to occur in the FRB 
(FKBP-rapamycin binding) domain and likely resulted in acquired resistance to 
everolimus by preventing allosteric drug binding.

Activation of downstream or bypass pathways can also mediate acquired resis-
tance. A patient with metastatic melanoma harboring a BRAF V600E mutation was 
treated on a clinical trial of the monomeric mutant BRAF inhibitor vemurafenib 
(PLX4032) with a profound near complete response by 15  weeks of therapy. 
However, this response persisted only until 23 weeks, when disease relapse occurred 
involving most prior sites of disease. Targeted exon sequencing of the resistant 
tumor revealed a MEK1 C121S, and functional studies confirmed the mutation to 
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confer increased kinase activity and resistance to RAF inhibition [26]. Additional 
putative resistance mutations in MEK1 were characterized using a mutagenesis 
screen. This represents the first report of resistance mediated by an activating muta-
tion acquired downstream of the targeted kinase, and contributes to the framework 
for understanding relapse following an initial exceptional response.

6.10  �NCI Exceptional Responders Initiative

The NCI has embarked on an Exceptional Responders Initiative as part of a broader 
Precision Medicine effort [27] based upon observations from multiple extraordinary 
responder analyses. This exploratory study (NCT02243592) aims to molecularly 
characterize 100 exceptional responder cases with whole exome and/or mRNA 
sequencing. The NCI reviewed its Cancer Therapy Evaluation Program (CTEP) 
phase II trial database between 2002–2012, and identified about 100 cases that fit 
the exceptional responder criteria. While many of these cases lacked biomaterial to 
further interrogate the outlier response, their presence suggests that obtaining suf-
ficient cases for the Initiative via submission from physicians and researchers is 
feasible.

The NCI has developed an operational definition for exceptional responders as 
patients with “a complete response or a partial response that lasted at least 6 months 
to a systemic treatment that was not expected in more than 10% of patients [28].” 
This expectation of treatment response is informed either by clinical trial data or 
extensive historical experience.

6.11  �Conclusions and Future Steps

Exceptional responses to targeted agents have been reported with increasing fre-
quency. Application of NGS technologies, including WES, WGS, and targeted 
sequencing, has deciphered the genomic biomarkers that underpin many of these 
responses. Similarly, predictors of resistance to therapy have also been defined 
when these responders progress on treatment.

The ultimate goal of exceptional responder analysis is to generate scientific evi-
dence that informs prospective investigation of specific therapies for genomically 
defined patient subsets. Notably, many actionable alterations occur in a small frac-
tion of any tumor subtype [29], and a significant fraction are likely to be currently 
undiscovered or uncharacterized (the “long tail” pattern). Thus, future clinical trials 
for precision cancer medicine must have the flexibility to enroll and assess patients 
with specific molecular profiles, even if these account for only a small fraction of 
the relevant population or even involve only a single patient. While much of the 
initial experience with exceptional responder analysis employed WGS or whole 
exome sequencing (WES), targeted exon capture panels available at academic med-
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ical centers [10] or commerically [17], can now be utilized to rapidly and prospec-
tively screen patients for the most common genomic alterations.

An important contemporary clinical trial structure in precision cancer medicine 
is the basket study [30, 31]—one method to prospectively identify exceptional 
responders. By including baskets of patients with different cancer types, all of 
which share a common mutation, we can rapidly identify disease groups for whom 
the mutation is a driver and for whom inhibition of the mutation results in durable, 
meaningful clinical benefit. The NCI-Molecular Analysis for Therapy Choice (NCI-
MATCH) trial (NCT02465060), and the Targeted Agent and Profiling Utilization 
Registry (TAPUR) trial (NCT02693535) are the largest and most rigorous precision 
cancer medicine trials to date. NCI-MATCH is a unique phase II trial [32] that will 
enroll patients with solid tumors, lymphoma, and myeloma that no longer respond 
to standard therapy for sequencing of tumor tissue to assess a set of pre-specified 
genes [33]. When sequencing identifies a mutation that fits into one of several sub-
study arms, the patient is assigned to an appropriate linked therapy. The therapies 
assigned to each arm are required to have demonstrated clinical activity in at least 
one molecularly characterized case. NCI-MATCH will evaluate a primary endpoint 
of objective response rate (ORR), and a secondary endpoint of progression free 
survival (PFS). Additionally, if patients fail on an initial treatment arm, repeat gene 
testing can be employed to evaluate for eligibility on a second arm of the trial. The 
aggregation of patients across tumor types in this and other basket studies enhances 
the investigation of targeted therapies against specific mutational targets that may be 
of limited prevalence even in the most common tumor types. TAPUR is similarly 
designed, but aims to evaluate “real-world” precision medicine by evaluating the 
efficacy of 15 different FDA approved drugs or combinations matched to potentially 
actionable genomic variants identified by molecular profiling tests performed in the 
clinical setting (including genomic tests using cell-free DNA). The trial aims to 
enroll 1030 patients with advanced solid tumors, myeloma, or Non-Hodgkin lym-
phoma, and will evaluate ORR as the primary endpoint and OS as the secondary 
endpoint.

The first published basket trial was a phase II study which tested response rate to 
vemurafenib for the treatment of BRAF V600 mutant nonmelanoma cancers in 122 
patients across multiple disease histologies [34]. The trial enrolled tumor types 
including: anaplastic thyroid, cholangiocarcinoma, colorectal cancer, Erdheim-
Chester disease or Langerhans’-cell histiocytosis, multiple myeloma, non-small cell 
lung cancer, primary brain tumors, and several others. Notably, work from The 
Cancer Genome Atlas (TCGA) [2] and other contemporary efforts has demonstrated 
that the incidence of BRAF V600 mutations in more than half of nonmelanoma 
cancer types is under 5%. Response to vemurafenib varied between tumor types, 
with the highest ORRs in the NSCLC cohort (42%) and in the Erdheim-Chester 
disease or Langerhans’-cell histiocytosis cohort (43%). Response rates were lower 
in other disease types, including an ORR of 0% in colorectal cancer patients treated 
with vemurafenib alone. The results of this study highlight that there exists differ-
ential sensitivity between tumor types to targeted treatment directed at the same 
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molecular target, and that the basket trial structure can identify specific tumor types 
with promising outcomes and thus inform the design of future definitive studies.

The current experience with exceptional responders underscores that these cases 
are not just statistical outliers, but frequently reveal novel biological interactions 
and mechanisms of response [35]. Laboratory investigation is frequently required to 
assess whether putative novel alterations both have functional significance and 
engender dependency of the tumor upon the alteration. Additional important factors 
should also be integrated into in the future study of exceptional responders as well 
as the application of their findings. The presence of co-alterations as well as the 
clonality of the mutation of interest in the setting of intra- and intertumoral hetero-
geneity must be considered in evaluating response to a targeted agent. Furthermore, 
the distance in molecular time from the sequenced tissue to the current treatment 
must also be considered. Sequencing of archival tissue may not adequately reflect 
contemporary mutation burden. Biopsies, even if up-to-date, may reflect only the 
genomic profile of the most anatomically accessible tissue rather than the molecular 
profile of the entire tumor population. Implementation of cell-free DNA (cfDNA) 
sequencing [36, 37] and optimization of the turnaround time for NGS assays may 
help ameliorate these concerns. Also, as more flexible precision medicine trials 
become more common, should the observation of exceptional responses influence 
the design or enrollment of the trial? For example, the identification of an unex-
pected complete response in a particular disease or molecular subset could prompt 
a dynamic enrichment of that subset within a trial. Such an adaptive trial design 
would require the close involvement of translational researchers who can biologi-
cally validate and extend the findings observed in the clinic to provide insight into 
why a specific disease subtype responds better than others to a targeted therapy. 
Overall, innovative clinical investigation strategies to test hypotheses generated by 
exceptional responder analysis offer tremendous opportunities to advance precision 
cancer medicine.
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Chapter 7
Immunogenomics

Jonathan J. Havel and Alexandra Snyder
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(MHC) · T cells · Tetramers

7.1  �Introduction and History of Immunogenomics

Checkpoint blockade immunotherapies have changed the face of medical oncology 
since the approval of ipilimumab to treat metastatic melanoma in 2011. The entry of 
immunotherapies into standard of care treatment for has heralded many transla-
tional studies attempting to identify which patients are most likely benefit from 
these treatments. Studies describing the importance of the immune system to the 
development and treatment of cancer have a long history, with moments of success 
overshadowed by challenges for much of the eighteenth and nineteenth centuries. 
Perhaps the strongest evidence for the importance of the immune system to control 
of cancer lies in the epidemiology of cancer in immunosuppressed populations. The 
incidence of AIDS-defining illnesses associated with immunosuppression (Kaposi 
sarcoma, non-Hodgkin lymphoma and cervical cancer) have decreased dramatically 
in the United States since the widespread use of highly active anti-retroviral therapy 
(HAART), which largely restores immune function in the setting of viral suppres-
sion [1].

One of the earliest demonstrations of the capacity of the immune system to be 
manipulated to control selected cancers was shown by William Coley, a surgeon 
injected a cocktail of bacterial toxins into tumors and noted regressions of some 
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tumors in these patients [2]. This idea was not widely disseminated, however, and 
the underlying concept of using exogenous means to inflame a tumor by making it 
appear more foreign to the immune system did not experience resurgence until the 
development of oncolytic viruses in the 1990’s [3]. This strategy has experienced its 
greatest development in melanoma, where the approval of talimogene laherparepvec 
(T-VEC) by the Food and Drug Administration (FDA) in 2015 was based on 
improved overall survival in patients who had had local injection of the oncolytic 
virus.

Other pioneers of immuno-oncology in the 1940s and beyond approached the 
issue from a different angle, observing, for example, that sarcomas induced by 
exogenous toxins experienced rejection in mouse models [4–7]. The idea that muta-
tions in a tumor could generate a novel peptide sequence that could be recognized 
as non-self was executed using human tumor genomic data for the first time in 2008 
[8]. In a study by Segal and colleagues, the authors predicted which neoepitopes, 
which are also referred to as neoantigens, or mutation-associated neoantigens 
(MANA), would putatively be generated in a series of colon and breast cancers. In 
so doing, the authors underscored two points that have become central to the field: 
first, that different tumor types tend to feature higher or lower ranges of neoantigens 
depending on their burden of mutations that affect protein coding sequences; and 
second, that neoantigens are, by and large, patient-specific or “personalized” to a 
given tumor.

7.2  �Preclinical Models Demonstrate Relevance 
of Immunogenomics to Tumor Fate

Murine and in vitro models have been indispensable in the study of tumor immunity. 
Prior to the advent of high-throughput sequencing technologies and whole genome 
mapping, the identification of tumor rejection antigens was a daunting task. During 
the 1980s and 1990s, Boon and colleagues utilized mouse tumor cells treated with 
a mutagen to derive unique clones readily rejected by the immune system in mice 
(reviewed in [9]). Parental cells were largely non-immunogenic. T cell clones with 
specificity for unique tumor clones, but not for parental cells, were generated via a 
labor-intensive process involving repeated co-cultures of T cells with irradiated 
tumor cells [10, 11]. Genomic, and later cDNA, plasmid libraries were generated 
from T cell-sensitive tumor clones and transfected into non-immunogenic cells, i.e. 
either parental cells or cells that had been immunoselected by specific T cell clones 
to lack rejection antigens. The transfected cells were sub-cloned and subjected to 
co-culture with a relevant T cell clone. Plasmids that conferred T cell sensitivity 
were isolated and sequenced to identify tumor rejection antigens [12]. Notably, two 
distinct types of tumor antigens were identified using this technique: (a) peptides 
from ubiquitously expressed proteins that contained a single amino acid substitution 
mutation (Fig. 7.1) [13, 14], and (b) peptides from non-mutated, but selectively and/
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or aberrantly expressed proteins [15]. This approach was used to identify tumor 
antigens in both mice and humans; however, the process was exceptionally 
labor-intensive.

As demonstrated above in the Segal et al. study, advances in genomic sequencing 
technologies and computational biology can now be applied to streamline the iden-
tification of mutated tumor antigens, i.e. neoantigens [8]. In 2012, Gubin et al. used 
a carcinogen-induced murine sarcoma model to test the ability of the immune sys-
tem to sculpt the mutational landscape of a tumor [16]. Sub-clones were isolated 
from tumors grown in immune incompetent mice and were subsequently transferred 
to immune competent mice. Some clones were rejected in the immune competent 
mice, while others remained tumorigenic. Whole exome sequencing was performed 
in order to identify the full complement of non-synonymous mutations in each cell 
line. Mutations unique to clones rejected by immune competent mice were identi-
fied as putative neoantigens, and were subsequently validated as immunogenic epi-
topes in in vitro cell culture assays [17].

While the neoantigens identified in the studies above were all restricted by MHC 
Class I and targeted by CD8+ cytotoxic T lymphocytes (CTLs), other studies have 
discovered mutation-induced neoantigens restricted by MHC Class II and targeted 
by CD4+ T cells. Linnemann et al. utilized an innovative co-culture system in which 
autologous human B cells immortalized by stable transduction of the anti-apoptotic 
proteins BCL-6 and BCL-XL were used as antigen presenting cells. The immortal-
ized B cells were loaded with long peptides (31 amino acids each) containing 
somatic mutations identified by whole exome sequencing of a patient’s tumor. 
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Fig. 7.1  Cartoon demonstrating where in the immune response neoantigens (red hexagon) result-
ing from tumor mutations are thought to play a role. (Adapted from Intlekofer & Thompson, JLB 
2013; Callahan & Wolchok, JLB, 2013). TCR T-cell receptor, MHC major histocompatibility com-
plex, APC antigen presenting cell, Red hexagon putative tumor neoantigen, Black hexagon co-
stimulatory signal
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Autologous CD4+ T cells were co-cultured with peptide-loaded B cells and super-
natant cytokine levels were measured to detect T cell activation. Functional, Class 
II-restricted neoantigens were identified in tumor infiltrating lymphocytes and in the 
adoptive cell therapy products used to successfully treat patients with metastatic 
melanoma [18]. Although this study found that only ~0.5–1% of mutations elicit a 
CD4+ T cell response in patients, i.e. one or two immunogenic mutations out of 100 
or 200 tested, another study utilizing peptide vaccination in syngeneic murine tumor 
models found the numbers to be much higher. Kreiter et  al. found that approxi-
mately 20–40% of all mutations tested elicited an immune response from spleno-
cytes of vaccinated mice, and 70–80% of those were due to CD4+ T cell reactivity 
[19]. These discrepancies may reflect differences in immune responses between 
mice and humans or between tumor- and vaccination-induced responses. 
Nevertheless, more work will be required to determine the relative and mechanistic 
contributions of CD8+ and CD4+ T cells to tumor immune responses in the setting 
of checkpoint blockade, adoptive T cell therapy, and vaccination.

7.3  �Neoantigen Prediction

The prediction of which putative neoantigens will actually induce an immune 
response and the nature of that response, present computational and biological 
conundra for which, as of 2017, the field is developing but has not completed solu-
tions. In a process that has been amply and elegantly reviewed elsewhere [20], pep-
tides can be processed intracellularly by an antigen presenting or other cell into 
antigens that can then be presented by the human immune system by type I or type 
II major histocompatibility complexes (MHC). The peptide-MHC complex must 
then be recognized by and engage with a T-cell receptor, which then signals inter-
nally to help determine the response of the T-cell to that antigen. In addition to 
internal signals, external signals both on the T cell and in the tumor immune micro-
environment impact this dynamic process.

Algorithms exist to predict which mutations will be translated, processed, pre-
sented and then elicit a T-cell response; however, the absence of a gold standard for 
assessing the output of these steps in this process experimentally in the setting of 
malignancy (see next section on Technologies to detect a neoantigen-specific T-cell 
response) limits the feedback process necessary to optimize the computational algo-
rithms. That said, the existing algorithms are undergoing continuous improvements 
to address these issues. After mutations are called in a tumor sample by comparing 
the tumor DNA to an individual’s matched normal DNA, then the affected areas are 
“virtually translated,” yielding a putative aberrant peptide resulting from the muta-
tion, and a wild type peptide. The prediction algorithms then “scan” the altered 
peptide to discern whether it would be predicted to be presented by MHC Class I.

Although as stated above there are algorithms to address each step in the process 
of antigen presentation, the most commonly tools focus on predicting which 9 to 11 
amino acid (known as 9- to 11mers) stretches will be presented by MHC Class 
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I. Initial programs did so using stereotyped motifs, for example assuming anchor 
residues (positions 2 and 9) would be occupied by certain amino acids. However, 
current tools are trained on actual HLA binding data which they then use to predict 
binding in an HLA-specific manner (concepts are discussed further in [21]). In addi-
tion, where expression data are available, current strategies take into account expres-
sion in order to decrease candidate neoantigens [22, 23].

Significant challenges remain, however. The longer length of peptides loaded 
onto MHC Class II and the less well-known rules determining peptide position have 
meant that MHC Class II peptide binding prediction lags behind Class I (reviewed 
in [24]) Attempts to elute neoantigens from MHC are very labor-intensive and have 
been successful in only a subset of labs with expertise in that area [16, 25]. Even less 
is known about the T-cell side of the neoantigen equation. The degeneracy of T-cell 
receptor (TCR) recognition both enables a large number of peptides to be recog-
nized by a given TCR [26], and simultaneously renders it impossible, with current 
technology, to identify which peptide(s) a given TCR may recognize. What type of 
T-cell response is induced also remains a topic of debate, with several studies focus-
ing on the CD8+ T-cell response to neoantigens in preclinical models [16] and 
patients treated with checkpoint blockade [27], and others demonstrating that a 
CD4+ T cell anti-neoantigen response can yield immune control in both mouse [19] 
and human [28] contexts. Data on whether neoantigens can actually induce an 
immuno-suppressive response has not yet been published, but seems logical given 
what is known by non tumor-associated antigens [29–31].

7.4  �Technologies to Detect a Neoantigen-Specific T Cell 
Response

In order to improve computational neoantigen prediction algorithms, it will be 
imperative to gather more empirical data through the experimental identification 
and validation of neoantigens. Methods for the detection of neoantigen-specific T 
cell responses can be grouped into two categories, depending on whether they detect 
T cell activation or the binding of an MHC-presented peptide to specific T cells.

Most functional assays are based upon the following experimental framework – 
in vitro co-culture of peptide-presenting antigen presenting cells (APCs) with autol-
ogous T cells, followed by detection of cytokine production from activated T cells. 
Each element of this experimental framework can be varied based on the scope and 
purpose of the experiment and on the materials available. Sources of APCs include 
autologous dendritic cells differentiated in vitro from monocytes, dendritic cells and 
macrophages already present in peripheral blood, immortalized B cells, or artificial 
antigen presenting cells, in which cells (typically from a different species) are engi-
neered to express a specific human MHC complex and co-stimulatory molecules. 
The way in which putative neoantigen peptides are introduced to APCs is another 
source of variation. Synthetic peptides can be loaded directly onto APCs or, 
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alternatively, RNA encoding longer protein sequences can be electroporated into 
APCs to allow for natural processing and presentation. Finally, the method of cyto-
kine detection can also vary. The most efficient and high-throughput of these is 
called ELISPOT. In the ELISPOT assay, cytokine capture antibodies are immobi-
lized on the surface of wells of a microtiter culture plate. Secondary antibodies 
conjugated to a colorimetric detection agent are used to detect pockets or “spots” of 
cytokine production. The spots are counted and measured to indicate the number of 
activated T cells and the strength of the response. Alternatively intracellular cyto-
kine staining can be performed on T cells and analyzed by flow cytometry. This 
method has the advantage of being able to detect multiple cytokines and assign 
them to individual cells and it fairly quantitative; however, it is also more labor-
intensive and the cells must be killed by fixation and permeabilization during stain-
ing, rendering them unavailable for further cell-based assays.

Binding assays are based on peptide-MHC (pMHC) tetramer technology. The 
fundamental unit of a pMHC tetramer consists of a recombinant MHC molecule 
(including beta-2 microglobulin) conjugated to biotin and loaded with a specific 
peptide. The binding affinity of a single pMHC monomer for its cognate TCR is 
exceptionally low and therefore pMHC monomers are not suitable labeling reagents 
for antigen-specific T cells. To circumvent this issue, the biotin is then bound to 
fluorescently-labeled streptavidin, which contains four biotin binding sites per mol-
ecule, thus creating fluorescently-labeled tetramers of the pMHC complex. The 
resulting cooperative binding significantly strengthens TCR: tetramer affinity and 
these tetramers can be used as a labeling reagent to identify and monitor T cells with 
a unique antigen specificity [32, 33].

Generation of large libraries of pMHC tetramers is an appealing approach for 
identifying neoantigen-reactive T cells in patient samples; however, this approach 
was initially limited by technological challenges. Importantly, the MHC molecule is 
only stable when bound to a cognate peptide. Initially, this caveat limited the effi-
ciency of generating large pools of pMHC tetramers, as the recombinant MHC mol-
ecules could only be purified when already bound to a peptide, requiring each 
pMHC complex to be purified separately. Schumacher and colleagues devised a 
solution to this problem by creating ultraviolet (uv) cleavable peptides that could be 
used as “place-holders” to stabilize the MHC molecule during purification. These 
peptides could then be easily swapped with other peptides by exposing the tetramers 
to uv light in the presence of the a peptide of interest [34]. This advance allowed for 
the rapid generation of large libraries of pMHC tetramer complexes.

Because each tetramer complex can only be labeled with a single fluorophore, 
the next challenge was to devise a method for uniquely labeling each tetramer so 
that a patient sample could be screened by a large library of pMHC tetramers in a 
single well or tube. To this end, a “barcoding” technique was developed in which 
each unique pMHC tetramer is labeled with one of two fluorophores. Therefore, 
each pMHC tetramer is encoded by a unique fluorophore signature. More practi-
cally speaking, a tetramer is identified by detection in a specific combination of two 
fluorophore channels on a flow cytometer [35, 36]. This method has been further 
developed for detection by mass cytometry, in which fluorophores are replaced by 
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rare earth metals with unique mass [36, 37], or by DNA barcodes than can be identi-
fied via sequencing [38], thereby greatly expanding the size limitations of pMHC 
libraries for screening in a single reaction.

Ultimately, in order to make exponential rather than incremental improvements 
in neoantigen prediction algorithms, it will be critical to include TCR-binding pre-
dictions. Therefore, it will be important to identify both the relevant neoantigen 
sequences and their cognate T cell receptor sequences in the experimental setting. 
Although this approach has not yet been documented successfully in a high-
throughput manner, it may be possible to use pMHC libraries to label T cells of a 
certain specificity, followed by sorting and analysis by single-cell RNA sequencing 
to identify the cognate TCR variable domain sequence for each neoepitope tested 
[39, 40]. Collection of this type of data will be invaluable to improving neoantigen 
reactivity in a personalized manner for patients.

7.5  �Evidence for T-Cell Reactivity to Neoantigens in Patients 
Treated with Checkpoint Blockade Immunotherapy

The advent of checkpoint blockade therapies to the treatment of advanced cancers 
brought immunogenomics to the fore in studies in tumor immunology. The cur-
rently FDA-approved therapies target the checkpoints cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) and its 
ligand PD-L1, and are now standard of care in a wide variety of solid tumor malig-
nancies [41]. A study by van Rooij and colleagues examined a single melanoma 
patient treated with anti-CTLA-4 therapy and noted a neoantigen-specific response 
in circulating T cells in the peripheral blood [42]. This study utilized the UV-exchange 
technology described above, and with the sensitivity of that assay, responses to only 
two neoantigens, one of which was quite weak, were identified out of 448 predicted 
neoantigens. The authors hypothesized in that study that the higher number of sin-
gle nucleotide variants (SNVs) in melanomas, particularly those related to ultravio-
let radiation exposure, might increase the likelihood of forming one or several 
neoantigens that generate an anti-tumor T-cell response. Indeed, two follow-up 
studies on CTLA-4-treated melanoma patients confirmed a correlation between 
tumor mutation burden (TMB)—specifically coding SNVs leading to an amino acid 
change—and outcome [27, 43]. This correlation was imperfect in both studies, 
however, with tumors harboring many mutations lacking benefit, and others with 
low mutation burdens nonetheless benefiting.

At the time of the initial study [27], it was not known whether this principle 
would apply to other tumor types or checkpoint targets. However, further studies 
have demonstrated a correlation—consistently imperfect—between elevated TMB 
and improved outcome in melanomas, non-small cell lung cancers (NSCLC) [44] 
and mismatch repair-deficient cancers treated with anti-PD-1 therapy [45], and 
urothelial cancers treated with anti-PD-L1 therapy [46]. These concepts were con-
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firmed retrospectively in a larger dataset: 271 patients with NSCLC were treated 
with nivolumab 3 mg/kg every 2 weeks and 270 patients were treated with histology-
dependent chemotherapy in the front-line setting; subgroups of each underwent 
whole exome sequencing of tumor and matched normal blood [47]. Those patients 
in the highest tertile mutation burden (n = 47) of the nivolumab-treated patients 
demonstrated an improved PFS as compared to medium or low-tertile groups 
(9.7 months in high versus 3.6 in medium [n = 49] and 4.2 in low [n = 62]); no such 
distinction was seen in the chemotherapy arm (5.8 [n = 60], 6.5 [n = 53] and 6.9 
[n = 41] months PFS in high, medium and low groups respectively).

However, the exceptions to the principle that high TMB correlates with outcome 
clearly imply that other mechanisms are at play in contributing to a successful or 
failed anti-tumor immune response. For example, anti-PD-1 therapy has been 
remarkably successful in Hodgkin’s lymphoma [48] and is approved in renal cell 
carcinoma (RCC) [49], neither of which features a subset of high TMB tumors [50]. 
Sequencing data from these distinct situations are pending.

Furthermore, as our understanding of neoantigens deepens, the neoantigen fea-
tures associated with a relevant T-cell response is a topic of intense investigation. 
One such study that used two of the aforementioned datasets as well as functional 
in vitro data suggested that clonal neoantigens—i.e. those neoantigens resulting 
from mutations found in every cell of a tumor—comprise the set that are relevant to 
immune rejection [51]. This study was aided by the enhanced sensitivity of the 
assay used to identify neoantigens, a technique that uses barcoding rather than com-
binatorial fluorescence to identify neoantigen-MHC as described above, and can 
thus identify a larger number of predicted neoantigens using a smaller number of T 
cells [38].

Furthermore, the relevance of immunogenomics extends beyond putative targets 
of checkpoint blockade therapies. Several groups have performed cell therapy as 
immunotherapy and identified neoantigens as targets. This method consists of 
extracting patients’ T cells (either from tumor or peripheral blood), expanding them 
under stimulated conditions ex vivo, then reinfusing them to garner enhanced anti-
tumor effects. Indeed, Rosenberg and colleagues identified neoantigens as the tar-
gets of the cell therapies pioneered by their group, with published examples of an 
CD4 anti-neoantigen clinical efficacy in a patient with cholangiocarcinoma [28], 
and another similar study in patients with gastrointestinal cancers [52].

Finally, preclinical data from the Sahin and Schreiber labs demonstrate that 
under some conditions, neoantigen vaccines can protect against tumor challenge or 
even lead to tumor regression, particularly when combined with checkpoint block-
ade [16, 19]. This effect may be CD4 or CD8 T cell-mediated. Based in part on these 
data, several neoantigen vaccine studies are recruiting or planned (for example, 
NCT01970358 and NCT03166254, among others).
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7.6  �Unanswered Questions and Future Directions

Although remarkable clinical advances have been made in cancer immunotherapy, 
the field of cancer immunogenomics is still in its infancy. Many intriguing questions 
about mechanism, biomarkers, and prediction remain. Notably, although neoantigen-
specific responses have been detected, mutation or predicted neoantigen load is a 
relatively poor predictor of clinical benefit. This observation has many implications 
for future investigation. Perhaps neoantigens are critical determinants of response in 
some patients but not others. Furthermore, the existence of an experimentally iden-
tified neoantigen response does not necessarily imply causality in clinical benefit 
from that therapy. Ultimately a direct comparison of the relative influences of 
mutation-derived neoantigens, non-mutated tumor associated antigens, and tumor 
microenvironment across many patients will be required to better understand the 
mechanisms of response to cancer immunotherapy (Fig. 7.2).

Another intriguing question is whether neoantigens can ever be detrimental to 
response. Specifically, the concept of immunodominance, in which reactivity to a 
single antigen “out-competes” other reactivities, has been documented in infectious 
disease immunology [53–56]. Whether specific mutation-derived peptide sequences 
may have a similar effect and can act as “decoy epitopes” has yet to be explored in 
the setting of tumor immunology. Furthermore, T regulatory cells can be activated 
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Fig. 7.2  Immunogenomics represents one of many factors that influence response to checkpoint 
blockade immunotherapy. (Yuan et  al., PNAS 2011; DiGiacom lo et  al. Cancer Immunol 
Immunother 2013; Queirolog et  al., Cancer Invest 2013; Wolchok et  al., Cancer Immun 2010; 
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in an antigen-specific manner [29] and specific peptide sequences, known as 
Tregitopes, have been identified that trigger T regulatory (Treg) cell-mediated 
immunosuppression [31]. Therefore, it seems possible that tumor-derived mutations 
that generate “neo-Tregitope” sequences may have a detrimental effect on patient 
response to immunotherapy. Detailed experimental work will be required to explore 
these possibilities.

Ultimately, the ability to predict and improve response to cancer immunothera-
pies will likely require examination of a number of genetic and environmental fac-
tors that influence not only tumor characteristics, but the host immune repertoire 
and function as well. Therefore, interrogation of the tumor, its surrounding stroma, 
and the immune system in general at epigenomic, genomic, and proteomic levels 
will be critical [57]. It is hoped that such an integrative immunogenomics approach 
will improve the ability to tailor immunotherapies specifically to each patient’s 
tumor and thereby greatly improve survival rates for patients.
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Chapter 8
Managing Germline Findings 
from Molecular Testing in Precision 
Oncology

Jessica N. Everett and Victoria M. Raymond

Abstract  Molecular genetic testing of the germline for hereditary cancer risk and 
molecular testing of tumor tissue for therapeutic decision making are no longer 
clearly distinct. Here we review how changes in sequencing technology have 
impacted use of germline and tumor molecular testing, implications for identifying 
incidental pathogenic germline variants through tumor testing, relevance of patho-
genic germline variants in cancer care and prevention, and emerging research guid-
ing clinical practice in this area.

Keywords  Precision oncology · Genetic counseling · Germline variants · NGS 
testing · Clinical genomics · Targeted therapy

8.1  �Overview of Molecular Testing in Oncology

Molecular genetic and genomic testing has been incorporated into medical oncology 
practice for two key uses:

	1.	 To identify patients and families at risk for a hereditary cancer syndrome due to 
pathogenic germline variants (PGV) in cancer risk genes

	2.	 To identify tissue specific (somatic) variants for prognosis and predictive thera-
peutic decision making in patients with a cancer diagnosis

These two uses of molecular genomic testing emerged independently to meet 
distinct clinical needs within oncology care, were managed by practitioners with dif-
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ferent clinical expertise, and followed different standards for patient education and 
consent. Specialist genetics practitioners have primarily provided counseling and 
molecular testing for hereditary risk. Hereditary cancer risk counseling includes a 
pre-test discussion of the risks, benefits, and alternatives to testing, and implications 
of a PGV finding for the medical care of the patient and their family members. 
Molecular testing for somatic variants has typically been ordered by medical oncolo-
gists for prognostic and therapeutic decision making. Traditional pre-test genetic 
counseling is not included as part of the tumor molecular testing process, since the 
somatic variants of interest are usually not hereditary. Broader use of these two types 
of molecular testing has proven that these formerly distinct tests and testing indica-
tions are being increasingly intertwined, raising new questions and challenges for 
clinicians. PGVs identified through testing for hereditary risk may be used to direct 
patients to targeted therapies (e.g. PGVs in BRCA1/2 and poly ADP ribose poly-
merase (PARP) inhibitor therapy). Similarly, expanded use of comprehensive tumor 
genomic sequencing [1] has increased the potential to identify incidental PGVs, 
leading to unanticipated diagnoses of hereditary cancer syndromes. Molecular test-
ing of the germline for hereditary cancer risk and molecular testing of tumor tissue 
for therapeutic decision making are no longer clearly distinct. Here we review how 
changes in sequencing technology have impacted use of germline and tumor molec-
ular testing, implications for identifying incidental PGVs through tumor testing, 
relevance of PGVs in cancer care and cancer prevention, and emerging research 
guiding clinical practice in this area for providers in both genetics and oncology.

8.2  �Molecular Testing in Oncology Care – Background

8.2.1  �Tumor Molecular Testing for Treatment Planning

Tumor molecular profiling for treatment decision making is a concept that has 
evolved since the late 1990s, when the Food and Drug Administration (FDA) 
approved trastuzumab for treatment of breast cancers with overexpression of HER2 
(ERBB2). This was followed by approval of imatinib for chronic myelogenous leu-
kemia with BCR-ABL gene fusion in 2001, and erlotinib for EGFR mutant non-
small cell lung cancer in 2004 [2]. Early tumor profiling assays often examined a 
single variant “hot spot” or expression of a single gene, could be completed as part 
of routine pathology work flow, and did not require paired normal tissue samples for 
result interpretation. These early molecular tests had relevance for patients with 
specific types of cancer. By the early 2000s, rapid changes in the cost and availabil-
ity of large scale next generation genomic sequencing (NGS) began to greatly 
expand knowledge of tumor mutational landscapes across cancer types.

Targeted therapies and related clinical trials based on a wide variety of molecular 
markers continue to grow. Oncologists increasingly order some level of molecular 
tumor testing in routine clinical practice, ranging from single variant or single gene 
analysis, to multi-gene panels or whole exome sequencing, for patients with all 
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types of cancer. The opening of large studies including the National Cancer 
Institute’s Molecular Analysis for Therapy Choice (MATCH), and the American 
Society of Clinical Oncology’s (ASCO) Targeted Agent and Profiling Utilization 
Registry (TAPUR) suggest that a growing number of patients will undergo tumor 
sequencing of some kind to guide optimal therapy and clinical trial participation, 
and the rapid decrease in the price of genomic sequencing will make this testing 
more accessible for larger patient populations over time.

As tumor molecular testing moved beyond hot spot and single gene assays, it 
became clear that the presence of the normal germline genome within the tumor was 
a potentially confounding factor to fully understanding tumor biology. For this rea-
son, research studies began to favor paired sequencing of tumor/germline samples 
to allow for clearer distinction between somatic and germline variants. As many as 
one third of actionable variants reported on tumor-only analyses using analytic 
methods rather than paired germline samples may be incorrectly classified as 
somatic [3]. Correct distinction of somatic and germline variants has important 
implications for interpretation of results, as well as downstream impact on treatment 
decisions and screening for family members. In clinical practice, tumor only 
sequencing is still favored due to lower cost and ease of sample collection.

8.3  �Germline Molecular Testing for Hereditary Cancer Risk

Use of germline genetic testing to identify patients with PGVs causative of hereditary 
cancer syndromes has become a well-established part of routine oncology care. PGVs 
in cancer risk genes account for 5–10% of common cancers, with variation depending 
on cancer type. For patients with cancer, identification of PGVs in cancer risk genes 
has potential impact on surgical decision making, and increasingly affects systemic 
treatment decision making as options for targeted therapeutics based on presence of 
PGVs become available [4, 5]. The two most common hereditary cancer syndromes, 
Hereditary Breast and Ovarian Cancer (HBOC) caused by PGVs in the BRCA1 and 
BRCA2 genes, and Lynch syndrome, caused by PGVs in the MLH1, MSH2, MSH6, 
PMS2, and EPCAM genes, exemplify these points. Women who carry PGVs in 
BRCA1/2 face a lifetime risk of breast cancer of up to 72%, and a lifetime risk of ovar-
ian cancer of up to 44% [6]. Long term follow-up studies show that surveillance [7], 
chemoprevention [8, 9], prophylactic mastectomies [10], and bilateral salpingo-
oophorectomies [11] can decrease morbidity and mortality in this population [12]. 
BRCA1/2 PGV carriers with ovarian cancer, and possibly those with pancreatic can-
cer, appear to have improved survival when treated with platinum based therapies [13, 
14], and there is evidence suggesting platinum response may be improved in BRCA2 
carriers with prostate cancer [15]. Targeted therapy with PARP inhibitor agents shows 
efficacy in BRCA1/2 PGV carriers [16] which can be sustained over months in some 
patients [17]. Similarly, patients with Lynch syndrome face a lifetime risk of colorec-
tal cancer of up to 85%, which can be dramatically reduced with colonoscopies every 
2–3 years beginning at age 20 [18]. Patients with Lynch Syndrome associated stage II 
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colon cancer can opt out of adjuvant chemotherapy without losing survival benefit 
[19], and there is evidence supporting use of PD-1 blockade in tumors with defective 
mismatch repair (MMR) and high rates of somatic mutations, as is found in most 
Lynch syndrome cancers [4]. In a first of its kind pan-cancer therapy approval, the 
FDA approved use of pembrolizumab, an anti PD-1 therapy, in patients with microsat-
ellite instable (MSI) or MMR deficient tumors, the classic pathology features of a 
Lynch Syndrome associated tumor (www.fda.gov).

PGVs in cancer risk genes also have important implications for an affected 
patient’s family members, who may benefit from screening and prevention options 
to reduce cancer risk. For this reason, pre-test counseling for hereditary cancer risk 
typically includes discussion of risk to family members, and post-test counseling 
involves discussion of plans to share test results with relatives [20]. Testing of at-
risk family members for known PGVs offers opportunities for intervention, and 
improves the cost effectiveness of molecular testing for hereditary risk [21].

Genetic testing for hereditary cancer risk entered clinical practice with BRCA1/2 
testing in 1996. At that time, various factors including the high cost of testing, lack 
of follow up data supporting clinical utility, and fears of genetic discrimination, 
meant that testing was targeted only to patients at high risk to carry a PGV based on 
their personal and family history of cancer. Clinical guidelines first established by 
the ASCO in 1996 [22] and the National Comprehensive Cancer Network (NCCN) 
in 2010 [23] recommended germline test utilization for patients with specific “red 
flags” including earlier than average age at cancer diagnosis, suggestive family his-
tory, or suggestive tumor characteristics [24]. The National Society of Genetic 
Counselors (NSGC) published recommended elements of pre-test and post-test 
counseling for germline cancer genetic testing in 2004 [25]. These basic elements 
included:

•	 Collection of 3–4 generation family history, and detailed personal cancer 
history

•	 Risk assessment and consideration of genetic testing for patients meeting high 
risk criteria, where test will influence medical management

•	 Explicit, written informed consent for testing after discussion of risks, benefits, 
limitations, and alternatives as well as general education about gene(s), associ-
ated cancer risks, and inheritance pattern

•	 Plan for results disclosure and post-test counseling including discussion of medi-
cal and psychosocial implications for patient and family members

8.4  �Next Generation Sequencing Technologies – Impact 
on Clinical Molecular Testing

The arrival of NGS technology in clinical laboratories, and the related decrease in 
cost of sequencing, led to disruption in standard thinking and practice for use of 
both germline and tumor testing. Along with adoption of NGS technology, the 2013 
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Supreme Court decision striking down the patent on BRCA1/2 sequencing [26] also 
contributed to a rapid decrease in cost of germline testing. The price of sequencing 
the BRCA1 and BRCA2 genes alone fell from $4000 to $2000 within days of the 
decision [27]. Multi-gene panels for hereditary risk became clinically available in 
2013, and were quickly adopted by clinicians who appreciated the efficiency and 
cost savings of analyzing multiple cancer risk genes through a single sample from a 
single clinic visit. By the spring of 2017, multi-gene germline panel tests for 30–79 
cancer risk genes, including BRCA1/2 cost as little as $150–$475 for patients pay-
ing out of pocket. Studies of multi-gene panel use reported increased identification 
of PGVs in patients with suspected hereditary breast and ovarian cancer [28, 29], 
suspected Lynch syndrome [30], early onset colon cancer [31], and pancreatic can-
cer [32]. Similarly, the cost of full sequencing of tumors dropped from $5400 to 
$3600 within 6 months [33], and proved useful in identifying new genes and path-
ways important to tumor development and progression [34].

Less expensive testing and availability of multi-gene germline and somatic pan-
els led to increased use of testing for a broader range of genes. While this improved 
diagnostic capabilities for both germline and tumor testing, it came with a side 
effect: unanticipated or incidental findings. Genetics providers began to see multi-
gene panel testing identifying PGVs in patients who did not meet testing criteria for 
the associated hereditary cancer syndrome, or had atypical phenotypes that may 
have been missed with a single gene testing approach [30, 35–37]. Patients found to 
carry more than one cancer predisposing PGV were reported [38]. Cancer genetics 
specialists noted that new approaches would be needed to address changing needs 
for pre-test education and informed consent [39]. In the tumor testing space, debates 
about managing incidental discovery of PGVs in patients not consented for heredi-
tary testing began to emerge.

Early editorials and reviews in the oncology literature addressing potential chal-
lenges in managing incidental PGVs found through tumor sequencing began appear-
ing in 2013 [40, 41], with further input from the Clinical Sequencing Exploratory 
Research (CSER) Consortium in 2016 [42]. These authors emphasized that while 
sequencing of paired tumor-germline samples could clearly find PGVs, “tumor 
only” sequencing could also identify important PGV findings as the germline DNA 
is part of the tumor content. Recognizing that referral to genetic counseling was 
impractical for all patients having tumor testing, key points for oncologists to 
address prior to tumor sequencing were highlighted including:

•	 discussing the possibility of PGV findings
•	 developing a plan for disclosure of possible PGVs, including patient preferences 

for disclosure to family members if necessary
•	 identifying clinical genetics resources and colleagues for collaboration and refer-

ral as needed

An early study retrospectively reviewed history for patients who had tumor 
only sequencing results with potential germline significance to determine how 
many should have confirmatory germline testing, and what logistics would be 
needed to confirm possible germline events. Recognizing that full genetic coun-
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seling for all patients having tumor testing was impractical and inefficient, they 
suggested that oncologists have a brief discussion of potential PGVs with all 
patients, then use family history assessment to target more detailed conversations 
or genetics referral to patients with highest risk for PGVs [43]. All of these pub-
lications also emphasized the need for research into informed consent approaches, 
decision algorithms to guide disclosure, and development of infrastructure to 
support disclosure at a scale not previously attempted in traditional clinical can-
cer genetics.

The American College of Medical Genetics and Genomics (ACMG) addressed 
PGV findings identified as part of paired tumor/germline sample sequencing in their 
2013 recommendations for reporting of incidental findings in clinical exome and 
genome sequencing [44]. These recommendations defined a “minimum list” of 
disorders with clinical validity and utility for which preventive or treatment options 
were available, and suggested that PGVs in these genes should be disclosed to 
patients undergoing exome or genome sequencing regardless of the primary testing 
indication. This minimum list included 23 cancer risk genes, with a recent update 
bringing the total to 25 [45] (Table 8.1). At the time, this recommendation generated 
concerns about identifying PGVs outside the typical clinical genetics context with-
out traditional pre-test genetic counseling [46]. Specific concerns cited by the 
oncology community in response to the ACMG recommendations included the 
potential burden placed on oncologists to discuss the possibility of PGVs, particu-

Table 8.1  American College of Medical Genetics and Genomics Minimum Gene List for 
Disclosure in Large Scale Sequencing

Gene Syndrome

APC Familial adenomatous polyposis
BMPR1A, SMAD4 Juvenile polyposis
BRCA1, BRCA2 Hereditary breast ovarian cancer syndrome
MEN1 Multiple endocrine neoplasia type 1
MLH1, MSH2, MSH6, PMS2 Lynch syndrome
MUTYH MUTYH associated polyposis
NF2 Neurofibromatosis type 2
PTEN PTEN hamartoma tumor syndrome
RB1 Retinoblastoma
RET Multiple endocrine neoplasia type 2
SDHAF2, SDHB, SDHC, SDHD Hereditary paraganglioma-pheochromocytoma 

syndrome
STK11 Peutz-Jeghers syndrome
TP53 Li-Fraumeni syndrome
TSC1, TSC2 Tuberous sclerosis
VHL Von Hippel Lindau syndrome
WT1 Wilms tumor
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larly in genes unrelated to cancer risk. Additional concerns included lack of data on 
potential clinical benefits, negative consequences, and preferences of patients and 
oncologists regarding reporting of PGVs in the setting of tumor sequencing [47]. 
With most studies of germline mutation prevalence occurring in high risk popula-
tions, there was little data available to understand how common PGV findings might 
be in broader patient populations, contributing to worries that oncologists and 
genetics providers would be unable to handle increased need for genetic services to 
manage PGV findings.

8.5  �How Common Are Germline Findings in Patients 
with Cancer?

Since the initial ACMG guidelines were released, multiple studies have published 
results of paired tumor/germline testing in various populations, yielding better esti-
mates of the prevalence of PGVs in patients with cancer that can inform practice 
and policy planning. An early study of 815 adults with 15 different cancer types 
reported nonsense, frame shift, and splice site mutations in 85 genes associated with 
cancer risk, and found 3% of patients carried a PGV [3]. A study of 1566 patients 
with 30 types of advanced cancers found PGVs in 12.6% using a larger list of 93 
cancer risk genes, and including single nucleotide variants, which were the most 
common type of PGV identified in this study [48]. This study also noted that only 
41% of patients with a PGV had a type of cancer concordant with their PGV find-
ing, and that nearly every patient had a variant of uncertain significance (VUS) in 
one or more of the 187 Mendelian disease risk genes that were studied. Two addi-
tional studies focused attention on PGVs in cancer risk genes with the highest clini-
cal impact. One study of 1000 patients found PGVs in 4.3% with a list of 36 genes 
associated with high risk cancer syndromes, noting that half of the PGVs were 
known prior to study participation and 63% were concordant with the cancer type 
diagnosed. This study found 40.5% of patients had a VUS, reflecting the fact that 
genes with more routine clinical testing are better characterized with fewer uncer-
tain findings [49]. The second study examined 19 high penetrance cancer risk genes 
in 1000 patients, and found 4.3% carried a PGV with half of those known prior to 
tumor sequencing [50]. Overall in adult populations with no enrichment for high 
risk family history, PGVs in cancer risk genes were present in 3–12.6% [3, 48–52]. 
Differences across the studies including types of cancer diagnosed, number of genes 
investigated, and types of mutations included, account for the range in PGV find-
ings. PGVs in the BRCA1 and BRCA2 genes were the most commonly identified 
finding across all adult studies. In pediatric populations, 8.5–10% of patients with 
cancer were found to have PGVs in cancer risk genes [53–55] with PGVs in the 
TP53 gene causative of Li-Fraumeni syndrome being the most common.
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8.6  �Integrating Tumor and Germline Testing

Given the relatively high prevalence of PGVs potentially identifiable in tumor 
sequencing, and the potential benefits of PGV findings for medical management of 
patients and their family members, researchers have begun to study and address key 
barriers to successfully integrating tumor and germline testing. These issues include 
establishing patient preference for disclosure, ensuring key elements of pre-test 
informed consent are intact, and developing scalable genetic service delivery models, 
with the end goal of maximizing the potential benefits of PGV findings while mini-
mizing potential negative outcomes for patients undergoing tumor sequencing. Many 
of these issues are not new to clinical genetic testing in general, but the “variety and 
uncertainty of potential results, broad implications of those results, and elevated 
expectations of personal benefit create some new or amplified challenges” [56].

8.7  �Patient Preference, Right “Not to Know”

In the traditional model of germline genetic testing for hereditary cancer syndromes, 
patients have a dedicated discussion with a genetics provider to weigh the risks, 
benefits, and limitations of germline testing before deciding whether or not to pro-
ceed. Preferences for learning about PGVs are explicitly expressed, and are inde-
pendent of any other indication for sequencing. With tumor sequencing, patients 
have testing for treatment planning as the specific indication, and the complexities 
of this discussion are appropriately prioritized over hypothetical germline findings. 
The original ACMG working group on incidental findings recommended mandatory 
reporting of PGVs on their minimum list, concluding that the duty of providers to 
prevent harm associated with high penetrance conditions where prevention or treat-
ment could be offered outweighed concerns about violating patient autonomy and 
“right not to know” [44]. Debate among ACMG members and related stakeholders 
resulted in an updated recommendation for patient ability to opt out of germline 
findings not directly related to the testing indication [57]. Early evidence from three 
studies suggests that the majority of patients undergoing tumor sequencing choose 
to receive germline results when given the option including 97% of adults with 
refractory cancers [58], 90% of parents of pediatric patients with cancer [53], and 
95% of patients with stage IV lung or colorectal cancer [59].

8.8  �Informed Consent

Prior to wide use of NGS, traditional clinical genetics practice focused on testing 
for a single gene or small group of related genes (e.g. BRCA1/2 or the Lynch 
Syndrome genes), allowing for detailed discussion of specific risks, benefits, and 
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limitations at the time of informed consent. Because single gene testing has been 
targeted at patients and families meeting risk criteria, these discussions have also 
typically occurred within a context of personal or family experience with the cancer 
in question. Use of multi-gene germline panels increases the likelihood of findings 
unrelated to the primary reason for testing, and has led to a necessary shift in the 
informed consent process to a more general discussion of types of potential find-
ings, without the assumption that patients will have any experience with the condi-
tion identified. Hooker et  al. [60] commented on how the technology shift is 
impacting genetic counseling practice where NGS is employed, noting that patients 
increasingly are asked to agree to some degree of uncertainty about findings, and to 
face findings that were not predictable based on personal or family history, with less 
expectation that their personal experience or feelings about a condition will impact 
their desire for or against receiving those results. These lessons from clinical germ-
line exome and large panel testing appear to apply equally to patients undergoing 
tumor testing, where a general discussion about potential findings is relevant. The 
CSER Consortium has also studied how genetic counselors across consortium sites 
are adapting the informed consent process to meet patient needs. Their findings sug-
gest that the main challenges include broad scope and uncertainty of results, and 
unrealistic expectations about the number and utility of results. Genetic counselors 
in the study focused consent discussion on addressing misperceptions and helping 
patients develop realistic expectations about types and implications of possible 
results [61]. One study of pediatric cancer patients found that 17% of parents 
declined to participate in a sequencing study, citing feeling “overwhelmed by child’s 
diagnosis” as the most common reason, suggesting that the timing of consent dis-
cussion is important [62]. Opinions of assenting minors that differ from parents/
guardians, seem particularly relevant for results that may have impact on minors 
when they reach adulthood [58].

8.9  �Genetic Service Delivery

The NSGC anticipated an expanding need for genetic services across the clinical 
spectrum, and formed a Service Delivery Model Task Force as part of strategic ini-
tiatives in 2010–2011. The task force found that genetic counselors had already 
begun to expand the ways they provide services in order to improve access and 
efficiency, and that there were several variations of “best practice” models, with 
variables specific to clinic settings determining which model best suits a given situ-
ation [63]. In further follow up, they found that the goals centered on improving 
patient access, such as reducing travel distance and wait time for services, were 
driving genetic counselors to adapt service delivery [64]. Prior work in developing 
universal tumor screening programs for Lynch syndrome in all patients with colorec-
tal and endometrial cancers offers useful lessons. These programs complete micro-
satellite instability testing and/or immunohistochemistry for mismatch repair 
proteins in tumors without formal pre-test genetic counseling, with follow up 
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genetics referral for patients with abnormal results suggesting underlying Lynch 
syndrome [65]. Some hospitals have also successfully implemented collaborative 
models for germline genetic testing with non-genetics providers providing pre-test 
consent for most patients, and referring on to genetics providers if there are any 
complicating factors or PGVs identified [66]. This suggests that brief pre-test com-
munication discussion of potential for PGVs from a non-genetics provider, coupled 
with formal post-test genetic counseling for select patients may be an efficient 
model for integrated tumor/germline testing.

8.10  �Case Examples

8.10.1  �PGVs Can Have Relevance for Cancer Treatment

A 56  year old man with advanced prostate cancer consented to undergo paired 
tumor/germline sequencing (Fig. 8.1). Although his family history included a sister 
with breast cancer and a sister with ovarian cancer, neither he nor his family mem-
bers had ever been referred for genetic counseling or cancer risk genetic testing 
prior to study participation. He opted to receive germline findings, and testing 
revealed a PGV in the BRCA2 gene, along with copy loss of the second BRCA2 
allele in the tumor. This finding had primary relevance to treatment decision mak-
ing, as the patient was eligible for use of PARP inhibitor therapy. Genetic testing for 
the BRCA2 PGV could also be offered to his siblings, children, nieces, and nephews 
to give them options for risk reduction and prevention strategies.

Increasing evidence suggests that germline testing is indicated for all patients 
with specific cancer diagnoses including ovarian [29], metastatic prostate [67], and 
pancreatic [68] where prevalence of PGVs exceeds 10%, family history may not be 
suggestive, and confirmation of PGVs has potential treatment implications. 
Integrated sequencing of tumor and germline maximizes potential for medically 
informative results for these patients.

8.10.2  �PGVs May Have Been Previously Missed

Case 2: A 68 year old woman with history of bilateral breast cancer and newly diag-
nosed primary peritoneal cancer consented to sequencing. She had prior clinical 
germline testing of the BRCA1 and BRCA2 genes, with no PGVs detected. Through 
integrated tumor/germline testing, she was found to carry a PGV in the PALB2 
(Partner and Localizer of BRCA2) gene. This gene has been associated with 
increased risk for breast cancer [69]. PALB2 is part of currently available multi-gene 
panels for breast and ovarian cancer, but would not have been routinely offered 
clinically at the time the patient had her prior genetic testing. Studies of patients 
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with prior negative testing of BRCA1/2 have found that 9–11% have PGVs in genes 
now available on multi-gene panels [70, 71]. While ethical arguments suggest health 
care providers should re-contact patients who may benefit from new genetic testing 
technologies, practical and logistical barriers prevent this from happening on a large 
scale in most practice settings [72]. Integrated tumor/germline sequencing can pro-
vide an opportunity to re-evaluate families where prior testing was uninformative.

Data on clinical validity and utility for PALB2 is evolving, and there is less clar-
ity around utility of PGVs in moderate penetrance genes even when identified 
through traditional clinical cancer genetic counseling and testing. Multiplex germ-
line testing that includes moderate penetrance genes such as PALB2 has gained wide 
acceptance in clinical practice [28] and has been recognized by the NCCN as poten-
tially cost-effective [73]. However, few moderate penetrance genes have evidence 
based clinical recommendations. The NCCN now includes recommendations for 
breast cancer screening for ATM, CDH1, CHEK2, and PALB2, as well as consider-
ation of risk-reducing salpingo-oophorectomy for BRIP1, RAD51C, and RAD51D. 
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Fig. 8.1  Family history of Case 1. Proband is noted by the arrow. Family members subsequently 
tested positive for the BRCA2 PGV  are denoted with “+”, while those tested negative for the 
BRCA2 PGV are noted with “−”
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While none of these moderate penetrance genes are currently included in ACMG 
recommended list, they are routinely interrogated on clinical panels that could be 
offered to patients with personal history of cancer, making it reasonable to offer 
disclosure to patients undergoing tumor sequencing as well.

Variants of uncertain significance represent another challenge in germline analy-
sis. The ACMG working group acknowledged the challenges associated with inter-
pretation of VUS, and subsequently made recommendations for disclosure of only 
variants classified as pathogenic or likely pathogenic [44]. Proponents of population 
based screening efforts for the BRCA1/2 genes have also argued against reporting of 
VUS findings, given the challenges of interpretation even within high risk popula-
tions [74]. Issues of VUS have also expanded in traditional germline genetic testing 
for cancer predisposition, where multiplex panels are now the norm. Testing more 
genes at once increases the likelihood of finding a VUS. Few cancer predisposition 
genes have functional assays to investigate the specific impact of an amino acid 
change on the protein’s function, and computer algorithms for predicting protein 
effects are not clinically validated. While some of these variants may eventually 
prove to have clinical relevance, current practice standards argue against reporting 
of germline VUS in patients undergoing tumor sequencing.

8.10.3  �PGVs May Not Have Been Expected

A 54 year old woman with metastatic breast cancer initially diagnosed at age 49 
consented to integrated tumor/germline sequencing (Fig. 8.2). The tumor showed a 
high number of somatic mutations (>1300), and the germline sequencing identified 
a PGV in the MLH1 gene causative of Lynch syndrome. The high level of somatic 
mutations is consistent with mismatch repair deficiency in the tumor, a hallmark 
feature of Lynch syndrome cancers. Lynch syndrome is best known for causing 
increased risk for colon and endometrial cancers, neither of which were reported in 
this family. While the patient met criteria for breast cancer genetic testing, it is 
unlikely she would have been tested for Lynch syndrome unless a large pan-cancer 
multi-gene panel was offered. A 2013 literature review found that only one pro-
spective study demonstrated increased breast cancer risk in patients with Lynch 
syndrome compared to the general population, but that MMR deficiency in breast 
tumors of patients with Lynch syndrome demonstrated that at least some breast 
cancer cases were likely caused by the underlying MMR PGV [75]. A subsequent 
2015 study found that carriers of MLH1 PGVs had a lifetime risk of breast cancer 
of 18.6%, moderately elevated over the general population [76]. Testing for Lynch 
syndrome, and relevant screening and prevention options, can now be offered to her 
siblings and other family members.

Traditional approaches to identifying patients with PGVs in cancer predis-
position genes are likely to miss many families like this one who could benefit 
from genetic testing and related options for screening and prevention. Reliance on 
family history for referral also requires that accurate history be collected and 
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updated for patients, which may not always be the case. ASCO completed a 
Quality Oncology Practice Initiative (QOPI) for cancer family history and genetic 
counseling and testing referral that found 67–77% of patients with breast or colon 
cancer in 212 practices had incomplete family history recorded [77]. Even when 
documented, carriers of PGVs in BRCA1/2 may not have suggestive family his-
tory due to small family size or few female relatives [78]. Patients with suggestive 
family history are also not always referred appropriately, with the ASCO QOPI 
study finding that only 43% meeting criteria were actually referred [77]. Integrated 
tumor/germline sequencing is well accepted by patients and provides an oppor-
tunity to identify families who could be missed through traditional genetic 
counseling and testing approaches.

8.11  �Summary

Advances in sequencing technology have led to rapid changes in use of molecular 
testing in oncology, for both hereditary cancer risk (germline) and tumor (somatic) 
testing. Integrated tumor/germline testing offers improved ability to distinguish 
somatic variants that could be relevant to therapeutic options. Despite early 
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reservations about incidental discovery of germline PGVs through tumor sequenc-
ing, research suggests that most patients prefer to receive their germline findings 
when given an option. PGVs may have relevance for treatment of patients with 
cancer, as well as for screening and prevention options for their family members. 
PGVs identified in cancer risk genes during the process of tumor sequencing could 
be managed following multi-disciplinary models for genetic service delivery already 
implemented in other settings, with non-genetics providers managing a brief pre-
test discussion of the potential for germline findings, followed by detailed post-test 
genetic counseling for patients found to have PGVs or other complicating factors. 
Continued research on implementation of integrated tumor/germline sequencing 
will be needed to ensure that benefits of this testing are fully realized, while mini-
mizing potential risks for patients and families.
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Chapter 9
Ethical, Legal, and Social Implications 
of Precision Cancer Medicine
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9.1  �Introduction

Like many other emerging biomedical technologies, precision cancer medicine (or 
precision oncology) poses a broad range of ethical, legal, and social implications 
(ELSI). These ELSI issues are present across multiple levels of health care, research, 
and social policy. For example, at the individual (patient) level, use of next-generation 
sequencing (NGS) presents challenges for securing truly informed consent and hon-
oring patient preferences for the many different types of genetic information poten-
tially yielded by NGS.  At the institutional level, various stakeholders (e.g., 
professional organizations in genetics and oncology, test laboratories, clinical trials 
networks) have vested interests in deciding which types of sequencing results will be 
analyzed and returned to patients or research participants, and how the clinical 
implications of results will be managed. Finally, at a broader societal level, we must 
wrestle with questions of resource allocation and priority setting. Precision oncology 
represents a promising avenue for breakthroughs in cancer therapies, but what pro-
portion of public funds should be earmarked for this approach versus other domains 
of cancer treatment, where significant disparities in health care access and outcomes 
still persist? In this chapter, we will address such ELSI issues, drawing upon both 
empirical research and ethical and policy commentary in the field.
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9.2  �Precision Cancer Medicine and Distributive Justice

9.2.1  �Resource Allocation

Precision medicine has generated much excitement about its promise for advancing 
cancer care and improving patient outcomes. This enthusiasm was exemplified by 
President Obama in his 2015 State of the Union address announcing the launch of a 
national Precision Medicine Initiative (PMI), where the President commented, 
“Doctors have always tried to tailor their treatments as best they can to individuals. 
You can match a blood transfusion to a blood type—that was an important discov-
ery. What if matching a cancer cure to our genetic code was just as easy, just as 
standard? What if figuring out the right dose of medicine was as simple as taking 
our temperature? [1]” At approximately the same time, prominent leaders at the 
National Institutes of Health (NIH), including NIH Director Francis Collins and 
National Cancer Institute (NCI) Director Harold Varmus, provided the rationale for 
a focus on precision oncology as a top PMI priority in a highly publicized commen-
tary in the New England Journal of Medicine [2]. They noted that the PMI had been 
designed to address numerous potential barriers in oncology practice—unexplained 
drug resistance, genomic heterogeneity of tumors, insufficient means for monitor-
ing treatment responses and tumor recurrence, and limited knowledge about the use 
of drug combinations—and that better tailoring of therapies based on genomic pro-
filing would be a likely benefit of this large public research investment.

However, with its reliance on advanced, expensive technologies and highly spe-
cialized clinical and laboratory expertise, precision medicine—and precision oncol-
ogy in particular—are not currently feasible options for many patient populations in 
the US. Precision medicine’s focus on tertiary care instead of prevention and its 
relative lack of attention to broader social determinants of health (e.g., poverty, 
environmental stressors) have generated skepticism among some commentators 
about its likely return on investment, particularly when taking a population health 
perspective. For example, notable public health leaders Bayer and Galea (2015) 
have faulted the NIH’s significant allocation of resources to the PMI as an example 
of misplaced priorities [3]. The authors concluded,

“Enthusiasm [for the PMI]…derives from the assumption that precision medicine will con-
tribute to clinical practice and thereby advance the health of the public. However, this 
enthusiasm is premature…if one views the world from the perspective of the broad pattern 
of morbidity and mortality, if one is concerned about why the US has sunk to the bottom of 
the list of comparable countries in terms of disease experience and life expectancy, or if one 
is troubled by the steep social gradient that characterizes who becomes sick and who dies. 
The burgeoning precision-medicine agenda is largely silent on these issues, focusing 
instead on detecting and curing disease at the individual level.”

From this perspective, the significant allotment of public resources into the 
PMI—$215 million in its first year, with $70 million going to NCI [4]—could rep-
resent a missed opportunity to pursue investments focused on a public health (vs. 
biomedical) approach to addressing current and future cancer cases. Few precision 
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oncology interventions to date have demonstrated high levels of clinical utility, let 
alone cost-effectiveness. Of course, the field is still in its early stages, and thus such 
criticisms may be subject to revision as data emerges on the potential for precision 
oncology to improve both patient and population outcomes. Nevertheless, given 
other examples where leading proponents of genomic medicine have arguably over-
promised on its benefits, it is likely that skeptics may continue to question the value 
of precision oncology in terms of distributive justice: that is, whether its benefits 
and burdens are likely to be spread equally across relevant patient populations [5].

9.2.2  �Health Disparities

Another justice-related concern regarding precision medicine involves health dis-
parities and inequities. Unequal access to precision oncology and its requisite clini-
cal sequencing technologies may occur across a variety of patient and practice 
factors, including patient race, ethnicity, and socioeconomic status, and area-level 
resources (as represented by the concept of medically-underserved areas, or MUAs). 
Furthermore, type of medical practice—community vs. academic—is already 
known to be associated with differential access to advances in genomic medicine 
[6]. These barriers are certainly not unique to precision oncology but will need to be 
addressed if its envisioned future benefits are to be shared equitably across all seg-
ments of the cancer patient population.

Racial/ethnic disparities have been observed across multiple cancers [7]. Such 
disparities represent a social justice concern in that they are potentially avoidable, 
unnecessary, and unfair, and often attributable to modifiable factors beyond 
individual-level control. These factors include differential exposure to environmen-
tal risk factors, unequal insurance coverage and access to care, and implicit racial 
biases among health care providers [8]. It remains to be seen whether precision 
oncology will help address these disparities or unwittingly exacerbate them. One 
barrier to advancing knowledge in racial/ethnic minorities is their lack of adequate 
representation in large cancer genetics databases. For example, a recent analysis of 
The Cancer Genome Atlas (TCGA) found there were too few patients from various 
racial/ethnic minority groups (e.g., African Americans, Hispanics/Latinos) to detect 
even moderately common genomic alterations [9]. This lack of representation in 
research studies has potential implications for clinical practice, as racial/ethnic 
minority patients may be more likely to receive uninformative (or even erroneous) 
interpretation of their existing genomic variants, resulting in distressing uncertainty 
and/or suboptimal treatment. Oversampling of minority populations is therefore 
essential to develop a similar knowledge base as among non-Hispanic whites. To its 
credit, NIH has incentivized such sampling approaches within their Clinical 
Sequencing Exploratory Research (CSER) [10], a nationwide network of coordi-
nated sites examining the clinical utility of NGS across a diverse range of patient 
populations and medical conditions. Funded sites are charged with recruiting patient 
samples consisting in some cases of at least 60% underrepresented minorities.
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A second barrier to equitable expansion of precision medicine in racial/ethnic 
minority groups and patients of lower socioeconomic status is potential provider 
bias within patient-physician interactions. Physician recommendations regarding 
genomic sequencing have been recognized as a key step in the clinical process, but 
patient-provider communication about genomic sequencing and the possibility of 
racial and socioeconomic disparities in outcomes resulting from such communica-
tions (e.g., referrals for specialty services) have been understudied [11]. From mul-
tiple studies, we know that physician perceptions can be influenced, sometimes 
unconsciously, by patient race and socioeconomic status; these perceptions can 
include assumptions about patients’ level of intelligence, personality traits, and 
likelihood of compliance with medical advice and complicated regimens [12–14]. 
Such assumptions may decrease the likelihood that physicians offer genomic 
sequencing technologies to their minority patients or patients with lower levels of 
educational attainment. Furthermore, physician concerns about minority and medi-
cally underserved patients’ distrust of medical professionals or in medical research 
could also potentially make them less likely to offer sequencing to these patient 
populations. These assumptions, however, are not consistent with recent studies 
suggesting that minority group patients often do want to contribute their tumors for 
biospecimen studies [15] and to participate in clinical trials [12]. Education of phy-
sicians regarding the potential for implicit biases in their practices may help address 
the unintended consequences these biases can have on patient-provider interactions 
and clinical decision making.

Finally, the practice setting itself may help determine the level of available medi-
cal resources and access to precision medicine. Most clinics currently offering pre-
cision oncology treatments are located in major urban areas and/or large academic 
medical centers, posing potential barriers to rural populations who cannot afford the 
travel and lodging costs that might be incurred when trying to access such clinics. 
Even among physicians within academic practices, familiarity with (as well as atti-
tudes toward) use of genomic technologies can vary widely [16]. In addition, genetic 
counselors—key providers of education and support for patients considering and 
undergoing genomic sequencing—are relatively few in number nationwide and 
uncommonly employed by community practices [6]. Moreover, a lack of estab-
lished tumor boards and competing demands on oncologists’ time decrease the like-
lihood that patients seen in community oncology practices will have equal access to 
advances in precision medicine, at least in the short term. Significant investment in 
the community health infrastructure may be necessary to fully take advantage of 
treatment advances in precision oncology.

9.3  �Informed Consent and Patient Education

Obtaining informed consent is a standard requirement for patient participation in 
clinical trials. When individuals give their truly informed and well-considered con-
sent, they should understand the procedure or study purpose, process, risks, and 
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benefits, as well as participation requirements and alternatives. Many of the ethical 
concerns regarding the integrity of the informed consent process in cancer care, 
such as challenges to patient understanding, knowledge, and ability to recall infor-
mation about the study, are not unique to precision oncology [17]. Neither are the 
numerous communication issues associated with the readability, length, format, and 
language used in written consent documents [18–21].

9.3.1  �Further Considerations in Precision Cancer Studies

However, there are several additional issues that require further consideration when 
consenting individuals to precision oncology research studies or clinical trials 
involving genomic information. Challenges include obtaining consent for studies 
involving a broad scope of risk information, as well as addressing the likely uncer-
tainty of many sequencing results [22, 23]. For example, when sequencing an indi-
vidual’s genome, in essence a genome-wide disease screening is potentially being 
performed. This analysis opens the door not only to information related to the rea-
son an individual is having his/her genome sequenced, but also information unre-
lated to the reason for testing (i.e., secondary findings). How to manage these 
secondary findings has become a matter of great debate within the bioethics and 
genome medicine communities.

Other concerns that merit further consideration when consenting individuals par-
ticipating in precision oncology studies are the disclosure of individual level 
research results and addressing potentially unrealistic expectations of participants 
about the usefulness of genetic information [24, 25]. Patient misunderstandings in 
the research context often involve beliefs about the likelihood of direct study bene-
fits (i.e. the “therapeutic misconception”) [26–28]. The communication of individ-
ual research results in precision medicine studies can conflate research practice and 
clinical care, particularly if the patient’s physician is also part of the research team. 
For example, participants might believe that genomic sequencing would not be 
offered if it did not carry the promise of clinical benefit, such as access to a new drug 
or treatment [28, 29]. Exploring participants’ understanding of the purpose of 
research and their motivations for participation has been proposed as an avenue for 
measuring and preventing such misconceptions [30].

Concerns about whether our current models of informed consent [31, 32] in clin-
ical research are adequate for genomics-related studies—particularly regarding 
safeguards for participants’ confidentiality and personal autonomy—have been 
widely debated [33–36]. Issues raised regarding confidentiality include the potential 
for coded genomic data to be re-identified, and for breaches of private genetic infor-
mation to enable employment or insurability discrimination—despite the Genetic 
Information Nondiscrimination Act of 2008 (GINA) [37], a federal law that protects 
individuals from genetic discrimination in health insurance and employment. 
Concerns about personal autonomy relate to participants’ desires to have a choice 
about the types of genetic information they will receive, rights to their genetic infor-
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mation, and the release of personal information to family members. Because of 
these concerns, alternative models for obtaining informed consent in the context of 
genomics research have been proposed. For example, the Informed Cohort Model 
allows participants to designate their preferences for which research results to 
receive, but has an added layer of ethical oversight by a governing body (e.g., 
Informed Cohort Oversight Board). Several precision medicine initiatives have 
implemented this model, including the Coriell Personalized Medicine Initiative and 
Boston Children’s Hospital [38]. Other alternatives include a preference-setting 
model that allows participants to express their preferences for the return of indi-
vidual genomic research results [39] via a “flexible-default” model where a “default” 
recommendation is provided based on clinical evidence and participants have the 
“flexibility” in certain cases to agree or disagree with the recommendation [32, 40]. 
A “tiered-binned” genetic counseling approach for informed consent and genetic 
counseling for multiplex testing has also been proposed. In this model, Tier 1 “indis-
pensable” information is presented to all patients. In Tier 2, more specific informa-
tion is provided to support the different informational needs among diverse patient 
populations. Clinically relevant information is “binned” into groups in order to 
minimize information overload, support informed decision making, and facilitate 
adaptive responses to testing [41].

Given the potential privacy risks noted above, several practical protections 
should be considered. These include (1) sharing information from identified or iden-
tifiable samples only with the participants and the persons designated by the partici-
pants (e.g., next of kin); (2) providing participants who participated in genomic 
studies as children (with consent from parents or legal caregivers) the opportunity 
to be informed about clinically significant genomic findings as adults when they 
reach the age of majority; (3) requirement of data use agreements and routine use of 
data access tracking systems to reduce the risk of re-identification through data 
sources like the electronic health record, and (4) greater attention to safeguards in 
studies involving vulnerable populations, including children, educationally disad-
vantaged groups, and groups where genomic findings could pose stigma issues [42].

9.3.2  �Issues in Health Communication

The consent process in precision medicine also faces potential complications given 
the varying levels of genetic literacy in the general population and the inherent dif-
ficulties involved in conveying complex scientific concepts to laypersons [22, 43]. 
An example of a genetics concept that is often difficult for patients to fully under-
stand is the concept of low or incomplete penetrance. Although penetrance is simply 
the proportion of individuals carrying a particular variant of a gene who also express 
a given trait, it quickly becomes confusing where a gene or genetic trait is expressed 
in only a subset of the population who carry the gene(s) in question. How an 
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individual can have an alteration in a known cancer related gene, but not develop 
cancer can be a challenging concept to convey given common public beliefs about 
genetic determinism. Penetrance is a challenging concept to communicate not only 
because the term itself is unfamiliar to most people, but also because it involves 
statistical probability. Indeed, participants have been found to misunderstand sev-
eral aspects of statistics as related to genetic data, particularly if they are of low 
numeracy levels. For example, laypersons may encounter difficulties in grasping the 
probabilities involved in future disease risk, and they often overestimate their own 
level of personal risk, particularly if they have a positive family history for the dis-
ease in question. Patients are also prone to overestimation of the occurrence of heri-
table cancer syndromes due to germline variants, which may affect health care 
decisions and lead to inappropriate use of prevention and surveillance [44, 45]. 
Addressing this potential misconception may involve correcting patients’ common 
misunderstandings about disease mechanisms. Finally, communication of risk sta-
tistics for cancer predisposition can be challenging even when only a single gene or 
variant is involved. Precision oncology further complicates matters by generating a 
wide variety of both germline and tumor findings.

Another health communication challenge for precision medicine is managing 
patient and participant expectations amidst the “hype” often surrounding genomic 
technologies. Precision medicine as described in the news media and through direct-
to-consumer advertising is often viewed as the “wave of the future,” with particu-
larly great promise for improving patient outcomes. This portrayal may lead some 
patients and research participants to overestimate the benefits associated with 
sequencing, necessitating further clarification during the consent process about 
what a given study or procedure does and does not offer. Our own work in this area 
suggests that cancer patients taking part in clinical sequencing projects may indeed 
be prone to overrate the likelihood of direct study benefits. Roberts, JS, Gornick, 
MC, Le, LQ, Bartnik, NJ, Zikmund‐Fisher, BJ, Chinnaiyan, AM; for the MI‐
ONCOSEQ Study team. Next‐generation sequencing in precision oncology: Patient 
understanding and expectations. Cancer Med. 2019; 8: 227– 237. https://doi.
org/10.1002/cam4.1947 For example, they may have unrealistically high expecta-
tions of learning clinically significant personal genomic results, and they may not 
fully appreciate the many potential barriers to becoming eligible for a clinical trial 
by virtue of their sequencing results.

Potential solutions to these challenges include assessing and addressing misper-
ceptions during the consent process, helping participants set realistic expectations 
about the types of findings to be generated, and facilitating shared decision making 
amongst health care providers, participants and family members. Strategies to 
improve communication during the consent process include use of plain language, 
clear and concise presentation of study objectives, discussion with a study team 
member or health care provider, and disclosure of controversial information [46–
50]. Empirical studies have suggested numerous proven strategies for improving 
risk communication and enhancing patient decision making; these include (1) pre-
senting absolute risks instead of relative risks, (2) clarifying how treatment changes 
risks from preexisting baseline level, and (3) providing consent materials written in 
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a simplified manner so that even people of low literacy (eighth grade or lower level) 
can understand them [51].

9.3.3  �Consenting Pediatric Participants

There are also unique ELSI concerns in the consent process when involving pediat-
ric patients in precision oncology. These include the storage of biospecimens for 
future research, consideration of re-consenting participants when they reach the age 
of majority, and incorporating an adolescent’s preferences about parental access to 
genomic test results [52, 53]. In precision oncology, one challenge is determining 
when and how information will be shared about a child’s or adolescent’s inherited 
predisposition to an adult-onset cancer syndrome, which may be uncovered as part 
of a genomic sequencing study.

9.4  �Return of Sequencing Results

As alluded to earlier, a prominent ethical dilemma in precision medicine is deciding 
how much choice patients should have over how their whole-genome sequencing 
analyses are conducted and what types of results are returned to them following 
sequencing. In precision oncology, sequencing can yield not only tumor profiles, 
but also germline results of potential interest to both patients and their blood rela-
tives [54]. With regard to the latter, a wide range of findings could be generated that 
would be of potential medical significance, including those related to conditions 
other than cancer (i.e., secondary findings). The American College of Medical 
Genetics and Genomics (ACMG) has issued recommendations for a minimum list 
of genes to be routinely reported as secondary findings anytime clinical exome or 
genome sequencing is conducted. This recently updated list [55] consists of 59 
genes associated with high risks for medical conditions in which established inter-
ventions exist for disease prevention or management. These genes confer risks for a 
wide range of conditions including hereditary cancer syndromes of both child and 
adult onset, various cardiomyopathies, and even malignant hyperthermia. In best-
case scenarios, genetic risks might be identified that allow for effective disease pre-
vention (e.g., preventive surgeries for BRCA 1/2 carriers) for individuals and 
cascade screening for family members (e.g., first-degree relatives of patients with 
Lynch syndrome). However, even with this guidance, challenges can arise for pro-
viders, patients, and clinical laboratories in determining what genetic variants 
should be tested for and who should have access to what results. Disclosure of 
genomic information can bring with it unintended consequences, including misun-
derstanding of results and, in rare cases, genetic discrimination. For example, while 
federal laws such as GINA provide protections against discrimination by health 
insurers and employers (e.g., using genetic risk status to inform hiring and coverage 
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decisions), these protections do not extend to life, disability, and long-term care 
insurance. In the following sections, we consider various scenarios where ethical 
dilemmas may be particularly likely to arise.

9.4.1  �Disclosing Risks for Adult-Onset Conditions 
in Childhood

Preliminary findings suggest that the clinical utility of precision oncology 
approaches may be promising in pediatric populations [56]. Clinical use of NGS in 
children would then necessitate deciding whether germline findings associated with 
adult-onset cancers (or other conditions) should be sought. The ACMG guidelines 
assert that findings suggestive of genetic risks for adult-onset conditions should be 
routinely returned, regardless of patient age. At the same time, other leading profes-
sional organizations in clinical genetics (e.g., American Society of Human Genetics, 
European Society of Human Genetics) have issued policy statements concluding 
that genetic testing should typically be deferred until adulthood, if results would not 
lead to direct medical benefits in childhood [57, 58]. One ethical justification for 
deferring testing until adulthood in these situations is that there would be no imme-
diate clinical benefits to outweigh the potential harms (e.g., distress, stigma) of 
receiving genetic results in childhood. Another benefit could be the preservation of 
the child’s autonomy, if learning genetic risk information is seen to infringe on the 
child’s right to an “open future.” From this perspective, it would be most appropriate 
to allow the child the opportunity to make his or her own genetic testing decisions 
once s/he has reached young adulthood. Yet one could also make the case for a more 
flexible policy for testing minors for adult-onset conditions, given that harms from 
genetic risk disclosure are relatively rare and parents often believe genetic informa-
tion about their children should be accessible if desired [59].

9.4.2  �Disclosing Results of Deceased Patients

Given that precision oncology approaches are often pursued to treat advanced, 
refractory cancers with poor prognoses, another ethical issue that can arise is decid-
ing if and how to communicate germline findings to family members once a patient 
is deceased [60]. Oftentimes, patients’ preferences regarding this matter are not 
formally ascertained and therefore clinicians may be forced to weigh potential pri-
vacy concerns of the patient (even in death) against blood relatives’ interest in 
knowing more about their own risk status for various hereditary cancer syndromes. 
A recent survey [61] of participants in a pancreatic cancer biobank found that the 
vast majority (94%) would be agreeable to sharing their genetic results with blood 
relatives who wanted to know them, with nearly as many (88%) actually feeling 
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obligated to share them. However, a notable minority (7.5%) said they would not 
want their blood relatives to know their genetic results. In a related hereditary 
colorectal cancer exome sequencing study [62], participants were prospectively 
asked if they wanted to designate someone to receive their genetic results in the 
event of their own death. Overall, 92% of participants designated someone (most 
often a spouse), but 8% declined. Taken together, these findings suggest that the vast 
majority of individuals would support disclosure of their genetic results to family 
members after death, but that this preference cannot automatically be assumed for 
all patients.

The dilemma of when and how to return genomic results to family members 
occurs not only in clinical practice, but also in research contexts. To guide research-
ers on this topic, a national working group made up of leading experts in the field 
recently issued a set of recommendations [63]. Among these recommendations 
were the following: (1) a proactive approach for establishing participants’ prefer-
ences for research results to be returned, if this would be a possibility in a given 
study; (2) a passive disclosure policy in responding to relatives’ requests for a par-
ticipant’s research results, except in rare cases where highly actionable pathogenic 
findings have been identified and disclosure could result in the avoidance of immi-
nent harms; and (3) return of results that are: (a) analytically valid (e.g., high level 
of certainty that the genetic result in question is accurate for that participant); (b) 
associated with a well-established and substantial risk of an important health prob-
lem with significant implications for the participant; (c) likely to benefit the partici-
pant by virtue of their medical actionability; (d) allowable under relevant state and 
federal laws such as the Clinical Laboratory Improvement Amendment (CLIA), 
Health Insurance Portability and Accountability Act (HIPAA), state genetic privacy 
laws, and the Common Rule; and (e) agreed to by the participant (i.e., s/he has affir-
matively consented to disclosure).

9.4.3  �Disclosing Risks for Diseases Other than Cancer

When conducting sequencing to inform precision oncology approaches, laboratories 
following the ACMG guidelines would be obliged to report secondary medically 
actionable findings (e.g., risks of hereditary cardiomyopathies). Such findings could 
inform future disease prevention/management decisions (e.g., earlier and/or more 
frequent screening) for both patients and their first-degree relatives. However, many 
oncologists ordering sequencing are likely to encounter challenges when discussing 
the meaning of germline findings related to conditions outside their area of expertise 
[64]. Ideally, patients could be referred for such discussions to medical genetics clin-
ics with genetic counselors, but such specialists may not be readily available. 
Furthermore, the timing of such testing may also be challenging if the patient is 
experiencing significant medical and/or psychological burden from his or her (often 
advanced) cancer. In these cases, discussion of potential future risks for an unrelated 
condition (which may be decades away from a likely age of onset) is unlikely to be 
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a priority for either the patient or treating clinician. It may be useful, therefore, to 
obtain patient preferences regarding analysis and disclosure of secondary findings 
before sequencing is ordered, and to consider deferring discussion of significant 
secondary findings as appropriate. These clinical encounters should address which 
types of information the patient is interested in receiving, and a plan for notifying 
family members who might also be affected by learning this information.

9.4.4  �Legal Issues for Clinicians and Researchers

The advent of NGS has raised not just ethical, but also legal questions about the 
responsibilities of clinicians and laboratories when sequencing is ordered. One con-
cern is that health care professionals may face new legal liabilities should they fail 
to disclose secondary findings that offer an opportunity for interventions to improve 
health outcomes. By definition, all 59 genes on the current ACMG list would meet 
this criterion, but as discussed earlier, there might be good reasons why patients and 
clinicians would be reluctant to immediately pursue this information. To our knowl-
edge, there have not yet been any cases where clinicians have faced legal action for 
failure to disclose secondary NGS findings. However, a review [65] of the medical 
imaging literature suggests some existing case law where clinicians have faced lia-
bility if, under the relevant standard of care, they were found to have either a) failed 
to appreciate the clinical significance of an actionable secondary finding, or b) failed 
to notify the patient of such a finding in a timely manner. In response to the ACMG 
guidelines, leading legal scholars have suggested ways in which health systems 
might structure the clinical use of sequencing so as to minimize tort liabilities for 
nondisclosure of significant secondary findings [66]. Responsibilities of researchers 
to disclose secondary findings are not likely to be as extensive as those in clinical 
practice, and many commentators have argued against a so-called “duty to hunt” for 
potentially significant sequencing results if they are not immediately relevant to a 
given study’s research aims [67]. However, in certain cases failure to disclose 
actionable research results could still be viewed as a violation of the research ethics 
principle of respect for participants.

9.5  �Conclusions

This chapter highlights some of the many ELSI issues associated with advances in 
precision oncology and use of genomic sequencing in medicine more generally. The 
rapid pace of progress in this area suggests a need for practitioners and researchers 
to actively monitor the latest developments in the field, with an eye toward how their 
ethical and legal responsibilities might be affected. There is also a need for legal 
analysis and empirical research to guide practice and policy moving forward. For 
example, clinical research in controlled settings might be helpful to establish greater 
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understanding of the likelihood and extent of the speculated benefits, harms, and 
limitations of precision oncology. Such research should not only address traditional 
patient outcomes related to cancer treatment response and morbidity/mortality, but 
also health communication challenges involved in interpretation and conveyance of 
results from laboratory to clinician to patient (and even to extended family). 
Integration of comprehensive sequencing in the care of cancer patients is a complex 
process. Sequencing information is voluminous, challenging to interpret, and often 
has ambiguous implications for cancer care. Those involved in sequencing analysis 
and clinical decision making based on its results may have vastly differing levels of 
experience with and understanding of genomics, and communications among these 
stakeholders are often not well coordinated. Research on the process and impact of 
cancer sequencing is therefore needed to identify priority areas and best practices 
for education, communication, and management of test results.
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10.1  �Introduction

Precision medicine aims to characterize the unique molecular profile of individual 
tumors in order to predict clinical course and inform therapeutic decisions. The suc-
cess of this approach is dependent on an adequate characterization of the disease at 
presentation, as well as over the course of treatment, as adaptations to therapy drive 
new mutations and resistance mechanisms. Tissue obtained through surgical exci-
sion or biopsy remains the mainstay of initial diagnosis and molecular analysis. 
However, tumor location and size, patient safety, and costs often limit the feasibility 
of repeated biopsies throughout the disease course. In addition, significant molecu-
lar heterogeneity between tumor sites and even within individual tumors can com-
promise comprehensive assessment of disease state from biopsy alone [1–4]. Liquid 
biopsies offer an alternative means of collecting representative and highly relevant 
information in a safe, easily repeatable, low cost manner in the form of a simple 
peripheral blood draw, enabling examination of various analytes including circulat-
ing tumor cells (CTCs), cell free DNA (cfDNA), cell free RNA (cfRNA), and extra-
cellular vesicles with a widening array of potential clinical applications. Due to 
their easy accessibility, liquid biopsies enable monitoring of disease course in real 
time to gauge response to treatments, elucidate temporal evolution of genetic or cel-
lular adaptations in response to therapies, and guide subsequent treatments. Hence, 
this approach may ultimately serve a pivotal role in translating precision medicine 
principles to clinical practice.
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10.2  �Circulating Tumor Cells (CTCs)

The biology of metastasis is highly complex and requires specific characteristics of 
both the spreading cells (“seeds”) and the microenvironment that receives them 
(“soil”) [5]. At its core, metastatic spread requires tumor cell intravasation into the 
bloodstream, viable trafficking through the circulation, and eventual extravasation, 
implantation, and proliferation at distant sites [6–8]. These circulating tumor cells 
(CTCs), travelling singly or in clusters, are exceedingly scarce even in advanced 
disease, typically ranging between zero and a few dozen in a standard tube of blood, 
depending on the methods used to isolate them. Circulating tumor cells have been 
identified in the context of virtually all solid malignancies in advanced states and 
offer a unique window into active cancer biology and behavior [9]. CTCs can serve 
as prognostic markers, recapitulate primary or metastatic tumor biology, and poten-
tially guide therapeutic decisions. CTC clusters, interestingly, have demonstrated 
23–50 fold increase in metastatic potential, with capacity for travel even through 
capillary-sized vessels suggesting a significant role in metastatic spread [10, 11]. 
Advances in microfluidics, microscopy, and high content image analysis have sig-
nificantly improved the identification, enumeration, and analysis of CTCs, opening 
new avenues for the study of cancer biology and clinical outcomes.

10.3  �CTC Enrichment

Though described as early as the 1800s (Ashworth 1869), reliable methods for iden-
tification and recovery of CTCs have emerged only recently, nearly one and a half 
centuries later [12]. The sheer numbers of red blood cells (RBCs, 109) and white 
blood cells (WBCs, 106) in a standard blood sample pose the central technical chal-
lenge for enrichment and recovery of CTCs (0–102) [13, 14]. A number of strategies 
have been developed to identify and capture rare CTCs in the proverbial sea of red 
and white blood cells, each with its own benefits and limitations.

Cell surface marker based techniques are the most studied and clinically vali-
dated methods, wherein CTCs are enriched through immunomagnetic labeling, or 
alternatively, WBCs are depleted through immunomagnetic negative selection. The 
CellSearch® platform developed by Janssen Diagnostics (Raritan, NJ, USA) and 
recently acquired by Menarini Silicon Biosystems (Bologna, Italy) merits special 
emphasis, as this is currently the only FDA cleared device for CTC detection. 
CellSearch® enriches CTCs from blood by binding cell surface epithelial cell adhe-
sion molecule (EpCAM) with antibody-coated ferrofluid nanoparticles, followed by 
staining for cytokeratins (CK), 4′,6-diamidino-2-phenylindole (DAPI) nuclear 
stain, and CD45, a cell surface leukocyte marker. Cells found to be EpCAM+, 
CD45-, DAPI+ and CK+ are deemed consistent with CTCs [13]. Limitations of 
immunomagnetic enrichment include the inability, at least in theory, to differentiate 
cancerous CTCs from benign epithelial cells in the circulation, as well as potential 
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failure to capture cells undergoing epithelial to mesenchymal transition (EMT), a 
key metastatic step characterized by loss of epithelial markers such as EpCAM 
[15–18]. In one example of this phenomenon, Ring et al. performed spike-in experi-
ments with 10 breast cancer cell lines representing all major subtypes of breast 
cancer. Despite recovery of cancer cells from all subtypes, claudin-low cell lines, a 
subset marked by comparatively poor prognosis, had significantly lower capture 
rates compared to the other four groups [19]. Similarly, Yu et  al. confirmed the 
importance of EMT in metastasis by characterizing both primary tumor and CTCs 
through mesenchymal or epithelial marker expression. High expression of mesen-
chymal markers was found among CTCs while primary tumor rarely expressed both 
epithelial and mesenchymal markers. Moreover, CTC monitoring demonstrated an 
association between mesenchymal CTCs and disease progression [18]. These obser-
vations, as well as the identification of cytokeratin-negative CTCs in a subset of 
patient samples, suggest that potentially relevant CTC subpopulations may not be 
fully captured by standard immunomagnetic techniques [16, 20–22].

Alternative, marker independent, techniques isolate CTCs based on unique bio-
physical characteristics such as size, deformability, or electric properties. Size-based 
systems using various filters and microfluidic chips enrich viable CTCs that are then 
specifically identified through staining prior to downstream analysis (eg. Parsortix, 
Angle, UK; ClearCell FX, Clearbridge Biomedics, Singapore). While these tech-
niques are effective, CTC size variability has been demonstrated, raising the poten-
tial pitfalls in reliance on physical cell characteristics which remain poorly defined 
overall and vary significantly among CTCs [23]. Hybrid approaches utilizing both 
immunomagnetic and size-based properties have been explored as well. The CTC-
iChip, for example, separates nucleated cells based on size using deterministic lat-
eral displacement. At the same time, WBCs are tagged with specific antibodies 
enabling subsequent magnetopharesis to further enhance sample purity [24]. Still 
other systems employ differential dielectric properties to separate and recover 
CTCs. ApoStream (Apocell, Texas) exploits distinct dielectric properties of CTCs in 
comparison to PBMCs in a process termed dielectrophoresis field flow assist, 
whereby cells are selectively attracted to or repelled from a charged electrode allow-
ing specific fractionation of cell types [25]. Another platform, the DepArray (Silicon 
Biosystems) isolates individual CTCs using a microfluidic cartridge with control-
lable electrodes to create dielectric cages around individual cells in a pre-enriched 
sample, thus allowing analysis and recovery of specific cells of interest [26].

In contrast to enrichment based instruments, some platforms implement a “no 
cell left behind” approach. Epic Sciences (San Diego, USA) employs high content 
scanning and algorithmic CTC identification based on immunofluorescent and 
morphologic features of whole blood smears. Similarly, Rarecyte (Seattle, USA) 
first enriches nucleated cells by density gradient centrifugation, then generates 
smears for automated multiplex scanning and CTC identification based on immu-
nofluorescent and morphologic criteria. Automated digital microscopy and devel-
opment of sophisticated scanning algorithms continue to create opportunities for 
rapid, high throughput imaging and analysis without the need for sample enrich-
ment and attendant cell loss. However, scanning platforms, like all CTC methods, 
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remain limited by lack of universally applicable CTC markers and still-evolving 
techniques for single cell recovery. Some of examples of the various CTC plat-
forms are listed in Table 10.1 and have been recently reviewed in greater depth 
elsewhere [27] (Table 10.2).

10.4  �Clinical Applications of CTCs: Enumeration

CTC counts have demonstrated prognostic utility in a number of solid malignancies 
and have been validated in multiple clinical trials [23, 28–32]. Enumeration has 
been dominated by the CellSearch immunomagnetic system, which received FDA 
clearance in metastatic breast, prostate, and colon cancer. Cristofanilli et al. com-
pleted one of the first multicenter prospective studies analyzing the value of CTC 
counts for predicting survival in the setting of metastatic breast cancer. Using the 
CellSearch platform, patients with greater than or equal to 5 CTCs/7.5 ml whole 
blood were found to have shorter progression-free and overall survival at multiple 
time points [33]. Similar results were later described by Lucci et al. in the setting of 
non-metastatic breast cancer, where the presence of one or more CTCs predicted 
early recurrence and decreased overall survival [34]. Likewise, de Bono et  al. 

Table 10.1  CTC Enrichment and isolation approaches

Immunomagnetic Principle: CTCs characterized by specific markers 
that allow differentiation from other PBMCs

Example

Positive selection Capture CTCs by labeling with immunomagnetic antibody 
specific marker (EpCAM) and isolating with magnet

CellSearch®

Negative selection Enrichment for CTCs by exclusion of WBCs (CD45+), 
generally following RBC lysis

EasySep®

Physical property Principle: CTCs marked by unique physical characteristics that can 
be leveraged for separation

Filtration Use of various microfilter technologies to capture larger, 
less deformable CTCs

Parsortix

Inertial sorting CTC sorting dependent on advanced microfluidic 
principles

ClearCell®

Dielectrophoresis Enrichment based on dielectric properties of CTCs ApoStream®
Single cell capture Isolation of individual CTCs in dielectric cages. Requires 

enriched sample
DEPArray™

Combination Application of immunomagnetic and physical principles 
to enrichment (eg filtration followed by negative 
immunomagnetic selection)

CTC-iChip

Rapid scanning Automated scanning algorithms to identify stained CTCs, often without 
enrichment

Whole blood 
scanning

Enrichment free specimen analysis through high content 
algorithmic scanning

EPIC 
sciences™

CTC enrichment and identification techniques continue to expand. Work exploring clinical appli-
cations and optimal methods is ongoing
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performed CellSearch CTC counts in patients with castration-resistant prostate can-
cer (CRPC) prior to initiation of a new systemic therapy. Men with favorable CTC 
counts (<5 CTC/7.5 ml blood) were found to have greater overall survival (21.7 v 
11.5 months; P < 0.0001) and change in CTC counts in response to therapy was 
predictive of survival as well [28]. Goldkorn et al. subsequently confirmed these 
findings in a prospective phase 3 trial, SWOG 0421, in men initiating first line che-
motherapy with docetaxel and also showed that CTC telomerase activity was 

Table 10.2  Select ctDNA detection studies in various tumor types

Study 
Reference

Analytic 
platform 
for ctDNA

Molecular 
alteration

Number 
of 
patients 
analyzed 
for 
ctDNA

Tumor 
Type Stage

Sensitivity 
(patients 
with 
detected 
ctDNA/
positive 
tumor 
markers) Summary

Dawson 
[83]

Digital 
PCR, 
tagged 
amplicon 
sequencing

SNV 30 Breast IV 29/30 
(97%)

ctDNA 
sensitivity for 
reflecting 
tumor burden 
and treatment 
response 
greater than 
CTC or CA 
15-3 levels in 
metastatic 
breast cancer

Tie [84] Digital 
PCR, 
massively 
parallel 
sequencing

SNV 53 Colorectal IV 48/53 
(92.3%)

Quantification 
of ctDNA in 
metastatic 
colorectal 
patients 
demonstrates 
prognostic 
value and 
predicts 
treatment 
response

Azad [85] Digital 
PCR, 
tagged 
amplicon 
sequencing

SNV (AR 
exon 8 
mutation)

62 Prostate IV 11/62 
(18%)

AR gene 
aberrations in 
cfDNA 
correlate with 
adverse 
outcomes and 
decreased 
median PFS in 
mCRPC

ctDNA circulating tumor DNA, SNV single nucleotide variant, AR androgen receptor, PFS progres-
sion free survival, mCRPC metastatic castrate resistant prostate cancer
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prognostic in a subset of patients [32, 35]. In the setting of metastatic colorectal 
cancer, Cohen et al. completed a prospective multicenter study examining the prog-
nostic value of CellSearch CTC enumeration in 430 patients and found that favor-
able CTC counts (<3 CTCs/7.5 ml) were associated with greater overall survival 
(18.5 v 9.4 months; P < 0.0001) [23]. Additional studies evaluating the prognostic 
utility of CTC enumeration have been completed in various stages of lung, breast, 
prostate, and colorectal cancers, as well as in pancreatic, melanoma, ovarian, blad-
der and gastric cancer using various technologies for enumeration with varied clini-
cal endpoints [32, 36–43]. While limited sensitivity and specificity remain 
problematic in the accurate enumeration of CTCs, it is clear that even at current 
detection capacities, CTC counts often provide clinically relevant data regarding 
response to therapy, prognosis and potentially disease recurrence.

Studies are still ongoing to test whether CTC counts can successfully guide treat-
ment decisions. One early attempt, SWOG S0500, did not demonstrate a clinical 
benefit for CTC enumeration as a predictive biomarker. In this multi-institutional 
randomized study, metastatic breast cancer patients with persistently elevated CTC 
counts after first line chemotherapy were randomized to either continue the same 
therapy or switch to an alternative chemotherapy. Prognostic value of CTC enu-
meration was again confirmed with significant differences among those patients 
without increased CTCs at baseline (Group A), those whose CTC counts were 
reduced at first follow-up after initiation of therapy (Group B), and those whose 
CTC counts had not been reduced at first follow-up after start of therapy (Group C) 
(Median OS for groups A, B, and C was 35, 23, and 13 months respectively) (Fig. 
10.1). Group C with persistently elevated CTCs was further split into an arm with 
no treatment change vs. an arm with change to another treatment. However, no 
improvement in outcome was observed in patients in Group C who were switched 
to another chemotherapy based on CTC elevation (median OS 10.7 and 12.5 months 
in the two arms, respectively; p = 0.98) [44]. While these results were disappointing, 
they are perhaps not entirely surprising in the context of the underlying study: a 
cohort of patients with poor overall prognosis based on persistently high CTCs who 
were unlikely to respond to chemotherapy, and who were randomized to two rela-
tively small treatment arms powered to detect a very large (70%) increase in sur-
vival. Based on these insights, new trials evaluating the predictive strength of CTC 
enumeration ideally would assign patients with elevated CTCs to large treatment 
arms powered to detect smaller predictive effects and utilizing treatment modalities 
thought most likely to exert a significant, differential impact on survival.

10.5  �Beyond Enumeration: CTC Characterization 
and Analysis

Whereas enumeration constitutes a clinically useful surrogate for disease burden, 
molecular characterization of CTCs (protein, DNA, RNA) can serve as a true liquid 
biopsy that reflects the underlying biology of primary and metastatic tumor sites. 
As such, CTC-derived molecular phenotypes may elucidate patient-specific and 
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tumor-specific drivers of progression and resistance and guide therapy decisions. 
Genetic alterations and expression patterns of numerous relevant cancer genes such 
as androgen receptor (AR), estrogen receptor (ER), progesterone receptor (PR), and 
epidermal growth factor receptor (EGFR) have clear implications for disease prog-
nosis and potential treatment opportunities in various malignancies [45–47]. 
Characterization of CTCs affords an opportunity to evaluate these disease-relevant 
phenotypes and to assess changes in response to treatment in a manner that is safe, 
repeatable, and minimally invasive.

Multiple prostate CTC investigations have focused on androgen receptor (AR), a 
central transcriptional driver of progression. Darshan el al. used immunofluores-
cence AR staining in CellSearch captured CTCs to demonstrate a significant asso-
ciation between AR cytoplasmic localization and response to chemotherapy [48]. In 
another study, Miyamoto et al. used immunofluorescence staining to classify “AR-
on” vs. “AR-off” CTCs captured on a microfluidic device from hormone-naive 
patients versus CRPC patients and found clear staining differences in their CTCs 
[49]. Crespo et al. examined AR expression in CTCs from CRPC patients and iden-
tified nuclear predominant AR localization in those who progressed on abiraterone, 
though significant AR heterogeneity was noted in this relatively small sample [50]. 
Punnoose et  al. examined PTEN expression in CRPC.  Using the Epic Sciences 
enrichment-free platform, CTCs were identified and PTEN status analyzed using 
fluorescence in situ hybridization (FISH). PTEN expression was then evaluated in 
fresh and archival tissue, revealing a concordance between CTCs and matched fresh 
tissue in 84% of patients as well as a prognostic capacity of PTEN loss for worse 
survival in CRPC patients [51]. Antonarakis and colleagues used an RNA-based 
CTC enrichment and detection test (AdnaTest) to analyze CTCs for the presence of 
AR-V7, a truncated ligand-independent constitutively active splice variant, and 

Fig. 10.1  AR-V7 Expression in CTC waterfall plots. (Figure 3 from Ref. [53])
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demonstrated a clear association between expression of AR-V7 in CTCs and resis-
tance to abiraterone or enzalutamide hormonal therapies [52]. These findings were 
confirmed and extended by Scher et al. who demonstrated that presence of CTC 
AR-V7 in CRPC patients predicts resistance to androgen receptor signaling inhibi-
tion and improved survival on alternative (taxane chemotherapeutic) therapies 
(Fig. 10.1) [53].

In breast cancer, Kalinsky et al. examined estrogen receptor (ER) and progester-
one receptor (PR) status by immunohistochemistry in CTCs of patients with meta-
static disease and found concordance with 68% of primary sites and 83% of 
metastatic sites, indicating potential for receptor status monitoring through liquid 
biopsy [54]. Another study of CTC ER expression in metastatic breast cancer 
revealed heterogeneity of ER expression in CTCs of patients with ER+ primary 
tumors, suggesting a potential escape mechanism from hormonal therapies [55]. 
Similarly, evaluation of HER-2 oncogene in breast cancer CTCs by FISH enabled 
quantification of HER-2 gene amplification, a potentially valuable CTC-based tool 
for selecting patients for HER-2 targeted therapies, in some cases despite originally 
having a HER-2-negative primary tumor [56]. In another study, characterization of 
CTCs with an eight gene profile successfully discriminated good versus poor 
response to aromatase inhibitor therapy among metastatic breast cancer patients 
[57]. These emerging CTC-based biomarker capabilities continue to be integrated 
into prospective trials for validation, and some may ultimately be incorporated into 
standard practice.

Molecular targets have been analyzed in CTCs from non-hormonally driven 
malignancies as well. In non-small cell lung cancer (NSCLC), Maheswaran et al. 
analyzed DNA from CTCs captured with an immunomagnetic chip for mutations in 
epidermal growth factor receptor (EGFR), a therapeutic target for antibody antago-
nists and small molecule receptor tyrosine kinase inhibitors [58]. EGFR mutations 
in CTCs were concordant with primary tumor mutations in 92% of cases, and their 
presence correlated with a reduced progression-free survival (7.7  months v 
16.5 months, P < 0.001) [59]. In metastatic colorectal cancer, CTCs have been char-
acterized for thymidylate synthase (TYMS) expression, which is linked to 
5-fluorouracil resistance. Patients with CTCs staining positive for TYMS expres-
sion trended towards disease progression in comparison to those not expressing 
TYMS in CTCs, regardless of expression in primary tumor [60]. In ovarian cancer, 
Kuhlmann et al. found that ERCC1 expression on CTCs at primary diagnosis was 
predictive of platinum resistance (p = 0.01), whereas corresponding primary tumor 
tissue was not predictive [61].

Recent advances in DNA and RNA amplification and next generation sequenc-
ing have enabled a transition from specific targets (e.g. AR, ER) to broader high 
throughput discovery studies using minimal starting material isolated from few or 
even single cells. Ni et al. completed whole-genome amplification of single CTCs 
from patients with lung cancer, identifying known cancer-associated single nucleo-
tide variations and insertions/deletions in CTC exomes that varied between 
individual cells. However, copy number variation (CNV) patterns were consistent 
and reproducible within individual patients and unique between adenocarcinoma 
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and small cell lung cancer [62]. Heitzer et al. completed genomic profiling of CTCs 
in colorectal cancer using array-comparative genomic hybridization. Through par-
allel sequencing of 68 colorectal cancer genes, mutations were found in APC, 
KRAD, and PIK3CA in both primary tumor and CTCs. Additional mutations which 
were initially missed in primary tumors and found only in CTCs were subsequently 
identified at the subclonal level in primary tumors and metastasis from the same 
patient on additional deep sequencing [63]. Subsequently, mutations in KRAS, 
BRAF, CD133 and Plastin3 were identified in a similar cohort of patients with 
colorectal cancer with significant discordance from primary tumor specimens, fur-
ther highlighting the potential utility of liquid biopsy and CTC mutational analysis 
for temporal applications to personalized medicine [64]. Lohr et al. demonstrated 
feasibility of comprehensive genome analysis through liquid biopsy by capturing 
CTCs from men with metastatic prostate cancer and, for a select patient, completing 
whole exome sequencing of CTCs, lymph node metastasis, and multiple cores of 
primary tumor. They identified 10 early and 56 metastatic trunk mutations within 
primary tumor and metastatic sites. Analysis of CTC exomes from the same patient 
identified 90% of the early and 73% of the metastatic trunk mutations reflecting 
potential for accurate genomic profiling through evaluation of CTCs [65].

As with genomic analysis, sequencing of tumor transcriptomes has helped iden-
tify potential driving mechanisms of cancer progression. Despite the relative fragil-
ity of RNA and the low input material achievable from CTCs, analysis has been 
completed at even the single cell level. Yu et al., completed single molecule RNA 
sequencing on CTCs captured from an endogenous mouse pancreatic cancer model. 
The gene Wnt2 was found to be enriched in CTCs, suggesting its role as a potential 
therapeutic target in pancreatic cancer and demonstrating the value of transcriptome 
analysis [66]. Gorges et al. completed transcriptome analysis of CTCs from breast 
and prostate cancers, identifying distinct expression signatures as well as subsets of 
CTCs within patients marked by divergent expression of genes involved in EMT, 
cancer therapy resistance, and tumor progression with potential clinical significance 
[67]. Single cell RNA sequencing of CTCs from men with metastatic CRPC has 
also been completed revealing heterogeneity at the individual level including AR 
gene mutations and splice variants between cells. Analysis of patients with progres-
sive disease revealed noncanonical Wnt signaling, a potential driving mechanism 
for drug resistance [68].

The realm of CTC analysis and characterization continues to rapidly expand, 
including new efforts aimed at CTC culture and drug susceptibility testing [69]. 
Significant challenges remain, however, including optimization of CTC isolation, 
discovery of reliable markers for CTC identification within various malignancies, 
and the need to reconcile implications of cellular phenotypic and genotypic hetero-
geneity as well as technical biases introduced by current amplification techniques. 
Ongoing work towards these goals in concert with prospective clinical trials and 
technologic advances to decrease cost and logistic constraints of CTC analysis will 
help to better define its role in clinical practice and ultimately to translate this prom-
ising facet of liquid biopsies into more effective patient care.
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10.6  �Cell Free DNA (cfDNA)

Cell free DNA (cfDNA) is composed of DNA fragments continuously shed into the 
bloodstream through cell lysis, necrosis, and apoptosis due to pathologic processes 
and normal cell turnover [70]. Circulating tumor DNA (ctDNA) is the portion of 
circulating DNA specifically derived from cancer cells by active secretion from 
macrophages that have phagocytized necrotic cells, or released directly from dying 
tumor cells or CTCs [71]. Compared with CTC enrichment, extraction of cfDNA 
from plasma is relatively straightforward. However, the actual cellular tissue source 
of DNA alterations is more difficult to ascertain, as collected cfDNA may derive 
from primary tumor, metastatic sites, or nonmalignant sources [72]. cfDNA levels 
vary widely depending on characteristics of tumor burden, stage, vascularity, cel-
lular turnover, and response to therapy [73]. Hence, analysis of the small fractions 
of ctDNA within background levels of wild-type cfDNA requires highly sensitive 
techniques. These primarily target characteristic genetic or epigenetic modifica-
tions, such as mutations in tumor-suppressor genes, activated oncogenes, hyper-
methylation or chromosomal abnormalities, to confirm that cancer cells are indeed 
the source of the detected cfDNA [74]. Traditional methods including quantitative 
real-time polymerase chain reaction (PCR)-based, fluorescence-based, and spectro-
photometric approaches have been utilized with some success [75, 76], and new 
methods like digital droplet PCR, microfluidic platforms for parallel PCR, and 
BEAMing (beads, emulsions, amplification and magnetics) are now able to detect 
point mutations in ctDNA at lower allele frequencies [77–79]. Next generation 
sequencing has facilitated identification of ctDNA alterations across wide genomic 
regions providing novel opportunities for comprehensive characterization of 
genomic profiles [80]. More recently, deep sequencing of cfDNA and examination 
of nucleosome footprints and promoter occupancies has been shown to reveal 
nuclear architecture, gene structure, expression, and even cell type of origin broad-
ening the potential applicability of cfDNA evaluation [81, 82]. Recent studies in 
cfDNA and ctDNA have demonstrated clinical applications with potential therapeu-
tic interventions in breast, colon, prostate, lung cancer and melanoma.

10.7  �Clinical Applications of cfDNA

Dawson et al. studied the value of ctDNA as a marker of progression in metastatic 
breast cancer, compared to CTC counts and CA 15-3 levels [83]. Microfluidic digi-
tal PCR or tagged-amplicon deep sequencing was used to quantify specific somatic 
alterations in PIK3CA and TP53 in DNA isolated from plasma. ctDNA was detected 
in 95%, whereas 50% of patients had 5 or more CTCs per 7.5 ml and 42% had ele-
vated levels of CA 15-3. At subsequent follow-up in the setting of progressive dis-
ease, increasing levels of ctDNA and CTC count were associated with inferior 
overall survival while CA 15-3 was not prognostic. ctDNA had superior sensitivity 
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for reflecting tumor burden compared with CA 15-3 and CTC levels, as well as 
earlier reflection of treatment response. Hence in this study ctDNA was an effective 
biomarker for serial temporal monitoring in metastatic breast cancer [83].

In the setting of metastatic colorectal cancer (mCRC), Tie et al. investigated the 
potential role of ctDNA quantification as an early predictor of treatment response 
[84]. In a prospective, multicenter study, patients receiving chemotherapy were 
evaluated for levels of ctDNA and CEA (a standard biomarker for colorectal cancer) 
at multiple time-points and correlated with baseline and follow-up imaging. Primary 
tumors were sequenced using a panel of 15 genes frequently mutated in mCRC in 
order to identify candidate genes for subsequent ctDNA analysis. Using Safe-SeqS, 
a massively parallel sequencing (MPS)-based assay which permits detection of low-
frequency mutations, measurable mutations were identified in cfDNA of 92.3% of 
patients. Median ctDNA levels before cycle 2 were significantly lower than the 
median pretreatment level (0.54 versus 16.24) reflecting tumor response to treat-
ment. No significant changes in CEA levels were seen across time points, whereas 
major reductions (≥10-fold) in ctDNA prior to second chemotherapy cycle were 
associated with a trend towards increased progression-free survival (median 14.7 
versus 8.1 months) [84]. Hence, based on this study in metastatic colorectal cancer, 
ctDNA may offer a useful adjunct to standard follow-up (imaging and biomarkers) 
for accurate disease monitoring.

As with CTCs, cfDNA characterization beyond quantification of ctDNA levels 
offers additional insights. Azad et al. examined AR gene aberrations in cfDNA to 
determine correlation to therapy resistance in mCRPC patients [85]. Patients stop-
ping abiraterone acetate, enzalutamide, or other agents due to disease progression 
were examined. Array comparative genomic hybridization (aCGH) for chromo-
some copy number analysis and Roche 454 targeted next-generation sequencing of 
exon 8 in the AR were completed on collected cfDNA. AR amplification was more 
commonly seen in patients progressing on enzalutamide than those progressing on 
abiraterone or other agents (53% vs. 17% vs. 21%). In patients changing therapy to 
enzalutamide after cfDNA collection, AR gene aberration (copy number increase 
and/or an exon 8 mutation) in pretreatment cfDNA was associated with adverse 
outcomes including lower therapy response rates. Presence of AR gene aberrations 
also correlated with decreased median clinical or radiographic progression free sur-
vival (2.3 versus 7.0 months) [85]. Studies such as this have the potential to provide 
not only a useful clinical index for following disease progression, but also to eluci-
date specific mechanisms of response or resistance that may facilitate therapy 
selection.

10.8  �Cell Free RNA and MicroRNA

Cancer-associated RNAs present in peripheral blood may offer prognostic or pre-
dictive value by reflecting tumor cell transcriptional profiles such as overexpression 
of particular driver genes or splice variants [86]. Whole blood RNA can be analyzed 
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from freshly collected specimens or alternatively using preservative tubes (e.g. 
PaxGene, Qiagen; RNA Streck, Streck Inc.) meant to minimize degradation and 
capture an RNA “snapshot” immediately after the blood is drawn. Olmos et al. used 
microarray-based expression profiling of whole blood samples from patients with 
advanced CRPC and patients undergoing active surveillance to identify expression 
patterns specific for aggressive disease. A nine-gene signature was developed pre-
dictive of worse overall survival (10.7  months vs 25.6  months) [87]. In another 
study by Ross et al., a panel of 168 inflammation and prostate cancer–related genes 
were assessed with optimized quantitative PCR, and a six-gene model (ABL2, 
SEMA4D, ITGAL, and C1QA, TIMP1, CDKN1A) discriminated patients with CRPC 
into a low-risk group with a median survival of more than 34.9 months and a high-
risk group with a median survival of just 7.8 months [88]. Zander et al. analyzed 
expression profiles from Paxgene stabilized samples among patients with non-small 
cell lung cancer (NSCLC) identifying consistent differential gene expression among 
cancer patients in comparison to healthy controls. The expression profiles were then 
applied to diagnostic classification of patients and demonstrated high specificity for 
NSCLC diagnosis in comparison to healthy controls [89].

MicroRNAs (miRNAs) regulate gene expression and impact cell proliferation, 
differentiation, migration, and disease progression. These short (18–22 nucleotides) 
noncoding RNAs exhibit considerable stability even when exposed to high tempera-
tures and extreme pH values and therefore may constitute an especially valuable 
analyte for biomarker purposes [90]. In prostate cancer, several miRNAs are upreg-
ulated and correlate with prognosis in patients with CRPC [91]. Therefore, Lin et al. 
assessed the value of circulating miRNA as an early biomarker for chemotherapy 
response in patients with CRPC. Taqman MicroRNA Array was used to measure the 
levels of 46 candidate miRNAs collected prior to and following chemotherapy treat-
ment, and 12 of these were significantly associated with overall survival. Risk of 
death was 2.3–3.5 fold higher in patients found to have elevated pre-docetaxel levels 
of the miR-200 family and 2.6–3.3 times higher in patients with decreased or 
unchanged expression of miR-17 family after docetaxel treatment (Fig. 10.2) [92]. 
In NSCLC, Wang et  al. conducted serum profiling of miRNAs involved in the 
TGF-β pathway, which plays a central role in cell proliferation, differentiation, 
apoptosis, and invasion. Seventeen miRNAs were significantly associated with sur-
vival and were used to generate an miRNA risk score correlated with a 2.5 fold 
increased risk of death and 7.8 month decreased median survival when elevated in 
the setting of advanced NSCLC [93] (Figs. 10.3 and 10.4).

10.9  �The Rapidly Evolving Cell-Free Landscape

As illustrated by these studies, circulating DNA, RNA, and miRNA can reflect the 
evolution of disease-related genetic alterations and have significant potential as 
early non-invasive indicators of therapeutic response and survival. Recent efforts 
seek to apply cell-free analysis not only to profile existing cancers, but also to screen 
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Fig. 10.2  miRNA expression Kaplan Meier curves. (Figure 3 from Ref. [92])

Fig. 10.3  Exosome AR-V7 expression waterfall plot. (Figure 3 from Ref. [122])
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and diagnose occult disease. For example, one ongoing prostate cancer trial is test-
ing whether copy number instability in ctDNA of men with elevated PSA undergo-
ing prostate biopsy correlates with prostate cancer diagnosis, potentially reshaping 
the landscape of prostate cancer screening (NCT02771769, clinicaltrials.gov). On a 
wider scale, GRAIL (Illumina) is pursuing the ambitious goal of early detection of 
all common cancers in asymptomatic individuals, hoping to identify malignancies 
at earlier, more curable stages [94]. Discovery, analytical and clinical validation, 
further refinement and confirmation of clinical utility of such screening panels, nat-
urally, will require a highly orchestrated, extensive effort as cohorts numbering in 
the thousands are evaluated and followed prospectively over many years to deter-
mine clinical outcomes.

Given the rapid advances in ctDNA analysis, protocol standardization is essen-
tial because variations in collection and processing protocols can significantly 
impact DNA yield and outcomes [95]. Another challenge is posed by elevated levels 
of cfDNA from benign sources, which may be aggravated during inflammation and 
injury, further diluting ctDNA and interfering with meaningful detection and analy-
sis [96]. DNA quantification methods (spectrophotometric, fluorescent dyes, 
quantitative PCR-based) often produce variable results as these measurements tar-
get only amplifiable DNA as opposed to total DNA [97]. One recent approach to 
this challenge has been evaluation of nucleosome footprints. Snyder et al. found 

Fig. 10.4  Liquid biopsy analyte overview
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deep sequencing of cfDNA yields a dense, genome wide map of nucleosome occu-
pancy that enables identification of cell-types of origin [81]. cfDNA nucleosome 
occupancy correlated well with nuclear architecture, gene structure, and gene 
expression observed in cells, suggesting strong potential to reflect cell type of origin 
and relative tissue contributions to cfDNA in the presence of malignancies. 
Similarly, Ulz et  al. identified nucleosome promoter occupancy correlating with 
gene expression from hematopoietic cells in healthy donors and cancer driver genes 
in metastatic cancer donors. By sequencing DNA fragments after micrococcal 
nuclease digestion, they identified specific nucleosome patterns at promoter sites 
influencing gene regulation [82]. Although these techniques do not fully circumvent 
the caveats posed by cfDNA release mainly from dying cells, they do offer increas-
ingly accurate information about the cell type(s) from which the cfDNA derives.

10.10  �Extracellular Vesicles (EVs)

Extracellular vesicles comprise a group of structures ranging from 30 nanometers to 
a few micrometers enclosed in a lipid bilayer and released into the extracellular 
space by cells. Differentiated by size and mechanism of release, these vesicles may 
be broadly divided into exosomes (30–100 nm), ectosomes (0.05–1 μm), apoptotic 
bodies (1–4 μm), and large oncosomes (1–10 μm). These vesicles have been dem-
onstrated to harbor distinct elements including DNA, RNA, proteins and lipids with 
direct involvement in numerous physiologic and malignant processes and are 
secreted by most cell types allowing identification in body fluids including blood 
and urine [98]. Exosomes are unique among EVs in that they are the product of 
intracellular multivesicular body fusion with the cell membrane as opposed to direct 
budding from the plasma membrane characteristic of other EVs. Though their sig-
nificance was initially unclear, EVs are now known to comprise an integral aspect 
of intercellular communication mediated by miRNAs, mRNAs and proteins con-
tained and transported within [99, 100]. The differential roles of EVs continues to 
be explored. For instance, in the setting of malignancies, exosome mediated cell to 
cell communication has been implicated in proliferation, invasion, motility, immune 
activation, drug resistance and metastasis, ultimately promoting tumor growth and 
disease progression [101–103].

In a pre-clinical model, Zomer et al. observed intercellular transfer of mRNAs 
via EVs, resulting in modulation of invasive and metastatic potential. Using a Cre-
LoxP reporter system, labeled tumor cells as well as host non-tumor cells were 
shown to take up tumor-derived EVs, with transfer from benign cells occurring less 
frequently, consistent with prior reports that tumor cells generally secrete greater 
numbers of vesicles [99, 104]. Importantly, tumor cell lines deemed less malignant 
displayed increased migration and metastatic potential after uptake of EVs from 
more aggressive tumor cell lines. Analysis of mRNAs carried in EVs revealed 
enrichment for genes involved in migration and metastasis [105]. In another pre-
clinical study, Costa-Silva et al. examined exosomes isolated from a murine pancre-
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atic ductal adenocarcinoma cell line and subsequently injected into mice. Exosome 
uptake was observed preferentially in liver Kupffer cells, resulting in increased 
secretion of TGF-beta and fibronectin which served to attract macrophages and cre-
ate a pre-metastatic niche in which liver metastasis ultimately formed [106]. EVs 
have a recognized role in immune activation and drug resistance through a number 
of mechanisms [107–109]. Dendritic cells that encounter antigens within exosomes 
induce an immune response including anti-tumoral activity, and mice vaccinated 
with tumor-derived exosomes subsequently develop anti-tumor effects mediated by 
CD8+ T cell activation. Though not yet fully understood, exosome-mediated drug 
resistance has been postulated to occur through neutralization of antibody-based 
drugs, delivery of drug resistant proteins, and export of drugs from cells [110]. Due 
to their accessibility in multiple body fluids, preferential release from tumor cells, 
and unique contents specific to cells of origin, EVs have the potential for myriad 
applications in the evaluation, care, monitoring and treatment of cancer [99].

10.11  �EV Isolation

EVs have been isolated from a number of body fluids including plasma, serum, 
saliva and urine [111]. Techniques for isolation vary and must be modified accord-
ing to desired vesicle for isolation but generally employ some form of ultracentrifu-
gation, ultrafiltration, or immunoaffinity enrichment. Differential centrifugation is 
the most established method of isolating EVs, and its primary limitation is the 
requirement for ultracentrifuge instrumentation and prolonged spin times for sam-
ple processing. Alternatively, ultrafiltration methods result in excellent particle 
yields and efficiency, particularly when coupled with size exclusion chromatogra-
phy, but often require greater quantity of initial material with variable sample purity 
[112]. Antibody dependent methods utilizing common surface markers such as 
CD9, CD63, CD81 and Rab5 have been used to isolate exosomes as well. While less 
time-consuming, these techniques frequently result in limited yields and are com-
paratively expensive. EV isolation methods continue to be refined with goals of 
improved yield, purity, and ease of collection. Due to the difficulties of isolation as 
well as noted variety of EVs with unique contents, confirmation of EV specimen 
type and quantification are necessary and may be performed through protein char-
acterization, single vesicle characterization by transmission electron or atomic force 
microscopy, or functional assays [113].

10.12  �Clinical Applications of EVs

The majority of EV clinical studies have focused on evaluating exosomes as poten-
tial biomarkers for disease status. Although they are known to contain protein and 
DNA from parent cells, most investigations have focused on the identification of 
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relevant RNA and miRNAs within exosomes. Hannafon et al. extracted miRNAs 
from exosomes of various breast cancer cell lines. Using high throughput sequenc-
ing, highly enriched miRNAs were identified and subsequently confirmed to be 
overexpressed in breast cancer patients in comparison to healthy controls [114]. 
Huang et  al. identified miRNAs in circulating exosomes of patients with 
CRPC.  Levels of two unique miRNAs, mi-1290 and mi-375, were significantly 
elevated and associated with poor overall survival [115]. Similarly, Matsumoto 
et al. examined exosome levels in patients with esophageal squamous cell cancer 
and found that expression of miR-375 was associated with poor prognosis [116]. In 
pancreatic ductal adenocarcinoma (PDAC), expression of macrophage migration 
inhibitory factor (MIF) within exosomes was associated with disease progression 
[106]. Evaluation of exosomal RNA has been undertaken in multiple disease states 
including melanoma, glioblastoma, lung, ovarian, and colorectal cancers. 
Consistently, patients with malignancies demonstrate elevated levels of specific 
exosomal miRNAs [117–121]. These may serve as biomarkers of disease progres-
sion, and their underlying mechanistic roles may offer new therapeutic targets in the 
management of advanced malignancies. Exosomal content beyond miRNAs also 
has been analyzed. Del Re et al. evaluated AR-V7 expression in exosome-derived 
RNA using digital droplet polymerase chain reaction (ddPCR). Similar to findings 
in CTCs among men with prostate cancer, exosomal derived RNA expression accu-
rately predicted resistance to novel hormonal therapies. Among patients receiving 
abiraterone or enzalutamide for CRPC, AR-V7 variants were found in 39%, and 
their presence was associated with lower overall survival (median 8 months versus 
not reached). Response to hormonal therapy was just 7% in AR-V7+ patients versus 
64% in AR-V7- patients [122].

Exosome and other EV analysis may ultimately develop into a uniquely valuable 
liquid biopsy analyte because of the variety of information which may be obtained 
(mRNA, miRNA, protein, DNA) combined with the comparatively robust nature of 
the source material. EV contents are sheltered and relatively well-preserved from 
degradation until they are evaluated. At the same time, methods of isolation must be 
refined and standardized to ensure purity, reproducibility and scalability for reliable 
clinical use. How the information gleaned from EVs will be integrated into clinical 
practice is as yet undefined but clearly holds great prognostic, diagnostic, and even 
therapeutic potential.

10.13  �Conclusion

Precision medicine holds the promise of effective, individualized cancer therapy 
that evolves over time with a tumor’s biology. This exciting new treatment paradigm 
cannot be adequately supported by traditional tumor biopsies that are constrained 
by patient safety, cost, and limited tissue sampling. Liquid biopsies may provide the 
solution: simple, noninvasive sampling of tumor cells or tumor-derived material 
circulating throughout the body, which can be analyzed repeatedly to guide therapy 
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as the disease progresses. Significant technical, biological and clinical challenges 
remain: In the technical realm, optimal methods for enrichment, recovery, amplifi-
cation, and analysis of rare cells or cell-free material are still being refined and 
analytically validated. Biologically, the significance of detected alterations are still 
being elucidated: How do they compare with findings in tumor biopsies? How do 
they change over time as tumors evolve in response to treatment? What bioinformat-
ics approaches are most suitable for addressing cellular heterogeneity and extrapo-
lating from highly amplified single events to overall tumor driver phenotypes? 
Clinically, which of these phenotypes translate into presence of occult disease, bet-
ter or worse outcomes for disease, or response to particular targeted therapies  – 
questions that in the clinical realm can only be satisfactorily addressed through 
prospective trials. As reviewed in this chapter, significant progress has been made 
on all these fronts, and CTCs, cfDNA, cfRNA, and EVs already have been success-
fully captured and analyzed to yield important biological insights about evolving 
disease drivers, as well as preliminary prognostic and predictive clinical benefits. 
There is now little doubt that these analytes provide a wealth of valuable informa-
tion, propelling liquid biopsy towards a central role in precision cancer care.
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The development of powerful and scalable methods to analyze cancer genomic data 
has transformed the practice of medicine by bridging the gap between complex 
genomic data and their use in research and clinical translation. Of particular signifi-
cance are the data portals and analysis platforms available that make genomic data 
more accessible to the research community, as they enable translational research by 
providing scientists with the information, tools, and frameworks necessary to per-
form integrative analyses on cancer genomic data.

This chapter will review publicly available data portals and translational research 
platforms for cancer genomics. Here we will focus on large-scale cancer genomics 
projects, research platforms and select, unique features for visualizing and analyz-
ing data, as well as current limitations, challenges, and opportunities faced by the 
research community.

11.1  �The Evolution of Cancer Genomics

Technological advancements over the last several decades have driven the evolution 
of cancer genomics and have significantly expanded our understanding of the 
molecular basis of cancer genetics. In particular, the development of high-throughput 
technologies and powerful computational methods have provided the means to 
investigate cancer genomes in a manner not previously possible. Before the advent 
of these technologies, traditional approaches to biological inquiries were limited by 
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time-consuming molecular assays that can be difficult to scale up to interrogate a 
large set of genes of interest. Indeed, high-throughput technologies are not only 
more cost- and time-efficient than traditional approaches; they also offer a more 
comprehensive view of cancer genomes and have led to a series of breakthroughs in 
personalized medicine [1].

Unlike early sequencing technologies, high-throughput sequencing technologies 
are not limited to a single modality – the same set of data can be distilled into mul-
tiple molecular profiles that offer different, yet complementary, views of cancer 
genomes. For example, nucleotide substitutions, insertions and deletions (indels), 
copy-number alterations, and structural variants can all be derived from a single set 
of whole genome sequencing (WGS) or whole exome sequencing (WES) data [1, 
2]. Integrating these highly informative datasets with clinical information creates 
the opportunity to ask and potentially answer deeper, more meaningful questions of 
the data in the context of clinical care. Resources that can capture this information 
to enable treatment decisions are essential but can be difficult to integrate into clini-
cal settings without the adequate tools and infrastructure to manage and explore the 
torrent of omics data.

11.2  �Navigating the Maze of Omics Data: Challenges 
and Opportunities

Efficiently deriving biological insights from cancer genomics data remains one of 
the major challenges in navigating the maze of omics data. A key step towards 
achieving this is differentiating between genomic alterations that contribute to can-
cer (drivers) and those that do not (passengers). Several methods to identify drivers 
rely on recurrence, i.e., identifying genomic alterations that occur at a higher rate 
than expected by chance across a set of tumors. These methods take many factors 
into consideration, such as mutation frequencies, gene lengths, types of mutations, 
and copy-number alterations [3]. To exclude genes from further downstream analy-
ses, many methods also consider the functional impact of mutations and correla-
tions with mRNA expression. However, given their nature even the most sophisticated 
recurrence-based methods cannot identify rare drivers.

Another step towards efficiently deriving biological insights from cancer genom-
ics data is developing methods that address complications introduced by batch 
effects, uneven sequence coverage, differences in reference genome assembly used, 
tumor heterogeneity, and tumor purity [4]. Complications such as these have led to 
seriously flawed findings in the past when not removed from the data [5]. Methods 
that correct these complications will help ensure quality control going forward and 
improve the reproducibility of results in new studies. Additionally, such methods 
make it easier to harmonize data across datasets, thus facilitating comparisons of 
data from different sources which will be ideal going forward as more and more 
data becomes available.
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11.3  �Data Portals and Public Repositories

Cancer genomic data can be divided into the following levels of data depending on 
the extent of computational modifications and interpretations applied to the data [1]:

	1.	 Raw
	2.	 Processed or normalized
	3.	 Interpreted
	4.	 Summarized

While raw and individual-level sequencing data are often subjected to restricted 
access to help prevent compromising patient information, interpreted or distilled 
genomic data are usually publicly accessible. Data repositories have made it easier 
for investigators to access these publicly available data by creating a single-access 
point for users to download these data from. However, providing such resources can 
be logistically and technically difficult if adequate resources are not in place to 
store, manage, and maintain these data.

Making complex cancer genomics data easier to access remains one of the major 
challenges in downstream collection, integration, and analysis. Experience has 
shown that this can best be achieved by reducing the complexity of the data [3]. The 
resulting simplified genomic data can then be used to facilitate the identification of 
key pathways involved in the cancer initiation, maintenance, and progression, as 
well as the identification of potentially actionable targets for cancer treatments. 
Additionally, interpretations from these data can also be incorporated into clinical 
resources that enable clinicians to make genome-informed treatment decisions. 
However, to make cancer genomics data even more translational, there are many 
obstacles to overcome before cancer genomics data can reach their full potential.

11.3.1  �Progress and Observations from Public Projects

Many large-scale coordinated efforts have been established that provide genomic 
data linked to high quality clinical information. A summary of available large-scale 
cancer genomic projects is available in Table 11.1.

As one of the first large-scale efforts of its kind, The Cancer Genome Atlas 
(TCGA), a collaboration between the National Cancer Institute (NCI) and National 
Human Genome Research Institute (NHGRI), was established in 2005 as a multi-
institutional cross-collaborative project aimed at cataloguing genetic alterations in 
33 cancer types [6]. Large-scale cancer genomics projects like TCGA have played 
a key role in expanding our knowledge and understanding of the cancer genome, 
and will be discussed in more detail in the following sections. Primary data sources 
for processed and/or pre-processed clinical and genomic data from these projects 
are accessible through their own project sites in addition to external data repositories 
such as the Genomic Data Commons (GDC) [13] Data Portal, the cBioPortal for 
Cancer Genomics [14], and Sage Synapse [15].

11  Data Portals and Analysis
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11.3.2  �Public Repositories for Cancer Genomics Data

One of the key drivers in enabling precision cancer medicine is the development of 
data repositories for cancer genomics data. Indeed, large-scale efforts such as the 
aforementioned projects have shaped our understanding of cancer genetics and con-
tinue to expand our knowledge of the molecular basis of cancer. Many data reposi-
tories exist to facilitate access to data from these projects by providing a single 
access point where users can readily view and download cancer genomic datasets 
and clinical information (Table 11.2). By making these omics data available, data 
repositories have made collaborations across institutions and laboratories easier and 
they have been instrumental in the development of computational methods and 
research tools for cancer research.

In addition to hosting clinical and genomic data from a combination of the afore-
mentioned projects, many public data repositories also host data from other cancer 
genomic projects and private datasets. The availability of various types of molecular 

Table 11.1  Large-scale cancer genomic projects

Project Summary

The Cancer Genome Atlas 
(TCGA) [6]

A multi-institutional cross-collaborative effort established by the 
National Cancer Institute (NCI) and National Human Genome 
Research Institute (NHGRI) to comprehensively catalogue genetic 
alterations in 33 cancer types

Therapeutically Applicable 
Research To Generate 
Effective Treatments 
(TARGET) [7]

An initiative jointly managed by the NCI and Cancer Therapy 
Evaluation Program (CTEP) comprised of disease-centered 
projects using comprehensive molecular characterization to 
determine genetic drivers in the development and progression of 
childhood cancers.

Cancer Genome 
Characterization Initiative 
(CGCI) [8]

An initiative supported by the National Institutes of Health (NIH) 
and NCI to molecularly characterize adult and pediatric cancers, 
including B-cell non-Hodgkin lymphoma, medulloblastoma, and 
HIV-associated cancers.

Cancer Cell Line 
Encyclopedia (CCLE) [9]

A collaboration between the Broad Institute and the Novartis 
Institutes for Biomedical Research and its Genomic Institute of the 
Novartis Research Foundation to conduct detailed genetic and 
pharmacologic characterization to develop and translate 
computational analyses that link genomic and pharmacologic data 
for ~1000 cancer cell lines.

International Caner 
Genome Consortium 
(ICGC) [10, 11]

A large coordinated effort to comprehensively elucidate genomic 
changes in tumors from 50 cancer types throughout the world. The 
ICGC for medicine (ICGCmed) was also announced in 2016, 
which aims to link at least 200,000 cancer genomes with clinical 
information by 2025.

Project GENIE (Genomics 
Evidence Neoplasia 
Information Exchange) 
[12]

A multi-phase, multi-year international data-sharing project 
supported by the American Association for Cancer Research 
(AACR) to develop a regulatory-grade registry that aggregates and 
links clinical-grade cancer genomic data with clinical outcomes 
from tens of thousands of cancer patients treated at multiple 
international institutions.
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Table 11.2  Public repositories for cancer genomics data

Data Portal Summarya

TARGET Data Portal 
https://ocg.cancer.gov/
programs/target/
data-matrix

Molecular profiling data and clinical information from TARGET 
projects, focusing on childhood cancers. It currently contains over 
5000 samples from 8 projects and remains ongoing.

CCLE Data Portal 
https://portals.
broadinstitute.org/ccle

Mutation, copy number, mRNA expression, and clinical information 
for ~1000 human cancer cell lines, plus drug response data for ~500 
cell lines.

CGCL Data portal 
https://ocg.cancer/gov/
programs/cgci/
data-matrix

Molecular profiling data and clinical information for adult and 
pediatric cancers. It currently contains ~150 sample from the 
Pediatric Medulloblastoma Project (MB) and the Non-Hodgkin 
Lymphoma Project (NHL). The following CGCL projects remain 
ongoing: the Burkitt Lymphoma Characterization Project (BLGSP, 
expected completed in 2017) and the HIV+ Tumor Molecular 
Characterization Project (HTMPC)

ICGC Data Portal 
https://dcc.icgc.org

Molecular profiling data and clinical information from participating 
projects, including TCGA and TARGT. It currently contains data for 
more than 19,000 from 76 projects. In 2016, the ICGC also 
established the ICGC for Medicine (ICGCmed), which aims to link 
at least 200,000 cancer genomes with clinical information by 2025.

AACR Project GENIE 
http://www.cbioportal.
org/genie/, http://
synapse.org/genie

Molecular profiling data and clinical information from participating 
institutions. It currently contains data from ~19,000 samples 
contributed by eight major cancer centers.

GDC Data Portal https://
gdc-portal.nci.nih.gov

Molecular profiling data and clinical information generated by 
TCGA and TARGET. It currently contains raw and processed data 
for more than 14,000 samples from 39 projects. The GDC also plans 
to make CCLE and CGCL data available in 2017, as well as data 
contributed by Foundation Medicine, Inc. and the Multiple Myeloma 
Research Foundation (MMRF). Currently, CCLE data and TCGA 
RPPA data are available through the GDC legacy archive.

dbGaP https://www.ncbi.
nlm.nih.gov/gap

Raw sequencing data from ~780 studies including TCGA, TARGET, 
CGCI, and several other smaller sequencing studies.

EGA https://www.ebi.
ac.uk/ega

Raw sequencing data from ~1430 studies and ~660 data providers, 
including ICGC and other smaller projects.

ArrayExpress http://
www.ebi.ac.uk/
arrayexpress

Raw and processed molecular profiling data from over 26,000 
experiments using human samples. Used by several smaller cancer 
genomic studies.

GEO https://www.ncbi.
nlm.nih.gov/geo

Raw and processed molecular profiling data for over 1 million human 
samples from ~1770 data sets. Used by several smaller cancer 
genomic studies.

Synapse http://www.
synapse.org

Curated TCGA data sets, including from the pan-cancer analysis 
project.

GDAC Firehose http://
gdac.broadinstitute.org

Aggregated and processed TCGA data sets, including automated 
standard analyses (recurrence, clustering, correlations, etc.). 
GDAC = Genome Data Analysis Center

aNumber of projects and/or samples available as of November 2016
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profiling data, depth of patient and sample clinical information, and overall cover-
age of cancer projects and smaller cancer genomic studies vary from repository to 
repository. A comparison of available public repositories and primary data sources 
is summarized in Table 11.3.

11.3.2.1  �The Cancer Genome Atlas (TCGA) [6]

The Cancer Genome Atlas (TCGA) was launched in 2005 as a collaboration between 
the National Cancer Institute (NCI) and the National Human Genome Research 
Institute (NHGRI) to explore the spectrum of genomic alterations in 33 cancer types 
from over 11,000 tumor samples. These data were made publicly available with the 
overarching goal of improving our ability to diagnose, treat, and prevent cancer. 
Amounting to over 2.5 petabytes of data, TCGA data have served as an immeasur-
able source of knowledge and have contributed to over 1000 studies by independent 
researchers and TCGA Research Network publications. The types of data collected 
for TCGA include gene expression, mutations, copy number alterations, methyla-
tion, protein expression, and clinical information. Although coming to a close in 
2017, the success of TCGA has demonstrated the power of large-scale coordinated 
efforts in driving precision cancer medicine and will serve as a model for future NCI 
programs to follow. All of the TCGA data can be found at the Genomic Data 
Commons (GDC) Data Portal [13], a unified data repository developed by the NCI 
and other organizations containing data derived from various legacy and active NCI 

Table 11.3  Comparison of public repositories and primary data sources

¶ Data is available through the GDC legacy archive. § Data from other supported projects will be 
available sometime in 2017
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programs. Processed TCGA data are also hosted by the International Cancer 
Genome Consortium (ICGC) Data Portal [10], the database of Genotypes and 
Phenotypes (dbGaP) [16], Sage Synapse [15], Genome Data Analysis Center 
(GDAC) Firehose [17], and the cBioPortal for Cancer Genomics [14].

11.3.2.2  �Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET) [7]

The Therapeutically Applicable Research to Generate Effective Treatments 
(TARGET) initiative is a collaborative effort supported by a large, diverse consor-
tium consisting of investigators from the NCI and extramural investigators. The 
TARGET initiative is an ongoing project managed by the NCI that was launched in 
2006 with the overall goal of accelerating the development and application of new, 
more effective therapeutic strategies for treating pediatric cancers. Using compre-
hensive molecular characterization, TARGET aims to identify therapeutic targets 
and prognostic markers by determining the genetic alterations driving the initiation 
and progression of pediatric cancers. Currently, the TARGET initiative is character-
izing subtypes of the following pediatric cancers: acute myeloid leukemia, osteosar-
coma, acute lymphoblastic leukemia, neuroblastoma, and select kidney tumors.

Processed TARGET data are publicly available through their project site and 
their public ftp server to facilitate data access for investigators outside of the initia-
tive and accelerate the discovery of novel therapeutic targets and enable rapid trans-
lation of these findings in the clinic. Publicly available data include clinical 
information, gene expression, copy number alterations, methylation, miRNA 
expression, and mutations. Additional molecular profile data available for select 
projects includes targeted resequencing data, ChIP-seq, TaqMan data, and kinome 
data. TARGET data can also be found at the ICGC Data Portal, GDC Data Portal, 
dbGaP, and the cBioPortal for Cancer Genomics. It is important to note that these 
repositories may not contain a complete set of available TARGET data due to ongo-
ing efforts by these repositories to render them compatible with their respective 
platforms.

11.3.2.3  �Cancer Genome Characterization Initiative (CGCI) [8]

The Cancer Genome Characterization Initiative (CGCI) is an ongoing project man-
aged by the NCI that was launched in 2008 to support cutting-edge genomics 
research on adult and pediatric cancers. To date, the CGCI has successfully com-
pleted two projects focused on characterizing genetic alterations in medulloblas-
toma and B-cell non-Hodgkin lymphoma. Ongoing projects for CGCI are currently 
focused on characterizing HIV-associated cancers and Burkitt lymphoma. Data 
gathered for these projects includes clinical information, gene expression, copy 
number alterations, miRNA, and mutations. Data for the completed projects can be 
downloaded from the CGCI project site through their public ftp server as well as 

11  Data Portals and Analysis



176

through dbGaP.  A limited amount of data is currently available for the ongoing 
projects through these sources as well.

11.3.2.4  �Cancer Cell Line Encyclopedia (CCLE) [9]

The Cancer Cell Line Encyclopedia (CCLE) is an ongoing project that was estab-
lished in 2011 as a collaboration between the Broad Institute, and the Novartis 
Institutes for Biomedical Research and its Genomics Institute of the Novartis 
Research Foundation, to develop robust preclinical model systems that reflect the 
genomic diversity of human cancers. Currently, the CCLE has conducted genetic 
characterizations for over 1000 cancer cell lines and pharmacological profiling for 
over 500 cancer cell lines. Available data from the CCLE project includes cell line 
annotations, sample information, copy number alterations, mutations, binary calls 
for copy number and mutation data, and pharmacological profiling. Data collection 
efforts for INDELs and binary calls for copy number and mutation data remain 
ongoing. CCLE data can be downloaded directly through the project site after set-
ting up a free account. These data are also available through Sage Synapse, the GDC 
Legacy Archive (https://gdc-portal.nci.nih.gov/legacy-archive/), and the cBioPortal 
for Cancer Genomics [14].

11.3.2.5  �International Cancer Genome Consortium (ICGC) [10]

In 2007, the International Cancer Genome Consortium (ICGC) was established to 
coordinate the generation of comprehensive catalogues of genomic alterations in 
tumors from 50 different cancer types and/or subtypes. To date, the ICGC has com-
pleted 41 projects characterizing genomic alterations in over 7000 tumor samples 
originating from 17 tumor sites. Potential datatypes available for each project are 
clinical information, mutations, copy number alterations, methylation, structural 
rearrangements, gene expression, protein expression, and miRNA. These data can 
be found in the ICGC Data Portal, the cBioPortal for Cancer Genomics, and 
EGA. The ICGC Data Portal provides tools for visualizing, querying, and down-
loading the data available through the portal. Additionally, users can also filter the 
data to download by primary site, cancer projects, datatype, tumor type, analysis 
software, specific mutations, and more.

11.3.2.6  �AACR Project GENIE (Genomics Evidence Neoplasia 
Information Exchange) [12]

Project GENIE is a large-scale international data-sharing project launched in 2015 
by the American Association for Cancer Research (AACR) to catalyze precision 
cancer medicine by providing the statistical power necessary to improve clinical 
decision-making, particularly for rare cancers and rare variants in common cancers. 
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Project GENIE is unique in that it aims to develop a regulatory-grade registry that 
aggregates and links clinical-grade cancer genomic data with clinical outcomes 
from over tens of thousands of cancer patients treated at multiple institutions. There 
are currently eight phase 1 project participants that are supporting ongoing genotyp-
ing efforts. Altogether the participating institutions have contributed clinical infor-
mation and genomic data for nearly 19,000 samples and approximately 60 cancer 
types. The types of genomic data available for Project GENIE include mutations, 
copy number alterations, and structural rearrangements. These data were released to 
the public in early 2017 and will be available through the Project GENIE instance 
of the cBioPortal for Cancer Genomics (http://www.cbioportal.org/genie/) and Sage 
Synapse (https://www.synapse.org/#!Synapse:syn7222066).

11.3.2.7  �Genomic Data Commons (GDC) Data Portal [13]

The GDC Data Portal is an open-source, open access centralized data repository 
developed by the NCI and other organizations containing data derived from various 
legacy and active NCI programs. The software for the GDC Data Portal is available 
through GitHub (https://github.com/NCIP/gdc-docs). Released in 2016, the GDC 
Data Portal provides a valuable resource that promotes the import and standardiza-
tion of genomic and clinical data using a common set of bioinformatics pipelines to 
enable direct comparison of data across cancer research projects. The current imple-
mentation of the GDC Data Portal provides harmonized data from all 33 TCGA 
cancer projects, with the exception of protein expression data, and 6 out of 9 
TARGET projects. There are ongoing efforts to harmonize TCGA protein expres-
sion data, CCLE data, and CGCI data to render them compatible with the current 
implementation of the data portal. In the meantime, these data can be found through 
the GDC Legacy Archive with the exception of CGCI data. Additionally, data con-
tributed by Foundation Medicine, Inc. and the Multiple Myeloma Research 
Foundation (MMRF) are expected to become publicly available sometime in 2017.

Data can be viewed and retrieved through the GDC Data Portal web application 
or programmatically. Analysis for these data are linked out to a GDC instance of the 
cBioPortal (https://cbioportal.gdc.cancer.gov/cbioportal/) and the Broad Institute 
Firebrowse (http://firebrowse.org/). Currently supported datatypes include clinical 
information, mutations, gene expression, copy number alterations, structural rear-
rangements, protein expression, and methylation. Users can generate subsets of 
available data to view or retrieve by applying filters based on the cancer program, 
data category, primary tumor site, disease type, and experimental strategy, to name 
a few. Users may also submit data if they meet GDC data submission criteria and 
have registered the study successfully with dbGap. Once these conditions have been 
met, users can upload and validate their data within the GDC and submit it for pro-
cessing. After processing is completed by the GDC, the user must release their data 
to the GDC within 6 months of submission to make it available through the GDC 
Data Portal as open or controlled data. For small projects, the data submission pro-
cess can be done via the GDC Data Submission Portal, a web-based tool. For larger, 
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high volume projects, the GDC Data Transfer Tool (a client-based tool) can be used 
instead. Large organizations can also submit their data programmatically through 
GDC submission pipelines using the GDC Application Programming Interface 
(API).

11.3.2.8  �Database of Genotypes and Phenotypes (dbGaP) [16]

The database of Genotypes and Phenotypes (dbGaP) is a repository developed by 
the National Center for Biotechnology Information (NCBI) and launched in 2006 to 
serve as a general repository for studies examining the association between pheno-
type and genotype. dbGaP provides a valuable resource to the research community 
by providing a centralized repository for accessing and browsing data in a uniform 
way. dbGaP assigns a unique and stable accession number for every study and every 
dataset within each study, which allows published studies to discuss or cite the pri-
mary data in a specific and uniform way. Many types of data are supported by 
dbGaP including, but not limited to, phenotype data, genome-wide association 
(GWAS) data, summary level analysis data, SRA (Short Read Archive) data, refer-
ence alignment (BAM) data, VCF (Variant Call Format) data, expression data, 
imputed genotype data, and image data. dbGap provides a combination of con-
trolled and open access data for each study. Examples of publicly available data are 
study metadata, phenotype variable summary information, documentation related to 
the study, and association analyses that are in the public domain. Access to 
individual-level data requires that a user has either a NIH eRA Commons Account 
(for extramural researchers) or a NIH login (for intramural researchers) and that 
they be classified as a Principal Investigator (PI). Authorized access for non-PI’s 
requires users to be approved for local access to view and download data files within 
the PI’s lab. To date, dbGaP hosts data from over 800 studies, including data from 
large cancer research projects such as TCGA, TARGET, and CGCI.

11.3.2.9  �European Genome-phenome Archive (EGA) [18]

The European Genome-phenome Archive (EGA) was launched in 2008 by the 
European Molecular Biology Laboratory’s European Bioinformatics Institute 
(EMBL-EBI) to support the voluntary archiving and the secure dissemination of 
data, including raw data as well as genotype calls provided by data contributors. 
Currently supported types of data include exome sequencing, whole genome 
sequencing, data from array-based technologies, transcriptomic data, and epig-
enomic data. To access datasets, users must be approved by a study’s designated 
Data Access Committee (DAC). To date, EGA contains nearly 2800 datasets from 
over 1400 studies that were provided by approximately 650 data contributors.
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11.3.2.10  �ArrayExpress [19]

Established by the European Bioinformatics Institute (EMBL-EBI) in 2003, the 
ArrayExpress Archive of Functional Genomics Data is a repository recommended 
by most journals for data supporting peer-reviewed publications. ArrayExpress sup-
ports a wide range of raw and processed functional genomics data with the excep-
tion of raw data from high-throughput sequencing experiments, which are brokered 
to EGA, and are controlled-access datasets. The types of data currently supported 
include, but are not limited to, mutations, copy number alterations, methylation, 
gene expression, miRNA expression, and protein expression. Datasets can be 
browsed by organism, array used, assay technologies, and assayed molecule through 
the ArrayExpress web interface or programmatically through the ArrayExpress 
REST/JSON API. Currently, ArrayExpress contains data from over 26,000 experi-
ments using human samples.

11.3.2.11  �Gene Expression Omnibus (GEO) [20]

The Gene Expression Omnibus (GEO) project was launched in 2001 by the NCBI 
in response for the growing demand for a public repository for high-throughput 
gene expression data. GEO provides a user-friendly platform for submitting, stor-
ing, reviewing, and retrieving datasets from functional genomic experiments from 
array- and sequence-based technologies. GEO supports data from various projects 
and contributors in various formats including molecular profiling data for gene 
expression, non-coding RNA, methylation, mutations, and protein expression, 
among others. Currently, GEO contains data from approximately 1770 datasets gen-
erated using human samples.

11.3.2.12  �Synapse [15]

Synapse is an open source software platform developed by Sage Bionetworks that 
enables the co-location of scientific content. Source code for Synapse is available 
through GitHub (https://github.com/Sage-Bionetworks/Synapse-Repository-
Services). Some of the key features of Synapse include data versioning, provenance 
tracking, data annotation, query language, governance, group security, citation 
management, and open APIs for programmatic access. Beyond data-related func-
tionalities, Synapse has proven to be a valuable resource for facilitating collabora-
tive research due to its various other functionalities such as the management of 
analysis code and models, publication of these resources, and providing access to 
other tools that enable collaboration, such as group email and chat. At this time, 
Synapse contains over 900 public projects, including Project GENIE and various 
working groups for TCGA and ICGC.
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11.3.2.13  �GDAC Firehose (Genome Data Analysis Center) [17]

GDAC Firehose is a data repository established by the Broad Institute of MIT and 
Harvard in 2011 to provide aggregated and processed TCGA datasets. Since their 
launch in 2011, GDAC Firehose has been regularly running TCGA data through 
their analytical workflows, which are publicly available and can be found through 
the GDAC Firehose site. Some of the key features of GDAC Firehose include ver-
sioned and standardized datasets, analysis reports, and software packages and anal-
ysis code. Analysis reports are structured in an easy to read, user-friendly format 
and the reports can be downloaded directly along with the corresponding data and 
code used to generate the report. Users can download the data through the web user 
interface or programmatically by installing firehose_get, a command line tool 
developed by GDAC Firehose, or by using their RESTful API service through 
FireBrowse, a web tool developed by the Broad Institute for visualizing TCGA data, 
which will be discussed in further detail shortly.

11.3.2.14  �The cBioPortal for Cancer Genomics [14]

The cBioPortal for Cancer Genomics is an open-access, open-source platform for 
interactively visualizing, analyzing, and downloading large-scale cancer genomics 
data sets. As of May 2017, the cBioPortal contains data for over 20,000 samples 
from 151 manually curated cancer studies, including data from TARGET, TCGA, 
GTEx, CCLE, and published data from literature. Data from the public instance of 
the portal (http://www.cbioportal.org/) are available through GitHub (https://github.
com/cBioPortal/datahub) under the ODC Open Database License (ODbL). Data is 
also available for download through the portal site itself through the web interface 
and the cBioPortal API.

11.4  �Data Analysis Platforms

As evident by the increasing availability of cancer genomic data and the importance 
of linking it to clinical information, the ability to perform comprehensive molecular 
profiling of tumor samples is ever more significant and necessary to further enable 
progress in precision cancer medicine. Translational research platforms have played 
a key role in enabling precision cancer medicine through the development of tools 
for visualizing and analyzing integrated omics data. Despite limitations, available 
resources and research platforms for studying cancer genomics have made a signifi-
cant impact on realizing precision cancer medicine and are widely appreciated by 
the research community by helping biologists and clinicians interpret the informa-
tion more effectively.

Some of the core functionalities provided by translational research platforms 
include:
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•	 Integrating clinical and omics data from various sources
•	 Providing analysis frameworks and visualization tools
•	 Supplementing data with information cross-referenced from external databases 

(such as annotation mutation information with its clinical actionability)
•	 Enabling researchers and clinicians to explore data and generate hypotheses 

using various levels of analyses such as:

–– Cross-cancer study views
–– Gene-centric analyses
–– Cohort-level analyses
–– Patient-level analyses

The translational research platforms discussed in this section provide many of 
these functionalities, among others. A brief summary of publicly available research 
platforms can be found in Table 11.4. Although all of these research platforms pro-
vide many unique and complementary features and tools for cancer genomic data 
analysis, only a subset of these platforms will be described in depth to highlight key 
features. To find more information on each platform, please refer to the correspond-
ing citations and platform sites.

11.4.1  �Bridging the Gap for Translational Cancer Research

Users must consider many factors when selecting the right analysis platforms for 
their research. For example, if a user wishes to upload their own private dataset to 
visualize and analyze, will their data be secure? What datatypes are supported? 
Where is the data hosted on the research platform coming from and is it download-
able? Can users compare local data against platform databases and are local instal-
lations possible? Is the software for the platforms open-source? A comparison 
matrix of publicly available analysis platforms summarizes many of these points in 
Table 11.5.

11.4.1.1  �cBioPortal for Cancer Genomics [14]

The cBioPortal for Cancer Genomics is an open-access, open-source platform for 
interactively visualizing, analyzing, and downloading large-scale cancer genomics 
data sets. Though originally developed at Memorial Sloan-Kettering Cancer Center 
(MSK), the cBioPortal software is now being developed and maintained by a multi-
institutional team consisting of MSK, the Dana Farber Cancer Institute, Princess 
Margaret Cancer Centre in Toronto, Children’s Hospital of Philadelphia, The Hyve 
in the Netherlands, and Bilkent University in Ankara, Turkey. Source code for the 
cBioPortal is available through GitHub (https://github.com/cBioPortal). Currently, 
the cBioPortal public site hosts data for over 20,000 samples from 151 cancer stud-
ies, including data from TCGA, CCLE, and TARGET. Data hosted on the public 
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Table 11.4  Publicly available research platforms for cancer genomics data

Analysis 
Platform Summary

cBioPortal 
[14]

The cBioPoral for Cancer Genomics is an open-access, open-source platform 
for interactively visualizing, analyzing, and downloading large-scale cancer 
genomics data sets. Currently, the cBioPortal public sits hosts data for over 
20,000 samples from 151 cancer studies, including data from large-scale cancer 
genomics projects such as TCGA, CCLE, and TARGET. The cBioPortal can be 
installed locally and the codebase and data for the cBioPortal are available 
through GitHub (https://github.com/cBioPortal/).

Broad Institute 
Firebrowse 
[21]

The Broad Institute TCGA GDAC Firebrowse is an analysis platform that sits 
above the TCGA GDAC Firehose, one of the deepest open cancer datasets 
available containing over 80,000 sample aliquots from over 11,000 cancer 
patients and 38 unique disease cohorts. FireBrowse provides a simple way to 
access, view, and download ~15,000 analysis reports created by Firehose, as 
well as publicly available data from TCGA.

COSMIC [22] The catalogue of Somatic Mutations in Cancer (COSMIC) is a large and 
comprehensive knowledge base for exploring somatic mutations in human 
cancers. Data is manually curated by a curation team and users can be explored 
by cancer types, genes, specific mutations, and study names programmatically 
and through the web interface.

ICGC Data 
Portal [10]

The International Cancer Genome Consortium (ICGC) Data Portal is a 
web-based platform for visualizing, querying, and downloading data provided 
by ICGC member institutions and large-scale projects, such as TCGA and 
TARGET. As of May 2017, the ICGC Data Portal contains data from 70 
projects and 21 primary cancer types. Local installation is available and the 
software is open-source through GitHub (https://github.com/icgc-dcc/
dcc-portal).

UCSC Xena 
[23]

UCSC Xena is an interactive web-based data analysis and visualization 
platform for cancer genomics data. As of May 2017, UCSC Xena contains 
public data from 91 cohorts, including data from TCGA, ICGC, TARGET, and 
CCLE. The software for UCSC Xena is available through GitHub (https://
github.com/ucscXena).

St. Jude PeCan 
Data Portal 
[24]

The St. Jude Pediatric Cancer (PeCan) Data Portal is a cancer genome data 
portal developed specifically for visualizing and exploring genomic alterations 
in pediatric cancers. As of May 2017, the PeCan data portal contains data for 
over 2000 pediatric tumors and 17 pediatric cancer types from the Washington 
University Pediatric Cancer Genome Project, as well as TARGET and smaller 
pediatric cancer projects.

Brown MAGI 
[25]

MAGI (Mutation Annotation & Genome Interpretation) is an open-source, 
open-access web application developed at Brown University for annotating, 
exploring, and analyzing private and public cancer genomics data. Local 
installation is available and the codebase is available through GitHub (https://
github.com/raphael-group/magi).

OncoMine 
Research 
Edition [26]

OncoMine is a web-based cancer microarray database and data-mining 
platform for facilitating genome-wide expression analyses by integrating and 
unifying publicly available cancer profiling data across various cancer types 
and experiments.

IntOGen [27] IntOGen is a web-based platform for integrating and mining data from cancer 
profiling experiments. As of May 2017, IntOGen hosts data for nearly 7000 
samples across 26 cancer types and 48 projects. IntOGen can be installed 
locally and the software is open-source and is available here: https://bitbucket.
org/intogen/intogen-pipeline/src.

(continued)
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Table 11.4  (continued)

Analysis 
Platform Summary

TumorPortal 
[28]

Tumorportal is a web-based tool developed at the Broad Institute that provides 
access to integrated genomic and clinical data from 22 cancer cohorts. Users 
can also explore private datasets through the TumorPortal beta version of the 
portal.

canEvolve [29] canEvolve is a web portal developed to store data derived from functional 
genomics profiles from microarray and NGS platforms downloaded from GEO.

canSAR [30] canSAR is an integrated knowledge base that provides multidisciplinary 
genomic and clinical annotations to support cancer translational research and 
enable drug discovery. Data sources include data from ArrayExpress [19], PDB 
[31], UniProt [32], COSMIC [22], Pathway Commons [33], ChEMBL [34], 
STRING [35], drug indications from the NCI (https://www.cancer.gov/), and 
clinical trial data from https://clinicaltrials.gov/.

G-DOC Plus 
[36]

The Georgetown Database of Cancer (G-DOC) is a platform developed to 
enable translational cancer research by facilitating access to integrated genomic 
and clinical cancer data, including medical and digital images for validation of 
analysis results. As of May 2017, G-DOC hosts data for over 10,000 patient 
from 55 private and public studies and resources, such as GEO and TCGA, 
among others.

OASIS 
Genomics [37]

OASIS Genomics is a web-based platform and central repository for multi-
dimensional cancer genomics data developed by Pfizer Oncology Research 
Computational Biology in collaboration with Research Business Technology 
(RBT). OASIS Genomics hosts data from a variety of publicly available 
resources, including TCGA, CCLE, and GTEx, among others.

OncoScape 
[38]

OncoScape is a data visualization platform developed at the Fred Hutchinson 
Cancer Research Center to enable researchers to explore publicly available data 
from GDC, TCGA, UCSC Xena, and other resources in an intuitive and 
interactive manner. The code for OncoScape is open-source and is available 
through GitHub (https://github.com/FredHutch/Oncoscape) and data can be 
downloaded programmatically through their data API (http://resources.
sttrcancer.org/api/data-explorer/).

Visual Omics 
Explorer 
(VEO) [39]

VEO is data visualization platform that provides a diverse set of data 
visualizations for dynamic and interactive data displays on desktops and 
mobile devices. Users are able to explore available data through the Google 
Genomics Cloud, as well as private datasets. Local installation is available and 
the code is open-source and available through GitHub (https://github.com/
BCIL/VOE).

ISB Regulome 
Explorer [40]

The ISB Regulome Explorer is a web-based platform that provides tools for 
exploring genomic profiling data from TCGA, such as cross-cancer 
comparisons of genomic alterations ad associations among genomic and 
clinical features. The software for ISB Regulome Explorer is open-source and 
is available through GitHub. (https://github.com/cancerregulome/
regulomeexplorer).

R2 Platform 
[41]

R2 is a web-based genomics analysis and visualization platform that was 
developed with biologist in mind. As of May 2017, R2 contains array-based 
expression data from over 500 experiments. Users can explore and download 
data hosted through R2, as well as explore their own private datasets.
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cBioPortal site can be downloaded programmatically using the cBioPortal API, 
through the web interface, or from the cBioPortal datahub GitHub repository 
(https://github.com/cBioPortal/datahub) under the ODC Open Database License 
(ODbL).

The cBioPortal was specifically designed to lower the barriers between research-
ers and access to complex multi-dimensional cancer genomics data by addressing 
data-integration issues and providing many unique tools for exploring these data. 
With the cBioPortal, users can visualize and analyze genetic alterations across sam-
ples, cancer types, data types, and genes. Additionally, what makes the cBioPortal 
such a powerful and unique tool is the ability to perform various levels of detailed 
analyses from cross-cancer cohort gene queries to detailed patient-level data views, 
such as clinical timeline and treatment information. Some of the many tools offered 
by the cBioPortal include OncoPrint diagrams, MEMo (Mutual Exclusivity 
Modules) analysis, customizable correlation plots, Kaplan-Meier plots, network 
analysis, and integrative genomics viewer (IGV) integration. The cBioPortal also 
integrates mutation annotations from a variety of resources to facilitate translational 
cancer research by helping researchers and clinicians identify potentially actionable 
mutations and mutational recurrence. These resources include OncoKB [42], CIViC 
[43], My Cancer Genome [44], and Cancer Hotspots [45]. Figure 11.1 shows exam-
ple queries using the cBioPortal.

11.4.1.2  �Broad Institute Firebrowse [21]

The Broad Institute TCGA GDAC Firebrowse is an analysis platform that sits above 
the TCGA GDAC Firehose, one of the deepest open cancer datasets available con-
taining over 80,000 sample aliquots from over 11,000 cancer patients and 38 unique 
disease cohorts. FireBrowse provides a simple way to access, view, and download 
~1500 analysis reports created by Firehose, as well as publicly available data from 
TCGA. Programmatic access is also available using the FireBrowse RESTful API 
service. Graphical tools are available through the FireBrowse web interface where 
scientists can explore and analyze cancer genomic data on a cohort-level, gene-
centric level, and view correlations between clinical features and genomic data. 
Such tools available through FireBrowse include viewGene, a tool for exploring 
expression levels, and iCoMut, a tool for exploring comprehensive analysis profiles 
of each TCGA cohort (Fig. 11.2).

11.4.1.3  �COSMIC [22]

The Catalogue of Somatic Mutations in Cancer (COSMIC) is a knowledge base 
designed to integrate cancer genomic data from various resources into a single plat-
form, thus providing a “one stop shop” for exploring the impact of somatic muta-
tions in human cancers. Data hosted by COSMIC is curated manually and 
semi-automatically from published datasets, pre-published data submitted by 
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authors to COSMIC for curation, and large cancer genome datasets, such as TCGA 
and ICGC, which account for approximately 50% of all available data in 
COSMIC.  Higher level data, such as sample disease descriptions and classifica-
tions, are curated manually. As of May 2017, COSMIC contains curated data from 
nearly 25,000 published papers and over 1 million samples. Publicly available data 
from COSMIC can be accessed through the web interface, as well as programmati-
cally through BioMart [46], and is integrated by a variety of platforms, such as the 
cBioPortal [14] and the ICGC Data Portal [10], as a resource for annotating genomic 
variants.

COSMIC provides an array of detailed gene-level information and relevant refer-
ences for each gene in the literature. Such detailed information and visualizations 
for each gene overview includes variant information with genomic coordinates, the 
distribution of mutations across primary tissue types, the types of mutations (i.e., 
SNPs, INDELs, etc.), nucleic acid substitution types (i.e., A > G, A > C, etc.), drugs 
used to treat specific gene mutant tumors, and which genes develop drug resistance. 
Data displayed on gene reports can also be filtered by tissue type, somatic status, 
disease, mutation impact, and genomic alteration type, such as variant type, copy-
number variation, gene expression, and methylation. Example visualizations using 
COSMIC are shown in Fig. 11.3.

Fig. 11.1  Example queries using the cBioPortal. (a) OncoPrint of mutation spectra by sample 
in uterine corpus endometrial carcinoma (TCGA). (b) Distribution of PIK3CA mutations in breast 
invasive carcinoma (TCGA). Sample mutations are annotated with data from OncoKB (purple 
box), My Cancer Genome (blue box), and Cancer Hotspots (orange box). (c) Sample patient clini-
cal timeline and treatment information. (d) Survival curves for samples with serous (red curve) vs. 
endometrioid and mixed histological tumor (black curve) subtypes in uterine corpus endometrial 
carcinoma (TCGA). (e) Copy-number alteration and mRNA expression correlation plot for breast 
invasive carcinoma (TCGA). Expression data is represented by Z-scores for all genes and copy-
number data was computed with GISTIC. ∗Patient identifiers removed to protect patient 
information
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11.4.1.4  �ICGC Data Portal [10]

The ICGC Data Portal is an open-source, web-based tool for visualizing, querying, 
and downloading data provided by the ICGC member institutions, TCGA, TARGET, 
and other projects. Source code for the ICGC Data Portal is available through 
GitHub (https://github.com/icgc-dcc/dcc-portal). The ICGC Data Portal also pro-
vides a single access point for member institutions to manage and maintain their 
data locally while simultaneously sharing data with other member institutions and 
users. To ensure data uniformity and enable cross cohort comparisons, ICGC 
enforces set guidelines to ensure the same data models, controlled vocabularies, 
ontologies, and references are used by all ICGC member institutions. Users can 
download available data through the web interface and programmatically using the 
ICGC Data Portal API clients.

The ICGC Data Portal provides a variety of tools for exploring and downloading 
data by cohorts, patients, genes, mutations, and datatypes. Select visualizations and 

Fig. 11.2  Comprehensive analysis profile of TCGA Lower Grade Glioma cohort using 
iCoMut for FireBrowse. (a) Somatic mutation rate per patient stratified by synonymous and non-
synonymous mutations. (b) Distribution of mutation substitutions per patient. (c) Significantly 
mutated genes identified by Mutsig2CV by q < = 0.1. (d) Somatic focal copy number gain events 
identified by GISTIC. (e) Somatic focal copy number loss events identified by GISTIC
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data summaries using the ICGC Data Portal are shown in Fig. 11.4. Users may also 
generate gene reports containing summaries of basic gene information, pathway 
annotations, mutations found in COSMIC, expression data, mutation frequencies, 
and cross references for genomic coordinates, pathways, and available publications, 
which are provided in a human-readable table format. Users can also perform 
enrichment analyses, cohort comparisons, and visualize genetic alterations through 
the data analysis tab to view the most commonly affected genes and pathways 
across cancer projects. The database can also be queried by specific datatypes, 
genes, samples, mutations, and other genomic alterations. Publicly available data 
can be downloaded from any of these reports for further analysis through the web 
interface.

11.4.1.5  �UCSC Xena [23]

UCSC Xena is an open-source, web-based tool developed at the University of 
California Santa Cruz for visualizing and analyzing private and public cancer 
genomics datasets. Source code for UCSC Xena is available through GitHub 
(https://github.com/ucscXena). As of May 2017, UCSC Xena contains publicly 

Fig. 11.3  COSMIC gene overview for KIT. (a) Full distribution of mutations for KIT across all 
tissues and cancer diseases. The top histogram displays the count of substitutions across the full 
length of the gene. The bottom peptide view shows the substitutions across the protein with color 
coded protein domains. (b) An overview of variant types that occur in KIT. (c) The breakdown of 
observed substitutions that occur in KIT. (d) Summary of genes that confer drug resistance to 
Imatinib, Nilotinib, and Sunitinib, which are drugs that are used to treat KIT mutant tumors
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available cancer genomics data from 91 projects and various cancer types, including 
data from TCGA, ICGC, TARGET, and CCLE. Users and/or institutions may also 
host their own installation of UCSC Xena with appropriate access control measures 
to help protect patient privacy and data security.

UCSC Xena provides a suite of tools for displaying and analyzing genome-wide 
experimental data across cohorts and datatypes. Visualizations include heatmaps, 
scatter plots, bar graphs, and 3D visualizations of mutations, as well as clinical data 
visualizations and survival analysis. Users can filter data by customized sample 
cohorts, clinical attributes, datatype, platform used, and more. Additionally, 
selecting specific variants when viewing SNPs and INDELs links out to the UCSC 

Fig. 11.4  ICGC data summaries and visualizations. (a) Donor distribution across 76 projects 
from ICGC members, TCGA, and TARGET. (b) The top 20 mutated cancer genes across all 
cohorts in the ICGC Data Portal. (c) OncoGrid view of the top 50 mutated genes in the TCGA 
Breast Cancer cohort. Mutation frequency and variant types are stratified by patients. Users may 
sort data by the provided clinical fields and available datatypes, as well as select regions to zoom 
into
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Genome Browser, where users will also see CIViC [43] and OncoKB [42] annota-
tions integrated if available. Figure 11.5 shows example queries users can make 
with UCSC Xena.

11.4.1.6  �St. Jude PeCan Data Portal [24]

The St. Jude Pediatric Cancer (PeCan) Data Portal is a cancer genome data portal 
developed specifically for visualizing and exploring genomic alterations in pediatric 
cancers using a tool called ProteinPaint. ProteinPaint was designed to simultane-
ously visualize SNPs, INDELs, fusion events, and gene expression data in parallel 
with annotations from COSMIC [22] and ClinVar [47]. An example of this is shown 

Fig. 11.5  TCGA PanCancer data visualizations with UCSC Xena. (a) Profile representation of 
SNPs and INDELs for BRAF in the TCGA PanCancer cohort using the UCSC Xena heatmap 
visualization tool. Data was filtered by samples with both exon expression data and somatic muta-
tions in BRAF.  High and low gene expression are represented by red and green, respectively. 
Somatic SNPs and INDELs are shown distributed along the BRAF genome. (b) BRAF UCSC 
Genome Browser with integrated CIViC (red box) and OncoKB (blue box) annotations. (c) 3D 
visualization of BRAF using MutPIT, a linked-out resource from the UCSC Xena heatmap tool. 
Mutations can be annotated by TCGA cancer type and filtered by sites
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in Fig. 11.6. Users can stratify data in a variety of ways such as by variants, project 
cohorts, cancer subtypes, and specimen types, for example. Additionally, users have 
the ability to add custom tracks to visualize their own data in bigWig, Stranded 
bigWigs, JSON-BED splice junction with read count, or VCF formats.

11.4.1.7  �Brown MAGI [25]

MAGI (Mutation Annotation & Genome Interpretation) is an open-source, open-
access web application developed at Brown University for annotating, exploring, 
and analyzing private and public cancer genomics data. Source code for installation 
is available through GitHub (https://github.com/raphael-group/magi). MAGI pro-
vides many interactive visualizations of cancer genomics data including real-time 
zooming, panning, and data filtering. Users can upload private datasets and compare 
or view their data in combination with TCGA Pan-Cancer data, collaboratively 
annotate genomic alterations and interactions, and view sample-level genomic aber-
rations. Private data upload is done through a simple web form without needing to 
install MAGI locally, and the types of data supported for upload include mutations, 
gene expression, methylation, and clinical attributes.

Fig. 11.6  St. Jude ProteinPaint overview of TP53. (a) Distribution of TP53 mutations in pedi-
atric cancers with annotations from COSMIC and ClinVar. (b) Example mutation summary table 
with read count heatmap for each sample variant. (c) TP53 RNA-seq gene expression in pediatric 
cancers. Pediatric adrenocortical carcinoma TP53 gene expression is indicated by red circles
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Fig. 11.7  An overview of the genomic alterations occurring in the Notch signaling pathway 
from the TCGA Pan-Cancer dataset. (a) Aberrations displays mutations in the queried genes 
across tumor samples, along with sample attribute data. (b) Heatmap displays gene expression data 
for the TCGA Pan-Cancer dataset. Users can also visualize private gene expression and methyla-
tion data. (c) Copy Number Alterations shows the copy number changes across tumor samples of 
a given gene. (d) Network shows gene interactions from multiple networks. Hovering over net-
work interactions also displays a pop-up of annotations containing links to references in the litera-
ture. (e) Transcript displays the distribution of mutations and their types for a given gene
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The types of visualizations include single-nucleotide variants, INDELs, copy-
number changes, gene expression, and protein-protein interactions curated from 
literature and other sources. A screenshot of the MAGI web application displaying 
genomic alterations in the Notch signaling pathway from the TCGA Pan-Cancer 
dataset is shown in Fig. 11.7.

11.5  �Clinical Actionability Resource Integration

As more data is collected from patient samples, the more powerful integrated 
knowledge systems become. Genomic alterations curated from sequencing data are 
studied to understand their impact on patient response and treatment, and this 
knowledge can be further integrated into knowledge bases and clinical reports. 
Figure 11.8 depicts the circular relationship of integrated knowledge systems.

Using this information, clinicians and researchers are better equipped to select 
the most beneficial treatment for their patients and can match their patients to clini-
cal trials more easily based on their genomic profile. Furthermore, the aggregation 
of data from multiple resources, such as OncoKB [42] CIViC [43], My Cancer 

Fig. 11.8  Knowledge systems integration. A depiction of the circular relationship between the 
many systems involved with enabling precision cancer medicine. As more data is collected more 
patients, the more powerful and informative curated knowledge bases and clinical reports become
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Genome [44], ClinVar [47], the Precision Medicine Knowledge Base [48, 49], the 
Jackson Laboratory Clinical Knowledgebase [50, 51], Cancer Genome Interpreter 
[52], Cancer Driver Log [53, 54], Tumor Portal [28, 55], Targeted Cancer Care [56], 
and Personalized Cancer Therapy [57, 58] provide researchers and clinicians with 
the tools to make more effective genome-driven medical decisions for their patients 
as these data continue to increase and expand their scope. Providing this informa-
tion in a hierarchical matter allows researchers and clinicians to determine the 
clinical actionability of genomic alterations and better equips them to make deci-
sions based on predicted prognosis and recurrence based on experimental evidence 
and the biological annotations of these alterations.
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