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Abstract. Parsing with respect to grammars based on hyperedge
replacement (HR) is NP-hard in general, even for some fixed grammars.
In recent work, we have devised predictive shift-reduce parsing (PSR), a
very efficient algorithm that applies to a wide subclass of HR grammars.
In this paper, we extend PSR parsing to contextual HR grammars, a
moderate extension of HR grammars that have greater generative power,
and are therefore better suited for the practical specification of graph and
diagram languages. Although the extension requires considerable modi-
fications of the original algorithm, it turns out that the resulting parsers
are still very efficient.
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1 Introduction

Grammars based on hyperedge replacement (HR) generate a well-studied class of
context-free graph languages [16]. However, their generative power is too weak;
e.g., their languages are known to have bounded treewidth [16, Thm. IV.3.12(7)].
Since this even excludes a language as simple as that of all graphs, HR grammars
cannot reasonably be advocated for specifying graph models in general.

An example illustrating this weakness of hyperedge replacement is provided
by “unstructured” flowcharts with jumps (see Sect. 6). Since jumps can target
any location in the program, an edge that represents such a jump may point
to any arbitrary node (representing a program location). Inserting such edges is
beyond what hyperedge replacement can do because it would require nonterminal
hyperedges of unbounded arity, such as the adaptive star grammars of [8].

A similar example is Abstract Meaning Representation [1], a representa-
tion of the meaning of natural language sentences that is being heavily studied
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in computational linguistics. Coreferences caused by, e.g., pronouns that refer
to entities mentioned elsewhere in a sentence, give rise to edges that point to
nodes which may be almost anywhere else in the graph. Hence, again, hyperedge
replacement is too weak.

Contextual hyperedge replacement (CHR) has been devised as a moderate
extension of HR that overcomes such restrictions, while preserving many other
formal properties of HR [7,9]. Rather than having left-hand sides consisting of
nonterminal edges only, CHR rules can have additional isolated context nodes in
their left-hand side, to which the right-hand side can attach edges. Hence, CHR
can attach edges to already generated nodes elsewhere in the graph, but the gain
in power is limited as the mechanism lacks control over which nodes to choose.
(The application conditions of [17] are not yet supported by Grappa.)

In recent work, we have devised a very efficient predictive shift-reduce (PSR)
parsing algorithm for a subclass of HR grammars. In this paper, we extend
this algorithm to contextual HR grammars. Its implementation in the graph-
parser distiller Grappa1 turned out to be smooth, and yields parsers that are as
efficient as those for the context-free case. This perhaps surprisingly good result
is due to the fact that both parsers consume one edge after another and apply
rules backwards until the start symbol is reached. As in the context-free case,
the grammar analysis by the distiller ensures that suitable edges can be chosen
in constant time, and backtracking is avoided. Hence, the overall running time
of the generated parser remains linear.

The rest of this paper is structured as follows. Section 2 introduces CHR
grammars. In Sect. 3 we recall PSR parsing and discuss the point where it has to
be modified for CHR grammars. A particular normal form needed to parse CHR
grammars is introduced in Sect. 4, before we discuss the analysis of lookahead in
Sect. 5. In Sect. 6 we discuss a more realistic example grammar (of flowcharts),
compare the efficiency of different parsers for this grammar, and evaluate some
CHR grammars wrt. PSR-parsability with Grappa. We conclude by summariz-
ing the results obtained so far, and indicate related and future work in Sect. 7.
Due to lack of space, our presentation is driven by a small artificial example, and
properties like unique start nodes and free edge choice are not discussed here in
order to keep the paper focused. The complete constructions and proofs for the
base case, PSR parsing for HR grammars, can be found in [13].

2 Contextual Hyperedge Replacement Grammars

We first compile the basic notions and notation used in this paper. Throughout
the paper, N denotes the non-negative integers and A∗ denotes the set of all
finite sequences over a set A, with ε denoting the empty sequence.

We let X be a global, countably infinite supply of nodes or vertices.

Definition 1 (Graph). An alphabet is a set Σ of symbols together with an
arity function arity : Σ → N. Then a literal e = ax1···xk over Σ consists of a

1 Available from its implementor Mark Minas under www.unibw.de/inf2/grappa.

www.unibw.de/inf2/grappa
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symbol a ∈ Σ and an attachment x1 · · ·xk of k = arity(a) pairwise distinct
nodes x1, . . . , xk ∈ X. We denote the set of all literals over Σ by LitΣ .

A graph γ = 〈V, ϕ〉 over Σ consists of a finite set V ⊆ X of nodes and a
sequence ϕ = e1 · · · en ∈ Lit∗Σ such that all nodes in these literals are in V . GΣ

denotes the set of all graphs over Σ.
We say that two graphs γ = 〈V, ϕ〉 and γ′ = 〈V ′, ϕ′〉 are equivalent, written

γ �� γ′, if V = V ′ and ϕ is a permutation of ϕ′.

Note that graphs are sequences of literals, i.e., two graphs 〈V, ϕ〉 and 〈V ′, ϕ′〉
are considered to differ even if V = V ′ and ϕ′ is just a permutation of ϕ.
However, such graphs are considered equivalent, denoted by the equivalence
relation ��. “Ordinary” graphs would rather be represented using multisets of
literals. The equivalence classes of graphs, therefore, correspond to conventional
graphs. The ordering of literals is technically convenient for the constructions in
this paper. However, input graphs to be parsed should of course be considered
up to equivalence. To make sure that this is the case, our parsers always treat the
remaining (not yet consumed) edge literals as a multiset rather than a sequence.

An injective function � : X → X is called a renaming. Moreover, γ� denotes
the graph obtained by renaming all nodes in γ according to �.

For a graph γ = 〈V, ϕ〉, we use the notations X(γ) = V and lit(γ) = ϕ.
We define the concatenation of two graphs α, β ∈ GΣ as αβ = 〈X(α) ∪
X(β), lit(α) lit(β)〉. If a graph γ is completely determined by its sequence lit(γ)
of literals, i.e., if each node in X(γ) also occurs in some literal in lit(γ), we sim-
ply use lit(γ) as a shorthand for γ. In particular, a literal e ∈ LitΣ is identified
with the graph consisting of just this literal and its attached nodes.

We now recall contextual hyperedge replacement from [7,9]. To keep the tech-
nicalities simple, we omit node labels. Adding them does not pose any technical
or implementational difficulties. Node labels are actually available in Grappa,
but discussing them here would only complicate the exposition.2

Definition 2 (CHR Grammar). Let the alphabet Σ be partitioned into dis-
joint subsets N and T of nonterminals and terminals, respectively. A contextual
hyperedge replacement rule r = (α → β) (a rule for short) has a graph α ∈ GΣ

with a single literal lit(α) = A ∈ LitN as its left-hand side, and a graph β ∈ GΣ

with X(α) ⊆ X(β) as its right-hand side. The nodes in X(α) \ X(A) are called
context nodes of r. A rule without context nodes is called context-free.

Consider a graph γ = δA′δ′ ∈ GΣ and a rule r as above. A renaming μ is a
match (of r to γ) if Aμ = A′ and3

X(γ) ∩ X(βμ) ⊆ X(αμ) ⊆ X(γ). (1)

2 Contextual hyperedge replacement with application conditions, as originally intro-
duced in [17], would require a more significant extension the difficulties of which we
have not yet studied. Investigating this will be a topic of future work; cf. Sect. 7.

3 This condition makes sure that all nodes that are introduced on the right-hand side
β of a rule are renamed so that they are distinct from all nodes that do already
occur in graph γ, whereas all other nodes are renamed to nodes that occur in γ.
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Fig. 1. Graphs g1, g2, g3 and their derivations in Γ .

A match μ of r derives γ to the graph γ′ = δβμδ′. This is denoted as γ ⇒r,μ

γ′, or just as γ ⇒r γ′. We write γ ⇒R γ′ for a set R of rules if γ ⇒r γ′ for some
r ∈ R, and denote the reflexive-transitive closure of ⇒R by ⇒∗

R, as usual.
A contextual hyperedge replacement grammar Γ = (Σ, T ,R,Z) (CHR gram-

mar for short) consists of finite alphabets Σ, T as above, a finite set R of
rules over Σ, and a start symbol Z ∈ N of arity 0. Γ generates the language
L(Γ ) = {g ∈ GT | Z ⇒∗

R g} of terminal graphs. We call a graph g valid with
respect to Γ if L(Γ ) contains a graph g′ with g �� g′.

Context-free rules are in fact hyperedge replacement (HR) rules as defined
in [13, Def. 2.2], and thus CHR grammars with context-free rules only are HR
grammars. Note, however, that derivations in [13] are always rightmost deriva-
tions that require δ′ ∈ GT in every derivation step. Example 1 demonstrates why
derivations for contextual grammars cannot be restricted to just rightmost ones.

Our running example is an artificial CHR grammar chosen for the purpose
of illustration only. More practical grammars are considered in Sect. 6.

Example 1. The CHR grammars Γ has N = {Z,A,B,C,D} and T = {a, b, c, d}.
Z has arity 0, whereas A, B, and C have arity 1; all other labels are binary. Γ has
the following rules:

Z
z−→ AxBx Bx b1|b2−→ Cxbxy | Dxybxy Dxy d−→ dxzdzy

Ax a−→ axy Cx+y
c−→ Dxycxy

In rule c, Cx+y is a shorthand for the graph 〈{x, y},Cx〉 with context node y;
the other rules are context-free.

Figure 1 illustrates the three graphs g1, g2, g3 that constitute the language
generated by Γ (up to renaming).4 As usual, nodes are drawn as circles whereas
(binary) edges are drawn as arrows with their label ascribed.

Moreover, Fig. 1 shows the derivations of g1, g2, g3. Underlined nonterminal
literals are those rewritten in the next derivation step. The rightmost deriva-
tion (2) uses just context-free rules to derive g1. Both derivation (3) and (4)

4 Thus a CHR grammar is in fact not necessary to describe this tiny language.
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use the contextual rule c in their fourth step. There is only a subtle difference:
(3) uses node 2 as context node, whereas (4) uses node 3. Neither derivation is
rightmost. While (4) could be turned into a rightmost one, there is no right-
most derivation for g2: In (3), A1 must be rewritten before C1 because the rule
rewriting C1 uses 2 as a context node, which has to be created by rewriting A1.


�

3 Making Shift-Reduce Parsing Predictive

In this section, we recall how a nondeterministic (and inefficient) shift-reduce
parsing is made predictive (and efficient), by using a characteristic finite-state
automaton (CFA) for control, and by inspecting lookahead. The algorithm devel-
oped for HR grammars [13] carries over to CHR grammars in many cases; an
exception that requires some modification is discussed at the end of this section.

Nondeterministic Shift-Reduce Parsers read an input graph, and keep a
stack of literals (nonterminals and terminals) that have been processed so far.
They perform two kinds of actions. Shift reads an unread literal of the input
graph and pushes it onto the stack. Reduce can be applied if literals on top
of the stack form the right-hand side of a rule (after a suitable match of their
nodes). Then the parser pops these literals off the stack and pushes the left-hand
side of the rule onto it (using the same match). The parser starts with an empty
stack and an input graph, and accepts this input if the stack just contains the
start graph Z and the input has been read completely.

Table 1 shows a parse of graph g3 in Example 1. Each row shows the current
stack, which grows to the right, the sequence of literals read so far, and the
multiset of yet unread literals. Note that the literals of the input graph can
be shifted in any order; the parser has to choose the literals so that it can
construct a reverse rightmost derivation of the input graph. The last column in

Table 1. Shift-reduce parse of graph g3.

# Stack Read literals Unread literals Action

0 ε ε {a12, b13, c13, d14, d43} shift a12

1 a12 a12 {b13, c13, d14, d43} reduce a

2 A1 a12 {b13, c13, d14, d43} shift d14

3 A1d14 a12d14 {b13, c13, d43} shift d43

4 A1d14d43 a12d14d43 {b13, c13} reduce d

5 A1D13 a12d14d43 {b13, c13} shift c13

6 A1D13c13 a12d14d43c13 {b13} reduce c

7 A1C1 a12d14d43c13 {b13} shift b13

8 A1C1b13 a12d14d43c13b13 ∅ reduce b1

9 A1B1 a12d14d43c13b13 ∅ reduce z

10 Z a12d14d43c13b13 ∅ accept
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Fig. 2. Characteristic items and states for the steps of the parse of graph g3 in Table 1.

the table indicates the parser action that yields the situation shown in the next
row. Underlined literals on the stack are those popped off the stack by the next
reduction step.

We have shown in [13, Sect. 4] that such a parser can find an accepting parse
if and only if the input graph is valid. But this parser is highly nondeterministic.
For instance, it could start with shifting any literal in step 0, but only shifting a12

leads to a successful parse. So it must employ expensive backtracking whenever
it runs into a dead end.

Characteristic Finite-State Automata (CFAs) are used to reduce the non-
determinism in shift-reduce parsers. This concept has been transferred from LR
parsing for context-free string grammars in [13, Sect. 5–7]. The CFA records
items of the grammar which the parser is processing, where an item is a rule
with a dot in its right-hand side that indicates how far processing has advanced.
Figure 2 shows the characteristic items for the steps of the parse in Table 1. The
numbering of item sets corresponds to the steps in Table 1. Each of these sets
corresponds to a state of the CFA, with a particular renaming of nodes.5

In step 0 of the parse, the parser starts with the item Z
z→ �AxBx, where the

dot at the beginning indicates that nothing has been processed so far. As the
dot is before the nonterminal literal Ax, which can be replaced using rule a, the
corresponding configuration in Fig. 2 also contains the item Ax a→ � axy. So the
parser can read a literal axy (with a suitable match of x and y). It cannot process
the nonterminal Ax, as only terminals can be shifted; so shifting a12 is the only
action fitting the grammar in step 0. As a consequence, step 1 is characterized
by the sole item Ax a→ axy � x

1
y
2 , which indicates that the right-hand side of rule a

has been processed completely and x and y have been matched to nodes 1 and
2, respectively. This implies that a12 can be reduced to A1, which turns item
Z

z→ �AxBx of step 0 into item Z
z→ Ax �Bx x

1 in step 2. Step 2 contains further
items because the dot is in front of nonterminal Bx.

5 The complete CFA for Example 1 will only be presented in the next section.
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Table 2. Wrong shift-reduce parse of graph g4. Steps 0–4 are essentially the same as
in Table 1

# Stack Read literals Unread literals Action

0 ε ε {a12, b12, d14, d42} shift a12

1 a12 a12 {b12, d14, d42} reduce a

2 A1 a12 {b12, d14, d42} shift d14

3 A1d14 a12d14 {b12, d42} shift d42

4 A1d14d42 a12d14d42 {b12} reduce d

5 A1D12 a12d14d42 {b12} shift b12

6 A1D12b12 a12d14d42b12 ∅ reduce b2

7 A1B1 a12d14d42b12 ∅ reduce z

8 Z a12d14d42b12 ∅ accept

Transitions in the CFA move the dot across a literal in some of its items, and
match nodes accordingly. The transitions in Fig. 2 are labeled with these literals.
Note that the sequence of literals along any path starting in state 0 equals the
stack of the step that is reached by the path.

Every shift-reduce parser can be controled by the CFA so that it will only
choose actions in accordance with the grammar, which are promising to find
a successful parse if the input graph is valid [13, Sect. 9]. Still some sources of
nondeterminism remain, which have to be resolved by different means.

Lookahead may be used when a set of items allows several promising actions.
For instance, consider step 5 in Fig. 2, where the dot is in front of b13 and c13

(under the match x
1

y
3 ), which both occur in the unread input. Only shifting

c13 leads to a successful parse of g3. If the parser shifted b13 instead, the next
steps would reduce for rules b2 and z, yielding a stack Z, leaving c13 unread so
that the parse would fail. In such a situation, one must check which literals may
follow later when either of the actions is selected. An analysis of grammar Γ
(prior to parsing) reveals that selecting c13 will allow to shift b13 later, whereas
selecting b13 will never allow to shift c13 later. So the predictive shift-reduce
(PSR) parser must shift c13 in step 5. In general (not for Γ ), a HR grammar
may have states with conflicts where the lookahead does not determine which
shift or reduction should be done in some state. Then the grammar is not PSR-
parsable [13, Sect. 9]. We will discuss the analysis of lookahead in Sect. 5.

Context Nodes require a modification of the PSR parsing algorithm. For a HR
grammar, a PSR parser can always continue its parse to a successful one (for
some remaining input) as long as all actions comply with the CFA. This does
not necessarily hold for CHR grammars.

For instance, consider the invalid graph g4 = a12d14d42b12. Its parse, shown in
Table 2, starts with the same actions 0–5 as for g3 in Table 1 and Fig. 2. However,
only b12 is unread in step 5, which is then shifted. Therefore, the parser will
eventually accept g4 as all literals have been read, although g4 is invalid! In fact,
the reduction in step 6 is wrong, because condition (1) in Definition 2 is violated:
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The reduce action is the reverse of the derivation A1B1 ⇒b2 A1D12b12 that
creates node 2, which is also created when deriving A1. But the error happened
already in step 5 with its characteristic items Bx b2→ Dxy � bxy x

1
y
2 and Cx+y

c→
Dxy � cxy x

1
y
2 . Since node 2 has been reused for y, it must be a context node, i.e.,

the first of these items, which is based on the context-free rule b2, is not valid
in step 5. Apparently, the CFA does not treat context nodes correctly. We shall
see in the following section that a CHR grammar like Γ has to be transformed
before parsing in order to solve the problem.

4 IOC Normalform

The problem described in the previous section could have been avoided if the
parser would “know” in step 5 that node 2 of the nonterminal literal D12 is a
context node. This would be easy if it held for all occurrences of a D-literal in Γ ,
but this is not true for the occurrence of Dxy in b2. In the following, we consider
only CHR grammars where such situations cannot occur. We require that the
label of a nonterminal literal always determines the roles of its attached nodes.
We then say that a CHR grammar is in IOC normalform. Fortunately, every
CHR grammar can be transformed into an equivalent IOC normalform. Before
we define the IOC normalform in a formal manner, we discuss roles of nodes and
profiles of nonterminals.

Nonterminal literals are produced by reduce actions, i.e., if the dot is moved
across the nonterminal literal within a rule. For instance, consider literal Dxy in
item Bx → �Dxybxy x

1 in Fig. 2. Node x is already bound to node 1 before the
dot is moved across Dxy, whereas y is unbound before, but bound afterwards (to
node 3 in step 5). Nodes x and y act like in and out parameters, respectively, of
a procedure; we say that x has role I (for “in”) and y has role O (for “out”). By
combining I and O for x and y, we say that Dxy has profile IO in this particular
situation. However, the situation is different for Dxy in item Cx+y → �Dxycxy x

1 .
Node x again has role I, and y is again not bound before moving the dot across
Dxy. But y must then be bound to the context node of this rule; we say that
y has role C (for “context”), and Dxy has profile IC in this situation. So the
profile of Dxy is not determined by its label D. This must not happen for a CHR
grammar in IOC normalform.

Definition 3. A CHR grammar Γ = (Σ, T ,R,Z) is in IOC normalform if there
is a function P : N → {I,O,C}∗ so that, for every rule (α → β) ∈ R and every
nonterminal literal B = By1...ym ∈ LitN occurring in β, i.e., β = δBδ′ for some
δ, δ′ ∈ Lit∗Σ , P (B) = p1 · · · pm with

pi =

⎧
⎪⎪⎨

⎪⎪⎩

I if yi ∈ X(δ)
O if yi /∈ X(δ) ∧ yi /∈ X(α)
C if yi /∈ X(δ) ∧ yi ∈ X(α) \ X(A)
p′j if yi /∈ X(δ) ∧ yi = xj

(for i = 1, . . . ,m)

where lit(α) = A = Ax1...xk and P (A) = p′1 · · · p′k.
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Example 2. CHR grammar Γ of Example 1 can be turned into a CHR grammar
Γ ′ in IOC normalform by splitting up the nonterminal label D into D1 and D2

and using the following rules:

Z
z−→ AxBx Bx b1|b2−→ Cxbxy | Dxy

1 bxy Dxy
1

d1−→ dxzdzy

Ax a−→ axy Cx+y
c−→ Dxy

2 cxy Dxy
2

d2−→ dxzdzy

It can easily be verified that the function P defined by Z 
→ ε, A 
→ O, B 
→ I,
C 
→ I, D1 
→ IO, and D2 
→ IC satisfies the conditions of Definition 3. In
particular, every D1-literal has profile IO, and every D2-literal has profile IC.

The general construction is straightforward: the simplest method is to create,
for every nonterminal label B, all copies BP (B) in which B is indexed with its
3arity(B) possible profiles. Each rule for B is thus turned into 3arity(B) rules, and
the nonterminal literals in the right-hand sides are annotated according to Defi-
nition 3. Grappa turns this procedure around to avoid the exponential blow-up
in most practically relevant cases, as follows. In all rules for a nonterminal label
B, assume first that the profile of the left-hand side is Iarity(B), and annotate it
accordingly. Then annotate the nonterminal labels in all right-hand sides, again
following Definition 3. This may give rise to a number of yet unseen annotated
nonterminal labels. Create rules for them by copying the respective original rules
as before, and repeat until no more new annotations are encountered.

Figure 3 shows the CFA of grammar Γ ′. The start state is q0, indicated by
the incoming arc out of nowhere. The CFA has been built in essentially the same

Fig. 3. The characteristic finite automaton of Γ ′ in Example 2.
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way as the characteristic items and states for the steps when parsing the specific
graph g3 in Fig. 2. Instead of the concrete nodes of g3, we now use parameters a,
b, and c. They are placeholders, which will be bound to nodes of the particular
input graph during parsing. For instance, item Ax a→ axy � x

1
y
2 that characterizes

step 1 in Fig. 2 corresponds to state qab2 in Fig. 3 where a and b have been bound
to nodes 1 and 2, respectively.

The transitions between states also refer to parameters. For instance, the
transition from qa1 to qab3 means that the dots in the two items Dxy

1
d1→ � dxzdzy x

a

and Dxy
2

d2→ � dxzdzy x
a are moved across dxz where x is bound to a and z is

yet unbound. The corresponding shift action must select and read a d-edge in
the input graph that leaves the node being bound to parameter a. The node of
the input graph that matches z and is bound to parameter b in state qab3 , also
becomes “known” that way. It must not have been read before because d1 and d2
are context-free rules. Figure 3 represents the fact that b is bound to the target
node of the d-edge by using b as the underlined target node, and the fact that
this node has not been read before is indicated by the label “b is new”. Using
the IOC normalform, this distinction between “new” and “old” nodes makes it
possible to handle context nodes correctly (see also the discussion at the end of
Sect. 3). It marks the major technical difference between the context-free parser
and the contextual one.

The label “c is old” at the transition from qab3 to qabc9 , however, indicates that
c is bound to a node of the input graph that has already been read, together
with a shifted edge, earlier in the parsing process. This situation can occur
although this transition means moving the dot of item Dxy

2
d2→ dxz � dzy x

a
z
b across

dzy in the context-free rule d2. Node y of the nonterminal literal corresponds
to context node y of the contextual rule c. This is reflected by the profile IC
of D2, which says that the second node of D2 must be a context node. Further
note that qabc8 also contains the same item as qabc9 , but c is declared “new” by
the corresponding transition. This is so because the context node may be still
unread in this situation, and the parser can not yet distinguish whether it is
currently processing rule d2 or d1, where y is not a context node, indicated by
profile IO of D1. This is demonstrated in the following.

Table 3 shows the only parse that a PSR parser using the CFA in Fig. 3 will
try when analyzing graph g3. Note that this parse corresponds to the unique
successful (non-predictive) shift-reduce parse among all possible attempts to
parse graph g3, shown earlier in Table 1. It predicts the unique promising action
that keeps it on track towards a successful parse. This is done by keeping, on
its stack, an alternating sequence of CFA states and literals processed so far, for
instance q0 A

1 q11 d
14 q143 d43 q1438 in step 4. The stack contents represent a walk

through the CFA from the initial state q0 to q1438 via q11 and q143 ; the literals
between consecutive states correspond to the transitions and their labels. When
we ignore the states, the stack equals the stack of the (nondeterministic) shift-
reduce parse shown in Table 1. The shift and reduce action of a PSR parser work
as follows:
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Table 3. PSR parse of g3 using the CFA in Fig. 3.

# Stack Read literals Unread literals Action

0 q0 ε {a12, b13, c13, d14, d43} shift a12

1 q0 a
12 q122 a12 {b13, c13, d14, d43} reduce a

2 q0 A
1 q11 a12 {b13, c13, d14, d43} shift d14

3 q0 A
1 q11 d

14 q143 a12d14 {b13, c13, d43} shift d43

4 q0 A
1 q11 d

14 q143 d43 q1438 a12d14d43 {b13, c13} reduce d2

5 q0 A
1 q11 D

13
2 q135 a12d14d43 {b13, c13} shift c13

6 q0 A
1 q11 D

13
2 q135 c13 q1311 a12d14d43c13 {b13} reduce c

7 q0 A
1 q11 C

1 q16 a12d14d43c13 {b13} shift b13

8 q0 A
1 q11 C

1 q16 b
13 q1312 a12d14d43c13b13 ∅ reduce b

9 q0 A
1 q11 B

1 q17 a12d14d43c13b13 ∅ accept

Table 4. PSR parse of the invalid graph g4 using the CFA in Fig. 3.

# Stack Read literals Unread literals Action

0 q0 ε {a12, b12, d14, d42} shift a12

1 q0 a
12 q122 a12 {b12, d14, d42} reduce a

2 q0 A
1 q11 a12 {b12, d14, d42} shift d14

3 q0 A
1 q11 d

14 q143 a12d14 {b12, d42} shift d42

4 q0 A
1 q11 d

14 q143 d42 q1429 a12d14d42 {b12} reduce d2

5 q0 A
1 q11 D

12
2 q125 a12d14d42 {b12} failure

A shift action corresponds to an outgoing transition of the state which is
currently on top of the stack. For instance, in step 3 with topmost state q143
there are two transitions leaving qab3 . They both look for a d-edge leaving node 4
in g3. The only such edge is d43. And, the parser must choose the transition to
q1438 because node 3 is “new”, i.e., has not yet occurred in the parse.

A reduce action may be selected if the topmost state on the stack contains
an item with the dot at the end. For instance, consider step 4 with topmost
state q1438 . This state in fact contains two items with a dot at their ends: The
parser may either reduce according to rule d1 or d2; the CFA cannot help the
parser with this decision. However, further analysis (see the following section)
reveals that only reducing d2 can lead to a successful parse. The parser, therefore,
removes the topmost four elements from the stack (the right-hand side of rule d2
together with the states in between, indicated by the underline), leaving q11 as
the intermediate topmost state. It then selects the transition for the obtained
nonterminal literal D13

2 that leaves q11 , i.e., the transition to q135 .
The PSR parser accepts g3 in step 9 because all literals of g3 have been read

and the topmost state is q17 which has the dot at the end of rule z, i.e., a last
reduction would produce Z.
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Finally Table 4 shows that the PSR parser using CHR grammar Γ ′ in IOC
normalform correctly recognizes that graph g4 is invalid. It fails in step 5 in state
q125 where it looks for an unread literal c12, but only finds b12, which cannot be
shifted, in contrast to the situation shown in Table 2.

5 Lookahead Analysis

The previous section revealed that the CFA does not always provide enough
information for the parser to unambiguously select the next action. This is in
fact unavoidable (at least if P �= NP) because PSR parsing is very efficient while
HR graph languages in general can be NP-complete. The problem is that the CFA
may contain states with items that trigger different actions, for instance state
qabc8 in Fig. 3, which allows two different reduce actions. Then we must analyze
(prior to parsing) which literals may follow or cannot follow (immediately or
later) in a correct parse when either of the possible actions is chosen. This may
yield two results: The analysis may either identify a fixed number of (lookahead)
literals that the parser must find among the unread literals in order to always
predict the correct next action, or there is at least one state for which this is not
possible. The latter situation is called a conflict. A CHR grammar is PSR only
if no state has a conflict. Here, we describe this situation and the peculiarities
for CHR grammars by means of grammar Γ ′ and state qabc8 .

Consider the situation when the PSR parser has reached qabc8 . We wish to
know which literals will be read next or later if either “reduce d1” or “reduce d2”
is chosen, producing Dac

1 or Dac
2 . Figure 4 shows the history of the parser that

is relevant in this situation. The parser is either in item I6 or I7. If it is in I7, it
must also be in I5 where its literal Dxy

2 corresponds to the left-hand side of I7,
and so on. Bx in I1 corresponds to the left-hand side of either I3 or I4. Note that
the node renamings in I2, . . . , I5 reflect the information available when I6 or I7
are reduced. For instance, node y of I5 will be bound to parameter c. However,
the choice of context node y of I5 affects these situations. In this small example,
y can be bound either to the node which y of I2 is bound to, or to the node
which y of I3 is bound to. In the former case, y of I2 is bound to c since we
already know that y of I5 is bound to c; then, y of I3 must be a yet unread node,
indicated by y

– . Otherwise, y of I3 must be bound to c, and y of I2 has already
been read, but is not stored in any of the parameters, indicated by y

• .
It is clear from Fig. 4 that the parser must read a literal cac next if it

reduces I7, or more precisely, a c-literal that is attached to the input nodes
bound to parameters a and c, respectively. This is so because cxy immediately
follows Dxy

2 in I5 (indicated by a box). And, if the parser reduces I6, it must read
bac next. In fact, the parser must check whether there is a yet unread literal
cac. If it finds one, it must reduce d2, otherwise it must reduce d1. To see this,
assume there is an unread cac. This can be read when I7 is reduced, but never
if I6 is reduced because no further literal would be read after bac. And if there
is no cac, the parser would get stuck after reducing I7.

On the other hand, the parser cannot make a reliable decision based on the
existence of just literal bac, because such a literal can be read by the parser if it
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Fig. 4. Lookahead analysis for state qabc
8 in Fig. 3.

chooses “reduce d1”, but also if it chooses “reduce d2”. The former is obvious. To
see the latter, consider the literal read immediately after cac when I7 has been
reduced. This must be a literal that corresponds to bxy in I3, i.e., it is either bc–

or bac according to the possible renamings of I3. This means, bac may in fact
be read later if I7 is reduced. Note that this is only possible because the node
used as y of I3 can be the context node used as y of I5.

6 Realization and Evaluation

PSR parsers for CHR grammars can be generated with the Grappa parser
distiller (see footnote 1). Grappa checks whether the CHR grammar has the
free edge choice property, which is not discussed in this paper. It ensures that,
if the parser can end up in a conflict-like situation between shifting alternative
edges, the choice will not affect the outcome of the parsing; see [13, Sect. 9] for
details.

Parsing of an input graph starts with the identification of unique start nodes,
i.e., a place in the graph where parsing has to start. (This is also not considered in
this paper; see [11, Sect. 4] for details.) Then the parser uses the concepts outlined
in the previous sections to find a shift-reduce parse of the input graph, and finally
tries to construct a derivation from this parse so that context nodes are never
used before they have been created in the derivation. However, it may turn out
in this last step that the input graph is invalid although a parse has been found.
This does happen if there are cyclic dependencies between derivation steps that
create nodes and those that use such nodes as context nodes [7]. Identification of
start nodes and finding a PSR parse are as efficient as in the context-free case.
As discussed in [11,13], this means that these steps require linear time in the
size of the graph, for all practical purposes. So does creating a derivation from
the parse by topological sorting. As a consequence, PSR parsing with respect to
CHR grammars runs in linear time in the size of the input graph. However, a
more detailed discussion must be omitted here due to lack of space.

We now use the more realistic language of flowcharts to evaluate PSR pars-
ing for CHR grammars. Note that these “unstructured” flowcharts cannot be
specified with HR grammars as they have unbounded treewidth.
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Fig. 5. Derivation of a flowchart

Fig. 6. Definition of flowchart graphs Fn (left) and running time (in milliseconds) of
different parsers analyzing Fn for varying numbers of n (right).

Example 3 (Flowcharts). Flowcharts represent the control of low-level impera-
tive programs. In the graphs representing these charts, nodes drawn as small
black circles represent program states, unary edges labeled with � and � desig-
nate its unique start state and its stop states, resp., binary edges labeled with
and � represent instructions and jumps, resp., and ternary edges labeled with

represent predicates, which select one of the following branches. (Here, we
ignore the texts that usually occur in instructions and predicates.) Flowcharts
can be generated by a CHR grammar [7, Ex. 2.6] as follows:

The context-free rules h, i, and c generate control flow trees of the halt, instruc-
tion, and conditional selection, respectively, and the fourth rule, j, which is not
context-free, inserts jumps to some program location in the context. Figure 5
shows the diagrams of a derivation of a small flowchart.

Grappa has been used to generate a PSR parser for this grammar. In order to
evaluate its efficiency, we have generated three further parsers: a predictive top-
down (PTD) parser for the same grammar (after extending PTD parsing [10] to
CHR grammars), a Cocke-Younger-Kasami -style (CYK) parser [20], and finally
a generalized predictive shift-reduce (GPSR) parser for structured flowcharts [18].
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Table 5. Key figures for parsers generated with Grappa. “Grammar” columns indicate
maximal nonterminal arity (A), nonterminals (N) and terminals (T ), context-free (Rcf)
and contextual (Rc) rules, and the maximal length of right-hand sides (L). As the AMR
grammar must be transformed into IOC normalform, its key figures are listed under
“IOC normalform”. “CFA” columns count states (S), items (I), and transitions (Δ)
in the CFAs. The last column counts the conflicts in the CFAs.

Example Grammar IOC normalform CFA Conflicts

A N T Rcf Rc L A N T Rcf Rc L S I Δ

Flowcharts 1 2 5 4 1 3 10 26 30 –

Program graphs 2 12 11 17 4 4 33 80 62 –

AMR 2 9 14 17 11 5 2 13 14 25 11 5 68 211 128 11

GPSR parsing extends PSR parsing to grammars that are not PSR, which is the
case for structured flowcharts.

All four parsers have been used to parse flowcharts Fn as defined in Fig. 6
(left), which consist of n predicates, 3n + 1 instructions, and n jumps. Fn has
a subgraph Dn, which, for n > 0, contains subgraphs Dm and Dm′ with n =
m+m′+1. Note that the predicates in Fn form a binary tree with n nodes when
we ignore instructions. We always choose m and m′ such that it is a complete
binary tree. Note furthermore that each Fn forms in fact a structured flowchart,
which must be built with jumps in our flowchart grammar. The GPSR parser
has been applied to variations of Fn wherein jumps have been removed, and
their source and target nodes have been identified.

Figure 6 shows the running time of each of the four parsers when analyzing
graphs Fn with varying values of n. It was measured on a iMac 2017, 4.2 GHz
Intel Core i7, Java 1.8.0 202 with standard configuration, and is shown in mil-
liseconds on the y-axis while n is shown on the x-axis. The graphics shows nicely
that the PSR parser is linear, and about four times faster than the PTD parser.
The GPSR parser is much slower because it deals with conflicts of the CFA by
following several parses simultaneously. The CYK parser is the slowest, because
it builds up a table of nonterminal edges by dynamic programming.

We have also created parsers for CHR grammars for two additional graph lan-
guages: Program graphs [7, Ex. 2.7] represent the syntactic structure of object-
oriented programming and are used for refactoring. Abstract Meaning Repre-
sentations are widely used in natural language processing to represent sen-
tence meaning. To define the structure of AMRs, CHR grammars are preferable
because of their greater capability to cover the set of all AMRs over a given
domain. At the same time the grammars become both smaller and simpler.
Unfortunately, the example grammar from [14] is not PSR because the CFA has
11 conflicts (see Table 5), but one can employ generalized PSR parsing intro-
duced in [18]. Table 5 lists key figures of the three example languages outlined
above.
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7 Conclusions

In this paper, we have described how predictive shift-reduce parsing can be
extended from HR grammars to CHR grammars. These parsers can be generated
with Grappa (see footnote 1), and are as efficient as the context-free version,
although they apply to a larger class of languages.

Related Work

Much work has been dedicated to graph parsing. Since space is limited, we men-
tion only results and approaches for HR grammars. Early on, Lautemann [19]
identified connectedness conditions which make polynomial parsing of certain
HR languages possible, using a generalization of the Cocke-Younger-Kasami
(CYK) algorithm for context-free string languages. However, the degree of the
polynomial depends on the HR language. Stronger connectedness requirements
yield cubic parsing (by a different kind of algorithm), as shown by Vogler and
Drewes [6,21]. A CYK parser for general HR grammars (even extended by so-
called embedding rules) was implemented by Minas in DiaGen [20]. While this
parser takes exponential time in general, it can handle graphs with hundreds of
nodes and edges.

The line of work continued in this paper started with the proposal of pre-
dictive top-down (PTD) parsers in [10] and continued with the introduction of
predictive shift-reduce (PSR) parsers [12,13]. Both apply to suitable classes of
HR grammars, while the current paper extends PSR parsers to CHR grammars.

Independently, Chiang et al. [4] improved the parser by Lautemann by mak-
ing use of tree decompositions, and Gilroy et al. [15] studied parsing for the
regular graph grammars by Courcelle [5]. Finally, Drewes et al. [2,3] study a
structural condition which enables very efficient uniform parsing.

Future Work

If a grammar has conflicts, a generalized parser can pursue all conflicting options
in parallel until one of them yields a successful parse. This idea, which has been
used for LR string parsing in the first place, has recently been transferred to
HR grammars [18]. It turns out that generalized PSR parsing can be further
extended to CHR grammars. This way the CHR grammar for abstract meaning
representations analyzed in Table 5 can be recognized by a generalized PSR
parser generated with Grappa.

So far, the matching of a context node in a host graph depends on the exis-
tence of a matching host node. So a contextual rule may causally depend on
another rule that generates the required node. Example 1 showed that cer-
tain graphs cannot be derived with a rightmost derivation. This complicates
the parser, which always constructs rightmost derivations, since it has to check
whether causal dependencies have been respected. Since we conjecture that
causal dependencies do not really extend the generative power of CHR gram-
mars, we will consider to re-define CHR grammars, without causality. However,
for the practical modeling of graph and diagram languages, it should be possible
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to express certain conditions that the host node of a context node should ful-
fill. For instance, one may wish to forbid that the application of a context rule
introduces a cycle. This is why the initial version of CHR grammars introduced
in [17] features contextual rules with application conditions that can express the
existence or absence of certain paths in the host graph. We will investigate the
ramifications of application conditions for parsing in the future.
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